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Temporal logic with until and since

◮ Linearly ordered set 〈X ,≤〉: reflexivity, antisymmetry,
transitivity, totality.

• • • • • • • • • • • . . .

◮ Models σ : X → P(PROP) based on 〈X ,≤〉.

� ♠ � • • • • ♣ ♠ ♣ • N . . .

◮ Formulae in LTL(U,S):

φ ::= p | ¬φ | φ1 ∧ φ2 | φ1Uφ2 | φ1Sφ2
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Satisfaction relation

◮ σ, β |= p iff p ∈ σ(β),

◮ σ, β |= φ1Uφ2 iff there is β < γ such that σ, γ |= φ2 and for
every γ′ ∈ (β, γ), we have σ, γ′ |= φ1,

pUq p p p q

◮ σ, β |= φ1Sφ2 iff there is γ < β such that σ, γ |= φ2 and for
every γ′ ∈ (γ, β), we have σ, γ′ |= φ1.

q p pSq
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Linear-time temporal logics

◮ Satisfiability and model checking for LTL with until and since
over the natural numbers is pspace-complete.

[Sisla & Clarke, JACM 85]

◮ Satisfiability and model checking for LTL with until and since
over the reals is pspace-complete. [Reynolds, submitted]

◮ Satisfiability for LTL with until over the class of all linear
orders is pspace-complete. [Reynolds, JCSS 03]

◮ LTL(U,S) over the class of ordinals is as expressive as the
first-order logic over the class of structures 〈α,<〉 where α is
an ordinal. [Kamp, PhD 68]
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Well-ordered sets

◮ Well-ordered set 〈X ,≤〉: linearly ordered set such that each
non-empty subset of X has a least element.

◮ Dedekind-complete 〈X ,≤〉: linearly ordered set such that
every non-empty bounded subset has a least upper bound.

◮ Examples:
◮ 〈R,≤〉 and 〈N,≤〉 are Dedekind-complete.
◮ 〈Q,≤〉 and 〈Z,≤〉 are not well-ordered.
◮ All the ordinals are Dedekind-complete.

◮ Ordinal: isomorphism class of well-ordered sets.
ω is the class for 〈N,≤〉.
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Two or three things about ordinals

◮ Every set of ordinals is well-ordered.

◮ Successor ordinal: existence of a maximal element

4 : • • • • ω + 1 : • • • • • • • • • • • . . . + •

◮ Limit ordinal: no maximal element

ω2 :

ω
︷ ︸︸ ︷

• • • . . .

ω
︷ ︸︸ ︷

• • • . . .

ω
︷ ︸︸ ︷

• • • . . . . . .

ωk + ω :

ωk−1

︷ ︸︸ ︷

• • • . . .

ωk−1

︷ ︸︸ ︷

• • • . . .

ωk−1

︷ ︸︸ ︷

• • • . . . . . .
︸ ︷︷ ︸

ωk

ω
︷ ︸︸ ︷

• • • . . .

◮ ωω: least upper bound of {ω, ω2, ω3, . . .}.
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Our results about LTL(U, S) over ordinals

◮ If φ is satisfiable, then φ has an α-model with α < ω|φ|+2.

◮ The satisfiability problem for LTL(U,S) over the class of
countable ordinals is pspace-complete.

◮ {O1, . . . ,Ok} first-order definable operators and α countable
ordinal. Satisfiability for LTL(O1, . . . ,Ok) restricted to
α-models is in pspace.
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Uniform satisfiability is also in pspace

◮ Truncation truncω(α) ∈ (0, ωω × 2) (α > 0) defined by
◮ α = ωωγ + β with β ∈ [0, ωω).

◮ truncω(α) = ωω × min(γ, 1) + β.

◮ truncω(ωk) = ωk truncω(ωωω

+ ωk) = ωω + ωk

◮ Code of α: representation of truncω(α).

◮ There is a polynomial space algorithm that, given an
LTL(U,S) formula φ and the code of a countable ordinal α,
determines whether φ has an α-model.
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Models of ordinal length

◮ MSO (and hence LTL) over countable 〈α,<〉 is decidable.
[Büchi & Siefkes, LNM 73]

◮ Models of length ω × n for partial approach to model
checking. [Godefroid & Wolper, IC 94]

◮ Timed automata accepting Zeno words in order to model
physical phenomena with convergent execution.

[Bérard & Picaronny, 97]

◮ LTL with until over any countable ordinal is in exptime.
[Rohde, PhD 97]

◮ pspace-complete LTL over ωk -models with unary encoding of
Xβ and Uβ. [Demri & Nowak, IJFCS 07]
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Automata on ordinals

◮ α-sequence σ : α→ Σ
(α is identified with {β : β < α}.)

◮ Ordinal automata [Büchi, 64; Choueka, JSCC 78;
Wojciechowski, 84].

◮ Automata on linear orderings [Bruyère & Carton, MFCS 01].

◮ See also [Bedon, PhD 98].
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Automata-based approach

◮ φ 7→ Aφ [Büchi 62; Vardi & Wolper, IC 94].

◮ Models of φ are encoded in the language accepted by Aφ.

◮ For LTL over ω-sequences, Aφ is a Büchi automaton whose
size is exponential in |φ|.

◮ MSO over 〈N,≤〉 is non-elementary whereas LTL is in
pspace.
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Simple ordinal automata

◮ Simple ordinal automaton A = 〈X ,Q, δnext , δlim〉:
◮ finite set X (basis), set of locations Q ⊆ P(X ),

◮ δnext ⊆ Q × Q: next-step transition relation,

◮ δlim ⊆ P(X ) × Q: limit transition relation.

◮ α-path r : α→ Q (α > 0) :
◮ for every β + 1 < α, 〈r(β), r(β + 1)〉 ∈ δnext ,

◮ for every limit ordinal β < α, ∃ a limit transition 〈Z , q〉 s.t.

always(r,β)=Z
︷ ︸︸ ︷

(Z ∪ Y ) . . . (Z ∪ Y ′) . . . (Z ∪ Y ”) etc. q
︸︷︷︸

position β

Z : the set of elements of the basis that belong to every
location from some γ < β until β.
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Acceptance conditions

◮ Simple ordinal automaton with acceptance conditions
〈X ,Q, I ,F ,F , δnext , δlim〉:

◮ I ⊆ Q is the set of initial locations,
◮ F ⊆ Q is the set of final locations for accepting runs whose

length is some successor ordinal,
◮ F ⊆ P(X ) encodes the accepting condition for runs whose

length is some limit ordinal.

◮ Accepting run r : α→ Q:
◮ r(0) ∈ I ,
◮ if α is a successor ordinal, then r(α − 1) ∈ F ,
◮ otherwise always(r , α) ∈ F .

◮ Nonemptiness problem: check whether A has an accepting
run.
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Relationships with other classes of ordinal automata

◮ Alternative definitions:
◮ Add a finite alphabet and define δnext as a subset of

Q × Σ × Q.
◮ Words of length α are accepted by runs of length α+ 1 and

acceptance condition is defined from a set F ⊆ Q.

◮ With the above extensions, simple ordinal automata recognize
the same languages as the Büchi ordinal automata.

◮ Identify a location q ∈ Q with {X ⊆ Q : q ∈ X}
(from Büchi to simple ordinal automata).

◮ Nonemptiness problem for Büchi ordinal automata is in P.
[Carton, MFCS 02]

◮ Small runs of length ωO(|Q|) (standard) vs. small runs of
length ωO(|X |) (simple).
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Aφ = 〈X , Q, I , F ,F , δnext, δlim〉

◮ X = sub(φ). and Q is the set of maximally Boolean
consistent subsets of sub(φ).

◮ I is the set of locations that contain φ and no since formulae.

◮ F is the set of locations with no elements of the form ψ1Uψ2.

◮ F is the set of sets Y such that not {ψ1,¬ψ2, ψ1Uψ2} ⊆ Y ,
for every ψ1Uψ2 ∈ X .

◮ For all q, q′ ∈ Q, 〈q, q′〉 ∈ δnext iff the conditions below are
satisfied:

◮ (nextU): for ψ1Uψ2 ∈ sub(φ), ψ1Uψ2 ∈ q iff either ψ2 ∈ q′ or
ψ1, ψ1Uψ2 ∈ q′,

◮ (nextS): for ψ1Sψ2 ∈ sub(φ), ψ1Sψ2 ∈ q′ iff either ψ2 ∈ q or
ψ1, ψ1Sψ2 ∈ q.
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Aφ = 〈X , Q, I , F ,F , δnext, δlim〉 (II)

For all Y ⊆ X and q ∈ Q, 〈Y , q〉 ∈ δlim iff the conditions below
are satisfied:

◮ (limU1): if ψ1,¬ψ2, ψ1Uψ2 ∈ Y , then either ψ2 ∈ q or
ψ1, ψ1Uψ2 ∈ q,

◮ (limU2): if ψ1, ψ1Uψ2 ∈ q and ψ1 ∈ Y , then ψ1Uψ2 ∈ Y ,

◮ (limU3): if ψ1 ∈ Y , ψ2 ∈ q and ψ1Uψ2 is in the basis X , then
ψ1Uψ2 ∈ Y ,

◮ (limS): for every ψ1Sψ2 ∈ sub(φ), ψ1Sψ2 ∈ q iff (ψ1 ∈ Y and
ψ1Sψ2 ∈ Y ).
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Steps to get the pspace upper bound

◮ φ is satisfiable iff Aφ has an accepting run.

◮ If φ is satisfiable, then φ has an α-model with α < ω|φ|+2.

◮ The nonemptiness problem for simple ordinal automata can be
checked in polynomial space in |X |.

◮ The satisfiability problem for LTL(U,S) over the class of
ordinals is pspace-complete.
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Conclusion

◮ Our main contributions:

◮ Satisfiability for LTL(U, S) over the class of countable ordinals
is pspace-complete.

◮ For every countable α ≥ ωω, satisfiability for LTL(U, S)
restricted to models of length α is in pspace.

◮ Satisfiability for LTL(Oω) over the class of ωω-models is
pspace-complete (not presented here).

◮ Thanks to Kamp’s theorem, the pspace upper bound is
preserved by adding a finite amount of first-order definable
temporal operators.

◮ Open question: what about other classes of linear orderings?
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