Définition 4.26

L'ensemble $\mathcal{I}_0^{u,v}$ est l'ensemble des termes qui se réduisent, en appel par nom, en u et l'ensemble $\mathcal{I}_{p+1}^{u,v}$ est l'ensemble des termes qui se réduisent en appel par nom, en un terme de la forme $(v\ w)$ où $w\in\mathcal{I}_p^{u,v}$.

Proposition 4.9

Si le terme t se réduit en \underline{p} , en appel par nom, alors le terme $(t\ u\ v)$ appartient à $\mathcal{I}_p^{u,v}$.

Démonstration. On montre, plus généralement, qu'il existe un terme w de $\mathcal{I}_p^{u,v}$, tel que le terme $(t\ u\ v)$ se réduise en w, en appel par nom, en deux étapes. Par récurrence double sur p et sur la longueur de la réduction de t à p.

Si $t = \underline{p}$, alors le terme $(t \ u \ v)$ se réduit, en appel par nom, en deux étapes, en le terme $w = (v \ (v \ \dots \ (v \ u) \dots))$, avec p occurrences du terme v, qui appartient à $\mathcal{I}_p^{u,v}$.

Sinon, il existe un terme t' tel que $t \succ t'$ et t' se réduise en \underline{p} en appel par nom en une étape de moins. Le cas où le terme t n'est pas de la forme fun est facile, car dans ce cas, le terme $(t \ u \ v)$ se réduit en $(t' \ u \ v)$ en appel par nom et il suffit d'appliquer l'hypothèse de récurrence.

Si, en revanche, t est de la forme fun, il s'écrit $fun y_1 \to \dots fun y_n \to t_1$ où t_1 n'est pas de la forme fun et $n \neq 0$. Le terme t se réduisant en un entier de Church, on a n = 1 ou n = 2. Écrivons $t_1 = (r \ s_1 \ \dots \ s_m)$ où r n'est pas une application. Le terme r est donc une variable ou un terme de la forme fun.

Si le terme r est une variable, alors le terme t se réduisant en un entier de Church, mais n'étant pas irréductible, $n=2,\ r=y_2,\ m=1$. Le terme $(t\ u\ v)$ est donc égal à $((fun\ y_1\to fun\ y_2\to (y_2\ s_1))\ u\ v)$ et il se réduit, en appel par nom, en deux étapes, en le terme $w=(v\ (u/y_1,v/y_2)s_1)$. On pose $w'=(u/y_1,v/y_2)s_1$. Le terme $fun\ y_1\to fun\ y_2\to s_1$ se réduit en p-1 en appel par nom et le terme $((fun\ y_1\to fun\ y_2\to s_1)\ u\ v)$ se réduit en w', en appel par nom, en deux étapes. Par hypothèse de récurrence, le terme w' appartient à $\mathcal{I}_{p-1}^{u,v}$ et donc w appartient à $\mathcal{I}_{p-1}^{u,v}$.

Si le terme r est de la forme $fun\ z \to r'$, alors $t_1 = ((fun\ z \to r')\ s_1\ ...\ s_m)$ et ce terme n'étant pas de la forme $fun,\ m \neq 0$. Le terme t est donc de la forme $fun\ y_1 \to fun\ y_2 \to ...\ fun\ y_n \to ((fun\ z \to r')\ s_1\ s_2\ ...\ s_m)$ et le terme t' en lequel il se réduit en appel par nom en une étape est $fun\ y_1 \to fun\ y_2 \to ...\ fun\ y_n \to ((s_1/z)r'\ s_2\ ...\ s_m)$. Si n=1, le terme $(t'\ u\ v)$ est égal à $((fun\ y_1 \to ((s_1/z)r'\ s_2\ ...\ s_m))\ u\ v)$ et il se réduit, en appel par nom, en une étape, en $w=(((u/y_1,(u/y_1)s_1/z)r'\ (u/y_1)s_2\ ...\ (u/y_1)s_m)\ v)$. Par hypothèse de récurrence, ce terme appartient à $\mathcal{I}_p^{u,v}$. Le terme $(t\ u\ v)$