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Outline

• Information systems.

• Information logics.

• Tableaux-like decision procedures in PSPACE.

• Tree automata-based decision procedures.
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Information systems
• An information system IS is a structure of the form
〈OB,AT, (V ALa)a∈AT , f〉, where
− OB is a non-empty set of objects,
− AT is a non-empty set of attributes,
− V ALa is a non-empty set of values of the attribute a,
− f is a total function OB × AT →

⋃
a∈AT P(V ALa) such that

for every 〈x, a〉 ∈ OB × AT , f(x, a) ⊆ V ALa.

• IS is total def
⇔ for every a ∈ AT and for every x ∈ OB,

f(x, a) 6= ∅.

• D(AT )
def
= {x ∈ OB : card(a(x)) ≤ 1 for every a ∈ AT}.

• Structures introduced in [Lipski76,Pawlak82].
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Derived relations
• Derived relations make explicit properties in information

systems.

• Some standard relations:

(indiscernibility) o1 ind(A) o2 iff for every a ∈ A, a(o1) = a(o2),
(complementarity) o1 comp(A) o2 iff for every a ∈ A,

a(o1) = V ala \ a(o2),
(similarity) o1 sim(A) o2 iff for every a ∈ A, a(o1) ∩ a(o2) 6= ∅,
(forward inclusion) o1 fin(A) o2 iff for every a ∈ A, a(o1) ⊆ a(o2),
(backward inclusion) o1 bin(A) o2 iff for every a ∈ A,

a(o2) ⊆ a(o1).

• Since information systems are first-order definable structures,
first-order logic provides a means to define much more
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Some properties

• Each ind(A) is an equivalence relation.
→ 〈OB, ind(AT )〉 is a rough set.

• If IS is total, then sim(A) is reflexive and symmetric.

• fin(A) and bin(A) are reflexive and transitive.

• For every R ∈ {ind, fin, bin},
− R(∅) = OB ×OB,
− R(A ∪ A′) = R(A) ∩R(A′),
− A ⊆ A′ implies R(A′) ⊆ R(A).
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Frames

• Relative frame: 〈W, (R1
P )P⊆PAR, . . . , (R

n
P )P⊆PAR〉.

• Plain frame: 〈W,R1, . . . , Rn〉.

• Derived relative frame from “indiscernibility specification”:
〈OB, (ind(A))A⊆AT 〉.

• Derived plain frame from “indiscernibility specification”:
〈OB, ind(AT )〉.

• In full generality, frames can be derived from any first-order
specification.
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Informational representability

• Informational representability: adequacy between a class of
(abstract) frames and a class of frames derived from
information systems.

• Theorem . [Vakarelov89] The class of plain frames derived from
information systems with the indiscernibility specification is
precisely the class of S5 frames, i.e. structures of the form
〈W,R〉 such that R is an equivalence relation.

• Theorem . [Vakarelov89] The class of plain frames derived from
information systems with the forward inclusion specification is
precisely the class of S4 frames, i.e. structures of the form
〈W,R〉 such that R is reflexive and transitive.

• Basis for the models of information logics.
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Approximation operators

• Lower ind(A)-approximation of X ⊆ OB:
Lind(A)(X) =

⋃
{|x|ind(A) : x ∈ OB, |x|ind(A) ⊆ X}.

• Upper ind(A)-approximation of X ⊆ OB:
Uind(A)(X) =

⋃
{|x|ind(A) : x ∈ OB, |x|ind(A) ∩X 6= ∅}.

• Lind(A)(X) ⊆ X ⊆ Uind(A)(X).

• Knowledge operator:
Kind(A)(X) = Lind(A)(X) ∪ (OB \ Uind(A)(X)).

• These operators are closely related to modal operators.
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Information logics
• Information logics are logical systems developed for the

reasoning with data from information systems.

• Here, the information logics are modal logics in a broad sense.

• Classes of models defined either from plain frames or from
relative frames.

• Some features of information logics:

− Complicated conditions between accessibility relations.
− Boolean structure of attribute expressions.
− Presence of intersection on relations.

• Specific instantiations of known proof techniques are needed.
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Logic NIL
• NIL introduced in [Orlowska&Pawlak84,Vakarelov87].

• Formulae: φ ::= p | φ ∧ φ | ¬φ | [σ]φ | [≤]φ | [≥]φ.

• [σ]: “similarity” modality.

• [≤], [≥]: “forward” and “backward” modality, respectively.

• NIL-model M = 〈W,R≤, R≥, Rσ,m〉:
− W non-empty set and m : W → P(PROP),
− R≤ is the converse of R≥,
− R≤ is reflexive and transitive (S4 modality),
− Rσ is reflexive and symmetric (B modality),
− R≥ ◦ Rσ ◦R≤ ⊆ Rσ.
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Satisfaction relation
• Theorem . [Vakarelov87] The class of NIL frames is exactly the

set of structures 〈OB, fin(AT ), bin(AT ), sim(AT )〉 derived
from total information systems.

• M, w |= p iff w ∈ m(p),
M, w |= φ1 ∧ φ2 iff M, w |= φ1 and M, w |= φ2,

• M, w |= [α]φ iff for every w′ ∈ Rα(w), M, w′ |= φ with
− α ∈ {σ,≤,≥},
− Rα(w) = {w′ ∈W : 〈w,w′〉 ∈ Rα}.

• NIL satisfiability is PSPACE-hard (by easy reduction from modal
logic S4, restriction of NIL to [≤]).

• NIL satisfiability can be easily translated into first-order logic.
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Logic IL [Vakarelov91]
• Formulae: φ ::= D | p | φ ∧ φ | ¬φ | [σ]φ | [≤]φ | [≡]φ.

• [≡]: “indiscernibility” modality.

• D: deterministic objects.

• IL-model M = 〈W,R≡, R≤, Rσ, D,m〉:
− m(D) = D,
− R≡ is an equivalence relation,
− R≤ is reflexive and transitive,
− Rσ is weakly reflexive and symmetric,
− y ∈ D and 〈x, y〉 ∈ Rσ imply x ∈ D,
− + many other conditions, some of them not being modally

definable.
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Satisfaction relation

• Theorem . [Vakarelov91] The class of IL frames is exactly the
set of structures 〈OB, ind(AT ), fin(AT ), sim(AT ), D(AT )〉
derived from information systems.

• M, w |= D iff w ∈ D,

• IL satisfiability is PSPACE-hard.

• IL satisfiability is in NEXPTIME by using a sophisticated filtration
construction [Vakarelov 91].

On the Complexity of Information Logics – p. 13



Logic DAL [Fariñas&Orłowska85]

• Modal expressions: a ::= c | a ∩ a | a ∪∗ a.

• Formulae: φ ::= p | φ ∧ φ | ¬φ | [a]φ.

• [a]: “indiscernibility” modality.

• DAL-model M = 〈W, (Ra)a∈M ,m〉:
− W non-empty set and m : W → P(PROP),
− each Ra is an equivalence relation,
− Ra∩a′ = Ra ∩ Ra′, Ra∪∗a′ = (Ra ∪Ra′)

∗.

• DAL satisfiability is decidable [Lutz05].
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Logic DALLA [Gargov86]

• Same language as DAL.

• Relations R,R′ ⊆W ×W are in local agreement def
⇔ for every

x ∈W , either R(x) ⊆ R′(x) or R′(x) ⊆ R(x).

• For all equivalence relations R and R′, R and R′ are in local
agreement iff R ∪R′ is transitive.

• DALLA-model M = 〈W, (Ra)a∈M ,m〉:
− each Ra is an equivalence relation,
− Ra∩a′ = Ra ∩ Ra′, Ra∪∗a′ = Ra ∪ Ra′.

• DALLA′: restriction of DALLA to modalities [c] (no ∩ and ∪∗).
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LA-logics
• Same language as DALLA′, M0: set of modal constants.

• Each LA-logic L is characterized by some set lin(L) of linear
orderings over M0.

• L-model M = 〈W, (Ra)a∈M ,m〉:
− each Ra is an equivalence relation,
− for every w ∈ W , there is �∈ lin(L) such that for all
a, b ∈M0, if a � b, then Ra(w) ⊆ Rb(w).

• DALLA′ is an LA-logic with lin(DALLA′) being the set of all
linear orderings over M0.

• Existence of a logarithmic space reduction from DALLA to
DALLA′ (with renaming technique).
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SIM [Konikowska97] formulae
• Countably infinite set PROP = {p1, p2, . . .} of propositional

variables.

• Countably infinite set NOM = {x1, x2, . . .} of object nominals.

• The set P of parameter expressions is the smallest set
containing
− a countably infinite set PNOM = {E1,E2, . . .} of parameter

nominals and
− a countably infinite set PARVAR = {C1,C2, . . .} of

parameter variables,

and that is closed under the Boolean operators ∩,∪,−.

• Formulae: φ ::= p | x | ¬φ | φ ∧ φ | [A]φ (A ∈ P).
Example: [E2 ∩ −E2]x ⇒ [E1 ∪ C1](x ∨ p).
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P-interpretation

• A P-interpretation m is a map m : P → P(PAR) where PAR is
a non-empty set and for all A1,A2 ∈ P,

− if A1,A2 ∈ PNOM and A1 6= A2, then m(A1) 6= m(A2),

− if A1 ∈ PNOM, then m(A1) is a singleton,

− m(A1 ∩ A2) = m(A1) ∩m(A2),

− m(A1 ∪ A2) = m(A1) ∪m(A2),

− m(−A1) = PAR \m(A1).

• A ≡ B [resp. A v B] def
⇔ for every P-interpretation m, we have

m(A) = m(B) [resp. m(A) ⊆ m(B)].
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SIM-model
A SIM-model M is a structure M = 〈W, (RP )P⊆PAR,m〉, where

(?) W and PAR are non-empty sets,

(??) (RP )P⊆PAR is a family of binary relations on W ,

(uni) R∅ is the cartesian product W ×W ,

(refl) RP is reflexive for every P ⊆ PAR,

(sym) RP is symmetric for every P ⊆ PAR,

(inter) RP∪Q = RP ∩RQ for all P,Q ⊆ PAR.

(? ? ?) m : NOM ∪ PROP ∪ P → P(W ) ∪ P(PAR) is such that
m(p) ⊆W for every p ∈ PROP, m(x) = {w}, where w ∈W for
every x ∈ NOM, and the restriction of m to P is a
P-interpretation.
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Properties
• Theorem . [Vakarelov87] The class of information frames
〈OB, (simA)A⊆AT 〉 derived from information systems is
precisely the class of SIM-frames.

• The parameter expressions are interpreted within the Boolean
algebra B = 〈P(PAR),∪,∩,−, 1, 0〉 for some non-empty set
PAR.

• Conditions on (RP )P⊆PAR induce a semi-lattice structure of
L = 〈{RP : P ∈ B},∩〉 with zero element W ×W .

• Condition (inter) allows SIM to capture intersection on relations.
Rm(A∪B) = Rm(A) ∩Rm(B).

• SIM contains universal modality since Rm(A∩−A) = W ×W .
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Satisfaction relation

• M, w |= p iff w ∈ m(p) for p ∈ PROP ∪ NOM,

• M, w |= ¬φ iff not M, w |= φ,

• M, w |= φ ∧ ψ iff M, w |= φ and M, w |= ψ,

• M, w |= [A]φ iff for every w′ ∈W , if 〈w,w′〉 ∈ Rm(A), then
M, w′ |= φ.
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Some other information logics

• Logics with knowledge operators [Orłowska89].

• Relative versions of NIL, IL, . . .

• Variants of SIM (IND, FORIN, . . . ).

• Logic of indiscerniblity relations [Orłowska93], relative variant
of DAL.

• Information logics with relative frames of level > 1
[Balbiani&Orłowksa99].
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Deciding NIL by filtration

• A NIL formula φ has a model iff it has a model of size at most
2O(|φ|).

• Proved by a filtration construction [Vakarelov87].

• Corollary . NIL satisfiability is in NEXPTIME.

• NEXPTIME upper bound for IL can be shown with an even more
sophisticated filtration construction [Vakarelov96].
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Deciding NIL by translation
• Reduction to satisfiability for Propositional Dynamic Logic with

Converse (CPDL) known to be EXPTIME-complete.

• Logarithmic space reduction:
− f(p) = p,
− f is homomorphic wrt Boolean connectives,

− f([σ]φ) = [(c−1
2 )∗; (c1 ∪ c

−1
1 ∪ id); c∗2]f(φ),

− f([≤]φ) = [c∗2]f(φ),

− f([≥]φ) = [(c−1
2 )∗]f(φ).

• φ is NIL satisfiable iff f(φ) is CPDL satisfiable.

• NIL is a regular grammar logic in the sense of
[Demri&DeNivelle05].
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Algorithm à la Ladner for NIL

• In [Ladner77], PSPACE algorithm is designed for modal logics K
and S4.

• Extension to tense S4 (NIL without [σ]) in [Spaan93].

• Principle: construction of a finite tree with nodes labeled by
sets of formulae from which a model of the formula φ can be
built.

• The algorithm can be viewed as a strategy for building proofs
in some sequent/tableaux calculus.
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Closure
Let X be a set of NIL-formulae. Let cl(X) be the smallest set of
formulae such that:

• X ⊆ cl(X),

• if ¬φ ∈ cl(X), then φ ∈ cl(X),

• if φ1 ∧ φ2 ∈ cl(X), then φ1, φ2 ∈ cl(X),

• if [≤]φ ∈ cl(X), then φ ∈ cl(X),

• if [≥]φ ∈ cl(X), then φ ∈ cl(X),

• if [σ]φ ∈ cl(X), then [≥]φ ∈ cl(X),

• if [σ]φ ∈ cl(X) and φ is not a [≤]-formula, then [σ][≤]φ ∈ cl(X),

• if [σ][≤]φ ∈ cl(X), then [σ]φ ∈ cl(X).
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Directed closure
• card(cl({φ})) < 5 × |φ|.

• s ∈ {sim, fin, bin}∗, let cl(s, φ) be the smallest set such that:
− cl(λ, φ) = cl({φ}), cl(s, φ) is closed,

− if [σ][≤]ψ ∈ cl(s, φ), then [≤]ψ ∈ cl(s · sim, φ),

− if [≤]ψ ∈ cl(s, φ), then [≤]ψ ∈ cl(s · fin, φ),

− if [≥]ψ ∈ cl(s, φ), then [≥]ψ ∈ cl(s · bin, φ),

− if [σ][≤]ψ ∈ cl(s, φ), then [σ][≤]ψ ∈ cl(s · bin, φ).

• Lemma . Let φ be a formula and s ∈ {sim, fin, bin}∗ be such
that neither bin · bin nor fin · fin is a substring of s and
|s| ≥ 3 × |φ|. Then cl(s, φ) = ∅.
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Syntactic relations

• The binary relation ≈ on sets of NIL-formulae is defined as

follows: X ≈ Y
def
⇔

− for every [σ]ψ ∈ X, ψ ∈ Y ,
− for every [σ]ψ ∈ Y , ψ ∈ X.

• The binary relation � is defined as follows: X � Y
def
⇔

− for every [≤]ψ ∈ X, [≤]ψ, ψ ∈ Y ,
− for every [≥]ψ ∈ Y , [≥]ψ, ψ ∈ X,
− for every [σ]ψ ∈ Y , [σ]ψ ∈ X.
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Consistency

• X be a subset of cl(s, φ) for some s ∈ {sim, bin, fin}∗ and for

some formula φ. X is s-consistent def
⇔ for every ψ ∈ cl(s, φ):

− if ψ = ¬ϕ, then ϕ ∈ X iff not ψ ∈ X,
− if ψ = ϕ1 ∧ ϕ2, then {ϕ1, ϕ2} ⊆ X iff ψ ∈ X,
− if ψ = [α]ϕ for some α ∈ {σ,≤,≥} and ψ ∈ X, then ϕ ∈ X,
− if ψ = [σ]ϕ, ϕ 6= [≤]ϕ′ and ψ ∈ X, then [σ][≤]ϕ ∈ X,
− if ψ = [σ][≤]ϕ and ψ ∈ X, then [σ]ϕ ∈ X,
− if ψ = [σ]ϕ and ψ ∈ X, then [≥]ϕ ∈ X.

• Lemma . Let M = 〈W,R≤, R≥, Rσ,m〉 be a NIL model, w ∈W ,
s ∈ {sim, fin, bin}∗, φ be a NIL formula. Then, the set
{ψ ∈ cl(s, φ) : M, w |= ψ} is s-consistent.
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Principle of the algorithm

• Construction of a finite tree with nodes labeled by sets of
formulae from which a model of the formula φ can be built.

• NIL-WORLD(Σ, s, φ) returns a Boolean: Σ is a nonempty finite
sequence of subsets of cl({φ}) and s ∈ {sim, fin, bin}∗.

• For any X ⊆ cl({φ}) and for any call NIL-WORLD(Σ, s, φ) in
NIL-WORLD(X,λ, φ) (at any recursion depth), we have
last(Σ) ⊆ cl(s, φ).

• Cycle detection because of the S4 modalities [≤] and [≥].
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Algorithm
function NIL-WORLD(Σ, s, φ)

if last(Σ) is not s-consistent, then return false;
for [σ]ψ ∈ cl(s, φ) \ last(Σ) do

for each Xψ ⊆ cl(s · sim, φ) \ {ψ} such that last(Σ) ≈ Xψ,
call NIL-WORLD(Xψ, s · sim, φ). If all these calls return false,
then return false;

for [≤]ψ ∈ cl(s, φ) \ last(Σ) do
if there is no X ∈ Σ such that ψ 6∈ X, last(Σ) � X, and
last(s) = fin, then for each Xψ ⊆ cl(s · fin, φ) \ {ψ} such
that last(Σ) � Xψ, if last(s) = fin, then call
NIL-WORLD(Σ ·Xψ, s, φ), otherwise call
NIL-WORLD(Xψ, s · fin, φ). If all these calls return false,
then return false;

+ similar instructions for [≥] . . .
Return true.
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Correction and complexity

• Lemma . φ is NIL satisfiable iff there is X ⊆ cl({φ}) such that
φ ∈ X and NIL-WORLD(X,λ, φ) returns true.

• Let X ⊆ cl({φ}).
− NIL-WORLD(X,λ, φ) terminates and requires space in

O(|φ|4).
− Let NIL-WORLD(Σ, s, φ) be a call in the computation of

NIL-WORLD(X,λ, φ). Then, |Σ| ≤ 25× |φ|2 and |s| ≤ 3× |φ|.

• Theorem . NIL satisfiability is in PSPACE.
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PSPACE-complete LA-logics

• Ladner-like algorithms for “nice” LA-logics.

• PSPACE-hardness can be shown by reducing QBF.

• Corollary . The logics below are PSPACE-complete:
− DALLA′,
− DALLA,
− Nakamura’s logic of graded modalities [Nakamura93].
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Tree automata and SIM

• Numerous reductions to the emptiness problem for tree
automata (PDL, modal µ-calculus, etc.).
φ is satisfiable iff L(Aφ) is non-empty.

• Tree model property: for every satisfiable formula there is a
(possibly infinite) tree from which can be built easily a model.

• For sake of presentation, we consider SIM without parameter
nominals.

• Only Büchi tree automata are needed.
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Global information for SIM-models

• Guessing a global information for a given formula φ will
correspond to the primary non-deterministic choice in the
automata built for φ.

• A global information G for φ is a structure
〈UF,EF,EQ,NOM,RN〉 such that
− UF and EF are subsets of {ϕ ∈ sub(φ) : ϕ = [A]ψ},

− EQ ⊆ NOM(φ)2,
− NOM is a map NOM : NOM(φ) → P(sub(φ)),

− RN ⊆ NOM(φ)2 × P(φ).

• Definition of SIM-consistency for G, i.e. EQ is an equivalence
relation or [A]ψ ∈ EF ∪ UF implies m(A) = ∅ for every m.
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Consistency and syntactic relation

• X subset of sub(φ). X is locally SIM-consistent def
⇔ for every

ψ ∈ sub(φ),
− if ψ = ¬ϕ, then ϕ ∈ X iff ψ 6∈ X,
− if ψ = ϕ1 ∧ ϕ2, then {ϕ1, ϕ2} ⊆ X iff ψ ∈ X,
− if ψ = [A]ϕ and ψ ∈ X, then ϕ ∈ X.

• Let G be a SIM-consistent global information. Given two locally
SIM-consistent sets X and Y and a parameter expression A
occurring in φ, we write X ∼G,A Y to denote that,
− for every [B]ψ ∈ X, if B v A, then ψ ∈ Y , and
− for every [B]ψ ∈ Y , if B v A, then ψ ∈ X.
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Symbolic states

A symbolic state for φ is either ⊥ or a triple q = 〈A, X, T 〉 such that

• A ∈ P(φ). A refers to the relation Rm(A) which relates q’s
(unique) predecessor to q.

• X ∈ P(sub(φ)). X is the set of formulae satisfied in q.

• T ⊆ P(φ) × NOM(φ). T is a table such that, for every
〈B, x〉 ∈ T , 〈q, w〉 ∈ Rm(A) for m(x) = {w}.

• The “dummy” value ⊥ is used for those nodes in a tree not
representing objects.
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Consistency wrt toG
• G SIM-consistent global information. A symbolic state

q = 〈A, X, T 〉 is locally SIM-consistent with respect to G def
⇔ q

is dummy or if it satisfies
− X is locally SIM-consistent,
− for every x ∈ NOM(φ), x ∈ q implies X = NOM(x) and
T = {〈B, y〉 | 〈x, y,B〉 ∈ RN},

− for every 〈A, x〉 ∈ T , X ∼G,A NOM(x),
− for all 〈A1, x1〉, . . . , 〈An, xn〉 ∈ T with n ≥ 1, if x1 = . . . = xn

then, for every A ∈ P(φ) with A v A1 ∪ . . . ∪ An, we have
〈A, x1〉 ∈ T ,

− for every B ∈ P(φ) such that B ≡ ∅, for every x ∈ NOM(φ),
〈B, x〉 ∈ T ,

− UF ⊆ X and EF ∩X = ∅.

• SYMB(φ): set of symbolic states of φ, and SYMBG(φ): set of
symbolic states of φ that are locally SIM-consistent wrt G.On the Complexity of Information Logics – p. 38



Hintikka trees (I)

• Given K ≥ 1 and a finite alphabet Σ, an infinite Σ, K-tree T is a
mapping T : {1, . . . , K}∗ → Σ.

• Let φ be a SIM-formula with K = |φ|.

• A SYMB(φ), K-tree T is a Hintikka tree for φ def
⇔ there exists a

SIM-consistent global information
G = 〈UF,EF,EQ,NOM,RN〉 for φ such that

− T (ε) is dummy,
− there is i ∈ {1, . . . , K} such that φ ∈ T (i),
− for every x ∈ NOM(φ), there is a unique i ∈ {1, . . . , K} such

that x ∈ T (i) (this i is then written ix),

and each s ∈ {1, . . . , K}+ satisfies the following conditions:
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Hintikka trees (II)

and each s ∈ {1, . . . , K}+ satisfies the following conditions:

• T (s) is locally SIM-consistent with respect to G,

• if T (s) is dummy, then T (s · 1), . . . , T (s ·K) are also dummy,

• if s is of length at least 2, then T (s) is not a named symbolic
state,

• if T (s) = 〈A, X, T 〉 is not dummy and [B]ψ ∈ sub(φ) \X, then
1. either there is i ∈ {1, . . . , K} with T (s · i) = 〈B, X ′, T ′〉,

T (s · i) is not dummy, and ψ 6∈ X ′ or
2. there is x ∈ NOM(φ) such that 〈B, x〉 ∈ T and ψ 6∈ T (ix);

• for every i ∈ {1, . . . , K}, if both T (s) = 〈A, X, T 〉 and
T (s · i) = 〈B, X ′, T ′〉 are not dummy, then X ∼G,B X

′.
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Complexity of SIM

• Lemma . For every SIM-formula φ, φ is SIM-satisfiable iff φ has a
Hintikka tree.

• The class of Hintikka tree for φ can be defined as the language
recognized by a Büchi tree automaton.

• SIM can be decided in EXPTIME by using the complexity of the
translation combined by that of checking emptiness for Büchi
tree automata [Demri&Sattler02].

• SIM is EXPTIME-hard as a consequence of [Hemaspaandra96].
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Other proof techniques

• Filtration, see e.g. [Vakarelov97].
For numerous information logics only decidability is known.

• Translation of information logics characterized by relative
frames into standard modal logics.

• Optimal complexity upper bounds sometimes obtained via the
renaming technique.

• Submodel construction to show NP upper bound of the logic of
indiscernibility and complementarity.
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Concluding remarks

• How to deal with natural extensions of known logics?
For instance, the indiscernibility variant of SIM is not known to
be decidable.

• How to characterize first-order specifications on information
systems that lead to decidable information logics?

• How to distinguish the information logics that are the most
useful in applications? i.e. to make some order in the jungle of
information logics.
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