Logique

Résumé des épisodes précédents

Une fusée à deux étages :

logique (\Rightarrow , \forall ...) théorie (=, +, \times , \in ...)

Exemples de théories : PA...

Démontrabilité dans PA indécidable Démontrabilité dans la logique des prédicats indécidable (théorème de Church)

De l'utilisation positive des résultats négatifs

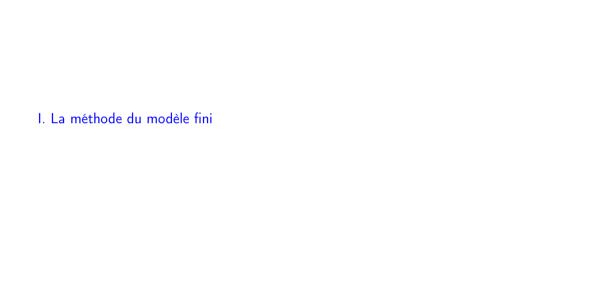
- ► Le théorème de Church demande un prédicat binaire : si que des prédicats unaires décidable
- La démontrabilité peut devenir décidable si on ajoute des axiomes : identifier des théories décidables : Presburger, Skolem, Tarski...

Comment montrer qu'une théorie est décidable?

(Parmi d'autres) deux méthodes

Si A non démontrable dans \mathcal{T} , alors il existe un modèle fini de \mathcal{T} , $\neg A$ Énumération des démonstrations et des modèles finis

Décidabilité de la démontrabilité des propositions closes sans quantificateurs Élimination des quantificateurs



Un unique symbole de prédicat unaire

Décidabilité de la théorie vide avec un unique symbole de prédicat unaire P

$$\forall x \ P(x), \ \exists x \ P(x), \ \exists x \ (P(x) \Rightarrow \forall y \ P(y))...$$

Un modèle \mathcal{M} de cardinal quelconque, deux genres d'objets : les a tels que $\hat{P}(a)=1$ et ceux tels que $\hat{P}(a)=0$

Tous les a tels que $\hat{P}(a) = 1$ sont indiscernables (idem pour ceux tels que $\hat{P}(a) = 0$) On quotiente par la relation $a \sim b$ ssi $\hat{P}(a) = \hat{P}(b)$

On quotiente par la relation $a \sim b$ ssi P(a) = P(b)

Un modèle de cardinal 1 ou 2 qui valide les mêmes propositions que ${\mathcal M}$

Un unique symbole de prédicat unaire

Si A non démontrable alors il existe un modèle fini de $\neg A$: énumération des démonstrations et des modèles finis

A démontrable ssi A valide dans tous les modèles ssi A valide dans tous les modèles de cardinal ≤ 2

Généralisation à n symboles de prédicats unaires (2^n)

L'élimination des quantificateurs

$$A \mapsto A'$$

A' sans quantificateurs

 $A \Leftrightarrow A'$ démontrable

Le cas où A est de la forme $\exists x \ B$ ou $\forall x \ B$ avec B sans quantificateurs suffit (récurrence)

Le cas où A est de la forme $\exists x \ B$ avec B sans quantificateurs suffit

Si
$$(\exists x \neg B) \Leftrightarrow C'$$
 alors $(\forall x \ B) \Leftrightarrow (\neg \exists x \neg B) \Leftrightarrow (\neg C')$

L'exemple le plus célèbre

$$\exists x \ (ax^2 + bx + c = 0)$$

$$\Leftrightarrow$$

$$((\neg a = 0 \land b^2 - 4ac \ge 0) \lor (a = 0 \land (\neg b = 0 \lor c = 0)))$$

Trois exemples : les ordres totaux denses sans extrémités, l'arithmétique de Presburger, l'analyse élémentaire

Les axiomes

$$=$$
, $<$

Axiomes de l'égalité Ordre strict : antiréflexivité, transitivité

Total:

$$\forall x \forall y \ (x < y \lor y < x \lor x = y)$$

Dense:

$$\forall x \forall y \exists z \ (x < y \Rightarrow (x < z \land z < y))$$

Sans extrémités :

$$\forall x \exists y \ (y < x)$$

$$\forall x \exists y \ (x < y)$$

Un exemple

Équivalence des propositions

$$\exists x \ (y < x \land x < z \land x < z')$$
$$y < z \land y < z'$$

On supprime les implications

$$C \Rightarrow D \longrightarrow \neg C \lor D$$

On supprime les négations

$$\neg(C \lor D) \longrightarrow \neg C \land \neg D$$

• • •

$$\neg (y < z) \longrightarrow (z < y \lor z = y)$$

$$\neg (y = z) \longrightarrow (y < z \lor z < y)$$

On distribue \land sur \lor On simplifie \top et \bot

$$\top \land C \longrightarrow C \quad \bot \land C \longrightarrow \bot \quad \top \lor C \longrightarrow \top \quad \bot \lor C \longrightarrow C$$

Forme normale disjonctive : disjonction de conjonctions de propositions atomiques (ou \top ou \bot)

On distribue ∃ sur ∨

$$\exists x \ (C \lor D) \longrightarrow (\exists x \ C \lor \exists x \ D)$$

 $\exists x\ A$ avec A conjonction de propositions atomiques On sort les propositions atomiques D qui ne contiennent pas x

$$\exists x \ (C \land D) \longrightarrow (\exists x \ C) \land D$$

On supprime les
$$x = y$$
, $y = x$, $x = x$ et $x < x$

$$\exists x \ (x = y \land C) \longrightarrow (y/x)C$$

$$\exists x \ (x = x \land C) \longrightarrow \exists x \ C$$

$$\exists x \ (x < x \land C) \longrightarrow \bot$$

 $\exists x \ A \text{ avec } A \text{ conjonctions de propositions de la forme } x < y \text{ ou } y < x$

$$\exists x \; ((\bigwedge_{y \in I} y < x) \land (\bigwedge_{z \in J} x < z))$$

Si I et J non vides Un point entre le maximum des y et le minimum des z :

$$\bigwedge_{y \in I, z \in J} (y < z)$$

(densité) Si I vide ou J vide \top (pas d'extrémités)

Le théorème de Presburger

L'ensemble des propositions formées dans le langage 0, S, +, = et valides dans le modèle $\mathbb N$ est décidable

Attention : pas « démontrables dans l'arithmétique de Presburger » (Corollaire?)

Chaque proposition en axiome : théorie axiomatique cohérente, complète et décidable

Un autre critère de vérité pour les propositions linéaires : le calcul remplace la démonstration

Corollaire d'un théorème plus simple

Ensemble des propositions formées dans le langage 0, 1, +, \leq , -, $Mult_2$, $Mult_3$, $Mult_4$...

valides dans le modèle Z

décidable

Validité des propositions closes et sans quantificateurs

Trivialement décidable

$$4 + 5 \le 8 \lor Mult_4(7)$$

Un exemple

$$\exists x \ (1 \leq 3.x \land x \leq 7 - x)$$
?

On rassemble les x d'un coté et les autres termes de l'autre

$$\exists x \ (1 \leq 3.x \land 2.x \leq 7)$$

On multiplie la première inéquation par 2 et la seconde par 3

$$\exists x \ (2 \leq 6.x \land 6.x \leq 21)$$

On effectue un changement de variable

$$\exists x' \ (2 \leq x' \land x' \leq 21 \land Mult_6(x'))$$

Existe-t-il un multiple de 6 dans l'intervalle 2..21? Oui : 18

Les variables libres : un autre exemple

$$\exists x \ (1 \leq 3.x \land x \leq y - x)$$

On rassemble les x d'un coté et les autres termes de l'autre

$$\exists x \ (1 \leq 3.x \land 2.x \leq y)$$

On multiplie la première inéquation par 2 et la seconde par 3

$$\exists x \ (2 \le 6.x \land 6.x \le 3.y)$$

On effectue un changement de variable

$$\exists x \ (2 \leq x \land x \leq 3. y \land Mult_6(x))$$

Existe-t-il un multiple de 6 dans l'intervalle 2..3.y?

Les variables libres : un autre exemple

S'il en existe un alors le plus grand est 3.y, 3.y - 1, 3.y - 2, 3.y - 3, 3.y - 4 ou 3.y - 5

 $\exists x \ A \ \text{\'equivalent \'a}$

$$(3y/x)A \lor (3y-1/x)A \lor (3y-2/x)A \lor (3y-3/x)A \lor (3y-4/x)A \lor (3y-5/x)A$$
 qui est sans quantificateurs

Des inéquations x < t: on accroche une solution à l'un des t (ici 3.y)

Mais si pas d'inéquations...

$$\exists x \ (2 \leq x \land Mult_6(x))$$

S'il y a une solution p tous les p' supérieurs à p et congrus à p modulo 6 sont aussi solution

$$\exists x \ (\top \land Mult_6(x))$$

Périodique de période 6 et coïncide avec $\exists x \ A$ à partir d'un certain rang La tester sur une période

$$(0/x)A' \vee (1/x)A' \vee (2/x)A' \vee (3/x)A' \vee (4/x)A' \vee (5/x)A'$$

Sans quantificateurs

Proposition $\exists x \ A$, A sans quantificateurs

On supprime les implications

$$C \Rightarrow D \longrightarrow \neg C \lor D$$

On supprime les négations

$$\neg(C \lor D) \longrightarrow \neg C \land \neg D$$

...

$$\neg t \leq u \longrightarrow u + 1 \leq t$$

$$\neg Mult_n(t) \longrightarrow Mult_n(t+1) \lor ... \lor Mult_n(t+n-1)$$

Une proposition formée avec \top , \bot , \land , \lor à partir de propositions atomiques de la forme $t \le u$ ou $Mult_n(t)$

Dans chaque inéquation, les x d'un coté du signe \leq et les autres termes de l'autre On multiplie pour égaliser les coefficients On effectue un changement de variable

Une proposition formée avec les mêmes connecteurs à partir de propositions atomiques de la forme

```
x \le t, t \le x, 0 \le t, Mult_n(x+t) et Mult_n(t) où t est un terme qui ne contient pas x (Pour chaque valuation \rho), périodique de période r à partir d'un certain rang
```

E ensemble de tous les t tels que $x \le t$ apparaisse dans A A' obtenue en remplaçant dans A les propositions de la forme $x \le t$ par \bot et les propositions de la forme $t \le x$ par \top (périodique et coïncide avec A à partir d'un certain rang)

B disjonction de toutes les propositions de la forme

- ((t-j)/x)A où t terme de E et j entier compris entre 0 et r-1
- (i/x)A' où i entier compris entre 0 et r-1

- ((t-i)/x)A où t terme de E et j entier compris entre 0 et r-1
- (i/x)A' où i entier compris entre 0 et r-1

$\exists x \ A \ \text{valide ssi } B \ \text{valide}$

Pour chaque valuation ρ et solution p deux cas possibles

- (1) tous les p' supérieurs à p et congrus à p modulo r solutions
- (2) ce n'est pas le cas

Dans le premier cas l'un des (i/x)A' est valide

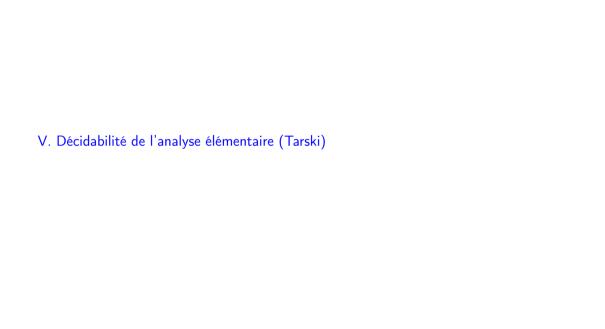
Dans le second l'un des ((t-j)/x)A est valide

Réciproque triviale

Donc

L'arithmétique de Presburger est décidable

Corollaire : \times n'est pas définissable dans l'arithmétique de Presburger Corollaire : l'existence de solutions entières à des inéquations linéaires est décidable



Ensemble des propositions formées dans le langage +, \times , =, < et valides dans $\mathbb R$ décidable

$$\exists x \ (ax^2 + bx + c = 0)$$

$$\Leftrightarrow$$

$$((\neg a = 0 \land b^2 - 4ac \ge 0) \lor (a = 0 \land (\neg b = 0 \lor c = 0)))$$

Géométrie élémentaire décidable

La prochaine fois

Retour sur le tiers exclu : la notion de démonstration constructive