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Table 6.2. Closure and expressiveness properties of asynchronous automata

∪ ∩ · det EMSO MSO Empt.

AA
+

X X X = = = X

AA
−

X X X = = = X

PA
+

X X X = $ $ X

PA
−

X X X = $ $ X

6.7 Bibliographic Notes

A comprehensive overview of the theory of Mazurkiewicz traces and related
automata models is provided by [27], which covers many important research
lines of trace theory, including an algebraic view thereof. Recognizability of
trace languages is the subject of [79]. In [96], recognizability and definability
in terms of MSO logic are considered in terms of traces, MSCs, graphs, and
infinite structures. Comparisons of the models of ACAs and asynchronous
automata relative to traces can be found in [28] and [82]. Product automata
and product trace languages are studied in [88].
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{1, . . . , B}, which leads to a finite automaton over Γ ×{1, . . . , B} recognizing
Lin(Trα

B(L)).

“If”: As shown in [45, 56], any asynchronous automaton over Γ̃B has an
equivalent counterpart in the form of a (strongly) ∀-bounded communicating
finite-state machine (cf. Chap. 8). Together with Theorems 6.22 and 8.22, this
proves the lemma. �

Proposition 7.32. For any α ∈ {+,−}, B ≥ 1, and L ⊆ MSC∀B,

L ∈ RP0
MSC iff Trα

B(L) ∈ RP0
TRα( eΓB)

∧ {M | L ⊢Ag M} ⊆ MSC∀B

Proof. According to Proposition 7.31, the operator Trα
B and its converse both

preserve regularity.
“Only if”: Suppose L ⊆ MSC∀B to be a weak regular product MSC lan-

guage. Recall that Trα
B(L) is a regular trace language over Γ̃B = (Γ γ)γ∈Ag∪Co .

Moreover, let T ∈ TR
α(Γ̃B) such that, for any γ ∈ Ag ∪ Co, there is a trace

Tγ ∈ Trα
B(L) satisfying Tγ ↾ γ = T ↾ γ. Then, T ∈ Trα

B(MSC∀B) and, in par-
ticular, we have Ti ↾ i = T ↾ i and, thus, (Trα

B)−1(Ti) ↾ i = (Trα
B)−1(T) ↾ i for

any i ∈ Ag , which implies (Trα
B)−1(T) ∈ L and T ∈ Trα

B(L).
“If”: Suppose L ⊆ MSC∀B to generate a weak regular trace language

over Γ̃B , i.e., Trα
B(L) ∈ RP0

TRα( eΓB)
, and let M ∈ MSC∀B such that, for any

i ∈ Ag , there is Mi ∈ L with Mi ↾ i = M ↾ i. Trivially, we have that, for any
i ∈ Ag , Trα

B(Mi) ↾ i = Trα
B(M) ↾ i. Moreover, for any γ = (i!j, j?i, n) ∈ Co,

Trα
B(Mi) ↾ γ = Trα

B(M) ↾ γ (note that also Trα
B(Mj) ↾ γ = Trα

B(M) ↾ γ). This
is because, in the trace of a ∀B-bounded MSC, the n-th receipt of a message
through (i, j) is ordered before sending a message from i to j for the (n+B)-th
time. Altogether, we have Trα

B(M) ∈ Trα
B(L) and, consequently, M ∈ L. �

The proof of the following extension towards finite unions of weak regular
product languages is left to the reader as an easy exercise.

Corollary 7.33. For any α ∈ {+,−}, B ≥ 1, and L ⊆ MSC∀B,

L ∈ RPMSC iff L = L1 ∪ . . . ∪ Ln with

Trα
B(Li) ∈ RP0

TRα( eΓB)
∧ {M | Li ⊢Ag M} ⊆ MSC∀B ∀i

A nonempty partial MSC M is called prime if M = M1 · M2 implies
M1 = 1MSC or M2 = 1MSC. Consider Fig. 7.16, for example. The partial MSCs
from parts (a) and (d) are prime, while the partial MSCs in between are not.
For the rest of this section, let Π be a nonempty finite set of prime partial
MSCs, which will be the universe of a trace alphabet. The notion of prime
partial MSCs, which was first given in [43], gives rise to a natural dependence

relation based on the distributed alphabet Σ̃Π := (Σi)i∈Ag where, for any
i ∈ Ag , Σi = {M ∈ Π | i ∈ Ag(M)}. We may accordingly declare prime
partial MSCs M and M

′ independent if Ag(M) ∩ Ag(M′) = ∅.


