$(A \lor C) \land (B \lor C), (\top \lor A) \Leftrightarrow \top, (A \lor \top) \Leftrightarrow \top, (\bot \lor A) \Leftrightarrow A \text{ et } (A \lor \bot) \Leftrightarrow A \text{ sont démontrables.}$

Montrer que, pour toute proposition sans quantificateurs A, il existe une proposition normale conjonctive A', telle que la proposition $A \Leftrightarrow A'$ soit démontrable.

3. Montrer que, pour toute proposition A, il existe une proposition universelle A' de la forme $\forall x_1 \dots \forall x_n \ C$, où C est une proposition normale conjonctive telle que le séquent $A' \vdash$ soit démontrable si et seulement si le séquent $\vdash A$ est démontrable.

Montrer que la proposition $(\forall x \ (A \land B)) \Leftrightarrow ((\forall x \ A) \land (\forall x \ B))$ est démontrable. Montrer que le séquent $\Gamma, A \land B \vdash \Delta$ est démontrable si et seulement si le séquent $\Gamma, A, B \vdash \Delta$ est démontrable.

Montrer que, pour toute proposition A, il existe des propositions C_1, \ldots, C_p de la forme \bot ou $\forall x_1 \ldots \forall x_n \ (D_1 \lor (\ldots \lor D_m))$, où chaque D_i est une proposition atomique ou la négation d'une proposition atomique, telles que le séquent $\vdash A$ soit démontrable si et seulement si le séquent $C_1, \ldots, C_p \vdash$ est démontrable.

Exercice 6.4

Cet exercice demande d'avoir fait l'exercice 6.2.

- 1. Montrer que l'on obtient un système équivalent au calcul des séquents sans coupures si on restreint la règle contraction-gauche aux propositions de la forme $\forall x \ A$ et la règle contraction-droite aux propositions de la forme $\exists x \ A$.
- 2. Montrer que la démonstration d'une proposition existentielle dans le calcul des séquents sans coupures n'utilise jamais les règles ∃-gauche et ∀-droite. Montrer que dans le calcul des séquents sans coupures, privé des règles ∃-gauche et ∀-droite, le choix de la proposition est indifférent.
- 3. Écrire un programme de recherche de démonstrations dans le calcul des séquents.

Exercice 6.5 (Le théorème de Herbrand)

Soit A une proposition prénexe close de la forme $Q_1x_1 \ldots Q_nx_n$ C. On appelle *instance close* de A, une proposition close de la forme σC , où σ est une substitution de domaine x_1, \ldots, x_n .

Soient A_1, \ldots, A_n des propositions existentielles closes et Γ et Δ des multiensembles de propositions closes sans quantificateurs. Montrer que si le langage contient au moins une constante, alors le séquent $\Gamma \vdash A_1, \ldots, A_n, \Delta$ est démontrable dans le calcul des séquents sans coupures si et seulement s'il existe