A short introduction to ATL-like logics with resources

Stéphane Demri CNRS

LIMSI, November 2018

Logics for resource-bounded agents

- ATL-like logics with models where transitions have costs/rewards and resource requirements are expressed in the syntax.
- Model-checking problems for such logics are often undecidable as games on VASS are often undecidable.
- Many existing resource logics:
 - RBTL*
 - QATL*

► RB±ATL

[Bulling & Farwer, CLIMA X '09] [Bulling & Goranko, EPTCS 2013] [Alechina et al., ECAI'14]

- etc.
- Other logics for resource-bounded agents: step logic, justification logic, etc.

Concurrent game structures

- Action manager act : $Agt \times S \rightarrow \mathcal{P}(Act) \setminus \{\emptyset\}$. act $(1, s_3) = \{c\}$.
- ► Transition function δ : $S \times (Agt \rightarrow Act) \rightarrow S$. $\delta(s_4, [1 \mapsto c, 2 \mapsto c]) = s_3$.
- Labelling $L: S \to \mathcal{P}(PROP)$.

Basic concepts: joint actions and computations

- ▶ $f: A \rightarrow Act$: joint action by $A \subseteq Agt$ in *s*. Proviso: for all $a \in A$, we have $f(a) \in act(a, s)$.
- $D_A(s)$: set of joint actions by A in s.

$$\operatorname{out}(\boldsymbol{s},\mathfrak{f})\stackrel{\text{\tiny def}}{=} \{ \boldsymbol{s}' \in \boldsymbol{S} \ | \ \exists \, \mathfrak{g} \in D_{Agt}(\boldsymbol{s}) \ \mathrm{s.t.} \ \mathfrak{f} \sqsubseteq \mathfrak{g} \ \& \ \boldsymbol{s}' = \delta(\boldsymbol{s},\mathfrak{g}) \}$$

- Computation λ = s₀ ^{f₀}→ s₁ ^{f₁}→ s₂... such that for all *i*, we have s_{i+1} ∈ δ(s_i, f_i).
- Linear model $L(s_0) \rightarrow L(s_1) \rightarrow L(s_2) \cdots$.

Basic concepts: strategies

A strategy *F_A* for *A* is a map from the set of finite computations to the set of joint actions by *A* such that *F_A*(*s*₀ ^{f₀}/_→ *s*₁ · · · ^{f_{n-1}}/_→ *s_n*) ∈ *D_A*(*s_n*).

$$\lambda = s_0 \xrightarrow{\mathfrak{f}_0} s_1 \xrightarrow{\mathfrak{f}_1} s_2 \cdots \text{ respects } F_A \stackrel{\text{def}}{\Leftrightarrow} \forall i < |\lambda|,$$

$$s_{i+1} \in ext{out}(s_i, F_{\mathcal{A}}(s_0 \stackrel{\mathfrak{f}_0}{ o} s_1 \dots \stackrel{\mathfrak{f}_{i-1}}{ o} s_i))$$

- λ respecting *F_A* is maximal whenever λ cannot be extended further while respecting the strategy.
- $comp(s, F_A)$: max. computations from s respecting F_A .

The logic ATL

$\phi ::= p \mid \neg \phi \mid \phi \land \phi \mid \langle \langle A \rangle \rangle X \phi \mid \langle \langle A \rangle \rangle G \phi \mid \langle \langle A \rangle \rangle \phi U \phi$

 $p \in PROP \quad A \subseteq Agt$

 $\mathfrak{M}, \boldsymbol{s} \models \boldsymbol{\rho} \qquad \qquad \stackrel{\text{def}}{\Leftrightarrow} \quad \boldsymbol{s} \in L(\boldsymbol{\rho})$

def

 $\mathfrak{M}, \boldsymbol{s} \models \langle \langle \boldsymbol{A} \rangle \rangle \boldsymbol{X} \phi$

$$\stackrel{\text{def}}{\Leftrightarrow} \quad \text{there is a strategy } F_A \text{ s.t.} \\ \text{for all } s_0 \stackrel{\text{fo}}{\to} s_1 \dots \in \text{comp}(s, F_A), \\ \text{we have } \mathfrak{M}, s_1 \models \phi$$

 $\mathfrak{M}, \boldsymbol{s} \models \langle \langle \boldsymbol{A} \rangle \rangle \phi_1 \mathsf{U} \phi_2$

there is a strategy F_A s.t. for all $\lambda = s_0 \xrightarrow{f_0} s_1 \dots \in \operatorname{comp}(s, F_A),$ there is some $i < |\lambda|$ s.t. $\mathfrak{M}, s_i \models \phi_2$ and for all $j \in [0, i - 1]$, we have $\mathfrak{M}, s_j \models \phi_1.$

Model-checking problem

Model-checking problem for ATL:

Input: ϕ in ATL, a finite CGS \mathfrak{M} and a state *s*, Question: $\mathfrak{M}, s \models \phi$?

- Model-checking problem for ATL is P-complete.
 Labeling algorithm. [Alur & Henzinger & Kupferman, JACM 2002]
- ATL* = ATL + all path formulae à la CTL*.
- ► Model-checking problem for ATL* is 2EXPTIME-complete.

Resource-bounded concurrent game structures

Concurrent game structures + resources (counters)

- Number *r* of resources/counters.
- Partial cost function $cost : S \times Agt \times Act \rightarrow \mathbb{Z}^r$.
- Action $idle \in act(a, s)$ with no cost.
- Given a joint action $f: A \rightarrow Act$,

$$\mathsf{cost}_{\mathcal{A}}(s,\mathfrak{f}) \stackrel{\text{def}}{=} \sum_{a \in \mathcal{A}} \mathsf{cost}(s,a,\mathfrak{f}(a))$$

 $cost(s_2, 1, a) = (1, 1, 1, 1)$ $cost(s_2, 2, a) = (-2, 1, -3, 1)$ $cost_{\{1,2\}}(s_2, [1 \mapsto a, 2 \mapsto a]) = (-1, 2, -2, 2)$

b-strategies

- Initial budget $\mathbf{b} \in (\mathbb{N} \cup \{\omega\})^r$.
- λ = s₀ ^{f₀}→ s₁ ^{f₁}→ s₂... in comp(s, F_A) is b-consistent:
 v₀ ^{def} b,

▶
$$\mathbf{v}_{i+1} \stackrel{\text{def}}{=} \mathbf{v}_i + \text{cost}_A(\mathbf{s}_i, F_A(\mathbf{s}_0 \stackrel{\mathfrak{f}_0}{\rightarrow} \mathbf{s}_1 \dots \stackrel{\mathfrak{f}_{i-1}}{\rightarrow} \mathbf{s}_i)),$$

For all *i*, **0** ≤ **v**_{*i*}.

 Asymmetry between A and $(Agt \setminus A)$

• $comp(s, F_A, \mathbf{b})$: set of all the **b**-consistent computations.

► F_A is a **b**-strategy w.r.t. $s \stackrel{\text{def}}{\Leftrightarrow}$

$$\operatorname{comp}(s, F_A) = \operatorname{comp}(s, F_A, \mathbf{b})$$

The logic RB \pm ATL (Agt, r) [Alechina et al., ECAI'14]

$$\phi ::= \boldsymbol{\rho} \mid \neg \phi \mid \phi \land \phi \mid \langle \langle \boldsymbol{A}^{\mathbf{b}} \rangle \rangle \ \mathbf{X} \phi \mid \langle \langle \boldsymbol{A}^{\mathbf{b}} \rangle \rangle \ \mathbf{G} \phi \mid \langle \langle \boldsymbol{A}^{\mathbf{b}} \rangle \rangle \ \phi \mathbf{U} \phi$$

 $\boldsymbol{\rho} \in \operatorname{PROP} \ \boldsymbol{A} \subseteq \boldsymbol{A}\boldsymbol{g}t \ \boldsymbol{b} \in (\mathbb{N} \cup \{\omega\})^r$

 $\mathfrak{M}, \boldsymbol{s} \models \boldsymbol{\rho} \qquad \qquad \stackrel{\mathsf{def}}{\Leftrightarrow} \quad \boldsymbol{s} \in \boldsymbol{L}(\boldsymbol{\rho})$

$$\mathfrak{M}, \boldsymbol{s} \models \langle \langle \boldsymbol{A}^{\mathbf{b}} \rangle \rangle \mathsf{X} \phi \qquad \stackrel{\text{def}}{\Leftrightarrow} \quad \text{there is a } \boxed{\mathbf{b}\text{-strategy}} F_{\mathcal{A}} \text{ w.r.t. } \boldsymbol{s}$$

s.t. for all $\boldsymbol{s}_{0} \stackrel{\tilde{\mathfrak{f}}_{0}}{\to} \boldsymbol{s}_{1} \ldots \in \operatorname{comp}(\boldsymbol{s}, F_{\mathcal{A}}),$
we have $\mathfrak{M}, \boldsymbol{s}_{1} \models \phi$

 $\mathfrak{M}, s \models \langle \langle A^{\mathbf{b}} \rangle \rangle \phi_{1} \mathsf{U} \phi_{2} \quad \stackrel{\text{def}}{\Leftrightarrow} \quad \text{there is a } \mathbf{b}\text{-strategy} \quad F_{A} \text{ w.r.t. } s$ s.t. for all $\lambda = s_{0} \stackrel{f_{0}}{\to} s_{1} \ldots \in \operatorname{comp}(s, F_{A})$ there is some $i < |\lambda|$ s.t. $\mathfrak{M}, s_{i} \models \phi_{2}$ and for all $j \in [0, i - 1]$,
we have $\mathfrak{M}, s_{i} \models \phi_{1}$.

Alternative semantics

- In RB±ATL, comp(s, F_A) = comp(s, F_A, b) implies the maximal computations are infinite.
- Infinite semantics: arbitrary strategy but quantifications over infinite computations only.
- Finite semantics: arbitrary strategy but quantifications over maximal computations only.

Resource-bounded reasoners for AI

- RB±ATL is one of the logics for reasoning about resources. See papers in AAAI, IJCAI, ECAI, etc.
- Relationships with counter machines known for establishing undecidability or complexity lower bounds.
- Various flavours of resource-bounded logics exist: RBCL, RAL, PRB-ATL, etc.

Alternating VASS [Courtois & Schmitz, MFCS'14]

- Alternating VASS $\mathcal{A} = (Q, r, R_1, R_2)$:
 - ► R_1 is a finite subset of $Q \times \mathbb{Z}^r \times Q$. (unary rules)
 - ► R_2 is a finite subset of $\bigcup_{\beta \ge 2} Q^\beta$ (fork rules)
- ► Proof: tree labelled by elements in Q × N^r following the rules in A.

$$\begin{array}{c} \vdots \\ \frac{(q_3, (4, 8))}{(q_2, (1, 5))} & \frac{(q_0, (0, 8))}{(q_1, (1, 5))} \\ \hline \\ \frac{(q_0, (1, 5))}{(q_1, (2, 2))} \\ q_1 \xrightarrow{(-1, +3)} q_0 & q_0 \rightarrow q_1, q_2 \quad q_2 \xrightarrow{(+3, +3)} q_3 \end{array}$$

Decision problems

State reachability problem for AVASS:

Input: AVASS A, control states q_0 and q_f ,

Question: is there a finite proof of AVASS with root $(q_0, \mathbf{0})$ and each leaf belongs to $\{q_f\} \times \mathbb{N}^r$?

Non-termination problem for AVASS:

Input: \mathcal{A}, q_0 ,

Question: is there a proof with root $(q_0, \mathbf{0})$ and all the maximal branches are infinite?

VASS games with asymmetry between the two players

Main Correspondences

RB±ATL Alternating VASS		
Logic in Al	Verification games	
proponent restriction condition	updates in R_1 / no update in R_2	
computation tree for F_A	proof	
formulae in the scope of $\langle \langle A^{\mathbf{b}} \rangle \rangle$	monotone objectives	

- From RB±ATL model-checking to the state reachability and the non-termination problems for AVASS.
- From RB±ATL* model-checking to the parity games for AVASS.
- Parameters synthesis thanks to the computation of the Pareto frontier of parity games.

See [Abdulla et al., CONCUR'13]

Complexity of RB±ATL fragments

$r \setminus card(Agt)$	arbitrary	2	1
arbitrary	2EXPTIME-C.	2EXPTIME-C.	EXPSPACE-C.
<u>≥ 4</u>	EXPTIME-C.	EXPTIME-C.	PSPACE-C.
2,3	PSPACE-h.	PSPACE-h.	PSPACE-C.
	in ехртіме	in ехртіме	
1	IN PSPACE	IN PSPACE	PTIME-C.

Complexity characterisations established in

[Alechina et al., JCSS 2017; Alechina et al., RP'16; etc.]

based on the relationships with (A)VASS and results from

[Habermehl, ICATPN'97; Courtois & Schmitz, MFCS'14; Colcombet et al., LICS'17]

Parameterized RB±ATL*: ParRB±ATL*

• $\mathbf{b} \in (\mathbb{N} \cup \{\omega\})^r$ replaced by tuples of variables.

 $\langle\langle\{1\}^{(\mathtt{x}_1,\mathtt{x}_2)}\rangle\rangle \top \mathsf{U}q_f \wedge \langle\langle\{2\}^{(\mathtt{x}_2,\mathtt{x}_3)}\rangle\rangle \top \mathsf{U}q_f'$

- ▶ MC problem for ParRB±ATL*: compute the maps $v : {x_1, ..., x_n} \to (\mathbb{N} \cup {\omega})$ such that $\mathfrak{M}, s \models v(\phi)$.
- Symbolic representation for such maps are computable.

Other temporal logics for AI

- TIME: International Symposium on Temporal Representation and Reasoning
 - Artificial Intelligence
 - Temporal Databases
 - Logic
- Interval temporal logics, ATL-like logics, temporal logics over concrete domains, etc.

Concluding remarks

 Formal relationships between resource-bounded logics and games on alternating VASS.

- Open problems:
 - Parameter synthesis.
 - Complexity for small fragments by bounding further the syntactic resources.
 - Alternative semantics for applications.