
Complexité avancée - TD 5

Benjamin Bordais

October 20, 2021

Exercise 1 (Family of Circuits).

Definition. A boolean circuit with n inputs is an acylic graph where the n inputs
x1, . . . , xn are part of the vertices. The internal vertices are labeled with ∧, ∨ (with 2
incoming edges) or ¬ (with 1 incoming edge), with an additional distinguished vertex o
that is the output (with no exiting edge). The size |C| of a circuit C is its number of
vertices (excluding the input ones). For a word x ∈ {0, 1}∗, the notation C(x) refers to
the output of the circuit C if the input vertices of C are valued with the bits of x.

Definition. For a function t : N → N, a family of circuit of size t(n) is a sequence
(Cn)n∈N such that: Cn is an n-input circuit and |Cn| ≤ t(n).

Definition. A language L ⊆ {0, 1}∗ is decided by a family of circuit (Cn)n∈N if for all
n ∈ N, for all w ∈ {0, 1}n, we have: Cn(w) = 1⇔ w ∈ L.

Definition. For a function t : N→ N, we define SIZE(t) := {L ⊆ {0, 1}∗ | L is decided by
a family of circuits of size O(t(n))}.

Definition.
P/poly := ∪k∈NSIZE(nk)

1. Show that any language L ⊆ {0, 1}∗ is in size SIZE(n · 2n).

2. Show that for all function t(n) = 2o(n), there exists L 6∈ SIZE(t(n)).

3. Show that every unary language is in P/poly.

4. Exhibit a undecidable language that is in P/poly.

5. Show that P/poly is not countable.

Solution 1. 1. Let L ⊆ {0, 1}∗. For all n ∈ N, we define fn : {0, 1}n → { 0, 1} by
fn(w) = 1⇔ w ∈ L, for all w ∈ {0, 1}n. Now, let n ∈ N. Let us construct Cn with
O(n · 2n) vertices such that Cn(w) = fn(w) for all w ∈ {0, 1}n. The function fn
can be represented as a two-column table with 2n entries where each valuation of n
variables to either 0 or 1 is associated 0 or 1. This table can be represented as a
DNF φ = ∨1≤j≤k(∧1≤i≤nxi = wj

i ) where (wj)1≤j≤k (for some k ≤ 2n) are the words

of {0, 1}n ensuring fn(wi) = 1. Each clause (∧1≤i≤nxi = wj
i ) can be represented by

a circuit with O(n) vertices. As there are at most 2n of them, the formula φ can be
represented by circuit of size O(n · 2n).

1



2. Let us find an upper bound on the number of circuits d(n) of size t(n). There are
at most t(n) internal vertices, each labeled by either ∨, ∧, or ¬. Furthermore, each
vertex has at most two predecessors taken among n+t(n) vertices. Overall, we have:

d(n) ≤ 3t(n) · ((t(n) + n)2)t(n) = (3 · (t(n) + n)2)t(n) = 2t(n) log((3·(t(n)+n)2))

In addition, there are 22n functions from {0, 1}n → {0, 1}. Since t(n) = 2o(n), we
have t(n) · log((3 · (t(n) +n)2)) = o(2n). Thus d(n) = 2o(2n). It follows that, asymp-
totically, there is not enough circuits of size t(n) to compute all Boolean functions.1

3. Consider a unary language L ⊆ 1∗. For n ∈ N we build the circuit Cn such that,
if 1n ∈ L, then Cn consists of ∧ vertices leading to the output, whereas if 1n 6∈ L,
we consider a circuit Cn that always yields false (for instance, by having x∧¬x for
some input x). Then, for all n, we have |Cn| = O(n) and Cn(w) = 1⇔ w ∈ L.

4. The language

L = { 1n | the binary encoding of n encodes a Turing machine in that always stops}

is unary and undecidable.

5. There exists a bijection between the set of unary languages and the set of subsets
P(N) of N (which associates to a unary language L ⊆ 1∗ the set of n ∈ N such that
1n ∈ L). Since P(N) is not countable, so is P/poly.

Exercise 2 (Σp
2 and Πp

2 membership). 1. Let ONE− VAL be the problem of deciding
whether a boolean formula is satisfied by exactly one valuation. Show that ONE− VAL ∈
Σp

2;

2. A boolean formula is minimal if it has no equivalent shorter formula – where the
length of the formula is the number of symbols it contains. Let MIN− FORMULA be
the problem of deciding whether a boolean formula is minimal. Show that MIN− FORMULA ∈
Πp

2.

Solution 2. 1.

OneVal (ϕ ) :
(∃) choose a v a l u a t i o n ν
i f ν |= ϕ
then

(∀) choose a v a l u a t i o n ν ′

i f ν ′ 6|= ϕ or ν ′ = ν
then r e t u r n TRUE
e l s e r e t u r n FALSE

e l s e
r e t u r n FALSE

Here we have one alternation, with first the existential states and then the universal
states.

2.

1Question and solution inspired from Sebastiaan A. Terwijn Complexity theory course notes.

2



MinFormula (ϕ ) :
(∀) choose a formula ψ w i th |ψ| ≤ |ϕ|
(∃) choose a v a l u a t i o n ν
i f ν 6|= (ϕ⇔ ψ)
then r e t u r n TRUE
e l s e r e t u r n FALSE

Here we have one alternation, with first the universal states and then the existential
states.

Exercise 3 (Σp
2 and Πp

2 completeness). 1. The classical Σp
2-complete problem is Σp

2-
SAT (note that it can be assumed that the Boolean formula is in DNF). Consider
now a different version of SAT denoted ∃∃!− SAT:

• Input: a CNF-formula ϕ(x, y) depending on the variables in x and y;

• Outout: yes iff there exists x such that there exists a unique y satisfying ϕ(x, ·).

Show that ∃∃!− SAT is also Σp
2-complete.2

2. Similarly, the classical Πp
2-complete problem is Πp

2-SAT (the Boolean formula can
be assumed in 3-CNF). Consider now a new notion of satisfiability: we say that
a valuation ν nae-satisfies (for not all equal) a 3-CNF formula φ, if in all clauses
(with at least two literal) of φ, ν both sets a literal to true and a literal to false. The
clauses with only one literal only need to be satisfied. We consider now this new
version of SAT denoted nae-Πp

2 − SAT:

• Input: a Πp
2-SAT formula ∀x,∃y, ϕ(x, y) with ϕ a 3-CNF;

• Outout: yes iff for all x, there exists y nae-satisfying ϕ.

Show that nae-Πp
2 − SAT is Πp

2 complete.3

Solution 3. 1. This problem is straightforwardly in Σp
2. Indeed, solving this problem

only amount to guessing (existential states) x and y, checking that they satisfy the
formula and then looking at any y′ (universal states) to ensure that if y′ 6= y then
x, y′ does not satisfy the formula.

Consider now the Σp
2-hardness. We have a formula:

Φ = ∃x, ∀y, ϕ(x, y)

Note that this is equivalent to:

Φ⇔ ∃x, ¬∃y, ¬ϕ(x, y)

By introducing a new variable y′, this is equivalent to:

Φ⇔ ∃x, ∃!y, y′, (y′ ∨ ¬ϕ(x, y)) ∧ (¬y′ ∨ y1) ∧ . . . ∧ (¬y′ ∨ yn)

with y1, . . . , yn the variables appearing in y. Indeed, there is always one y, y′-
valuation satisfying this formula (all y, y′ set to true). Furthermore, as soon as
¬ϕ(x, ·) is satisfied, by setting y′ to false, the formula is satisfied.

This reduction can be computed in logspace and in addition, assuming that ϕ is in
DNF, we obtain a Boolean formula in CNF by integrating y′ into ¬ϕ.

2Idea of the question and solution from Daniel Marx, Complexity of unique list colorability.
3Idea of the question and solution from T. Eiter and G. Gottlob, Note on the Complexity of Some

Eigenvector Problems

3



2. The decision problem nae-Πp
2 − SAT is trivially in Πp

2 as once the x and y variables
are guessed, it only amounts to check that, in each clause, a literal is set to true and
another one is set to false.

Consider now an instance Φ = ∀x, ∃y : ϕ(x, y) of Πp
2-SAT with ϕ(x, y) a 3-CNF.

Let ϕ = ∧1≤i≤nCi. We consider n (existential) fresh variables w = (wi)1≤i≤n and
an additional fresh variable xF. Then, we construct the formula:

Φ′ = ∀x, ∃y, ∃w, ∃xF : ϕ′(x, y, w, xF)

with ϕ′(x, y, w, xF) = (¬xF) ∧ ∧1≤i≤n(C1
i ∧ C2

i ). For all 1 ≤ i ≤ n, for Ci =
α1
i ∨ α2

i ∨ α3
i , we set:

• C1
i := α1

i ∨ α2
i ∨ wi;

• C2
i := α3

i ∨ xF ∨ ¬wi.

Then, one can check that ϕ(y, x) is satisfied if and only if ∃w, ∃xF : ϕ′(x, y, w, xF)
is nae-valid. Basically, if α1

i ∨ α2
i holds, then wi is set of false and if α3

i holds then
wi is set to true, and reciprocally. Note that this is reduction can be done in logspace
and that the resulting formula is a 3-CNF.

Exercise 4 (Collapse of PH). 1. Prove that if ΣP
k = ΣP

k+1 for some k ≥ 0 then PH =

ΣP
k . (Remark that this is implied by P = NP).

2. Show that if ΣP
k = ΠP

k for some k then PH = ΣP
k .

3. Show that if PH = PSPACE then PH collapses.

4. Do you think there is a polynomial time procedure to convert any QBF formula into
a QBF formula with at most 10 variables ?

Solution 4. First, note that ΣP
k = co ΠP

k for all k ≥ 0. In the following, all quantifica-
tions are made with a polynomial bound on the size of the variables considered.

1. Let us assume that ΣP
k = ΣP

k+1 for some k ≥ 0, we prove by induction that ∀j ≥
k,ΣP

k = ΣP
j . This holds for j = i. Now, consider some j > i and assume that

ΣP
k = . . . = ΣP

j−1. Let L ∈ ΣP
j . There exists a language B ∈ P ensuring: x ∈ L ⇔

∃y1, ∀y2, . . . , Qjyj , (x, y1, . . . , yj) ∈ B.

Let L′ = {(x, y1) | |y1| ≤ p(|x|) ∧ ∀y2, . . . , Qjyj , (x, y1, y2, . . . , yj) ∈ B} for some
polynomial function p. We have L′ ∈ ΠP

j−1 = co ΣP
j−1 = co ΣP

k = ΠP
k . That is,

x ∈ L⇔ ∃y1, (x, y1) ∈ L′ with L′ ∈ ΠP
k . In fact, L ∈ ΣP

k+1 = ΣP
k by hypothesis.

2. With the previous question, we just have to prove that ΣP
k = ΣP

k+1.

Let L ∈ ΣP
k+1. As previously, There exists a language B ∈ P ensuring: x ∈ L ⇔

∃y1, ∀y2, . . . , Qk+1yk+1, (x, y1, . . . , yk+1) ∈ B .

We define L′ = {(x, y1) | |y1| ≤ p(|x|) ∧ ∀y2, . . . , Qk+1yk+1, (x, y1, y2, . . . , yk+1) ∈
B} for some polynomial function p. We have L′ ∈ ΠP

k = ΣP
k by hypothesis.

That is, there exists B′ ∈ P such that x ∈ L′ ⇔ ∃y1, ∀y2, . . . , Qkyk, (x, y1, . . . , yk) ∈
B′. But then, we have x ∈ L ⇔ ∃y, (x, y) ∈ L′. This is equivalent to x ∈
L ⇔ ∃y,∃y1, ∀y2, . . . , Qkyk, (x, y, y1, . . . , yk) ∈ B′. This can be rephrased as
x ∈ L⇔ ∃y′, ∀y2, . . . , Qkyk, (x, y′, . . . , yk) ∈ B′. It follows that L ∈ ΣP

k .

4



3. If PH = PSPACE, then QBF is in ΣP
k for some k. But QBF is a complete problem

for PSPACE, and thus PH. Let there be B ∈ PH, it can be reduced to QBF ∈ ΣP
k in

logspace, so B ∈ ΣP
k . That is, PH = ΣP

k

4. It is unlikely that PH collapses, and the statement would imply the previous question.

Exercise 5 (Oracles). Consider a language A. A Turing machine with oracle A is a
Turing machine with a special additional read/write tape, called the oracle tape, and three
special states: qquery, qyes, qno. Whenever the machine enters the state qquery, with some
word w written on the oracle tape, it moves in one step to the state qyes or qno depending
on whether w ∈ A.

We denote by PA (resp. NPA) the class of languages decided in by a deterministic
(resp. non-deterministic) Turing machine running in polynomial time with oracle A.
Given a complexity class C, we define PC =

⋃
A∈C P

A (and similarly for NP).

1. Prove that for any C-complete language A (for logspace reductions), PC = PA and
NPC = NPA.

2. Show that for any language A, PA = PĀ and NPA = NPĀ.

3. Prove that if NP = PSAT then NP = coNP.

4. Show that there exists a language A such that PA = NPA.

5. We define inductively the classes NP0 = P and NPk+1 = NPNPk . Show that NPk =
Σp
k for all k ≥ 0.

Solution 5. 1. We do the proof for NP. Obviously, we have NPC ⊇ NPA. Now, B ∈
NPC. There exists a non-deterministic Turing machine running in polynomial time
deciding B with an oracle C ∈ C. We also have a logspace (and hence polynomial
time) reduction f such that: x ∈ C ⇔ f(x) ∈ A since A is hard for C. We build the
non-deterministic Turing machine N ′ that executes N while replacing a call u ∈ C?
with a call f(u) ∈ A?. The Turing machine N ′ also runs in polynomial time and
decides B with the oracle A. That is, B ∈ NPA.

2. We simply have to swap the states qyes and qno in the computation.

3. PSAT is a deterministic class, so it is closed by complementation. Hence, if NP =
PSAT, we have coNP = NP

4. Consider A = QBF. By question 1, we have PQBF = PPSPACE and NPQBF =
NPPSPACE. Furthermore, NPPSPACE ⊆ NPSPACE since one can simulate the calls
to the oracle in polynomial space (as there is a polynomial number of calls). There-
fore, NPPSPACE ⊆ NPSPACE ⊆ PSPACE ⊆ PPSPACE.

5


