CHAPTER 16

Higher-Order Unification and Matching

Gilles Dowek

SECOND READERS: Jean Goubault-Larrecq and Gopalan Nadathur.

Contents

1 Type Theory and Other Set Theories
1.1 Naive Set Theory e
1.2 Plotkin-Andrews Quotient e
1.3 Type Theory o e
1.4 Church’s Type Theory o ittt
1.5 Equational Higher-order Unification
1.6 Expectations and Achievements

2 Simply Typed A-calculus L
2.1 Types . . . e e e e
2.2 Terms e
2.3 Substitution
2.4 Reduction L e
2.5 Unification e e e e

3 Undecidability e
3.1 Higher-order Unification
3.2 Second-order Unification 0 o o 0o oo

4 Huet’s Algorithmo
4.1 A “Generate and Test” Algorithm
4.2 Huet’s Algorithm
4.3 Regular Trees, Regular Solutions
4.4 Equational Higher-order Unification

5 Scopes Management oo e e e e e
5.1 Mixed Prefixes L e e e e e
5.2 Combinators L e e e e e
5.3 Explicit Substitutions
5.4 De Bruijn Indices o oo

6 Decidable Subcases L L L L
6.1 First-order Unification e
6.2 Patterns. L e e e e
6.3 Monadic Second-order Unification
6.4 Context Unification e
6.5 Second-order Unification with Linear Occurrences of Second-order Variables . .
6.6 Pattern Matching oo o

HANDBOOK OF AUTOMATED REASONING
Edited by Alan Robinson and Andrei Voronkov
© 2001 Elsevier Science Publishers B.V. All rights reserved

7 Unification in A-calculus with Dependent Types 1049

7.1 A-calculus with Dependent Types 1049
7.2 Unification in A-calculus with Dependent Types 1050
7.3 Closed Solutions o 1052
7.4 Automated Theorem Proving as Unification 1052
Bibliography e e 1054

Index e e e e e e e 1061

HIGHER-ORDER UNIFICATION AND MATCHING 1011

1. Type Theory and Other Set Theories

After the discovery of reasonably efficient proof search methods for first-order logic
in the middle of the sixties, a next step seemed to be the extension of these methods
to higher-order logic (also called simple type theory), i.e. a logic allowing quantifi-
cation over sets (i.e. predicates) and functions. Indeed, many problems require such
a quantification for a natural expression. A strong advocate for the automatization
of higher-order logic was J.A. Robinson who wrote in 1968 that “its adoption, in
place of the restricted predicate calculus [i.e. first-order logic], as the basic formal-
ism used in mechanical theorem proving systems, [was| an absolute necessary step if
such system [were] ever going to be developed to the point of providing a genuinely
useful mathematical service, or of helping to bring a deeper understanding of the
process of mathematical thinking” [Robinson 1969].

Replying to Robinson, M. Davis recalled that higher-order logic was just one
among several variants of set theory that all permit to reason about sets and func-
tions, and that the choice of this particular variant could only be justified if it was
more adequate for automatization than others: “Since higher-order logics are just
notational variants of set theories formalized in first-order logic, the question of the
use of higher-order formalisms in mechanical theorem-proving is simply a matter
of whether or not such formalisms suggest useful algorithms” [Davis 1969].

As we shall see, it is indeed the case that higher-order logic is, so far, more
adequate for automatization than other variants of set theory.

1.1. Naive Set Theory

Naive set theory permits the definition of sets in comprehension, i.e. by a character-
istic property of their elements. For instance we can define the interval of numbers
between 4 and 6 by the property z € RA4 < zAz < 6. The comprehension scheme
is thus stated

Vay ... Vo, Iy Vz ((z €y) & P)

where P is an arbitrary proposition, z a variable, x1,...,z, the free variables of P
except z and y a fresh variable, i.e. a variable different from z and not occurring in
P.

For example, an instance of this scheme is

JyVz((zey) ©(zeRA4<2AN2<6))

Then, another axiom, the extensionality axiom, defines the equality of two sets:
two sets are equal if they have the same elements

VeVy (Vz (z€Ex o 2z€y)=>z=1y)

If we want a notation for the objects whose existence is asserted by the compre-
hension scheme, we skolemize it and introduce function symbols f;, p. The

1012 GILLES DOWEK

skolemized comprehension scheme
Vo ... Vo, V2 ((2 € for, a2 p(T1,) & P)

is then called conversion scheme. If we write the term f,, 2. -pP(%1,....,Tpn) as
{z | P} (such a term is called an abstraction), the conversion scheme is written

Vzy ... Vz, Vz ((z € {2 | P}) & P)

With this convention, the proposition P in an abstraction {z | P} cannot contain
further abstractions (because the comprehension scheme is only stated for propo-
sitions containing no Skolem symbols). If we write {z | (t1/z1, ..., tn/xn) P} for the
term fg,, g, 2p(t1,....tn), where the terms ¢1, ..., ¢, may contain abstractions, the
propositions in abstractions may then contain further abstractions, but unlike the
occurrences of z in the proposition P, the occurrences of z in the terms t1, ..., ¢, are
not bound by the abstraction {z | (¢1/z1,...,t,/z,)P}. In fact, it is easy to prove
that the theory allowing nested abstractions binding all the variables is equivalent
(see, for instance, [Henkin 1953, Dowek 1995]). Thus, we can consider the construc-
tion {z | P} as a basic term construction, and state the conversion axiom

Voy ... Vo, Vz (z € {2z | P}) & P)

1.2. Plotkin-Andrews Quotient

Using a standard proof-search method with such a conversion scheme is rather
inefficient. Indeed, if we want to prove, for instance, the proposition

2e{z|z=2Ve=3}
using the conversion scheme, we can transform it into the equivalent one
2=2Vv2=23

and conclude with the axioms of equality. But, going in the wrong direction, we
may also transform this proposition into the equivalent one

2e{z|ze{y|ly=2}Vve=3}

Thus, using the conversion axiom, a proof search algorithm could spend most of its
time uselessly expanding and reducing propositions.

This remark reminds that of G. Plotkin, who noticed in 1972 that with the
associativity axiom

VeVyVz (x4+y)+z=2+(y +2))

a proof search method could spend most of its time uselessly rearranging brackets
[Plotkin 1972]. More generally, in any equational theory, a proof search method
may spend too much time randomly replacing equals by equals.

HIGHER-ORDER UNIFICATION AND MATCHING 1013

The well-know solution proposed by Plotkin is to identify propositions equivalent
modulo the congruence generated by the axioms. When there is a confluent and
terminating rewrite system such that two propositions are equivalent if and only if
they have the same normal forms, normal forms can be chosen as representatives of
their equivalence classes in the quotient. For instance, with the associativity axiom,
we identify propositions with their normal forms for the rewrite system

(z+y)+z>z+(y+2)
This way, the associativity axiom is equivalent to the proposition
VeVyVz (z+ (y+2) =2+ (y+ 2))

thus it is a simple consequence of the axioms of equality and it can be dropped.
On the other hand, a unifier of two propositions is now a substitution making
the propositions equal modulo the equivalence (such a problem is called equational
unification). For instance the propositions

a=X+d and a=b+(c+d)

are unifiable (while they are not for the usual notion of unification) because sub-
stituting X by b + ¢ yields
a=(b+c)+d

which reduces to
a=b+ (c+d)

In other words, the associativity axiom is now mixed with the unification algorithm.
A similar program: mixing the conversion axiom and unification algorithm was
proposed in 1971 by P.B. Andrews, in the context of type theory: “[First-order
resolution] is an elegant combination of substitution and cut [...]. An important
open problem concerning resolution in type theory is to find an equally elegant way
of combining [substitution], [conversion] and [cut]” [Andrews 1971].
To achieve this goal in naive set theory, we would consider the rewrite system

te{z| P} (t/z)P

identify propositions with their normal forms and drop the conversion axiom. A
unifier of two propositions would be a substitution making the propositions having
the same normal form.

1.53. Type Theory

Unfortunately, naive set theory has several drawbacks: first, as is well-known, it is
inconsistent, second: the above rewrite system is not terminating.

Inconsistency is given by Russell’s paradox. The proposition “the set of sets that
do not belong to themselves belongs to itself”

{z|~zex}e{z| ez}

1014 GILLES DOWEK

is equivalent, by the conversion scheme, to its negation. Thus, both it and its
negation are provable. This proposition is also a counter-example to termination,
as it rewrites to its negation.

To avoid Russell’s paradox, and to get a (hopefully) consistent theory of sets,
we can restrict naive set theory in two ways. The first method is to restrict the
comprehension scheme to some particular propositions (for instance Zermelo’s set
theory permits four constructions : pairs, unions, power sets and subsets), the other
is to move to a many-sorted theory with a sort (called 0) for atoms a sort (called
1) for sets of atoms, a sort (called 2) for sets of sets of atoms, etc. and allow
propositions of the form ¢ €, w only when ¢ is of sort n and w of sort n + 1
(which permits to construct unions, power sets and subsets but disallows arbitrary
pairs). The formalism obtained this way is called higher-order logic or simple type
theory. The original formulation of A.N. Whitehead and B. Russell [Whitehead and
Russell 1910-1913, 1925-1927] has been modified by L. Chwistek, F. Ramsey and
finally by A. Church [Church 1940].

Although, as remarked by W.V.0O. Quine [Quine 1969], the difference between
these two methods is rather shallow (as a many-sorted theory can always be rela-
tivized as a single-sorted one, and introducing sorts is thus also a way to restrict
the comprehension scheme to relativizations of sorted propositions), it is important
for automatization.

e First, as some meaningless propositions such as N € N are forbidden by the

syntax, they are systematically avoided by the proof search method.

e Then, the rewrite system terminates in higher-order logic and not set theory.

Indeed, given a set A and a proposition P, set theory allows to define the set
{z € A | P} of the members of A verifying the proposition P, and the rewrite
rule associated to this restriction of the comprehension scheme

te{zeA|P}>tec AN(t/2)P

does not terminate. A counter-example, which is an adaptation of Russell’s
paradox is Crabbé’s proposition C'

{reA|-zeazte{zecA| e}
This proposition rewrites to
{reA|-zezr}e AN-{zeA|wer}e{reA| €}

i.e. to B A —C where B is the proposition {z € A | -z € 2} € A.

Thus, the Plotkin-Andrews quotient cannot be applied, in a simple way, to
set theory, while it can be applied to higher-order logic. Equational unification
modulo conversion is called higher-order unification .

e At last, most proof-search method rely on cut elimination (sometimes taking
the form of Herbrand’s theorem). Both higher-order logic and set theory in-
troduce more cuts than those already there in first-order logic with no axioms.
These cuts can be eliminated in higher-order logic [Takahashi 1967, Prawitz

HIGHER-ORDER UNIFICATION AND MATCHING 1015

1968, Girard 1970, Girard 1972] but, Crabbé’s counter-example shows that they
cannot be eliminated in set theory. Indeed, Crabbé’s proposition C' rewrites to
B A =C. The proposition =B has the following natural deduction proof

i B,CF BA-C o™ i
m ax1o.m) W A-elim m ax1o.m
W A-elim m ax1o.m . B,.CFL . —-elim
B.COr L . —-elim Br paxiom —|j1ntro
A —-intro BEC . A-intro
Br Ll . —-elim
FoB —-intro

that contains a cut (the negation is first introduces then eliminated). But it is
easy to check that this proposition does not have a cut-free proof (notice that
after eliminating twice a cut in the proof above we get back the same proof).
See [Hallnés 1983, Ekman 1994] for a more detailed explanation.

1.4. Church’s Type Theory

Instead of considering only sets, Church’s type theory considers also relations of
an arbitrary number of arguments (unary relations are sets, zero-ary relations are
naturally identified with propositions). Then, functions are primitive objects and
are distinct from their graphs that are relations. Functions of several arguments are
curried, for instance the function mapping two numbers n and m to n +m + 2 is
identified with the function mapping n to the function mapping m to n +m + 2.
Just as we have a membership symbol € to build a proposition from two terms in
set theory, we have an application symbol « to build a term from two terms. The
term «(t,u) is written (¢ u). At last, relations are expressed as functions mapping
their arguments to a zero-ary relation i.e. a proposition. For instance, the relation
< is expressed as the function mapping a and b to the proposition a < b. Thus, if
A is a set (unary relation), the notation # € A is an abbreviation for (A z), i.e.
alA,).

The sorts of the system are called simple types, they contain two base types ¢ for
atoms and o for zero-ary relations (propositions), and whenever T and U are two
types, T — U is also a type (the type of functions mapping objects in T' to objects
inU).

As we have a comprehension scheme for sets and relations, we have a compre-
hension scheme for functions

Voy Vo, 3f Yyr . Yy (F y1 - yp) = 1)
and an extensionality axiom for functions
Vivg (Ve (f) =(92) = f=9)

Skolemizing the comprehension scheme yields an explicit language for functions
where the function mapping yi, ..., yp to t is written yy, ..., y, — t. Again, although

1016 GILLES DOWEK

the skolemized comprehension scheme provides only such terms when ¢ does not
contain Skolem symbols, it is easy to prove that the theory allowing such nested
abstractions is equivalent (see, for instance, [Henkin 1953, Dowek 1995]). Then,
curried functions of p arguments can be written y; — (...yp, — t...). Following
Church’s original notation, the term x + ¢ is written Az t. The conversion axiom,
called 3-conversion axiom is then stated

Vo Yy ... Yy, (Az t)) =t

Notice that the functional comprehension scheme, asserts the existence of very few
functions. For instance, if the atoms are taken to be natural numbers and the
language contains a symbol 0 of type ¢ and S of type ¢+ — ¢, for functions of type
1 — ¢ the conversion scheme only asserts the existence of the constant functions and
the functions adding a constant to their argument. Similarly, these functions are the
only ones that are explicitly definable by a term (e.g. Az S(S(0)) and Az S(S(z))).
For instance, the comprehension scheme does not assert the existence of the function
x mapping 0 to 0 and the other natural numbers to 1. In contrast, the graph of this
function (which is a binary relation, i.e. an object of type ¢ — ¢ — 0) can easily be
defined G = Az Ay ((x =0Ay =0)V (=(z =0) A (y = 1))). This motivates the
introduction of another axiom: the descriptions aziom

AD Yz (Giy (z y)) = (z (D x)))

where 31y P(y) is a proposition expressing the existence and unicity of an object
verifying the property P, i.e. the proposition

Jy P(y) AVy: Yya (P(y1) A P(y2)) = y1 = y2)

When skolemizing this axiom, we introduce a Skolem symbol called the descrip-
tions operator and the axiom

vz (Fiy (2 y) = (= (D 7))

This descriptions operator, that picks the element in every one element set, can
be extended to a choice operator (also called Hilbert’s € operator, or Bourbaki’s
7 operator) that picks an element in any nonempty set. In this case the axiom is
rephrased

Vz (Jy (z y)) = (z (D x))

and it is a form of the axiom of choice.

The descriptions operator and axiom permit to relate the functional relations and
the functions. The function x above can be defined by the term Az (D (\y (G z y))).
Then we can prove, for instance that x(2) = 1. Notice however that this theorem
is not a consequence of the conversion axiom alone, the descriptions axiom is also
needed.

When searching for proofs in higher-order logic, we transform the S-conversion
axiom in a rewrite rule called 3-reduction

((Az t) u) > (u/x)t

HIGHER-ORDER UNIFICATION AND MATCHING 1017

and we also take another rewrite rule called n-reduction which is a consequence of
the extensionality axiom

Az (t) >t provided x does not appear free in ¢

The extensionality axiom itself and the descriptions axiom remain as axioms of the
theory.

1.1. REMARK. In the presentation above, when we want to substitute the predicate
Q(.,.) for the variable P in the proposition P(a) A P(b) to get the proposition
Q(a,a) A Q(b,b), we first construct a term Az Q(z, z), then we substitute it for the
variable P yielding (Az Q(z, 2))(a) A (Az Q(z, 2z))(b) and at last we prove that this
term is equivalent to Q(a,a) A Q(b,b), or we reduce it to Q(a,a) A Q(b,b).

An alternative, frequently used in second-order logic [Church 1956, Goldfarb
1981, Farmer 1988, Krivine 1993], is to a define a substitution operation
(Q(z,x)/P(x))A in such a way that (Q(z,z)/P(z))(P(a)AP(b)) is Q(a,a) AQ(b,b).
This way the reduction is included in the definition of substitution.

1.5. Equational Higher-order Unification

Higher-order unification is equational unification modulo fBn-equivalence. As re-
marked above, as the function x is defined with the descriptions operator, the
proposition x(2) = 1 needs the descriptions axiom to be proved and the term x(2)
does not reduce to the term 1. Thus, we may want to extend the rewrite system
above, for instance with rules

x(0) >0

x(S(x)) > 5(0)

In the same way, we may want to add rewrite rules for addition (which is also
defined using the descriptions operator)

(+0y) >y

(+ (S z)y)> (S (+2y)
A rather general extension is to consider rewrite rules for the recursor R (which is
also defined using the descriptions operator [Andrews 1986])
(Rx fO)>z

Bz f(Sy)>(fy(Ray)

This rewrite system is called Gddel system T [Gddel 1958, Girard, Lafont and
Taylor 1989].

Equational unification modulo a rewrite system containing 3, n and other rules
like the ones above is called equational higher-order unification.

1018 GILLES DOWEK

1.6. Expectations and Achievements

Initiated in the sixties, the search for an automated theorem proving method for
higher-order logic was motivated by big expectations. “Providing a genuinely useful
mathematical service” is one of the goals mentioned in Robinson’s quotation above
(although this quotation is still moderated for the sixties). With the passing of
time, we know that fully automated theorem proving methods have not, or very
rarely, permitted to solve really difficult mathematical problems.

On the other hand, automated theorem proving methods have found other fields
where they have provided genuinely useful services (logic programming, deductive
data bases, etc.). The major applications of proof search in higher-order logic are
higher-order logic programming and logical frameworks (A-Prolog [Nadathur and
Miller 1998], Elf [Pfenning 19914], Isabelle [Paulson 1991], etc., see also [Pfenning
2001], Chapter 17 of this Handbook) and tools to prove easy but cumbersome
lemmas in interactive proof construction systems, see [Barendregt and Geuvers
2001] (Chapter 18 of this Handbook).

Besides automated theorem proving, higher-order unification has also been used
to design of type reconstruction algorithms for some programming languages
[Pfenning 1988], in computational linguistics [Miller and Nadathur 1986, Dalrymple,
Shieber and Pereira 1991], program transformation [Huet and Lang 1978, Hannan
and Miller 1988, Hagiya 1990], higher-order rewriting [Nipkow 1991, Nipkow and
Prehofer 1998, Mayr and Nipkow 1998], proof theory [Parikh 1973, Farmer 19915],
etc.

2. Simply Typed A-calculus

In this section, we give the definitions and elementary properties of simply typed
A-calculus which is the term-language of higher-order logic. The proofs of these
properties can be found in [Barendregt 1984, Hindley and Seldin 1986, Krivine
1993].

2.1. Types

We consider a finite set whose elements are called atomic types.

2.1. DEFINITION. (Types)
Types are inductively defined by:
e atomic types are types,
e if 7" and U are types then T'— U is a type.

Notation The expression Ty — To — ... = T, — U is a notation for the type
T = (Ty = ... > (T, = U)...).

HIGHER-ORDER UNIFICATION AND MATCHING

2.2. DEFINITION. (Size of a type)
The size of a type is defined as follows

e |T|=1if T is atomic,
o T - U|=|T|+|U]|

2.3. DEFINITION. (Order of a type)
If T is a type, the order of T is defined by:

e o(T) =1if T is atomic,
e o(T) = To) = maz{l + o(T1),0(T)}.

2.2. Terms

1019

We consider a finite set of constants, to each constant is assigned a type. We assume
that we have at least one constant in each atomic type. This assumption corresponds

to the fact that we do not allow empty types.

For each type, we consider an infinite set of variables. Two different types have

disjoint sets of variables.

2.4. DEFINITION. (A-terms)
A-terms are inductively defined by:
e constants are terms,
e variables are terms,
e if t and u are two terms then (¢t u) (i.e. a(t,u)) is a term,
e if x is a variable and ¢ a term then Az ¢ is a term.

Notation The expression (u vy ... v,) is a notation for the term (...(u vy) ...

2.5. DEFINITION. (Size of a term)
The size of a term is defined as follows

o lal =l =1,
o |(uv)] = luf + v,
o |\z u| = |ul.

2.6. DEFINITION. (Type of a term)
A term ¢ is said to have the type T if either:

e ¢ is a constant of type T,
e t is a variable of type T,
e t = (uv) and u has type U — T and v has type U for some type U,

Up)-

e t = \x u, the variable x has type U, the term u has type V and T =U — V.
A term ¢ is said to be well-typed if there exists a type T' such that ¢ has type T'.

In this case T is unique and is called the type of t.

1020 GILLES DOWEK

2.7. REMARK. In this chapter, we use an ezplicitly typed \-calculus. For instance,
the term Az z has a single type T' — T where T is the type of the variable z.
We could alternatively have used a type assignment system, with a single class of
variables and rules assigning types to terms, for instance any type of the form
T — T to the term Az x.

In the rest of this chapter we consider only well-typed terms.

2.8. Substitution

2.8. DEFINITION. (Variables, free variables)

Let ¢t be a term, the set Var(t) is the set of all variables occurring in ¢, it is
defined by induction on the structure of ¢ by:

e Var(c) =0,

e Var(a) = {a},

o Var((t u)) = Var(t) UVar(u),

o Var(Ax t) = Var(t) U {z}.
In contrast, the set FVar(t) is the set of the variables occurring freely in ¢, it is
defined by induction on the structure of ¢ by:

o FVar(c) =

o FVar(z) = {a:}

e FVar((t u)) = FVar(t) U FVar(u),

o FVar(Ax t) = FVar(t) \ {z}.
A term with no free variables is called a closed term.

2.9. ExAMPLE. The variable z occurs in the terms Az z, Az y and Ay x, but it
occurs freely only in the third of these terms.

2.10. DEFINITION. (Substitution)

A substitution is a finite set of pairs {(z1,t1), ..., (p, tn)} where for each i, z; is
a variable and ¢; a term of the same type and such that if (x,t) and (z,t') are both
in this set then ¢t = ¢'. Such a substitution is written t; /21, ..., tp/Zy.

We now want to define the operation of substituting the terms ¢y, ..., ¢, for the
variables x1, ...,z in a term u. A first attempt leads to the following definition.

2.11. DEFINTTION. (Replacement in a term)
If 0 =t /x1, ..., tn /2y, is a substitution and ¢ a term, then the term ()¢ is defined
as follows
e (e=c,
o ()x; =t; and (0)x = x, if x is a variable not among x1, ..., Zp,
o ()t u) = ((8)t (O)u),
(OY(\z t) = Az (O)t,

HIGHER-ORDER UNIFICATION AND MATCHING 1021

This notion of replacement has two drawbacks: first if we replace the variable x
by the variable y in the term Az x we get the term Az y, while the variable z is
bound in the term Az z, and thus we would rather expect the term Az z. Then if
we replace the variable x by the variable y in the term Ay xz we get the term Ay y
where the variable y has been captured, we would rather want to get the term Az y.

Nevertheless, this notion of replacement is useful in some situations. For instance,
it will be used in section 5.3 and it is also useful to define the notion of equivalence
of two terms modulo bound variable renaming (a-equivalence).

2.12. DEFINITION. (a-equivalence)
The a-equivalence of two terms is inductively defined by:
e c=c,
e =u,
e (tu)=({'"u)ift=¢ andu =1,
e Mzt = Ay uif (z/z)t = (2/y)u for some variable z different from x and y and
occurring neither in ¢ nor in wu.

2.13. ExAMPLE. The terms Az x and Ay y are a-equivalent.

2.14. PROPOSITION. a-equivalence is an equivalence relation. Moreover, the opera-
tions on terms (application and abstraction with respect to a variable) are compatible
with this relation. Thus, they are defined on equivalence classes.

In the following we shall identify a-equivalent terms, i.e. consider terms as rep-
resentatives of their a-equivalence class.

Now, we can define the substitution operation. To avoid capture, when we sub-
stitute the variable y for the variable z in the term Ay z, we need to rename the
bound variable y, and get for instance the term Az y. The choice of the variable z is
purely arbitrary, thus the substitution operation is in fact defined on terms modulo
a-equivalence, i.e. on a-equivalence classes.

2.15. DEFINITION. (Substitution in a term)
If0 =t /x1,...,tn/x, is a substitution and ¢ a term then the term 6t is defined
as follows

e fc=rc,

e Oz; =t; and fx = z, if = is a variable not among z1, ..., z,,

e O(t u) = (0t Ou),

e Az u) = Ay 6(y/x)u, where y is a fresh variable, with the same type as z,
i.e. a variable that does not occur in ¢ nor in tq,...,t, and is different from
L1yeeey Ly

2.16. PROPOSITION. If t is a term of type T, x is a variable of type U and u a
term of type U then the term (u/z)t has type T.

1022 GILLES DOWEK

2.17. DEFINITION. (Composition of substitutions)
Let # and €' two substitutions and z1,...,z, be the variables bound by one
substitution or the other. We let

9 o) 0’ — 09’1’1/1}1, ,90':Un/a:n

2.18. DEFINITION. (More general)
A substitution 6, is said to be more general than a substitution 6y (6, < 69) if
there exists a substitution n such that #5 = no 6.

2.19. DEFINITION. (Size of a substitution)
The size of a substitution t1 /1, ..., t,/x, is defined as

|t1/£151, ...,tn/iEn| = |t1| + ...+ |tn|

2.4. Reduction

2.20. DEFINITION. (fn-reduction)

The Bn-reduction (in one step), written >, is inductively defined by:
B: (o t) w) > (ufa)t |
n: Az (t x) >t if x is not free in ¢,
w: if w >’ then (¢ u) > (¢ u'),

o v:if t>t' then (t u) > (t' u),

o &:if t >t then Azt > A t'.

The Bn-reduction (in several steps), written >*, is the reflexive-transitive closure
of the relation >, it is inductively defined by:

o if ¢t > u, then ¢t >* u,

o tD>*1t,

o t>*u and u >* v then ¢t >* v.

2.21. PROPOSITION. If a term t has type T and t reduces to u then u has type T.

2.22. PROPOSITION. Substitution and reduction commute, i.e. if t >* u then
(v/2)t >* (v/z)u.

2.23. THEOREM. The fBn-reduction relation is strongly normalizable and conflu-
ent on typed terms, and thus each term has a unique Bn-normal form modulo -
CONVETSION.

2.24. PROPOSITION. Let t be a normal well-typed term of type Ty — ... = T, —
U (U atomic), the term t has the form

t=AT1 oo ATy, (Y w1 .. up)

where m <n and y is a constant or a variable.
The symbol y is called the head symbol of the term.

HIGHER-ORDER UNIFICATION AND MATCHING 1023

2.25. DEFINITION. (Long normal form) If ¢ = Az ... Az, (y w1 ... up) is a normal
term of type Ty — ... = T, = U (U atomic) (m < n) then its long normal form is
the term

' =AT1 oo ATy, ATppp1 o ATy (y U - u;, Typq e Ty)

where u} is the long normal form of u; and z} is the long normal form of ;.

This definition is made by induction on a pair whose first component is the size
of the term and the second the size of its type.

The long normal form of an arbitrary term is that of its normal form.

2.26. REMARK. The -normal form of a term is its normal form for the following
rewrite system which is also strongly normalizing and confluent.

o B: (A £) u) > (u/a)t,
o p:if u>gu' then (t u) >g (t u'),

o v:if t>pt’ then (t u) >g (1 u),

o (if t>pgt’ then Az t g Az t'.

Because n-reduction can be delayed with respect to S-reduction, the long normal

form of a term is also that of its f-normal form. Thus to compute the long normal
form of a term, we do not need to perform 7-reductions.

2.27. REMARK. Two terms have the same long normal form if and only if they
have the same genuine normal form. Thus, as representatives of classes of terms we
can either chose the genuine short normal form or the long normal form. Choosing
the long one simplifies many problems. So in the rest of this chapter, “normal form”
will always mean “long normal form”.

2.5. Unification

2.28. DEFINITION. (Unification problem, Unifier)

An equation is a pair of terms ¢, u. A unification problem is a finite set of equations.
A solution or a unifier of such a problem is a substitution 6 such that for each pair
t,u of the problem, the terms 8¢ and fu have the same normal form.

2.29. DEFINITION. (Minimal unifier, Most general unifier)

A unifier # of a problem is said to be minimal if all the unifiers of the problem
more general than 6 are renamings of 6, i.e. substitutions of the form n o § with
N=Y1/T1, - Yn/Tn-

A unifier of a problem is said to be the smallest or the the most general unifier
if it is more general than all the unifiers.

1024 GILLES DOWEK

3. Undecidability
3.1. Higher-order Unification

In this section, we show that higher-order unification is undecidable, i.e. there is
no algorithm that takes as argument a unification problem and answers if it has
a solution or not. To achieve this goal, we reduce another undecidable problem:
Hilbert’s tenth problem.

3.1. THEOREM. (Matiyacevich-Robinson-Davis [Matiyacevich 1970, Davis 1973])
Hilbert’s tenth problem is undecidable, i.e. there is no algorithm that takes as ar-
guments two polynomials P(Xy,...,X,) and Q(X1,...,X,) whose coefficients are
natural numbers and answers if there exists natural numbers myq, ...,my, such that

P(mla amn) = Q(mla amn)

We have seen that very few functions can be expressed in simply typed A-calculus
alone. With Peano numbers (i.e. with a symbol 0 of type ¢ and S of type ¢ —),
we can only define the constant functions and the functions adding a constant to
one of their arguments. The descriptions operator is needed to define addition and
multiplication and thus polynomials. Nevertheless, we can use another definition of
natural numbers: Church numbers.

3.2. DEFINITION. (Church numbers)
With each natural number n, we associate its Church number

i=Xe \f (f ((f 2)..))

with n occurrences of the symbol f. This term has type ¢t = (¢t — t) — ¢.

Moving from Peano numbers to Church numbers increases only slightly the
set, of functions that can be expressed in simply typed A-calculus: as proved by
H. Schwichtenberg [Schwichtenberg 1976], the expressible functions are the so-called
extended polynomials, i.e. the polynomials extended by the characteristic functions
of {0} and N\ {0} (for instance the function mapping n to 2" still needs the descrip-
tions operator). But polynomials are precisely what are needed to reduce Hilbert’s
tenth problem.

3.3. ProPOSITION. Consider the terms
add=Xn dm Az A\f (n (m z f) f)

mult = An Am Az Af (nz (\z (m z f)))

The normal form of the term (add @ ™) is n + m. The normal form of the term
(mult m ™) is n x m. Thus for every polynomial P there exists a A-term p such
that the normal form of the term (p My ... y,) is the term P(myq, ...,my).

HIGHER-ORDER UNIFICATION AND MATCHING 1025

Obviously, if the polynomial equation
P(Xy,.., X,) =Q(Xy, ..., Xpn)

has a solution my, ...,m,, then the substitution my /X, ...,m, /X, is a solution to
the unification problem

The converse of this proposition is not obvious, indeed, there are terms of type
t — (v — 1) = 1, for instance variables, that are not Church numbers.

Thus we shall add more equations to the problem to force the solutions to be
Church numbers.

3.4. PROPOSITION. A normal term t of type t — (1 — 1) — ¢ is a Church number
if and only if t/X is a solution of the equation

M (X z(Myy) =Xz z
PRrROOF. By induction on the structure of ¢. O

Thus we can conclude.

3.5. THEOREM. There is no algorithm that takes as argument a unification problem
and answers if it has a solution or not.

Proor. With each polynomial equation

P(Xy,...,X,) =Q(Xy, ..., X,)
we associate the unification problem

Xy ... Xn)=(X1.. Xn

A (X1 z(Myy)=Az 2

Az (X, z(Ayy)=Azz

where p is the term expressing the polynomial P and ¢ the term expressing the
polynomial Q.

If the polynomial equation has a solution my,...,m, then the substitution
my /X1, ..., M, /X, is a solution of the unification problem. Conversely, if the unifi-
cation problem has a solution ¢ /X7, ..., ¢,/ X, then the normal form of each ¢; is
a Church number ¢; = m;. The natural numbers mq, ..., m,, are a solution to the
polynomial equation. O

1026 GILLES DOWEK

3.6. REMARK. This theorem has been proved independently in 1972 by G. Huet
[Huet 1972, Huet 1973b] and C.L. Lucchesi [Lucchesi 1972]. The original proofs did
not reduce Hilbert’s tenth problem, but Post’s correspondence problem.

The unification problems built when reducing Post’s correspondence problem
have the property that the variables free in the problem are applied only to terms
that do not contain further variables free in the problem. Thus, reducing Post’s
correspondence problem permits to sharpen the theorem and prove that there is
no algorithm that takes as argument a unification problem of this special form
and answers if it has a solution or not. Such a sharpened undecidability theorem
is useful, for instance to prove the undecidability of type reconstruction in the
extension of simply typed A-calculus with dependent types [Dowek 1993c|.

3.2. Second-order Unification

But, reducing Hilbert’s tenth problem, we can sharpen the result in another di-
rection. The variables X, ..., X,, above have the type ¢ — (v — ¢) — ¢. This is
the type of functionals taking in arguments an atom of type ¢ and a function of
type ¢ — . Using the definition 2.3, this type has order 3. We may try to sharpen
the result and allow only variables of order 2 or even 1. If we restrict the types
of the free variables to be first-order, the problem is just a variant of first-order
unification and thus it is decidable. If we restrict the types of the free variables to
be at most second-order, we get, second-order unification, which has been proved to
be undecidable by W.D. Goldfarb [Goldfarb 1981].

Goldfarb’s proof relies on a expression of numbers that is a degeneracy of
Church’s. Taking Az Af (f (...(f z)...)) leads to a third-order type, thus the idea is
to drop the abstraction on f and to take Az (f (...(f z)...)) where f is a constant
of type ¢ — ¢. Thus numbers now have the second-order type ¢ — ¢. More precisely,
Goldfarb number 7 is the term Az (g a (...(¢ a x)...)) where a and g are constants
of type ¢t and t — ¢ — ¢.

Goldfarb numbers can still be characterized by a unification problem.

3.7. PROPOSITION. A normal term t of type . — 1 is a Goldfarb number if and only
if t/ X is a solution to the equation

(9 a (X a))=(X (gaa))
Addition can still be expressed by the term
add = Xn dm Az (n (m x))

but multiplication cannot be expressed this way. Thus, it will be expressed, not by
a term, but by a unification problem.

3.8. PROPOSITION. (Goldfarb’s lemma) The unification problem

(Y ab(g (g (Xsa)(X2b)a)=I(g(gab) (Y (X14a)(gab)a))

HIGHER-ORDER UNIFICATION AND MATCHING 1027

(Y ba(g (g (Xsd) (Xza)a))=I(g(gba) (Y (X1)(gaa)a))

has a solution M1 /Xy, M2/ Xo, M3/ Xs,u/Y if and only if my x ma = ms3.

3.9. THEOREM. (Goldfarb) Second-order unification is undecidable.
PROOF. By reduction of Hilbert’s tenth problem. Every equation of the form
P(Xy,...,X,) =Q(Xy, ..., X,)

can be decomposed into a system of equations of the form

Xi+Xj=Xk
XiXXjZXk
Xi=p

With such a system we associate a unification problem containing;:
e for each variable X;, an equation as in proposition 3.7,
e for each equation of the form X; + X; = X}, the equation (add X; X;) = Xy,
e for each equation of the form X; x X; = X}, two equations as in proposition
3.8,
e for each equation of the form X; = p, the equation X; = p.
g

3.10. REMARK. Goldfarb’s result has been sharpened by W.M. Farmer [Farmer
1991aq], J. Levy and M. Veanes [Levy and Veanes 1998] who study the number of
variables, the number of variable occurrences and the arity of the variables that are
needed to get undecidability.

3.11. REMARK. Reducing Hilbert’s tenth problem is a powerful tool, but as the
proof of undecidability of Hilbert’s tenth problem itself is rather complicated, one
may want to find a simpler undecidability proof, i.e. one reducing a problem that is
simpler to prove undecidable (the halting problem, the semi-Thue problem, Post’s
correspondence problem, etc.). We have seen that such reductions are possible for
third-order unification.

A. Schubert [Schubert 1998] has given another undecidability proof for second-
order unification, reducing the halting problem of a two-counter automaton. This
proof permits also to sharpen the result proving that there is no algorithm that
takes as argument a unification problem where the variables free in the problem
are applied only to terms that do not contain further variables free in the problem
and answers if it has a solution or not. This sharpened undecidability theorem
is applied to prove the undecidability of type reconstruction in some extension of
simply typed A-calculus with polymorphic types [Schubert 1998].

1028 GILLES DOWEK

4. Huet’s Algorithm

Higher-order unification is undecidable, but it is semi-decidable, i.e. we can build an
algorithm that takes a unification problem as argument, terminates and returns a
solution when the problem has one, but may loop forever when it does not. Indeed,
given a problem and a substitution, it is possible to decide whether the substitution
is a solution of the problem or not: it suffices to apply the substitution to both
members of each equation, normalize the terms and check that their normal forms
are equal. Thus, a naive generate and test algorithm terminates if the problem has
a solution.

Such a generate and test algorithm is, of course, of no practical use. But as we
shall see, it can be gradually improved so that we reach an algorithm that finds a
solution rather quickly when such a solution exists and reports failure in many cases
where the equation has no solutions (of course, not all of them, since the problem
is undecidable).

4.1. A “Generate and Test” Algorithm

4.1.1. Generating Long Normal Closed Terms
Recall that we have assumed in section 2.2 that we had a constant ¢y in each
atomic type U. Thus, in a type Ty — ... = T}, = U, we always have a closed
term Ay; ... Ay, cp. Obviously, if a substitution #; /X7, ..., t,/X,, is a solution to a
problem then the substitution obtained by substituting each free variable of ¢4, ..., ¢,
by the term Ay; ... Ay, cy corresponding to its type is also a solution. Moreover, this
solution is closed, i.e. all the terms substituted to the variables X1, ..., X, are closed
terms. Thus, if a problem has a solution, it has also a closed solution and instead
of enumerating all the terms ¢y, ...,1,, to be substituted for the variables X7, ..., X,
we can restrict to the closed ones. Similarly, if a substitution ¢, /X7, ...,t,/X,, is
a solution to a problem then the substitution obtained by taking the long normal
form of the terms ¢y, ..., ¢, is also a solution. Thus, we can restrict the enumeration
the long normal closed terms.

Using definition 2.25 long normal closed terms of type T} — ... = T}, = U, where
U is an atomic type, have the shape

AYL . Ayp (houy ... uy)

where y1,...,y, are variables of type T, ...,T}, the head symbol A is either one of
the variables y1,...,y, or a constant, and wy,...,u, are terms whose number and
type depend on the type of the symbol h.

Thus a method to enumerate all the normal terms of a given type is to proceed
step by step, enumerating all the possible head symbols of the term and then using
recursively the same method to enumerate the terms uq, ..., u,.

A first, but naive, idea would be to use variables Hy, ..., H, to hold for the terms
U, ..., Up, i.e. to consider the term

)\yl /\yp (h H1 HT)

HIGHER-ORDER UNIFICATION AND MATCHING 1029

and then to enumerate the terms to be substituted for the variables Hq, ..., H,.
Unfortunately, such an idea does not work, because the variables y,...,y, may
occur in the terms wq, ..., u,, substituting such terms to the variables Hq, ..., H,
would introduce captures, and substitution renames bound variables to avoid such
captures. Thus, for instance, such a method would not generate the term Az Af (f x)
of type ¢ = (1 — 1) — 2 a first step would consider the term Az Af (f H) but then
substituting the term z to the variable H would yield the term Ay Af (f z) and
not Az A\f (f x).

A solution to this problem is to express functionally the dependence of the terms
U1, ..., u, with respect to the variables yi, ..., yp, considering the term

Ay o AYp (B (Hy y1 - Yp) oo (Hr Y1 - yp))

Then the term Az Af (f z) is generated in two steps: first, we generate the term
Az Af (f (H z f)) then we substitute the term Az \f x for the variable H.
A substitution of the form

Ay - Ayp (B (Hy y1 - Yp) o (Hy 1 - yp)) /X

is called an elementary substitution.

4.1. DEFINITION. We consider the following inference system

t
Ay1 . Ayp (b (H1 y1 o yp) o (Hr y1 o yp))/ Xt

where the terms are normal (i.e. (Ayy ... A\yp (b (H1 Y1 .- yp) oo (Hyr y1 - yp)) /X))
actually stands for the long normal form of this term), X is a free variable of ¢
of type Ty — ... = T, = U (U atomic), h is one of the variables y,...,y, or a
constant, the target type of h is U and the variables Hy, ..., H, are fresh variables
of the appropriate type.

4.2. PROPOSITION. All the long normal closed terms of type T are produced from
a variable of type T by the inference system above.

PRrROOF. By induction on the size of t. O

4.3. REMARK. The inference system above has two forms of non-determinism: first
the choice of the variable X of the term ¢ to be substituted, then the choice of the
head symbol h in the substituted term. The choice of the variable X is a don’t care
non-determinism, the choice of the head symbol & is a don’t know non-determinism.

This don’t know non-determinism can be handled by building a search tree as
follows. Nodes are labeled by terms and leaves by closed terms. In each internal
node, we chose a variable and we draw an edge corresponding to each possible head
symbol.

Another solution is to consider an inference system defined on finite sets of terms,
deriving from AU {t}, the set AU{o1t,...,0nt} where o1,...,0, are the elementary
substitutions corresponding to the different possible head symbols.

1030 GILLES DOWEK

4.1.2. A Unification Algorithm
4.4. DEFINITION. (Generate and test algorithm)
We consider the inference system

E
Ay1 . Ayp (h (Hi y1 o Yp) - (Hr y1 - yp))/X)E

where F is a unification problem (i.e. a finite set of equations), X is a free variable
of Eof type Th — ... » T, — U (U atomic) and h is one of the variables y1, ..., y, or
a constant and the variables Hy, ..., H, are fresh variables of the appropriate type.

4.5. PROPOSITION. The above algorithm is sound and complete, i.e. a problem has
a solution if and only if a trivial problem (i.e. a problem where each equation relates
identical terms) can be derived from it.

PRrROOF. The soundness property is an obvious induction on the length of the deriva-
tion. The completeness property is proved by induction on the size of a long normal
closed solution. O

4.2. Huet’s Algorithm

In the generate and test algorithm, the unification problem is completely passive, it
is only used to test if a given substitution is a solution or not. In Huet’s algorithm
it is used in a much more active way to restrict the search space.

For instance, consider the problem 0 = S(X), whatever closed term we may
substitute for X, we will get two terms which have a different head symbol and
thus are different. Similarly the problem S(u) = S(v) can be simplified into the
problem v = v that has the same solutions. Such a term where the head symbol
is a constant or a bound variable and thus cannot be changed by a substitution is
called rigid.

4.6. DEFINITION. (Rigid, flexible term)
A term is said to be rigid if its head symbol is a constant or a bound variable, it
is said to be flexible if its head symbol is a free variable.

4.2.1. Rigid-rigid Equations
A first improvement that can be made to the generate and test algorithm is to
simplify problems using the rules

EU{Az1 ... Axy (f ur oo up) = Azt .. Az (g U1 ..o vg)}
1

Fail

EU{Azy ... Axp ug = ATy oo AZp U1, o, ATL oo ATy Up = AT oo ATy Uy}
EU{Az1 ... Axp (f ur oo up) = Azt oo Az, (f o1 o vp)}

Simplify

HIGHER-ORDER UNIFICATION AND MATCHING 1031

where the simplified equation relates two rigid terms (i.e. the symbols f and ¢ are
either constants or among z1, ..., x,) the head symbols of these terms are different
for the rule Fail and identical for the rule Simplify.

Notice that these rules derive unification problems, i.e. finite set of equations,
and that we have conventionally added an “unsolvable problem” L.

4.7. PROPOSITION. If a problem E' is derived from a problem E by the rule Fail or
the rule Simplify, then E and E' have the same solutions.

4.8. PROPOSITION. The application of the rules Fail and Simplify terminates and
produces a problem that does not contain rigid-rigid equations.

4.2.2. Flexible-rigid Equations

When the problem has an equation relating a flexible term and a rigid one
Ar1 o Azp (X wr o oup) = Az Azy (f v .. vg) we can decide
to generate the substitutions to be substituted for the variable X. As in
the generate and test algorithm, we try all the substitutions of the form
AYr oo Ayp (b (Hy y1 - Yp) - (Hy Y1 ... yp)) where h is a constant or among
the variables yi, ..., Yp.

In this case, if h is a constant different from the head f of the rigid term, this
substitution leads to an unsolvable rigid-rigid equation. Thus such an enumeration
can be avoided and we can restrict the symbol h to be among yy,...,y, (such a
substitution is called a projection) or the symbol f, if this symbol is a constant
(such a substitution is called an imitation).

E
Generat
Ayt Ay (b (Hy g1 - Yp) o (Hy g1 .. yp))/X)E T8¢

where E contains an equation of the form
ALy o AT (X ug e up) = Ay o Az (f 01 el vg)

or
ATt o Az (f o1 o vg) = Az o Az (X wn .o uyp)

and h is among y1,...,¥,, f when f is a constant and among y, ..., y, otherwise.

4.2.8. Flexible-flexible Equations
Thus, while in a problem E we have a rigid-rigid equation, a flexible-rigid one or
a rigid-flexible one, we do not need to use the blind generation of the potential
solutions, but we can restrict to the rules Fail, Simplify and Generate. When all the
equations are flexible-flexible, it seems that we have no way to restrict the blind
enumeration anymore.

However, Huet’s lemma shows that flexible-flexible equations always have solu-
tions and thus, that if we are not interested in all the unifiers, but simply in the
ezistence of such unifiers, we do not need to solve flexible-flexible equations.

1032 GILLES DOWEK

4.9. DEFINITION. (Solved problem)
If all the equations of a problem FE relate flexible terms, then the problem FE is
said to be solved.

4.10. PROPOSITION. (Huet) Any solved problem has a solution.

PRrROOF. For each atomic U type consider a constant ¢gy. Let 6 the substitution that
binds every variable X of type 71 — ... = T}, = U of E to the term Ay; ... Ay, cu.
The substitution € is a solution of FE, indeed applying € to an equation of the
form Azy ... Az (X g oo up) = Azy oo Az (Y 01 o vg) yields Az o Azy, cp =
AL ... A\xy, CU. O

In higher-order logic, testing unifiability is much simpler than enumerating uni-
fiers. This motivates the design of proof-search methods, such as constrained reso-
lution [Huet 1972, Huet 1973a], that require only the testing of unifiability and not
the enumeration of solutions, see [Andrews 2001] (Chapter 15 of this Handbook).

4.2.4. Correctness
We want to prove the soundness and completeness of the inference system Fail,
Simplify and Generate.

4.11. PROPOSITION. (Soundness) If from a problem E we can infer a solved prob-
lem E' with the rules Fail, Simplify and Generate, then the problem E has a solu-
tion.

PRrROOF. By induction on the length of the derivation.

If the derivation is empty, we conclude with the proposition 4.10.

If the first rule is Fail or Simplify, we conclude with the induction hypothesis and
the proposition 4.7.

If the first rule is Generate, deriving the problem E' from the problem E, then
by induction hypothesis the problem E’ has a solution ' and the substitution
0 =00y ... \yp (h (Hi y1 ... yp) .. (Hry1...yp))/X)isasolutionof E. 0O

4.12. PROPOSITION. (Completeness) If the problem E has a solution 6, then from
a problem E we can derive a solved problem E' with the rules Fail, Simplify and
Generate.

PRrROOF. By induction on the size of the substitution . First, we apply the rules
Fail and Simplify to the problem E. By proposition 4.8 this process terminates and
returns a problem E’ that does not contain rigid-rigid equations and by proposition
4.7, the substitution 6 is a solution of the problem E'. If the problem E’ is solved,
we have a derivation from E to a solved problem.

Otherwise, the problem E’ contains a flexible-rigid equation (or a rigid-flexible
one) Azy ... \ey, (X uy oo up) = Azq oo Az (f 01 .o vg). Let Ayp .o Ayp (hwy . wy)
be the term #.X. The symbol h is among y1, ..., yp, f if the symbol f is a constant,
and among yi, ..., yp otherwise.

HIGHER-ORDER UNIFICATION AND MATCHING 1033

By the rule Generate we derive the problem
E'"=0y1 ... \yp (h (Hy 21 ...) oo (Hp 21 ... p))/ X)E'

A solution to this problem is the substitution
0'=0—{0X/X}U{Ay1 ... \ypw1/H,...; \y1 ... Aypw,./H,}

This substitution is smaller than the substitution € and thus, by induction hypoth-
esis, we can derive a solved problem from the problem E”. Thus, we can derive a
solved problem from the problem E. O

4.2.5. Non-determinism

The proof of the completeness lemma gives a complete strategy for applying these
rules. While a problem contains rigid-rigid equations, the rules Fail and Simplify
can be applied. The choice of applying these rules and the choice of the equation is
don’t care, i.e. we never need to backtrack to try another rule or another equation.

The Generate rule can be applied only to simplified problems, i.e. problems con-
taining no rigid-rigid equation. The choice of the flexible-rigid equation is don’t
care, but the choice of the head-variable is don’t know and may lead to backtrack.

Again, this don’t know non-determinism can be handled by building a search
tree called wunification tree. Nodes are labeled by simplified problems. Leaves are
solved problems and the unsolvable problem (L). In each internal node, we chose
an equation and we draw an edge corresponding to each possible head symbol.

Another solution is to consider an inference system on finite set of unification
problems, deriving from AU{E} the set AU{o1E,...,0,E} where o4, ..., 0, are the
elementary substitutions corresponding to the different possible head symbols.

In some presentations, an equation is considered as an atomic proposition in a
unification logic. A unification problem (finite set of equations) is then the conjunc-
tion of the atomic propositions corresponding to the equations. Sets of unification
problems are then considered as disjunctions.

4.2.6. Empty Types

Above we have used the fact that we had a constant in each atomic type and thus
that every type was inhabited and that the existence of a solution to a unification
problem was equivalent to the existence of a closed solution.

If we allow empty types, finding a closed solution to a unification problem is more
difficult that finding a (possibly open) solution. For instance, if we have a variable
X of type T, the empty unification problem with respect to this variable (or, if we
prefer, the problem X = X)) has a trivial open solution, but has a closed solution
only if the type T is inhabited.

When we have empty types, flexible-flexible equations do not always have closed
solutions, for instance X = X does not if the type of X is empty (the existence of
a such a solution is even undecidable [Miller 1992]). Thus we cannot avoid solving
flexible-flexible equations.

1034 GILLES DOWEK

Notice that any type inhabitation problem can be expressed as a unification
problem, taking a variable of type 7" and searching for a solution to the empty
problem (or to the problem X = X).

4.2.7. Unification Modulo the Rule 3 Alone

A long normal term of type T4y — ... - T, — U (U atomic) has the form
Az1 ... Axp (h ur ... up) where the number of abstractions is p, i.e. the arity of
its type.

To define the long normal form, we need to have the rule n, which is a consequence
of the extensionality axiom. If we drop the extensionality axiom, we have to unify
terms modulo the rule 3 alone.

A p-normal term of type Tt — .. — T, — U is now of the form
Az1 ... Axg (b ui ... up) with ¢ < p. Thus we must consider more elementary sub-
stitutions where the number of abstractions ranges from 0 to n. Such an algorithm
is described in [Huet 1975, Huet 1976].

For instance with the rules 8 and 5, the problem

(X a)=(fa)

has the two solutions Az (f a)/X and Az (f z)/X. But, with the rule 3 alone, it
has also a third one f/X which is not equivalent to Az (f z)/X anymore.

4.3. Regular Trees, Reqular Solutions
We have seen (proposition 3.4) that the solutions of the problem
Az (X z(M\y) =Xz z

where X is a variable of type ¢« — (1 — 1) — 1, are all the substitutions of the form
t/X where t is a Church number.

When we apply the elementary substitution Az Af /X to this problem and
simplify it, we get the empty problem that is solved. And when we apply the
elementary substitution Az A\f (f (Y f x))/X we get the problem

MY z(My) =Xz z

which is a renaming of the initial problem. Thus, only a finite number of problems
(in this case, two) can be generated. In other words, the unification tree is regular
and can be represented by a finite skeleton.

M. Zaionc [Zaionc 1987] has remarked that when the number of problems we can
generate from a given problem is finite (in other words when the problem has a
regular unification tree) we can compute this set of problems (or the skeleton of the
unification tree). If this finite set does not contain a solved problem, then we know
that the problem is unsolvable. This way he has sharpened Huet’s algorithm and

HIGHER-ORDER UNIFICATION AND MATCHING 1035

proposed an algorithm that reports failures more often that Huet’s. For instance,
for the problem

(X a) = (f (X a))
Huet’s algorithm constructs an infinite tree with no solved problem, while after an
imitation step Az (f (H z))/X yielding after simplification to the problem

(H a) = (f (H a))

Zaionc’s algorithm reports a failure.

Moreover, when the number of problems generated by a given problem is finite
and the problem has solutions, the set of minimal unifiers may be infinite, but it
can be described by a grammar. For instance, for the problem

(X z(Myy) =Xz 2

calling o the elementary substitution Az Af /X and 7 the elementary substitution
Az Af (f (X fx))/X, all the solutions have the form To7o...0T00. Such a substi-
tution can be represented by the word 77...70 and the set of words corresponding
to the minimal unifiers is produced by the grammar

S —> 0

S —> TS

4.4. Equational Higher-order Unification

Several extensions of Huet’s algorithm have been proposed to higher-order equa-
tional unification (see section 1.5). Some aim at giving a general algorithm for an
arbitrary higher-order equational theory (see, for instance, [Avenhaus and Loria-
Saenz 1994, Miiller and Weber 1994, Prehofer 19945, Prehofer 1995, Qian 1994, Qian
and Wang 1992, Snyder 1990]). Others consider special theories (see, for instance,
[Curien 1995, Qian and Wang 1994, Saidi 1994, Boudet and Contejean 1997]).

5. Scopes Management

The idea, underlying Huet’s algorithm is to build the terms substituted for the
variables step by step and to transform the equations at each step substituting
the part of the solution constructed so far. This is a rather general approach in
equational unification. As compared to first-order equational unification methods,
higher-order unification presents the particularity of a rather subtle management
of scopes. For instance, as already mentioned, we cannot take the elementary sub-
stitution Ayy ... Ay, (f Hy ... Hy)/X but we must express the dependence of the
arguments of f with respect to the variables y1,...,y, in a functional way, taking
the substitution Ayi ... Ayp (f (H1 y1 ... yp) -o (Hy Y1 ... yp))/X. This is due to
the fact that substitution in A-calculus renames bound variables to avoid captures.

1036 GILLES DOWEK

We might want to build the solutions with smaller steps, for instance substituting
a variable of a functional type T — U by a term of the form Ay H/X and then
substitute H. But this is not possible as expressing functionally the dependence
in such a substitution would yield \y (H y)/X. i.e. H/X and thus the inductive
argument in the completeness proof would not go through. (Because of the func-
tional encoding of scopes we have to take |\z t| = |¢t| and not |A\z t| = |¢| + 1, thus
instantiating a variable by an abstraction does not let the problem progress).

In the same way, we might want to simplify an equation of the form Az v = Az v
into u = v, but such a simplification rule is unsound. For instance the equation
Az Y = Az (f z) has no solution (as the substitution (f = z)/Y would rename
the bound variable to avoid the capture), while the equation Y = (f z z) has the
solution (f = z)/Y.

All these particularities of higher-order unification come from the particularities
of the substitution in A-calculus, and this particularities come from the fact that
A-calculus contains a binding operator .

5.1. Mized Prefizes

To have the simplification rule
EUu{lzt=\x u}
Eu{t=u}

we must add to the simplified problem an occurrence constraint forbidding the
variable x to appear in the term substituted for the variables free in ¢ and w. This
way both problems

A Y =Xz (f = x)

and
Y = (f = z), x not available to YV’

have no solution, and more generally the simplification of abstractions is sound.
Such occurrence constraints can be elegantly expressed in a unification logic.

In a unification logic, unification problems are expressed as propositions and uni-
fication rules as deduction rules in such a way that a proposition P is provable if
and only if it expresses a unifiable problem. An equation ¢,u is expressed as an
atomic proposition ¢ = u introducing a predicate symbol =. A unification prob-
lem (i.e. a finite set of equations) is represented as the conjunction of the atomic
propositions corresponding to equations. The variables occurring in the problem
are then existentially quantified at the head of the problem and the constants can
be considered as universally quantified variables.

For instance the problem

XY =Xz (f z x)
is expressed as the proposition

ViAY Az Y =Xz (f = x))

HIGHER-ORDER UNIFICATION AND MATCHING 1037

Unification problems are thus usually expressed as propositions of the form V3.
D. Miller [Miller 1992] has proposed to consider propositions with a more complex
alternation of quantifiers (mized prefizes), in particular propositions of the form
V3aV. Then the problem

ViAYy Az Y =Xz (f = x))

can be simplified into
VY Vo (Y =(f = z))

in which the usual scoping rules for quantifiers manipulation express that the vari-
able z is not available to Y and forbid the substitution (f x z)/Y. This way, he
has been able to give more natural simplification rules. The study of quantifier
permutation in such problems has also permitted to identify a decidable subcase of
higher-order unification (see section 6.2).

Thus, mixed prefixes permit to give more natural simplification rules, but not to
give more natural generation rules.

5.2. Combinators

Recall that higher-order logic is just one among several variants of set theory [Davis
1969]. Like other variants of set theory, it can be expressed in first-order logic.

When we express higher-order logic as a first-order theory, the term language is a
first-order term language and thus, as opposed to A-calculus it contains no binding
operator. Thus, the substitution does not need to avoid captures and scope man-
agement is simpler. Expressing this way higher-order logic as a first-order theory
permits also to use standard technique for proof search and in particular standard
first-order equational unification algorithms for higher-order unification.

When we express higher-order logic as a (many-sorted) first-order theory, we
need to distinguish zero-ary relations that are expressed by terms of sort o and
propositions. We introduce a unary predicate symbol € of rank (o) and if ¢ is a term
of type o, the corresponding proposition is written e(¢). For each pair of type, we
introduce also a function symbol ar ¢ of rank (T — U,T,U) and the term (¢ u) is
a notation for az (t,u). We may also introduce symbols =7 of type T — T — o
for equality.

As seen in section 1 we state the comprehension schemes

Vo ... Vo, 3f Yyr ... Yy, (e(f y1 ... yp) © P))

Vay ... Van, 3f Yy .. Yyp e((f y1 .. yp) = 1)

These schemes are equivalent to the closed schemes
3f Yy - Vyp (e(f y1 - yp) & P))

Af Vyr - Vyp e((F y1 - yp) = 1)

1038 GILLES DOWEK

where all the free variables of ¢t and P are required to be among yi, ..., yp.

As seen in section 1, to have a language for the relations and functions we
skolemize these axioms and introduce symbols that we may write Ay; ... Ay, t and
AY1 ... Ayp P if we want, but we must recall that (1) in such expressions, the free
variables of P and ¢ must be among y1, ..., yp, (2) the proposition P and the term
t do not contain further abstractions and (3) such terms are individual symbols.
These symbols are called combinators [Curry 1942, Curry and Feys 1958, Hindley
and Seldin 1986].

We can also chose to restrict the comprehension schemes to a finite number of
instances that are equivalent to the full scheme. This way we have a finite number
of combinators (e.g. S, K,=,A,V,—,V,3).

We have said in section 1 that this language was equivalent to A-calculus, but
moving from this language to the more convenient notation of A-calculus introduces
the binding operator A and thus the notion of substitution with renaming. An alter-
native is to keep this language and to perform unification modulo the combinators
conversion axioms.

The use of combinators, instead of A-calculus, was already investigated by
J.A. Robinson in 1970 [Robinson 1970] (but, apparently, without stressing the re-
lation to Davis’ remark that higher-order logic could be expressed as a first-order
theory). This approach has been pursued in [Dougherty 1993]. Using combinators
instead of A-calculus permits to use standard first-order equational unification al-
gorithms to perform unification modulo the conversion axioms.

The translations from A-calculus to combinators [Curry 1942, Curry and Feys
1958, Hindley and Seldin 1986, Hughes 1982, Johnsson 1985, Dowek 1995], such as
A-lifting, are correct if the extensionality axiom is taken, but not when this axiom is
dropped: the theory of the conversion axiom alone are not equivalent in A-calculus
and in the theory of combinators. In other words, some proofs, for instance that of
the proposition

(Ax Ay Az z) ww) = (Az Ay Az y) w w)

do not require the use of the extensionality axiom in A-calculus and requires it with
combinators.

If unification is seen as a part of resolution, then resolution in the A-calculus
presentation of higher-order logic is equivalent to resolution in the combinators
presentation of higher-order logic, i.e. a proposition is provable in one system if and
only if its translation is provable in the other (although the proofs may be different
in the two systems, in particular one may need to use the extensionality axiom,
while the other does not).

If unification is seen as an independent problem then combinator unification is
weaker than higher-order unification, i.e. it is not the case that a problem has a
solution in A-calculus if and only if its translation has one in combinators, but
combinator unification may be adapted to get the same power as higher-order
unification, using a glimpse of extensionality [Dougherty 1993]. This algorithm is,
however, more redundant than Huet’s.

Notice, at last, that the higher-order unification algorithm itself uses part of the

HIGHER-ORDER UNIFICATION AND MATCHING 1039

translation of A-calculus to combinators. In particular the functional encoding of
scopes is reminiscent of A-lifting.

5.3. Explicit Substitutions

To avoid the problems with extensionality introduced by the use of combinators,
another solution is to keep A-calculus, but to avoid the difficulties of scopes man-
agement with the use the replacement, allowing capture (see definition 2.11) instead
of substitution. In other words, when we have an equation a = b we do not look for
a substitution # such that fa = b but for a substitution 6 such that (6)a = (6)0b.

Using such a notion of replacement permits to decompose the simplification rules
into a rule simplifying equations of the form Az u = Az v into u = v an other one
simplifying equations of the form (f uy ... up) = (f v1 ... vp) INto ws = v1,...,up = vy
and (f w1 ... up) = (g v1 ... vy) into L when f and g are different. The generation
rule can also be simplified: if X is a variable of type T'— U we can replace it by a
term Az Y where Y is a variable of type U, and when X has an atomic type, we
replace it by the term (h H;y ... H,.).

But, this notion of replacement raises two new difficulties. First replacement does
not commute with reduction and thus it cannot be defined on the quotient of terms
modulo reduction. For instance, the term ((Az Y') a) reduces to Y, but replacing
x for YV yields ((Az z) a) that reduces to a and not to x. To avoid this difficulty,
a solution is to delay the substitution of a for z in Y until Y is replaced and we
know whether it contains an occurrence of z or not (when using substitution with
renaming such a delay is not needed (proposition 2.22) because a term containing
the variable z cannot be substituted for the variable Y).

Delaying this way the substitutions initiated by [-reduction requires an ex-
tension of A-calculus with explicit substitutions [Abadi, Cardelli, Curien and
Lévy 1991, Curien, Hardin and Lévy 1996, Nadathur and Wilson 1998]. Besides
constants, variables, applications and abstractions, the calculus of explicit substi-
tutions introduces another construction the closure [o]t where o is a substitution
and t a term. The g-reduction rule is replaced by the rule

((Az t) u) > [u/x]t

and more reduction rules permit to propagate the explicit substitution u/z in the
term ¢. The simplest rules permits to distribute a substitution on an application

[0](t w) > (o]t [o]u)

When such a substitution [u/x] reaches the variable 2 the term [u/z]z reduces to
the term w, when it reaches another variable y the term [u/z]y reduces to y, but
when it reaches a metavariable Y the term [u/z]Y cannot be reduced and thus
the substitution is delayed until the metavariable Y is replaced. Thus, when we ex-
press a higher-order unification problem in the calculus of explicit substitutions free
variables are expressed as metavariables and bound variables as ordinary variables.

1040 GILLES DOWEK

The second difficulty is that some problems have solutions for replacement while
they have none for substitution. This is the case for instance for the problem Az Y =
Az (f z x). If we use replacement, (f x)/Y is a solution, while the problem has no
solution if we use substitution. This problem is solved again by the use of explicit
substitutions. In this system, there are explicit renaming operators and thus we can
use such an operator to protect the metavariable Y from being replaced by a term
containing the variable z.

Thus we can define a translation from A-calculus to A-calculus with explicit sub-
stitutions such that a unification problem has a solution for substitution if and
only if its translation has one for replacement. In other words, the substitution of
A-calculus is decomposed into an (explicit) renaming and a replacement.

This approach has been investigated in [Dowek, Hardin and Kirchner 1995,
Borovansky 1995, Nadathur 1998, Nadathur and Mitchell 1999].

5.4. De Bruin Indices

Like combinators, the calculus of explicit substitutions permits to avoid the subtle
scope management of higher-order unification and it avoids also the use of exten-
sionality. But, so far, it does not permit to use the standard first-order equational
unification techniques because A-calculus (with explicit substitutions or not) is still
not a first-order language.

In fact, independently of combinators, N.G. de Bruijn [de Bruijn 1972] has pro-
posed another notation for A-calculus that happened to be also a first-order lan-
guage.

The idea of de Bruijn notation, is that the name of bound variables is only used to
indicate the binder they depend on. This dependency may also be indicated by the
height of this binder above the variable. For instance, the term Az Ay (z Az (z 2))
may be written AA(2 A(3 1)) because the first occurrence of the variable x refers to
the second X above it, the second occurrence of the variable z refers to the third A
above it and the occurrence of the variable z refers to the first A above it.

In de Bruijn notation, the operator A is not a binding operator anymore and thus
A-calculus can be represented as a first-order term language with a unary function
symbol A, a binary function symbol a and an infinite number of constant symbol
1, 2, etc.

Because of the presence of the substitution in the -reduction rule, the reduction
system in this language is not a first-order rewrite system, but the reduction system
in A-calculus with de Bruijn indices and explicit substitutions is first-order. In
fact, the standard presentation of the calculus of explicit substitutions uses de
Bruijn indices and not named variables. The metavariables of the calculus of explicit
substitutions are the variables of the free algebra built on this language.

With de Bruijn indices and explicit substitutions, we can use first-order tech-
niques to perform unification, we do not have scopes management problems nor
those created by the use extensionality in translating A-calculus to combinators
[Dowek et al. 1995].

HIGHER-ORDER UNIFICATION AND MATCHING 1041

These investigations have also lead to another first-order presentation of higher-
order logic based on de Bruijn indices and explicit substitutions that is extensionally
equivalent to the presentation using A-calculus [Dowek, Hardin and Kirchner 2001].

Presenting this way A-calculus as a first-order language and higher-order unifi-
cation as first-order equational unification modulo an equational theory 77 per-
mits to consider also equational higher-order unification modulo an equational
theory T» as equational first-order unification modulo 77 U T [Dougherty and
Johann 1992, Goubault 1994, Kirchner and Ringeissen 1997].

6. Decidable Subcases

As usual when a problem is undecidable, besides building a semi-decision algorithm,
we are also interested in identifying decidable subcases. In this section, we present
a few decidable subcases of higher-order unification. These subcases are obtained
by restricting the order, the arity or the number of occurrences of variables, or by
taking terms of a special form. For some subcases, Huet’s algorithm terminates, for
others it does not and we must design another algorithm to prove decidability.

The main conjectures in this area are the decidability of pattern-matching, i.e.
the subcase of unification where variables occur only in a single side of equations
and the decidability of context unification.

6.1. First-order Unification

The first decidable subcase of higher-order unification is obviously first-order unifi-
cation. When all the variables of a problem have first-order, i.e. atomic, types (see
definition 2.3), all the constants have at most second-order types and the terms
in the equations have first-order types, then the problem is just a rephrasing of
a first-order unification problem. Notice however that Huet’s algorithm does not
always terminate on such problems. For instance the problem

X = f(X)

leads to an infinite search. In other words, Huet’s algorithm does not detect failure
by occur-check. However, it can be sharpened, adding a rule called rigid paths occur-
check [Huet 1975, Huet 1976] that forces failure in more cases and in particular for
all the first-order unsolvable unification problems.

6.2. Patterns

When we define a function by an equation, for instance,
VeVy (Fzy)=x4+y+zXy)

we actually mean
F=Xx Xy (z+y+azxy)

1042 GILLES DOWEK

But the first definition can also be used because the equation has a single solution
Ar Ay (z +y+ x x y). In contrast, the definitions

Ve (Frz)y=z+x+zX2)

or
Ve (F0x)=ux)

are incorrect because the equations have more than one solution.

This remark motivates the study of unification problems where the higher-order
free variables can only be applied to distinct bound variables.

A pattern [Miller 1991] is a term ¢ such that for every subterm of the form
(F uy ... up) where F is a free variable, the terms wuq, ..., u, are distinct variables
bound in ¢. Unification of patterns is decidable and when a unification problem has
a unifier, it has a most general unifier [Miller 1991].

For instance the problem

Az Xy Az (Fzz)=(f Az dy (Gyx)) Az Xy (F zy)))

is a patterns unification problem.

Patterns unification extends first-order unification. It has the same properties
(polynomial time decidability and most general unifier) and the algorithms have
some similarities (in particular, the occur-check plays an essential role in both
cases). The correspondence between first-order unification and patterns unification
is better understood when we study quantifier permutation in mixed prefixes (see
section 5.1) as patterns unification problems can be obtained by permuting quanti-
fiers in first-order problems [Miller 1992]. This is also the way patterns unification
was discovered.

Patterns unification is used in higher-order logic programming [Nadathur and
Miller 1998, Pfenning 1991aq].

Patterns unification with explicit substitutions is studied in [Dowek, Hardin,
Kirchner and Pfenning 1996], the decidability and unicity of solution rely there on
invertibility properties of explicit substitutions.

This subcase of unification called patterns unification must not be confused with
pattern matching discussed in section 6.6.

6.3. Monadic Second-order Unification

Goldfarb’s undecidability proof requires a language with a binary constant g. Thus,
a natural problem to investigate is unification in second-order languages containing
only unary constants, i.e. constants with a single argument. This problem, called
unary or monadic second-order unification has been proved decidable by Farmer
[Farmer 1988].

Farmer’s proofs relies on the fact that a closed term of an atomic type in such
a language has the form (fi (f2 ... (fn ¢)...)) and thus can be represented by the

HIGHER-ORDER UNIFICATION AND MATCHING 1043

word fifa...fn- Thus, a unification problem in such a language can be reduced to
word unification problem, and such problems are known to be decidable.
In this case, the set of minimal unifiers may be infinite. For instance the unifica-
tion problem
Az (f (X 2)) = Az (X (f 2))

which is equivalent to the word problem fX = X f has an infinite number of
minimal solutions where the terms Az =, Az (f =), Az (f (f z)), e (f (f (f z))),
X (f (f (f (f z)))), etc. are substituted for the variable X, corresponding to
the solutions of the word problem e, f, ff, fff, etc. Farmer proposes to describe
minimal unifiers using so called parametric terms, reminding of Zaionc’s description
by a grammar. For instance the parametric term Az (f™ z) (corresponding to the
parametric word f™) is the most general unifier of the problem above.

6.4. Context Unification

Context unification is a variant of second order unification with the extra condition
that terms substituted to second order variables have to be contezts, i.e. normal
terms of the form Azy ... Az, ¢t where the variables zi,...,x, occur once in ¢.
Such terms can be seen as first-order terms with holes. This problem is related to
unification in linear lambda-calculus [Pfenning and Cervesato 1997].

The decidability of this problem is open, [Comon 1998, Schmidt-Schaufl 1994,
Levy 1996, Niehren, Pinkal and Ruhrberg 1997, Schmidt-Schaufl and Schulz 1999,
Schmidt-Schaufl 1999, Levy and Villaret 2000, Niehren, Tison and Treinen 2000)
give partial results.

6.5. Second-order Unification with Linear Occurrences of Second-order Variables

In second-order unification, when we have an equation
AZ1 o Ap (X a1 oap) = Az oo Az (f b1 .o by)

and we perform a projection, we replace a variable X by a closed term Azi...Ax, x;,
thus the number of variables in the problem decreases. When we perform an imi-
tation and simplify the problem, we get the equations

ALy Az (Hy ay ..oap) = A2y oo Az, by

Azy Az (Hy ay ..coap) = Axp .o Az, by

which seem to be smaller than the equation we started with. Hence, it seems that
Huet’s algorithm should terminate, in contradiction with Goldfarb’s undecidability
result.

1044 GILLES DOWEK

Actually, the variable X may have occurrences in the terms a1, ...,ap, b1, ..., by
and in fact we get the equations

Az .. Aen (Hy ay ... a,) = Azy ... Azp by

ey oo Moy (Hy ay o.oa,) = Azy o Azy, by

P

where the variable X has been substituted everywhere. These equation need not be
smaller than the equation we started with and thus the algorithm does not always
terminate.

However this argument can be used to prove that second-order unification with
linear occurrences of second-order variables is decidable, i.e. that there is an algo-
rithm that decides unifiability of second-order problems where each second-order
variable has a single occurrence (see, for instance, [Dowek 1993d]). In fact, to en-
sure that linearity is preserved by imitation we must first transform equations into
superficial equations, i.e. equations where the second-order variables can occur only
at the head of the members of the equations.

This algorithm has been extended by Ch. Prehofer [Prehofer 19944, Prehofer
1995] mixing linearity conditions and patterns conditions.

G. Amiot [Amiot 1990] had used a similar transformation to prove that superficial
second-order unification is undecidable.

Besides linear unification, a similar argument using the number of variables and
the size of equations will be used in section 6.6.1 to prove the decidability of second-
order matching.

6.6. Pattern Matching

A higher-order matching equation is an equation whose right hand side does not
contain free variables. A higher-order matching problem is a finite set of matching
equations. The decidability of higher-order matching, Huet’s conjecture [Huet 1976],
has been an open problem for more than twenty years.

6.6.1. Second-order Matching
The first positive result is the decidability of second-order matching.

6.1. PROPOSITION. (Huet [Huet 1976, Huet and Lang 1978]) Second-order match-
ing is decidable, i.e. there is an algorithm that takes in argument a matching problem
whose free variables are at most second-order (in the sense of definition 2.3) and
whose bound variables and constants are at most third-order and answers if it has
a solution or not.

PRroOF. For second-order matching problems, Huet’s algorithm terminates. Indeed,
the pair (n, p) where n is the sum of the sizes of the right hand sides of equations
and p the number of variables in the problem decreases at each step (i.e. each

HIGHER-ORDER UNIFICATION AND MATCHING 1045

application of the Generate rules followed by a simplification) for the lexicographic
order.

Imitations are always followed by a simplification, and thus the sum of the sizes
of the right hand sides of equations decreases in such a step. Projections have the
form Azy ... Az, x; thus they do not introduce new variables Hi, ..., H, and the
number of variables in the problem decreases in such a step and the closed right
hand sides are never substituted, thus the sum of their sizes never increases. 0

6.2. REMARK. In a matching problem there is no flexible-flexible equations. Thus
the only solved problem is the empty problem and a second-order matching problem
has a finite set of minimal solutions.

6.3. REMARK. L.D. Baxter has proved that the second order matching problem is
NP-complete [Baxter 1977].

6.4. REMARK. The condition that bound variables and constants are at most third-
order can be weakened (see, for instance, [Dowek 1991¢]), but patterns-like terms
need to be used in the algorithm.

6.6.2. Infinite Set of Solutions and Pumping

As soon as we have a third-order variable, Huet’s algorithm may fail to terminate
and may produce an infinite number of minimal solutions. For instance, as seen
above (proposition 3.4) the problem

A (X z(My) =Xz 2

has an infinite number of solutions of the form ¢/X where ¢ is any Church number
Ax Af(f ... (f x)...).

Thus if we look for a terminating algorithm, we cannot use Huet’s algorithm, and
we cannot use any other algorithm enumerating all the minimal solutions. Thus,
all the algorithms proposed so far (for restricted cases) all reduce the search space,
dropping some solutions, but hopefully keeping at least one if the problem has
solutions.

As an illustration we can use such a method to prove the decidability, in the
domain of natural numbers, of polynomial equations with a constant right hand side
(whereas Matiyacevich-Robinson-Davis [Matiyacevich 1970, Davis 1973] theorem
proves the undecidability of polynomial equations in general). Notice that in this
case also, a problem may have an infinite number of solutions (consider for instance
the equation XY +4 = 4).

6.5. PROPOSITION. There is an algorithm that takes as arguments a polynomial P
whose coefficients are natural numbers and a natural number b and answers if the
equation P(X1, ..., X,) = b has a solution or not in the domain of natural numbers.

PROOF. If this equation has a solution ay, ..., ay, then it has a solution af, ..., a!, such
that af < b. Indeed either Q(X) = P(X,as,...,a,) is not a constant polynomial

1046 GILLES DOWEK

and for all n, @(n) > n, so a; < b, or the polynomial @) is identically equal to b and
(0,as, ..., a,) is also a solution. A simple induction on n proves that if the equation
has a solution then it also has a solution in {0, ...,b}" and an enumeration of this
set, gives a decision algorithm. O

For instance, for the equation XY + 4 = 4, starting with the solution (1000, 0)
we get the solution (0,0). The method that transforms the solution (1000, 0) into
(0,0) is called pumping. It permits to know whether a solution exists in an infinite
domain just by looking into a finite part of the domain, because this finite part
mirrors all the domain.

6.6.3. Finite Models

Such an idea has been investigated by R. Statman using model theoretic techniques.
H. Friedman’s completeness theorem [Friedman 1975] is that if we interpret the
atomic types by infinite sets and types of the form A — B by the set of all functions
from the interpretation of A to the interpretation of B, then two terms have the
same denotation if and only if they are Sn-convertible.

Obviously, this theorem cannot be generalized to the case where the interpreta-
tion of atomic types are finite. Indeed, if the interpretation of the type ¢ is finite,
that of the type + — (1 — 1) — ¢ also and thus at least two different Church
numbers have the same denotation, while they are not convertible.

However Statman’s finite completeness theorem [Statman 1979, Statman and
Dowek 1992] shows that for each A-term b, there is a natural number n such that,
in the finite model built from a base sets of cardinal n, the terms that have the
same denotation as b are those convertible to b.

Thus, if a matching problem (a X; ... X,,) = b (b closed) has a solution, the
corresponding equation in the model has a solution too, and as the denotation
of each type in the model is finite, we can enumerate all the potential solutions
and test one after another. Unfortunately, when we find a solution in the model
this solution corresponds to a solution in A-calculus only if the element of the
model is the denotation of some A-term. Thus the higher-order matching conjecture
was reduced this way to the A-definability decidability conjecture (Plotkin-Statman
conjecture) [Statman 1979, Statman and Dowek 1992].

Another formulation, that strengthen the link to the pumping method is that
assuming that we can decide whether an element is A-definable or not we can
compute a number n such that all the definable elements of the model of a given
type are defined by a term of size lower than n. Thus, if the problem has a solution,
then it has also a solution of size lower than n and to decide whether a problem has
a solution, we only need to enumerate the terms of size lower to that bound. After
this bound, the terms are redundant, i.e. their denotation is also a denotation of
smaller terms and if they are solutions to the matching problem smaller terms also.

Unfortunately the A-definability decidability conjecture has been refuted by
R. Loader [Loader 1994].

However, V. Padovani has shown that \-definability was decidable in other mod-

HIGHER-ORDER UNIFICATION AND MATCHING 1047

els: the minimal models where the interpretation of the type A — B contains only
the A-definable functions and from this result, he has deduced the decidability of
the atomic higher-order matching problem (i.e. the higher-order matching problem
where the right hand side is a constant) [Padovani 19964, Padovani 19965].

6.6.4. Third and Fourth-order Matching
A similar approach has permitted to prove the decidability of third-order and
fourth-order matching problems i.e. matching problems whose free variables are
at most third or fourth order (in the sense of definition 2.3).

Consider a variable X of type t = (+ — ¢) — ¢, the equation

(X ey (g(hy))) =c

and the potential normal solution ¢ = Az A\f u for X. The term (¢t ¢ Ay (g (h y)))
reduces to the normal form of (¢/z, Ay (¢ (h y))/f)u and, a simple induction on the
depth of the structure of u shows that this term has a depth greater than or equal
to that of w. For instance, taking ¢t = Az Af (f (f (f z))) and applying it to ¢ and
Ay (g (hy)) yields (g (h (g (h (g (h ¢)))))) where each f has been replaced by a g
and a h. Thus, if such a term is to be a solution of the above problem u must be
smaller than ¢. Thus, enumerating the terms smaller than ¢ gives an algorithm to
find all the solutions of this problem. In fact, the only solutions are Az Af ¢ and
A Af z.
But such a reasoning does not work for all the problems, for instance

(Xeyy)=c
(Xd(\ye)=e

has solutions of an arbitrary depth: all nonzero Church numbers

Az A (f (o (f 2)..)).

This can only happen when all the second arguments of X are either of the form
Azy ... Azy, z; (e.g. Ay y) or an irrelevant term i.e. a term where a bound variable
does not occur in the body (e.g. Ay €). In this case any sequence of f has the same
effect as a single f thus, any solution of the form Az Af (f (...(f z)...)) is redundant
with the smaller solution Az Af (f).

Erasing, this way, all the useless occurrences of variables permits to get smaller
solutions whose depth can be bounded by a function in the depth of b. Thus, we
can compute a bound such that if the problem has a solution, then it has also a
solution whose depth is lower than that bound and hence achieve decidability.

The simpler case for which such a method works is the third-order interpolation
problems.

6.6. DEFINITION. (Interpolation problem)
An interpolation problem is a finite set of equations of the form (X a; ... a,) =0
where the terms aq, ..., a,, b are closed.

1048 GILLES DOWEK

Using the pumping method described above, we can prove the decidability of
third-order interpolation problems. Then, the bound on the depth of solutions can
be lifted to arbitrary third-order matching problems and this proves the decidability
of third-order matching problems [Dowek 1994].

A. Schubert [Schubert 1997] has proved that the decidability of higher-order in-
terpolation problems implies that of higher-order matching problems, unfortunately
his transformation does not preserve the order of the variables.

V. Padovani [Padovani 1995] has proved that the decidability of the dual in-
terpolation problem implies that of higher-order matching and his transformation
preserves the order of the variables thus the decidability of the dual interpolation
problem of order n implies that of the matching of order n (a dual interpolation
problem is a pair (E, F') of interpolation problems and a solution to such a problem
is a substitution that is solution to the equation of E but not to that of F).

Using this result, Padovani has proved the decidability of the fourth-order match-
ing problem [Padovani 1994, Padovani 19965].

6.6.5. Automata

All these proofs are rather technical (in particular the decidability of fourth-order
matching is a real technical tour de force) because they all proceed by transforming
potential solutions into smaller ones cutting and pasting term pieces. H. Comon
and Y. Jurski [Comon and Jurski 1997] have proposed to reformulate these ideas
in a much simpler way.

Instead of transforming a potential solution into a smaller one. Comon and Jurski
propose, in a similar way as Zaionc (see section 4.3) and Farmer (see section 6.3)
to build an automaton that recognizes the solutions of a given problem.

For instance, in the problem

(Xe(wy)) =c

(Xd(\ye)=e

the fact that any sequence of f has the same effect as a single f and thus that any
solution of the form Az A\f (f (...(f x)...)) is redundant with the smaller solution
Az Af (f) is expressed as the fact that the automaton stays in the same state
recognizing the sequence of f in the solution Az Af (f (...(f z)...)). This way a
finite state automaton can recognize the infinite set of solutions and decidability is
a consequence of the decidability of the nonemptiness of a set of terms recognized
by an automaton.

This way they have given simpler decidability proofs for third-order and fourth-
order matching. They have also proved that third order matching was NP-complete,
hence that is not more complex than second-order matching.

6.6.6. Wolfram’s Algorithm
A last approach has been investigated by D. Wolfram [Wolfram 1989]. Wolfram
has proposed a pruning of the search tree for the full higher-order matching that

HIGHER-ORDER UNIFICATION AND MATCHING 1049

produces a finite search tree. Thus, Wolfram’s algorithm always terminates, but its
completeness is still a conjecture.

7. Unification in A-calculus with Dependent Types

To conclude this chapter we shall review unification algorithms in extensions of
simply typed A-calculus. We have already seen in section 1.5 and 4.4 that more
reduction rules could be added, we can also consider richer type structure such as
dependent types and polymorphism.

7.1. X-calculus with Dependent Types

7.1.1. Types Parametrized by Terms

The A-calculus with dependent types is an extension of simply typed A-calculus
where types contain more information on terms than their functional degree. For
instance in simply typed A-calculus, we may consider lists (i.e. finite sequences)
of natural numbers as atoms and thus have an atomic type list and two symbols
e of type list for the empty list and . of type list — nat — list) to add an
element at the end of a list. For instance the list 1, 1,2, 3,5 is expressed by the term
(((C(GGel)1)2)3)5).

But we may want to enrich the type system in such a way that the length of the
list is a part of its type, i.e. we want to have a family of types (list 0), (list 1),
(list 2), etc. parametrized by a term of type nat.

The type of a function taking as argument a natural number n and returning a list
of length n, cannot be written nat — (list n) but we must express the information
that the variable n refers to the argument of the function, thus we write such a type
In,qt (list n). When we apply such a function to, for instance, the term 4 we get a
term of type (list 4), i.e. a list of four elements. From now on, the notation A — B
is just an abbreviation for IIz 4 B where x does not occur in B. The symbol list is
not a type but it has type nat — Type where T'ype is a new base type.

As types contain terms, the type of a variable may be changed by a substitution,
for instance if z is a variable of type (list n) the term Az z has type (list n) —
(list n), but substituting n by 4 changes the type of z to (list 4) and the type of
Az z to (list 4) — (list 4). In such a system, we usually indicate the type of each
variable by a subscript at its binding occurrence, writing, for instance Az (s n) -

7.1.2. Types Parametrized by Types

In the same way, we may want to parametrize the type list by the type of the
elements of the list, in order to construct lists of natural numbers, lists of sets of
natural numbers, lists of lists of natural numbers, etc. i.e. we want to have a family
of type (list nat), (list (nat — o)), (list (list nat)), etc. parametrized by a type.
When we have such types parametrized by types we need also to parametrize terms
by types, i.e. to have terms taking a type as argument, for instance the symbol

1050 GILLES DOWEK

¢ must be parametrized by a type in such a way that (¢ nat) be a term of type
(list nat), (¢ (nat — 0)) a term of type (list (nat — 0)), etc.

Taking none, one or several of the three features: types parametrized by
terms (dependent types), types parametrized by types (type constructors), terms
parametrized by types (polymorphic types), we get 2° = 8 calculi (Al-calculus
[Harper, Honsell and Plotkin 1993], systems F' and F,, [Girard 1970, Girard 1972],
the Calculus of constructions [Coquand 1985, Coquand and Huet 1988], etc.) that
are usually represented as the vertices of a cube [Barendregt 1992].

7.1.3. Proofs as Objects

These extensions of simply typed A-calculus are needed when we consider extensions
of higher-order logic where proofs are objects. In higher-order logic, the number 2
is expressed by a term, the set E of even numbers too, the proposition (E 2) that
2 is even also, but the proof that this proposition holds is not a term. Intuitionistic
type theory [Martin-Lof 1984] and the Calculus of Constructions [Coquand 1985,
Coquand and Huet 1988] are extensions of higher-order logic where such proofs are
terms of the formalism too.

These formalisms use Brouwer-Heyting-Kolmogorov notion of proof : proofs of
atomic propositions are atoms, proofs of propositions of the form A = B are
functions mapping proofs of A to proofs of B (for instance, the term Azp Ayg = is
a proof of P =) = P) and proofs of propositions of the form Yz P are functions
mapping every object a of the type T to a proof of (a/z)P.

As remarked by H.B. Curry [Curry and Feys 1958], N.G. de Bruijn [de Bruijn
1980] and W. Howard [Howard 1980], the type of such a term is isomorphic to the
proposition itself, i.e. proofs of propositions of the form A = B have type A’ — B’
where A’ is the type of proofs of A and B’ the type of proofs of B. Proofs of
propositions of the form Vzy P have type I[lzr P’ where P’ the type of the proofs
of P.

As usual, we identify isomorphic objects and thus identify A = B and A — B,
Vxr P and Ilzr P,

7.2. Unification in \-calculus with Dependent Types

7.2.1. N-calculus

The first unification algorithm for such an extension of simply typed A-calculus has
been proposed by C.M. Elliott [Elliott 1989, Elliott 1990] and D. Pym [Pym 1990]
for All-calculus i.e. a calculus where types may be parametrized by terms, but not
by types and terms cannot be parametrized by types either. The main idea in this
algorithm is still the same: simplify rigid-rigid equations, construct solutions to
flexible-rigid equations incrementally with elementary substitutions, substituting
variables by terms of the form Ayy 7, ... Ayp 7, (b (Hy y1 ... yp) - (Hr y1 .. Yp))
where h is either a bound variable or the head variable of the rigid term, and avoid
solving flexible-flexible equations that always have solutions.

HIGHER-ORDER UNIFICATION AND MATCHING 1051

The main difference concerns the typing of substitutions. In simply typed \-
calculus, if we have a variable X of type T'— U — T and an equation (X a b) = a
then the potential elementary substitutions substitute the terms Az \y =, Az Ay v,
Az Ay a for the variable X. But the second term has type T'— U — U and thus
cannot, be substituted to X (see definition 4.1). We select this way the elementary
substitutions that are well-typed, i.e. replace a variable by a term of the same type.

In All-calculus a type may contain variables and thus a type may be changed by
a substitution. Thus, when applying a substitution ¢/ X we must not check that the
type of X and t are the same, but we must unify them, or add an equation relating
their types to the problem.

For instance, if the variable X has type (list 0) — (list Y) — (list 0)
and we have the problem (X ¢ b) = ¢, although the elementary substitution
AZ (15t 0) MY (1ist v) Y/ X is not well typed (the variable has type (list 0) — (list Y) —
(list 0) and the term (list 0) — (list V) — (list Y')) we must not reject it. Indeed,
this substitution will be well-typed when we substitute the term 0 for the variable
Y leading to the solution 0/Y, AZ 145t 0)AY(tist 0) ¥/ X . Thus we must consider all the
potential elementary substitutions, well-typed or not, and when we perform such
a substitution, we must add to the unification problem the accounting equation of
this substitution, i.e. the equation relating the type of the variable and the type of
the term.

In the example above the accounting equation is

(list 0) — (list Y) — (list Y) = (list 0) — (list Y) — (list 0)

and it simplifies to Y =Y, Y = 0.

As we consider ill-typed substitutions, we have to consider ill-typed, and thus
potentially nonnormalizable, equations. In fact, Elliott and Pym have proved that,
in All-calculus, provided the simplification of the accounting equation succeeds,
the equations, although ill-typed, always normalize [Elliott 1989, Elliott 1990, Pym
1990].

7.2.2. Polymorphism, Type Constructors, Inductive Types

When we consider also polymorphic types and types constructors, i.e. terms
parametrized by types and types parametrized by types, we still need account-
ing equations, but new phenomena happen: the number of arguments of the head
variable in an elementary substitution is not fixed by its type anymore, for instance
if the variable h has type Ilzr,,. = and we want to build a term of type A we can
build the term

(h(A=...2 A= A) a..a)
—_— ——
n times n times
where the variable h has n + 1 arguments. Thus we need to consider elementary
substitutions where the number of arguments of the head variable is arbitrary

[Dowek 19934, Dowek 19914.
Another difference is that flexible-flexible equation do not always have solutions,

1052 GILLES DOWEK

for instance if the variable X has type Ilz7yp. z, the equation
(X (A= B)a)=(X B)

has no solution [Dowek 19914]. Thus we must enumerate the elementary substitu-
tions for flexible-flexible equations too.

At last, we loose the normalization property for ill-typed equations but we can
prove that in any situation there is always at least a variable that has a well-typed
type and that we can instantiate.

Besides dependent types, polymorphic types and types constructors, we can also
consider inductive types, i.e. reduction rules for recursor on some data types (see
section 1.5 and 4.4) [Godel 1958, Girard et al. 1989, Martin-Lof 1984, Paulin-
Mohring 1993, Werner 1994] and extend the unification algorithm to these systems
[Saidi 1994, Cornes 1997].

7.3. Closed Solutions

In All-calculus we cannot assume anymore that every atomic type is inhabited. For
instance consider a type family (even 0), (even 1), (even 2), etc. such that (even n)
is the type of proofs that n is even. When n is odd, for instance for n = 1, this type
must be empty.

Thus, flexible-flexible equations do not always have closed solutions (see sec-
tion 4.2.6). Like in simply typed A-calculus, the existence of a closed solution to
a flexible-flexible unification problem is undecidable. In All-calculus type inhabita-
tion is undecidable (see [Bezem and Springintveld 1996]) and thus even unification
problems with no equations (or unification problems on the form X = X) are
undecidable.

Thus, when looking for closed solutions in All-calculus, we cannot avoid solving
flexible-flexible equations.

7.4. Automated Theorem Proving as Unification

Using Curry-de Bruijn-Howard isomorphism, a provability problem in propositional
minimal logic can be be expressed as a type inhabitation problem in simply typed
A-calculus and thus as an higher-order unification problem [Zaionc 1988]. In the
same way a provability problem in first-order minimal logic can be expressed as a
unification problem in AI-calculus [Hagiya 1991, Pfenning 1991a] and a provability
problem in higher-order intuitionistic logic can be expressed as a unification problem
in the Calculus of constructions [Dowek 1993a, Dowek 19914].

Thus, in A-calculi with dependent types, provided we search for closed solutions,
unification is not a subroutine of automated theorem proving methods anymore,
but automated theorem proving can be reduced to unification.

For instance, consider a context where we have

e a type symbol T, i.e. a symbol T of type T'ype,

HIGHER-ORDER UNIFICATION AND MATCHING 1053

e two symbols a and b of type T,

e a binary relation <, of type T'— T — Type,

e an axiom h: VerVyrVzr((z <y) = (y < z) = (z < 2)), i.e. a symbol h of type

MorTyrTlzr((z < y) = (y < 2) — (2 < 2)),
e two axioms v and w: a < b and b < ¢, i.e. two symbols v and w of type a < b
and b < c.

We search a proof of the proposition a < c¢. We start with a variable X of
type a < ¢ and no equation (or the equation X = X). As we have no equa-
tion, all the equations are flexible-flexible, thus we must try all the possible head
variables for term substituted for X, among them we consider the substitution
(h Y1 Y2 Y3 Yy Y5)/X introducing variables Y7, Y2 and Y3 of type T, Yy of type
Y1 <Y; and Y; of type Yo < V3. The accounting equation of this substitution is

(a<c)= (Y1 <Y3)

which simplifies to
a=Y]

c=Y3

These equations are flexible-rigid, the only possible elementary substitution for Y;
is a/Y7 and the only possible one for Y3 is ¢/Y3. The accounting equations of these
substitution are trivial (T' = T'), thus we get a problem with three variables (Y,
Y4, Y5) and no equations.

Instantiating, for instance, the variable Y; we must try all the possible head
variables, among them we consider the substitution w/Y; leading to the accounting
equation

(a<e)=(b<e)

and it simplifies to
Yo=0b

This equation is flexible-rigid, the only possible solution for Y5 is b/Y5. The ac-
counting equation of this substitution is trivial (T' = T') and thus we get a problem
with one variable (Y3) and no equation.

Instantiating this variable, we must try all the possible head variables, among
them we consider the substitution v/Ys. The accounting equation of this substitu-
tion is trivial ((a < b) = (a < b)) and thus, we get a problem with no variables
and no equations. We are done. The term substituted for X, i.e. the proof of the
proposition a < cis (h a b cv w).

Here, all the proof search has been performed by the unification algorithm. Notice
that the elementary substitutions (h Y7 Ys Y3 Yy Y5)/X, w/Y5, v/Yy would be
considered as resolution steps in more traditional approaches while the elementary
substitutions a/Y7, ¢/ Y3 and b/ Y5 would be considered as genuine unification steps.

Patterns unification is decidable in all the calculi with dependent types [Pfenning
19915]. Pattern matching is undecidable in most of the calculi with dependent types
[Dowek 19915, Dowek 19935, Dowek 19914a] but second-order matching is decidable

1054 GILLES DOWEK

[Dowek 1991 ¢, Dowek 19914], and third-order matching is decidable in some systems
[Springintveld 19954, Springintveld 19955, Springintveld 1995¢].

With dependent types also, the unification steps can be decomposed using explicit
substitutions [Magnusson 1994, Munoz 1997].

Acknowledgments

I want to thank Gérard Huet who has initiated me into the theory of higher-order
unification.

I also want to thank Peter Andrews, Jean Goubault-Larrecq, and Gopalan Na-
dathur for their comments on this chapter.

Bibliography

ABADI M., CARDELLI L., CURIEN P.-L. AND LEVY J.-J. [1991], ‘Explicit substitutions’, Journal
of Functional Programming 1(4), 375-416.

AmioT G. [1990], ‘The undecidability of the second order predicate unification problem’, Archive
for mathematical logic 30, 193—199.

ANDREWS P. [2001], Classical type theory, in A. Robinson and A. Voronkov, eds, ‘Handbook of
Automated Reasoning’, Vol. 11, Elsevier Science, chapter 15, pp. 965-1007.

ANDREWS P. B. [1971], ‘Resolution in type theory’, The Journal of Symbolic Logic 36(3), 414—
432.

ANDREWS P. B. [1986], An introduction to mathematical logic and type theory: to truth through
proof, Academic Press.

AVENHAUS J. AND LORTA-SAENZ C. A. [1994], Higher-order conditional rewriting and narrowing,
in J.-P. Jouannaud, ed., ‘International Conference on Constaints in Computational Logic’,
Vol. 845 of Lecture Notes in Computer Science, Springer-Verlag, pp. 269-284.

BARENDREGT H. AND GEUVERS H. [2001], Proof-assistants using dependent type systems, in
A. Robinson and A. Voronkov, eds, ‘Handbook of Automated Reasoning’, Vol. II, Elsevier
Science, chapter 18, pp. 1149-1238.

BARENDREGT H. P. [1984], The Lambda-calculus, its syntax and semantics, North Holland.
Second edition.

BARENDREGT H. P. [1992], Lambda calculi with types, in S. Abramsky, D. M. Gabbay and
T. S. E. Maibaum, eds, ‘Handbook of logic in computer science’, Vol. 2, Clarendon Press,
pp. 118-309.

BAXTER L. D. [1977], The complexity of unification, PhD thesis, University of Waterloo.

BEZEM M. AND SPRINGINTVELD J. [1996], ‘A simple proof of the undecidability of inhabitation
in AP’, Journal of Functional Programming 6(5), 757-761.

BOROVANSKY P. [1995], Implementation of higher-order unification based on calculus of explicit
substitution, in M. Bartosek, J. Staudek and J. Wiedermann, eds, ‘SOFSEM : Theory and
Practice of Informatics’, number 1012 in ‘Lecture Notes in Computer Science’, Springer-Verlag,
pp. 363-368.

BoOUDET A. AND CONTEJEAN E. [1997], AC-unification of higher-order patterns, in G. Smolka, ed.,
‘Principles and Practice of Constraint Programming’, Vol. 1330 of Lecture Notes in Computer
Science, Springer-Verlag, pp. 267-281.

CHURCH A. [1940], ‘A formulation of the simple theory of types’, The Journal of Symbolic Logic
5(1), 56-68.

CHURCH A. [1956], Introduction to mathematical logic, Princeton University Press.

HIGHER-ORDER UNIFICATION AND MATCHING 1055

CoMoN H. [1998], ‘Completion of rewrite systems with membership constraints. Part II: Con-
straint solving’, Journal of Symbolic Computation 25, 421-453.

ComoN H. AND JURSKI Y. [1997], Higher-order matching and tree automata, in M. Nielsen and
W. Thomas, eds, ‘Conference on Computer Science Logic’, Vol. 1414 of Lecture Notes in
Computer Science, Springer-Verlag, pp. 157-176.

CoQuAND T. [1985], Une théorie des constructions. These de troisieme cycle, Université Paris
VIIL

CoQuAND T. AND HUET G. [1988], ‘The calculus of constructions’, Information and Computation
76, 95-120.

CorNEs C. [1997], Conception d’un langage de haut niveau de représentation de preuves.
récurrence par filtrage de motifs. unification en présence de types inductifs primitifs. synthese
de lemmes d’inversion. These de Doctorat, Université de Paris VII.

CURIEN P.-L., HARDIN T. AND LEvVY J.-J. [1996], ‘Confluence properties of weak and strong cal-
culi of explicit substitutions’, Journal of the Association for Computing Machinery 43(2), 362—
397.

CURIEN R. [1995], Outils pour la preuve par analogie. Theése de Doctorat, Université Henri
Poincaré - Nancy .

CURRY H. B. [1942], ‘The combinatory foundations of mathematical logic’, The Journal of Sym-
bolic Logic 7(2), 49-64.

Curry H. B. AND FEYS R. [1958], Combinatory logic, Vol. 1, North Holland.

DALRYMPLE M., SHIEBER S. AND PEREIRA F. [1991], ‘Ellipsis and higher-order unification’, Lin-
guistic and Philosophy 14, 399-452.

Davis M. [1969], Invited commentary of [Robinson 1969], in A. J. H. Morrell, ed., ‘International
Federation for Information Processing Congress, 1968’, North Holland, pp. 67-68.

Davis M. [1973], ‘Hilbert’s tenth problem is unsolvable’, The American Mathematician Monthly
80(3), 233-269.

DE BRUDN N. G. [1972], ‘Lambda calculus notation with nameless dummies, a tool for auto-
matic formula manipulation, with application to the Church-Rosser theorem’, Indagationes
Mathematicae 34(5), 381-392.

DE BrUnN N. G. [1980], A survey of the project automath, in J. R. Hindley and J. P. Seldin,
eds, ‘To H.B. Curry: Essays on combinatory logic, lambda calculus and formalism’, Academic
Press.

DOUGHERTY D. J. [1993], ‘Higher-order unification via combinators’, Theoretical Computer Sci-
ence 114, 273-298.

DOUGHERTY D. J. AND JOHANN P. [1992], A combinatory logic approach to higher-order E-
unification, in D. Kapur, ed., ‘Conference on Automated Deduction’, Vol. 607 of Lecture
Notes in Artificial Intelligence, Springer-Verlag, pp. 79-93.

Dowek G. [1991a], Démonstration automatique dans le calcul des constructions. These de
Doctorat, Université de Paris VII.

Dowek G. [1991b], ‘I.’indécidabilité du filtrage du troisieme ordre dans les calculs avec types
dépendants ou constructeurs de types (the undecidability of third order pattern matching
in calculi with dependent types or type constructors)’, Comptes Rendus & I’Académie des
Sciences I, 312(12), 951-956. Erratum, ibid. I, 318, 1994, p. 873.

DOWEK G. [1991¢]|, A second-order pattern matching algorithm in the cube of typed A-calculi, in
A. Tarlecki, ed., ‘Mathematical Foundation of Computer Science’, Vol. 520 of Lecture notes
in computer science, Springer-Verlag, pp. 151-160.

DoOwEK G. [1993a], ‘A complete proof synthesis method for the cube of type systems’, Journal
of Logic and Computation 3(3), 287-315.

DowEgk G. [1993b], ‘The undecidability of pattern matching in calculi where primitive recursive
functions are representable’, Theoretical Computer Science 107, 349-356.

1056 GILLES DOWEK

DowEK G. [1993¢], The undecidability of typability in the lambda-pi-calculus, in M. Bezem and
J. F. Groote, eds, ‘Typed Lambda Calculi and Applications’, number 664 in ‘Lecture Notes
in Computer Science’, Springer-Verlag, pp. 139-145.

DowEK G. [1993d], A unification algorithm for second-order linear terms. Manuscript.

DowEK G. [1994], “Third order matching is decidable’, Annals of Pure and Applied Logic 69, 135—
155.

DowEek G. [1995], Lambda-calculus, combinators and the comprehension scheme, in M. Dezani-
Ciancagliani and G. Plotkin, eds, ‘Typed Lambda Calculi and Applications’, number 902 in
‘Lecture Notes in Computer Science’, Springer-Verlag, pp. 154-170.

DOWEK G., HARDIN T. AND KIRCHNER C. [1995], Higher-order unification via explicit substitu-
tions, in ‘Logic in Computer Science’, pp. 366—-374.

DOWEK G., HARDIN T. AND KIRCHNER C. [2001], ‘HOL-lambda-sigma: an intentional first-order
expression of higher-order logic’, Mathematical Structures in Computer Science 11, 1-25.
DoOwEK G., HARDIN T., KIRCHNER C. AND PFENNING F. [1996], Unification via explicit substi-
tutions: the case of higher-order patterns, in M. Maher, ed., ‘Joint International Conference

and Symposium on Logic Programming’, The MIT Press, pp. 259-273.

ExMAN J. [1994], Normal proofs in set theory. Doctoral thesis, Chalmers University and Univer-
sity of Goteborg.

Evrviort C. M. [1989], Higher-order unification with dependent function types, in N. Dershowitz,
ed., ‘Internatinal Conference on Rewriting Techniques and Applications’, Vol. 355 of Lecture
Notes in Computer Science, Springer-Verlag, pp. 121-136.

Evviort C. M. [1990], Extensions and applications of higher-order unification, PhD thesis,
Carnegie Mellon University.

FARMER W. M. [1988], ‘A unification algorithm for second-order monadic terms’, Annals of Pure
and applied Logic 39, 131-174.

FARMER W. M. [1991a], ‘Simple second order languages for which unification is undecidable’,
Theoretical Computer Science 87, 25-41.

FARMER W. M. [19910], ‘A unification theoretic method for investigating the k-provability prob-
lem’, Annals of Pure and Applied Logic 51, 173-214.

FrRIEDMAN H. [1975], Equality between functionals, in R. Parikh, ed., ‘Logic Colloquium’, Vol.
453 of Lecture Notes in Mathematics, Springer-Verlag, pp. 23-37.

GIRARD J.-Y. [1970], Une extension de I'interprétation de Gédel a ’analyse et son application
a D’élimination des coupures dans ’analyse et la théorie des types, in J. E. Fenstad, ed.,
‘Scandinavian Logic Symposium’, North Holland.

GIRARD J.-Y. [1972], Interprétation fonctionnelle et élimination des coupures dans I’arithmétique
d’ordre supérieur. These d’Etat, Université de Paris VII.

GIRARD J.-Y., LAFONT Y. AND TAYLOR P. [1989], Proofs and Types, Cambridge University Press.

GODEL K. [1958], “Uber eine bisher noch nicht beniitzte Erweiterung des finiten Standpunktes’,
Dialectica 12.

GoLDFARB W. D. [1981], “The undecidability of the second-order unification problem’, Theoretical
Computer Science 13, 225-230.

GouBAuLT J. [1994], Higher-order rigid E-unification, in F. Pfenning, ed., ‘5th International
Conference on Logic Programming and Automated Reasoning’, number 822 in ‘Lecture Notes
in Artificial Intelligence’, Springer-Verlag, pp. 129-143.

Hacrya M. [1990], Programming by example and proving by example using higher-order unifica-
tion, #n M. Stickel, ed., ‘Conference on Automated Deduction’, number 449 in ‘Lecture Notes
in Computer Science’, Springer-Verlag, pp. 588-602.

HAaciyA M. [1991], Higher-order unification as a theorem proving procedure, in K. Furukawa,
ed., ‘International Conference on Logic Programming’, MIT Press, pp. 270-284.

HALLNAS L. [1983], On normalization of proofs in set theory. Doctoral thesis, University of
Stockholm.

HIGHER-ORDER UNIFICATION AND MATCHING 1057

HANNAN J. AND MILLER D. [1988], Uses of higher-order unification for implementing programs
transformers, in R. K. an K.A. Bowen, ed., ‘International Conference and Symposium on Logic
Programming’, pp. 942-959.

HARPER R., HONSELL F. AND PLOTKIN G. [1993], ‘A framework for defining logics’, Journal of
the Association for Computing Machinery 40(1), 143-184.

HENKIN L. [1953], ‘Banishing the rule of substitution for functional variables’, The Journal of
Symbolic Logic 18(3), 201-208.

HINDLEY J. R. AND SELDIN J. P. [1986], Introduction to combinators and \-calculus, Cambridge
University Press.

HowarD W. A. [1980], The formulae-as-type notion of construction, in J. R. Hindley and J. P.
Seldin, eds, ‘To H.B. Curry: Essays on combinatory logic, lambda calculus and formalism’,
Academic Press.

HueT G. [1972], Constrained resolution: a complete method for higher order logic, PhD thesis,
Case Western University.

HUET G. [19734a], A mechanization of type theory, in ‘International Joint Conference on Artificial
Intelligence’, pp. 139-146.

HUET G. [1973b], ‘The undecidability of unification in third order logic’, Information and Control
22, 257-267.

HueT G. [1975], ‘A unification algorithm for typed A-calculus’, Theoretical Computer Science
1, 27-57.

HueTr G. [1976], Résolution d’équations dans les langages d’ordre 1,2, ..., w. These d’Etat,
Université de Paris VIIL.

HueT G. AND LaNG B. [1978], ‘Proving and applying program transformations expressed with
second order patterns’, Acta Informatica 11, 31-55.

HUGHES R. [1982], Super-combinators, a new implementation method for applicative languages,
in ‘Lisp and Functional Programming’, pp. 1-10.

JOHANN P. AND KOHLHASE M. [1994], Unification in an extensional lambda calculus with ordered
function sorts and constant overloading, in A. Bundy, ed., ‘Conference on Automated Deduc-
tion’, number 814 in ‘Lecture Notes in Artificial Intelligence’, Springer-Verlag, pp. 620-634.

Jounsson T. [1985], Lambda lifting: transforming programs to recursive equations, in J.-P.
Jouannaud, ed., ‘Functional Programming Languages and Computer Architecture’, number
201 in ‘Lecture Notes in Computer Science’, Springer-Verlag, pp. 190-203.

KIRCHNER C. AND RINGEISSEN C. [1997], Higher-order equational unification via explicit sub-
stitutions, in M. Hanus, J. Heering and K. Meinke, eds, ‘Algebraic and Logic Programming,
International Joint Conference ALP’97-HOA’97’, Vol. 1298 of Lecture Notes in Computer
Science, Springer-Verlag, pp. 61-75.

KRIVINE J.-L. [1993], Lambda calculus, types and models, Ellis Horwood series in computer and
their applications.

LEvVY J. [1996], Linear second order unification, in H. Ganzinger, ed., ‘Rewriting Techniques and
Applications’, Vol. 1103 of Lecture Notes in Computer Science, Springer-Verlag, pp. 332-346.

LEVY J. AND VEANES M. [1998], On unification problems in restricted second-order languages.
Manuscript.

LEVY J. AND VILLARET M. [2000], Linear second-order unification and context unification with
tree-regular constraints, in ‘Proceedings of the 11th Int. Conf. on Rewriting Techniques and
Applications (RTA’00)’, Vol. 1833 of Lecture Notes in Computer Science, Springer-Verlag,
Norwich, UK, pp. 156-171.

LOADER R. [1994], The undecidability of A-definability. To appear in Church memorial volume.

LuccHEesI C. L. [1972], The undecidability of the unification problem for third order languages,
Technical Report CSRR 2060, Department of applied analysis and computer science, Univer-
sity of Waterloo.

1058 GILLES DOWEK

MAGNUSSON L. [1994], The implementation of ALF, a proof editor based on Martin-L6f monomor-
phic type theory with explicit substitution. Doctoral thesis, Chalmers University and Univer-
sity of Gdteborg.

MARTIN-LOF P. [1984], Intuitionistic type theory, Bibliopolis.

MATIYACEVICH Y. [1970], ‘Enumerable sets are diophantine’, Soviet Math. Doklady 11, 354-357.

MAYR R. AND NipKOW T. [1998], ‘Higher-order rewrite systems and their confluence’, Theoretical
Computer Science (192), 3-29.

MILLER D. [1991], ‘A logic programming language with lambda-abstraction, function variables,
and simple unification’, Journal of Logic and Computation 1(4), 497-536.

MILLER D. [1992], ‘Unification under a mixed prefix’, Journal of Symbolic Computation 14, 321—
358.

MILLER D. AND NADATHUR G. [1986], Some uses of higher-order logic in computational linguistics,
in ‘Annual Meeting of the Association for Computational Linguistics’, pp. 247-255.

MULLER O. AND WEBER F. [1994], Theory and practice of minimal modular higher-order E-
unification, in A. Bundy, ed., ‘Conference on Automated Deduction’, number 814 in ‘Lecture
Notes in Artificial Intelligence’, Springer-Verlag, pp. 650-664.

MuNoz C. [1997], Un calcul de substitutions explicites pour la représentation de preuves partielles
en théorie des types. These de Doctorat, Université de Paris VII.

NADATHUR G. [1998], An explicit substitution notation in a Aprolog implementation, in ‘First
International Workshop on Explicit Substitutions’.

NADATHUR G. AND MILLER D. [1998], Higher-order logic programming, in D. M. Gabbay, C. J.
Hogger and J. A. Robinson, eds, ‘Handbook of logic in artificial intelligence and logic pro-
gramming’, Vol. 5, Clarendon Press, pp. 499-590.

NADATHUR G. AND MITCHELL D. [1999], System description : A compiler and abstract machine
based implementation of Aprolog, in ‘Conference on Automated Deduction’.

NADATHUR G. AND WILSON D. [1998], ‘A notation for lambda terms : A generalization of envi-
ronments’, Theoretical Computer Science 198(1-2), 49-98.

NIEHREN J., PINKAL M. AND RUHRBERG P. [1997], On equality up-to constraints over finite trees,
context unification, and one-step rewriting, in ‘Proceedings of the 14th Int. Conference on
Automated Deduction (CADE-14)’, Vol. 1249 of Lecture Notes in Computer Science, Springer-
Verlag, Townsville, North Queensland, Australia, pp. 34-48.

NIEHREN J., TISON S. AND TREINEN R. [2000], ‘On rewrite constraints and context unification’,
Information Processing Letters T4(1-2), 35—40.

Nipkow T. [1991], Higher-order critical pairs, in ‘Logic in Computer Science’, pp. 342-349.

Nipkow T. AND PrREHOFER C. [1998], Higher-order rewriting and equational reasonning, in
W. Bibel and P. Schmitt, eds, ‘Automated Deduction - A Basis for Applications’, Vol. 1,
Kluwer, pp. 399-430.

Nipkow T. AND QIAN Z. [1994], ‘Reduction and unification in lambda calculi with a general
notion of subtype’, Journal of Automated Reasoning 12, 389-406.

Papovant V. [1994], Fourth-order matching is decidable. Manuscript.

Papovant V. [1995], On equivalence classes of interpolation equations, #n M. Dezani-Ciancagliani
and G. Plotkin, eds, ‘Typed Lambda Calculi and Applications’, number 902 in ‘Lecture Notes
in Computer Science’, Springer-Verlag, pp. 335-349.

PADOVANI V. [19964], Decidability of all minimal models, in S. Berardi and M. Coppo, eds,
‘Types for Proof and Programs 1995’, number 1158 in ‘Lecture Notes in Computer Science’,
Springer-Verlag, pp. 201-215.

PADOVANI V. [1996b], Filtrage d’ordre supérieur. Thése de Doctorat, Université de Paris VII.

PARIKH R. [1973], ‘Some results on the length of proofs’, Transactions of the American Mathe-
matical Society 177, 29-36.

PAULIN-MOHRING C. [1993], Inductive definitions in the system Coq, rules and properties, in
M. Bezem and J. F. Groote, eds, ‘Typed Lambda Calculi and Applications’, Vol. 664 of
Lecture Notes in Computer Science, Springer-Verlag, pp. 328-345.

HIGHER-ORDER UNIFICATION AND MATCHING 1059

PauLsoN L. C. [1991], Isabelle: The next 700 theorem provers, in P. Odifreddi, ed., ‘Logic and
computer science’, Academic Press, pp. 361-385.

PreENNING F. [1988], Partial polymorphic type inference and higher-order unification, in ‘Con-
ference on Lisp and Functional Programming’, pp. 153-163.

PrENNING F. [19914], Logic programming in the LF logical framework, in G. Huet and G. Plotkin,
eds, ‘Logical frameworks’, Cambridge University Press, pp. 149-181.

PrENNING F. [1991b], Unification and anti-unification in the calculus of constructions, in ‘Logic
in Computer Science’, pp. 74-85.

PrENNING F. [2001], Logical frameworks, in A. Robinson and A. Voronkov, eds, ‘Handbook of
Automated Reasoning’, Vol. 11, Elsevier Science, chapter 17, pp. 1063—-1147.

PFENNING F. AND CERVESATO I. [1997], Linear higher-order pre-unification, in ‘Logic in Computer
Science’.

PLOTKIN G. [1972], ‘Building-in equational theories’, Machine Intelligence 7, 73-90.

PrawiTz D. [1968], ‘Hauptsatz for higher order logic’, The Journal of Symbolic Logic 33, 452—
457.

PREHOFER C. [1994a], Decidable higher-order unification problems, in A. Bundy, ed., ‘Conference
on Automated Deduction’, Vol. 814 of Lecture Notes in Artificial Intelligence, Springer-Verlag,
pp. 635—649.

PREHOFER C. [1994b], Higher-order narrowing, in ‘Logic in Computer Science’, pp. 507-516.

PREHOFER C. [1995], Solving higher-order equations: from logic to programming. Doctoral thesis,
Technische Universitdt Miinchen.

Pym D. [1990], Proof, search and computation in general logic. Doctoral thesis, University of
Edinburgh.

QIAN Z. [1994], Higher-order equational logic programming, in ‘Principle of Programming Lan-
guages’, pp. 254-267.

QIAN Z. AND WaANG K. [1992], Higher-order equational E-unification for arbitrary theories, in
K. Apt, ed., ‘Joint International Conference and Symposium on Logic Programming’.

QIAN Z. AND WANG K. [1994], Modular AC unification of higher-order patterns, in J.-P. Jouan-
naud, ed., ‘International Conference on Constaints in Computational Logic’, Vol. 845 of Lec-
ture Notes in Computer Science, Springer-Verlag, pp. 105-120.

QUINE W. V. O. [1969], Set theory and its logic, Belknap Press.

ROBINSON J. A. [1969], New directions in mechanical theorem proving, in A. J. H. Morrell, ed.,
‘International Federation for Information Processing Congress, 1968’, North Holland, pp. 63—
67.

ROBINSON J. A. [1970], ‘A note on mechanizing higher order logic’, Machine Intelligence 5, 123—
133.

SAIDI H. [1994], Résolution d’équations dans le systéme T' de Gédel. Mémoire de DEA, Université
de Paris VII.

SCHMIDT-SCHAUSS M. [1994], Unification of stratified second-order terms, Technical Report 12,
J.W.Goethe-Universitdt, Frankfurt.

SCHMIDT-SCHAUSS M. [1999], Decidability of bounded second order unification, Technical Re-
port 11, J.W.Goethe-Universitit, Frankfurt.

SCHMIDT-SCHAUSS M. AND ScHULZ K. [1999], Solvability of context equations with two context
variables is decidable, in H. Ganzinger, ed., ‘Conference on Automated Deduction’, number
1632 in ‘Lecture Notes in Artificial Intelligence’, pp. 67-81.

SCHUBERT A. [1997], Linear interpolation for the higher order matching problem, in M. Bidoit
and M. Dauchet, eds, ‘Theory and Practice of Software Development’, Vol. 1214 of Lecture
Notes in Computer science, Springer-Verlag, pp. 441-452.

SCHUBERT A. [1998], Second-order unification and type inference for Church-style polymorphism,
in ‘Principle of Programming Languages’, pp. 279-288.

SCHWICHTENBERG H. [1976], ‘Definierbare Funktionen im A-Kalkiil mit Typen’, Archiv Logik
Grundlagenforschung 17, 113-114.

1060 GILLES DOWEK

SNYDER W. [1990], Higher-order E-unification, sn M. E. Stickel, ed., ‘Conference on Automated
Deduction’, Vol. 449 of Lecture Notes in Artificial Intelligence, Springer-Verlag, pp. 573-587.

SNYDER W. AND GALLIER J. [1989], ‘Higher order unification revisited: Complete sets of tranfor-
mations’, Journal of Symbolic Computation 8(1 & 2), 101-140. Special issue on unification.
Part two.

SPRINGINTVELD J. [1995a], Algorithms for type theory. Doctoral thesis, Utrecht University.

SPRINGINTVELD J. [1995b], Third-order matching in presence of type constructors, in M. Dezani-
Ciancagliani and G. Plotkin, eds, ‘T'yped Lambda Calculi and Applications’, Vol. 902 of Lec-
ture Notes in Computer Science, Springer-Verlag, pp. 428-442.

SPRINGINTVELD J. [1995¢|, Third-order matching in the polymorphic lambda calculus, in
G. Dowek, J. Heering, K. Meinke and B. Moller, eds, ‘Higher-order Algebra, Logic and Term
Rewriting’, Vol. 1074 of Lecture Notes in Computer Science, Springer-Verlag, pp. 221-237.

STATMAN R. [1982], ‘Completeness, invariance and A-definability’, The Journal of Symbolic Logic
47(1), 17-28.

STATMAN R. AND DOWEK G. [1992], On Statman’s completeness theorem, Technical Report
CMU-CS-92-152, Carnegie Mellon University.

TAKAHASHI M. O. [1967], ‘A proof of cut-elimination in simple type theory’, Journal of the
Mathematical Society of Japan 19, 399-410.

WERNER B. [1994], Une théorie des constructions inductives. These de Doctorat, Université de
Paris VII.

WHITEHEAD A. N. AND RUSSELL B. [1910-1913, 1925-1927], Principia mathematica, Cambridge
University Press.

WoLFRAM D. A. [1989], The clausal theory of types. Doctoral thesis, University of Cambridge.

ZAatoNCc M. [1987], ‘The regular expression description of unifier set in the typed A-calculus’,
Fundementa Informaticae X, 309-322.

ZAatoNc M. [1988], ‘Mechanical procedure for proof construction via closed terms in typed A-
calculus’, Journal of Automated Reasoning 4, 173—190.

HIGHER-ORDER UNIFICATION AND MATCHING 1061

Index
A
abstraction oo il 1012
accounting equation 1051
a-equivalence ... 1021
automated theorem proving 1052
automaton 1027, 1048
B
fn-normal forml 1022
Bn-reduction 1022
[-conversioneiiieeiiea, 1016
B-normal form 1023
B-reduction ...l 1016, 1034
Brouwer-Heyting-Kolmogorov notion
of proof 1050
C
Calculus of Constructions 1050
Church number 1024
closed solution 1028, 1033, 1052
closed termo 1020
closure ... 1039
combinatorl 1037
comprehension scheme 1011
computational linguistics 1018
context ool 1043
conversion scheme 1012
Crabbé counter-example 1015
cut elimination 1014
D
de Bruijn indexo 1040
decidabilitycoiiiia 1041
dependent type ... 1049
descriptions axiom 1016
descriptions operator 1016
E
elementary substitution 1029
empty type ...l 1033
equational higher-order unification ..1017,
1035, 1041
equational unification 1013, 1035
n-reduction oo 1017
explicit substitution 1039
extended polynomial 1024
extensionalityl 1011
F
Failrule 1030

finite model 1046
first-order unification 1041
flexible term ol 1030
G
Godel’s system T' ..., 1017
generate and testooal 1028
Generaterule 1031
Goldfarb number 1026
H
head symbol oo 1022
higher-order logic 1011
higher-order logic programming 1018
higher-order rewriting 1018
higher-order unification 1014
Hilbert’s tenth problem 1024
I
imitationol 1031
interactive proof construction system 1018
interpolation problem 1047
Intuitionistic type theory 1050
L
linear occurrence 1043
logical framework 1018
long normal form 1023
M
metavariableo ool 1039
minimal unifier 1023
mixed prefix 1036
monadic second-order unification1042
more general substitution 1022
most general unifier 1023
N
naive set theory 1011
non-determinism 1029, 1033
O
occur-checko oo 1041
occurrence constraint 1036
Order .. e 1019
P
parametric termo 1043
pattern ... 1041

pattern matching 1044

1062 GILLES DOWEK

Peano numberl 1024
Plotkin-Andrews quotient 1012
polymorphic types 1050
program transformation 1018
projectionoioiiiis 1031
proof theory 1018
puUMpIng ... 1046
R
regular solution 1034
relativizationol 1014
replacement 1020, 1039
rewrite systeml 1013
rigid term ... ool 1030
Russell’s paradoxoooviinn... 1013
S
SCOPE ttiiii it e 1035
second-order matching 1044
second-order unification 1026
set theory il 1011
simple type theory 1011
Simplify rule ... 1031
SIZE i 1019, 1022
smallest unifier 1023
solutioniiiiiiiiii, 1023
solved problem 1032
substitution ... 1020
T
term ... 1019
third-order matching 1047
type o 1018
type constructors 1050
type reconstruction 1018
U
undecidabilityooon 1024
unifiability i 1032
unification ...l 1023
unification logic 1033
unification problem 1023
unification tree 1033
unifier ... 1023
%%

well-typed term 1019

