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1. Type Theory and Other Set Theories

After the dis
overy of reasonably eÆ
ient proof sear
h methods for �rst-order logi


in the middle of the sixties, a next step seemed to be the extension of these methods

to higher-order logi
 (also 
alled simple type theory), i.e. a logi
 allowing quanti�-


ation over sets (i.e. predi
ates) and fun
tions. Indeed, many problems require su
h

a quanti�
ation for a natural expression. A strong advo
ate for the automatization

of higher-order logi
 was J.A. Robinson who wrote in 1968 that \its adoption, in

pla
e of the restri
ted predi
ate 
al
ulus [i.e. �rst-order logi
℄, as the basi
 formal-

ism used in me
hani
al theorem proving systems, [was℄ an absolute ne
essary step if

su
h system [were℄ ever going to be developed to the point of providing a genuinely

useful mathemati
al servi
e, or of helping to bring a deeper understanding of the

pro
ess of mathemati
al thinking" [Robinson 1969℄.

Replying to Robinson, M. Davis re
alled that higher-order logi
 was just one

among several variants of set theory that all permit to reason about sets and fun
-

tions, and that the 
hoi
e of this parti
ular variant 
ould only be justi�ed if it was

more adequate for automatization than others: \Sin
e higher-order logi
s are just

notational variants of set theories formalized in �rst-order logi
, the question of the

use of higher-order formalisms in me
hani
al theorem-proving is simply a matter

of whether or not su
h formalisms suggest useful algorithms" [Davis 1969℄.

As we shall see, it is indeed the 
ase that higher-order logi
 is, so far, more

adequate for automatization than other variants of set theory.

1.1. Naive Set Theory

Naive set theory permits the de�nition of sets in 
omprehension, i.e. by a 
hara
ter-

isti
 property of their elements. For instan
e we 
an de�ne the interval of numbers

between 4 and 6 by the property z 2 R^ 4 � z^ z � 6. The 
omprehension s
heme

is thus stated

8x

1

::: 8x

n

9y 8z ((z 2 y), P )

where P is an arbitrary proposition, z a variable, x

1

; :::; x

n

the free variables of P

ex
ept z and y a fresh variable, i.e. a variable di�erent from z and not o

urring in

P .

For example, an instan
e of this s
heme is

9y 8z ((z 2 y), (z 2 R ^ 4 � z ^ z � 6))

Then, another axiom, the extensionality axiom, de�nes the equality of two sets:

two sets are equal if they have the same elements

8x 8y ((8z (z 2 x, z 2 y))) x = y)

If we want a notation for the obje
ts whose existen
e is asserted by the 
ompre-

hension s
heme, we skolemize it and introdu
e fun
tion symbols f

x

1

;:::;x

n

;z;P

. The
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skolemized 
omprehension s
heme

8x

1

::: 8x

n

8z ((z 2 f

x

1

;:::;x

n

;z;P

(x

1

; :::; x

n

)), P )

is then 
alled 
onversion s
heme. If we write the term f

x

1

;:::;x

n

;z;P

(x

1

; :::; x

n

) as

fz j Pg (su
h a term is 
alled an abstra
tion), the 
onversion s
heme is written

8x

1

::: 8x

n

8z ((z 2 fz j Pg), P )

With this 
onvention, the proposition P in an abstra
tion fz j Pg 
annot 
ontain

further abstra
tions (be
ause the 
omprehension s
heme is only stated for propo-

sitions 
ontaining no Skolem symbols). If we write fz j (t

1

=x

1

; :::; t

n

=x

n

)Pg for the

term f

x

1

;:::;x

n

;z;P

(t

1

; :::; t

n

), where the terms t

1

; :::; t

n

may 
ontain abstra
tions, the

propositions in abstra
tions may then 
ontain further abstra
tions, but unlike the

o

urren
es of z in the proposition P , the o

urren
es of z in the terms t

1

; :::; t

n

are

not bound by the abstra
tion fz j (t

1

=x

1

; :::; t

n

=x

n

)Pg. In fa
t, it is easy to prove

that the theory allowing nested abstra
tions binding all the variables is equivalent

(see, for instan
e, [Henkin 1953, Dowek 1995℄). Thus, we 
an 
onsider the 
onstru
-

tion fz j Pg as a basi
 term 
onstru
tion, and state the 
onversion axiom

8x

1

::: 8x

n

8z ((z 2 fz j Pg), P )

1.2. Plotkin-Andrews Quotient

Using a standard proof-sear
h method with su
h a 
onversion s
heme is rather

ineÆ
ient. Indeed, if we want to prove, for instan
e, the proposition

2 2 fx j x = 2 _ x = 3g

using the 
onversion s
heme, we 
an transform it into the equivalent one

2 = 2 _ 2 = 3

and 
on
lude with the axioms of equality. But, going in the wrong dire
tion, we

may also transform this proposition into the equivalent one

2 2 fx j x 2 fy j y = 2g _ x = 3g

Thus, using the 
onversion axiom, a proof sear
h algorithm 
ould spend most of its

time uselessly expanding and redu
ing propositions.

This remark reminds that of G. Plotkin, who noti
ed in 1972 that with the

asso
iativity axiom

8x 8y 8z ((x + y) + z = x+ (y + z))

a proof sear
h method 
ould spend most of its time uselessly rearranging bra
kets

[Plotkin 1972℄. More generally, in any equational theory, a proof sear
h method

may spend too mu
h time randomly repla
ing equals by equals.
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The well-know solution proposed by Plotkin is to identify propositions equivalent

modulo the 
ongruen
e generated by the axioms. When there is a 
on
uent and

terminating rewrite system su
h that two propositions are equivalent if and only if

they have the same normal forms, normal forms 
an be 
hosen as representatives of

their equivalen
e 
lasses in the quotient. For instan
e, with the asso
iativity axiom,

we identify propositions with their normal forms for the rewrite system

(x+ y) + z � x+ (y + z)

This way, the asso
iativity axiom is equivalent to the proposition

8x 8y 8z (x+ (y + z) = x+ (y + z))

thus it is a simple 
onsequen
e of the axioms of equality and it 
an be dropped.

On the other hand, a uni�er of two propositions is now a substitution making

the propositions equal modulo the equivalen
e (su
h a problem is 
alled equational

uni�
ation). For instan
e the propositions

a = X + d and a = b+ (
+ d)

are uni�able (while they are not for the usual notion of uni�
ation) be
ause sub-

stituting X by b+ 
 yields

a = (b+ 
) + d

whi
h redu
es to

a = b+ (
+ d)

In other words, the asso
iativity axiom is now mixed with the uni�
ation algorithm.

A similar program: mixing the 
onversion axiom and uni�
ation algorithm was

proposed in 1971 by P.B. Andrews, in the 
ontext of type theory: \[First-order

resolution℄ is an elegant 
ombination of substitution and 
ut [...℄. An important

open problem 
on
erning resolution in type theory is to �nd an equally elegant way

of 
ombining [substitution℄, [
onversion℄ and [
ut℄" [Andrews 1971℄.

To a
hieve this goal in naive set theory, we would 
onsider the rewrite system

t 2 fz j Pg� (t=z)P

identify propositions with their normal forms and drop the 
onversion axiom. A

uni�er of two propositions would be a substitution making the propositions having

the same normal form.

1.3. Type Theory

Unfortunately, naive set theory has several drawba
ks: �rst, as is well-known, it is

in
onsistent, se
ond: the above rewrite system is not terminating.

In
onsisten
y is given by Russell's paradox. The proposition \the set of sets that

do not belong to themselves belongs to itself"

fx j :x 2 xg 2 fx j :x 2 xg
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is equivalent, by the 
onversion s
heme, to its negation. Thus, both it and its

negation are provable. This proposition is also a 
ounter-example to termination,

as it rewrites to its negation.

To avoid Russell's paradox, and to get a (hopefully) 
onsistent theory of sets,

we 
an restri
t naive set theory in two ways. The �rst method is to restri
t the


omprehension s
heme to some parti
ular propositions (for instan
e Zermelo's set

theory permits four 
onstru
tions : pairs, unions, power sets and subsets), the other

is to move to a many-sorted theory with a sort (
alled 0) for atoms a sort (
alled

1) for sets of atoms, a sort (
alled 2) for sets of sets of atoms, et
. and allow

propositions of the form t 2

n

u only when t is of sort n and u of sort n + 1

(whi
h permits to 
onstru
t unions, power sets and subsets but disallows arbitrary

pairs). The formalism obtained this way is 
alled higher-order logi
 or simple type

theory. The original formulation of A.N. Whitehead and B. Russell [Whitehead and

Russell 1910-1913, 1925-1927℄ has been modi�ed by L. Chwistek, F. Ramsey and

�nally by A. Chur
h [Chur
h 1940℄.

Although, as remarked by W.V.O. Quine [Quine 1969℄, the di�eren
e between

these two methods is rather shallow (as a many-sorted theory 
an always be rela-

tivized as a single-sorted one, and introdu
ing sorts is thus also a way to restri
t

the 
omprehension s
heme to relativizations of sorted propositions), it is important

for automatization.

� First, as some meaningless propositions su
h as N 2 N are forbidden by the

syntax, they are systemati
ally avoided by the proof sear
h method.

� Then, the rewrite system terminates in higher-order logi
 and not set theory.

Indeed, given a set A and a proposition P , set theory allows to de�ne the set

fz 2 A j Pg of the members of A verifying the proposition P , and the rewrite

rule asso
iated to this restri
tion of the 
omprehension s
heme

t 2 fz 2 A j Pg� t 2 A ^ (t=z)P

does not terminate. A 
ounter-example, whi
h is an adaptation of Russell's

paradox is Crabb�e's proposition C

fx 2 A j :x 2 xg 2 fx 2 A j :x 2 xg

This proposition rewrites to

fx 2 A j :x 2 xg 2 A ^ :fx 2 A j :x 2 xg 2 fx 2 A j :x 2 xg

i.e. to B ^ :C where B is the proposition fx 2 A j :x 2 xg 2 A.

Thus, the Plotkin-Andrews quotient 
annot be applied, in a simple way, to

set theory, while it 
an be applied to higher-order logi
. Equational uni�
ation

modulo 
onversion is 
alled higher-order uni�
ation .

� At last, most proof-sear
h method rely on 
ut elimination (sometimes taking

the form of Herbrand's theorem). Both higher-order logi
 and set theory in-

trodu
e more 
uts than those already there in �rst-order logi
 with no axioms.

These 
uts 
an be eliminated in higher-order logi
 [Takahashi 1967, Prawitz
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1968, Girard 1970, Girard 1972℄ but, Crabb�e's 
ounter-example shows that they


annot be eliminated in set theory. Indeed, Crabb�e's proposition C rewrites to

B ^ :C. The proposition :B has the following natural dedu
tion proof

axiom

B;C ` B ^ :C

^-elim

B;C ` :C

axiom

B;C ` C

:-elim

B;C ` ?

:-intro

B ` :C

axiom

B ` B

axiom

B;C ` B ^ :C

^-elim

B;C ` :C

axiom

B;C ` C

:-elim

B;C ` ?

:-intro

B ` :C

^-intro

B ` C

:-elim

B ` ?

:-intro

` :B

that 
ontains a 
ut (the negation is �rst introdu
es then eliminated). But it is

easy to 
he
k that this proposition does not have a 
ut-free proof (noti
e that

after eliminating twi
e a 
ut in the proof above we get ba
k the same proof).

See [Halln�as 1983, Ekman 1994℄ for a more detailed explanation.

1.4. Chur
h's Type Theory

Instead of 
onsidering only sets, Chur
h's type theory 
onsiders also relations of

an arbitrary number of arguments (unary relations are sets, zero-ary relations are

naturally identi�ed with propositions). Then, fun
tions are primitive obje
ts and

are distin
t from their graphs that are relations. Fun
tions of several arguments are


urried, for instan
e the fun
tion mapping two numbers n and m to n +m + 2 is

identi�ed with the fun
tion mapping n to the fun
tion mapping m to n +m + 2.

Just as we have a membership symbol 2 to build a proposition from two terms in

set theory, we have an appli
ation symbol � to build a term from two terms. The

term �(t; u) is written (t u). At last, relations are expressed as fun
tions mapping

their arguments to a zero-ary relation i.e. a proposition. For instan
e, the relation

� is expressed as the fun
tion mapping a and b to the proposition a � b. Thus, if

A is a set (unary relation), the notation x 2 A is an abbreviation for (A x), i.e.

�(A; x).

The sorts of the system are 
alled simple types, they 
ontain two base types � for

atoms and o for zero-ary relations (propositions), and whenever T and U are two

types, T ! U is also a type (the type of fun
tions mapping obje
ts in T to obje
ts

in U).

As we have a 
omprehension s
heme for sets and relations, we have a 
ompre-

hension s
heme for fun
tions

8x

1

::: 8x

n

9f 8y

1

::: 8y

p

((f y

1

::: y

p

) = t)

and an extensionality axiom for fun
tions

8f 8g ((8x (f x) = (g x))) f = g)

Skolemizing the 
omprehension s
heme yields an expli
it language for fun
tions

where the fun
tion mapping y

1

; :::; y

p

to t is written y

1

; :::; y

p

7! t. Again, although
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the skolemized 
omprehension s
heme provides only su
h terms when t does not


ontain Skolem symbols, it is easy to prove that the theory allowing su
h nested

abstra
tions is equivalent (see, for instan
e, [Henkin 1953, Dowek 1995℄). Then,


urried fun
tions of p arguments 
an be written y

1

7! (:::y

p

7! t:::). Following

Chur
h's original notation, the term x 7! t is written �x t. The 
onversion axiom,


alled �-
onversion axiom is then stated

8x 8y

1

::: 8y

p

((�x t) x) = t

Noti
e that the fun
tional 
omprehension s
heme, asserts the existen
e of very few

fun
tions. For instan
e, if the atoms are taken to be natural numbers and the

language 
ontains a symbol 0 of type � and S of type � ! �, for fun
tions of type

�! � the 
onversion s
heme only asserts the existen
e of the 
onstant fun
tions and

the fun
tions adding a 
onstant to their argument. Similarly, these fun
tions are the

only ones that are expli
itly de�nable by a term (e.g. �x S(S(0)) and �x S(S(x))).

For instan
e, the 
omprehension s
heme does not assert the existen
e of the fun
tion

� mapping 0 to 0 and the other natural numbers to 1. In 
ontrast, the graph of this

fun
tion (whi
h is a binary relation, i.e. an obje
t of type �! �! o) 
an easily be

de�ned G = �x �y ((x = 0 ^ y = 0) _ (:(x = 0) ^ (y = 1))). This motivates the

introdu
tion of another axiom: the des
riptions axiom

9D 8x ((9

1

y (x y))) (x (D x)))

where 9

1

y P (y) is a proposition expressing the existen
e and uni
ity of an obje
t

verifying the property P , i.e. the proposition

9y P (y) ^ 8y

1

8y

2

((P (y

1

) ^ P (y

2

))) y

1

= y

2

)

When skolemizing this axiom, we introdu
e a Skolem symbol 
alled the des
rip-

tions operator and the axiom

8x (9

1

y (x y))) (x (D x))

This des
riptions operator, that pi
ks the element in every one element set, 
an

be extended to a 
hoi
e operator (also 
alled Hilbert's " operator, or Bourbaki's

� operator) that pi
ks an element in any nonempty set. In this 
ase the axiom is

rephrased

8x (9y (x y))) (x (D x))

and it is a form of the axiom of 
hoi
e.

The des
riptions operator and axiom permit to relate the fun
tional relations and

the fun
tions. The fun
tion � above 
an be de�ned by the term �x (D (�y (G x y))).

Then we 
an prove, for instan
e that �(2) = 1. Noti
e however that this theorem

is not a 
onsequen
e of the 
onversion axiom alone, the des
riptions axiom is also

needed.

When sear
hing for proofs in higher-order logi
, we transform the �-
onversion

axiom in a rewrite rule 
alled �-redu
tion

((�x t) u)� (u=x)t
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and we also take another rewrite rule 
alled �-redu
tion whi
h is a 
onsequen
e of

the extensionality axiom

�x (t x)� t provided x does not appear free in t

The extensionality axiom itself and the des
riptions axiom remain as axioms of the

theory.

1.1. Remark. In the presentation above, when we want to substitute the predi
ate

Q(:; :) for the variable P in the proposition P (a) ^ P (b) to get the proposition

Q(a; a)^Q(b; b), we �rst 
onstru
t a term �z Q(z; z), then we substitute it for the

variable P yielding (�z Q(z; z))(a) ^ (�z Q(z; z))(b) and at last we prove that this

term is equivalent to Q(a; a) ^Q(b; b), or we redu
e it to Q(a; a) ^Q(b; b).

An alternative, frequently used in se
ond-order logi
 [Chur
h 1956, Goldfarb

1981, Farmer 1988, Krivine 1993℄, is to a de�ne a substitution operation

(Q(x; x)=P (x))A in su
h a way that (Q(x; x)=P (x))(P (a)^P (b)) is Q(a; a)^Q(b; b).

This way the redu
tion is in
luded in the de�nition of substitution.

1.5. Equational Higher-order Uni�
ation

Higher-order uni�
ation is equational uni�
ation modulo ��-equivalen
e. As re-

marked above, as the fun
tion � is de�ned with the des
riptions operator, the

proposition �(2) = 1 needs the des
riptions axiom to be proved and the term �(2)

does not redu
e to the term 1. Thus, we may want to extend the rewrite system

above, for instan
e with rules

�(0)� 0

�(S(x))� S(0)

In the same way, we may want to add rewrite rules for addition (whi
h is also

de�ned using the des
riptions operator)

(+ 0 y)� y

(+ (S x) y)� (S (+ x y))

A rather general extension is to 
onsider rewrite rules for the re
ursor R (whi
h is

also de�ned using the des
riptions operator [Andrews 1986℄)

(R x f 0)� x

(R x f (S y))� (f y (R x y))

This rewrite system is 
alled G�odel system T [G�odel 1958, Girard, Lafont and

Taylor 1989℄.

Equational uni�
ation modulo a rewrite system 
ontaining �, � and other rules

like the ones above is 
alled equational higher-order uni�
ation.
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1.6. Expe
tations and A
hievements

Initiated in the sixties, the sear
h for an automated theorem proving method for

higher-order logi
 was motivated by big expe
tations. \Providing a genuinely useful

mathemati
al servi
e" is one of the goals mentioned in Robinson's quotation above

(although this quotation is still moderated for the sixties). With the passing of

time, we know that fully automated theorem proving methods have not, or very

rarely, permitted to solve really diÆ
ult mathemati
al problems.

On the other hand, automated theorem proving methods have found other �elds

where they have provided genuinely useful servi
es (logi
 programming, dedu
tive

data bases, et
.). The major appli
ations of proof sear
h in higher-order logi
 are

higher-order logi
 programming and logi
al frameworks (�-Prolog [Nadathur and

Miller 1998℄, Elf [Pfenning 1991a℄, Isabelle [Paulson 1991℄, et
., see also [Pfenning

2001℄, Chapter 17 of this Handbook) and tools to prove easy but 
umbersome

lemmas in intera
tive proof 
onstru
tion systems, see [Barendregt and Geuvers

2001℄ (Chapter 18 of this Handbook).

Besides automated theorem proving, higher-order uni�
ation has also been used

to design of type re
onstru
tion algorithms for some programming languages

[Pfenning 1988℄, in 
omputational linguisti
s [Miller and Nadathur 1986, Dalrymple,

Shieber and Pereira 1991℄, program transformation [Huet and Lang 1978, Hannan

and Miller 1988, Hagiya 1990℄, higher-order rewriting [Nipkow 1991, Nipkow and

Prehofer 1998, Mayr and Nipkow 1998℄, proof theory [Parikh 1973, Farmer 1991b℄,

et
.

2. Simply Typed �-
al
ulus

In this se
tion, we give the de�nitions and elementary properties of simply typed

�-
al
ulus whi
h is the term-language of higher-order logi
. The proofs of these

properties 
an be found in [Barendregt 1984, Hindley and Seldin 1986, Krivine

1993℄.

2.1. Types

We 
onsider a �nite set whose elements are 
alled atomi
 types.

2.1. Definition. (Types)

Types are indu
tively de�ned by:

� atomi
 types are types,

� if T and U are types then T ! U is a type.

Notation The expression T

1

! T

2

! ::: ! T

n

! U is a notation for the type

T

1

! (T

2

! :::! (T

n

! U):::).
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2.2. Definition. (Size of a type)

The size of a type is de�ned as follows

� jT j = 1 if T is atomi
,

� jT ! U j = jT j+ jU j.

2.3. Definition. (Order of a type)

If T is a type, the order of T is de�ned by:

� o(T ) = 1 if T is atomi
,

� o(T

1

! T

2

) = maxf1 + o(T

1

); o(T

2

)g.

2.2. Terms

We 
onsider a �nite set of 
onstants, to ea
h 
onstant is assigned a type. We assume

that we have at least one 
onstant in ea
h atomi
 type. This assumption 
orresponds

to the fa
t that we do not allow empty types.

For ea
h type, we 
onsider an in�nite set of variables. Two di�erent types have

disjoint sets of variables.

2.4. Definition. (�-terms)

�-terms are indu
tively de�ned by:

� 
onstants are terms,

� variables are terms,

� if t and u are two terms then (t u) (i.e. �(t; u)) is a term,

� if x is a variable and t a term then �x t is a term.

Notation The expression (u v

1

::: v

n

) is a notation for the term (:::(u v

1

) ::: v

n

).

2.5. Definition. (Size of a term)

The size of a term is de�ned as follows

� jxj = j
j = 1,

� j(u v)j = juj+ jvj,

� j�x uj = juj.

2.6. Definition. (Type of a term)

A term t is said to have the type T if either:

� t is a 
onstant of type T ,

� t is a variable of type T ,

� t = (u v) and u has type U ! T and v has type U for some type U ,

� t = �x u, the variable x has type U , the term u has type V and T = U ! V .

A term t is said to be well-typed if there exists a type T su
h that t has type T .

In this 
ase T is unique and is 
alled the type of t.



1020 Gilles Dowek

2.7. Remark. In this 
hapter, we use an expli
itly typed �-
al
ulus. For instan
e,

the term �x x has a single type T ! T where T is the type of the variable x.

We 
ould alternatively have used a type assignment system, with a single 
lass of

variables and rules assigning types to terms, for instan
e any type of the form

T ! T to the term �x x.

In the rest of this 
hapter we 
onsider only well-typed terms.

2.3. Substitution

2.8. Definition. (Variables, free variables)

Let t be a term, the set V ar(t) is the set of all variables o

urring in t, it is

de�ned by indu
tion on the stru
ture of t by:

� V ar(
) = ;,

� V ar(x) = fxg,

� V ar((t u)) = V ar(t) [ V ar(u),

� V ar(�x t) = V ar(t) [ fxg.

In 
ontrast, the set FV ar(t) is the set of the variables o

urring freely in t, it is

de�ned by indu
tion on the stru
ture of t by:

� FV ar(
) = ;,

� FV ar(x) = fxg,

� FV ar((t u)) = FV ar(t) [ FV ar(u),

� FV ar(�x t) = FV ar(t) n fxg.

A term with no free variables is 
alled a 
losed term.

2.9. Example. The variable x o

urs in the terms �x x, �x y and �y x, but it

o

urs freely only in the third of these terms.

2.10. Definition. (Substitution)

A substitution is a �nite set of pairs fhx

1

; t

1

i; :::; hx

n

; t

n

ig where for ea
h i, x

i

is

a variable and t

i

a term of the same type and su
h that if hx; ti and hx; t

0

i are both

in this set then t = t

0

. Su
h a substitution is written t

1

=x

1

; :::; t

n

=x

n

.

We now want to de�ne the operation of substituting the terms t

1

; :::; t

n

for the

variables x

1

; :::; x

n

in a term u. A �rst attempt leads to the following de�nition.

2.11. Definition. (Repla
ement in a term)

If � = t

1

=x

1

; :::; t

n

=x

n

is a substitution and t a term, then the term h�it is de�ned

as follows

� h�i
 = 
,

� h�ix

i

= t

i

and h�ix = x, if x is a variable not among x

1

; :::; x

n

,

� h�i(t u) = (h�it h�iu),

� h�i(�x t) = �x h�it,
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This notion of repla
ement has two drawba
ks: �rst if we repla
e the variable x

by the variable y in the term �x x we get the term �x y, while the variable x is

bound in the term �x x, and thus we would rather expe
t the term �x x. Then if

we repla
e the variable x by the variable y in the term �y x we get the term �y y

where the variable y has been 
aptured, we would rather want to get the term �z y.

Nevertheless, this notion of repla
ement is useful in some situations. For instan
e,

it will be used in se
tion 5.3 and it is also useful to de�ne the notion of equivalen
e

of two terms modulo bound variable renaming (�-equivalen
e).

2.12. Definition. (�-equivalen
e)

The �-equivalen
e of two terms is indu
tively de�ned by:

� 
 � 
,

� x � x,

� (t u) � (t

0

u

0

) if t � t

0

and u � u

0

,

� �x t � �y u if hz=xit � hz=yiu for some variable z di�erent from x and y and

o

urring neither in t nor in u.

2.13. Example. The terms �x x and �y y are �-equivalent.

2.14. Proposition. �-equivalen
e is an equivalen
e relation. Moreover, the opera-

tions on terms (appli
ation and abstra
tion with respe
t to a variable) are 
ompatible

with this relation. Thus, they are de�ned on equivalen
e 
lasses.

In the following we shall identify �-equivalent terms, i.e. 
onsider terms as rep-

resentatives of their �-equivalen
e 
lass.

Now, we 
an de�ne the substitution operation. To avoid 
apture, when we sub-

stitute the variable y for the variable x in the term �y x, we need to rename the

bound variable y, and get for instan
e the term �z y. The 
hoi
e of the variable z is

purely arbitrary, thus the substitution operation is in fa
t de�ned on terms modulo

�-equivalen
e, i.e. on �-equivalen
e 
lasses.

2.15. Definition. (Substitution in a term)

If � = t

1

=x

1

; :::; t

n

=x

n

is a substitution and t a term then the term �t is de�ned

as follows

� �
 = 
,

� �x

i

= t

i

and �x = x, if x is a variable not among x

1

; :::; x

n

,

� �(t u) = (�t �u),

� �(�x u) = �y �(y=x)u, where y is a fresh variable, with the same type as x,

i.e. a variable that does not o

ur in t nor in t

1

; :::; t

n

and is di�erent from

x

1

; :::; x

n

.

2.16. Proposition. If t is a term of type T , x is a variable of type U and u a

term of type U then the term (u=x)t has type T .
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2.17. Definition. (Composition of substitutions)

Let � and �

0

two substitutions and x

1

; :::; x

n

be the variables bound by one

substitution or the other. We let

� Æ �

0

= ��

0

x

1

=x

1

; :::; ��

0

x

n

=x

n

2.18. Definition. (More general)

A substitution �

1

is said to be more general than a substitution �

2

(�

1

� �

2

) if

there exists a substitution � su
h that �

2

= � Æ �

1

.

2.19. Definition. (Size of a substitution)

The size of a substitution t

1

=x

1

; :::; t

n

=x

n

is de�ned as

jt

1

=x

1

; :::; t

n

=x

n

j = jt

1

j+ :::+ jt

n

j

2.4. Redu
tion

2.20. Definition. (��-redu
tion)

The ��-redu
tion (in one step), written �, is indu
tively de�ned by:

� �: ((�x t) u)� (u=x)t ,

� �: �x (t x)� t if x is not free in t,

� �: if u� u

0

then (t u)� (t u

0

),

� �: if t� t

0

then (t u)� (t

0

u),

� �: if t� t

0

then �x t� �x t

0

.

The ��-redu
tion (in several steps), written �

�

, is the re
exive-transitive 
losure

of the relation �, it is indu
tively de�ned by:

� if t� u, then t�

�

u,

� t�

�

t,

� t�

�

u and u�

�

v then t�

�

v.

2.21. Proposition. If a term t has type T and t redu
es to u then u has type T .

2.22. Proposition. Substitution and redu
tion 
ommute, i.e. if t �

�

u then

(v=x)t�

�

(v=x)u.

2.23. Theorem. The ��-redu
tion relation is strongly normalizable and 
on
u-

ent on typed terms, and thus ea
h term has a unique ��-normal form modulo �-


onversion.

2.24. Proposition. Let t be a normal well-typed term of type T

1

! ::: ! T

n

!

U (U atomi
), the term t has the form

t = �x

1

::: �x

m

(y u

1

::: u

p

)

where m � n and y is a 
onstant or a variable.

The symbol y is 
alled the head symbol of the term.
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2.25. Definition. (Long normal form) If t = �x

1

::: �x

m

(y u

1

::: u

p

) is a normal

term of type T

1

! :::! T

n

! U (U atomi
) (m � n) then its long normal form is

the term

t

0

= �x

1

::: �x

m

�x

m+1

::: �x

n

(y u

0

1

::: u

0

p

x

0

m+1

::: x

0

n

)

where u

0

i

is the long normal form of u

i

and x

0

i

is the long normal form of x

i

.

This de�nition is made by indu
tion on a pair whose �rst 
omponent is the size

of the term and the se
ond the size of its type.

The long normal form of an arbitrary term is that of its normal form.

2.26. Remark. The �-normal form of a term is its normal form for the following

rewrite system whi
h is also strongly normalizing and 
on
uent.

� �: ((�x t) u)�

�

(u=x)t,

� �: if u�

�

u

0

then (t u)�

�

(t u

0

),

� �: if t�

�

t

0

then (t u)�

�

(t

0

u),

� �: if t�

�

t

0

then �x t�

�

�x t

0

.

Be
ause �-redu
tion 
an be delayed with respe
t to �-redu
tion, the long normal

form of a term is also that of its �-normal form. Thus to 
ompute the long normal

form of a term, we do not need to perform �-redu
tions.

2.27. Remark. Two terms have the same long normal form if and only if they

have the same genuine normal form. Thus, as representatives of 
lasses of terms we


an either 
hose the genuine short normal form or the long normal form. Choosing

the long one simpli�es many problems. So in the rest of this 
hapter, \normal form"

will always mean \long normal form".

2.5. Uni�
ation

2.28. Definition. (Uni�
ation problem, Uni�er)

An equation is a pair of terms t; u. A uni�
ation problem is a �nite set of equations.

A solution or a uni�er of su
h a problem is a substitution � su
h that for ea
h pair

t; u of the problem, the terms �t and �u have the same normal form.

2.29. Definition. (Minimal uni�er, Most general uni�er)

A uni�er � of a problem is said to be minimal if all the uni�ers of the problem

more general than � are renamings of �, i.e. substitutions of the form � Æ � with

� = y

1

=x

1

; :::; y

n

=x

n

.

A uni�er of a problem is said to be the smallest or the the most general uni�er

if it is more general than all the uni�ers.
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3. Unde
idability

3.1. Higher-order Uni�
ation

In this se
tion, we show that higher-order uni�
ation is unde
idable, i.e. there is

no algorithm that takes as argument a uni�
ation problem and answers if it has

a solution or not. To a
hieve this goal, we redu
e another unde
idable problem:

Hilbert's tenth problem.

3.1. Theorem. (Matiya
evi
h-Robinson-Davis [Matiya
evi
h 1970, Davis 1973℄)

Hilbert's tenth problem is unde
idable, i.e. there is no algorithm that takes as ar-

guments two polynomials P (X

1

; :::; X

n

) and Q(X

1

; :::; X

n

) whose 
oeÆ
ients are

natural numbers and answers if there exists natural numbers m

1

; :::;m

n

su
h that

P (m

1

; :::;m

n

) = Q(m

1

; :::;m

n

)

We have seen that very few fun
tions 
an be expressed in simply typed �-
al
ulus

alone. With Peano numbers (i.e. with a symbol 0 of type � and S of type � ! �),

we 
an only de�ne the 
onstant fun
tions and the fun
tions adding a 
onstant to

one of their arguments. The des
riptions operator is needed to de�ne addition and

multipli
ation and thus polynomials. Nevertheless, we 
an use another de�nition of

natural numbers: Chur
h numbers.

3.2. Definition. (Chur
h numbers)

With ea
h natural number n, we asso
iate its Chur
h number

n = �x �f (f (:::(f x):::))

with n o

urren
es of the symbol f . This term has type �! (�! �)! �.

Moving from Peano numbers to Chur
h numbers in
reases only slightly the

set of fun
tions that 
an be expressed in simply typed �-
al
ulus: as proved by

H. S
hwi
htenberg [S
hwi
htenberg 1976℄, the expressible fun
tions are the so-
alled

extended polynomials, i.e. the polynomials extended by the 
hara
teristi
 fun
tions

of f0g and Nnf0g (for instan
e the fun
tion mapping n to 2

n

still needs the des
rip-

tions operator). But polynomials are pre
isely what are needed to redu
e Hilbert's

tenth problem.

3.3. Proposition. Consider the terms

add = �n �m �x �f (n (m x f) f)

mult = �n �m �x �f (n x (�z (m z f)))

The normal form of the term (add n m) is n+m. The normal form of the term

(mult n m) is n�m. Thus for every polynomial P there exists a �-term p su
h

that the normal form of the term (p m

1

::: m

n

) is the term P (m

1

; :::;m

n

).



Higher-Order Unifi
ation and Mat
hing 1025

Obviously, if the polynomial equation

P (X

1

; :::; X

n

) = Q(X

1

; :::; X

n

)

has a solution m

1

; :::;m

n

then the substitution m

1

=X

1

; :::;m

n

=X

n

is a solution to

the uni�
ation problem

(p X

1

::: X

n

) = (q X

1

::: X

n

)

The 
onverse of this proposition is not obvious, indeed, there are terms of type

�! (�! �)! �, for instan
e variables, that are not Chur
h numbers.

Thus we shall add more equations to the problem to for
e the solutions to be

Chur
h numbers.

3.4. Proposition. A normal term t of type � ! (� ! �) ! � is a Chur
h number

if and only if t=X is a solution of the equation

�z (X z (�y y)) = �z z

Proof. By indu
tion on the stru
ture of t.

Thus we 
an 
on
lude.

3.5. Theorem. There is no algorithm that takes as argument a uni�
ation problem

and answers if it has a solution or not.

Proof. With ea
h polynomial equation

P (X

1

; :::; X

n

) = Q(X

1

; :::; X

n

)

we asso
iate the uni�
ation problem

(p X

1

::: X

n

) = (q X

1

::: X

n

)

�z (X

1

z (�y y)) = �z z

:::

�z (X

n

z (�y y)) = �z z

where p is the term expressing the polynomial P and q the term expressing the

polynomial Q.

If the polynomial equation has a solution m

1

; :::;m

n

then the substitution

m

1

=X

1

; :::;m

n

=X

n

is a solution of the uni�
ation problem. Conversely, if the uni�-


ation problem has a solution 


1

=X

1

; :::; 


n

=X

n

then the normal form of ea
h 


i

is

a Chur
h number 


i

= m

i

. The natural numbers m

1

; :::;m

n

are a solution to the

polynomial equation.
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3.6. Remark. This theorem has been proved independently in 1972 by G. Huet

[Huet 1972, Huet 1973b℄ and C.L. Lu

hesi [Lu

hesi 1972℄. The original proofs did

not redu
e Hilbert's tenth problem, but Post's 
orresponden
e problem.

The uni�
ation problems built when redu
ing Post's 
orresponden
e problem

have the property that the variables free in the problem are applied only to terms

that do not 
ontain further variables free in the problem. Thus, redu
ing Post's


orresponden
e problem permits to sharpen the theorem and prove that there is

no algorithm that takes as argument a uni�
ation problem of this spe
ial form

and answers if it has a solution or not. Su
h a sharpened unde
idability theorem

is useful, for instan
e to prove the unde
idability of type re
onstru
tion in the

extension of simply typed �-
al
ulus with dependent types [Dowek 1993
℄.

3.2. Se
ond-order Uni�
ation

But, redu
ing Hilbert's tenth problem, we 
an sharpen the result in another di-

re
tion. The variables X

1

; :::; X

n

above have the type � ! (� ! �) ! �. This is

the type of fun
tionals taking in arguments an atom of type � and a fun
tion of

type � ! �. Using the de�nition 2.3, this type has order 3. We may try to sharpen

the result and allow only variables of order 2 or even 1. If we restri
t the types

of the free variables to be �rst-order, the problem is just a variant of �rst-order

uni�
ation and thus it is de
idable. If we restri
t the types of the free variables to

be at most se
ond-order, we get se
ond-order uni�
ation, whi
h has been proved to

be unde
idable by W.D. Goldfarb [Goldfarb 1981℄.

Goldfarb's proof relies on a expression of numbers that is a degenera
y of

Chur
h's. Taking �x �f (f (:::(f x):::)) leads to a third-order type, thus the idea is

to drop the abstra
tion on f and to take �x (f (:::(f x):::)) where f is a 
onstant

of type �! �. Thus numbers now have the se
ond-order type �! �. More pre
isely,

Goldfarb number n is the term �x (g a (:::(g a x):::)) where a and g are 
onstants

of type � and �! �! �.

Goldfarb numbers 
an still be 
hara
terized by a uni�
ation problem.

3.7. Proposition. A normal term t of type �! � is a Goldfarb number if and only

if t=X is a solution to the equation

(g a (X a)) = (X (g a a))

Addition 
an still be expressed by the term

add = �n �m �x (n (m x))

but multipli
ation 
annot be expressed this way. Thus, it will be expressed, not by

a term, but by a uni�
ation problem.

3.8. Proposition. (Goldfarb's lemma) The uni�
ation problem

(Y a b (g (g (X

3

a) (X

2

b)) a)) = (g (g a b) (Y (X

1

a) (g a b) a))
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(Y b a (g (g (X

3

b) (X

2

a)) a)) = (g (g b a) (Y (X

1

b) (g a a) a))

has a solution m

1

=X

1

;m

2

=X

2

;m

3

=X

3

; u=Y if and only if m

1

�m

2

= m

3

.

3.9. Theorem. (Goldfarb) Se
ond-order uni�
ation is unde
idable.

Proof. By redu
tion of Hilbert's tenth problem. Every equation of the form

P (X

1

; :::; X

n

) = Q(X

1

; :::; X

n

)


an be de
omposed into a system of equations of the form

X

i

+X

j

= X

k

X

i

�X

j

= X

k

X

i

= p

With su
h a system we asso
iate a uni�
ation problem 
ontaining:

� for ea
h variable X

i

, an equation as in proposition 3.7,

� for ea
h equation of the form X

i

+X

j

= X

k

, the equation (add X

i

X

j

) = X

k

,

� for ea
h equation of the form X

i

�X

j

= X

k

, two equations as in proposition

3.8,

� for ea
h equation of the form X

i

= p, the equation X

i

= p.

3.10. Remark. Goldfarb's result has been sharpened by W.M. Farmer [Farmer

1991a℄, J. Levy and M. Veanes [Levy and Veanes 1998℄ who study the number of

variables, the number of variable o

urren
es and the arity of the variables that are

needed to get unde
idability.

3.11. Remark. Redu
ing Hilbert's tenth problem is a powerful tool, but as the

proof of unde
idability of Hilbert's tenth problem itself is rather 
ompli
ated, one

may want to �nd a simpler unde
idability proof, i.e. one redu
ing a problem that is

simpler to prove unde
idable (the halting problem, the semi-Thue problem, Post's


orresponden
e problem, et
.). We have seen that su
h redu
tions are possible for

third-order uni�
ation.

A. S
hubert [S
hubert 1998℄ has given another unde
idability proof for se
ond-

order uni�
ation, redu
ing the halting problem of a two-
ounter automaton. This

proof permits also to sharpen the result proving that there is no algorithm that

takes as argument a uni�
ation problem where the variables free in the problem

are applied only to terms that do not 
ontain further variables free in the problem

and answers if it has a solution or not. This sharpened unde
idability theorem

is applied to prove the unde
idability of type re
onstru
tion in some extension of

simply typed �-
al
ulus with polymorphi
 types [S
hubert 1998℄.
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4. Huet's Algorithm

Higher-order uni�
ation is unde
idable, but it is semi-de
idable, i.e. we 
an build an

algorithm that takes a uni�
ation problem as argument, terminates and returns a

solution when the problem has one, but may loop forever when it does not. Indeed,

given a problem and a substitution, it is possible to de
ide whether the substitution

is a solution of the problem or not: it suÆ
es to apply the substitution to both

members of ea
h equation, normalize the terms and 
he
k that their normal forms

are equal. Thus, a naive generate and test algorithm terminates if the problem has

a solution.

Su
h a generate and test algorithm is, of 
ourse, of no pra
ti
al use. But as we

shall see, it 
an be gradually improved so that we rea
h an algorithm that �nds a

solution rather qui
kly when su
h a solution exists and reports failure in many 
ases

where the equation has no solutions (of 
ourse, not all of them, sin
e the problem

is unde
idable).

4.1. A \Generate and Test" Algorithm

4.1.1. Generating Long Normal Closed Terms

Re
all that we have assumed in se
tion 2.2 that we had a 
onstant 


U

in ea
h

atomi
 type U . Thus, in a type T

1

! ::: ! T

p

! U , we always have a 
losed

term �y

1

::: �y

p




U

. Obviously, if a substitution t

1

=X

1

; :::; t

n

=X

n

is a solution to a

problem then the substitution obtained by substituting ea
h free variable of t

1

; :::; t

n

by the term �y

1

::: �y

p




U


orresponding to its type is also a solution. Moreover, this

solution is 
losed, i.e. all the terms substituted to the variables X

1

; :::; X

n

are 
losed

terms. Thus, if a problem has a solution, it has also a 
losed solution and instead

of enumerating all the terms t

1

; :::; t

n

to be substituted for the variables X

1

; :::; X

n

we 
an restri
t to the 
losed ones. Similarly, if a substitution t

1

=X

1

; :::; t

n

=X

n

is

a solution to a problem then the substitution obtained by taking the long normal

form of the terms t

1

; :::; t

n

is also a solution. Thus, we 
an restri
t the enumeration

the long normal 
losed terms.

Using de�nition 2.25 long normal 
losed terms of type T

1

! :::! T

p

! U , where

U is an atomi
 type, have the shape

�y

1

::: �y

p

(h u

1

::: u

r

)

where y

1

; :::; y

p

are variables of type T

1

; :::; T

p

, the head symbol h is either one of

the variables y

1

; :::; y

p

or a 
onstant, and u

1

; :::; u

r

are terms whose number and

type depend on the type of the symbol h.

Thus a method to enumerate all the normal terms of a given type is to pro
eed

step by step, enumerating all the possible head symbols of the term and then using

re
ursively the same method to enumerate the terms u

1

; :::; u

r

.

A �rst, but naive, idea would be to use variables H

1

; :::; H

r

to hold for the terms

u

1

; :::; u

r

, i.e. to 
onsider the term

�y

1

::: �y

p

(h H

1

::: H

r

)
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and then to enumerate the terms to be substituted for the variables H

1

; :::; H

r

.

Unfortunately, su
h an idea does not work, be
ause the variables y

1

; :::; y

p

may

o

ur in the terms u

1

; :::; u

r

, substituting su
h terms to the variables H

1

; :::; H

r

would introdu
e 
aptures, and substitution renames bound variables to avoid su
h


aptures. Thus, for instan
e, su
h a method would not generate the term �x �f (f x)

of type �! (�! �)! �: a �rst step would 
onsider the term �x �f (f H) but then

substituting the term x to the variable H would yield the term �y �f (f x) and

not �x �f (f x).

A solution to this problem is to express fun
tionally the dependen
e of the terms

u

1

; :::; u

r

with respe
t to the variables y

1

; :::; y

p

, 
onsidering the term

�y

1

::: �y

p

(h (H

1

y

1

::: y

p

) ::: (H

r

y

1

::: y

p

))

Then the term �x �f (f x) is generated in two steps: �rst, we generate the term

�x �f (f (H x f)) then we substitute the term �x �f x for the variable H .

A substitution of the form

�y

1

::: �y

p

(h (H

1

y

1

::: y

p

) ::: (H

r

y

1

::: y

p

))=X

is 
alled an elementary substitution.

4.1. Definition. We 
onsider the following inferen
e system

t

(�y

1

::: �y

p

(h (H

1

y

1

::: y

p

) ::: (H

r

y

1

::: y

p

))=X)t

where the terms are normal (i.e. (�y

1

::: �y

p

(h (H

1

y

1

::: y

p

) ::: (H

r

y

1

::: y

p

))=X)t

a
tually stands for the long normal form of this term), X is a free variable of t

of type T

1

! ::: ! T

p

! U (U atomi
), h is one of the variables y

1

; :::; y

p

or a


onstant, the target type of h is U and the variables H

1

; :::; H

r

are fresh variables

of the appropriate type.

4.2. Proposition. All the long normal 
losed terms of type T are produ
ed from

a variable of type T by the inferen
e system above.

Proof. By indu
tion on the size of t.

4.3. Remark. The inferen
e system above has two forms of non-determinism: �rst

the 
hoi
e of the variable X of the term t to be substituted, then the 
hoi
e of the

head symbol h in the substituted term. The 
hoi
e of the variable X is a don't 
are

non-determinism, the 
hoi
e of the head symbol h is a don't know non-determinism.

This don't know non-determinism 
an be handled by building a sear
h tree as

follows. Nodes are labeled by terms and leaves by 
losed terms. In ea
h internal

node, we 
hose a variable and we draw an edge 
orresponding to ea
h possible head

symbol.

Another solution is to 
onsider an inferen
e system de�ned on �nite sets of terms,

deriving from A[ ftg, the set A[ f�

1

t; :::; �

n

tg where �

1

; :::; �

n

are the elementary

substitutions 
orresponding to the di�erent possible head symbols.
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4.1.2. A Uni�
ation Algorithm

4.4. Definition. (Generate and test algorithm)

We 
onsider the inferen
e system

E

(�y

1

::: �y

p

(h (H

1

y

1

::: y

p

) ::: (H

r

y

1

::: y

p

))=X)E

where E is a uni�
ation problem (i.e. a �nite set of equations), X is a free variable

of E of type T

1

! :::! T

p

! U (U atomi
) and h is one of the variables y

1

; :::; y

p

or

a 
onstant and the variables H

1

; :::; H

r

are fresh variables of the appropriate type.

4.5. Proposition. The above algorithm is sound and 
omplete, i.e. a problem has

a solution if and only if a trivial problem (i.e. a problem where ea
h equation relates

identi
al terms) 
an be derived from it.

Proof. The soundness property is an obvious indu
tion on the length of the deriva-

tion. The 
ompleteness property is proved by indu
tion on the size of a long normal


losed solution.

4.2. Huet's Algorithm

In the generate and test algorithm, the uni�
ation problem is 
ompletely passive, it

is only used to test if a given substitution is a solution or not. In Huet's algorithm

it is used in a mu
h more a
tive way to restri
t the sear
h spa
e.

For instan
e, 
onsider the problem 0 = S(X), whatever 
losed term we may

substitute for X , we will get two terms whi
h have a di�erent head symbol and

thus are di�erent. Similarly the problem S(u) = S(v) 
an be simpli�ed into the

problem u = v that has the same solutions. Su
h a term where the head symbol

is a 
onstant or a bound variable and thus 
annot be 
hanged by a substitution is


alled rigid.

4.6. Definition. (Rigid, 
exible term)

A term is said to be rigid if its head symbol is a 
onstant or a bound variable, it

is said to be 
exible if its head symbol is a free variable.

4.2.1. Rigid-rigid Equations

A �rst improvement that 
an be made to the generate and test algorithm is to

simplify problems using the rules

E [ f�x

1

::: �x

n

(f u

1

::: u

p

) = �x

1

::: �x

n

(g v

1

::: v

q

)g

Fail

?

E [ f�x

1

::: �x

n

u

1

= �x

1

::: �x

n

v

1

; :::; �x

1

::: �x

n

u

p

= �x

1

::: �x

n

v

p

g

E [ f�x

1

::: �x

n

(f u

1

::: u

p

) = �x

1

::: �x

n

(f v

1

::: v

p

)g

Simplify
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where the simpli�ed equation relates two rigid terms (i.e. the symbols f and g are

either 
onstants or among x

1

; :::; x

n

) the head symbols of these terms are di�erent

for the rule Fail and identi
al for the rule Simplify.

Noti
e that these rules derive uni�
ation problems, i.e. �nite set of equations,

and that we have 
onventionally added an \unsolvable problem" ?.

4.7. Proposition. If a problem E

0

is derived from a problem E by the rule Fail or

the rule Simplify, then E and E

0

have the same solutions.

4.8. Proposition. The appli
ation of the rules Fail and Simplify terminates and

produ
es a problem that does not 
ontain rigid-rigid equations.

4.2.2. Flexible-rigid Equations

When the problem has an equation relating a 
exible term and a rigid one

�x

1

::: �x

n

(X u

1

::: u

p

) = �x

1

::: �x

n

(f v

1

::: v

q

) we 
an de
ide

to generate the substitutions to be substituted for the variable X . As in

the generate and test algorithm, we try all the substitutions of the form

�y

1

::: �y

p

(h (H

1

y

1

::: y

p

) ::: (H

r

y

1

::: y

p

)) where h is a 
onstant or among

the variables y

1

; :::; y

p

.

In this 
ase, if h is a 
onstant di�erent from the head f of the rigid term, this

substitution leads to an unsolvable rigid-rigid equation. Thus su
h an enumeration


an be avoided and we 
an restri
t the symbol h to be among y

1

; :::; y

p

(su
h a

substitution is 
alled a proje
tion) or the symbol f , if this symbol is a 
onstant

(su
h a substitution is 
alled an imitation ).

E

Generate

(�y

1

::: �y

p

(h (H

1

y

1

::: y

p

) ::: (H

r

y

1

::: y

p

))=X)E

where E 
ontains an equation of the form

�x

1

::: �x

n

(X u

1

::: u

p

) = �x

1

::: �x

n

(f v

1

::: v

q

)

or

�x

1

::: �x

n

(f v

1

::: v

q

) = �x

1

::: �x

n

(X u

1

::: u

p

)

and h is among y

1

; :::; y

p

; f when f is a 
onstant and among y

1

; :::; y

p

otherwise.

4.2.3. Flexible-
exible Equations

Thus, while in a problem E we have a rigid-rigid equation, a 
exible-rigid one or

a rigid-
exible one, we do not need to use the blind generation of the potential

solutions, but we 
an restri
t to the rules Fail, Simplify and Generate. When all the

equations are 
exible-
exible, it seems that we have no way to restri
t the blind

enumeration anymore.

However, Huet's lemma shows that 
exible-
exible equations always have solu-

tions and thus, that if we are not interested in all the uni�ers, but simply in the

existen
e of su
h uni�ers, we do not need to solve 
exible-
exible equations.
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4.9. Definition. (Solved problem)

If all the equations of a problem E relate 
exible terms, then the problem E is

said to be solved.

4.10. Proposition. (Huet) Any solved problem has a solution.

Proof. For ea
h atomi
 U type 
onsider a 
onstant 


U

. Let � the substitution that

binds every variable X of type T

1

! :::! T

p

! U of E to the term �y

1

::: �y

p




U

.

The substitution � is a solution of E, indeed applying � to an equation of the

form �x

1

::: �x

n

(X u

1

::: u

p

) = �x

1

::: �x

n

(Y v

1

::: v

q

) yields �x

1

::: �x

n




U

=

�x

1

::: �x

n




U

.

In higher-order logi
, testing uni�ability is mu
h simpler than enumerating uni-

�ers. This motivates the design of proof-sear
h methods, su
h as 
onstrained reso-

lution [Huet 1972, Huet 1973a℄, that require only the testing of uni�ability and not

the enumeration of solutions, see [Andrews 2001℄ (Chapter 15 of this Handbook).

4.2.4. Corre
tness

We want to prove the soundness and 
ompleteness of the inferen
e system Fail,

Simplify and Generate.

4.11. Proposition. (Soundness) If from a problem E we 
an infer a solved prob-

lem E

0

with the rules Fail, Simplify and Generate, then the problem E has a solu-

tion.

Proof. By indu
tion on the length of the derivation.

If the derivation is empty, we 
on
lude with the proposition 4.10.

If the �rst rule is Fail or Simplify, we 
on
lude with the indu
tion hypothesis and

the proposition 4.7.

If the �rst rule is Generate, deriving the problem E

0

from the problem E, then

by indu
tion hypothesis the problem E

0

has a solution �

0

and the substitution

� = �

0

Æ (�y

1

::: �y

p

(h (H

1

y

1

::: y

p

) ::: (H

r

y

1

::: y

p

))=X) is a solution of E.

4.12. Proposition. (Completeness) If the problem E has a solution �, then from

a problem E we 
an derive a solved problem E

0

with the rules Fail, Simplify and

Generate.

Proof. By indu
tion on the size of the substitution �. First, we apply the rules

Fail and Simplify to the problem E. By proposition 4.8 this pro
ess terminates and

returns a problem E

0

that does not 
ontain rigid-rigid equations and by proposition

4.7, the substitution � is a solution of the problem E

0

. If the problem E

0

is solved,

we have a derivation from E to a solved problem.

Otherwise, the problem E

0


ontains a 
exible-rigid equation (or a rigid-
exible

one) �x

1

::: �x

n

(X u

1

::: u

p

) = �x

1

::: �x

n

(f v

1

::: v

q

). Let �y

1

::: �y

p

(h w

1

::: w

r

)

be the term �X . The symbol h is among y

1

; :::; y

p

; f if the symbol f is a 
onstant,

and among y

1

; :::; y

p

otherwise.
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By the rule Generate we derive the problem

E

00

= (�y

1

::: �y

p

(h (H

1

x

1

::: x

p

) ::: (H

r

x

1

::: x

p

))=X)E

0

A solution to this problem is the substitution

�

0

= � � f�X=Xg [ f�y

1

::: �y

p

w

1

=H

1

; :::; �y

1

::: �y

p

w

r

=H

r

g

This substitution is smaller than the substitution � and thus, by indu
tion hypoth-

esis, we 
an derive a solved problem from the problem E

00

. Thus, we 
an derive a

solved problem from the problem E.

4.2.5. Non-determinism

The proof of the 
ompleteness lemma gives a 
omplete strategy for applying these

rules. While a problem 
ontains rigid-rigid equations, the rules Fail and Simplify


an be applied. The 
hoi
e of applying these rules and the 
hoi
e of the equation is

don't 
are, i.e. we never need to ba
ktra
k to try another rule or another equation.

The Generate rule 
an be applied only to simpli�ed problems, i.e. problems 
on-

taining no rigid-rigid equation. The 
hoi
e of the 
exible-rigid equation is don't


are, but the 
hoi
e of the head-variable is don't know and may lead to ba
ktra
k.

Again, this don't know non-determinism 
an be handled by building a sear
h

tree 
alled uni�
ation tree. Nodes are labeled by simpli�ed problems. Leaves are

solved problems and the unsolvable problem (?). In ea
h internal node, we 
hose

an equation and we draw an edge 
orresponding to ea
h possible head symbol.

Another solution is to 
onsider an inferen
e system on �nite set of uni�
ation

problems, deriving from A[fEg the set A[f�

1

E; :::; �

n

Eg where �

1

; :::; �

n

are the

elementary substitutions 
orresponding to the di�erent possible head symbols.

In some presentations, an equation is 
onsidered as an atomi
 proposition in a

uni�
ation logi
. A uni�
ation problem (�nite set of equations) is then the 
onjun
-

tion of the atomi
 propositions 
orresponding to the equations. Sets of uni�
ation

problems are then 
onsidered as disjun
tions.

4.2.6. Empty Types

Above we have used the fa
t that we had a 
onstant in ea
h atomi
 type and thus

that every type was inhabited and that the existen
e of a solution to a uni�
ation

problem was equivalent to the existen
e of a 
losed solution.

If we allow empty types, �nding a 
losed solution to a uni�
ation problem is more

diÆ
ult that �nding a (possibly open) solution. For instan
e, if we have a variable

X of type T , the empty uni�
ation problem with respe
t to this variable (or, if we

prefer, the problem X = X) has a trivial open solution, but has a 
losed solution

only if the type T is inhabited.

When we have empty types, 
exible-
exible equations do not always have 
losed

solutions, for instan
e X = X does not if the type of X is empty (the existen
e of

a su
h a solution is even unde
idable [Miller 1992℄). Thus we 
annot avoid solving


exible-
exible equations.
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Noti
e that any type inhabitation problem 
an be expressed as a uni�
ation

problem, taking a variable of type T and sear
hing for a solution to the empty

problem (or to the problem X = X).

4.2.7. Uni�
ation Modulo the Rule � Alone

A long normal term of type T

1

! ::: ! T

p

! U (U atomi
) has the form

�x

1

::: �x

p

(h u

1

::: u

r

) where the number of abstra
tions is p, i.e. the arity of

its type.

To de�ne the long normal form, we need to have the rule �, whi
h is a 
onsequen
e

of the extensionality axiom. If we drop the extensionality axiom, we have to unify

terms modulo the rule � alone.

A �-normal term of type T

1

! ::: ! T

p

! U is now of the form

�x

1

::: �x

q

(h u

1

::: u

r

) with q � p. Thus we must 
onsider more elementary sub-

stitutions where the number of abstra
tions ranges from 0 to n. Su
h an algorithm

is des
ribed in [Huet 1975, Huet 1976℄.

For instan
e with the rules � and �, the problem

(X a) = (f a)

has the two solutions �x (f a)=X and �x (f x)=X . But, with the rule � alone, it

has also a third one f=X whi
h is not equivalent to �x (f x)=X anymore.

4.3. Regular Trees, Regular Solutions

We have seen (proposition 3.4) that the solutions of the problem

�z (X z (�y y)) = �z z

where X is a variable of type �! (�! �)! �, are all the substitutions of the form

t=X where t is a Chur
h number.

When we apply the elementary substitution �x �f x=X to this problem and

simplify it, we get the empty problem that is solved. And when we apply the

elementary substitution �x �f (f (Y f x))=X we get the problem

�z (Y z (�y y)) = �z z

whi
h is a renaming of the initial problem. Thus, only a �nite number of problems

(in this 
ase, two) 
an be generated. In other words, the uni�
ation tree is regular

and 
an be represented by a �nite skeleton.

M. Zaion
 [Zaion
 1987℄ has remarked that when the number of problems we 
an

generate from a given problem is �nite (in other words when the problem has a

regular uni�
ation tree) we 
an 
ompute this set of problems (or the skeleton of the

uni�
ation tree). If this �nite set does not 
ontain a solved problem, then we know

that the problem is unsolvable. This way he has sharpened Huet's algorithm and
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proposed an algorithm that reports failures more often that Huet's. For instan
e,

for the problem

(X a) = (f (X a))

Huet's algorithm 
onstru
ts an in�nite tree with no solved problem, while after an

imitation step �x (f (H x))=X yielding after simpli�
ation to the problem

(H a) = (f (H a))

Zaion
's algorithm reports a failure.

Moreover, when the number of problems generated by a given problem is �nite

and the problem has solutions, the set of minimal uni�ers may be in�nite, but it


an be des
ribed by a grammar. For instan
e, for the problem

�z (X z (�y y)) = �z z


alling � the elementary substitution �x �f x=X and � the elementary substitution

�x �f (f (X f x))=X , all the solutions have the form � Æ� Æ :::Æ� Æ�. Su
h a substi-

tution 
an be represented by the word ��:::�� and the set of words 
orresponding

to the minimal uni�ers is produ
ed by the grammar

s! �

s! �s

4.4. Equational Higher-order Uni�
ation

Several extensions of Huet's algorithm have been proposed to higher-order equa-

tional uni�
ation (see se
tion 1.5). Some aim at giving a general algorithm for an

arbitrary higher-order equational theory (see, for instan
e, [Avenhaus and Lor

�

ia-

S�aenz 1994, M�uller andWeber 1994, Prehofer 1994b, Prehofer 1995, Qian 1994, Qian

and Wang 1992, Snyder 1990℄). Others 
onsider spe
ial theories (see, for instan
e,

[Curien 1995, Qian and Wang 1994, Sa��di 1994, Boudet and Contejean 1997℄).

5. S
opes Management

The idea, underlying Huet's algorithm is to build the terms substituted for the

variables step by step and to transform the equations at ea
h step substituting

the part of the solution 
onstru
ted so far. This is a rather general approa
h in

equational uni�
ation. As 
ompared to �rst-order equational uni�
ation methods,

higher-order uni�
ation presents the parti
ularity of a rather subtle management

of s
opes. For instan
e, as already mentioned, we 
annot take the elementary sub-

stitution �y

1

::: �y

p

(f H

1

::: H

r

)=X but we must express the dependen
e of the

arguments of f with respe
t to the variables y

1

; :::; y

p

in a fun
tional way, taking

the substitution �y

1

::: �y

p

(f (H

1

y

1

::: y

p

) ::: (H

r

y

1

::: y

p

))=X . This is due to

the fa
t that substitution in �-
al
ulus renames bound variables to avoid 
aptures.
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We might want to build the solutions with smaller steps, for instan
e substituting

a variable of a fun
tional type T ! U by a term of the form �y H=X and then

substitute H . But this is not possible as expressing fun
tionally the dependen
e

in su
h a substitution would yield �y (H y)=X . i.e. H=X and thus the indu
tive

argument in the 
ompleteness proof would not go through. (Be
ause of the fun
-

tional en
oding of s
opes we have to take j�x tj = jtj and not j�x tj = jtj+ 1, thus

instantiating a variable by an abstra
tion does not let the problem progress).

In the same way, we might want to simplify an equation of the form �x u = �x v

into u = v, but su
h a simpli�
ation rule is unsound. For instan
e the equation

�x Y = �x (f x x) has no solution (as the substitution (f x x)=Y would rename

the bound variable to avoid the 
apture), while the equation Y = (f x x) has the

solution (f x x)=Y .

All these parti
ularities of higher-order uni�
ation 
ome from the parti
ularities

of the substitution in �-
al
ulus, and this parti
ularities 
ome from the fa
t that

�-
al
ulus 
ontains a binding operator �.

5.1. Mixed Pre�xes

To have the simpli�
ation rule

E [ f�x t = �x ug

E [ ft = ug

we must add to the simpli�ed problem an o

urren
e 
onstraint forbidding the

variable x to appear in the term substituted for the variables free in t and u. This

way both problems

�x Y = �x (f x x)

and

Y = (f x x); x not available to Y

have no solution, and more generally the simpli�
ation of abstra
tions is sound.

Su
h o

urren
e 
onstraints 
an be elegantly expressed in a uni�
ation logi
.

In a uni�
ation logi
, uni�
ation problems are expressed as propositions and uni-

�
ation rules as dedu
tion rules in su
h a way that a proposition P is provable if

and only if it expresses a uni�able problem. An equation t; u is expressed as an

atomi
 proposition t = u introdu
ing a predi
ate symbol =. A uni�
ation prob-

lem (i.e. a �nite set of equations) is represented as the 
onjun
tion of the atomi


propositions 
orresponding to equations. The variables o

urring in the problem

are then existentially quanti�ed at the head of the problem and the 
onstants 
an

be 
onsidered as universally quanti�ed variables.

For instan
e the problem

�x Y = �x (f x x)

is expressed as the proposition

8f 9Y (�x Y = �x (f x x))
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Uni�
ation problems are thus usually expressed as propositions of the form 89.

D. Miller [Miller 1992℄ has proposed to 
onsider propositions with a more 
omplex

alternation of quanti�ers (mixed pre�xes), in parti
ular propositions of the form

898. Then the problem

8f 9Y (�x Y = �x (f x x))


an be simpli�ed into

8f 9Y 8x (Y = (f x x))

in whi
h the usual s
oping rules for quanti�ers manipulation express that the vari-

able x is not available to Y and forbid the substitution (f x x)=Y . This way, he

has been able to give more natural simpli�
ation rules. The study of quanti�er

permutation in su
h problems has also permitted to identify a de
idable sub
ase of

higher-order uni�
ation (see se
tion 6.2).

Thus, mixed pre�xes permit to give more natural simpli�
ation rules, but not to

give more natural generation rules.

5.2. Combinators

Re
all that higher-order logi
 is just one among several variants of set theory [Davis

1969℄. Like other variants of set theory, it 
an be expressed in �rst-order logi
.

When we express higher-order logi
 as a �rst-order theory, the term language is a

�rst-order term language and thus, as opposed to �-
al
ulus it 
ontains no binding

operator. Thus, the substitution does not need to avoid 
aptures and s
ope man-

agement is simpler. Expressing this way higher-order logi
 as a �rst-order theory

permits also to use standard te
hnique for proof sear
h and in parti
ular standard

�rst-order equational uni�
ation algorithms for higher-order uni�
ation.

When we express higher-order logi
 as a (many-sorted) �rst-order theory, we

need to distinguish zero-ary relations that are expressed by terms of sort o and

propositions. We introdu
e a unary predi
ate symbol " of rank (o) and if t is a term

of type o, the 
orresponding proposition is written "(t). For ea
h pair of type, we

introdu
e also a fun
tion symbol �

T;U

of rank (T ! U; T; U) and the term (t u) is

a notation for �

T;U

(t; u). We may also introdu
e symbols =

T

of type T ! T ! o

for equality.

As seen in se
tion 1 we state the 
omprehension s
hemes

8x

1

::: 8x

n

9f 8y

1

::: 8y

p

("(f y

1

::: y

p

), P ))

8x

1

::: 8x

n

9f 8y

1

::: 8y

p

"((f y

1

::: y

p

) = t)

These s
hemes are equivalent to the 
losed s
hemes

9f 8y

1

::: 8y

p

("(f y

1

::: y

p

), P ))

9f 8y

1

::: 8y

p

"((f y

1

::: y

p

) = t)
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where all the free variables of t and P are required to be among y

1

; :::; y

p

.

As seen in se
tion 1, to have a language for the relations and fun
tions we

skolemize these axioms and introdu
e symbols that we may write �y

1

::: �y

p

t and

�y

1

::: �y

p

P if we want, but we must re
all that (1) in su
h expressions, the free

variables of P and t must be among y

1

; :::; y

p

, (2) the proposition P and the term

t do not 
ontain further abstra
tions and (3) su
h terms are individual symbols.

These symbols are 
alled 
ombinators [Curry 1942, Curry and Feys 1958, Hindley

and Seldin 1986℄.

We 
an also 
hose to restri
t the 
omprehension s
hemes to a �nite number of

instan
es that are equivalent to the full s
heme. This way we have a �nite number

of 
ombinators (e.g. S;K;);^;_;:;8; 9).

We have said in se
tion 1 that this language was equivalent to �-
al
ulus, but

moving from this language to the more 
onvenient notation of �-
al
ulus introdu
es

the binding operator � and thus the notion of substitution with renaming. An alter-

native is to keep this language and to perform uni�
ation modulo the 
ombinators


onversion axioms.

The use of 
ombinators, instead of �-
al
ulus, was already investigated by

J.A. Robinson in 1970 [Robinson 1970℄ (but, apparently, without stressing the re-

lation to Davis' remark that higher-order logi
 
ould be expressed as a �rst-order

theory). This approa
h has been pursued in [Dougherty 1993℄. Using 
ombinators

instead of �-
al
ulus permits to use standard �rst-order equational uni�
ation al-

gorithms to perform uni�
ation modulo the 
onversion axioms.

The translations from �-
al
ulus to 
ombinators [Curry 1942, Curry and Feys

1958, Hindley and Seldin 1986, Hughes 1982, Johnsson 1985, Dowek 1995℄, su
h as

�-lifting, are 
orre
t if the extensionality axiom is taken, but not when this axiom is

dropped: the theory of the 
onversion axiom alone are not equivalent in �-
al
ulus

and in the theory of 
ombinators. In other words, some proofs, for instan
e that of

the proposition

((�x �y �z x) w w) = ((�x �y �z y) w w)

do not require the use of the extensionality axiom in �-
al
ulus and requires it with


ombinators.

If uni�
ation is seen as a part of resolution, then resolution in the �-
al
ulus

presentation of higher-order logi
 is equivalent to resolution in the 
ombinators

presentation of higher-order logi
, i.e. a proposition is provable in one system if and

only if its translation is provable in the other (although the proofs may be di�erent

in the two systems, in parti
ular one may need to use the extensionality axiom,

while the other does not).

If uni�
ation is seen as an independent problem then 
ombinator uni�
ation is

weaker than higher-order uni�
ation, i.e. it is not the 
ase that a problem has a

solution in �-
al
ulus if and only if its translation has one in 
ombinators, but


ombinator uni�
ation may be adapted to get the same power as higher-order

uni�
ation, using a glimpse of extensionality [Dougherty 1993℄. This algorithm is,

however, more redundant than Huet's.

Noti
e, at last, that the higher-order uni�
ation algorithm itself uses part of the
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translation of �-
al
ulus to 
ombinators. In parti
ular the fun
tional en
oding of

s
opes is reminis
ent of �-lifting.

5.3. Expli
it Substitutions

To avoid the problems with extensionality introdu
ed by the use of 
ombinators,

another solution is to keep �-
al
ulus, but to avoid the diÆ
ulties of s
opes man-

agement with the use the repla
ement, allowing 
apture (see de�nition 2.11) instead

of substitution. In other words, when we have an equation a = b we do not look for

a substitution � su
h that �a = �b but for a substitution � su
h that h�ia = h�ib.

Using su
h a notion of repla
ement permits to de
ompose the simpli�
ation rules

into a rule simplifying equations of the form �x u = �x v into u = v an other one

simplifying equations of the form (f u

1

::: u

p

) = (f v

1

::: v

p

) into u

1

= v

1

; :::; u

p

= v

p

and (f u

1

::: u

p

) = (g v

1

::: v

q

) into ? when f and g are di�erent. The generation

rule 
an also be simpli�ed: if X is a variable of type T ! U we 
an repla
e it by a

term �x Y where Y is a variable of type U , and when X has an atomi
 type, we

repla
e it by the term (h H

1

::: H

r

).

But, this notion of repla
ement raises two new diÆ
ulties. First repla
ement does

not 
ommute with redu
tion and thus it 
annot be de�ned on the quotient of terms

modulo redu
tion. For instan
e, the term ((�x Y ) a) redu
es to Y , but repla
ing

x for Y yields ((�x x) a) that redu
es to a and not to x. To avoid this diÆ
ulty,

a solution is to delay the substitution of a for x in Y until Y is repla
ed and we

know whether it 
ontains an o

urren
e of x or not (when using substitution with

renaming su
h a delay is not needed (proposition 2.22) be
ause a term 
ontaining

the variable x 
annot be substituted for the variable Y ).

Delaying this way the substitutions initiated by �-redu
tion requires an ex-

tension of �-
al
ulus with expli
it substitutions [Abadi, Cardelli, Curien and

L�evy 1991, Curien, Hardin and L�evy 1996, Nadathur and Wilson 1998℄. Besides


onstants, variables, appli
ations and abstra
tions, the 
al
ulus of expli
it substi-

tutions introdu
es another 
onstru
tion the 
losure [�℄t where � is a substitution

and t a term. The �-redu
tion rule is repla
ed by the rule

((�x t) u)� [u=x℄t

and more redu
tion rules permit to propagate the expli
it substitution u=x in the

term t. The simplest rules permits to distribute a substitution on an appli
ation

[�℄(t u)� ([�℄t [�℄u)

When su
h a substitution [u=x℄ rea
hes the variable x the term [u=x℄x redu
es to

the term u, when it rea
hes another variable y the term [u=x℄y redu
es to y, but

when it rea
hes a metavariable Y the term [u=x℄Y 
annot be redu
ed and thus

the substitution is delayed until the metavariable Y is repla
ed. Thus, when we ex-

press a higher-order uni�
ation problem in the 
al
ulus of expli
it substitutions free

variables are expressed as metavariables and bound variables as ordinary variables.
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The se
ond diÆ
ulty is that some problems have solutions for repla
ement while

they have none for substitution. This is the 
ase for instan
e for the problem �x Y =

�x (f x x). If we use repla
ement, (f x x)=Y is a solution, while the problem has no

solution if we use substitution. This problem is solved again by the use of expli
it

substitutions. In this system, there are expli
it renaming operators and thus we 
an

use su
h an operator to prote
t the metavariable Y from being repla
ed by a term


ontaining the variable x.

Thus we 
an de�ne a translation from �-
al
ulus to �-
al
ulus with expli
it sub-

stitutions su
h that a uni�
ation problem has a solution for substitution if and

only if its translation has one for repla
ement. In other words, the substitution of

�-
al
ulus is de
omposed into an (expli
it) renaming and a repla
ement.

This approa
h has been investigated in [Dowek, Hardin and Kir
hner 1995,

Borovansk�y 1995, Nadathur 1998, Nadathur and Mit
hell 1999℄.

5.4. De Bruijn Indi
es

Like 
ombinators, the 
al
ulus of expli
it substitutions permits to avoid the subtle

s
ope management of higher-order uni�
ation and it avoids also the use of exten-

sionality. But, so far, it does not permit to use the standard �rst-order equational

uni�
ation te
hniques be
ause �-
al
ulus (with expli
it substitutions or not) is still

not a �rst-order language.

In fa
t, independently of 
ombinators, N.G. de Bruijn [de Bruijn 1972℄ has pro-

posed another notation for �-
al
ulus that happened to be also a �rst-order lan-

guage.

The idea of de Bruijn notation, is that the name of bound variables is only used to

indi
ate the binder they depend on. This dependen
y may also be indi
ated by the

height of this binder above the variable. For instan
e, the term �x �y (x �z (x z))

may be written ��(2 �(3 1)) be
ause the �rst o

urren
e of the variable x refers to

the se
ond � above it, the se
ond o

urren
e of the variable x refers to the third �

above it and the o

urren
e of the variable z refers to the �rst � above it.

In de Bruijn notation, the operator � is not a binding operator anymore and thus

�-
al
ulus 
an be represented as a �rst-order term language with a unary fun
tion

symbol �, a binary fun
tion symbol � and an in�nite number of 
onstant symbol

1, 2, et
.

Be
ause of the presen
e of the substitution in the �-redu
tion rule, the redu
tion

system in this language is not a �rst-order rewrite system, but the redu
tion system

in �-
al
ulus with de Bruijn indi
es and expli
it substitutions is �rst-order. In

fa
t, the standard presentation of the 
al
ulus of expli
it substitutions uses de

Bruijn indi
es and not named variables. The metavariables of the 
al
ulus of expli
it

substitutions are the variables of the free algebra built on this language.

With de Bruijn indi
es and expli
it substitutions, we 
an use �rst-order te
h-

niques to perform uni�
ation, we do not have s
opes management problems nor

those 
reated by the use extensionality in translating �-
al
ulus to 
ombinators

[Dowek et al. 1995℄.
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These investigations have also lead to another �rst-order presentation of higher-

order logi
 based on de Bruijn indi
es and expli
it substitutions that is extensionally

equivalent to the presentation using �-
al
ulus [Dowek, Hardin and Kir
hner 2001℄.

Presenting this way �-
al
ulus as a �rst-order language and higher-order uni�-


ation as �rst-order equational uni�
ation modulo an equational theory T

1

per-

mits to 
onsider also equational higher-order uni�
ation modulo an equational

theory T

2

as equational �rst-order uni�
ation modulo T

1

[ T

2

[Dougherty and

Johann 1992, Goubault 1994, Kir
hner and Ringeissen 1997℄.

6. De
idable Sub
ases

As usual when a problem is unde
idable, besides building a semi-de
ision algorithm,

we are also interested in identifying de
idable sub
ases. In this se
tion, we present

a few de
idable sub
ases of higher-order uni�
ation. These sub
ases are obtained

by restri
ting the order, the arity or the number of o

urren
es of variables, or by

taking terms of a spe
ial form. For some sub
ases, Huet's algorithm terminates, for

others it does not and we must design another algorithm to prove de
idability.

The main 
onje
tures in this area are the de
idability of pattern-mat
hing, i.e.

the sub
ase of uni�
ation where variables o

ur only in a single side of equations

and the de
idability of 
ontext uni�
ation.

6.1. First-order Uni�
ation

The �rst de
idable sub
ase of higher-order uni�
ation is obviously �rst-order uni�-


ation. When all the variables of a problem have �rst-order, i.e. atomi
, types (see

de�nition 2.3), all the 
onstants have at most se
ond-order types and the terms

in the equations have �rst-order types, then the problem is just a rephrasing of

a �rst-order uni�
ation problem. Noti
e however that Huet's algorithm does not

always terminate on su
h problems. For instan
e the problem

X = f(X)

leads to an in�nite sear
h. In other words, Huet's algorithm does not dete
t failure

by o

ur-
he
k. However, it 
an be sharpened, adding a rule 
alled rigid paths o

ur-


he
k [Huet 1975, Huet 1976℄ that for
es failure in more 
ases and in parti
ular for

all the �rst-order unsolvable uni�
ation problems.

6.2. Patterns

When we de�ne a fun
tion by an equation, for instan
e,

8x 8y ((F x y) = x+ y + x� y)

we a
tually mean

F = �x �y (x+ y + x� y)
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But the �rst de�nition 
an also be used be
ause the equation has a single solution

�x �y (x + y + x� y). In 
ontrast, the de�nitions

8x ((F x x) = x+ x+ x� x)

or

8x ((F 0 x) = x)

are in
orre
t be
ause the equations have more than one solution.

This remark motivates the study of uni�
ation problems where the higher-order

free variables 
an only be applied to distin
t bound variables.

A pattern [Miller 1991℄ is a term t su
h that for every subterm of the form

(F u

1

::: u

n

) where F is a free variable, the terms u

1

; :::; u

n

are distin
t variables

bound in t. Uni�
ation of patterns is de
idable and when a uni�
ation problem has

a uni�er, it has a most general uni�er [Miller 1991℄.

For instan
e the problem

�x �y �z (F x z) = (f (�x �y (G y x)) (�x �y (F x y)))

is a patterns uni�
ation problem.

Patterns uni�
ation extends �rst-order uni�
ation. It has the same properties

(polynomial time de
idability and most general uni�er) and the algorithms have

some similarities (in parti
ular, the o

ur-
he
k plays an essential role in both


ases). The 
orresponden
e between �rst-order uni�
ation and patterns uni�
ation

is better understood when we study quanti�er permutation in mixed pre�xes (see

se
tion 5.1) as patterns uni�
ation problems 
an be obtained by permuting quanti-

�ers in �rst-order problems [Miller 1992℄. This is also the way patterns uni�
ation

was dis
overed.

Patterns uni�
ation is used in higher-order logi
 programming [Nadathur and

Miller 1998, Pfenning 1991a℄.

Patterns uni�
ation with expli
it substitutions is studied in [Dowek, Hardin,

Kir
hner and Pfenning 1996℄, the de
idability and uni
ity of solution rely there on

invertibility properties of expli
it substitutions.

This sub
ase of uni�
ation 
alled patterns uni�
ation must not be 
onfused with

pattern mat
hing dis
ussed in se
tion 6.6.

6.3. Monadi
 Se
ond-order Uni�
ation

Goldfarb's unde
idability proof requires a language with a binary 
onstant g. Thus,

a natural problem to investigate is uni�
ation in se
ond-order languages 
ontaining

only unary 
onstants, i.e. 
onstants with a single argument. This problem, 
alled

unary or monadi
 se
ond-order uni�
ation has been proved de
idable by Farmer

[Farmer 1988℄.

Farmer's proofs relies on the fa
t that a 
losed term of an atomi
 type in su
h

a language has the form (f

1

(f

2

::: (f

n


):::)) and thus 
an be represented by the
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word f

1

f

2

:::f

n

. Thus, a uni�
ation problem in su
h a language 
an be redu
ed to

word uni�
ation problem, and su
h problems are known to be de
idable.

In this 
ase, the set of minimal uni�ers may be in�nite. For instan
e the uni�
a-

tion problem

�z (f (X z)) = �z (X (f z))

whi
h is equivalent to the word problem fX = Xf has an in�nite number of

minimal solutions where the terms �x x, �x (f x), �x (f (f x)), �x (f (f (f x))),

�x (f (f (f (f x)))), et
. are substituted for the variable X , 
orresponding to

the solutions of the word problem ", f , ff , fff , et
. Farmer proposes to des
ribe

minimal uni�ers using so 
alled parametri
 terms, reminding of Zaion
's des
ription

by a grammar. For instan
e the parametri
 term �x (f

n

x) (
orresponding to the

parametri
 word f

n

) is the most general uni�er of the problem above.

6.4. Context Uni�
ation

Context uni�
ation is a variant of se
ond order uni�
ation with the extra 
ondition

that terms substituted to se
ond order variables have to be 
ontexts, i.e. normal

terms of the form �x

1

::: �x

n

t where the variables x

1

; :::; x

n

o

ur on
e in t.

Su
h terms 
an be seen as �rst-order terms with holes. This problem is related to

uni�
ation in linear lambda-
al
ulus [Pfenning and Cervesato 1997℄.

The de
idability of this problem is open, [Comon 1998, S
hmidt-S
hau� 1994,

Levy 1996, Niehren, Pinkal and Ruhrberg 1997, S
hmidt-S
hau� and S
hulz 1999,

S
hmidt-S
hau� 1999, Levy and Villaret 2000, Niehren, Tison and Treinen 2000℄

give partial results.

6.5. Se
ond-order Uni�
ation with Linear O

urren
es of Se
ond-order Variables

In se
ond-order uni�
ation, when we have an equation

�x

1

::: �x

n

(X a

1

::: a

p

) = �x

1

::: �x

n

(f b

1

::: b

q

)

and we perform a proje
tion, we repla
e a variable X by a 
losed term �x

1

:::�x

n

x

i

,

thus the number of variables in the problem de
reases. When we perform an imi-

tation and simplify the problem, we get the equations

�x

1

::: �x

n

(H

1

a

1

::: a

p

) = �x

1

::: �x

n

b

1

:::

�x

1

::: �x

n

(H

q

a

1

::: a

p

) = �x

1

::: �x

n

b

q

whi
h seem to be smaller than the equation we started with. Hen
e, it seems that

Huet's algorithm should terminate, in 
ontradi
tion with Goldfarb's unde
idability

result.
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A
tually, the variable X may have o

urren
es in the terms a

1

; :::; a

p

; b

1

; :::; b

q

and in fa
t we get the equations

�x

1

::: �x

n

(H

1

a

0

1

::: a

0

p

) = �x

1

::: �x

n

b

0

1

:::

�x

1

::: �x

n

(H

q

a

0

1

::: a

0

p

) = �x

1

::: �x

n

b

0

q

where the variable X has been substituted everywhere. These equation need not be

smaller than the equation we started with and thus the algorithm does not always

terminate.

However this argument 
an be used to prove that se
ond-order uni�
ation with

linear o

urren
es of se
ond-order variables is de
idable, i.e. that there is an algo-

rithm that de
ides uni�ability of se
ond-order problems where ea
h se
ond-order

variable has a single o

urren
e (see, for instan
e, [Dowek 1993d℄). In fa
t, to en-

sure that linearity is preserved by imitation we must �rst transform equations into

super�
ial equations, i.e. equations where the se
ond-order variables 
an o

ur only

at the head of the members of the equations.

This algorithm has been extended by Ch. Prehofer [Prehofer 1994a, Prehofer

1995℄ mixing linearity 
onditions and patterns 
onditions.

G. Amiot [Amiot 1990℄ had used a similar transformation to prove that super�
ial

se
ond-order uni�
ation is unde
idable.

Besides linear uni�
ation, a similar argument using the number of variables and

the size of equations will be used in se
tion 6.6.1 to prove the de
idability of se
ond-

order mat
hing.

6.6. Pattern Mat
hing

A higher-order mat
hing equation is an equation whose right hand side does not


ontain free variables. A higher-order mat
hing problem is a �nite set of mat
hing

equations. The de
idability of higher-order mat
hing, Huet's 
onje
ture [Huet 1976℄,

has been an open problem for more than twenty years.

6.6.1. Se
ond-order Mat
hing

The �rst positive result is the de
idability of se
ond-order mat
hing.

6.1. Proposition. (Huet [Huet 1976, Huet and Lang 1978℄) Se
ond-order mat
h-

ing is de
idable, i.e. there is an algorithm that takes in argument a mat
hing problem

whose free variables are at most se
ond-order (in the sense of de�nition 2.3) and

whose bound variables and 
onstants are at most third-order and answers if it has

a solution or not.

Proof. For se
ond-order mat
hing problems, Huet's algorithm terminates. Indeed,

the pair (n; p) where n is the sum of the sizes of the right hand sides of equations

and p the number of variables in the problem de
reases at ea
h step (i.e. ea
h
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appli
ation of the Generate rules followed by a simpli�
ation) for the lexi
ographi


order.

Imitations are always followed by a simpli�
ation, and thus the sum of the sizes

of the right hand sides of equations de
reases in su
h a step. Proje
tions have the

form �x

1

::: �x

n

x

i

thus they do not introdu
e new variables H

1

; :::; H

r

and the

number of variables in the problem de
reases in su
h a step and the 
losed right

hand sides are never substituted, thus the sum of their sizes never in
reases.

6.2. Remark. In a mat
hing problem there is no 
exible-
exible equations. Thus

the only solved problem is the empty problem and a se
ond-order mat
hing problem

has a �nite set of minimal solutions.

6.3. Remark. L.D. Baxter has proved that the se
ond order mat
hing problem is

NP-
omplete [Baxter 1977℄.

6.4. Remark. The 
ondition that bound variables and 
onstants are at most third-

order 
an be weakened (see, for instan
e, [Dowek 1991
℄), but patterns-like terms

need to be used in the algorithm.

6.6.2. In�nite Set of Solutions and Pumping

As soon as we have a third-order variable, Huet's algorithm may fail to terminate

and may produ
e an in�nite number of minimal solutions. For instan
e, as seen

above (proposition 3.4) the problem

�z (X z (�y y)) = �z z

has an in�nite number of solutions of the form t=X where t is any Chur
h number

�x �f (f ::: (f x):::).

Thus if we look for a terminating algorithm, we 
annot use Huet's algorithm, and

we 
annot use any other algorithm enumerating all the minimal solutions. Thus,

all the algorithms proposed so far (for restri
ted 
ases) all redu
e the sear
h spa
e,

dropping some solutions, but hopefully keeping at least one if the problem has

solutions.

As an illustration we 
an use su
h a method to prove the de
idability, in the

domain of natural numbers, of polynomial equations with a 
onstant right hand side

(whereas Matiya
evi
h-Robinson-Davis [Matiya
evi
h 1970, Davis 1973℄ theorem

proves the unde
idability of polynomial equations in general). Noti
e that in this


ase also, a problem may have an in�nite number of solutions (
onsider for instan
e

the equation XY + 4 = 4).

6.5. Proposition. There is an algorithm that takes as arguments a polynomial P

whose 
oeÆ
ients are natural numbers and a natural number b and answers if the

equation P (X

1

; :::; X

n

) = b has a solution or not in the domain of natural numbers.

Proof. If this equation has a solution a

1

; :::; a

n

then it has a solution a

0

1

; :::; a

0

n

su
h

that a

0

1

� b. Indeed either Q(X) = P (X; a

2

; :::; a

n

) is not a 
onstant polynomial
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and for all n, Q(n) � n, so a

1

� b, or the polynomial Q is identi
ally equal to b and

h0; a

2

; :::; a

n

i is also a solution. A simple indu
tion on n proves that if the equation

has a solution then it also has a solution in f0; :::; bg

n

and an enumeration of this

set gives a de
ision algorithm.

For instan
e, for the equation XY + 4 = 4, starting with the solution h1000; 0i

we get the solution h0; 0i. The method that transforms the solution h1000; 0i into

h0; 0i is 
alled pumping. It permits to know whether a solution exists in an in�nite

domain just by looking into a �nite part of the domain, be
ause this �nite part

mirrors all the domain.

6.6.3. Finite Models

Su
h an idea has been investigated by R. Statman using model theoreti
 te
hniques.

H. Friedman's 
ompleteness theorem [Friedman 1975℄ is that if we interpret the

atomi
 types by in�nite sets and types of the form A! B by the set of all fun
tions

from the interpretation of A to the interpretation of B, then two terms have the

same denotation if and only if they are ��-
onvertible.

Obviously, this theorem 
annot be generalized to the 
ase where the interpreta-

tion of atomi
 types are �nite. Indeed, if the interpretation of the type � is �nite,

that of the type � ! (� ! �) ! � also and thus at least two di�erent Chur
h

numbers have the same denotation, while they are not 
onvertible.

However Statman's �nite 
ompleteness theorem [Statman 1979, Statman and

Dowek 1992℄ shows that for ea
h �-term b, there is a natural number n su
h that,

in the �nite model built from a base sets of 
ardinal n, the terms that have the

same denotation as b are those 
onvertible to b.

Thus, if a mat
hing problem (a X

1

::: X

n

) = b (b 
losed) has a solution, the


orresponding equation in the model has a solution too, and as the denotation

of ea
h type in the model is �nite, we 
an enumerate all the potential solutions

and test one after another. Unfortunately, when we �nd a solution in the model

this solution 
orresponds to a solution in �-
al
ulus only if the element of the

model is the denotation of some �-term. Thus the higher-order mat
hing 
onje
ture

was redu
ed this way to the �-de�nability de
idability 
onje
ture (Plotkin-Statman


onje
ture) [Statman 1979, Statman and Dowek 1992℄.

Another formulation, that strengthen the link to the pumping method is that

assuming that we 
an de
ide whether an element is �-de�nable or not we 
an


ompute a number n su
h that all the de�nable elements of the model of a given

type are de�ned by a term of size lower than n. Thus, if the problem has a solution,

then it has also a solution of size lower than n and to de
ide whether a problem has

a solution, we only need to enumerate the terms of size lower to that bound. After

this bound, the terms are redundant, i.e. their denotation is also a denotation of

smaller terms and if they are solutions to the mat
hing problem smaller terms also.

Unfortunately the �-de�nability de
idability 
onje
ture has been refuted by

R. Loader [Loader 1994℄.

However, V. Padovani has shown that �-de�nability was de
idable in other mod-
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els: the minimal models where the interpretation of the type A! B 
ontains only

the �-de�nable fun
tions and from this result, he has dedu
ed the de
idability of

the atomi
 higher-order mat
hing problem (i.e. the higher-order mat
hing problem

where the right hand side is a 
onstant) [Padovani 1996a, Padovani 1996b℄.

6.6.4. Third and Fourth-order Mat
hing

A similar approa
h has permitted to prove the de
idability of third-order and

fourth-order mat
hing problems i.e. mat
hing problems whose free variables are

at most third or fourth order (in the sense of de�nition 2.3).

Consider a variable X of type �! (�! �)! �, the equation

(X 
 (�y (g (h y)))) = 


and the potential normal solution t = �x �f u for X . The term (t 
 �y (g (h y)))

redu
es to the normal form of (
=x; �y (g (h y))=f)u and, a simple indu
tion on the

depth of the stru
ture of u shows that this term has a depth greater than or equal

to that of u. For instan
e, taking t = �x �f (f (f (f x))) and applying it to 
 and

�y (g (h y)) yields (g (h (g (h (g (h 
)))))) where ea
h f has been repla
ed by a g

and a h. Thus, if su
h a term is to be a solution of the above problem u must be

smaller than 
. Thus, enumerating the terms smaller than 
 gives an algorithm to

�nd all the solutions of this problem. In fa
t, the only solutions are �x �f 
 and

�x �f x.

But su
h a reasoning does not work for all the problems, for instan
e

(X 
 (�y y)) = 


(X d (�y e)) = e

has solutions of an arbitrary depth: all nonzero Chur
h numbers

�x �f (f (:::(f x):::)):

This 
an only happen when all the se
ond arguments of X are either of the form

�x

1

::: �x

n

x

i

(e.g. �y y) or an irrelevant term i.e. a term where a bound variable

does not o

ur in the body (e.g. �y e). In this 
ase any sequen
e of f has the same

e�e
t as a single f thus, any solution of the form �x �f (f (:::(f x):::)) is redundant

with the smaller solution �x �f (f x).

Erasing, this way, all the useless o

urren
es of variables permits to get smaller

solutions whose depth 
an be bounded by a fun
tion in the depth of b. Thus, we


an 
ompute a bound su
h that if the problem has a solution, then it has also a

solution whose depth is lower than that bound and hen
e a
hieve de
idability.

The simpler 
ase for whi
h su
h a method works is the third-order interpolation

problems.

6.6. Definition. (Interpolation problem)

An interpolation problem is a �nite set of equations of the form (X a

1

::: a

n

) = b

where the terms a

1

; :::; a

n

; b are 
losed.
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Using the pumping method des
ribed above, we 
an prove the de
idability of

third-order interpolation problems. Then, the bound on the depth of solutions 
an

be lifted to arbitrary third-order mat
hing problems and this proves the de
idability

of third-order mat
hing problems [Dowek 1994℄.

A. S
hubert [S
hubert 1997℄ has proved that the de
idability of higher-order in-

terpolation problems implies that of higher-order mat
hing problems, unfortunately

his transformation does not preserve the order of the variables.

V. Padovani [Padovani 1995℄ has proved that the de
idability of the dual in-

terpolation problem implies that of higher-order mat
hing and his transformation

preserves the order of the variables thus the de
idability of the dual interpolation

problem of order n implies that of the mat
hing of order n (a dual interpolation

problem is a pair (E;F ) of interpolation problems and a solution to su
h a problem

is a substitution that is solution to the equation of E but not to that of F ).

Using this result, Padovani has proved the de
idability of the fourth-order mat
h-

ing problem [Padovani 1994, Padovani 1996b℄.

6.6.5. Automata

All these proofs are rather te
hni
al (in parti
ular the de
idability of fourth-order

mat
hing is a real te
hni
al tour de for
e) be
ause they all pro
eed by transforming

potential solutions into smaller ones 
utting and pasting term pie
es. H. Comon

and Y. Jurski [Comon and Jurski 1997℄ have proposed to reformulate these ideas

in a mu
h simpler way.

Instead of transforming a potential solution into a smaller one. Comon and Jurski

propose, in a similar way as Zaion
 (see se
tion 4.3) and Farmer (see se
tion 6.3)

to build an automaton that re
ognizes the solutions of a given problem.

For instan
e, in the problem

(X 
 (�y y)) = 


(X d (�y e)) = e

the fa
t that any sequen
e of f has the same e�e
t as a single f and thus that any

solution of the form �x �f (f (:::(f x):::)) is redundant with the smaller solution

�x �f (f x) is expressed as the fa
t that the automaton stays in the same state

re
ognizing the sequen
e of f in the solution �x �f (f (:::(f x):::)). This way a

�nite state automaton 
an re
ognize the in�nite set of solutions and de
idability is

a 
onsequen
e of the de
idability of the nonemptiness of a set of terms re
ognized

by an automaton.

This way they have given simpler de
idability proofs for third-order and fourth-

order mat
hing. They have also proved that third order mat
hing was NP-
omplete,

hen
e that is not more 
omplex than se
ond-order mat
hing.

6.6.6. Wolfram's Algorithm

A last approa
h has been investigated by D. Wolfram [Wolfram 1989℄. Wolfram

has proposed a pruning of the sear
h tree for the full higher-order mat
hing that
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produ
es a �nite sear
h tree. Thus, Wolfram's algorithm always terminates, but its


ompleteness is still a 
onje
ture.

7. Uni�
ation in �-
al
ulus with Dependent Types

To 
on
lude this 
hapter we shall review uni�
ation algorithms in extensions of

simply typed �-
al
ulus. We have already seen in se
tion 1.5 and 4.4 that more

redu
tion rules 
ould be added, we 
an also 
onsider ri
her type stru
ture su
h as

dependent types and polymorphism.

7.1. �-
al
ulus with Dependent Types

7.1.1. Types Parametrized by Terms

The �-
al
ulus with dependent types is an extension of simply typed �-
al
ulus

where types 
ontain more information on terms than their fun
tional degree. For

instan
e in simply typed �-
al
ulus, we may 
onsider lists (i.e. �nite sequen
es)

of natural numbers as atoms and thus have an atomi
 type list and two symbols

" of type list for the empty list and : of type list ! nat ! list) to add an

element at the end of a list. For instan
e the list 1; 1; 2; 3; 5 is expressed by the term

(: (: (: (: (: " 1) 1) 2) 3) 5).

But we may want to enri
h the type system in su
h a way that the length of the

list is a part of its type, i.e. we want to have a family of types (list 0), (list 1),

(list 2), et
. parametrized by a term of type nat.

The type of a fun
tion taking as argument a natural number n and returning a list

of length n, 
annot be written nat! (list n) but we must express the information

that the variable n refers to the argument of the fun
tion, thus we write su
h a type

�n

nat

(list n). When we apply su
h a fun
tion to, for instan
e, the term 4 we get a

term of type (list 4), i.e. a list of four elements. From now on, the notation A! B

is just an abbreviation for �x

A

B where x does not o

ur in B. The symbol list is

not a type but it has type nat! Type where Type is a new base type.

As types 
ontain terms, the type of a variable may be 
hanged by a substitution,

for instan
e if x is a variable of type (list n) the term �x x has type (list n) !

(list n), but substituting n by 4 
hanges the type of x to (list 4) and the type of

�x x to (list 4) ! (list 4). In su
h a system, we usually indi
ate the type of ea
h

variable by a subs
ript at its binding o

urren
e, writing, for instan
e �x

(list n)

x.

7.1.2. Types Parametrized by Types

In the same way, we may want to parametrize the type list by the type of the

elements of the list, in order to 
onstru
t lists of natural numbers, lists of sets of

natural numbers, lists of lists of natural numbers, et
. i.e. we want to have a family

of type (list nat), (list (nat ! o)), (list (list nat)), et
. parametrized by a type.

When we have su
h types parametrized by types we need also to parametrize terms

by types, i.e. to have terms taking a type as argument, for instan
e the symbol
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" must be parametrized by a type in su
h a way that (" nat) be a term of type

(list nat), (" (nat! o)) a term of type (list (nat! o)), et
.

Taking none, one or several of the three features: types parametrized by

terms (dependent types), types parametrized by types (type 
onstru
tors), terms

parametrized by types (polymorphi
 types), we get 2

3

= 8 
al
uli (��-
al
ulus

[Harper, Honsell and Plotkin 1993℄, systems F and F

!

[Girard 1970, Girard 1972℄,

the Cal
ulus of 
onstru
tions [Coquand 1985, Coquand and Huet 1988℄, et
.) that

are usually represented as the verti
es of a 
ube [Barendregt 1992℄.

7.1.3. Proofs as Obje
ts

These extensions of simply typed �-
al
ulus are needed when we 
onsider extensions

of higher-order logi
 where proofs are obje
ts. In higher-order logi
, the number 2

is expressed by a term, the set E of even numbers too, the proposition (E 2) that

2 is even also, but the proof that this proposition holds is not a term. Intuitionisti


type theory [Martin-L�of 1984℄ and the Cal
ulus of Constru
tions [Coquand 1985,

Coquand and Huet 1988℄ are extensions of higher-order logi
 where su
h proofs are

terms of the formalism too.

These formalisms use Brouwer-Heyting-Kolmogorov notion of proof : proofs of

atomi
 propositions are atoms, proofs of propositions of the form A ) B are

fun
tions mapping proofs of A to proofs of B (for instan
e, the term �x

P

0

�y

Q

0

x is

a proof of P ) Q) P ) and proofs of propositions of the form 8x

T

P are fun
tions

mapping every obje
t a of the type T to a proof of (a=x)P .

As remarked by H.B. Curry [Curry and Feys 1958℄, N.G. de Bruijn [de Bruijn

1980℄ and W. Howard [Howard 1980℄, the type of su
h a term is isomorphi
 to the

proposition itself, i.e. proofs of propositions of the form A) B have type A

0

! B

0

where A

0

is the type of proofs of A and B

0

the type of proofs of B. Proofs of

propositions of the form 8x

T

P have type �x

T

P

0

where P

0

the type of the proofs

of P .

As usual, we identify isomorphi
 obje
ts and thus identify A ) B and A ! B,

8x

T

P and �x

T

P ,

7.2. Uni�
ation in �-
al
ulus with Dependent Types

7.2.1. ��-
al
ulus

The �rst uni�
ation algorithm for su
h an extension of simply typed �-
al
ulus has

been proposed by C.M. Elliott [Elliott 1989, Elliott 1990℄ and D. Pym [Pym 1990℄

for ��-
al
ulus i.e. a 
al
ulus where types may be parametrized by terms, but not

by types and terms 
annot be parametrized by types either. The main idea in this

algorithm is still the same: simplify rigid-rigid equations, 
onstru
t solutions to


exible-rigid equations in
rementally with elementary substitutions, substituting

variables by terms of the form �y

1 T

1

::: �y

p T

p

(h (H

1

y

1

::: y

p

) ::: (H

r

y

1

::: y

p

))

where h is either a bound variable or the head variable of the rigid term, and avoid

solving 
exible-
exible equations that always have solutions.
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The main di�eren
e 
on
erns the typing of substitutions. In simply typed �-


al
ulus, if we have a variable X of type T ! U ! T and an equation (X a b) = a

then the potential elementary substitutions substitute the terms �x �y x, �x �y y,

�x �y a for the variable X . But the se
ond term has type T ! U ! U and thus


annot be substituted to X (see de�nition 4.1). We sele
t this way the elementary

substitutions that are well-typed, i.e. repla
e a variable by a term of the same type.

In ��-
al
ulus a type may 
ontain variables and thus a type may be 
hanged by

a substitution. Thus, when applying a substitution t=X we must not 
he
k that the

type of X and t are the same, but we must unify them, or add an equation relating

their types to the problem.

For instan
e, if the variable X has type (list 0) ! (list Y ) ! (list 0)

and we have the problem (X " b) = ", although the elementary substitution

�x

(list 0)

�y

(list Y )

y=X is not well typed (the variable has type (list 0)! (list Y )!

(list 0) and the term (list 0)! (list Y )! (list Y )) we must not reje
t it. Indeed,

this substitution will be well-typed when we substitute the term 0 for the variable

Y leading to the solution 0=Y; �x

(list 0)

�y

(list 0)

y=X . Thus we must 
onsider all the

potential elementary substitutions, well-typed or not, and when we perform su
h

a substitution, we must add to the uni�
ation problem the a

ounting equation of

this substitution, i.e. the equation relating the type of the variable and the type of

the term.

In the example above the a

ounting equation is

(list 0)! (list Y )! (list Y ) = (list 0)! (list Y )! (list 0)

and it simpli�es to Y = Y; Y = 0.

As we 
onsider ill-typed substitutions, we have to 
onsider ill-typed, and thus

potentially nonnormalizable, equations. In fa
t, Elliott and Pym have proved that,

in ��-
al
ulus, provided the simpli�
ation of the a

ounting equation su

eeds,

the equations, although ill-typed, always normalize [Elliott 1989, Elliott 1990, Pym

1990℄.

7.2.2. Polymorphism, Type Constru
tors, Indu
tive Types

When we 
onsider also polymorphi
 types and types 
onstru
tors, i.e. terms

parametrized by types and types parametrized by types, we still need a

ount-

ing equations, but new phenomena happen: the number of arguments of the head

variable in an elementary substitution is not �xed by its type anymore, for instan
e

if the variable h has type �x

Type

x and we want to build a term of type A we 
an

build the term

(h (A! :::! A

| {z }

n times

! A) a ::: a

| {z }

n times

)

where the variable h has n + 1 arguments. Thus we need to 
onsider elementary

substitutions where the number of arguments of the head variable is arbitrary

[Dowek 1993a, Dowek 1991a℄.

Another di�eren
e is that 
exible-
exible equation do not always have solutions,
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for instan
e if the variable X has type �x

Type

x, the equation

(X (A! B) a) = (X B)

has no solution [Dowek 1991a℄. Thus we must enumerate the elementary substitu-

tions for 
exible-
exible equations too.

At last, we loose the normalization property for ill-typed equations but we 
an

prove that in any situation there is always at least a variable that has a well-typed

type and that we 
an instantiate.

Besides dependent types, polymorphi
 types and types 
onstru
tors, we 
an also


onsider indu
tive types, i.e. redu
tion rules for re
ursor on some data types (see

se
tion 1.5 and 4.4) [G�odel 1958, Girard et al. 1989, Martin-L�of 1984, Paulin-

Mohring 1993, Werner 1994℄ and extend the uni�
ation algorithm to these systems

[Sa��di 1994, Cornes 1997℄.

7.3. Closed Solutions

In ��-
al
ulus we 
annot assume anymore that every atomi
 type is inhabited. For

instan
e 
onsider a type family (even 0), (even 1), (even 2), et
. su
h that (even n)

is the type of proofs that n is even. When n is odd, for instan
e for n = 1, this type

must be empty.

Thus, 
exible-
exible equations do not always have 
losed solutions (see se
-

tion 4.2.6). Like in simply typed �-
al
ulus, the existen
e of a 
losed solution to

a 
exible-
exible uni�
ation problem is unde
idable. In ��-
al
ulus type inhabita-

tion is unde
idable (see [Bezem and Springintveld 1996℄) and thus even uni�
ation

problems with no equations (or uni�
ation problems on the form X = X) are

unde
idable.

Thus, when looking for 
losed solutions in ��-
al
ulus, we 
annot avoid solving


exible-
exible equations.

7.4. Automated Theorem Proving as Uni�
ation

Using Curry-de Bruijn-Howard isomorphism, a provability problem in propositional

minimal logi
 
an be be expressed as a type inhabitation problem in simply typed

�-
al
ulus and thus as an higher-order uni�
ation problem [Zaion
 1988℄. In the

same way a provability problem in �rst-order minimal logi
 
an be expressed as a

uni�
ation problem in ��-
al
ulus [Hagiya 1991, Pfenning 1991a℄ and a provability

problem in higher-order intuitionisti
 logi
 
an be expressed as a uni�
ation problem

in the Cal
ulus of 
onstru
tions [Dowek 1993a, Dowek 1991a℄.

Thus, in �-
al
uli with dependent types, provided we sear
h for 
losed solutions,

uni�
ation is not a subroutine of automated theorem proving methods anymore,

but automated theorem proving 
an be redu
ed to uni�
ation.

For instan
e, 
onsider a 
ontext where we have

� a type symbol T , i.e. a symbol T of type Type,
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� two symbols a and b of type T ,

� a binary relation �, of type T ! T ! Type,

� an axiom h: 8x

T

8y

T

8z

T

((x � y)) (y � z)) (x � z)), i.e. a symbol h of type

�x

T

�y

T

�z

T

((x � y)! (y � z)! (x � z)),

� two axioms v and w: a � b and b � 
, i.e. two symbols v and w of type a � b

and b � 
.

We sear
h a proof of the proposition a � 
. We start with a variable X of

type a � 
 and no equation (or the equation X = X). As we have no equa-

tion, all the equations are 
exible-
exible, thus we must try all the possible head

variables for term substituted for X , among them we 
onsider the substitution

(h Y

1

Y

2

Y

3

Y

4

Y

5

)=X introdu
ing variables Y

1

, Y

2

and Y

3

of type T , Y

4

of type

Y

1

� Y

2

and Y

5

of type Y

2

� Y

3

. The a

ounting equation of this substitution is

(a � 
) = (Y

1

� Y

3

)

whi
h simpli�es to

a = Y

1


 = Y

3

These equations are 
exible-rigid, the only possible elementary substitution for Y

1

is a=Y

1

and the only possible one for Y

3

is 
=Y

3

. The a

ounting equations of these

substitution are trivial (T = T ), thus we get a problem with three variables (Y

2

,

Y

4

, Y

5

) and no equations.

Instantiating, for instan
e, the variable Y

5

we must try all the possible head

variables, among them we 
onsider the substitution w=Y

5

leading to the a

ounting

equation

(Y

2

� 
) = (b � 
)

and it simpli�es to

Y

2

= b

This equation is 
exible-rigid, the only possible solution for Y

2

is b=Y

2

. The a
-


ounting equation of this substitution is trivial (T = T ) and thus we get a problem

with one variable (Y

4

) and no equation.

Instantiating this variable, we must try all the possible head variables, among

them we 
onsider the substitution v=Y

4

. The a

ounting equation of this substitu-

tion is trivial ((a � b) = (a � b)) and thus, we get a problem with no variables

and no equations. We are done. The term substituted for X , i.e. the proof of the

proposition a � 
 is (h a b 
 v w).

Here, all the proof sear
h has been performed by the uni�
ation algorithm. Noti
e

that the elementary substitutions (h Y

1

Y

2

Y

3

Y

4

Y

5

)=X , w=Y

5

, v=Y

4

would be


onsidered as resolution steps in more traditional approa
hes while the elementary

substitutions a=Y

1

, 
=Y

3

and b=Y

2

would be 
onsidered as genuine uni�
ation steps.

Patterns uni�
ation is de
idable in all the 
al
uli with dependent types [Pfenning

1991b℄. Pattern mat
hing is unde
idable in most of the 
al
uli with dependent types

[Dowek 1991b, Dowek 1993b, Dowek 1991a℄ but se
ond-order mat
hing is de
idable
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[Dowek 1991
, Dowek 1991a℄, and third-order mat
hing is de
idable in some systems

[Springintveld 1995a, Springintveld 1995b, Springintveld 1995
℄.

With dependent types also, the uni�
ation steps 
an be de
omposed using expli
it

substitutions [Magnusson 1994, Mu~noz 1997℄.
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