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Outline

e Information systems.

e |Information logics.

e Tableaux-like decision procedures in PSPACE.

e Tree automata-based decision procedures.
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Information systems

¢ An Iinformation system ZS is a structure of the form
(OB, AT, (VALy)acar, f), Where

— OB Is a non-empty set of objects,
— AT 1s a non-empty set of attributes,
— VAL, Is a non-empty set of values of the attribute a,

— fisatotal function OB x AT — |, 4+ P(VAL,) such that
for every (x,a) € OB x AT, f(x,a) C VAL,.

e 7Sistotal & for every a € AT and for every x € OB,

f(z,a) #0.

o D(AT) = {x € OB : card(a(z)) < 1 for every a € AT'}.

e Structures introduced in [Lipski76,Pawlak82].
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Derived relations

e Derived relations make explicit properties in information
systems.

e Some standard relations:

(indiscernibility) 01 ind(A) oy iff for every a € A, a(o1) = a(02),
(complementarity) 0, comp(A) oy iff for every a € A,

a(o1) = Val, \ a(oz),
(similarity) o7 sim(A) o iff for every a € A, a(o;) Na(oy) # 0,
(forward inclusion) o1 fin(A) o, iff for every a € A, a(o1) C a(o0s),
(backward inclusion) 01 bin(A) o, iff for every a € A,

a(oz) C a(oq).

e Since information systems are first-order definable structures,
first-order logic provides a means to define much more
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Some properties

e Each ind(A) is an equivalence relation.
— (OB, ind(AT)) is a rough set.

o If ZS is total, then sim(A) is reflexive and symmetric.
e fin(A)and bin(A) are reflexive and transitive.
e Forevery R € {ind, fin,bin},

— R(0)=0B x OB,

— R(AUA") = R(A) N R(A"),
— A C A" implies R(A") C R(A).
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Frames

e Relative frame: <W, (Rlp)PgPAR, Ceey (R%)pgpAR>.
e Plain frame: (W, R',... R"™).

e Derived relative frame from “indiscernibility specification”:
(OB, (ind(A)) ac ar).

e Derived plain frame from “indiscernibility specification”:
(OB, ind(AT)).

¢ In full generality, frames can be derived from any first-order
specification.
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Informational representability

¢ Informational representability: adequacy between a class of
(abstract) frames and a class of frames derived from
iInformation systems.

e Theorem. [Vakarelov89] The class of plain frames derived from
Information systems with the indiscernibility specification is
precisely the class of S5 frames, I.e. structures of the form
(W, R) such that R is an equivalence relation.

e Theorem. [Vakarelov89] The class of plain frames derived from
Information systems with the forward inclusion specification is
precisely the class of S4 frames, I.e. structures of the form
(W, R) such that R is reflexive and transitive.

e Basis for the models of information logics.
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Approximation operators

e Lower ind(A)-approximation of X C OB:
Lina(a)(X) = Utlzlina(a) : © € OB, [x]inaa) © X}

e Upper z‘nd(A)-approximation of X C OB:

® Linaa)(X) C X C Unaa)(X).

e Knowledge operator:
Kina(a)(X) = Lina(a)(X) U (OB \ Uina(a)(X)).

e These operators are closely related to modal operators.
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Information logics

¢ Information logics are logical systems developed for the
reasoning with data from information systems.

e Here, the information logics are modal logics in a broad sense.

e Classes of models defined either from plain frames or from
relative frames.

e Some features of information logics:

— Complicated conditions between accessiblility relations.
— Boolean structure of attribute expressions.
— Presence of intersection on relations.

e Specific instantiations of known proof techniques are needed.
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Logic NIL

e NIL introduced in [Orlowska&Pawlak84,Vakarelov87].

e Formulae: ¢:=p | oA | =6 | [olo | [<lo | [2]e
e [o]: “similarity” modality.
o <, [>]: “forward” and “backward” modality, respectively.

e NIL-model M = (W, R<, R>, R,,m):
— W non-empty set and m : W — P(PROP),
— R< Is the converse of R-,
— R< Is reflexive and transitive (S4 modality),
— R, Is reflexive and symmetric (B modality),
— R>oR,0R< CR,.
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Satisfaction relation

e Theorem. [Vakarelov87] The class of NIL frames is exactly the
set of structures (OB, fin(AT), bin(AT), sim(AT)) derived
from total information systems.

e M,w E piff w € m(p),
/\/l,w ‘: le /\ng Iff/\/l,w ‘: Q51 and M,’LU ’: gbg,

e M, w = |a]¢ iff for every w' € R, (w), M, w' = ¢ with
— a €0, <, >},
— Ro(w)={w" e W: (w,w') € R,}.

e NIL satisfiability is PSPACE-hard (by easy reduction from modal
logic S4, restriction of NIL to [<]).

e NIL satisfiability can be easily translated into first-order logic.
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Logic IL [Vakarelov91]

e Formulae: ¢ =D | p | /¢ | =6 | [0)¢ | [<lo | [E]e.
e |=|: “indiscernibility” modality.
e D: deterministic objects.

e |IL-model M = (W, R=, R<, R,, D, m):
— m(D) = D,
— R— Is an equivalence relation,
— R< Is reflexive and transitive,
— R, Is weakly reflexive and symmetric,
— ye Dand (z,y) € R, imply x € D,

— + many other conditions, some of them not being modally
definable.
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Satisfaction relation

e Theorem. [Vakarelov9l] The class of IL frames is exactly the
set of structures (OB, ind(AT), fin(AT), sim(AT), D(AT))
derived from information systems.

e M,wgEDIiffwe D,

e |IL satisfiability is PSPACE-hard.

e |L satisfiability is in NEXPTIME by using a sophisticated filtration
construction [Vakarelov 91].
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Logic DAL [Farihas&Ortowska85]

e Modal expressions: a :=c | anNa | aU*a.

e Formulae: ¢ :=p | ¢ NQ | =0 | [a]o.
e [a|: “indiscernibility” modality.

e DAL-model M = (W, (R,)aen, m):
— W non-empty setand m : W — P(PROP),
— each R, Is an equivalence relation,
— Rinar = Re N Ryy Ry = (Ry U Ry )™,

e DAL satisfiablility is decidable [Lutz05].
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Logic DALLA [Gargov86]

e Same language as DAL.

e Relations R, R C W x W are in local agreement X for every
r € W, either R(z) C R'(z) or R'(z) C R(x).

e For all equivalence relations R and R’, R and R’ are in local
agreement iff R U R’ is transitive.

e DALLA-model M = (W, (Ry)acr, m):
— each R, Is an equivalence relation,
— Raﬂa’ = R, N Ry, Rau*a’ = R, U R,y.

e DALLA': restriction of DALLA to modalities [¢] (no N and U*).
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LA-logics

e Same language as DALLA’, M,. set of modal constants.

e Each LA-logic L is characterized by some set lin(L£) of linear
orderings over M,.

o L-model M = (W, (Ry)acr, m):
— each R, is an equivalence relation,

— for every w € W, there is <€ lin(L) such that for all
a,b € My, ifa = b, then R,(w) C Ry(w).

e DALLA' is an LA-logic with lin(DALLA’) being the set of all
linear orderings over M.

e EXistence of a logarithmic space reduction from DALLA to
DALLA’ (with renaming technique).
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SIM [Konikowska97| formulae

Countably infinite set PROP = {py, ps, ...} of propositional
variables.

Countably infinite set NOM = {xy, xs, ...} of object nominals.

The set P of parameter expressions is the smallest set
containing

— a countably infinite set PNOM = {E;, E,, ...} of parameter
nominals and

— a countably infinite set PARVAR = {C;,Cs, ...} of
parameter variables,

and that is closed under the Boolean operators N, U, —.

Formulae: ¢ :=p | x| =0 | &N | [Alp (A € P).
Example: [E; N —Eqx = [E; U Ci(x V p).
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P-interpretation

e A P-interpretation misamap m : P — P(PAR) where PAR is
a nhon-empty set and for all A;, A, € P,

— if A;, A, € PNOM and A; # Ay, then m(A;) # m(As),
— if A; € PNOM, then m(A,) is a singleton,

— m(A1NAy) =m(A;) Nm(A,),

— m(A; UAy) =m(A;) Um(A,),

— m(—A;) = PAR\ m(A,).

e A =DB/[resp. A LC B] X for every P-interpretation m, we have
m(A) = m(B) [resp. m(A) C m(B)].
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SIM-model

A SIM-model M is a structure M = (W, (Rp)pcpar, m), Where
(x) W and PAR are non-empty sets,

(**x) (Rp)pcpar IS a family of binary relations on W,
(uni) Ry Is the cartesian product W x W,

(refly R p Is reflexive for every P C PAR,

(sym) Rp Is symmetric for every P C PAR,

(inter) Rpug = RpNRg forall P,QQ C PAR.

(x %) m: NOMUPROPUP — P(W)UP(PAR) is such that
m(p) C W for every p € PROP, m(x) = {w}, where w € W for
every x € NOM, and the restrictionof mto P is a
P-interpretation.
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Properties

e Theorem. [Vakarelov87] The class of information frames
(OB, (stma)acar) derived from information systems is
precisely the class of SIM-frames.

e The parameter expressions are interpreted within the Boolean
algebra B = (P(PAR),U,N, —,1,0) for some non-empty set
PAR.

e Conditions on (Rp)pcpar induce a semi-lattice structure of
L= {Rp: P € B} N)with zero element W x .

e Condition (inter) allows SIM to capture intersection on relations.
RyauB) = Bia) N Ry m)-

e SIM contains universal modality since R,,an—a) = W x .
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Satisfaction relation

e M,w = piff we m(p)for p € PROP UNOM,

e M,w E —¢ iff not M, w = ¢,

e M,wkE ¢ ANy iff M,w = ¢ and M, w = v,

o M,w = [A]g iff for every v’ € W, if (w, w") € Ry, a), then
M, w' = ¢.
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Some other information logics

e Logics with knowledge operators [Ortowska89].
e Relative versions of NIL, IL, ...
e Variants of SIM (IND, FORIN, ...).

e Logic of indiscerniblity relations [Ortowska93], relative variant
of DAL.

¢ Information logics with relative frames of level > 1
[Balbiani&Ortowksa99].
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Deciding NIL by filtration

e A NIL formula ¢ has a model iff it has a model of size at most
20(¢l)

e Proved by a filtration construction [Vakarelov87].

e Corollary . NIL satisfiability is iIn NEXPTIME.

e NEXPTIME upper bound for IL can be shown with an even more
sophisticated filtration construction [Vakarelov96].
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Deciding NIL by translation

¢ Reduction to satisfiability for Propositional Dynamic Logic with
Converse (CPDL) known to be EXPTIME-complete.

e Logarithmic space reduction:

— f(p) =p,

— f is homomorphic wrt Boolean connectives,
([o]¢) = [(cz )5 (er U Uid); 3] f(9),
<|p) = [e3]f(9),

>]¢) = [(e2")]f(9).

- J
- f
- f

(
(

e ¢ is NIL satisfiable iff f(¢) is CPDL satisfiable.

e NIL is a regular grammar logic in the sense of
[Demri&DeNivelle05].
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Algorithm a la Ladner for NIL

e In[Ladner77], PSPACE algorithm is designed for modal logics K
and $4.

e Extension to tense S4 (NIL without [o]) in [Spaan93].

e Principle: construction of a finite tree with nodes labeled by
sets of formulae from which a model of the formula ¢ can be
built.

e The algorithm can be viewed as a strategy for building proofs
IN some sequent/tableaux calculus.
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Closure

Let X be a set of NIL-formulae. Let cl(X) be the smallest set of
formulae such that:

o X Ccl(X),

o if = € cl(X), then ¢ € cl(X),

o if o1 N\ @9 € cl(X), then ¢y, ¢ € cl(X),
o if [<|p € cl(X), then ¢ € cl(X),

o if [>]6 € cl(X), then ¢ € cl(X),

o if [0]p € cl(X), then [>]¢ € cl(X),

o if [o]¢ € cl(X) and ¢ is not a [<|-formula, then [o][<]¢ € cl(X),

o if [0][<]¢ € cl(X), then [o]¢ € cl(X).



Directed closure

o card(cl({¢})) <5 x |¢|.

o s c {sim, fin,bin}*, let cl(s, ¢) be the smallest set such that:

cl(X, @) = cl({¢}), cl(s, @) is closed,
if [o][<]y € cl(s, @), then [<|y € cl(s - sim, ¢),

if [<]y) € cl(s, ¢), then [<]y) € cl(s - fin, d),

If

If

> € cl(s, ¢), then [>]) € cl(s - bin, @),

ol[<]y € cl(s, ¢), then [o][<]Y € cl(s - bin, ¢).

e Lemma. Let ¢ be a formula and s € {sim, fin,bin}* be such
that neither bin - bin nor fin - fin IS a substring of s and
|s| > 3 x |¢]. Then cl(s, ¢) = 0.



Syntactic relations

e The binary relation ~ on sets of NIL-formulae is defined as

def
follows: X ~ Y &

— forevery ol € X,y €Y,
— forevery o]y €Y, ¢ € X.

e The binary relation < is defined as follows: X <Y %

— forevery [<]y € X, [<])), ¢ €Y,
— forevery [>|y €Y, [>|y, 9 € X,
— forevery o]y €Y, [o]Y € X.
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Consistency

e X be a subset of cl(s, ¢) for some s € {sim, bin, fin}* and for

some formula ¢. X iIs s-consistent X for every i € cl(s, ¢):
If v = =, then p € X iff not ¢ € X,
if v = o1 A g, then {1, o} C X iff ¢ € X,

i = |
i = |
if o = [0
if o = [0

&-

O'
o
o

Jo for some a € {0, <, >} and ¢ € X, then p € X,
o, v # [<]¢' and ¥ € X, then |¢]|[<]p € X,
<lpand y € X, then [o]p € X,

e and ¢ € X, then [>]p € X.

e Lemma. Let M = (W, R<, R>, R,,m) be a NIL model, w € W,
s € {sim, fin,bin}*, ¢ be a NIL formula. Then, the set
{1 € cl(s,p) : M,w = 9} is s-consistent.
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Principle of the algorithm

e Construction of a finite tree with nodes labeled by sets of
formulae from which a model of the formula ¢ can be built.

e NI L- WORLD(3, s, ¢) returns a Boolean: ¥ is a nonempty finite
sequence of subsets of cl({¢}) and s € {sim, fin, bin}*.

e Forany X C cl({¢}) and for any call NI L- WORLD(3Z, s, ¢) in
NI L- WORLD( X, A\, ¢) (at any recursion depth), we have
last(3) C cl(s, @).

e Cycle detection because of the S4 modalities [<] and [>].

On the Complexity of Information Logics — p. 30



Algorithm

function NI L- WORLD(Y, s, ¢)

if last(>2) is not s-consistent, then return false;

for [o]y € cl(s, @) \ last(X) do
for each X, C cl(s - sim, ¢) \ {¢} such that last(X) ~ X,
call NI L- WORLD( X, s - stm, ¢). If all these calls return false,
then return false;

for [<]y € cl(s, @) \ last(X) do
if thereisno X € ¥ suchthat vy ¢ X, last(¥) < X, and
last(s) = fin, then for each X, C cl(s - fin,®) \ {¢/} such
that last(¥X) < Xy, if last(s) = fin, then call
NI L- WORLD(X - Xy, s, @), otherwise call
NI L- WORLD( X, s - fin, ¢). If all these calls return false,
then return false;

+ similar instructions for [>] ...
Return true.
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Correction and complexity

e Lemma. ¢ is NIL satisfiable iff there is X C cl({¢}) such that
¢ € X and NI L- WORLD( X, A\, ¢) returns true.

o Let X Ccl({o}).
— NI L- WORLD( X, \, ¢) terminates and requires space in
O(lo]*)-
— Let NI L- WORLD(Y, s, ¢) be a call in the computation of
NI L- WORLD(X, \, ¢). Then, |3] < 25 x |¢]* and |s| < 3 x |¢].

e Theorem. NIL satisfiability is in PSPACE.
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PSPACE-complete LA-logics

e Ladner-like algorithms for “nice” LA-logics.
e PSPACE-hardness can be shown by reducing QBF

e Corollary . The logics below are PSPACE-complete:
— DALLA,
— DALLA,
— Nakamura’s logic of graded modalities [Nakamura93].
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Tree automata and SIM

e Numerous reductions to the emptiness problem for tree
automata (PDL, modal p-calculus, etc.).
¢ is satisfiable iff L(.A4) is non-empty.

e Tree model property: for every satisfiable formula there is a
(possibly infinite) tree from which can be built easily a model.

e For sake of presentation, we consider SIM without parameter
nominals.

¢ Only Buchi tree automata are needed.
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Global information for SIM-models

e Guessing a global information for a given formula ¢ will
correspond to the primary non-deterministic choice in the
automata built for ¢.

e A global information G for ¢ Is a structure
(UF, EF, EQ, NOM, Ry) such that

— UF and EF are subsets of {¢ € sub(¢) : ¢ = [A]y},
— EQ C NOM(¢)?,

— NOM isamap NOM : NOM(¢) — P(sub(¢)),

— Ry € NOM(¢)? x P(9).

e Definition of SIM-consistency for G, i.e. E(Q) IS an equivalence
relation or [A]y € EF U UF implies m(A) = () for every m.
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Consistency and syntactic relation

e X subset of sub(¢). X is locally SIM-consistent X for every

v € sub(9),

— ifY==p, thenp e X iff p € X,

— if ¢ =1 A, then {p1, 2} C X iff € X,
— ifY=[Alpand ¢ € X, then ¢ € X.

e Let G be a SIM-consistent global information. Given two locally
SIM-consistent sets X and Y and a parameter expression A
occurring in ¢, we write X ~¢ o Y to denote that,

— forevery [B]y € X, if BC A, theny €Y, and
— forevery BlJy € Y,if BC A, then ¢y € X.
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Symbolic states

A symbolic state for ¢ is either L or a triple ¢ = (A, X, T') such that

o A cP(¢). Arefersto the relation R,,4) which relates ¢'s
(unique) predecessor to g.

o X € P(sub(¢)). X is the set of formulae satisfied in g.

¢). T is a table such that, for every

o T C P(6) x NOM(
> > S Rm(A) for m(X) = {w}

)
(B,x) € T, (q,

e The “dummy” value _L is used for those nodes in a tree not
representing objects.
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Consistency wrt t@-

e (G SIM-consistent global information. A symbolic state

q = (A, X, T) is locally SIM-consistent with respect to G b q

IS dummy or If it satisfies

— X Is locally SIM-consistent,

— for every x € NOM(¢), x € ¢ implies X = NOM (x) and
T ={{B,y) | {x,y,B) € Rx},

— forevery (A)x) € T', X ~ga NOM (x),

— forall (Ay,x1),...,(An,x,) €T wWithn >1,ifx; =... =%,
then, for every A e P(¢p) with A C A, U...UA,, we have
(A,x1) €T,

— for every B € P(¢) such that B = (), for every x € NOM(¢),
(B,x) € T,

— UFCXand EFNnX = .

e SYMB(¢): set of symbolic states of ¢, and SYMBg(¢): set of
symbolic states of ¢ that are locally SIM-consistemtomisspainoss-p



Hintikka trees (1)

e Given K > 1 and a finite alphabet X, an infinite X, K-tree 7 is a
mapping 7 : {1,..., K}* — .
e Let ¢ be a SIM-formula with K = |¢|.

e ASYMB(¢), K-tree 7 is a Hintikka tree for ¢ ¥ there exists a

SIM-consistent global information

G=(UF,EF,EQ,NOM, Ry) for ¢ such that

— T (e) iIs dummy,

— thereisie {1,..., K} suchthat ¢ € 7 (i),

— for every x € NOM(¢), thereisa unique ¢ € {1,..., K} such
that x € 7 (¢) (this 7 is then written i,),

and each s € {1,..., K} satisfies the following conditions:

—h
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Hintikka trees (1)

and each s € {1,..., K} satisfies the following conditions:
e 7 (s) is locally SIM-consistent with respect to G,
o if 7(s)is dummy, then7(s-1),...,7(s- K) are also dummy,

e if 5is of length at least 2, then 7 (s) is not a named symbolic
state,
o if 7(s) = (A, X,T)is not dummy and [B]y € sub(¢) \ X, then
1. eitherthereisie {1,... , K} with7(s-1) = (B, X', T"),
7 (s -4) is not dummy, and ¢ ¢ X' or
2. thereis x € NOM(¢) such that (B,x) € T'and ¢ & 7 (iy);
o foreveryi e {1,..., K}, ifboth7(s) = (A, X,T) and
T(s-1) = (B, X', T") are not dummy, then X ~gp X'.
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Complexity of SIM

e Lemma. For every SIM-formula ¢, ¢ is SIM-satisfiable iff ¢ has a
Hintikka tree.

e The class of Hintikka tree for ¢ can be defined as the language
recognized by a Buchi tree automaton.

e SIM can be decided in EXPTIME by using the complexity of the
translation combined by that of checking emptiness for Blchi
tree automata [Demri&SattlerO2].

e SIM is EXPTIME-hard as a conseguence of [Hemaspaandra96].
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Other proof techniques

e Filtration, see e.g. [Vakarelov97].
For numerous information logics only decidability is known.

e Translation of information logics characterized by relative
frames into standard modal logics.

e Optimal complexity upper bounds sometimes obtained via the
renaming technique.

e Submodel construction to show NP upper bound of the logic of
iIndiscernibility and complementarity.
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Concluding remarks

e How to deal with natural extensions of known logics?
For instance, the indiscernibility variant of SIM is not known to
be decidable.

e How to characterize first-order specifications on information
systems that lead to decidable information logics?

e How to distinguish the information logics that are the most
useful in applications? i.e. to make some order in the jungle of
information logics.
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