Satisfiability Modulo Theories

Clark Barrett and Cesare Tinelli

Abstract Satisfiability Modulo Theories (SMT) refers to the problem of determin-
ing whether a first-order formula is satisfiable with respect to some logical theory.
Solvers based on SMT are used as back-end engines in model checking applications
such as bounded, interpolation-based, and predicate abstraction-based model check-
ing. After a brief illustration of these uses, we survey the predominant techniques
for solving SMT problems with an emphasis on the lazy approach, in which a propo-
sitional satisfiability (SAT) solver is combined with one or more theory solvers. We
discuss the architecture of a lazy SMT solver, give examples of theory solvers, show
how to combine such solvers modularly, and mention several extensions of the lazy
approach. We also briefly describe the eager approach in which the SMT problem is
reduced to a SAT problem. Finally, we discuss how the basic framework for deter-
mining satisfiability can be extended with additional functionality such as producing
models, proofs, unsatisfiable cores, and interpolants.

1 Introduction

In several areas of computer science, including formal verification of hardware and
software, many important problems can be reduced to checking the satisfiability of
a formula in some logic. Several of these problems can be naturally formulated as
satisfiability problems in propositional logic and solved very efficiently by modern
SAT solvers, as described in Chap. 5 of this book. Other problems are formulated
more naturally and compactly in classical logics, such as first-order or higher-order
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logics, with a more expressive language that includes non-Boolean variables, func-
tion and predicate symbols (with positive arity) and quantifiers. There is, of course,
a trade-off between the expressiveness of a logic and the ability to automatically
check the satisfiability of its formulas.

A practical compromise can be achieved with fragments of first-order logic that
are restricted either syntactically, for instance by allowing only certain classes of
formulas, or semantically, by constraining the interpretation of certain function and
predicate symbols, or both. Such restrictions can make the satisfiability problem de-
cidable and, more importantly, allow the development of specialized satisfiability
procedures that exploit properties of the fragment to great advantage for practi-
cal efficiency, even in cases with high worst-case computational complexity. When
semantic restrictions are involved, they can be understood as limiting the interpre-
tations of certain symbols to models of some logical background theory (e.g., the
theory of equality, of integer numbers, of real numbers, of arrays, of lists, and so
on). In those cases, we speak of Satisfiability Modulo Theories (SMT).!

Building on classical results on decision procedures for first-order reasoning,
and on the tremendous advances in SAT solving technology in the last two decades,
SMT has grown in recent years into a very active research field whose defining fea-
ture is the use of reasoning methods specific to logical theories of interest in target
applications. Thanks to advances in SMT research and technology, there are now
several powerful and sophisticated SMT solvers (e.g., Alt-Ergo [25], Beaver [98],
Boolector [35], CVC4 [10], MathSATS5 [51], openSMT [38], SMTInterpol [49],
SONOLAR [132], STP [79], veriT [28], Yices [72], and Z3 [62]) which are being
used in a rapidly expanding set of applications. Application areas currently include
processor verification, equivalence checking, bounded and unbounded model check-
ing, predicate abstraction, static analysis, automated test case generation, extended
static checking, type checking, planning, scheduling, and optimization.

The recent progress in SMT has been driven by several factors, including: a fo-
cus on background theories and classes of problems that occur in practice; liftings
and adaptations of SAT technology to the SMT case; innovations in core algorithms
and data structures; development of abstract constraint solving frameworks and gen-
eral solver architectures to guide efficient implementations; novel search heuristics;
and attention to implementation details.> A major enabler of this progress has been
SMT-LIB [14], a standardization and benchmark collection initiative collectively
developed and supported by the SMT community, together with its derivative activ-
ities: the SMT workshop, an international forum for SMT researchers and users of
SMT applications or techniques; SMT-COMP [18], an international competition for
SMT solvers supporting the SMT-LIB input/output format [15]; and SMT-EXEC
a public execution service allowing researchers to run experimental evaluations on
SMT solvers.3

! This terminology originated in [153] and was popularized by the SMT-LIB initiative [14].

2 It is worth noting that many of the same factors are driving improvements in modern SAT research
(see [22] as well as Chap. 5 of this book).
3 http://smtlib.org , http:/smt-workshop.org , http://www.smtexec.org .
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This chapter provides a fairly high-level overview of SMT and its main results
and techniques, together with references to the relevant literature for a deeper study.
It concentrates mostly on the predominant approach for implementing SMT solvers,
known as the “lazy approach.” Its essence consists of combining an efficient and
properly instrumented SAT solver with one or more theory solvers, highly special-
ized solvers for problems consisting just of conjunctions of theory literals—atomic
and negated atomic formulas in the language of some particular theory 7.

The chapter is structured as follows. The rest of this section provides technical
background information, defining basic notions and terminology used throughout
the chapter. Section 3 describes the lazy approach to SMT in which a SAT solver
and a theory solver cooperate to solve an SMT problem. Section 4 discusses the-
ory solvers for a number of background theories used in SMT applications, and
specifically in model checking. Section 5 focuses on techniques for combining the-
ory solvers for different theories into a solver for a combination of those theories.
Section 6 discusses a few extensions and enhancements to the lazy approach. Sec-
tion 7 describes an alternative to the lazy approach for SMT, aptly named the “eager
approach,” which takes advantage of SAT solvers more directly. Finally, Section 8
presents a number of important functionalities provided by modern SMT solvers
that go beyond mere satisfiability checking, and that have been crucial to the suc-
cess of SMT as an enabling technology in applications like model checking.

1.1 Technical Preliminaries

SMT problems are formulated within first-order logic with equality. Since many
applications of SMT involve different data types, it is more convenient to work
with a sorted (i.e., typed) version of that logic, as opposed to the classical unsorted
version. In this chapter we use a basic version of many-sorted logic [74, 117], which
is adequate for our purposes. More sophisticated typed logics are sometimes used in
the literature. For instance, the SMT-LIB 2 standard is based on a sorted logic with
non-nullary sort symbols and /et binders [16]. Other work adopts, and advocates for,
a first-order logic with parametric (universal) types [25, 111, 112].

Syntax We fix an infinite set S of sort symbols and consider an infinite set X of
(sorted) variables, each uniquely associated with a sort in S. A many-sorted sig-
nature X consists of a set S C S of sort symbols; a set X¥ of predicate symbols;
a set X of function symbols; a total mapping from X¥ to the set (X5)* of strings
over £5; and a total mapping from ZF to the set (£3)* of non-empty strings over
XS_—where * and T are the usual regular expression operators. For n > 0, a func-
tion symbol f (resp., predicate symbol p) has a unique* arity n and rank o - -- 6,0
(resp., 01 - - - 0,) in X if it is mapped to the sort sequence o - - - 6,0 (resp., O - - - Cy,).
When n above is 0, f is also called a constant symbol (of sort ¢) and p a proposi-
tional symbol. A signature X is a subsignature of a signature Q, written X C Q, and

4 For simplicity, we do not allow any form of symbol overloading here.
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Q is a supersignature of X, if XS C QS ¥FC QF ¥P C QF, and every function or
predicate symbol of X has the same rank in X as in Q.

A (X-)term of sort G is either a sorted variable x of sort ¢ € XS or an expression
of the form f(t1,...,t,) with n > 0 where f € IF with rank o1 ---0,0 and #; is a
term of sort o; for i = 1,...,n. An atomic (X-)formula is either the symbol L, for
falsity; an expression of the form #; = f, with #,#, terms of the same sort;> or an
expression of the form p(ty,...,t,) with n > 0 where p € ¥ with rank o7 --- o,
and t; is a X-term of sort o; for i = 1,...,n. A (X-)literal is an atomic X-formula
or an expression —¢ where ¢ is an atomic X-formula. A (X-)formula is an atomic
X-formula or an expression of the form —¢, ¢ VV y, or 3x ¢ where x is a variable
with sort in £ and ¢ and y are X-formulas. We will write 3x:0 ¢ instead of Ix ¢
to indicate that x has sort 6. The other logical connectives as well as the universal
quantifier can be formally defined in terms of the logical symbols above as usual
(e.g., ® = y as a shorthand for —¢ V y; Vx ¢ as a shorthand for -3x—¢; and so
on). Examples of signatures and formulas used in SMT are provided in Section 4.

Free occurrences of a variable in a formula are defined as usual: all variable
occurrences in atomic formulas are free; a variable x distinct from a variable y occurs
free in a formula =@, @ V ¢, or Jy.y iff it occurs free respectively in ¢, in @; or @y,
or in Y. A (X-)sentence is a X-formula with no free variables. If ¢ is a X-formula
and x = (xy,...,x,) a tuple of distinct variables, we will write @[x] or @[x],...,x,]
to express that the free variables of ¢ are in x; furthermore, if #{,...,#, are terms
with each #; of the same sort as x;, we will write @[ti,...,#,] to denote the formula
obtained from @[xj,...,x,] by simultaneously replacing each occurrence of x; in ¢
by, fori=1,... k.

Semantics For each signature X and set X C X of variables whose sorts are in xS
a X-interpretation < over X maps

each sort 6 € X5 to a non-empty set Ag, the domain of  in <7
each variable x € X of sort ¢ to an element x¥ € Ag;
each function symbol f € ¥ of rank o --- 6,0 to a total function f"‘/ 1Ag X
.-+ X Ag, = As (and in particular each constant ¢ of sort o to a c” e Ag),
e cach predicate symbol p € ZP of rank o - - - 6, to a relation p” C Ag X+ XAg,.

A X-model is a X-interpretation over an empty set of variables. Let </ be an Q-
interpretation over some set ¥ of variables. When X C Q and X C Y, we denote by
%X the reduct of <7 to (Z,X), i.e., the Z-interpretation over X obtained from &7
by restricting it to interpret only the symbols in X and the variables in X. .o/ is an
expansion of a X-interpretation % over X if = &/*X.

Every Z-interpretation <7 over some X C X induces a unique mapping (,)'Q/
from X-terms f(z1,...,t,) with variables in X to elements of sort domains such that
(f(t1,- 1)) = f7(t7,...,t7). We define a satisfiability relation |= between
such interpretations and X-formulas with variables in X inductively as follows:

5 We will use = also to denote equality at the meta-level, relying on the context for disambiguation.
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o L

dEh=10 ifft 17 =17

o Eplty,... 1) iff @7,...t7)€p”

o =g iff o @

g E=EeVy iff dE=@or dEy

A =3Ixoe iff o/[x— a]l =@ forsomea € o

where &7[x — a] denotes the Z-interpretation that maps x to a and is otherwise
identical to 7. A Z-interpretation < satisfies a X-formula @ if o/ = ¢. A set @
of X-formulas entails a X-formula ¢, written ® |= @, iff every Z-interpretation that
satisfies all formulas in @ satisfies @ as well. The set @ is satisfiable iff & [~ L,
and @ is valid iff it is entailed by the empty set.

Theories In SMT, one is not interested in arbitrary models but in models belonging
to a given theory T constraining the interpretation of the symbols in some signature
Y. We define theories most generally as classes of models with the same signature.
More precisely, a X-theory T is a pair (X,A) where X is a signature and A is a class
(in the sense of set theory) of X-models. Section 4 discusses several examples of
theories commonly used in SMT.

Let T = (X,A) be a X-theory. A T-interpretation is any Q-interpretation <7 for
some Q D X such that &7*? € A. A formula @ is satisfiable in T, or T-satisfiable,
if it is satisfied by some T-interpretation .27.% A set & of Q-formulas T-entails an
Q-formula ¢, written @ =7 @, iff every T-interpretation that satisfies all formulas
in @ satisfies @ as well. The set @ is T-satisfiable iff @ =7 L, and @ is T-valid iff
@ is T-entailed by the empty set, written as =r @. T-unsatisfiable abbreviates not
T-satisfiable. These notions reduce to the corresponding ones given earlier when T
is the class of all X-models.

Note that, as defined here, T-interpretations allow us to consider the satisfiability
in a X-theory T of formulas that contain sort, predicate or function symbols not in X.
These symbols are traditionally called uninterpreted. In SMT applications, it is con-
venient to use formulas with uninterpreted constant symbols, which for satisfiability
purposes are analogous to free variables, or with uninterpreted predicate/function
symbols, which can be used as abstractions of other formulas/terms or of operators
not in the theory.

Also note that the notions of theory and 7-validity presented here are more gen-
eral than those used traditionally in first-order theorem proving, where a theory is
defined as a recursive set of sentences, the axioms of the theory, and T-validity as
entailment by those axioms. The reason is that every set A of X-sentences is charac-
terized by (i.e., has the same set of valid sentences as) a class of X-models, namely
the X-models of A. In contrast, not every class of X-models is characterized by a
recursive, or even non-recursive, set of (first-order) axioms.’

6 Observe that the class of all T-interpretations includes all possible expansions of models in A.
This essentially means that variables and sort, function and predicate symbols not in X can be
interpreted arbitrarily.

7 A well-known example of the latter would the SMT theory consisting of a single Z-interpretation
for the integers with the usual operations.
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In the next sections, we will often consider the T-satisfiability of conjunctions
(or, equivalently, sets) of literals. We will refer to these conjunctions as constraints
and talk about constraint satisfiability in T.

Abstractions SMT techniques often use propositional abstractions of first-order
sentences. Since our logic properly embeds propositional logic, such abstractions
can be defined as follows. Let us fix a signature IT consisting exclusively of an
infinite set of propositional symbols not contained in any theory signature. Every
quantifier-free formula (gff) of signature II is in effect a propositional formula, sat-
isfiable in our sense iff it is satisfiable in propositional logic. For every theory sig-
nature X, we define an injective mapping (_)* from the set of all atomic X-formulas
into I1. This mapping extends homomorphically to a (injective) mapping, also de-
noted as (_)%, from quantifier-free X-formulas to quantifier-free Il-formulas (i.e.,
propositional formulas) such that (—=¢)* = =(¢?) and (@ V y)* = @*V y? for all
qffs @ and y. We denote by (_)° the inverse homomorphism of (_)*, which is such
that (¢*)° = @, (=) = —(¢°), and (@ V ) = @° V y¢ for all gffs ¢ and .

We call an SMT solver any program that tries to determine the satisfiability of
some class C of formulas in some theory 7. What distinguishes SMT as a field is
the development and use of efficient reasoning techniques specific to the selected
theory and class of formulas.

2 SMT in Model Checking

Model checking has leveraged SMT extensively in the last decade thanks to the
impressive growth in the performance and scope of SMT solvers. The use of SMT
solving in support of software model checking and, more generally, model checking
for infinite-state transition systems is now widespread, as can be seen in the rest of
this book. In this section, we give a general—and necessarily incomplete—sampling
of that by focusing on a few major model checking methods.

Roughly speaking, we could say that all of these methods rely on some encod-
ing of a software or hardware system under analysis as a transition system S whose
state space is represented by the Cartesian product D; X --- X D, of finite or in-
finite domains (Booleans, fixed-size bit vectors, integers, and so on) modeled by
some X-theory T. The system itself is (implicitly or explicitly) described by a pair
(I[x], Tr[x,x']) of typically quantifier-free X-formulas® where

e x and X’ are n-tuples of variables semantically ranging over D X - -+ X Dy;

o [[x] is satisfied exactly by the initial states of S;

e Tr[x,X] is satisfied by all pairs s,s’ of reachable states of § where §' is a successor
of sin §.

8 This is an oversimplification because, for instance, several software model checking methods
also rely for efficiency on a separate representation of a program’s control structure as a control
flow graph. See Chap. 16 for more details.
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This representation is analogous to that used in SAT-based model checking (see
Chap. 10) except that the system is formulated in a more powerful logic than
propositional logic, though still endowed with efficient satisfiability checkers: SMT
solvers. The SMT setting has a number of advantages. To start, the first-order lan-
guage allows natural and more or less direct formulations of the system under
analysis—regardless of whether the system has finitely or infinitely many states.
In the finite-state case, these formulations can also be exponentially more com-
pact than propositional ones because they do not need to encode non-Boolean data
types and their operations at the propositional level, which allows better scalability.
Moreover, several SAT-based model checking techniques lift naturally, although not
necessarily immediately, to the SMT case.

BMC and k-induction-based methods The most obvious example of such lifting
is bounded model checking (BMC) [55]. As in the original propositional setting,
one tries to disprove that a given state property P[x] is invariant for the system, i.e.,
true in all reachable states, by looking for a value i > 0 such that the formula

I[xo] ATr[xo,x1] A+ ATr[X;—1,%;] A —P[x{] e

is satisfiable [66, 4, 97]. Another example is k-induction [145], where one tries to
prove that a given state property P[x] is invariant by looking for a k > 0 such that
(1) is unsatisfiable for all i = 0, ...,k and the formula

Tr[xo,X1] A=+ ATr[Xg, Xy 1] AP[Xo] A+ A P[Xp] A=P[Xp11] 2

is also unsatisfiable. In both examples, the only differences with the original for-
mulations are that the formulas (1) and (2) are first-order qffs; propositional satis-
fiability is replaced by T-satisfiability; and an SMT solver is used to perform the
satisfiability check. Again, as in the propositional case, any variable assignment that
satisfies (1) can be used to construct a counter-example trace for P. Several enhance-
ments to BMC and k-induction (such as lemma learning, abstraction and refinement,
path compression, termination checks, . ..) lift to the SMT case as well [66, 97].

Interpolation-based methods Interpolation-based model checking proves a prop-
erty P[x] invariant by constructing a formula R[x] that holds in all reachable states
and entails P[x]. This is done incrementally, fori =0, 1,.. ., by checking the satisfi-
ability of formulas of the form

Ri[xo] ATr[x0,X1] A+ ATr[Xg—1,Xp) A (—P[Xo] V -+ - V =P [x¢]) 3)

for some k > 0, where R; is a formula satisfied by all states reachable in up to
i-steps, starting with Ry = 1. When (3) is unsatisfiable, R;[x] is generalized to
Ri+1 := Ri[x] V Int[x] where Int[x;] is a formula entailed by R;[xo] A Tr[Xo,X;] and
jointly unsatisfiable with Tr[x;,xa] A+ A Tr[xg_1,X] A (2P[x0] V -+ V =P[xt]), an
interpolant of those two formulas. The property is proved if at some point R is
equivalent to R;, something that can be checked by verifying the unsatisfiability of
Ri11[x] A =R;[x]. This method was developed originally in the SAT setting [118].
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However, it immediately lifts to the SMT setting with theories 7 and language
fragments for which T-entailment is decidable and interpolants exist and are com-
putable (e.g., [119]). Note that in this case a plain SMT solver is not enough, since
procedures for computing theory interpolants are also needed. These procedures,
however, can often be built within existing SMT solvers (see Section 8). See also
Chap. 14A for a comprehensive treatment of interpolation-based methods.

Predicate abstraction-based methods Perhaps the most successful approach to
software model checking so far, described in more detail in Chap. 16, is predi-
cate abstraction. In a predicate abstraction method popularized by the SLAM model
checker and further improved in other tools [8, 99], a program written in a high-level
programming language (such as C or Java) and a safety property P to be checked are
modeled as a system (I[x], Tr[x,x’]) with a distinguished error state directly reach-
able from any state that violates the property.

The system (I,Tr) is abstracted to a finite-state system S = (I,7r), obtained,
roughly speaking, by replacing predicates (i.e, atoms or other sub-formulas) of /
and Tr by propositional variables. Then, using traditional symbolic model checking
techniques (see Chap. 9), an exhaustive analysis of all the paths of S is performed
to determine if the abstract error state is reachable. If a trace ¢ to that state is found,
it is converted to a formula ¢ that is T-satisfiable exactly when ¢ corresponds to an
execution of the original program that leads to the concrete error state. If @ is not
T-satisfiable, the abstraction S is refined using techniques like those described in
Chap. 16 to remove that spurious error trace ¢. As in the other methods above, all
T-satisfiability checks involved in this process are performed by an SMT solver.

3 The Lazy Approach to SMT

The majority of the work in SMT has focused on the 7T-satisfiability of quantifier-
free formulas and on theories 7' for which this problem is decidable. We discuss
that major case here. Let us start by observing that to decide the quantifier-free
T-satisfiability problem it is enough in principle to have a procedure for deciding
the T-satisfiability of constraints (conjunctions of literals): one can first convert any
quantifier-free formula to Disjunctive Normal Form, and then check each disjunct
individually. This solution, however, is impractical because of the frequent exponen-
tial blow-up in the size of the resulting DNF formula. Except for degenerate (and
uninteresting) examples of theories, this blow-up cannot be eliminated in general
because the T-satisfiability of qffs is NP-hard, even if the constraint T-satisfiability
problem is polynomial, as one can easily show by simple reductions from SAT.

To avoid the inefficiencies inherent in DNF conversions, most current SMT
solvers follow a general approach that essentially amounts to constructing and
checking a DNF for the input formula incrementally and as needed. The main
characteristic of this approach, referred to as the lazy approach in the literature
(e.g., [144]), is the combination of one or more specialized constraint satisfiability
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Require: ¢ is a gff in the signature X of T’
Ensure: output is sat if ¢ is 7-satisfiable, and unsat otherwise
F:=¢*
loop
A = get_model(F)
if A = none then
return unsat
else
U := check_satr (A°)
if y = sat then

return sat
else
F:=FA-u*

Fig. 1 A basic SMT solver based on the lazy approach. The function get_model implements the
SAT engine. It takes a propositional formula F* and returns either none, if F is unsatisfiable, or
a satisfiable conjunction A of propositional literals such that A |= F. The function check_satr
implements the theory solver. It takes a conjunction y of X-literals and returns either sat or a
T-unsatisfiable conjunction p of literals from y.

procedures, or theory solvers, with a conflict-driven clause learning (CDCL) SAT
solver, the SAT engine, used to reason efficiently about the propositional connec-
tives. The approach has several variants, differing in the sophistication of the inter-
action between the SAT engine and the theory solvers. We discuss some of them in
the following.

For the rest of the section, we fix a generic X-theory 7 and assume the existence
of a theory solver, or T-solver for short, that can decide the T-satisfiability of con-
junctions of X-literals. We will discuss only a few general desirable features of T-
solvers here. Details on algorithms and techniques for implementing theory solvers
for specific theories of interest in model checking are provided in Section 4. We will
assume that the reader has some familiarity with the inner workings of modern SAT
solvers (see Chapter 5 for a general overview).

3.1 A Basic Lazy SMT Solver

In the most basic version of the lazy approach, with a single X-theory 7, one ab-
stracts each atom in the input formula by a new propositional variable (as detailed at
the end of Section 1.1), uses the SAT engine to find a model of the formula, a satis-
fying assignment given as a set A of literals, and then asks the 7-solver to verify that
the X-literals abstracted by this model are jointly 7-satisfiable [20, 65]. If the latter
check succeeds, one can conclude that the input formula is 7T-satisfiable. Otherwise,
one asks the SAT engine for another model—something achievable in the simplest
way by adding a proper blocking lemma, the negation of a subset of the assignment
A, to the original formula and restarting the engine. This process is repeated until
a model consistent with the theory is found, or all possible propositional models
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have been explored with no success—in which case one can conclude that the input
formula is T-unsatisfiable.

A pseudo-code description of this algorithm is provided in Figure 1, with the con-
cretization and abstraction functions ()¢ and (_)* defined as in Section 1.1. Current
implementations are based on more sophisticated variations on this basic approach
that exploit advanced features of modern SAT engines and theory solvers to achieve
a tighter integration between them [3, 5, 75, 81, 30]. The most important ones are
described next.

3.2 SAT Engine and Theory Solver Features

For efficient integration, in addition to having all the features usually found in mod-
ern SAT solvers, it is important for the SAT engine to be on-line, i.e., able to take
and process its input progressively, maintaining at all times a set I of input for-
mulas and a satisfying assignment for it. Initially, I" is empty (and so satisfied by
the empty assignment). When a new formula is fed as input, the engine attempts to
modify the current assignment to satisfy the new formula as well, terminating if that
is not possible or waiting for more input formulas otherwise.

T-solvers usually maintain internally at all times a set A of literals to be checked
for T-satisfiability. The salient advanced features for these solvers are listed below.

Incrementality Intuitively, a T-solver is incremental if it can be given a set of
literals one at a time and determine each time the 7T-satisfiability of the newly
expanded internal set A with a cost proportional to the size of the addition—as
opposed to the size of A. With an incremental T-solver, the model produced by
the SAT engine can be checked for T-satisfiability as it is being constructed, and
so discarded as soon as it becomes T-unsatisfiable. Decision procedures used
for most theories were either already incremental in their original formulation or
have been adapted to be so by SMT researchers.

Backtrackability Incremental solvers are naturally state-based. A state-based T'-
solver is backtrackable if, for any of the literals in its current input set L, it is
able to restore inexpensively the state it had right before it was fed that literal.
This feature is crucial to keep an incremental T-solver in sync with the SAT
engine, which itself relies on backtracking to recover from propositional conflicts
generated while attempting to construct a model for its input formula.

Conflict set generation A conflict set for a T-unsatisfiable input set A to a T-
solver is a (ideally minimal) subset {/1,...,l, } of A thatis already T-unsatisfiable.
The T-valid formula —/; V -- -V —l, constructed from this set is called a justifi-
cation or explanation (of A’s unsatisfiability). An explanation can be abstracted
and passed to the SAT engine, to be treated as a learned clause. Its immediate
effect is to create a conflict in the engine and force a backtrack. If it is kept after-
wards, its later effect will be the same as that of learned lemmas in CDCL SAT
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solvers: to drive the search away from other parts of the search space that would
generate the same conflict.

Literal deduction A T-solver with this feature is able to identify consequences
of its current set A among a predetermined set L of literals—i.e., identify literals
I € L such that A |=r . This information is useful to the SAT engine which then
does not have to guess the value of these literals. Typically, but not exclusively,
L consists of all atoms occurring in the original input formula (the formula ¢ in
Figure 1), as well as their negation. Theory propagation, the process of communi-
cating entailed literals to the SAT engine, can be partial or exhaustive, depending
on the cost of determining all entailed literals of L. For some theories, such as
for instance difference logic (cf. Section 4.5), exhaustive theory propagation is
extremely cheap and proves highly effective. For others, it pays off performance-
wise to propagate only literals of L that happened to be deduced in the process of
checking the satisfiability of the input set A. This is for instance the case for the
(positive) equalities computed by congruence closure in solvers for the theory of
equality (cf. Section 4.1).

Explanation generation With theory propagation, the SAT engine may generate
a conflict involving a theory propagated literal /. For the engine to perform its
conflict analysis and determine how far to backtrack, it is necessary to have an
explanation for 1, a formula of the form I} A--- Al, — [ where {1,...,1,} is a sub-
set of the literals A in the T-solver such that [1,...,1, =7 [. Typically, the same
mechanisms and infrastructure used to compute conflict sets can be used to com-
pute these explanations too.” Explanations need not be minimal, as computing
those can be unacceptably expensive, but should be relatively small since shorter
explanations usually lead to better conflict analysis than longer ones. A compli-
cation and main difference with conflict sets is that literal explanations are (best)
computed a posteriori and as needed, whereas conflict sets are usually computed
as soon as the input set becomes unsatisfiable (see [129] for a discussion).

3.3 A General Framework and Architecture

SMT solvers implementing the many variants of the lazy approach can be described
abstractly and declaratively in terms of a transition system between states of the
form M || F , where M is a sequence of X-literals and decision points, and F is
a quantifier-free X-formula in conjunctive normal form, or, equivalently, a set of
clauses; an additional distinguished state Fail is used to model the discovery by
the SMT solver that its input formula is T-unsatisfiable [128, 129]. Identifying for
simplicity every X-literal / with its propositional abstraction /2, the sequence M
represents the propositional assignment being built by the SAT engine, together with
the engine’s non-deterministic guesses; the formula F models the current set of
clauses being processed by the SMT solver. Slightly more concrete versions of this

9 In fact, one can look at a conflict set as an explanation for the literal L.
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framework also model conflict analysis and lemma construction by adding states of
the form M || F || C where M and F are as before and C is a conflict clause for M
and F, a clause T-entailed by F' and propositionally falsified by M [111, 139].

This declarative framework has been used to provide a clean formulation of the
different lazy variants and a basis for comparison and formal analysis at an ab-
straction level free of inessential implementation and control details. Its description,
however, is beyond the scope of this chapter. We refer the reader to the original
work [129, 111] or previous survey work [12] for more information and formal cor-
rectness results. Here, we informally describe instead a general modular architecture
for SMT solvers based on the lazy approach, known in the literature as DPLL(T).

The DPLL(T) Architecture The architecture relies on a generic CDCL-style SAT
engine, called DPLL(X), which is parametric in the theory and theory solver used.
Instantiating the parameter X with a theory solver for some theory T produces a
DPLL(T) system that can be seen as a concrete implementation of the abstract frame-
work mentioned above.'? In particular, the engine maintains the partial assignment
M and the current formula F. The T-solver maintains a set A of literals—which
at any time is a subset of those in M. The T-solver can be arbitrary as long as it
conforms to a specific, simple interface. The precise details of the interface are not
needed here (the interested reader is referred to [81, 129]). It suffices to know that
the T-solver provides operations that the DPLL(X) engine can invoke to do the fol-
lowing.

e Assert aliteral /, that is, ask for / to be added to A. This operation is to be invoked
when the DPLL(X) engine adds [ to its partial assignment M.

e Ask whether the current set A of asserted literals is T-unsatisfiable. This request
can be made by the DPLL(X) engine with different degrees of strength: for the-
ories where deciding unsatisfiability is expensive, it can be more effective for
the engine to rely on a cheap, if incomplete, T-unsatisfiability check while it
is building the partial assignment M, and request a complete one only when M
propositionally satisfies F' (and A contains all the literals in M).

In response, when it determines the T-unsatisfiability of A, the T-solver returns
an explanation of that.

e Request a set of input literals not in A that are T-entailed by A. The returned
set, which is used for theory propagation, need not include all T-entailed literals.
Note that for this operation the 7T-solver must know the set of all input literals.

e Request an explanation for a previously theory propagated literal /. Explanations
are used by the DPLL(X) engine during the analysis of conflicts that involve
theory propagated literals.

e Request the T-solver to undo the n most recent assertions, that is, to remove
from A its n most recent literals, for some n > 0. This operation is to be invoked

10 The motivation for the abbreviation DPLL in DPLL(T) is historical. At the time the architecture
was proposed [81], CDCL solvers were still commonly referred to as DPLL solvers—in reference
to the work of Davis, Putnam, Logemann and Loveland [60, 61].



Satisfiability Modulo Theories 13

after the engine backtracks to some previous decision level and shrinks its partial
assignment M correspondingly.

DPLL(T) is currently the most popular general architecture for SMT solvers
based on the lazy approach. However, its black-box treatment of the SAT engine
and the theory solvers (originally an asset because it allowed the use of minimally
modified off-the-shelf SAT solvers) is becoming a limitation as research in SMT ad-
vances. A number of alternative architectures have been proposed quite recently that
aim at overcoming these limitations by integrating propositional-level and theory-
level reasoning more tightly [33, 101, 121].

4 Theory Solvers for Specific Theories

In this section, we consider solvers for constraint satisfiability problems in several
specific theories. For each theory, we first describe the signature and semantics of
the theory and then discuss how to solve its constraint satisfiability problem.

4.1 Uninterpreted Function Symbols

We start with the simplest possible theory consisting of a given signature X and the
class of all X-models. This theory, or rather family of theories parametrized by the
signature, is known as the theory of Equality with Uninterpreted Functions (EUF)
or the empty theory—since it imposes no restrictions on its models.

Conjunctions of literals in this theory can be decided in polynomial time by con-
gruence closure algorithms. For simplicity, we describe a version of the algorithm
assuming no predicate symbols. This assumption loses no generality, because pred-
icate symbols can be handled using a simple encoding: introduce a new sort sym-
bol B and a new function symbol f, of rank o7 ---0,B for each predicate sym-
bol p of rank o] ---0,, plus a new constant symbol tt of sort B; then, replace
each literal p(ry,...,1,) with f,(t1,...,t,) = tt and each literal —p(zy,...,,) with
fpti,.. ty) #tt.

Let @ be a set of literals to be checked for satisfiability. Since there are no
predicate symbols, @ can be partitioned into a set E of equalities and a set D
of disequalities. Let E* be the congruence closure of E, defined as the small-
est equivalence relation (over the terms in @) that includes E and also satisfies
the congruence property: for every pair of terms f(si,...,s,) and f(t1,...,%),
(f(s1,...,8,),f(t1,...,1,)) € E* whenever (s;,;) € E* for i = 1,...n.'! Then, ®
is satisfiable iff for each t; #1t, € D, (t1,12) ¢ E™.

Example 1. Let @ = {f(f(a)) = a, f(f(f(a))) = a, g(a) # g(f(a))}. The equiva-
lence classes induced by E are {a, f(f(a)), f(f(f(a)))}, {f(a)},{s(a)}, {g(f(a))}.

1T Observe that two terms may be related by E* only if they have the same sort.
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Congruence closure requires merging the first two classes and the last two. As a re-
sult, (g(a), g(f(a))) € E* and @ is not satisfiable.

Standard algorithms use directed acyclic graphs (DAGs) to represent terms, and
a union-find data structure [152] to represent equivalence classes of terms. The main
work is in the congruence closure step. A simple O(n?) algorithm for congruence
closure is as follows [124]: seed a work-list with the equalities in E; then, while
the work-list is non-empty, remove an equality, perform a union operation on the
two equivalence classes containing the terms on either side of the equality, and then
examine all pairs of parents (in the DAG) of these terms to see if any of them newly
satisfy the congruence property; if they do, add this new pair to the work-list. Once
the work-list is empty, @ is satisfiable iff for each disequality #| # t, € D, the find
of #; is different from the find of r,. More efficient algorithms (O(nlogn)) only
require traversing one set of parents after each union operation and include efficient
mechanisms for computing, in the case when @ is unsatisfiable, a small unsatisfiable
subset of @ [69, 127].

4.2 Real arithmetic

Next, consider the signature X containing a single sort, R, all rational number con-
stants, function symbols {+, —, *} and the predicate symbol <, all with the expected
rank. The theory of real arithmetic consists of this signature paired with the stan-
dard model of the real numbers, that is the X-model that interprets R as the set R
of the real numbers and the constants and operators in the usual way. Satisfiability
of X-formulas in this theory, even with quantifiers, is decidable [115]. Traditionally,
decision procedures for the full theory have not been efficient enough to be practical.
It is worth noting, however, that this is an area of active research and several promis-
ing new approaches are being investigated [84, 102]. Efficient decision procedures
do exist for the satisfiability of appropriately restricted classes of quantifier-free X-
formulas in this theory.

Consider, for instance, linear real arithmetic (LRA). Here, formulas are re-
stricted in that the symbol * can only appear if at least one of its two operands
is a rational constant. For illustration purposes, we describe here a simple algorithm
based on Fourier-Motzkin elimination [143]. For convenience, let f; < t, abbreviate
—(t; <11) and assume that in all constraints, like terms are combined.

Now, suppose we are given a set @ of LRA literals. We first eliminate disequali-
ties by replacing t; # t, by t; < 1 V1, < t;. We also eliminate weak inequalities by
replacing | < f, with #; <t V1] =1,. These steps introduce disjunctions, but case-
splitting or conversion to DNF can be used to reduce the new problem to several
instances of simple conjunctions of strict inequalities. Next, we eliminate equali-
ties. If 11 =, cannot be solved for some variable x, it must either be trivially true or
trivially false. If the former, we remove it; if the latter, @ is unsatisfiable and we are
done. Otherwise, the equality is equivalent to x = 3 for some term #3. In this case,
we replace x everywhere by 73 and then remove the equality.
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We are left with only conjunctions of strict inequalities, to which we apply
Fourier—-Motzkin elimination. We pick a variable x occurring in & to eliminate,
and rewrite all constraints containing x as either (i) 7; < x or (if) x < t,. For every
possible pair of constraints in & consisting of a constraint of the form (i) and one of
the form (if), we introduce the new constraint #; < #,. We then remove all constraints
containing x, eliminating x from @. We repeat with another variable until no more
variables appear in ®. The result is a set of inequalities over rational constants that
can easily be simplified to L, indicating that & is unsatisfiable, or —_L, indicating
that @ is satisfiable.

Example 2. Let @ = @& U{w <y} with &, = {x <y+z,x—y=z—w,y < 0}.
Eliminating < yields two sets of constraints: @; U{w < y} and & U{w =y}. In
the first set, solve the equality for x to get x = y +z — w. After substituting and
combining like terms, we have {0 < w,y < 0, w < y}. Applying Fourier—Motzkin
elimination to y results in {0 < 1, w < 0}. Then eliminating w yields 0 < 0, which
simplifies to L. For the second set of constraints, first eliminate w = y by substituting
y for w everywhere to get {x < y+z,x =z, ¥ < 0}. Next, eliminate x which gives
{0 <,y < 0}. Fourier—-Motzkin elimination on y then again yields 0 < 0. Thus ¢
is unsatisfiable.

Each elimination step in the procedure above introduces in the worst case a
quadratic number of new constraints, making the procedure doubly exponential.
For this reason, Fourier—Motzkin elimination is usually not practical for large sets
of constraints, Though more efficient procedures based on Fourier—-Motzkin have
been developed [101, 109], procedures based on the Simplex method are currently
preferred because of their superior overall performance. A Simplex-based algorithm
specialized for use in SMT solvers is given in [70], and further improvements on it
are described in [71, 95, 107].

4.3 Integer arithmetic

Consider now a signature X containing a single sort Z, for the integers, all integer
number constants, function symbols {4+, —, *} and the predicate symbol <, all with
the expected rank. The theory of integer arithmetic consists of this signature paired
with the standard model of the integers, the X-model that interprets Z as the set Z
of the integers, and the constants and operators in the usual way. The satisfiability
of X-formulas in this theory, even without quantifiers, is undecidable [115].

The linear integer arithmetic (LIA) fragment is the analog of the LRA fragment
described above: the symbol * can only appear if at least one of its operands is
an integer constant. The fully quantified LIA fragment is also known as Presburger
arithmetic and is decidable using Presburger’s algorithm [135]. More efficient meth-
ods exist for the quantifier-free fragment. Again, for illustration purposes, we de-
scribe here a relatively simple procedure for quantifier-free LIA based on the Omega
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test [21, 110, 137]. This is essentially an integer adaptation of the Fourier—Motzkin
elimination procedure described for the reals above.

Let @ be a set of LIA literals. As before, we assume that all constraints are
normalized by combining like terms. We divide coefficients in each constraint by
any common factors and check for any contradictions in constraints involving only
constants. Then, we eliminate disequalities by replacing #; # t, with ] <, V1, <ty,
where again s < t abbreviates —(s < ¢). We similarly eliminate weak inequalities by
replacing () <t) witht; <, + 1.

The next step is the elimination of equalities. If it is possible to solve some equa-
tion for some variable x, we do this and either: (i) halt the procedure and report
@ is unsatisfiable if the right-hand side of the solved equation reduces to a non-
integer constant; or else (ii) substitute the right-hand side for x in & as before. If it
is not possible to solve any equation for a variable while maintaining integer coeffi-
cients, we proceed as follows: let @ be the minimum coefficient of any variable and
wrlte the equation it appears in as ax + Zla X;+c¢=0.Let m = |a|+ 1 and define
kmod m=k—m Lk J Note that mod distributes (modulo m) over both multipli-
cation and addltlon Next, apply this operator to both 51des of the original equation
to get: +(x mod m)+Y; (a, mod m)(x; mod m)+ (c mod m) =0 (modulo m). Ex-
panding the definition of mod this can be rewritten as: +x+ ¥;(a; mod m)x; +
(¢ mod m) = m-y where y is a fresh variable. This equation can now be used to
eliminate x from the original equation (and indeed from ). The new equation still
has the same number of variables, since y was introduced, but in the new equation,
the absolute values of the coefficients of all variables other than y are reduced by a
factor of at least 2/3, while the absolute value of the coefficient of y is in fact |a|. By
repeating this process a logarithmic number of times, we eventually obtain an equa-
tion in which some variable has coefficient -1 and can thus be eliminated without
introducing any new variables. This process can be used to eliminate all equality
constraints from ®.

The final step again involves only conjunctions of strict inequalities and is similar
to Fourier—-Motzkin elimination. We pick a variable x occurring in & to eliminate,
and write all constraints containing x as either (i) ax < #; or (i) t; < bx where a
and b are positive integers. We remove these constraints from @ and then for every
possible pair consisting of a constraint of the form (i) and a constraint of the form
(ii), we add a new constraint, choosing from the following three alternatives: the real
shadow aty < bt|; the dark shadow bt| — at, > ab; and the gray shadow ij_l bx =
tp 4 i. The first two are approximations, with the first preserving the soundness and
the second the completeness of the procedure. The gray shadow is exact and can
be used to eliminate x via additional case splitting and equation solving. However,
this can be prohibitively expensive, so one possible strategy is: check whether the
real shadow constraints are sufficient for unsatisfiability; failing that, check whether
the dark shadow constraints are satisfiable; and finally, failing that, check the gray
shadow constraints.

Example 3. Let @ = {2x = 3w +4z, w < x, 2x + 4z < w}. When solving for x, the
minimal coefficient is 2, so m = 3, and we can derive the new equation —x — z = 3y,
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or x = —3y — z. Substituting into the first equation, we get —6y — 2z = 3w + 4z, or
w = —2y — 2z. Substituting for x and w in the second constraint, we get —2y — 2z <
—3y —z or y < z. Substituting for x and w in the third constraint, we get 2(—3y —
z)+4z < —2y—2zor z < y. The real shadow is now unsatisfiable.

As with real arithmetic, better performance is possible by using Simplex-based
algorithms, in this case expanded with additional techniques for obtaining integer
solutions [68, 70, 71, 95, 96].

4.4 Mixed Integer and Real Arithmetic

Sometimes it is desirable to mix integer and real reasoning. A simple solution is
to use two different sorts, Z and R and then create two copies of the arithmetic
symbols, one set for integers and one set for reals. Mapping operators, such as tolnt
of rank RZ (returning the integer part of a real) and toReal of rank ZR (returning the
corresponding real) can be used to mix real and integer terms.

Alternatively, mixing can be done by reasoning within the theory of reals with
the addition of a unary predicate symbol Int whose interpretation is exactly the set
of all whole (real) numbers. Often, constraints of interest limit the use of the Int
predicate to variables (as opposed to more complicated terms). In such cases, an
algorithm can be obtained by mixing approaches for LRA and LIA [21, 71].

For example, suppose @ is a set of literals. Let Vz be the set of variables in @
that are constrained by Int, and let Vi be the set of remaining variables of &. We
can eliminate disequalities and weak inequalities as before. Then, all equations that
contain at least one variable in Vg can be eliminated by solving for the variable and
then substituting for that variable in @. Next, the remaining variables in Vg can be
eliminated by performing Fourier—-Motzkin elimination. The result of this step is
a system of equalities and inequalities over only the variables in Vz. Furthermore,
each constraint can be made to have integer coefficients by multiplying through by
the least common multiple of the denominators appearing in its rational coefficients.
The resulting set of constraints can be solved using any algorithm for LIA, such as
the one described above.

4.5 Difference Logic

Difference logic refers to a quantifier-free arithmetic fragment in which all atoms
are of the form x —y x ¢, where 1 € {=,<, >}, ¢ is a constant, and x and y are
variables. The background theory may be the theory of real arithmetic, in which
case ¢ can be any rational constant and the fragment is called real difference logic
(RDL). Alternatively, it may be the theory of integer arithmetic, in which case c is
required to be an integer constant and the fragment is called integer difference logic.
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Conjunctions of literals in either IDL or RDL can be solved in polynomial time. A
simple algorithm is as follows [125].
Let 11 < rp abbreviate —(f, < t1), and eliminate disequalities by replacing —(x —
=c¢) withx—y < cVx—y > c. We similarly eliminate equalities by replacing
(x—y=c) withx—y < cAx—y > c. Finally, we write all constraints in terms
of < by applying the following rewriting steps: (i) x—y>¢ — y—x < —¢;
(i)x—y>c — y—x<—c;and (iii) x—y<c — x—y <c— 1. Step (iii) is
only valid in IDL. For RDL, a slight variation is possible: x—y < ¢ — x—y<c¢—9§
where § is a rational positive constant chosen to be sufficiently small [143].

Now, we form a weighted directed graph with a vertex for each variable and an
edge from x to y with weight ¢ for each constraint x —y < ¢. The set of constraints
is satisfiable iff there is no cycle for which the sum of the weights on the edges is
negative, which can be determined using standard graph algorithms [48].

Example 4. Let ® ={x—y=5,z—y>2,z2—x>2, w—x=2,z—w < 0}. After
eliminating equality and rewriting, we have {x —y <5, y—x<-5y—z< -2, x—
z2< =3, w—x<2,x—w< -2, z—w < —1}. In the associated graph, the cycle from
X to z to w to x has total weight -2. Therefore, @ is unsatisfiable.

The algorithm described here is elaborated and extended in [56, 158]. An effi-
cient alternative algorithm based on a reduction to propositional logic is described
in [106].

4.6 Bit Vectors

The theory of fixed-size bit vectors is useful for modeling hardware or low-level
software. The theory signature consists of one sort BV, for each bit width n > 1; 2"
binary constants for each such sort, each representing a constant bit vector of width
n; and a large set of operators corresponding to standard hardware and software
operations on bit vectors. For example, t; o, represents the concatenation of bit
vectors ¢ and 7, and #[i : j] represents the extraction of bits i through j of z, where
n>1i> j>0and n is the bit width of 7.

A conjunction of equations containing only concatenation and extraction oper-
ators can be checked for satisfiability in polynomial time as follows [40, 59]. In
step (i), simple rewrites are used to distribute extraction over concatenation, other
extractions, or constants, until the only arguments of extractions are variables. In
step (if), whenever an equation contains a concatenation on one side, ros =1, it
is replaced by two equations: r =¢[n—1:m| and s =t[m — 1 : 0], where n is the
bit width of ¢ and m is the bit width of s. In step (iii), if a variable x appears as an
argument to two different extractions, x[i : j| and x[k : {], with i > k > j, then x[i : j]
is replaced by x[i : k+ 1] ox[k : j]. Similarly, if i > > j, then x[i : j] is replaced
by x[i : [+ 1] ox[l : j]. These three steps are repeated until they can no longer be
applied. Let ~ be the equivalence relation over terms induced by the resulting set of
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equations. The original equations are unsatisfiable iff there exist two distinct binary
constants, ¢; and ¢y, such that ¢; ~ ¢3.

Example 5. Let x be of width 4 and consider the equation 1 ox = x00. Step (ii)
produces three new equations: 1 =x[3:3],x[0:0] =0, and x[3: 1] = x[2: 0]. Then,
step (iii) requires that the last equation be replaced with x[3 : 3]ox[2: 1] =x[2: 1]o
x[0: 0]. Repeating step (ii) on this equation gives x[3:3] =x[2:2],x[2:2] =x[1 : 1],
and x[1 : 1] = x[0 : 0]. The equivalence relation induced by all of these equations
equates 0 and 1, so the original equation is unsatisfiable.

Almost any extensions beyond this core fragment of the theory, including just
allowing disequalities, make the constraint satisfiability problem NP-hard. Recent
results show that, depending on the extension, the problem can be NP-complete,
PSPACE-complete, or up to NEXPTIME-complete for the full fragment [77].
Solvers typically handle the general case by first employing a set of rewrite rules
to simplify and normalize parts of the input and then encoding the result as a propo-
sitional satisfiability problem. This can be done by assigning a propositional variable
to each bit in each bit vector variable and then using propositional logic formulas
to encode each equation in terms of these variables—a process known as bit blast-
ing. In reality, the situation is more nuanced as several bit blasting SMT solvers,
including non-DPLL(T') solvers such as Boolector and STP, bit blast some of their
internal formulas only as needed, and so combine aspects of both the lazy and the
eager approach.

Both the rewrite rules and the method of encoding can dramatically affect per-
formance, as detailed in an extensive set of publications on the subject [7, 19, 24,
35, 36, 42, 80, 98, 116].

4.7 Arrays

Consider a signature X with sorts A, |, E (for arrays, indices and array elements) and
function symbols: read, of rank AIE and write of rank AIEA. Then, consider the
theory consisting of all X-structures satisfying the axioms:

1. Ya:AVi:l Vv:E read(write(a,i,v),i) = v,
2. Ya:AVi, j:IVv:E i # j = read(write(a,i,v), j) = read(q, j),
3. YaVb:A (Vi:lread(a,i) = read(b,i)) = a = b.

This is the theory of functional arrays with extensionality. (Axiom (3) may be omit-
ted to obtain a theory without extensionality.) This theory is especially useful for
modeling memories or array data structures. The full theory is undecidable although
it contains a number of decidable fragments [32].

A simple algorithm for constraint satisfiability can be obtained by naive instan-
tiation of the axioms plus the use of congruence closure (e.g., [104]). Let & be a
set of X-literals. With no loss of generality, assume that each element of @ is a flat
literal, that is, of the form a = b, a # b, v = read(a, i), and b = write(a,i,v), where
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a,b, i,v are variables.!? First, replace any disequality a # b between array variables
with read(a, k) # read(b, k), where k is a fresh variable of sort |. Now, let I be the set
of all variables in @ of sort |, and replace each formula of the form a = write(b, i, v)
with read(a,i) = vA\ ¢ (i = jVread(a, j) = read(b, j)). Since this step introduces
disjunctions, case-splitting or conversion to Disjunctive Normal Form (DNF) can
be used to reduce the new problem to several instances of sets of literals. Each such
instance can be checked for satisfiability using only congruence closure over read,
since write no longer appears in @. The set @ is satisfiable iff one of these instances
is satisfiable.

Example 6. Let @ = {read(a,i) = v, read(b,i) # v, w # v, a = write(b, j,w)}. The
reduction replaces the last equation with read(a,j) = wA (i = jV read(a,i) =
read(b,i)). Now, note that if i = j, then congruence closure generates read(a,i) =
read(a, j) and so v = w, contradicting w # v. On the other hand, if read(a,i) =
read(b, i), then this contradicts read(b, i) # v. Thus, & is unsatisfiable.

In practice, various heuristics and optimizations are used to avoid many unnec-
essary axiom instantiations, greatly reducing the number of cases that must be con-
sidered [26, 34, 63, 80, 93, 150].

4.8 Other Theories

There are many other theories of general interest with decision procedures that
have been or could be integrated into SMT solvers. These include theories of fi-
nite sets [46], finite multi-sets [133], inductive data types [13] (lists, records, and
tuples can be handled as special cases), character strings [105], pointers [47, 114],
and floating point numbers [141]. It is also possible to design special-purpose theo-
ries for specific application domains (see, e.g. [126]).

5 Combining Theory Solvers

All constraint satisfiability procedures described in the previous section consider
theories of a single data type. In many applications of SMT, however, including
model checking, one is often interested in the satisfiability of formulas over several
data types (e.g., arrays with integer indices and real values, lists of integers, etc.)
and consequently, over some combination of their theories. An important theoretical
and practical question then is whether and how constraint satisfiability procedures
for different theories can be combined modularly into a single one so as to allow
the construction of theory solvers for a combination of these theories. This section
gives an overview of notable combination methods and results.

12 Any set of literals can be converted into an equisatisfiable set of flat literals by introducing new
variables.



Satisfiability Modulo Theories 21

A general mechanism for combination is available when the desired combina-
tion of theories is axiomatized simply by the union of the axioms of the individual
theories.!> More formally, since theories here are defined as classes of models, a
modular combination of two theories (the combination of more theories is similar)
is defined as follows.

Let Ty = (XZ1,A1) and T» = (X5, A;) be two theories such that X1 and X, agree on
the rank they assign to their shared function and predicate symbols.'* The combina-
tion of Ty and T, is the theory T) & T, = (X] ® X,A) where X © X, is the smallest
supersignature of both Xj and X, and A = {7 | *1? € Aj and >0 € A,}.
These definitions encompass the more traditional view of theories defined by a set
of axioms. In particular, if A; is the class of all X; models that satisfy a set Ax; of
X;-sentences for i = 1,2, then A above is the class of all X; & X>-models that satisfy
the set Ax; UAX, [138, 155]. Given, for i = 1,2, a decision procedure for the sat-
isfiability of sets of X;-literals in a X;-theory T;, we are interested in constructing a
decision procedure for the satisfiability of sets of X @ X,-literals in Ty & 75 using
those procedures as black boxes.

5.1 A Basic Combination Method

A combination method originally due to Nelson and Oppen [123], and later adapted
and extended to sorted logics by others [91, 138, 156], provides a general mecha-
nism for combining decision procedures as above. Variants of the method are im-
plemented in all major SMT solvers. Its essence is captured by the following non-
deterministic procedure.

The Nelson—Oppen procedure Let I" be a set of literals in the combined signature
X1 @ X,. (i) First, purify I' by constructing an equisatisfiable literal set I7 UI; where
each I consists of X;-literals only. This can be easily done by finding a pure (i.e., X;-
for some i) subterm ¢, replacing it with a new variable v, adding the equation v = ¢
to the set, and then repeating this process until all literals are pure. (ii) Then get the
component satisfiability procedures to agree on the values assigned to the shared
variables' of I} and I3, the variables appearing in both I7 and I>. This is done by
guessing an arrangement of V, that is, a set arr(V') of equations and disequations
encoding an equivalence relation over V (and so expressing which pairs of variables
take the same value and which do not). (iii) Finally, check each I locally for 7;-
satisfiability under the chosen arrangement.

If each satisfiability procedure finds its respective input I7 Uarr(V) satisfiable,
report the original set I to be T} @ T»-satisfiable. Otherwise, repeat steps (ii) and

13 An example of a theory which is nor a modular combination in this sense is the theory of finite
sets with cardinality. This theory includes the theory of finite sets and the theory of integers, but
also additional, mixed axioms defining the cardinality operator.

14 Shared symbols with (same name but) different ranks can always be renamed apart.
15 Also called interface variables in recent literature—see, e.g., [37].
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(iii) with another arrangement. If no suitable arrangement exists, report I" to be
T) @ T>-unsatisfiable. 0O

The non-deterministic combination procedure above yields a decision procedure
for a large class of theories. Its main requirement is that 7y and 75 be disjoint in the
sense of not sharing any function or predicate symbols. The procedure is terminat-
ing simply because the purification step is terminating and the number of possible
arrangements is finite (although exponential in the number of shared variables). The
procedure is refutationally sound for any two disjoint theories: every set it declares
T, & T»-unsatisfiable is indeed so. Without additional restrictions the method is not
refutationally complete, as it may fail to detect the unsatisfiability of its input for
certain pairs of disjoint theories [157]. It becomes complete if both 7 and T, are
stably infinite over the sorts they share [131, 154, 156]. A X-theory T is stably infi-
nite over a sort ¢ in X if every T-satisfiable quantifier-free X-formula is satisfiable
in a T-interpretation that interprets ¢ as an infinite set.

Many theories of interest in SMT applications are indeed stably infinite over
some or all of their sorts. Examples include the various theories of arithmetic dis-
cussed in Section 4 and the theory of arrays, which is stably infinite over its array,
index and element sorts. However, some are not—most notably the theory of bit
vectors described in Section 4.6.

With disjoint stably infinite theories the combination method has an exponential
worst-case time complexity in general. More precisely, if the constraint satisfiabil-
ity problem for 7; can be decided in time O(f;(n)) for i = 1,2, the corresponding

problem for T & T> can be decided in time 0(2”2 X (fi(n) + f2(n))), with the ex-
ponential factor due to the need to guess the right arrangement [131].

5.2 Combination Variants and Extensions

Actual implementations of the non-deterministic procedure sketched above try to
reduce its exponential penalty by reducing the amount of guessing with arrange-
ments. The most common approach is to check the satisfiability of I7 and I3 lo-
cally and then deduce and propagate, from one component decision procedure to
the other, disjunctions of shared equalities entailed by I or I5. This is particularly
effective when 7T and T, are both convex over the sorts they share because then
it is enough for completeness to consider only individual entailed equalities. A X-
theory T is convex over a sort ¢ € ¢ if for all sets @ of X-literals and all sets E
of equalities between variables of sort ¢, @ |=r \/, g e iff @ =r e for some e € E.
With convex theories, worst-case time complexity of the combination goes down to
O(n* x (fi(n) + f2(n))) [131].

With non-convex theories, or convex theories for which computing entailed
equalities is expensive, another approach is to check the T;-satisfiability of I; alone
for some i = 1,2 and, once a model .7 is found, make the optimistic assumption that
IjUarr(V) is Tj-satisfiable, where j # i and arr(V) is the arrangement of V induced
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by . If I} Uarr(V) is unsatisfiable because of some of the literals in arr(V'), a new
model for I; with different truth values for those literals must be found. For some
theory combinations, this heuristic approach is highly effective in practice [64].

The stable infiniteness requirement can be relaxed for one theory if the other
satisfies stronger properties [112, 138, 157]. However, the equality sharing mech-
anism of the original combination procedure needs to be extended to certain car-
dinality constraints. The most general results so far in the context of many-sorted
logic are described in [100]. A case for using a typed logic with parametric types
to frame and generalize Nelson—Oppen combination is provided in [112]. A few
extensions have been proposed to lift the disjointness restriction, most notably by
Ghilardi and his collaborators, although their interest thus far has been mostly theo-
retical [88, 91, 155]. Recent work, however, uses Ghilardi’s results to develop novel
SMT-based LTL model checking algorithms [89, 90, 92].

6 SMT Solving Extensions and Enhancements

The scope of SMT solvers, especially those based on the lazy approach, has been
extended further in a number of directions. Also, several solvers contain further
enhancements aimed at improving their overall performance. We briefly describe a
few significant extensions and enhancements next.

Multiple Theories When working with multiple theories T7,...,T, that can be
combined with the Nelson—Oppen method, one can generate a single theory solver
for their combination 7 by combining the constraint satisfiability procedures for
various theories, as described in Section 5. With solvers based on the DPLL(T)
architecture a better approach is to develop a independent theory solver for each
theory and extend the interface of the SAT engine so that it interacts directly with
each theory solver and coordinates among them as Nelson—Oppen-style, to maintain
soundness and completeness.

A general framework for doing this is known as delayed theory combination
(DTC) [29, 37]. At the level of abstract transition systems described in Section 3.3,
the essence of DTC is to work again with states of the form M || F except that now
every atom occurring in M or in F' is pure, i.e., in the signature of one of the theo-
ries T1,...,T,. A preprocessing purification step can be applied to the SMT solver’s
input to guarantee this for the initial formula Fy. The atoms in M come from Fy
or from the set S of all interface equalities, equalities between variables that occur
in two atoms of Fy belonging to different theories. The SAT engine is modified so
that it also determines, by guessing, the truth value of the atoms in §, in addition to
those in Fy. In its more general and advanced form, DTC benefits from changes to
the theory solvers as well that enable them to propagate entailed interface equalities
or disjunctions of them, thus reducing the SAT engine’s guesswork. More details
on DTC together with a study of its relative merits with respect to the encapsula-
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tion approach mentioned at the beginning can be found in [37]. A general abstract
formulation of multi-theory lazy SMT that encompasses DTC is provided in [111].

Quantifiers Checking the satisfiability of quantified formulas is a long-standing
challenge in SMT. A typical use of quantifiers in input formulas is to provide ax-
iomatic definitions for function or predicate symbols not in the solver’s background
theories. In model checking applications, other uses of quantifiers include assertions
involving all the elements of a collection datatype (such as arrays and sets) and as-
sertions about concurrent systems (which for instance quantify over all processes).
Extending decision procedures to such quantified formulas without losing termina-
tion is in general impossible because of basic undecidability results for first-order
logic. In fact, even maintaining (refutational) completeness is already difficult, both
in theory and in practice.

While the T-satisfiability of quantified formulas is decidable for certain theo-
ries T (such as, for instance, the theory of real numbers), their decision proce-
dures use quantifier elimination methods, which convert formulas into 7-equivalent
quantifier-free ones, and are quite heavy computationally. Furthermore, these meth-
ods normally break down in the presence of additional symbols, such as uninter-
preted ones. As a consequence, SMT solvers use incomplete methods based on in-
stantiating quantified formulas into a set of ground ones.'® Existential quantifiers
in formulas of the form Vx; - - - Vx, 3x ¢ (with n > 0) are eliminated by dropping 3x
and replacing all free occurrences of x in ¢ by the term f(xj,...,x,) where f is a
fresh (uninterpreted) function symbol or arity n. Then, each universally quantified
formula Vx ¢ is conjoined with a number of its instances, obtained from the qff ¢
by replacing its free occurrences of x with some ground term of the same sort. The
selection of these instances is driven by incomplete heuristics.

The most common strategy is to select for instantiation ground terms that are rel-
evant to Vx @, according to some heuristic relevance criterion. The SMT solver tries
to find a subterm #[x] of Vx ¢ properly containing x, a ground term g among those in
its working memory, and a subterm s of g, such that ¢[s], the result of replacing x by s
in ¢, is T-equivalent to g. The expectation is that instantiating x with s is more likely
to be helpful than instantiating it with an arbitrary ground term. In terms of unifi-
cation theory [6], checking that =7 t[s] = g is a special case of T-matching. In the
context of SMT, because of the richness of the background theory 7', it may be very
difficult if not impossible to determine whether an arbitrary term 7 and a ground
term g T-match. As a result, most implementations use some form of 7-matching
only for uninterpreted terms. More details on this and on heuristics that are fairly
effective in practice can be found in [23, 67, 86].

More recent work has focused on identifying fragments of first-order logic mod-
ulo theories for which is it possible to produce complete, and in some cases also
terminating, quantifier-instantiation methods [73, 87, 147]. Some of this work [87]
is based on a general model-based quantifier instantiation approach where the SMT
solver maintains at all times (a finite representation of) a candidate model, a T-

16 A term or formula is ground if it contains no variables (although it may contain uninterpreted
constant symbols).
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model that satisfies the current set G of ground formulas. The solver uses the can-
didate model to focus instance generation on only a few ground instances falsified
by that model. Unless extending G with these instances makes G unsatisfiable, the
solver then constructs a new candidate model for the extended G, and repeats the
process until it is able to construct one that satisfies all quantified formulas as well.

A similar idea is used in the Inst-Gen calculus for first-order logic (with no the-
ories) [82]. New ground instances are generated based on a model for the ground
ones computed by an off-the-shelf SAT solver. A theorem prover based on this cal-
culus has been shown to be very effective [108]. The Inst-Gen calculus has been
extended to built-in theories [83]. However, implementing the extended calculus in
an efficient solver has proven elusive so far.

A recent and quite promising line of work on model-based instantiation focuses
on SMT formulas, all of whose quantifiers range over uninterpreted sorts [139, 140].
There, the solver tries to prove its input formula 7-satisfiable by imposing finite
cardinality constraints on those sorts, identifying for each sort ¢ a set Us of ground
terms that enumerates the sort’s finite domain, and instantiating quantifiers with
these terms. The candidate model is used also to avoid exhaustive instantiation over
each U, by identifying, and ignoring, whole sets of instances that are equisatisfiable
with an already generated one.

Layered Theory Solvers Some theories 7" with a decidable constraint satisfiabil-
ity problem contain less expressive fragments whose constraint satisfiability prob-
lem can be decided by more efficient methods. For example, the theory of real
numbers includes a chain of increasingly larger and harder to decide fragments:
inequalities between variables, difference constraints, linear constraints, and non-
linear constraints. For these theories, one can design a layered T-solver consist-
ing of a sequence of subsolvers of decreasing performance but increasing gener-
ality [5, 31, 36, 57, 146]. In principle then, the solver can use the most efficient
subsolver that is able to process the conjunction of literals given as input.

In reality, inputs rarely fall neatly in one of the fragments in the sequence. So ab-
straction and refinement techniques, similar in spirit to those used in model check-
ing, must be used to take advantage of the faster subsolvers. Considering a non-
incremental theory solver, for simplicity, the layering mechanism works as follows.
The solver abstracts the literals in the input formula y as needed to get a formula
' T-entailed by W and accepted by its most restricted subsolver. If that subsolver
determines Y’ to be T-unsatisfiable, the solver reports ¥ to be T-unsatisfiable.!”
Otherwise, it refines W' just enough for it to fall into the fragment processed by the
next more general subsolver, and sends it to that one, repeating the same process
until a subsolver finds the refined formula ' unsatisfiable or Y’ gets refined to .

Incomplete Theory Solvers For some theories—such as the theories of arrays, lin-
ear integer arithmetic, algebraic datatypes, and finite sets—the constraint satisfiabil-
ity problem alone is NP-hard. To be refutationally complete then, a solver for one
of those theories T must perform internal search and case splitting. In a DPLL(T)

17 When a conflict set is required for v, it can be computed from one for y'.
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setting, it is possible to use much simpler, albeit incomplete, T-solvers by delegating
all search and case splitting to the SAT engine, a module already designed to do that
efficiently.

The main idea, developed in the splitting on demand framework [11], is the
following. Any time the 7T-solver needs to do a case analysis to determine the 7-
satisfiability of its input, it encodes the needed case split into a T-valid disjunction
of literals, a theory lemma in effect. Then, instead of returning a sat/unsat answer,
it returns the lemma demanding that the SAT engine process it—doing case splits
on it as it would do with any other lemma. When the engine adds a literal from the
lemma to its variable assignment, the literal will be asserted back to the 7-solver,
letting it proceed with that choice. After that, the T-solver either manages to deter-
mine the satisfiability of the newly extended input set or repeats the process with a
new lemma. For termination, and overall completeness, there must be a finite upper
bound on the number of splitting demands a T-solver needs to make for any given
input before it is able to reply with sat or unsat. General sufficient conditions for
the correctness of splitting on demand are discussed in [11].

Although splitting on demand simplifies the construction of theory solvers, it
does not always provide the best performance. A discussion of this issue for real
arithmetic solvers can be found in [96].

7 Eager Encodings to SAT

An alternative to the lazy approach to SMT is one usually referred to as the eager
approach. It encompasses any technique that aims to fully reduce SMT problems
to propositional satisfiability (SAT) problems via some kind of encoding. More for-
mally, an eager SMT solver accepts a first-order formula ¢ in the signature of some
theory T, generates a propositional formula y that is propositionally satisfiable iff
¢ is T-satisfiable, and then it feeds y to an off-the-shelf SAT solver.

Although the lazy approach is now predominant in SMT, mostly because of its
flexibility and generality, efficient eager solvers do exist for a number of important
theories. To give a sense of how some of them work, let us look at EUF.

Eager solvers for quantifier-free formulas in EUF can be constructed using Ack-
ermann’s reduction [1]. Suppose f is a unary function symbol (the generalization to
n-ary symbols is straightforward) in an input formula ¢, and let {f(),..., f(t,)}
be the set of occurrences of f in ¢. We introduce n new constant symbols fi,..., f,
and replace each f(t;) with f; in @. Let @' denote the result of this replacement.
Then the formula @' A A7 Nj_ (ti = t; = fi = f;) is satisfiable in EUF iff ¢ is.
By repeating this process, all function symbols can be removed.'®

To complete the eager translation, we must also remove all equality literals.
One way to do this is by introducing propositional variables and transitivity con-
straints [45]. Suppose y is an EUF formula with equalities but no function symbols.

18 A method due to Bryant can be used as an alternative that can sometimes be more efficient [41].
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LetS={s1,...,sn} be the set of all terms appearing in equalities. Let ¥’ be the result
of replacing each equality s; = s; or s; = s; where i < j with a propositional variable
e; j. Let G be an undirected graph on S with an edge between s; and s; iff ¢; ; appears
in /. Let G’ be a chordal graph (no chord-free cycle of size 4 or more) obtained
from G by adding arbitrary chords within cycles of size 4 or more. For each triangle
(si,8},8%), i.e., cycle of size 3 in G’ with i < j < k, we add the following transitivity
constraint to Y': ((e,-_’j A ej,k) = eir) A ((ei,j A\ 6,‘7/() = ej,k) A ((6,‘7/( N Ej’k) = ei.j)-
The result is a propositional formula that is satisfiable iff y is satisfiable in EUF.
For additional details on and extensions to this algorithm, see [110].

Example 7. Consider again the EUF example @ = {f(f(a)) = a, f(f(f(a))) =
a, g(a) # g(f(a))}. After applying the Ackermann reduction, we have: {f, =
a,fr=a,ga#gs,a=fi=fi=fa=H=fi=fHi=HL=>L=fa=H=
g4 = gs}. The graph G is already chordal and has 4 triangles: (a, f1, f2), (a, f1, f3),
(a, f2, f3), (f1, /2, f3). Let ag = a and introduce the propositional terms e; ; accord-
ing to the subscripts. Also, let B; j x be the transitivity constraint on ¢; j, e; x, €;x in-
troduced above. The set {e072, €03, €45, €01 = €12, €02 = €13, €12 = €23, €0,1 =
e45, Bo.12, Bo13, Bo2,3, Bj 23} of propositional formulas is satisfiable iff & is sat-
isfiable. It is easy to see that this set is unsatisfiable: eg > and ep 3 must be true and
e4 5 must be false. The fifth constraint then implies that e; 3 must also be true. But
then By 3 entails e | which implies that e4 5 must be true, a contradiction.

The UCLID solver [43, 44, 113] uses these and other techniques to solve (ea-
gerly) problems specified in the CLU logic, a logic of Counter arithmetic with
Lambda expressions and Uninterpreted functions. Other eager approaches have
looked at small domain instantiations [134] and various fragments of arithmetic [148,
149]. As mentioned in Section 4.6, a common approach to construct solvers for the
theory of bit vectors is to apply some rewriting to the input formula followed by bit
blasting. This too is an instance of the eager approach.

8 Additional Functionalities of SMT Solvers

Arguably, the success of SMT solvers as embedded deductive reasoning engines is
due in large part to the emergence of additional functionalities well beyond the mere
checking of a formula’s T-satisfiability. These functionalities are used extensively
and with great benefit by tools such as model checkers, interactive provers, program
verifiers, test case generators and so on. We discuss a selection of them next.

Models In many applications it is useful not only to know that a formula is 7-
satisfiable but also to obtain a witness of its 7-satisfiability in the form of a 7-
interpretation (in the sense of Section 1.1) satisfying the formula. Fully representing
first-order models such as T-interpretations finitarily, however, is challenging, when
possible at all. Hence SMT solvers usually return only partial information, in the
form of value assignments to selected symbols in the input formula. Furthermore,
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they restrict consideration only to models that permit a finitary representation of
these values.!” For instance, for the theory of arrays they only consider models that
interpret array variables as almost constant maps, unary functions mapping all their
inputs to the same value except for finitely many inputs. A similar restriction is
adopted for EUF in computing the interpretation of function symbols.

Even with these restrictions, returning models may require strictly more work
than just determining satisfiability. Depending on the theory, different approaches
are possible. One approach, followed for instance by the CVC3 solver [17], is first
to compute a partial model sufficient to establish the input formula’s satisfiability,
and then to do additional work as needed to extend that partial model to include val-
ues for symbols of interest (variables and function/predicate symbols) to the user.
Another approach, followed for instance by the solvers Yices and Z3, is to instru-
ment the theory solver to maintain some value for every symbol at all times, starting
with some default assignment, and modifying the assignment as needed until it be-
comes a satisfying one. Yet another approach, which is implemented in CVC4 and is
beneficial with quantified formulas whose quantifiers range only over uninterpreted
sorts, is to explicitly construct models that interpret those sorts as finite sets [139].

Proofs For most applications that utilize SMT solvers, it is important to have con-
fidence in their refutational soundness. Since proving the soundness of an SMT
solver is unrealistic, due to the complexity of such tools, a reasonable approach is
for the solver to accompany its unsat answers with a certificate that can be checked
independently with much simpler and more trustworthy tools. This certificate is in
general a proof of the input formula’s unsatisfiability, expressed as a proof term in
some suitable proof system.

With SMT solvers based on the lazy approach it is possible to produce proofs
with a two-tiered structure, consisting of a propositional skeleton filled with several
theory-specific subproofs. In these two-tiered proofs, the conclusion is reached by
means of propositional inferences applied to a set of input formulas and theory
lemmas. The latter are disjunctions of theory literals deduced from no assumptions,
using proof rules specific to the background theory in question. The propositional
skeleton is generated using techniques similar to those used by proof-producing
SAT solvers (e.g., [2, 9]). The proofs of the various lemmas used as hypotheses in
the propositional skeleton are produced typically using natural deduction inference
rules with theory specific axioms [27, 76, 85, 122].

A major challenge for the field is to devise a common proof system for proof-
producing SMT solvers. The wide diversity of theories and solving algorithms in
SMT makes it difficult to find a single proof system that is universally good. One
way to address this difficulty is to use a meta-language for specifying proof systems
for SMT [151]. The advantage of a meta-language solution is that one can build an
automatic proof checker generator that takes as input a proof system and generates
an efficient proof checker for that system [130].

19 These restrictions cause no a loss of generality with quantifier-free queries.
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Unsatisfiable Cores Most SMT solvers allow the user to inquire about the joint
T-satisfiability of a set of formulas. For T-unsatisfiable sets &, some solvers are
able to return a T-unsatisfiable core, a possibly minimal subset of @ that is also T-
unsatisfiable. This functionality, which is useful in many applications, is patterned
after the analogous one offered at the propositional level by many modern SAT
solvers. Research on producing minimal or small 7-unsatisfiable cores in SMT is
not as extensive as in SAT. Current methods either are inspired by similar ones in
the SAT literature or rely directly on propositional technology. Following Barrett ez
al.’s terminology [12], we can identify three main approaches.

In the proof-based approach, adopted by proof-producing SMT solvers such as
CVC3 and MathSAT, a T-unsatisfiable core is extracted from the produced proof of
unsatisfiability simply by collecting all the formulas of & that appear as premises in
the proof. The size of the returned core depends on the sophistication of the proof-
generation mechanism in producing compact proofs. This approach requires only
a small additional implementation effort but incurs the (heavy) cost of producing a
proof, even when none is requested.

In the assumption-based approach, implemented in Yices and applicable to any
DPLL(T)-style solver, the input set ® = {¢y, ..., ¢,} is internally converted into
the equisatisfiable set {p; = @1, ..., pp = @u, p1, ..., pu} Where each p; is a
fresh propositional symbol. Then, the same conflict analysis mechanism used by
the DPLL engine can be used to identify a subset of {py, ..., p,} that caused the
last conflict. The returned T-unsatisfiable core consists of the corresponding ¢;’s.

In the lemma-lifting approach [54], implemented in more recent versions of
MathSAT, one uses the fact that a DPLL(T') solver will discover the T-unsatisfiability
of @ by adding theory lemmas until ¢ becomes propositionally unsatisfiable. Once
the DPLL engine detects that, any external propositional core extractor can be used
to produce an unsatisfiable core C for the propositional abstraction {¢* | ¢ € @} of
the extended @. The returned T-unsatisfiable core consists then of {@ | ¢ € C}, the
formulas of & whose abstraction is in C.

Interpolants A fundamental result in model theory due to Craig [58] asserts the
existence of an interpolant for every pair of first-order formulas A and B such that
A |= B. This is a formula I written using only logical symbols and symbols occurring
in both A and B such that A =1 and I |= B. Analogues of this result, expressed in
terms of unsatisfiability instead of entailment, hold for a variety of logics and logic
fragments. In the SMT case, the result states that for all first-order theories 7 and
formulas A, B such that A, B =7 L, there is a formula / using only logical symbols,
symbols of T and symbols occurring in both A and B such that A =7 I and I,B =7 L.

Starting with the seminal work by McMillan [118], interpolants have found a
number of practical uses in model checking (see Chap. 14A). Applications involve
the computation of interpolants in propositional logic or in logics with (combina-
tions of) theories such as the theory of equality, linear rational arithmetic, arrays,
and finite sets [52, 103, 120, 159].

In propositional logic, interpolants can be computed from resolution proofs using
a simple method due to Pudldk [136]. For theories 7" with the quantifier-free inter-
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polation property, which guarantees the existence of quantifier-free interpolants for
any T-unsatisfiable pair A, B of quantifier-free formulas, interpolants can be com-
puted using SMT techniques. In many cases, it is possible to produce interpolants ef-
ficiently by modifying existing theory solvers in relatively minor ways [52, 78, 142].

Under fairly general conditions, the generation of theory interpolants for sets of
literals can be extended modularly to (i) sets of arbitrary quantifier-free formulas
and (if) combinations of theories (each with the quantifier-free interpolation prop-
erty), thanks to a method by Yorsh and Musuvathi [159]. This allows one to turn an
SMT solver into an interpolant generator. The first extension is possible with SMT
solvers that produce the sort of two-tiered proofs mentioned earlier in this section,
and relies on an adaptation Pudldk’s method to deal with the proof’s propositional
skeleton. The second extension additionally requires each component theory 7 to be
equality-interpolating: whenever A, B =1 r = t where r is a term occurring in A and
T aterm occurring in B, it is possible to compute a term s in the language shared by
A and B such that A,B |=r r = s As = t. A further, and related, requirement is that
the unsatisfiability proof from which to extract the interpolant contain no AB-mixed
literals, literals with symbols occurring only in A and symbols occurring only in
B. Unfortunately, typical SMT solvers do not guarantee the absence of AB-mixed
literals from their proofs.?® Initial implementations of the Yorsh-Musuvathi method
imposed restrictions on solver search strategies in order to produce proofs of a cer-
tain shape from which it is possible to extract interpolants even in the presence of
AB-mixed literals [52]. In later work, these restrictions, and their potential perfor-
mance penalty, have been increasingly and considerably reduced by relying on a
certain amount of proof post-processing [39, 53, 94] or by considering only certain
classes of theories [50].

References

1. W. Ackermann. Solvable Cases of the Decision Problem. Studies in Logic and the Founda-
tions of Mathematics. North-Holland, Amsterdam, 1954.

2. H. Amjad. A Compressing Translation from Propositional Resolution to Natural Deduc-
tion. In Proceedings of the 6th Symposium on Frontiers of Combining Systems (Liverpool,
England), volume 4720 of LNCS, pages 88—102. Springer, 2007.

3. A. Armando, C. Castellini, and E. Giunchiglia. SAT-based procedures for temporal reason-
ing. In Proceedings of the 5th European Conference on Planning (Durham, UK), volume
1809 of LNCS, pages 97-108. Springer, 2000.

4. A. Armando, J. Mantovani, and L. Platania. Bounded model checking of software using SMT
solvers instead of SAT solvers. In Proceedings of the 13th International SPIN Workshop on
Model Checking of Software (SPIN’06), volume 3925 of LNCS, pages 146—162. Springer,
2006.

5. G. Audemard, P. Bertoli, A. Cimatti, A. Kornitowicz, and R. Sebastiani. A SAT-based ap-
proach for solving formulas over Boolean and linear mathematical propositions. In Proceed-
ings of the 18th International Conference on Automated Deduction, volume 2392 of Lecture
Notes in Artificial Intelligence, pages 195-210. Springer, 2002.

20 Both Delayed Theory Combination and Splitting on Demand generate new literals during a
proof which may be AB-mixed.



Sati

(o)}

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

sfiability Modulo Theories 31

. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.

. D. Babi¢. Exploiting Structure for Scalable Software Verification. PhD thesis, University of
British Columbia, Vancouver, Canada, 2008.

. T. Ball, R. Majumdar, T. D. Millstein, and S. K. Rajamani. Automatic predicate abstraction
of C programs. In SIGPLAN Conference on Programming Language Design and Implemen-
tation, pages 203-213, 2001.

. C. Barrett and S. Berezin. A proof-producing Boolean search engine. In Proceedings of the

1% International Workshop on Pragmatics of Decision Procedures in Automated Reasoning

(PDPAR °03), July 2003.

C. Barrett, C. Conway, M. Deters, L. Hadarean, D. Jovanovic, T. King, A. Reynolds, and

C. Tinelli. CVC4. In 23rd International Conference on Computer Aided Verification

(CAV’11), Snowbird, Utah, volume 6806 of LNCS, pages 171-177. Springer, 2011.

C. Barrett, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Splitting on demand in SAT modulo

theories. In Proceedings of the 13th International Conference on Logic for Programming,

Artificial Intelligence and Reasoning (LPAR’06), Phnom Penh, Cambodia, volume 4246 of

LNCS, pages 512-526. Springer, 2006.

C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli. Satisfiability Modulo Theories. In

A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh, editors, Handbook of Satisfiabil-

ity, volume 185, chapter 26, pages 825-885. IOS Press, February 2009.

C. Barrett, I. Shikanian, and C. Tinelli. An abstract decision procedure for a theory of in-

ductive data types. Journal on Satisfiability, Boolean Modeling and Computation, 3:21-46,

2007.

C. Barrett, A. Stump, and C. Tinelli. The Satisfiability Modulo Theories Library (SMT-LIB).

www.smtlib.org, 2010.

C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard: Version 2.0. In Proceedings

of the 8th International Workshop on Satisfiability Modulo Theories (Edinburgh, England),

2010.

C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard: Version 2.0. Techni-

cal report, Department of Computer Science, The University of Iowa, 2010. Available at

www.smtlib.org.

C. Barrett and C. Tinelli. CVC3. In Proceedings of the 19th International Conference on

Computer Aided Verification (CAV’07), Berlin, Germany, LNCS. Springer, 2007.

C. W. Barrett, L. de Moura, and A. Stump. Design and results of the first satisfiability modulo

theories competition (SMT-COMP 2005). Journal of Automated Reasoning, 35(4):373-390,

2005.

C. W. Barrett, D. L. Dill, and J. R. Levitt. A decision procedure for bit-vector arithmetic. In

Proceedings of the 35" Design Automation Conference (DAC *98), pages 522-527. Associ-

ation for Computing Machinery, June 1998. San Francisco, California.

C. W. Barrett, D. L. Dill, and A. Stump. Checking satisfiability of first-order formulas by in-

cremental translation to SAT. In Proceedings of the International Conference on Computer-

Aided Verification, LNCS, 2002.

S. Berezin, V. Ganesh, and D. L. Dill. An online proof-producing decision procedure for

mixed-integer linear arithmetic. In Proceedings of the 9th international conference on Tools

and algorithms for the construction and analysis of systems, TACAS’03, pages 521-536,

Berlin, Heidelberg, 2003. Springer.

A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfiability,

volume 185 of Frontiers in Artificial Intelligence and Applications. 10S Press, February

2009.

N. Bjgrner and L. de Moura. Efficient E-matching for SMT solvers. In Proceedings of the

215 International Conference on Automated Deduction (CADE ’07), volume 4603 of Lecture

Notes in Artificial Intelligence, pages 183—-198. Springer, July 2007.

N. Bjgrner and M. Pichora. Deciding fixed and non-fixed size bit-vectors. In Tools and

Algorithms for the Construction and Analysis of Systems, volume 1384 of LNCS, pages 376—

392. Springer Berlin Heidelberg, 1998.



32

25.

26.

217.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Clark Barrett and Cesare Tinelli

F. Bobot, S. Conchon, E. Contejean, and S. Lescuyer. Implementing polymorphism in SMT
solvers. In Proceedings of the Joint Workshops of the 6th International Workshop on Satis-
fiability Modulo Theories and 1st International Workshop on Bit-Precise Reasoning, pages
1-5. ACM, 2008.

M. Bofill, R. Nieuwenhuis, A. Oliveras, E. R. Carbonell, and A. Rubio. A write-based solver
for SAT modulo the theory of arrays. In Proceedings of the 2008 International Conference
on Formal Methods in Computer-Aided Design, FMCAD ’08, Piscataway, NJ, USA, 2008.
IEEE Press.

S. Bohme and T. Weber. Fast LCF-style proof reconstruction for Z3. In Proceedings of
the International Conference on Interactive Theorem Proving, volume 6172 of LNCS, pages
179-194. Springer, 2010.

T. Bouton, D. C. B. De Oliveira, D. Déharbe, and P. Fontaine. veriT: an open, trustable and
efficient SMT-solver. In Automated Deduction-CADE-22, pages 151-156. Springer, 2009.
M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, S. Ranise, R. Sebastiani, and P. van
Rossu. Efficient satisfiability modulo theories via delayed theory combination. In Proceed-
ings of the 17th International Conference on Computer Aided Verification, LNCS. Springer,
2005.

M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossum, S. Ranise, and R. Se-
bastiani. Efficient theory combination via Boolean search. Information and Computation,
204(10):1411-1596, 2006.

M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossum, S. Schulz, and R. Sebas-
tiani. An incremental and layered procedure for the satisfiability of linear arithmetic logic. In
Tools and Algorithms for the Construction and Analysis of Systems, 11th Int. Conf., (TACAS),
volume 3440 of LNCS, pages 317-333, 2005.

A. Bradley, Z. Manna, and H. Sipma. What’s Decidable About Arrays? In Verification, Model
Checking, and Abstract Interpretation, volume 3855 of LNCS, chapter 28, pages 427-442.
Springer Berlin / Heidelberg, Berlin, Heidelberg, 2006.

M. Brain, V. D’Silva, L. Haller, A. Griggio, and D. Kroening. An abstract interpretation
of DPLL(T). In Verification, Model Checking, and Abstract Interpretation, pages 455-475.
Springer, 2013.

R. Brummayer and A. Biere. Lemmas on demand for the extensional theory of arrays. In
Proceedings of the Joint Workshops of the 6th International Workshop on Satisfiability Mod-
ulo Theories and 1st International Workshop on Bit-Precise Reasoning, SMT *08/BPR ’08,
pages 6-11, New York, NY, USA, 2008. ACM.

R. Brummayer and A. Biere. Boolector: An Efficient SMT Solver for Bit-Vectors and Arrays.
In Tools and Algorithms for the Construction and Analysis of Systems, volume 5505 of LNCS,
chapter 16, pages 174—177. Springer Berlin / Heidelberg, Berlin, Heidelberg, 2009.

R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, Z. Hanna, A. Nadel, A. Palti, and R. Se-
bastiani. A lazy and layered SMT(BV) solver for hard industrial verification problems. In
Proceedings of the 19" International Conference on Computer Aided Verification, volume
4590 of LNCS, pages 547-560. Springer, July 2007.

R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebastiani. Delayed theory
combination vs. Nelson-Oppen for satisfiability modulo theories: a comparative analysis.
Annals of Mathematics and Artificial Intelligence, 55(1-2):63-99, 2009.

R. Bruttomesso, E. Pek, N. Sharygina, and A. Tsitovich. The openSMT solver. In Tools and
Algorithms for the Construction and Analysis of Systems, pages 150—153. Springer, 2010.
R. Bruttomesso, S. Rollini, N. Sharygina, and A. Tsitovich. Flexible interpolation with local
proof transformations. In Proceedings of the 2010 International Conference on Computer-
Aided Design, pages 770-777. IEEE, 2010.

R. Bruttomesso and N. Sharygina. A scalable decision procedure for fixed-width bit-vectors.
In Proceedings of the 2009 International Conference on Computer-Aided Design, ICCAD
’09, pages 13-20, New York, NY, USA, 2009. ACM.

R. Bryant, S. German, and M. Velev. Exploiting positive equality in a logic of equality
with uninterpreted functions. In Computer Aided Verification, volume 1633 of LNCS, pages
470-482. Springer Berlin Heidelberg, 1999.



Satisfiability Modulo Theories 33

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

R. Bryant, D. Kroening, J. Ouaknine, S. Seshia, O. Strichman, and B. Brady. Deciding bit-
vector arithmetic with abstraction. In Tools and Algorithms for the Construction and Analysis
of Systems, volume 4424 of LNCS, pages 358-372. Springer Berlin Heidelberg, 2007.

R. Bryant, S. Lahiri, and S. Seshia. Modeling and verifying systems using a logic of counter
arithmetic with lambda expressions and uninterpreted functions. In Computer Aided Verifi-
cation, volume 2404 of LNCS, pages 106—122. Springer Berlin / Heidelberg, 2002.

R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Deciding CLU logic formulas via Boolean and
pseudo-Boolean encodings. In In Proc. Intl. Workshop on Constraints in Formal Verification
(CFV’02, 2002.

R. E. Bryant and M. N. Velev. Boolean satisfiability with transitivity constraints. ACM Trans.
Comput. Logic, 3(4):604-627, Oct. 2002.

D. Cantone and C. Zarba. A New Fast Tableau-Based Decision Procedure for an Unquanti-
fied Fragment of Set Theory. In Automated Deduction in Classical and Non-Classical Log-
ics, volume 1761 of LNCS, chapter 8, pages 492-495. Springer Berlin / Heidelberg, Berlin,
Heidelberg, May 2000.

S. Chatterjee, S. Lahiri, S. Qadeer, and Z. Rakamari¢. A Reachability Predicate for Ana-
lyzing Low-Level Software. In Tools and Algorithms for the Construction and Analysis of
Systems, volume 4424 of LNCS, chapter 4, pages 19-33. Springer Berlin / Heidelberg, Berlin,
Heidelberg, 2007.

B. V. Cherkassy and A. V. Goldberg. Negative-cycle detection algorithms. In European
Symposium on Algorithms, pages 349-363, 1996.

J. Christ, J. Hoenicke, and A. Nutz. SMTinterpol: An interpolating SMT solver. In Model
Checking Software - 19th International Workshop, volume 7385 of LNCS, pages 248-254.
Springer, 2012.

J. Christ, J. Hoenicke, and A. Nutz. Proof tree preserving interpolation. In N. Piterman
and S. Smolka, editors, Proceedings of the 19th International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems, volume 7795 of Lecture Notes in
Computer Science, pages 124—138. Springer, 2013.

A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani. The MathSAT5 SMT solver. In
Tools and Algorithms for the Construction and Analysis of Systems, pages 93—107. Springer,
2013.

A. Cimatti, A. Griggio, and R. Sebastiani. Efficient interpolant generation in satisfiability
modulo theories. In Proceedings of the 14th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems, LNCS. Springer, 2008.

A. Cimatti, A. Griggio, and R. Sebastiani. Efficient generation of Craig interpolants in sat-
isfiability modulo theories. ACM Transactions on Computational Logic (TOCL), 12(1):7,
2010.

A. Cimatti, A. Griggio, and R. Sebastiani. Computing small unsatisfiable cores in satisfiabil-
ity modulo theories. Journal of Artificial Intelligence Research, 40(1):701-728, 2011.

E. M. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking using satisfiability
solving. Formal Methods in System Design, 19(1):7-34, 2001.

S. Cotton and O. Maler. Fast and Flexible Difference Constraint Propagation for DPLL(T).
In Theory and Applications of Satisfiability Testing - SAT 2006, volume 4121 of LNCS, chap-
ter 19, pages 170-183. Springer Berlin / Heidelberg, Berlin, Heidelberg, 2006.

S. Cotton and O. Maler. Satisfiability modulo theory chains with DPLL(T). Research Report
TR2006-04, Verimag, 2006.

W. Craig. Three uses of the Herbrand-Gentzen theorem in relating model theory and proof
theory. The Journal of Symbolic Logic, 22(3):269-285, sep 1957.

D. Cyrluk, O. Moller, and H. Ruef. An efficient decision procedure for the theory of fixed-
sized bit-vectors. In Computer Aided Verification, volume 1254 of LNCS, pages 60-71.
Springer Berlin Heidelberg, 1997.

M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving. Com-
munications of the ACM, 5(7):394-397, July 1962.

M. Davis and H. Putnam. A computing procedure for quantification theory. Journal of the
ACM, 7(3):201-215, July 1960.



34

62.

63

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

71.

78.

79.

80.

81.

82.

Clark Barrett and Cesare Tinelli

L. De Moura and N. Bjgrner. Z3: an efficient SMT solver. In Proceedings of the Theory and
practice of software, 14th international conference on Tools and algorithms for the construc-
tion and analysis of systems, pages 337-340, Berlin, Heidelberg, 2008. Springer.

. L. de Moura and N. Bjgrner. Generalized, efficient array decision procedures. In Formal
Methods in Computer-Aided Design, 2009. FMCAD 2009, pages 45-52, November 2009.
L. de Moura and N. S. Bjgrner. Model-based theory combination. In Proc. 5th workshop on
Satisfiability Modulo Theories, SMT’07, 2007.

L. de Moura and H. Ruef3. Lemmas on demand for satisfiability solvers. In Proc. of the Fifth
International Symposium on the Theory and Applications of Satisfiability Testing (SAT’02),
May 2002.

L. de Moura, H. Ruef3, and M. Sorea. Bounded model checking and induction: From refuta-
tion to verification. In Proceedings of the 15th International Conference on Computer-Aided
Verification (CAV 2003), volume 2725 of LNCS. Springer, 2003.

D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem prover for program checking.
Journal of ACM, 52(3):365-473, 2005.

I. Dillig, T. Dillig, and A. Aiken. Cuts from Proofs: A Complete and Practical Technique for
Solving Linear Inequalities over Integers. In Computer Aided Verification, volume 5643 of
LNCS, chapter 20, pages 233-247. Springer Berlin / Heidelberg, Berlin, Heidelberg, 2009.
P.J. Downey, R. Sethi, and R. E. Tarjan. Variations on the Common Subexpression Problem.
J. ACM, 27(4):758-771, October 1980.

B. Dutertre and L. de Moura. A Fast Linear-Arithmetic Solver for DPLL(T). In Computer
Aided Verification, volume 4144 of LNCS, pages 81-94. Springer Berlin / Heidelberg, 2006.
B. Dutertre and L. de Moura. Integrating simplex with DPLL(T). Technical report, CSL,
SRI International, 2006.

B. Dutertre and L. de Moura. The YICES SMT solver. Technical report, SRI International,
2006.

M. Echenim and N. Peltier. An instantiation scheme for satisfiability modulo theories. Jour-
nal of Automated Reasoning, 2010.

H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, 2nd edition, 2001.
C. Flanagan, R. Joshi, X. Ou, and J. B. Saxe. Theorem proving using lazy proof explication.
In Proceedings of the 15th International Conference on Computer Aided Verification, volume
2725 of LNCS, pages 355-367. Springer, 2003.

P. Fontaine, J.-Y. Marion, S. Merz, L. P. Nieto, and A. Tiu. Expressiveness + automation +
soundness: Towards combining SMT solvers and interactive proof assistants. In Proceedings
of 12th International Conference on Tools and Algorithms for the Construction and Analysis
of Systems, volume 3920 of LNCS, pages 167-181. Springer, 2006.

A. Frohlich, G. Kovasznai, and A. Biere. More on the complexity of quantifier-free fixed-
size bit-vector logics with binary encoding. In Computer Science—Theory and Applications,
pages 378-390. Springer, 2013.

A. Fuchs, A. Goel, J. Grundy, S. Krsti¢, and C. Tinelli. Ground interpolation for the theory
of equality. In Proceedings of the 15th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (York, UK), volume 5505 of LNCS, pages 413-427.
Springer, 2009.

V. Ganesh and D. L. Dill. A decision procedure for bit-vectors and arrays. In Computer
Aided Verification, pages 519-531. Springer, 2007.

V. Ganesh and D. L. Dill. A decision procedure for bit-vectors and arrays. In Computer Aided
Verification, volume 4590 of LNCS, pages 519-531. Springer Berlin Heidelberg, 2007.

H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. DPLL(T): Fast
decision procedures. In Proceedings of the 16th International Conference on Computer
Aided Verification, CAV’04 (Boston, Massachusetts), volume 3114 of LNCS, pages 175-188.
Springer, 2004.

H. Ganzinger and K. Korovin. New directions in instantiation-based theorem proving. In
Proc. 18th IEEE Symposium on Logic in Computer Science,(LICS’03), pages 55-64. IEEE
Computer Society Press, 2003.



Sati

83.

84

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

sfiability Modulo Theories 35

H. Ganzinger and K. Korovin. Theory Instantiation. In Proceedings of the 13 Conference on
Logic for Programming Artificial Intelligence Reasoning (LPAR’06), volume 4246 of Lecture
Notes in Computer Science, pages 497-511. Springer, 2006.

. S. Gao, S. Kong, and E. M. Clarke. dReal: An SMT solver for nonlinear theories over the
reals. In Automated Deduction — CADE-24, volume 7898 of LNCS, pages 208-214. Springer
Berlin Heidelberg, 2013.

Y. Ge and C. Barrett. Proof translation and SMT-LIB benchmark certification: A preliminary
report. In Proceedings of SMT 08, 2008.

Y. Ge, C. Barrett, and C. Tinelli. Solving quantified verification conditions using satisfia-
bility modulo theories. In Proceedings of the 21st International Conference on Automated
Deduction (CADE-21), Bremen, Germany, LNCS. Springer, 2007.

Y. Ge and L. de Moura. Complete instantiation for quantified formulas in satisfiabiliby
modulo theories. In Proceedings of the 21st International Conference on Computer Aided
Verification, CAV 09, pages 306-320, Berlin, Heidelberg, 2009. Springer.

S. Ghilardi. Model-theoretic methods in combined constraint satisfiability. Journal of Auto-
mated Reasoning, 33(3—4):221-249, 2005.

S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Combination methods for satisfiability
and model-checking of infinite-state systems. In Proceedings of the 21st International Con-
ference on Automated Deduction (Bremen, Germany), volume 4603 of LNCS, pages 362—
378. Springer, 2007.

S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Towards SMT model checking of
array-based systems. In Proceedings of the 4th International Joint Conference on Automated
Reasoning (IJCAR 2008), volume 5195 of LNCS, pages 67-82, Sydney (Australia), 2008.
Springer.

S. Ghilardi, E. Nicolini, and D. Zucchelli. A comprehensive combination framework. ACM
Transactions on Computational Logic, 9(2):1-54, 2008.

S. Ghilardi and S. Ranise. MCMT: A model checker modulo theories. In Proceedings of the
Sth International Joint Conference Automated Reasoning (Edinburgh, UK), volume 6173 of
LNCS, pages 22-29. Springer, 2010.

A. Goel, S. Krsti¢, and A. Fuchs. Deciding array formulas with frugal axiom instantiation.
In Proceedings of the Joint Workshops of the 6th International Workshop on Satisfiability
Modulo Theories and 1st International Workshop on Bit-Precise Reasoning, SMT ’08/BPR
’08, pages 12—-17, New York, NY, USA, 2008. ACM.

A. Goel, S. Krsti¢, and C. Tinelli. Ground interpolation for combined theories. In Proceed-
ings of the 22nd International Conference on Automated Deduction (Montreal, Canada),
volume 5663 of Lecture Notes in Artificial Intelligence, pages 183—198. Springer, 2009.

A. Griggio. An Effective SMT Engine for Formal Verification. PhD thesis, DISI, University
of Trento, December 2009.

A. Griggio. A Practical Approach to SMT(LA(Z)). In Proceedings of the 2010 SMT Work-
shop, July 2010.

G. Hagen and C. Tinelli. Scaling up the formal verification of Lustre programs with SMT-
based techniques. In Proceedings of the Sth International Conference on Formal Methods in
Computer-Aided Design (FMCAV’08), Portland, Oregon, pages 109-117. IEEE, 2008.

S. K. Jha, R. S. Limaye, and S. A. Seshia. Beaver: Engineering an efficient SMT solver for
bit-vector arithmetic. Technical Report UCB/EECS-2009-95, EECS Department, University
of California, Berkeley, Jun 2009.

R. Jhala and K. L. McMillan. Interpolant-based transition relation approximation. In Pro-
ceedings of 17th International Conference on Computer Aided Verification (Edinburgh, Scot-
land, UK), volume 3576 of LNCS, pages 39-51. Springer, 2005.

D. Jovanovi¢ and C. Barrett. Polite theories revisited. In Proceedings of the 17th Interna-
tional Conference on Logic for Programming, Artificial Intelligence and Reasoning, volume
6397 of LNCS, pages 402—416. Springer, 2010.

D. Jovanovié, C. Barrett, and L. de Moura. The design and implementation of the model con-
structing satisfiability calculus. In Formal Methods in Computer-Aided Design. ACM/IEEE,
2013.



36

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

Clark Barrett and Cesare Tinelli

D. Jovanovi¢ and L. de Moura. Solving non-linear arithmetic. In Automated Reasoning,
volume 7364 of LNCS, pages 339-354. Springer Berlin Heidelberg, 2012.

D. Kapur, R. Majumdar, and C. Zarba. Interpolation for data structures. In Proceedings of
the 14th ACM SIGSOFT international symposium on Foundations of Software Engineering,
pages 105-116. ACM, 2006.

D. Kapur and C. G. Zarba. A Reduction Approach to Decision Procedures. Technical Report
TR-CS-1005-44, University of New Mexico, 2005.

A. Kiezun, V. Ganesh, P. J. Guo, P. Hooimeijer, and M. D. Ernst. HAMPI: a solver for string
constraints. In Proceedings of the eighteenth international symposium on Software testing
and analysis, ISSTA °09, pages 105-116, New York, NY, USA, 2009. ACM.

H. Kim and F. Somenzi. Finite Instantiations for Integer Difference Logic. In Formal Meth-
ods in Computer Aided Design, 2006. FMCAD 06, pages 31-38, November 2006.

T. King, C. Barrett, and B. Dutertre. Sum of infeasibility simplex for SMT. In Proceedings of
the 13" International Conference on Formal Methods In Computer-Aided Design (FMCAD
’13), LNCS, Nov. 2013.

K. Korovin. iProver — an instantiation-based theorem prover for first-order logic (system
description). In A. Armando, P. Baumgartner, and G. Dowek, editors, Proceedings of the
4th International Joint Conference on Automated Reasoning, (IJCAR 2008), volume 5195 of
Lecture Notes in Computer Science, pages 292-298. Springer, 2008.

K. Korovin, N. Tsiskaridze, and A. Voronkov. Conflict resolution. In I. Gent, editor, Princi-
ples and Practice of Constraint Programming - CP 2009, volume 5732 of Lecture Notes in
Computer Science, pages 509—-523. Springer, 2009.

D. Kroening and O. Strichman. Decision Procedures: An Algorithmic Point of View. Texts
in Theoretical Computer Science. An EATCS Series. Springer Berlin Heidelberg, 2008.

S. Krsti¢ and A. Goel. Architecting solvers for SAT modulo theories: Nelson-Oppen with
DPLL. In Proceeding of the Symposium on Frontiers of Combining Systems (Liverpool,
England), volume 4720 of LNCS, pages 1-27. Springer, 2007.

S. Kirsti¢, A. Goel, J. Grundy, and C. Tinelli. Combined satisfiability modulo parametric
theories. In Proceedings of the 13th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (Braga, Portugal), volume 4424 of LNCS, pages
618-631. Springer, 2007.

S. K. Lahiri, S. A. Seshia, and R. E. Bryant. Modeling and verification of out-of-order
microprocessors in UCLID. In Formal Methods in Computer-Aided Design, volume 2517 of
LNCS, pages 142-159. Springer Berlin Heidelberg, 2002.

T. Lev-Ami, N. Immerman, T. Reps, M. Sagiv, S. Srivastava, and G. Yorsh. Simulating
Reachability Using First-Order Logic with Applications to Verification of Linked Data Struc-
tures. In Automated Deduction — CADE-20, volume 3632 of LNCS, chapter 8, pages 99-115.
Springer Berlin / Heidelberg, Berlin, Heidelberg, 2005.

Z. Manna and C. G. Zarba. Combining Decision Procedures. In Formal Methods at the
Crossroads: From Panacea to Foundational Support, volume 2757 of LNCS, chapter 24,
pages 381-422. Springer Berlin / Heidelberg, Berlin, Heidelberg, 2003.

P. Manolios, S. Srinivasan, and D. Vroon. BAT: The Bit-Level Analysis Tool. In Computer
Aided Verification, volume 4590 of LNCS, chapter 35, pages 303-306. Springer Berlin /
Heidelberg, Berlin, Heidelberg, 2007.

M. Manzano. Introduction to many-sorted logic. In Many-sorted logic and its applications,
pages 3-86. John Wiley & Sons, Inc., 1993.

K. McMillan. Interpolation and SAT-based model checking. In Proceedings of the 15th
International Conference on Computer Aided Verification, (Boston, Massachusetts), volume
2725 of LNCS, pages 1-13. Springer, 2003.

K. L. McMillan. Applications of Craig interpolants in model checking. In Proceedings of the
11th International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (Edinburgh, UK), volume 3440 of LNCS, pages 1-12. Springer, 2005.

K. L. McMillan. An interpolating theorem prover. Theoretical Computer Science,
345(1):101-121, 2005.



Satisfiability Modulo Theories 37

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

K. L. McMillan, A. Kuehlmann, and M. Sagiv. Generalizing DPLL to richer logics. In
Computer Aided Verification, volume 5643 of LNCS, pages 462476, 2009.

M. Moskal. Rocket-fast proof checking for SMT solvers. In Proceedings of the 14th Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of Systems,
volume 4963 of LNCS, pages 486-500. Springer, 2008.

G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures. ACM
Trans. on Programming Languages and Systems, 1(2):245-257, Oct. 1979.

G. Nelson and D. C. Oppen. Fast Decision Procedures Based on Congruence Closure. J.
ACM, 27(2):356-364, April 1980.

R. Nieuwenhuis and A. Oliveras. DPLL(T) with Exhaustive Theory Propagation and Its
Application to Difference Logic. In Computer Aided Verification, volume 3576 of LNCS,
chapter 33, pages 321-334. Springer Berlin / Heidelberg, Berlin, Heidelberg, 2005.

R. Nieuwenhuis and A. Oliveras. On SAT Modulo Theories and Optimization Problems. In
Theory and Applications of Satisfiability Testing - SAT 2006, volume 4121 of LNCS, chap-
ter 18, pages 156-169. Springer Berlin / Heidelberg, Berlin, Heidelberg, 2006.

R. Nieuwenhuis and A. Oliveras. Fast congruence closure and extensions. Information and
Computation, 205(4):557-580, April 2007.

R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Abstract DPLL and abstract DPLL modulo the-
ories. In Proceedings of the 11th International Conference on Logic for Programming, Arti-
ficial Intelligence and Reasoning (LPAR’04), Montevideo, Uruguay, volume 3452 of LNCS,
pages 36-50. Springer, 2005.

R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo Theories: from
an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). Journal of the ACM,
53(6):937-977, Nov. 2006.

D. Oe, A. Reynolds, and A. Stump. Fast and flexible proof checking for SMT. In Proceedings
of SMT’09, 2009.

D. C. Oppen. Complexity, convexity and combinations of theories. Theoretical Computer
Science, 12:291-302, 1980.

J. Peleska, E. Vorobev, and F. Lapschies. Automated test case generation with SMT-solving
and abstract interpretation. In NASA Formal Methods, pages 298-312. Springer, 2011.

R. Piskac and V. Kuncak. Decision procedures for multisets with cardinality constraints. In
Proceedings of the 9th international conference on Verification, model checking, and abstract
interpretation, VMCATI’ 08, pages 218-232, Berlin, Heidelberg, 2008. Springer.

A. Pnueli, Y. Rodeh, O. Shtrichman, and M. Siegel. Deciding equality formulas by small
domains instantiations. In Computer Aided Verification, volume 1633 of LNCS, pages 687—
688. Springer Berlin / Heidelberg, 1999.

M. Presburger. Uber die vollstindigkeit eines gewissen systems der arithmetik ganzer zahlen,
in welchem die addition als einzige operation hervortritt. In Comptes Rendus du I congres
de Mathématiciens des Pays Slaves, pages 92—-101, 1929. Warszawa.

P. Pudldak. Lower bounds for resolution and cutting planes proofs and monotone computa-
tions. Journal of Symbolic Logic, 62(3), 1997.

W. Pugh. The Omega test: a fast and practical integer programming algorithm for dependence
analysis. In Proceedings of the 1991 ACM/IEEE conference on Supercomputing, Supercom-
puting ’91, pages 4-13, New York, NY, USA, 1991. ACM.

S. Ranise, C. Ringeissen, and C. G. Zarba. Combining data structures with nonstably infinite
theories using many-sorted logic. In Proceedings of the Workshop on Frontiers of Combining
Systems, LNCS. Springer, 2005.

A. Reynolds, C. Tinelli, A. Goel, and S. Krsti¢. Finite model finding in SMT. In Proceedings
of the 25th International Conference on Computer Aided Verification (St Petersburg, Russia),
volume 8044 of LNCS, pages 640—655. Springer, 2013.

A. Reynolds, C. Tinelli, A. Goel, S. Krsti¢, M. Deters, and C. Barrett. Quantifier instantiation
techniques for finite model finding in SMT. In M. P. Bonacina, editor, Proceedings of the
24th International Conference on Automated Deduction (Lake Placid, NY, USA), volume
7898 of Lecture Notes in Computer Science, pages 377-391. Springer, 2013.



38

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

Clark Barrett and Cesare Tinelli

P. Riimmer and T. Wahl. An SMT-LIB theory of binary floating-point arithmetic. In Informal
proceedings of 8th International Workshop on Satisfiability Modulo Theories (SMT) at FLoC,
Edinburgh, Scotland, 2010.

A. Rybalchenko and V. Sofronie-Stokkermans. Constraint solving for interpolation. Journal
of Symbolic Computation, 45:1212—1233, November 2010.

A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.

R. Sebastiani. Lazy satisability modulo theories. Journal on Satisfiability, Boolean Modeling
and Computation, 3(3-4):141-224, 2007.

M. Sheeran, S. Singh, and G. Stdlmarck. Checking safety properties using induction and a
SAT-solver. In FMCAD ’00: Proceedings of the Third International Conference on Formal
Methods in Computer-Aided Design, pages 108—125, London, UK, 2000. Springer.

H. M. Sheini and K. A. Sakallah. A scalable method for solving satisfiability of integer
linear arithmetic logic. In Proceedings of the Sth International Conference on Theory and
Applications of Satisfiability Testing, volume 3569 of LNCS. Springer, 2005.

V. Sofronie-Stokkermans. Hierarchic reasoning in local theory extensions. In Automated
Deduction—-CADE-20, pages 219-234. Springer, 2005.

O. Strichman. On solving Presburger and linear arithmetic with SAT. In Formal Methods in
Computer-Aided Design, volume 2517 of LNCS, pages 160-170. Springer Berlin / Heidel-
berg, 2002.

O. Strichman, S. Seshia, and R. Bryant. Deciding separation formulas with SAT. In Com-
puter Aided Verification, volume 2404 of LNCS, pages 113—124. Springer Berlin / Heidel-
berg, 2002.

A. Stump, C. W. Barrett, D. L. Dill, and J. Levitt. A decision procedure for an extensional
theory of arrays. In Proceedings of the 16'" IEEE Symposium on Logic in Computer Science
(LICS ’01), pages 29-37. IEEE Computer Society, June 2001. Boston, Massachusetts.

A. Stump, D. Oe, A. Reynolds, L. Hadarean, and C. Tinelli. SMT proof checking using a
logical framework. Formal Methods in System Design, 41(1):91-118, Feb. 2013.

R. E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of the ACM
(JACM), 22(2):215-225, April 1975.

C. Tinelli. A DPLL-based calculus for ground satisfiability modulo theories. In G. Ianni and
S. Flesca, editors, Proceedings of the 8th European Conference on Logics in Artificial Intel-
ligence (Cosenza, Italy), volume 2424 of Lecture Notes in Artificial Intelligence. Springer,
2002.

C. Tinelli and M. T. Harandi. A new correctness proof of the Nelson—-Oppen combina-
tion procedure. In Frontiers of Combining Systems: Proceedings of the st International
Workshop (Munich, Germany), Applied Logic, pages 103—120. Kluwer Academic Publish-
ers, Mar. 1996.

C. Tinelli and C. Ringeissen. Unions of non-disjoint theories and combinations of satisfia-
bility procedures. Theoretical Computer Science, 290(1):291-353, Jan. 2003.

C. Tinelli and C. Zarba. Combining decision procedures for sorted theories. In Proceed-
ings of the 9th European Conference on Logic in Artificial Intelligence (JELIA’04), Lisbon,
Portugal, volume 3229 of Lecture Notes in Artificial Intelligence, pages 641-653. Springer,
2004.

C. Tinelli and C. Zarba. Combining nonstably infinite theories. Journal of Automated Rea-
soning, 34(3):209-238, Apr. 2005.

C. Wang, A. Gupta, and M. Ganai. Predicate learning and selective theory deduction for a
difference logic solver. In Proceedings of the 43rd annual Design Automation Conference,
DAC ’06, pages 235-240, New York, NY, USA, 2006. ACM.

G. Yorsh and M. Musuvathi. A combination method for generating interpolants. In Proceed-
ings of the 20th International Conference on Automated Deduction, volume 3632 of LNCS,
pages 353-368. Springer, 2005.



