Complexité avancée - TD 2

Benjamin Bordais

September 29, 2021

Exercise 1 (Dyck’s language). o Let A be the language of balanced parentheses — that
is the language generated by the grammar S — (5)|SS|e. Show that A € L.

o What about the language B of balanced parentheses of two types? that is the language
generated by the grammar S — (S)[[S]|SS|e

Solution 1. e We describe an algorithm running in logarithmic space. We read the
input from left to right while maintaining a “balancing” counter on a working tape
with initial value zero, and increment (resp. decrement) it when reading ’(’ (resp.
')’). We reject if the counter ever becomes negative, and accept if the counter is
zero at the end of the input. Since the counter can never exceed the input length n,
its size is logarithmic in the input.

o Let us show that B € L. We say that each symbol has a type, either round or
square, and that each symbol is a left or right bracket regardless of the type. FEach
left bracket has a right bracket which is its partner, and our goal is to check that
every left bracket’s partner is of the same type. To find its partner we use a counter
as in question 1 above. First, we check that the word is in the bracket language
of question 1 if we ignore round vs. square, so that every left bracket has a right
partner.

There now remains to check that every opening bracket is partnered with a closing
bracket of the same type (round or square). For this we observe that if x[i] is an
opening bracket matched at position j by a closing bracket, the factor x[i + 1:j — 1]
is a well-balanced word. So it is enough to loop over all i = 1,...,n such that x[i]
is an opening bracket and run the algorithm for well-balanced words starting from
position i + 1. When the “balancing” counter first becomes negative, this indicates
that we have arrived at the position j matching i. We now check that the closing
parenthesis at j has the same type as its partner at ©. This uses two counters: one
for looking at all positions © and the “balancing” counter used by the subprogram on
the x[i + 1:j] factor.
Then, to check that partners match, we use the following pseudocode:
1 = 1
do until i exceeds the length of the input {
move i—1 steps from the left end of the input
read the input symbol a // a =w(i)
if a is a left bracket {
c =1
do until ¢ = 0 { // find w(i) partner

move Tight and read input symbol b

if b is a left bracket, increment c
if b is a right bracket, decrement c

}

if a and b are of different types, reject

}

accept

Exercise 2 (Exercise 2: Restrictions of the SAT problem). 1. Let 3-SAT be the restric-
tion of SAT to clauses consisting of at most three literals (called 3-clauses). In other
words, the input is a finite set S of 3-clauses, and the question is whether S is sat-
isfiable. Show that 3-SAT is NP-complete for logspace reductions (assuming SAT

is).

2. Let 2-SAT be the restriction of SAT to clauses consisting of at most two literals
(called 2-clauses). Show that 2-SAT s in P, using the fact that v y is equivalent
to x = y.

3. Show that 2-UNSAT (i.e, the unsatisfiability of a set of 2-clauses) is NL-complete.
4. Conclude that 2-SAT is NL-complete. You may use that coNL = NL.

Solution 2. 1. First, the problem is in NP as a sub case of SAT. We now must be
able to transform any instance of SAT into an instance of 3-SAT by using only
logarithmic space. The idea is the following: consider a clause C = 11 Vip V L
where L is a non-empty subclause. Then, C and Cy N C—, are equisatisfiable where
Co =l VieVzx and Cp, = —xV L for some fresh variable x. Indeed, consider a
valuation (that does not contain x) satisfying C'. Then if l1 V Iy is satisfied, Cy also
is and we set x to false to satisfy C—p. If L is satisfied, we set x to true so that Cy
also is. Reciprocally, if Cy N C—, is satisfied for some valuation (containing x), this
same valuation also satisfies C', as we can show that it satisfies either 1 Vly or L
depending on how x is valued. With this transformation, we have a new 3-clause
C,, and a new clause C-, that is not necessarily a 3-clause but it is a clause with
one less literal than C. Hence, from a SAT formula ¢ = N C;, if n; refers to the
number of literals in clause C;, we have to do k = 1, l; — 3 such transformations
to obtain an equisatisfiable formula with only 3-clauses.

Let us show that this transformation can be done in logarithmic space. We denote by
N the size of the input. We first read the input to obtain the number n of variables,
and write n+1 (in binary) on a work tape B. Then, we treat each clauses one after
the other. For a clause C;, we keep a pointer on the subclause L;, we copy the first
two literals, we add the fresh variable x (by copying the content of the tape B) and
we write —x, then we increment the counter on the tape B. While the pointer we
keep on L is followed by at least three literals, we copy the first literal and copy a
new fresh variable.

The counter written in binary in the tape B equals at most n + k = O(log N). It
can then be represented in logspace, as can the pointer on the remaining subclause.
Overall, this can be done in logarithmic space.

2. From the formula ¢, we construct a graph G, where the nodes are all the variables
i @ and their negation. For every clause C' =11 V Iy we create an edge from —ly to

lo and one from —la to l1. We denote the fact that there is a directed path from t
to s in Gy, byt —* s. Then, we claim that ¢ is satisfiable if and only if there is no
variable x such that x —* —x —* x. First, it is straightforward to show that if we
have path | =* " in G, for two literals | and ', then we have ¢ = (I = I') [Proof
idea: by induction on the length of the path, the base case uses the definition of
edges from @]. Finally, if G, has a cycle x —=* —x —* x for some variable x then ¢
entails (x = —x) A (-x = x), i.e., @ entails a contradiction and must be uniformly
false, i.e. not satisfiable. That proves direction “=— 7 of the above claim.

Let us now prove the reverse direction. We assume that there is no such literal
and must show that ¢ is satisfiable. We define by induction on 1 < i < n the
valuation of x; and a graph G; as follow. We set Go = G, and for 1 < i < n,
if we have —x; —* x; in G;_1 then we set x; to true and G; = G;—1. Otherwise,
x; 45 set to false and G; is obtained from G;—1 by adding an edge between x; and
—x;. By induction, we show that for all 0 < i < n, the graph G; does not contain a
cycle going through a literal and its negation. It is true for Go by hypothesis. Now,
consider i > 1 assume this holds for G;_1. The case G; = G;_1 is obvious. Assume
that G; is obtained from G;_1 by adding an edge between x; to —x;. Assume that
there is a cycle going through a literal and its negation in G;. Since there is none
in Gij_1, it must use the arc x; — —x;. Therefore, there is a path from —x; to x; in
G, which also exists in G;_1. Hence the contradiction since we consider the case
where ~x; —* x; does not hold. By construction we also have that, for all variable
x, in Gy, either v =% —x or ~x —* .

Now, consider the valuation v : {x; | 1 <i <n} — {T, F} that we have constructed.
We have that, for all literal I, v(l) =T < (=l =* 1) and v(l) = F < (I =* =l).
Let us show that the valuation v satisfies ¢. Consider a clause C = (11 V la2). If
v(ly) =T, C is satisfied. Now, assume that v(ly) = F. Then, we have l; —* —l;.
Furthermore, by construction of G, = Go, we have =ly — Iy and —l; — l2. Hence,
we have the path —lo —* la. That is, v(la) = T and the clause is satisfied. This
holds for all clauses of .

It follows that 2 — SAT s in P since the construction of the graph can be done in
polynomial time and so can checking the existence of a cycle going through a literal
and its negation.

. In the previous question, we have established that a 2-SAT formula ¢ is satisfiable if
and only if, in the graph G, there exists a variable x so that x —* ~x —* x. Hence,
the unsatisfability of a 2-SAT formula ¢ can be decided in logarithmic space. Note
that the graph G is never constructed in its entirety. We only keep a pointer on
the current vertex and we check the formula ¢ to determine which are the possible
successors. By doing, we can guess a variable x and call REACH (G, x,—~x) and

REACH Gy, ~z,x).

Let us prove that the UNSAT is NL-hard. Consider an instance (G, s,t) of REACH.
We construct a 2-SAT formula ¢ from G by adding a 2-clause ~uV v, i.e. “u = v7,
for every edge (u,v) in G. We also add two unit clauses: s and —t. Then, if s =* ¢
in G, ¢ entails the implication s = t (or —s \V t), hence ¢ is false since it also
contains s and —t as clauses. On the other hand, assuming that t is not reachable
from s, we can construct a valuation satisfying @: we assign true to every variable
reachable from s in G, and false to the unreachable ones (in particular, t is set to
false). Then, the clauses s and —t are satisfied. Furthermore, consider a clause

(—mu V) of p. If u is set to false, the clause is satisfied, otherwise u is set to true,
which means that it is reachable from s, and so is v. Hence v is set to true and
the clause is satisfied. Finally we have shown that ¢ is not satisfiable if and only
if (G, s,t) is a positive instance of REACH, i.e., our reduction is correct. Since this
transformation can be done in logarithmic space, we can conclude that UNSAT is
NL-complete.

4. 2-SAT = 2-UNSAT s in NL = coNL. Hence, 2-SAT is in NL. Furthermore, for any
language A € NL, A € coNL = NL can be reduced in logspace to 2-UNSAT that is NL-

complete. The same reduction can be used to reduce A = A to 2-UNSAT = 2-SAT.

Exercise 3 (Space hierarchy theorem). Consider two space-constructible functions f and
g such that f = o(g). Prove that DSPACE(f) C DSPACE(g).

Hint: You may consider a language L = {(M,w’) | the simulation (by a universal TM) of
M on (M,w') rejects } with an appropriate restriction on the simulation of M.

Solution 3. First, we have DSPACE(f) C DSPACE(g) since f(n) < g(n) for a high
enough n. Let us show that this inclusion is strict.
We define the following language:

L={(M,w)| the simulation of M on (M,w') rejects using space < g(|M,w'|) and time < 2*9(Mw'Dy

e First, we show that L € SPACE(g). We describe the steps taken by a Turing machine
M’ on an input w = M,w'. M’ first computes g(|w|) (which can be done in space
O(g(Jw|)) since g is space constructible) and marks down an end of tape marker
at position g(Jw|) on the work tape: if more space is used, M' rejects. Then, M’
simulates M on w by rejecting if the number of steps taken is bigger than 229(|Mw'l)
If w is accepted by M, M’ rejects, otherwise M' accepts. Then, this Turing Machine
M accepts the language L and runs in space O(g(|w|)). We conclude by using the

speed-up theorem.

e Second, we show that L ¢ SPACE(f). Let us assume towards a contradiction that
there is a machine M’ recognizing L in space f. Let Qup be the set of states,
Ly be the alphabet and kyp be the number of working tapes of the Turing machine
M'. Simulating M' on an input w takes space in O(f(|w|)) = ¢ x f(|w]) where
the constant ¢ only depends on the Turing Machine M’ (i.e. Qpr, Tpp and kpyr).
Furthermore, the number of step taken to terminate on an input w is at most:

N = |Qur| - f([w])fa” - Dy |Faar 0D gy

(which corresponds to the number of different configurations that can occur on input
w). For a sufficiently long w’, we have ¢ x f(|M',w'|) < g(|]M',w'|) and npp <
229(IM" ') Then, if (M',w') € L, the simulation of M', and therefore M’ rejects
(M',w"). However, since M' recognizes L, M’ also accepts (M’ ,w'). Hence the
contradiction. Let us now assume that (M',w'") & L. Since the space used by the
simulation of M' is ¢ x f(|M',w'|) < g(|M',w'|) and the time used is npp u <
229(M" W) e can conclude that M' accepts (M',w") by definition of L. But then,
since the language L is accepted by M', we should have (M',w') € L. Hence the
contradiction. In fact, there is no such Turing Machine M'.

