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Abstract. In this paper, we study algorithmic problems for quantiatinodels that are motivated by the

applications in modeling embedded systems. We consideptawer games played on a weighted graph
with mean-payoff objective and with energy constraints.pMesent a new pseudopolynomial algorithm for
solving such games, improving the best known worst-caseptaxity for pseudopolynomial mean-payoff

algorithms. Our algorithm can also be combined with [3] ttadtba randomized procedure with currently
the best expected time complexity. The proposed solutib@sren a simple fixpoint iteration to solve the

log-space equivalent problem of deciding the winner of gnegrames. Our results imply also that energy
games and mean-payoff games can be reduced to safety gapsesigopolynomial time.

* This work is an extended and revised version of [6], appe&réuk 5-th Doctoral Workshop on Mathematics and Engi-
neering Methods in Computer Science (MEMICS’09), and [Bheared in th&-rd Workshop of the ESF Networking
Programme on Games for Design and Verification (GAMES’09).



1 Introduction

Quantitative models Recently, several research efforts have been put in stgdyirantitative ex-
tensions of formalisms like automata and games for modeajunantitative aspects of systems like
embedded systemQuantities may represent, for example, the power usage efriboedded compo-
nent, or the buffer size of a networking element [5].

In this context, Henzinger et al. have studied resourcefades [5], and more recently, Bouyer
et al. have studied weighted (timed) automata and gameB[#je two papers, the authors consider
models where accumulated weight along runs are subjecinstraints. For one important variant of
those models, the so-callethergy gameéwith lower bound constraints), they have proved log-space
equivalence to classical mean-payoff games. This logespgaivalence allows to reuse the existing
algorithms for solving mean-payoff games.

In this paper, we propose a direct algorithm for solving gpegames. Furthermore, using the
log-space reduction from mean-payoff games to energy gaweshow how our new algorithm
for energy games can be used to improve on the existing #lgtd solutions to solve mean-payoff
games. In addition to improving the worst-case complexitysblving energy games and mean-payoff
games, we believe that our algorithmic solution, which ixedipoint computation, has the potential
to be efficiently implemented. We believe that our algoritisran important step into making the tool
support for those quantitative models available and efficie

Mean-payoff games and energy gamesTwo-player mean-payoff games are played on weighted
graphs (in which every edge has an integer weight) with tvpesyof vertices: in playes-vertices,
player0 chooses the successor vertex from the set of outgoing etfgpkayerd vertices, playen
chooses the successor vertex from the set of outgoing e@gesgame results in an infinite path
through the graph. The long-run average of the edge-weajbtsy this path, called thealue of the
play, is won by playef and lost by playet.

The decision problenfor mean-payoff games asks, given a verteand an integer € Z, if
player0 has a strategy to win a value at leaswvhen the game starts in The associatedtrategy
synthesis probleris to construct a strategy for playertthat ensures a value at leastif there exists
one. Thethree-way partitionproblem asks, given a threshalde Z, to partition the set of vertices
of the game into the setd’_,, V_,, V<, ), whereV_, is the subset of vertices from which player
can only achieve a value less thanV_, is the subset of vertices where playecan achieves but
not more, and’~, is the subset where playercan achieve more than Thevalue problenconsists
in computing the maximal (rational) value that plagectan achieve from each vertexof the game.
Finally the(optimal) strategy synthesis probldato construct a strategy for play@that secures the
maximal value.

Mean-payoff games have been first studied by Ehrenfeuchiigieklski in [1] where it is shown
that memoryless (or positional) strategies suffice to aehike optimal value. This result entails that
the decision problem for these games lies inMBoNP [2, 19], and it was later shown to belong to
UP N coUP [13]. Despite many efforts [20, 19, 16, 7, 8, 22, 12], otypomial-time algorithm for the
mean-payoff game problems is known so far. Beside such agtieally engaging complexity status,
mean-payoff games have plenty of applications, espediathe synthesis, analysis and verification of
reactive (non-terminating) systems. Many natural modeioh systems include quantitative infor-
mation, and the corresponding question requires the salafi quantitative games, like mean-payoff
games. Concrete examples of applications include varimgslof scheduling, finite-window online
string matching, or more generally, analysis of online f@ots and algorithms, as well as selection
with limited storage [19]. Mean-payoff games can even beal dse solving the max-plus algebra

! The complexity class UP is the class of problems recogriziaplinambiguous polynomial time nondeterministic Turing
machines [17]. Obviously ® UP N coUPC NP N coNP.



Ax = Bz problem, which in turn has further applications [8]. Besikeir applicability to the mod-
eling of quantitative problems, mean-payoff games hava tignnections with important problems
in game theory and logic. For instance, parity games [11]tardnodel-checking problem for the
modal mu-calculus [15] are poly-time reducible to meangfagames [10], and it is a long-standing
open question to know whether these problems are in P.

In this paper, we present new algorithmic solutions to themgayoff game problems listed
above, improving the known upper bounds in terms of worseazomplexity. Our algorithms rely
on a reduction to so-calleehergy gamegs, 4] that are log-space equivalent to mean-payoff games.
In an energy game, given an initial credit, the objective of playe® is to maintain the sum of the
weights (the energy level) positive. Tlecision problenfor energy games asks, given a weighted
game graph and vertex if there exists an initial credit for which play@érwins fromuv. It is known
that memoryless strategies are sufficient for energy gaamelgthat played essentially needs to ensure
that all cycles that can be formed by playiehave nonnegative weight. We show that energy games
can be solved elegantly and efficiently using a notiorpaigress measureProgress measures for
weighted graphs are functions that impose local condittorensure global properties of the graph.
A notion of parity progress measure [21] was exploited in [14] for the algarithanalysis of parity
games. In this paper, we introduce so cakekrgyprogress measures to witness that all cycles in a
graph are nonnegative. We show how to transfer this notimm fyraphs to games, and we provide an
efficient fixpoint algorithm to synthesize a progress measuien it exists. Since energy games are
log-space equivalent to mean-payoff games, this also defimeew mean-payoff algorithm which is
more elegant and conceptually simpler than the previousbyvk algorithmic solutions.

As we will see below, our procedure to solve the mean-payafii@s decision problem achieves a
better worst-case complexity than the corresponding bestzk deterministic pseudopolynomial al-
gorithm due to Zwick and Paterson [19]. Moreover, (optinstdategies can be synthetized as a (free)
byproduct of our algorithm, while [19] requires further goatation. Our solution of the mean-payoff
value problem is also better than [19] when the maximum wéighin the graph is subexponential,
which is the relevant case for comparing pseudopolynomiatqdures. Finally, we can combine our
deterministic mean-payoff value algorithm with the randmed procedure proposed in [3] to obtain
an algorithm with currently the best expected complexitr éll 17). We note that in typical appli-
cations, where the edge-weights represent, for examm@ertbrgy consumption of a physical device,
W is usually small in comparison witfy'|, in which case our deterministic algorithm significatively
outperforms—by a linear factor—the previous state-ofdhesolutions, without any use of random-
ization.

Related works and main results All previous deterministicalgorithms for mean-payoff games are
either pseudopolynomial (i.e., polynomial in the numbevertices|V|, the number of edgd#’|, and
the maximal absolute weight’, rather than in the binary representationV@f or exponential [20,
19, 16, 22,18].

In the late eighties, Gurvich, Karzanov, Khachiyan and Idele[20, 2] provided the first (ex-
ponential) algorithms for mean-payoff games. Their methiased on the notion of rational price
function, was later extended by Pisaruk [16], who considigi@mes with mean-payoff objectives in
a slightly more general setting than the one originally psgul by Eherenfeucht and Mycielski [1],
and provides a pseudopolynomial upper bound.

The best pseudopolynomial deterministic algorithm for mpayoff games known so far was
designed in 1996 by Zwick and Paterson [19]. They provide laeviieration algorithm with time
complexity©(|E|-|V'|3-W) for the value problem, an@(|E|- |V |?- W) for the decision problem and
the three-way partition problem. They also consider théwdtstrategy synthesis problem, defining

a correspondin@®(|E| - [V[*- W - log %) pseudopolynomial algorithm.
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Problems

Algorithms Decision Problem Strategy Synthesis Note
3-Way Partition Problem
This paper O(|E|-|V]|- W) O(|E|- V|- W) Deterministic
[19] O(lE|-|V|?- W) O(|E|-|V|* - W - log{¢}) Deterministic
[22] O(|E|-|V]- 2!V — Deterministic
[12] min(O(|E|-|V|?- W),  min(O(|E|-|V|*- W)), Randomized
20/1VI-iog]V)y 20(/1VI-leg V)

Table 1. Complexity of the main algorithms to solve the mean-payafing problem4—3 considered in Section 2.

The best deterministic exponential algorithm for solvingam-payoff games is due to Lifshits and
Pavlov [22], who provide a graph decomposition proceduta aomplexityO(|E| - |V |- 2!V1) for the
decision problem, an@(|E| - |V| - 2IVI - log W) for the value problem.

In 2007, Bjorklund and Vorobyov [12] define a randomizedoaiipm which is both subexpo-
nential and pseudopolynomial. Their algorithm solves theigsion problem, the three-way partition

problem, and the winning strategy synthesis in expectediin(O(|E|- [V |2- W), 20V IV IoelV1))

For the value problem and the optimal strategy syntheséstithe complexity of their solution is
bounded bymin(O(|E| - |[V|> - W - (log|V| + log W)), 20/ IVI1eelVD) L 10g 177). In particular, the
pseudopolynomial terms in the upper bounds given by [12] alorequire randomization and im-
prove on [19] for the (optimal) strategy synthesis problsingce winning strategies are obtained as
a byproduct of the overall computation. In [3], Anderssoml &forobyov proposed a subexponen-
tial randomized solution for discounted payoff games, veifiplication to mean-payoff objectives.
In particular, [3] solves the value problem for mean-paygdines in expected tim@(|V |? - |E| -

eV ‘V"ln(|EVW)+O(W+ln‘ED), which improves [12] for largéV .

The (deterministic) algorithms proposed in this work toseahean-payoff games give new pseu-
dopolynomial upper bounds for all problems considered ablwparticular, we provid®(|E|- |V |-
W) algorithms for the decision problem and the three-way famtiproblem, achieving a linear im-
provement in V| of the corresponding previous upper bound. We define anidigoffor the value
problem with a complexity) (| E|-|V'|?- W - (log|V' | +1log W)) while the value-iteration algorithm by
Zwick and Paterson has complex@®(|E|-|V |>-W). Thus, our procedure performs better whgris
polynomial in|V|. WhenW is exponential ifV'|, the complexity of both algorithms is outperformed
by theO(|E| - |V|-2IVI.1og W) algorithm in [22]. Finally, our algorithmic solution for éh(optimal)
strategy synthesis has complext®(|E| - |[V|- W) (resp.O(|E| - |V|? - W (log|V| + log W))), also
improving on previous upper bounds in [12].

Tables 1 and 2 summarize the results obtained in this papkcampare them with the main
algorithms in the literature.

Structure of the paper The rest of this paper is organized as follows. In Sectionepveovide basic
definitions and notations. In Section 3, we develop energgness measures to be used in Section 4
for solving energy game problems. In Section 5, we build ughennew algorithm to improve the
state-of-the-art pseudopolynomial time upper bounds feamrpayoff games.
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2 Preliminaries

Weighted graphs Let Z (resp.N) denote the set of integer (resp. nonnegative integer) etsnia
weighted graphG = (V, E, w) consists of a finite sét’ of vertices, a setl C V' x V of edges, and
a weight functionw : E — Z, assigning integer weights to edges. Given £ — Z andv € Z,
we denote byw — v the function that assigns to each edge E the weightw(e) — v. We assume
that weighted graphs atetal, i.e. for allv € V, there exista’ € V such that(v,v’) € E. Given
U C V,we denotel | U the restriction ofE toU,i.e. & | U = ENU x U. Given a functionf
ranging overV, f : V. — cod(f), andU C V, we denote byf [ U the restriction off to U, i.e.
fI1U:U— cod(f) mapseactu € Uto f | U(u) = f(u). GivenU C V such that for alb € U,
there exista’ € U with (v,v') € FE, we denote byG | U = (V/, E’,w') the weighted subgraph
whereV' = U, E' = E | V', andw’ = w | V'. Note that weighted subgraphs are total. A finite
pathp is a nonempty sequence of verticg®, . .. v, such that(v;,v;11) € Eforall0 <i < n. A
cycleis a finite pathp = vgvy ... v, such thatn > 1 andvg = v,. A cyclevguy ... v, is reachable
fromv in G if there exists a pathgu; . . . u,, in G such that,y = v andu,, = vy. The average weight
of a cyclevy ... v, is equal to% . Z?;ol w(vi, vig1). A pathwvguy ... v, is acyclicif v; # v; for all

0 < i < j < n.We say that a cycle in a weighted grapmegative(resp.nonnegativiif the sum
of its edge weights is less tha@n(resp. not less thad). Given a set of vertice§ C V, we denote by
pre(U) the set of vertices having a successot/in.e.pre(U) = {v | I’ € U : (v,v') € E}, and by
post(U) the set of successors of verticedini.e.post(U) = {v | ' € U : (v',v) € E}.

Game graphs A game graphis atuplel” = (V, E,w, (Vy, V1)) whereG! = (V, E,w) is a weighted
graph and(Vy, V1) is a partition ofV into the setl}, of playerd vertices and the séft; of player-

1 vertices. Aninfinite gameon I" is played for infinitely many rounds by two players moving a
pebble along the edges of the weighted graph In the first round, the pebble is on some vertex
v € V. In each round, if the pebble is on a vertexc V; (i = 0,1), then playeri chooses an edge
(v,v") € FE and the next round starts with the pebblew6rA play in the game grapli” is an infinite
sequence = vyvy ... v, ... such thatv;,v;11) € E for all i > 0. A strategyfor player: (i = 0, 1)

is a functiono : V* - V; — V, such that for all finite pathsgv; ... v, with v, € V;, we have
(v, o(vouy ... v,)) € E. We denote by; (i = 0, 1) the set of strategies for playgerA strategyo for
playeri is memoryles# o(p) = o(p’) for all sequencep = vgv; ... v, andp’ = v{v} ... v}, such
thatv,, = v/,. We denote by=M the set of memoryless strategies of playeh play vovs ... vy, . ..

is consistenwith a strategy for playeri if v;; = o(vgv; ... v;) for all positions;j > 0 such that
v; € V;. Given an initial vertexs € V, the outcomeof two strategiesr; € Xy andoy € Xy inwvis
the (unique) playutcome! (v, g, o1) that starts inv and is consistent with bothy ando. Given a

Problems
Algorithms Value Problem Optimal Strategy Synthesis Note
This paper O(|E|-|V|? - W - (log| V| + logW)) O(|E|-|V|? - W - (log| V| + logW)) Det.
[19] O(|E|-|VI|® - W) O(E|-|V|4-W - log%) Det.
[22] O(E|- V-2Vl logW) — Det.
[12] min(O(|E| - |V|® - W - (logV + logW)), min(O(|E|-| V| - W - (log| V| + logW)), Rand.
20W/1VIogI V) . jog W) 20W/1VIogI V) . jog W)
3] (’)(|V|2 B 62-\/\V\-1n(\E\/\/\V\)+O(\/\V\+ln\E\)) _ Rand.

Table 2. Complexity of the main algorithms to solve the mean-payafing problemd—5 considered in Section 2.



memoryless strategy; for playeri in the gamel”, we denote by (;) = (V, E,,, w) the weighted
graph obtained by removing frof’" all edges(v,v’) such thaty € V; andv’ # m;(v).

Mean-Payoff Games [1] A mean-payoff gam@MPG) is an infinite game played on a game grdph
where playef wins a payoff value defined as the long-run average weigtttsegblay, while playei
loses that value. Formally, the payoff value of aplgy; ... v, ... iInI'is
n—1
MP(U0U1 ceoUp e ) = hnnigf E . z; w(vi,viﬂ).
1=
The valuesecuredby a strategy € X in a vertexv is
val?(v) = inf MP(outcome! (v, 0¢,01))
01€X1
and the(optimal) valueof a vertexv in a mean-payoff gameg' is
vall' (v) = sup inf MP(outcome! (v, 09,07)).
oc0€X 01€X1
We say thatry is optimal if val(v) = val! (v) for all v € V. Secured value and optimality
are defined analogously for strategies of playeEhrenfeucht and Mycielski [1] show that mean-
payoff games arememoryless determingide., memoryless strategies are sufficient for optimalitg
the optimal (maximum) value that play@rcan secure is equal to the optimal (minimum) value that
player1 can achieve.

Theorem 1 ([1]).For all MPG I = (V, E,w, (V,, V1)) and all verticesv € V, we have

vall’ (v) = sup inf MP(outcome! (v,09,01)) = inf sup MP(outcome! (v,09,01)),
o0€XH 1€ 01€X1 5pe X,

and there exist memoryless strategigse X}/ andm; € XM such that
vall'(v) = val™(v) = val™ (v).

Moreover,uniformoptimal strategies exist for both players, i.e., a uniquenargless strategy can
be used to secure the optimal values, independently of iti@ wvertex [1].

The next lemmas follow from memoryless determinacy of meayoff games.
Lemmal ([1,12]).LetI" = (V,E,w,(Vy, V1)) be anMPG. For all v € R, for all memoryless
strategiesty, € X! for player0, and for all verticesv € V, the valueval™ (v) secured byr, in v
is greater tharv if and only if all cycles reachable fromin the graphG' (o) have average weight
greater tharw.

Lemma 2 ([1,22]).LetI" = (V, E,w,(Vy, V1)) be aMPG and letW = max, ,/\cp|w(v,v")|. For
each vertexs € V, the optimal valueval’ (v) is a rational number; such thatl < 4 < |V| and
In| <d-W.

We consider the following five classical problems [19, 12]1dMPG I" = (V, E, w, (Vp, V1)):

1. Decision ProblemGiven a threshold € Z and a vertex € V, decide ifvaIF(v) > .

2. Strategy Synthesi§iven a vertex» € V and a threshold € Z such that < val’ (v), construct
a memoryless strategy, € X3! for player0 such thaval™ (v) > v.

3. Three-way partition ProblemGiven a integer threshold € Z, partition the sel” into subsets
Voo, Ve, V—,, Of vertices from which playeb can secure a payoff greater tharless than/, and
equal tov respectively.

4. Value ProblemCompute for each vertexc V the valué val (v).

5. Optimal Strategy SynthesiGiven a vertex, construct an optimal strategy fromfor playerO0.

2 Note that by lemma 2, this value is a rational number.



Energy Games [5, 4] An energy gamé€EG) is an infinite game on the game graphwhere the goal
of player0 is to construct an infinite playyvs . . . v, ... such that for somanitial credit ¢ € N:

J
c+ Z w(vi,vi41) > 0forall j > 0. 1)
i=0

The quantityc + Z{;Ol w(v;,vi41) is called theenergy levebof the play prefixvgv, ... v;. Given
a creditc, a playp = wvov; ... is winning for player0 if it satisfies (1), otherwise it is winning for
playerl. A vertexv € V iswinningfor player; if there exists an initial credit and a winning strategy
for player: from v for creditc. In the sequel, we denote B¥/; the set of winning states for playér
Energy games are memoryless determined [4], i.e. far all/, eitherv is winning for playelo, or v
is winning for playerl, and memoryless strategies are sufficient.

Theorem 2 ([4]).LetI" = (V, E,w, (Vy, V1)) be anEG, for all v € V, the following four statements
are equivalent;

— Jog € Xy - Vo € X - outcome! (v, g, o1) is winning for player 0;
— Yoy € ¥y - 3o € Xy - outcome’ (v, 09, 1) is winning for player 0O;
— 3Img € T -V € XM . outcome! (v, 7o, m1 ) is winning for player 0;
— V¥m € XM - 3my € 3T - outcome! (v, g, 1) is winning for player 0;

Using the memoryless determinacy of energy games, we caredbBe next lemma.

Lemma3 ([1,22]).Letl’ = (V, E,w, (Vh, V1)) be anEG, for all verticesv € V, for all memoryless
strategiesty € X} for player0, the strategyr is winning fromw if and only if all cycles reachable
from v in the weighted graplé:’ (7) are nonnegative.

We consider the following problems for an energy gafhe: (V, E, w, (Vy, V1)):

1. Decision ProblemGivenv € V, decide ifv is winning for playelro.

2. Strategy Synthesi&ivenwv € V, if v is winning for playeri (: = 0, 1), construct a corresponding
winning strategy for playet from v.

3. Partition Problem Construct the sets of vertic&g; (i = 0, 1) of winning vertices for playet.

4. Minimum Credit ProblemFor each vertex € W, compute the minimum initial credit*(v)
such that there exists a winning strategyfor playero0.

Using Lemma 1 and Lemma 3, we can relate the decision prodiem$PG andEG as follows.

Theorem 3 ([4]). Let " = (V, E,w, (V,V;)) be a game graph. For all thresholds € Z, for all
verticesv € V, player0 has a strategy in tht/PG I' = (V, E,w, (Vy, V1)) that secures value at
leastr from v if and only if player0 has a winning strategy in theG I = (V, E,w — v, (Vy, V1))
fromu.

Example 1.Consider the mean-payoff ganfie= (V, E, w, (Vy, V1)) illustrated on the left of Fig. 1,
where playeb (resp. playefl) controls the square (resp. round) vertices. Assume thgepd wants

to ensure a payoff > 1 from v. To solve such a mean-payoff decision problem we can canside
the energy gamé” = (V, E,w — 1, (Vp, V1)), on the right of Fig. 1, where the weights of all edges
are decreased by. By construction, each cyclein the EG I is nonnegative if and only if has
mean-payofty > 1in I". In particular, playef has a strategy to confine the play into the nonnegative
cycle (zwz) and win theEG I from v (with initial credit 6). Therefore, playefl has a strategy to
confine the play into the cyclewz) having mean-payoff > 1 in theMPG I".



Fig. 1. SolvingMPG via EG.

3 A Small Energy Progress Measure

Progress measures are functighsl’ — N, definedocally on the set of vertices of a weighted graph,
that allow to inferglobal properties of the graph. In this section, we introduce aomotif progress
measure callednergy progress measumhich is tailored to witness the absence of negative cycles
in a weighted grapld:. Intuitively, the valuef (vg) of a vertexv is a sufficient credit to ensure that all
pathsug . . . v, can be traversed while maintaining a nonnegative level.

Definition 1 (Energy Progress Measure)Let G = (V,E,w) be a weighted graph. Aenergy
progress measufer G is a functionf : V' — N such that for all(v,v") € E:

fv) = f(V) —w(v,v).
Lemma 4. LetG = (V, E,w) be a weighted graph. Iff admits an energy progress measure, then:

1. all cycles oG are nonnegative, and
2. for all pathsvgv; ... v, In G it holds:

n—1

Flvo) + Y w(vi,vi11) 2 0

=0

Proof. LetG = (V, E,w) be a weighted graph anflbe an energy progress measured@oiConsider
an arbitrary pathy = vov; . .. v, in G. By definition of energy progress measure, we have:

n—1
f(UO) = f(Ul) - w(vo,vl) Z 2 f(?)n) - Zw(vi,viﬂ). (2)
=0

This leads tof (vg) + Z?;ol w(vi,viy1) > f(v,) > 0, which proves iten®. In the particular case
wherep is a cycle (i.e.pg = v,) Inequality (2) can also be developed i@?;ol w(vi,vip1) = 0
which proves iteni. O

The next lemma shows that if all cycles Gfare nonnegative, thei admits an energy progress
measure whose codomain has a pseudopolynomial upper biouthé €ize ofz). Hence, we refer to
our progress measure asmall energy progress measure. Given a weighted gtaph (V, E, w),
define:

Mg = max({0} U {-w(v,v') | (v,v) € E})

veV

Note that, if W = max.cp|w(e)| is the maximal absolute value of the edge-weightgzinthen
Mg <|V|-W.



Lemma 5. For all weighted graphsz = (V, E,w), if all cycles of G are nonnegative, then there
exists an energy progress measyreV — {0, ..., Mg} for G.

Proof. Givenv € V, letAcyclicPath(v) be the set of (possibly trivi&) acyclic paths irG = (V, E, w)
starting inv:

AcyclicPath(v) = {vgvy ... v, |vo = v AV0 <i <n: (v,vi41) € E
AVO<i,j <n:i#j— v #v}

Givenp = vgvy ... v, € AcyclicPath(v), we denote byu(p), the sum of the weights ip:

( ) _ 0 If n=~0
= Z:‘L;olw(vi,vwrl) otherwise

Consider the functiorf : V- — {0,..., M} defined by:
f(v) = max{—w(p) | p € AcyclicPath(v)}

for all v € V. Note that by definition ofu(p), we havef(v) > 0. We claim thatf is an energy
progress measure f6¥. Towards contradiction, assume that there exists an @dgé) for which:

f) < f(V') —w(v,v). (3)

There are two cases to consider, depending on whetisexqual tov’ or not. In the first cases(= v'),
Inequality 3 immediately yields the contradiction ti{atv) is a negative cycle 7. In the second
case ¢ # V'), letp,, = vpv1 ... v, be an acyclic path i from v’ (i.e. vy = v’) such thatf(v') =
—w(py). If p,, does not contaim, then by definition off we getf(v) > —w(p,) — w(v,v") which
contradicts Inequality 3. Otherwise, Iet< i < n such thaw; = v, and letw! = w(vgv; ... v;) and
w? = w(p, ) — w'. By Inequality 3, we haven(v,v') + w! +w? < —f(v). Since all cycles o7 are
nonnegative, we have(v,v') + w! > 0, and thusw? < —f(v), i.e. f(v) < —w?. This is again in
contradiction with the definition of sincew? is the weight of a (possibly trivial) acyclic path from
the vertexv. O

4 Solving the Energy Game Problems

In this section, we devise efficient algorithms for 8@ problems stated in Section 2. To this purpose,
we extend the notion of small progress measure from grapgfenes, taking into account the partition
of vertices between the two players. Lét= (V, E,w, (Vy, V1)) be a game graph and consider the
set:

Cp:{n€N|n§MGr}U{T}.

We denote by< the total order o€, defined byr < y if and only if eithery = T orx <y < Mgr.
Moreover, we define the operater: Cr x Z — Cr such that, for alb € Cr andb € Z:

ob— max(0,a —b) ifa# Tanda —b < Mgr
CEPEAT otherwise

Intuitively, a small energy progress measure for the game (V, E, w, (Vy, V1)) is a mapping from
V to Cr tailored to witness wether a vertexs winning for player 0. In particular, if the small energy
progress measure functighassumes a valug(v) # T on the vertex, then player 0 has a winning
strategy fromw, provided an initial crediff (v).

3 For eachv € V, there is a trivial acyclic path in G.



Definition 2. LetI" = (V, E,w, (Vp, V1)) be anEG. A functionf : V' — Cp is asmall energy
progress measufer [ if and only if the following conditions hold:

— ifv € Vp, thenf(v) = f(v') © w(v,v") for some(v,v') € E;
— ifv e Vq, thenf(v) = f(v') & w(v, ') forall (v,v') € E.

Note that Definition 2 can be derived by the correspondingritefih 1 (on graphs) by means of
the following two extensions. First, specialize the locahditions constraining the (small) energy
progress measure on each nade V by taking into account wethar € 1, orv € V4. Second,
introduce the special valu€ in the codomain of the small energy progress medsyiref : V —
Cr =A0,..., Mg, } U{T}, ensuring that all games admit a small energy progress measu

Given a small energy progress measfifer the game grapt’ = (V, E, w, (Vp, V1)), we denote
by V; the set of state¥y = {v | f(v) # T}. A (memoryless) strategyg : Vo — V for player O is
calledcompatible withf whenever for alb € Vj, if ng(v) = thenf(v) = f(v') © w(v,v"). Note
that compatible strategies always exist by definition ofjpess measure. The next lemma establishes
that if ﬂg is a strategy for played compatible with the energy progress measyirghen wg is a
winning strategy for played from all vertices inV.

Lemma6. LetI" = (V, E,w, (Vy, V1)) be anEG. For all small energy progress measurgdor I,

if 77(’; is a strategy for played compatible withf, thenw{; is a winning strategy for played from
all verticesv € Vy, i.e.Vy C W,. Moreover,I” admits a small energy progress meastirsuch that
Vi = W.

Proof. Let f be a small energy progress measurelfoand consider a memoryless stratagé/for
player0 which is compatible withf. For the sake of contradiction, suppose thétis not winning
for player0 from the vertexv € V;. Then, by Lemma 3GF(7T(J)£) admits a negative cycle from

Letvgvy ... v; ... v, With vy = v be the path irGF(w(J;) from v with a negative cycle; ... v, (i.e.,

v; = v,). We show that; € Vy forall 0 < j < n, using an inductive argument gn The base
case is obvious since) = v € V; by hypothesis. Lej > 0. By inductive hypothesis we have that
vj_1 € Vy. By definition of small energy progress measurd gif v;_; € V; (resp.vj_1 € V1), then
there exists a successor (resp. for all successors)v;_;:

fwj—1) = f(v') ©w(vj—1,0"). (4)
By Inequality 4 and by definition o;fg we obtainf(v;) # T,i.e.v; € V5.
Hence, for each vertex;, i« < j < n, on the negative cycle; ...v, = v; reachable from,
f(v;) # T. Thus, by definition off andwg we obtain:

n—1

fi) > f(vigr) —w(vi,vig1) > - > flon) — ) w(vj,vj41)

)

<.
Il

which is a contradiction with our hypothesis that . . v,, is a negative cycle.

We conclude by showing that there exists a small energy pssgmeasurg on I" such that
Vi = Wy. Let 1y be a memoryless strategy winning for playefrom any vertexv € Wy. By
Lemma 3G’ (m) | Wy does not contain any negative cycle. Hern@é ) | W, admits an energy
progress measurgby Lemma 5. The functiorf can immediately be extended to an energy progress
measure on the ganmieby settingf (v) = T for eachv ¢ . O

4 and appropriately define the operator. Cr x Z — Cr in order to cast the minus operator to range @er



Fora game graph’ = (V, E, w, (Vy, V1)), let F be the set of functiong : V' — Cr. The partial order
CC F x Fisdefined ag C g iffforall v € V, f(v) < g(v). Note that for all functiong andg, if
F(0) = F(v') S w(v,v') andg(v) = g(v') © w(v,v'), thenmin{f(v), g(v)} = min{f(v'), g(v')} &
w(v,v"). Therefore, if f and g are small energy progress measures, then so is the funictien
min{ f, g} (wheremin is taken pointwise). We usgF, C) to refer toF as a complete partial order.
Given any setr” C F, we denote by1F the greatest lower bound @f. As F is a complete partial
order, we know thatlF' € F. We can now state the following two important properties.

Proposition 1. Let I" = (V, E,w, (Vy, V1)) be anEG, (i) if f and g are small energy progress
measures foi " such thatf C g, thenV, C V;, and(ii) if f =M{g € F | g is a small energy
progress measure far'}, thenf is a small energy progress measure dryd= .

Proof. The first item is immediate by definition &f; andC. The second item follows from Lemma 6,
item 1 and from the fact that iff andg are small energy progress measures, then so is the function
h = min{ f, g} (wheremin is taken pointwise). O

By Lemma 6 and Proposition 1, the problem of determining ¢lasti energy progress measure for the
energy gamd” = (V, E,w, (Vy, V1)) subsumes the decision problem for Hence, we present here
an efficient algorithm (Algorithm 1) to compute the leastrgyeprogress measurg: V. — Cp. Our
algorithm initializesf to the constant functiof and relies on the following operator.

Definition 3. Givenv € V, the lifting operatord(-,v) : [V — Cr] — [V — Cr] is defined by
o(f,v) = g where:
f(u) if u=v
g(u) = ¢ min{f (V') s w(v,v) | (v,0') e E} ifu=vel
max{f(v) ©w(v,v) | (v,v') € E} fu=veV

The operatop (-, v) can be computed in tim@(|post(v)|), and isC-monotone.
Lemma 7. For eachv € V, the operatord (-, v) is monotone, i.e)(f,v) C d(g,v) forall f C g.
Proof. Immediate from Definition 3. O

Given a functionf : V' — Cp, we say thatff is inconsistenin v if:

— v € V and for allv’ such thatv,v') € E it holds f(v) < f(v") © w(v,v");
— v € V; and there exists’ such thatv,v’) € Eandf(v) < f(v') & w(v, ).

Algorithm 1 maintains a lisf. of vertices that witness an inconsistencyfofinitially, v € Vo N L if
and only if all outgoing edges fromare negative, while € V; N L if and only if v is the source of a
negative edge. As long as the listis nonempty, the algorithm picks a vertexrom L and performs
the following operations:

1. apply tof the lifting operato( f,v) in order to solve the inconsistency ffin v;
2. insert into the list the set of vertices witnessing a new inconsistency, duestantirease of (v).

The update of. following a lifting operations( f, v) requiresO(|pre(v)|) time. In fact, a vertex’ can
witness a new inconsistency because of the incrementinf«gfonly if v’ € pre(v). In particular,
checking ifv’ € pre(v) N V4 witnesses a new inconsistency simply amounts at checkirgtheh
f(@) < f(v) ©w(,v). Some more attention needs to be paid for verticggdfw) N V4. Indeed,
for such vertices the conditiori(v') < f(v) © w(v',v) may not be sufficient to witness a new
inconsistency in/’, due to the existence of another successoof ' such thatf(v') = f(v") &
w(v',v"). In order to efficiently determine i’ needs to be inserted ih, we maintain a counter
function count : V5 — N such thatcount(v) = 0 for all v € V, N L, andcount(v) is the number
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Fig 2.(¢) = Fig 2.(f)

Fig. 2. EG algorithm applied on a concrete game graph, illustrateckemiple 2.

of successors’ of v such thatf(v) > f(v') © w(v,v") forv € V; \ L. Initially, count(v) = 1 for
all v € Vo \ L. When the valuef(v) is updated, we compute the new valuecofint(v) (with cost
O(|post(v)|)), and we decrement the valaeunt(v) of all predecessors’ of v such thatf (v') <
f(v) & w(v',v). Those predecessorsfor which count(v’) is now0 are inserted irl.. The algorithm
terminates when the lidt is empty. Example 2 illustrates olfG algorithm on a concrete game graph.

Example 2.Consider the game gragh= (V, E, w, (Vy, V1)) illustrated in Fig2.(a), where playef
(resp. playeit) controls the square (resp. round) vertices. Algorithmitlaitizes the energy progress
measuref to the constant functiofi, and the listZ, with the only nodew. Fig. 2.(b) shows the result
of the execution of the main while-loop at line 7, upon the&stion of the vertexv. In particular,
f(w) is updated tal leading to the insertion of the nodesv into L, within the innermost for-loop.
Fig. 2.(c) illustrates the energy progress measure computed by tbedé&eration of the while-loop
at line 7, whenz is taken fromL. In this case, the new valugof f(z) does not lead to any new
insertion intoL. In fact, at this point of the computation, the valugs), f(y), f(z) are fixed, and
only f(w) and f(v) continue to increase until reaching the maximal value eeda@sT . Fig. 2.(e)
and2.(f) show the last steps of the algorithm, and the correspondingimg strategy for playe.

Note that, once a small energy progress meagunas been computed antl, = V; has been
determined, a (memoryless) winning strategyfor player0 on W, can be immediately derived in
time O(|E|), as follows: For each vertex € Vj, setog(v) = ¢/, where(v,v’') € E and f(v') =
min{ f(v") © w(v,v") | (v,v") € E}. Such a strategy could also be computed online througheut th
execution of Algorithm 1, rather than as a post-processpegation.

The correctness of the algorithm is established by Theoram the ground of Lemma 7 and
Lemma 8, applying the Knaster-Tarski fixpoint theorem tolidting operator in(F, C). In particular,
the functionf computed by Algorithm 1 is a simultaneous least fixpoint efdperatorg (-, v) for all
v € V. Thus, the functiory is the least energy progress measurelfgsince f is the least fixpoint of
d(-,v) forall v € V) such that’; = W) (sincef is aleastfixpoint of §(-,v) for all v € V).

Lemma 8. The following is an invariant of the while-loop of Algorithin(line 7): for all vertices
veV\L, (i) é(f,v) = fand(ii) if v € Vp, thencount(v) = [{v/ € V' | f(v) = f(v") ©w(v,v')}].
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Algorithm 1: Value-iteration algorithm for energy games.

Input :Agame grapil” = (V, E, w, (Vo, V4)).
Output  : Asmall energy progress measufe V' — Cr for I".
begin

1 L—{veVy V() eE:wn) <0}

2 L—Lu{veVi|3I(v)e€E:whv)<0}

3 foreachv € V do

4 f(v) =0

5 if v € Vo N L then count(v) «— 0

6 if v € Vo \ Lthencount(v) « |{v’ € post(v) | f(v) = f(v') ©w(v,v")}]|

7 | whileL #0 do

8 Pickv € L

9 L — L\ {v}; old — f(v)

10 f=0d(fv)

11 if v € Vo then count(v) « [{v" € post(v) | f(v) = f(v') ©w(v,v")}]|

12 foreachv’ € pre(v) such that f(v') < f(v) © w(v',v) do

13 if v/ € V, then

14 if f(v") = old © w(v',v) then count(v') < count(v’) — 1

15 if count(v’) < OthenL — LU {v'}

16 if Y € VithenL — LU {v'}

17 return f
end

Proof. First, we show that the invariant holds after line 6. Consatearbitrary vertex € V' \ L. If

v € Vp, then there existév, v') € E such thatw(v,v") > 0 (line 1 of Alg. 1). Sincef(v') = 0, we
getf(v') © w(v,v') = 0 = f(v), showing that(f,v)(v) = 0 = f(v) by Definition 3. It is obvious
thato(f,v)(v') = f(v') for all v' # v, and thusi(f,v) = f. The proof of par{ii) of the invariant is
straightforward. The casec V; is proven analogously.

Second, assume that the invariant holds before executinigdp, and let be the vertex selected
at line 8. Consider the case whedrev) ¢ E. Let f' = 6(f,v) (see also line 10). Note thét differs
from f only in the value assigned to vertexi.e. f'(v') = f(v') for all " # v. Therefore, the value
count(v’) needs to be updated only for the predecessbrs pre(v) of v, and this can be done as in
line 14. Now, since we assumed thatZ pre(v), the vertexv is not inserted back in the ligt in the
loop of line 12, and thus we need to show thigt’, v) = f’. Itis easy to see tha{ f’,v)(v') = f'(v')
for all v" # v, while forv" = wv, this follows from the fact thaf’ and f agree on the value of all
successors af.

Finally, it is easy to see that the liftis correctly updated in lines 12-16: fof € pre(v) N V4, if
f(') = f(v) ©w(,v) (i.e.v" is not inserted in the list), the¥(f,v") = f/; for v’ € pre(v) NV, if
the valuecount(v’) is positive (i.ea’ is not inserted in the list), thef(f/,v") = f'.

The case wherév, v) € E is proven analogously. O

Theorem 4 (Correctness).LetI" = (V, E,w, (Vy, V1)) be anEG. Algorithm 1 computes a small
energy progress measuyeon I" such thatVy = W, is the set of winning vertices for player

Proof. By Lemma 7 , Lemma 8, and the Knaster-Tarski theorem, thetftmcomputedf returned
by Algorithm 1 is the unique least fixpoint of simultaneously operatorsi(-,v) for all v € V.
Therefore, the sét} is the set of winning vertices for playéraccording to Lemma 6.

Termination of Algorithm 1 is enforced by the fact that evapdate of line 10 strictly increases
the value off in one vertex, and the fact that the codomain of energy progress measuiage. 0O

Theorem 5 characterizes the small energy progress measuputed by Algorithm 1, putting it into
relation with the minimum credit problem, and Theorem 6 ld&hes the complexity of Algorithm 1.
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Theorem 5 (Minimal credit). LetI" = (V, E,w, (Vy, V1)) be anEG. The small energy progress
measuref computed by Algorithm 1 is such thdt) if v € W, (v is winning for player0), then
c*(v) = f(v), wherec*(v) is the minimum initial credit to build a winning play for play0 from v.
(79) if v € Wy (v is winning for playerl), thenf(v) = T.

Proof. By Theorem 4, the functiorf is a small energy progress measure/osuch thatly = Wj.
Hence, for each ¢ Wy, f(v) = T, which establishes the second item of our claim.

In order to show that for eaahe Wy, f(v) = c*(v), we start proving thaf is an energy progress
measure on the granﬁp(wg) [ V. This will immediately imply thatf (v) > c¢*(v) for all v € Wy
by Lemma 4. Let(v,v’) be an edge in the granﬁp(wg) [ Vi. Thenf(v) # T, f(v') # T, and
by definition of f we immediately obtain that(v) > f(v') — w(v,v"), which yields our claim. We
finally get to the result by showing that for eacke 1, the relation

flv) <c*(v) (5)

is an invariant of Algorithml. By contradiction, letv € W, be the first node for which Equation
5 is falsified within the execution of Algorithrh. Since f(v) is initialized to the constarti, such a
violation needs to occur immediately aftgfv) gets updated, at ling 0), to the valuef (v')—w(v,v’),
for some successef of v. Then:

f@) —w(v,v) = f(v) > c*(v) > (V) —w(v,). (6)
Equation 6 impliesf (v') > c*(v), which contradicts the fact thatwas the first node witnessing a
violation of equation 5. O

Theorem 6 (Complexity). The worst-case complexity of Algorithm 10| E| - Mr).

Proof. The initialization phase (linegl)—(6)) costsO(3_, .y (|post(v)|)) = O(|E|). Each iteration
of the while-loop at line7 (corresponding to a lift operation gf via v, followed by an update of
the list L) costsO(|post(v)| + |pre(v)]|). Since the valugf (v) for each vertex can increase at most
Mr + 1times, the global cost of Algorithm 1 is:

O (Ipost(v)| + lpre(v)|) - Mar) = O(|E| - Mgr)

veV

O

We are now ready to state the following theorem, relativehto dcomplexity of the energy games
problems introduced in Section 2.

Theorem 7. Let I' = (V, E,w, (Vp, V1)) be anEG. The decision problem, the strategy synthesis
problem, the partition problem, and the minimum credit peotb onI" can be solved in tim&(|E| -
Mgr).

Proof. It follows immediately from Lemma 6, Theorem 4, Theorem 5 aheorem 6. O

Remark 1.Note that it is also possible to use the results in Sectiond3Sattion 4 (and in particular
Lemma 5 and Lemma 6) to derive an algorithm that solves thsidagoroblem forEG by reducing

it to the decision problem fasafety gamef23]. A safety game is simplg-player game played on an
un-weighted arena, where the vertices are partitionedaidaved and forbidden positions. The goal
of player0 is that of building a play that never enters any forbiddenitirs It is well known that
safety games can be solved in time linear w.r.t. the sizesttiresponding arenas. On the ground of
Lemma 5 and Lemma 6, the decision problem folgh I" = (V, E, w, (Vp, V1)) can be reduced to
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the decision problem for a safety gamfiéin time andspaceO(|E| - Mr), i.e. pseudopolynomial
w.r.t. the size ofl". In fact, given theEG I' = (V, E, w, (Vp, V1)), we can build a safety gamgé’
played on an arena having set of positignx {0,..., Mqr} U {T}. Given a vertexv, k) in I/, v
represents a position in the originaG andk corresponds to a level of energy. The set of forbidden
positions in the safety gam€ is B = {(v, T) | v € V'}. The encoding safety gani& contains the
edge((v, k), (v, k")) iff:

(v, ) e ENE#TA(k+w(,v) =k < MgrV (k+w,v')>Magr ANk =T)).

It is easy to see that playérhas a winning strategy frorfv, k) in the encoding safety gant€ (i.e.
she can avoid to reach a (forbidden) position with globargnéevel T) iff player 0 has a winning
strategy from the vertex with creditk in the originalEG I'.

Algorithm 1 can be also seen as a space-efficient countesptiré above procedure of reduction
from energy games to safety games where, rather than rraigaéxplicitly the whole space of
possible energy values, we efficiently update online a semnefgy-counters. This allows to use a
space linear w.r.t. the size of the arena of #t&, rather than pseudopolynomial.

5 Solving the Mean-Payoff Game Problems

In this section we provide new efficient pseudopolynomigbathms for theMPG problems stated
in Section 2, featuring a better worst-case complexity ttiencorresponding state-of-the-art pseu-
dopolynomial procedures by Zwick and Paterson [19]. Our selutions for those problems build up
on the notion of small energy progress measure and use &lgofi as a basic step.

5.1 Decision Problem, Strategy Synthesis, and Three-Way R#ion

First, we consider the decision problem and the strategyhegis problem foMPG. Let I’ =
(V, E,w, (Vp, V1)) be aMPG wherew : V. — {—W, ..., W}, and letv € Z. Consider the problem
to decide if the value of a given vertexc V' is greater than or equal ta If |v| > T, then according
to Lemma 2 we can immediately provide an answer to this datigioblem (sif v < —W, No

if v > W). Otherwise, consider the ganie ™ = (V, E,w — v, (Vy, V1)), this game can be used to
solve our original problems as stated in the following lemma

Lemma 9. Given aMPG I' = (V, E,w, (Vp, V1)) and a threshold, € Z, let f be a small energy

progress measure far =" = (V, E,w — v, (Vp, V1)). All strategiesm’; of player0 compatible withf
secure a payoff at leastfrom allv € V; in theMPG 1.

Proof. Towards contradiction, assume that V; is a vertex such that the payoff that playecan
secure fromw is less tharnv. By Lemma 1, the graplﬁlf(wg) admits a pattp = vovy ... v; ...V,
from v = vg to a cyclew; . .. v, (v; = v,) having average weighrgljl. Z?;il w(vj,vj41) < v, which
implies:

n—1

Z(w —v)(vj,vj41) < (n—9)v — (n —9)v = 0.

J=1
Sincev € V%, the inductive application of the definition ¢gffor 0 < j < n yieldsv; € V; for all
0 < j < n.Hence, the grapﬁ?F”(wg) [ Vy admits a pathy ... v; ... v, fromv to a negative cycle.
This contradicts Lemma 4, singe[ V; is an energy progress measure®@h (wg) [ V. O

14



We now turn to the three-way partition problem, and we show tios problem can also be solved
in time O(|E| - Mgr) using Algorithm 1 as a basic ingredient. In fact, consider MPG " =

(V, E,w, (Vp, V1)) wherew : V. — [-W,...,0,...,+W], and defineV, := Vj, V* := ;. Given

v € Z,|v] < W, we can construct the two game graghis= (V, E,w — v, (Vj := V., Vj := V*))
andI™ = (V. E,—w + v, (Vp := V*, V4 := V,)). Running Algorithm 1 on”’ yields the partition on

V into V=, (for vertices securing playéra payoff at least in I') andV_,,. Running Algorithm 1 on
I'" yields the partition oV into V<, andV~,,.. The desired three-way partition can be immediately
extracted from the above two partitions. Thus, we obtain:

Theorem 8. Let I' = (V, E,w, (Vp, V1)) be aMPG. The decision problem, the strategy synthesis
problem, and the three-way partition problem brcan be solved in tim&(|E| - |[V|- W).

Proof. For the decision problem and the strategy synthesis prolitesresult immediately follows
from Lemmas 2, 9, and Theorems 4, 6.

For the three-way partition problem, IEtbe aMPG with weight functionw, andv € Z. Consider
the gamel” obtained as a copy af with weight functionw — v, and the gamd™” obtained by
exchanging the role of the players ihand with value function-w + v. By Theorem 1, Lemma 9,
and Theorem 4, running Algorithm 1 drf yields the partitior¥~,, (for vertices from which played
secures a payoff at leastin I") andV_,,, while onI"”, it yields the partition ori” into V<, andV%,,,.
Hence the three-way partition &f into (V.,,, V_, = V<, NV>,, V5,) can be hence obtained in time
O(|E| - Mgr), by Theorem 6. 0

5.2 Value Problem and Optimal Strategy Synthesis

We finally consider the value problem. LEt= (V, E, w, (Vy, V1)) be aMPG. By Lemma 2, for each
vertexv € V, the valueval? (v) is contained in the following set of rationals:

5={%\p,mGZ,lémS\V\A—m-nggm-W}.

Thus, a conceptually simple algorithm for computing theigadf each vertex € V would be to
perform|V| dichotomic searches in the st In particular, giverv € V and 2 € S, the application
of Algorithm 1 onI" = (V,E,m - w — p, (Vp, V1)) allows to decide whetheral’ (v) > Z. The
global cost of such an algorithm @&(|E| - |[V'|3 - W - log(|V| - W), sinceS has sizeO(|V'|? - W) and
Algorithm 1 is called on a reweighted versioniof where the maximal (absolute) weighigV|-W.
In the sequel, we build on the ideas described above to desigh(|V'|? - |E| - W - log(|V| - W))
algorithm to compute the values o\PG.

Instead of performing a dichotomic searchdrio assign the valueal’ (v) to each vertex € V
individually, Algorithm 2 combines the dichotomic searcithwecursive calls. Each branch of the
(binary) recursive tree for Algorithm 2 builds a sequetice= I'°, ..., I'™ of game subgraphs df,
coupled with a decreasing sequertte- S° O S' O ... D S of subsets of such that:

— for all 0 < i < n, the values of the vertexes i are included inS*

— forall 0 < i < n, it holdsmax(S**!) — min(S**!) < I(max(S%) — min(S7))

In particular, the second item above ensures that the lesfgtfach branch in the tree of recursive
calls in Algorithm 2 is at mos©O(log(V - W)), since the difference between two valuesSins at
most21/ and at Ieas%. Each recursive call to Algorithm 2 ofi?, ¢, whereS'® is represented by its
extreme values; = min(S?), s; = max(S*), performs the following operations. First, it determines
the largest element; of S? less than or equal té% and the smallest elemeant of S’ greater
than or equal to7£%:. (e.g. by simply enumerating on the fly the element§‘n Then, Algorithm 1

® Note that“i£=t is not guaranteed to be an elementS6f since its denominator may not belong to the rahge. |V'|.
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is used to determine the partitiqi’t, , V%, , Vi, V<,

) over the set of vertice§; of the game
subgraphl™. Finally, Algorithm 2 is recursively called on the disjosubgamesg™ | VZ, , I | V<, .
The recursive reduction of the problem to smaller and disjmistances provides a linear (w.f¥.|)
improvement of Algorithm 2 over the naive iterative procedu

The correctness of Algorithm 2 is established in Theoremi®guhe following lemma.

Lemma 10. Given aMPG I' = (V, E,w, (Vy, V1)) andpu € Q, consider” = I' [ V.,, where
~e{<, > Ifve Vo, thenval” (v) = val’ (v).

Proof. We start by showing that the relatidni [ V., wherep € Q and~e {<,>},is totaP. Let
7o (resp.m) be an optimal memoryless strategy/infor player0 (resp. playerl), and consider the
graphG!'(mo, m). Givenv € V., consider the maximal (i.e cyclic) path fromin GI'(mo, ),
Vg, ---,Un, Vg = U,v, = v, 0 < k < n.In such a path, the average weight of the cygle. .., v,
determines the payoff of each elementd < i < n. Sincery andr; are optimal, for alb < ¢ < n,
val? (v;) equals the payoff from; usingm (resp.r;) againstr; (resp.mo). Hence, the average weight
of the cyclevy, . . ., v, is equal toval’ (v) ~ y, and for alll < i < n, val’ (v;) ~ p. In particular,v;

is a successor af having value~ p, which implies thate [ V., is total.

Given the above premise, the result follows from the fact fffa@s a mean-payoff game and that
for all memoryless optimal strategies € XM of playeri (i = 0, 1), for all verticesv € V;, we have
vall'(v) = val! (m;(v)). Therefore, all edge, v') in I" such thawal’ (v) # val’ (v/) are useless for
optimality, and in particular, playing i or in I’ does not change the optimal value. O

Theorem 9. LetI" = (V, E, w, (Vy, V1)) be a mean-payoff game such that V' — {—-W,... W }.
Algorithm 2 applied to the inputZ’, — W, W) computes for each € V the valueval’ (v).

Proof. Given the mean-payoff gamé = (V, E, w, (Vp, V1)), let {vall (v) |v e V} C U C § =
{Z]1<m < |VIA-W < 2 < W} We prove that Algorithm @, min(U), max(U)) terminates
and computes the set of values/inThe termination is ensured by the fact that Algorithm 2 pers
a binary search over the (finite) d6tC S, where|S| = O(|V|?> - W). To complete the proof of our
claim of correctness, we use an inductive argumentdn

For the base cas¢l/| = 1. Letg be the only element of/ such that for allv € V, it holds
vall' (v) = g. By Lemma 9 and by Theorem 4, the application of Algorithm ihe gamel” =
(V,E,qu — p, (Vp, V1)) (resp.I"” = (V, E, —qw + p, (V1, Vp))) at Lines(5)—(6) yields the partition
(Vor =V, Vor =0) (resp(Ver =V, Vor =0)) onV, whereV_» = {v € V| val' (v) ~ 2}, ~e€
<,<,>,>. Hence, Ling9) correctly assigns to each nodel6fits valueval (v) = g.

For the inductive step, suppose thét > 1. Leta; = max{{ | 1 <[ < |[V| Amin(U) < { <
$(min(U) + max(U))}, a2 = min{¢ | 1 < I < [V| Amax(U) > ¢ > L(min(U) + max(U))}.
By Lemma 9 and by Theorem 4, the application of Algorithm 1ds(%)—(10) assign to each node
in V_,, (resp.V_,,) its valueval’ (v) = a1 (resp.val’ (v) = ay). By inductive hypothesis and by
Lemma 10 Ling(13) (resp. Line(14)) computes the value of the nodeslin,, (resp.V~q,). O

58]

~—

Lemma 11 proves that the height of the tree of recursive calleesponding to Algorithm 2 is
asymptotically logarithmic w.r.tV|? - W, and Lemma 12 states that the cost of executing lifgs
(11) in each recursive call of Algorithm 2 for the subgaie= (V', E',w, (Vy, V{)) isO(|E’|-|V'|?-

W). Here, the quadratic dependence| &1 comes from the need of applying Algorithm 1 (cf. Lines
(5)—(8)) on a reweighted version df’, where all edge-weights are multiplied by a natural number
of size at mostV’|. Theorem 10 then gives the complexity of Algorithm 2 for tledue problem on
mean-payoff games.

bie.Vo € Vo, Fu € Vau((v,u) € E | Vo)
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Algorithm 2: Solving the value problem for mean-payoff games.
Input : Mean-payoff gamé™ = (V, E,w : V. — {-=W,..., W}, (Vo, V1)); lower and upper boundsl- <
5;—22 on the values of the nodes i, where—W < f;_ll < 5;—22 < W, p1,p2,m1,mz2 € N, and
1<mi <|V],1<mg < |V].
Output  : For eachu € V, the valuev” (u).

begin
1 if V = 0 then
2 ar e —max{$ [1<I<|V|AZ < § < 5(8- 4 22))
i age‘;—;emin{%|1§l§|V|/\:I—222%2%(:I—11+p—22)}

/* Use Algorithm 1 to determin®<a,, V=a,, Veay, Vaay ¥/
5 f1 < Algorithm 1(V, E, lhw — ¢1, (Vo, V1))
6 f2 — Algorithm 1(V, E, —liw + ¢1, (V1, Vb))
7 f3 — Algorithm 1(V, E, low — g2, (Vo, V1))
8 fa — Algorithm 1(V, E, —low + g2, (V4, V°r2

)
9 foreach (u | fi(u) # T A fa(u) # T) dov' (u) «— a1
10 foreach (u | fa(u) # T A fa(u) # T) dov’ (u) — a2
11 Veay —A{u | fiu) = TH Voo, — {u] fa(u) =T}
12
[*Recursive Calls*/
13 Algorithm 2((Vea,, E [ Veay, w | Veay, (Vo N Vear; Vi NVeay)), £, a1)
14 Algorithm 2((Vsay, E | Vaag, w [ Vaag, (Vo N Vaag, Vi N Vay)), az, £2)
end

Lemma 11. LetI" = (V, E,w, (V, V1)) be aMPG, wherew : V' — {—W,... , W}. The height of
the tree of recursive calls corresponding to Algorithm 2 lgggpto (1", —W, W) is O(log(|V'| - W)).

Proof. Letcy, ..., ¢, be a branch of recursive calls in the tree of recursive calleesponding to Al-
gorithm 2, and letls, . ..., dj, be the distances between the input parameters?2 in each recursive

calley,...,c;. Then,dy =2W andforalli = 1,... k, diy1 < % Since two rational numbers with

denominator at most/| have distance at Ieaﬁ%, we obtain thak < log % =log(2W |V |?).

O

Lemma 12. The cost of executing lindg)—(11) in a recursive call of Algorithm 2 on the subgame
I'= (V" E w (V§,V]))of I' = (V,E,w, (Vo, V1)), wherew : V — {-W,... , W}, isO(|F| -
V|2 W).

Proof. By assumption,l < mjcp19y < [V'], and—|V'| - W < pcpi9y < [V’ - W. Hence, the
codomain of the functionsn;w — p1, —miw + p1, mow — pa, —maw + p2 is the set of integers
{—2-|V'|-W,...,2:|V'|-W}. By Theorem 6, Line$5)—(8) can be executed in tim@(|E’|-|V'|2-W).
Lines(9)—(11) costO(|V']), while Lines(2)—(3) can be trivially executed in timé&(|V'|?- W) (e.g.,
by simply enumerating the elements of the Set: {£ | 1 <m < |[V/|A -W < & < W}, where
S| =O([V'[>- W)). O

Theorem 10. LetI" = (V, E,w, (Vy, V1)) be aMPG wherew : V- — {-W, ..., W}. Algorithm 2
applied to(I", —W, W) solves the value problem and the optimal strategy syntipesidem on/” in
time: O((log(|V]) +log(W)) - |E| - [V |* - W).

Proof. Let "¢ .. k) be thek, subgames of" considered at level of the tree of recursive

calls corresponding to Algorithm 2. Then, the correspogdiet of verticesy” (‘1 ... V(&ke) are
such that/ (&9 N V&) = g for j £ i,1 < i,j,< ke, andV&1 U... U V{k) C V. Hence, on the
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ground of Lemmas 11, 12 we obtain that the global compleXi#lgorithm 2 is:

log(2|V|*W)
O( Z |E|- [VEVR2 W 4o 4 |B| - VRO 2 W) =
=1

= O((log([V]) + log(W)) - | E| - [V|*- W)

since|E|- [V OV 2. W - 4 |E|- VR 2 W < |E|-W-([VED | 4. .|V R < |E|-[W|-|V|2.
O

Thus, ourMPG value problem outperforms the corresponding determinstbcedure in [19], when
the maximum weight in th®1PG graph is small (i.elV is subexponential w.r.tV|). To design MPG
value algorithm that outperforms previous solutions fovalues ofi1/, we can consider mndomized
framework and combine our procedure with the one propos8l.itn particular, the solution to the

value problem proposed by [3] has expected complexity - | | - ¢ VIV (U E/v/IVD+O(/IVIinl2))
By interleaving ouMPG value algorithm with [3] and adding a stopping criterion afhierminates
the computation when either of the two procedures finishesget a randomized algorithm for the
MPG value problem with expected complexityin(O(|V'|? - |E| - W - log(|V| - W)),|V|? - |E| -

2V IVIR(EYVIVDHOW/IVIHIED) \yhich outperforms all previous solutions.

6 Conclusion

We designed simple and efficient deterministic algorithorsblving energy games and mean-payoff
games. Our algorithmic engine requir€x|E| - |V| - W) computational steps to solve thdPG
decision problem, outperforming the correspond®gFE| - |V'|? - W) pseudopolynomial procedure
in [19]. Note that the algorithm in [19] requiredways©(|E| - |[V'|? - W), while our procedure is
O(|E| - |[V| - W) only in the worst case (it needs linear time when, for examallehe weights are
positive). The value problem can be solved in tid¢ E| - [V'|? - W (log|V| + log W)) using our
framework, while [19] require®(|E| - V|3 - W). As [12], our algorithm has also the advantage
to produce as a byproduct (optimal) winning strategies,levii9] needs further computation for
strategy synthesis. Hence, the winning strategy syntipesidem (resp. the optimal strategy synthesis
problem) is solved in im@(|E| - |V| - W) (resp.O(|E| - [V |> - W (log|V'| + log W))) using our
procedures, outperforming [12, 19]. In combination with tandomized algorithm of Andersson and
Vorobyov [3], ourMPG value algorithm is a randomized procedure with currentéytltest expected
complexity, namely:

min(O(|V[2 - |E|- W -1og([V] - W)),[V[? | E| - VIRV RO/ Vi)
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