
MPRI Lecture Notes

Course 2-30

Cryptographic protocols

Formal and Computational Proofs

Authors :

• Bruno Blanchet

• Hubert Comon-Lundh

• Stéphanie Delaune

• Cédric Fournet

• Steve Kremer

• David Pointcheval

This is a preliminary version, for MPRI students only. Please post your comments/corrections.



2



Contents

I Modelling Protocols and Security Properties 5

1 An Introductory Example 7

1.1 An Informal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 A More Formal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 An Attack on the Fixed Version of the Protocol . . . . . . . . . . . . . . . . . . . 10

1.4 Further Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 A Small Process Calculus 13

2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Assembling Terms into Frames . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3 Deduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.4 Static Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Protocol Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Operational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Security Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Secrecy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 Correspondence Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.3 Guessing Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.4 Equivalence Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Further Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

II Verification in the Symbolic Setting 29

3 Deducibility Constraints 31

3.1 Intruder Deduction problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.2 Decidability via Locality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Deducibility constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Decision Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Simplification Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.2 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.3 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Further Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3



4 CONTENTS

4 Unbounded process verification 41
4.1 Undecidability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Structure and Main Features of ProVerif . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 A Formal Model of Security Protocols . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.1 Syntax and Informal Semantics . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.3 Formal Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.4 Security Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.5 Some Other Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 The Horn Clause Representation of Protocols . . . . . . . . . . . . . . . . . . . . 51
4.4.1 Definition of this Representation . . . . . . . . . . . . . . . . . . . . . . . 51

4.4.2 Resolution Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.5 Translation from the Pi Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5.1 Clauses for the Attacker . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.5.2 Clauses for the Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.5.3 Extension to Equational Theories . . . . . . . . . . . . . . . . . . . . . . . 65
4.5.4 Extension to Scenarios with Several Phases . . . . . . . . . . . . . . . . . 66

4.6 Extension to Correspondences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.6.1 From Secrecy to Correspondences . . . . . . . . . . . . . . . . . . . . . . . 67
4.6.2 Instrumented Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6.3 Generation of Horn Clauses and Resolution . . . . . . . . . . . . . . . . . 70
4.6.4 Non-injective correspondences . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.6.5 Sketch for injective correspondences . . . . . . . . . . . . . . . . . . . . . 73

4.7 Extension to the Proof of Observational Equivalences . . . . . . . . . . . . . . . 75
4.7.1 Weak Secrets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.7.2 Authenticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.8 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.9 Further Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Static equivalence 83
5.1 Definitions and Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1.1 Static equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.1.2 Applications of static equivalence . . . . . . . . . . . . . . . . . . . . . . . 84
5.1.3 Some properties of static equivalence . . . . . . . . . . . . . . . . . . . . . 86
5.1.4 Further readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 Procedure for subterm convergent equational theories . . . . . . . . . . . . . . . 87
5.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2.2 Deciding ∼E in polynomial time for subterm convergent equational theories 89

5.2.3 Deciding ∼E vs deciding ⊢E . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2.4 Further readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 Composition Results 97
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.2 Parallel Composition under Shared Keys . . . . . . . . . . . . . . . . . . . . . . . 98

6.2.1 Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.2.2 Main Steps of the Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.2.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.3 From One Session to Many . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.3.1 Protocol Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.3.2 Composition Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102



CONTENTS 5

6.3.3 Other ways of tagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.4 Further Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

III Verification in the Computational Setting 105

7 The Computational Model 107

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.1.1 Exact Security and Practical Security . . . . . . . . . . . . . . . . . . . . 107

7.2 Security Proofs and Security Arguments . . . . . . . . . . . . . . . . . . . . . . . 108

7.2.1 Computational Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.2.2 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.2.3 Practical Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.2.4 The Random-Oracle Model . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.2.5 The General Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8 Provable Security 111

8.1 Security Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.1.1 Public-Key Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.1.2 Digital Signature Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.2 The Computational Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.2.1 Integer Factoring and the RSA Problem . . . . . . . . . . . . . . . . . . . 115

8.2.2 The Discrete Logarithm and the Diffie-Hellman Problems . . . . . . . . . 116

8.3 Proof Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

9 Public-Key Encryption Schemes 121

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

9.1.1 The RSA Encryption Scheme . . . . . . . . . . . . . . . . . . . . . . . . . 121

9.1.2 The El Gamal Encryption Scheme . . . . . . . . . . . . . . . . . . . . . . 121

9.2 The Cramer-Shoup Encryption Scheme . . . . . . . . . . . . . . . . . . . . . . . . 122

9.2.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

9.2.2 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

9.3 A Generic Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

9.3.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

9.3.2 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

9.4 OAEP: the Optimal Asymmetric Encryption Padding . . . . . . . . . . . . . . . 129

9.4.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

9.4.2 About the Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

9.4.3 The Actual Security of OAEP . . . . . . . . . . . . . . . . . . . . . . . . . 131

9.4.4 Intuition behind the Proof of Security . . . . . . . . . . . . . . . . . . . . 132

10 Digital Signature Schemes 135

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

10.2 Some Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

10.2.1 The RSA Signature Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 136

10.2.2 The Schnorr Signature Scheme . . . . . . . . . . . . . . . . . . . . . . . . 136

10.3 DL-Based Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

10.3.1 General Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

10.3.2 No-Message Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

10.3.3 Chosen-Message Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140



6 CONTENTS

10.4 RSA-Based Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
10.4.1 Basic Proof of the FDH Signature . . . . . . . . . . . . . . . . . . . . . . . 142
10.4.2 Improved Security Result . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
10.4.3 PSS: The Probabilistic Signature Scheme . . . . . . . . . . . . . . . . . . 145

11 Automating Game-Based Proofs 147
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
11.2 A Calculus for Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

11.2.1 Syntax and Informal Semantics . . . . . . . . . . . . . . . . . . . . . . . . 150
11.2.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
11.2.3 Observational Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

11.3 Game Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
11.3.1 Syntactic Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
11.3.2 Applying the Security Assumptions on Primitives . . . . . . . . . . . . . . 159

11.4 Criteria for Proving Secrecy Properties . . . . . . . . . . . . . . . . . . . . . . . . 166
11.5 Proof Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
11.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
11.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
11.8 More Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

IV Links between the two Settings 171

12 Soundness of Static Equivalence 175
12.1 Security properties of symmetric encryption schemes . . . . . . . . . . . . . . . . 175
12.2 The symbolic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
12.3 Indistinguishability of ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
12.4 The computational interpretation of terms . . . . . . . . . . . . . . . . . . . . . . 179
12.5 Preliminary indistinguishability results relying on the property of the encryption

scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
12.6 Proof of soundness of static equivalence: a special case . . . . . . . . . . . . . . . 181
12.7 The proof in the general case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
12.8 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

12.8.1 Predicate implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
12.8.2 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
12.8.3 Examples of computational structures . . . . . . . . . . . . . . . . . . . . 190



Part I

Modelling Protocols and Security

Properties

7





Chapter 1

An Introductory Example

We start with the well-known example of the so-called “Needham-Schroeder public-key proto-
col” [?], that has been designed in 1978 and for which an attack was found in 1996 by G. Lowe [?],
using formal methods.

1.1 An Informal Description

The protocol is a so-called “mutual authentication protocol”. Two parties A and B wish to
agree on some value, e.g. they wish to establish a shared secret that they will use later for fast
confidential communication. The parties A and B only use a public communication channel
(for instance a postal service, Internet or a mobile phone). The transport of the messages on
such channels is insecure. Indeed, a malicious agent might intercept the letter (resp. message)
look at its content and possibly replace it with another message or even simply destroy it.

In order to secure their communication, the agents use lockers (or encryption). We consider
here public-key encryption: the lockers can be reproduced and distributed, but the key to open
them is owned by a single person. Encrypting a message m with the public key of A is written
{m}pk(A) whereas concatenating two messages m1 and m2 is written 〈m1,m2〉. An informal
description of the protocol in the so-called Alice-Bob notation is given in Figure 1.1.

1. A→ B : {〈A,NA〉}pk(B)

2. B → A : {〈NA, NB〉}pk(A)

3. A→ B : {NB}pk(B)

Figure 1.1: Informal description of the Needham-Schroeder public key protocol

Description. First the agent A encrypts a nonceNA, i.e. a random number freshly generated,
and her identity with the public key of B and sends it on the public channel (message 1). Only
the agent B, who owes the corresponding private key can open this message. Upon reception,
he gets NA, generates his own nonce NB and sends back the pair encrypted with the public key
of A (message 2). Only the agent A is able to open this message. Furthermore, since only B
was able to get NA, inserting NA in the plaintext is a witness that it comes from the agent B.
Finally, A, after decrypting, checks that the first component is NA and retrieves the second
component NB . As an acknowledgement, she sends back NB encrypted by the public key of B
(message 3). When B receives this message, he checks that the content is NB . If this succeeds,
it is claimed that, if the agents A and B are honest, then both parties agreed on the nonces NA

and NB (they share these values). Moreover, these values are secret: they are only known by
the agents A and B.

9



10 CHAPTER 1. AN INTRODUCTORY EXAMPLE

1. A→ D : {〈A,NA〉}pk(D)

1′. D(A)→ B : {〈A,NA〉}pk(B)

2′. B → A : {〈NA, NB〉}pk(A)

2. B → A : {〈NA, NB〉}pk(A)

3. A→ D : {NB}pk(D)

3′. D(A)→ B : {NB}pk(B)

Figure 1.2: Attack on the Needham-Schroeder public key protocol

Attack. Actually, an attack was found in 1996 by G. Lowe [?] on the Needham-Schroeder
public-key protocol. The attack described in Figure 1.2 relies on the fact that the protocol
can be used by several parties. Moreover, we have to assume that an honest agent A starts a
session of the protocol with a dishonest agent D (message 1). Then D, impersonating A, sends
a message to B, starting another instance of the protocol (message 1′). When B receives this
message, supposedly coming from A, he answers (messages 2′ & 2). The agent A believes this
reply comes from C, hence she continues the protocol (message 3). Now, the dishonest agent D
decrypts the ciphertext and learn the nonce NB. Finally, D is able to send the expected reply
to B (message 3′). At this stage, two instances of the protocol have been completed with
success. In the second instance B believes that he is communicating with A: contrarily to what
is expected, A and B do not agree on NB. Moreover, NB is not a secret shared only between A
and B.

Fixed version of the protocol. It has been proposed to fix the protocol by including the
respondent’s identity in the response (see Figure 1.3).

1. A→ B : {〈A,NA〉}pk(B)

2. B → A : {〈〈NA, NB〉, B〉}pk(A)

3. A→ B : {NB}pk(B)

Figure 1.3: Description of the Needham-Schroeder-Lowe protocol

The attack described above cannot be mounted in the corrected version of the protocol.
Actually, it is reported in [?] that the technique that permitted to find the Lowe attack on the
Needham-Schroeder public key protocol found no attack on this protocol.

1.2 A More Formal Analysis

The Alice-Bob notation is a semi-formal notation that specifies the conversation between the
agents. We have to make more precise the view of each agent. This amounts specifying the
concurrent programs that are executed by each party. One has also to be precise when specifying
how a message is processed by an agent. In particular, what parts of a received message are
checked by the agent? What are the actions performed by the agent to compute the answer?

A classical way to model protocols is to use a process algebra. However, in order to model
the messages that are exchanged, we need a process algebra that allows processes to send first-
order terms build over a signature, names and variables. These terms model messages that are
exchanged during a protocol.

Example 1.1 Consider for example the signature Σ = {{ } , pk , sk( ), dec, 〈 , 〉, proj1, proj2}
which contains three binary function symbols modelling asymmetric encryption, decryption, and
pairing, and four unary function symbols modelling projections, public key and private key. The



1.2. A MORE FORMAL ANALYSIS 11

signature is equipped with an equational theory and we interpret equality up to this theory. For
instance the theory

dec({x}pk(y), sk(y)) = x, proj1(〈x1, x2〉) = x1, and proj2(〈x1, x2〉) = x2.

models that decryption and encryption cancel out whenever suitable keys are used. One can
also retrieves the first (resp. second) component of a pair.

Processes P,Q,R, . . . are constructed as follows. The process new N.P restricts the name N
in P and can for instance be used to model that N is a fresh random number. in(c, x).P models
the input of a term on a channel c, which is then substituted for x in process P . out(c, t) outputs
a term t on a channel c. The conditional if M = N then P else Q behaves as P when M and
N are equal modulo the equational theory and behaves as Q otherwise.

The program (or process) that is executed by an agent, say a, who wants to initiate a session
of the Needham-Schroeder protocol with another agent b is as follows:

A(a, b) =̂ new Na. a generates a fresh message Na

out(c, {a,Na}pk(b)). the message is sent on the channel c

in(c, x). a is waiting for an input on c
letx0 = dec(x, sk(a)) in a tries to decrypt the message

if proj1(x0) = Na then a checks that the first component is Na

letx1 = proj2(x0) in a retrieves the second component

out(c, {x1}pk(b)) a sends her answer on c

Note that we use variables for the unknown components of messages. These variables can
be (a priori) replaced by any message, provided that the attacker can build it and that it is
accepted by the agent. In the program described above, if the decryption fails or if the first
component of the message received by a is not equal to Na, then a will abort the protocol.

Similarly, we have to write the program that is executed by an agent, say b, who has to
answer to the messages sent by the initiator of the protocol. This program may look like this:

B(a, b) =̂ in(c, y). b is waiting for an input on c
let (a, y0) = dec(y, sk(b)) in b tries to decrypt it and then retrieves

the second component of the plaintext

new Nb. b generated a fresh random number Nb

out(c, {y0, Nb}pk(a)). b sends his answer on the channel c

in(c, y′). b is waiting for an input on c
if dec(y′, sk(b)) = Nb then Ok. b tries to decrypt the message and he

checks whether its content is Nb or not

The (weak) secrecy property states for instance that, if a, b are honest (their secret keys
are unknown to the environment), then, when the process B(a, b) reaches the Ok state, Nb is
unknown to the environment. We will also see later how to formalise agreement properties. The
“environment knowledge” is actually a component of the description of the global state of the
network. Basically, all messages that can be built from the public data and the messages that
have been sent are in the knowledge of the environment.

Any number of copies of A and B (with any parameter values) are running concurrently
in a hostile environment. Such a hostile environment is modelled by any process that may
receive and emit on public channels. We also assume that such an environment owes as many
public/private key pairs as it wishes (compromised agents), an agent may also generate new
values when needed. The only restrictions on the environment is on the way it may construct
new messages: the encryption and decryption functions, as well as public keys are assumed to



12 CHAPTER 1. AN INTRODUCTORY EXAMPLE

be known from the environment. However no private key (besides those that it generates) is
known. We exhibit now a process that will yield the attack, assuming that the agent d is a
dishonest (or compromised) agent who leaked his secret key:

P =̂ in(c, z1). d receives a message (from a)
let 〈a, z′1〉 = dec(z1, sk(d)) in d decrypts it

out(c, {〈a, z′1〉}pk(b)). d sends the plaintext encrypted with pk(b)

in(c, z2).out(c, z2). d forwards to a the answer he obtained from b
in(c, z3). d receives the answer from a
let z′3 = dec(z3, sk(d)) in d decrypts it and learn Nb

out(c, {z′3}pk(b)). d sends the expected message {Nb}pk(b) to b.

The Needham-Schroeder-Lowe protocol has been proved secure in several formal models
close to the one we have sketched in this section [?, ?].

1.3 An Attack on the Fixed Version of the Protocol

Up to now, the encryption is a black-box: nothing can be learnt on a plaintext from a ciphertext
and two ciphertexts are unrelated.

Consider however a simple El-Gamal encryption scheme. Roughly (we skip here the group
choice for instance), the encryption scheme is given by a cyclic group G of order q and genera-
tor g; these parameters are public. Each agent a may choose randomly a secret key sk(a) and
publish the corresponding public key pk(a) = gsk(a). Given a message m (assume for simplicity
that it is an element gm

′
of the group), encrypting m with the public key pk(a) consists in

drawing a random number r and letting {m}pk(a) = (pk(a)r × gm
′
, gr). Decrypting the message

consists in raising gr to the power sk(a) and dividing the first component of the pair by gr×sk(a).
We have that:

[pk(a)r × gm
′
]/(gr)sk(a) = [(gsk(a))r × gm

′
]/(gr)sk(a) = gm

′
= m.

This means that this encryption scheme satisfies the equation dec({x}pk(y), sk(y)) = x. How-
ever, as we will see, this encryption scheme also satisfies some other properties that are not taken
into account in our previous formal analysis.

Attack. Assume now that we are using such an encryption scheme in the Needham-Schroeder-
Lowe protocol and that pairing two group elements m1 = gm

′
1 and m2 = gm

′
2 is performed in a

naive way: 〈m1,m2〉 is mapped to gm
′
1
+2|m

′
1
|×m′

2 (i.e. concatenating the binary representations
of the messages m′1 and m′2). In such a case, an attack can be mounted on the protocol (see
Figure 1.4).

Actually, the attack starts as before. We assume that the honest agent a is starting a
session with a dishonest party d. Then d decrypts the message and re-encrypt it with the public
key of b. The honest party b replies sending the expected message {〈〈Na, Nb〉, b〉}pk(a). The
attacker intercepts this message. Note that the attacker can not simply forward it to a since
it does not have the expected form. The attacker intercepts {〈〈Na, Nb〉, b〉}pk(a), i.e. (pk(a)r ×

gNa+2α×Nb+22α×b, gr) where α is the length of a nonce. The attacker knows g, α, b, hence he can
compute g−2

2α×b× g2
2α×d and multiply the first component, yielding {〈〈Na, Nb〉, d〉}pk(a). Then

the attack can go on as before: a replies by sending {Nb}pk(d) and the attacker sends {Nb}pk(b)
to b, impersonating a.

This example is however a toy example since pairing could be implemented in another way.
In [?] there is a real attack that is only based on weaknesses of the El Gamal encryption scheme.
In particular, the attack does not dependent on how pairing is implemented.



1.4. FURTHER READINGS 13

1. a→ d : {〈a,Na〉}pk(d)

1′. d(a)→ b : {〈a,Na〉}pk(b)
2′. b→ a : {〈〈Na, Nb〉, b〉}pk(a) = (gNa+2α×Nb+22α×b × pk(a)r, gr)

d intercepts this message, and computes

[gNa+2α×Nb+22α×b × pk(a)r]× g−2
2α×b × g2

2α×d = gNa+2α×Nb+22α×d × pk(a)r

2. d→ a : {〈〈Na, Nb〉, d〉}pk(a) = (gNa+2α×Nb+22α×d × pk(a)r, gr)

3. a→ d : {Nb}pk(d)

3′. d→ b : {Nb}pk(d)

Figure 1.4: Attack on the Needham-Schroeder-Lowe protocol with El-Gamal encryption.

This shows that the formal analysis only proves the security in a formal model, that might
not be faithful. Here, the formal analysis assumed a model in which it is not possible to forge
a ciphertext from another ciphertext, without decrypting/encrypting. This property is known
as non-malleability, which is not satisfied by the El Gamal encryption scheme.

1.4 Further Readings

A survey by Clark and Jacob [?] describes several authentication protocols and outlines also
the methods that have been used to analyse them. In addition, it provides a summary of the
ways in which protocols have been found to fail. The purpose of the SPORE web page [?] is to
continue on-line the seminal work of Clark and Jacob, updating their base of security protocols.

As you have seen, some protocols (or some attacks) rely on some algebraic properties of
cryptographic primitives. In [?], a list of some relevant algebraic properties of cryptographic
operators is given, and for each of them, some examples of protocols or attacks using these
properties are provided. The survey also gives an overview of the existing methods in formal
approaches for analysing cryptographic protocols.

1.5 Exercises

Exercice 1 (⋆)
Consider the following protocol:

A→ B : 〈A, {K}pk(B)〉
B → A : 〈B, {K}pk(A)〉

First, A generates a fresh key K and sends it encrypted with the public key of B. Only B
will be able to decrypt this message. In this way, B learns K and B also knows that this message
comes from A as indicated in the first part of the message he received. Hence, B answers to A
by sending again the key, this time encrypted with the public key of A.

Show that an attacker can learn the key K generated by an honest agent A to another honest
agent B.

Exercice 2 (⋆)
The previous protocol is corrected as in the Needham-Schroeder protocol, i.e. we add the
identity of the agent inside each encryption.

A→ B : {〈A,K〉}pk(B)

B → A : {〈B,K〉}pk(A)



14 CHAPTER 1. AN INTRODUCTORY EXAMPLE

1. Check that the previous attack does not exist anymore. Do you think that the secrecy
property stated in Exercise 1 holds?

2. Two agents want to use this protocol to establish a session key. Show that there is an
attack.

Exercice 3 (⋆⋆)
For double security, all messages in the previous protocol are encrypted twice:

A→ B : {〈A, {K}pk(B)〉}pk(B)

B → A : {〈B, {K}pk(A)〉}pk(A)

Show that the protocol then becomes insecure in the sense that an attacker can learn the key K
generated by an honest agent A to another honest agent B.

Exercice 4 (⋆ ⋆ ⋆)
We consider a variant of the Needham-Schroeder-Lowe protocol. This protocol is as follows:

1. A→ B : {〈A,NA〉}pk(B)

2. B → A : {〈NA, 〈NB , B〉〉}pk(A)

3. A→ B : {NB}pk(B)

1. Check that the ’man-in-the-middle’ attack described in Figure 1.2 does not exist.

2. Show that there is an attack on the secrecy of the nonce Nb.
hint: type confusion

3. Do you think that this attack is realistic? Why?



Chapter 2

A Small Process Calculus

We now define our cryptographic process calculus for describing protocols. This calculus is
inspired by the applied pi calculus [?] which is the calculus used by the ProVerif tool [?]. The
applied pi calculus is a language for describing concurrent processes and their interactions. It
is an extension of the pi calculus [?] with cryptographic primitives. It is designed for describing
and analysing a variety of security protocols, such as authentication protocols (e.g. [?]), key
establishment protocols (e.g. [?]), e-voting protocols (e.g. [?]), . . . These protocols try to achieve
various security goals, such as secrecy, authentication, privacy, . . .

In this chapter, we present a simplified version that is sufficient for our purpose and we
explain how to formalise security properties in such a calculus.

2.1 Preliminaries

The applied pi calculus is similar to the spi calculus [?]. The key difference between the two
formalisms concerns the way that cryptographic primitives are handled. The spi calculus has
a fixed set of primitives built-in (symmetric and public key encryption), while the applied pi
calculus allows one to define less usual primitives by means of an equational theory. This
flexibility is particularly useful to model the new protocols that are emerging and which rely on
new cryptographic primitives.

2.1.1 Messages

To describe processes, one starts with an infinite set of names N (which are used to represent
atomic data, such as keys, nonces, . . . ), an infinite set of variables X , and a signature F which
consists of the function symbols which will be used to define terms. Each function symbol has
an associated integer, its arity. In the case of security protocols, typical function symbols will
include a binary function symbol senc for symmetric encryption, which takes plaintext and a
key and returns the corresponding ciphertext, and a binary function symbol sdec for decryption,
taking ciphertext and a key and returning the plaintext. Variables are used to consider messages
containing unknown (unspecified) pieces.

Terms are defined as names, variables, and function symbols applied to other terms. Terms
and function symbols may be sorted, and in such a case, function symbol application must
respect sorts and arities. We denote by T (Σ) the set of terms built on the symbols in Σ. We
denote by fv(M) (resp. fn(M)) the set of variables (resp. names) that occur in M . A term
M that does not contain any variable is a ground term. The set of positions of a term T is
written pos(T ) ⊆ N∗, and its set of subterms st(T ). The subterm of T at position p ∈ pos(T )
is written T |p. The term obtained by replacing T |p with a term U in T is denoted T [U ]p.

We split the function symbols between private and public symbols, i.e. F = Fpub ⊎ Fpriv.
Private function symbols are used to model algorithms or data that are not available to the

15



16 CHAPTER 2. A SMALL PROCESS CALCULUS

attacker. Moreover, sometimes, we also split the function symbols into constructors and de-
structors, i.e. F = D ⊎ C. Destructors are used to model the fact that some operations fail. A
typical destructor symbol could be the symbol sdec if we want to model a decryption algorithm
that fails when we try to decrypt a ciphertext with a wrong key. A constructor term is a term
in T (C ∪ N ∪ X ).

By the means of a convergent term rewriting system R, we describe the equations which
hold on terms built from the signature. A term rewriting system (TRS) is a set of rewrite rules
l→ r where l ∈ T (F ∪X ) and r ∈ T (F ∪ fv(l)). A term S ∈ T (F ∪N ∪X ) rewrites to T by R,
denoted S →R T , if there is l → r in R, p ∈ pos(S) and a substitution σ such that S|p = lσ
and T = S[rσ]p. Moreover, we assume that {xσ | x ∈ Dom(σ)} are constructor terms. We
denote by →∗R the reflexive and transitive closure of →R, and by =R the symmetric, reflexive
and transitive closure of →R. A TRS R is convergent if it is:

• terminating, i.e. there is no infinite chain T1 →R T2 →R . . .; and

• confluent, i.e. for all terms S, T such that S =R T , there exists U such that S →∗R U and
T →∗R U .

A term T is R-reduced if there is no term S such that T →R S. If T →∗R S and S is R-
reduced then S is a R-reduced form of T . When this reduced form is unique (in particular if R
is convergent), we write S = T↓R (or simply T↓ when R is clear from the context). In the
following, we will only consider convergent rewriting system. Hence, we have that M =R N , if
and only if, M↓ = N↓. A ground constructor term in normal form is also called a message.

Example 2.1 In order to model the handshake protocol that we will present later on, we intro-
duce the signature:

Fsenc = {senc/2, sdec/2, f/1}

together with the term rewriting system Rsenc = {sdec(senc(x, y), y)→ x}. We will assume that
Fsenc only contains constructor symbols. This represents a decryption algorithm that always
succeeds. If we decrypt the ciphertext senc(n, k) with a key k′ 6= k, the decryption algorithm will
return the message sdec(senc(n, k), k′).

Here, we have that sdec(senc(n′, sdec(n, n)), sdec(n, n)) =R n′. Indeed, we have that sdec(senc(n′, sdec(n, n)),
rewrites in one step to n′ (with p = ǫ, and σ = {x 7→ n′, y 7→ sdec(n, n)}).

Example 2.2 In order to model the Needham-Schroeder protocol, we will consider the following
signature:

Faenc = {〈 , 〉, proj1/1, proj2/1, aenc/2, pk/1, sk/1, adec/2}

together with the term rewriting system Raenc:

proj1(〈x, y〉) → x proj2(〈x, y〉) → y adec(aenc(x, pk(y)), sk(y)) → x

This will allow us to model asymmetric encryption and pairing. We will assume that proj1,
proj2, and adec are destructors symbols. The only private non-constant symbol is the symbol sk.
Note that proj1(〈n, adec(n, n)〉) 6=R n. Indeed, the terms proj1(〈n, adec(n, n)〉 and n are both
irreducible and not syntactically equal.

2.1.2 Assembling Terms into Frames

At some moment, while engaging in one or more sessions of one or more protocols, an attacker
may have observed a sequence of messages M1, . . . ,Mℓ, i.e. a set of ground constructor terms
in normal form. We want to represent this knowledge of the attacker. It is not enough for us to
say that the attacker knows the set of terms {M1, . . . ,Mℓ} since he also knows the order that



2.1. PRELIMINARIES 17

he observed them in. Furthermore, we should distinguish those names that the attacker knows
from those that were freshly generated by others and which remain secret from the attacker;
both kinds of names may appear in the terms. We use the concept of frame from the applied pi
calculus [?] to represent the knowledge of the attacker. A frame φ = new n.σ consists of a finite
set n ⊆ N of restricted names (those that the attacker does not know), and a substitution σ of
the form:

{M1/x1
, . . . ,Mℓ/xℓ

}.

The variables enable us to refer to each message Mi. We always assume that the terms Mi

are ground term in normal form that do not contain destructor symbols. The names n are
bound and can be renamed. We denote by =α the α-renaming relation on frames. The domain
of the frame φ, written Dom(φ), is defined as {x1, . . . , xℓ}.

2.1.3 Deduction

Given a frame φ that represents the information available to an attacker, we may ask whether
a given ground constructor term M may be deduced from φ. Given a convergent rewriting
system R on F , this relation is written φ ⊢R M and is formally defined below.

Definition 2.1 (Deduction) Let M be a ground term and φ = new n.σ be a frame. We have
that new n.σ ⊢R M if, and only if, there exists a term N ∈ T (Fpub ∪ N ∪ Dom(φ)) such that
fn(N) ∩ n = ∅ and Nσ =R M . Such a term N is a recipe of the term M .

Intuitively, the deducible messages are the messages of φ and the names that are not pro-
tected in φ, closed by rewriting with R and closed by application of public function symbols.
When new n.σ ⊢R M , any occurrence of names from n inM is bound by new n. So new n.σ ⊢R M
could be formally written new n.(σ ⊢R M).

Example 2.3 Consider the theory Rsenc given in Example 2.1 and the following frame:

φ = new k, s1.{
senc(〈s1,s2〉,k)/x1

, k/x2
}.

We have that φ ⊢Rsenc k, φ ⊢Rsenc s1 and φ ⊢Rsenc s2. Indeed x2, proj1(sdec(x1, x2)) and s2 are
recipes of the terms k, s1 and s2 respectively.

The relation new n.σ ⊢R M can be axiomatized by the following rules:

if ∃x ∈ dom(σ) such that xσ = M
new n.σ ⊢R M

s ∈ N r n
new n.σ ⊢R s

φ ⊢R M1 . . . φ ⊢R Mℓ
f ∈ Fpub

φ ⊢R f(M1, . . . ,Mℓ)

φ ⊢R M
M =R M ′

φ ⊢R M ′

Since we only consider convergent rewriting systems, it is easy to prove that the two defini-
tions coincide.

2.1.4 Static Equivalence

The frames we have introduced are too fine-grained as representations of the attacker’s knowl-
edge. For example, νk.{senc(s0,k)/x} and νk.{senc(s1,k)/x} represent a situation in which the
encryption of the public name s0 (resp. s1) by a randomly-chosen key has been observed. Since
the attacker cannot detect the difference between these two situations, the frames should be
considered equivalent. To formalise this, we note that if two recipes M,N on the frame φ pro-
duce the same constructor term, we say they are equal in the frame, and write (M =R N)φ.
Thus, the knowledge of the attacker can be thought of as his ability to distinguish such recipes.
If two frames have identical distinguishing power, then we say that they are statically equivalent.



18 CHAPTER 2. A SMALL PROCESS CALCULUS

Definition 2.2 (static equivalence) We say that two terms M and N in T (Fpub ∪ N ∪ X )
are equal in the frame φ, and write (M =R N)φ, if there exists n and a substitution σ such
that φ =α νn.σ, n ∩ (fn(M) ∪ fn(N)) = ∅, and Mσ↓ and Nσ↓ are both constructor terms that
are equal, i.e. Mσ↓ = Nσ↓.

We say that two frames φ1 = n1.σ1 and φ2 = n2.σ2 are statically equivalent, and write
φ1 ∼R φ2, when:

• Dom(φ1) = Dom(φ2),

• for all term M ∈ T (Fpub ∪N ∪X ) such that fn(M) ∩ (n1 ∪ n2) = ∅, we have that: Mσ1↓
is constructor term ⇔ Mσ2↓ is a constructor term.

• for all terms M,N in T (Fpub ∪ N ∪ X ) we have that: (M =R N)φ1 ⇔ (M =R N)φ2.

Note that by definition of ∼, we have that φ1 ∼ φ2 when φ1 =α φ2 and we have also that
new n.φ ∼ φ when n does not occur in φ.

Example 2.4 Consider the rewriting system Rsenc provided in Example 2.1. Consider the
frames φ = new k.{senc(s0,k)/x1

, k/x2
}, and φ′ = new k.{senc(s1,k)/x1

, k/x2
}. Intuitively, s0 and s1

could be the two possible (public) values of a vote. We have (sdec(x1, x2) =Rsenc s0)φ whereas
(sdec(x1, x2) 6=Rsenc s0)φ

′. Therefore we have that φ 6∼ φ′. However, we have that:

new k.{senc(s0,k)/x1
} ∼ new k.{senc(s1,k)/x1

}.

Example 2.5 Consider again the rewriting system Rsenc provided in Example 2.1. We have
that:

new k.{senc(0,k)/x} ∼ new k.{senc(1,k)/x}

{senc(0,k)/x,
〈0,k〉/y} 6∼ new k.{senc(1,k)/x,

〈0,k〉/y} (sdec(x, proj2(y))
?
= 0)

new a.{a/x} ∼ new b.{b/x}
new a.{a/x} 6∼ new b.{b/y} (different domains)

{a/x} 6∼ {b/x} (x
?
= a)

2.2 Protocols

We now described our cryptographic process calculus for describing protocols. For sake of
simplicity, we only consider public channels, i.e. under the control of the attacker.

2.2.1 Protocol Language

The grammar for processes is given below. One has plain processes P,Q,R and extended pro-
cesses A,B,C.

Plain processes. Plain processes are formed from the following grammar

P,Q,R =̂ plain processes
0 null process
P ‖ Q parallel composition
in(c,Mi).P message input
out(c,Mo).P message output
if M = N then P else Q conditional
new n.P restriction
!P replication



2.2. PROTOCOLS 19

such that a variable x appears in a term only if the term is in the scope of an input in(c,Mi)
with x ∈ fv(Mi). The null process 0 does nothing; P ‖ Q is the parallel composition of P
and Q. The replication !P behaves as an infinite number of copies of P running in parallel.
The conditional construction if M = N then P else Q is standard. We omit else Q when Q
is 0. The process in(c,Mi).P is ready to input on the public channel c, then to run P where
the variables of Mi are bound by the actual input message. The term Mi is a constructor term
with variables. out(c,Mo).P is ready to output Mo (it may contains some destructors), then to
run P . Again, we omit P when P is 0.

In this definition, we consider both pattern inputs and conditionals, which is redundant
in some situations: for any executable process, the patterns can be replaced with condition-
als. However, we keep both possibilities, in order to keep some flexibility in writing down the
protocols.

Example 2.6 We illustrate our syntax with the well-known handshake protocol that can be
informally described as follows:

A → B : senc(n,w)
B → A : senc(f(n), w)

We rely on the signature given in Example 2.1. The goal of this protocol is to authenticate B
from A’s point of view, provided that they share an initial secret w. This is done by a simple
challenge-response transaction: A sends a random number (a nonce) encrypted with the shared
secret key w. Then, B decrypts this message, applies a given function (for instance f(n) = n+1)
to it, and sends the result back, also encrypted with w. Finally, the agent A checks the validity of
the result by decrypting the message and checking the decryption against f(n). In our calculus,
we can model the protocol as new w.(PA ‖ PB) where

• PA(w) = new n. out(c, senc(n,w)). in(c, x). if sdec(x,w) = f(n) then P

• PB(w) = in(c, y). out(c, senc(f(sdec(y,w)), w)).

where P models an application that is executed when PB has been successfully authenticated.
Here, we use the formalism with explicit destructors but we could also used pattern inputs.

Example 2.7 Going back to the Needham-Schroeder public key protocol described in Chapter 1
and considering the signature given in Example 2.2, we have that:

PA(a, b) =̂ out(c, aenc(〈a,Na〉, pk(b))).
in(c, aenc(〈Na, x〉, pk(a)).
out(c, aenc(x, pk(b)))

PB(a, b) =̂ in(c, aenc(〈a, y〉, pk(b))).
out(c, aenc(〈y,Nb〉, pk(a)).
in(c, aenc(Nb, pk(b)))

Here, we have used pattern inputs. We could also have used the alternative formalism of
explicit destructors. With pattern inputs, we do not need in general to used destructors to
describe the outputs.

Note that all the processes that can be written in this syntax (in particular the one with
pattern inputs) are not necessary meaningful. Some of them will not be executable.

Continuing with the Needham-Schroeder protocol, we may define several execution scenarii:

Example 2.8 (Scenario 1) The following specifies a copy of the role of Alice, played by a,
with d and a copy of the role of Bob, played by b, with a, as well as the fact that d is dishonest,
hence his secret key is leaked.

P1 =̂ (new Na. PA(a, d)) ‖ (new Nb. PB(a, b)) ‖ out(c, sk(d))



20 CHAPTER 2. A SMALL PROCESS CALCULUS

Example 2.9 (Scenario 2) Assume that we wish a to execute the role of the initiator, however
with any other party, which is specified here by letting the environment give the identity of such
another party: the process first receives xb, that might be bound to any value. The other role is
specified in the same way.

P2 =̂ (new Na. in(c, xb). PA(a, xb)) ‖ (new Nb. in(c, xa). PB(xa, b)) ‖ out(c, sk(d))

Example 2.10 (Scenario 3) In Example 2.8 and Example 2.9, a was only able to engage the
protocol once (and b was only able to engage once in a response). We may wish a (resp. b) be
able to execute any number of instances of the role of the initiator (resp. responder).

P3 =̂ !(new Na. in(c, xb). PA(a, xb)) ‖ !(newNb. in(c, xa). PB(xa, b)) ‖ out(c, sk(d))

Example 2.11 (Scenario 4) Finally, in general, the role of the initiator could be executed by
any agent, including b and the role of the responder could be executed by any number of agents as
well. We specify an unbounded number of parties, engaging in an unbounded number of sessions
by:

P4 =̂

{
!(new Na. in(c, xa). in(c, xb). PA(xa, xb)) ‖
!(new Nb. in(c, xa). in(c, xb). PB(xa, xb)) ‖ out(c, sk(d))

We can imagine other scenarios as well. Verifying security will only be relative to a given
scenario.

Extended Processes. Further, we extend processes with active substitutions and restric-
tions:

A,B,C := P
∣∣ A ‖ B

∣∣ new n.A
∣∣ {M/x}

where M is a ground constructor term in normal form. As usual, names and variables have
scopes, which are delimited by restrictions and by inputs. We write fv(A), bv(A), fn(A), bn(A)
for the sets of free and bound variables (resp. names). Moreover, we require processes to be
name and variable distinct, meaning that bn(A) ∩ fn(A) = ∅, bv(A) ∩ fv(A) = ∅, and also
that any name and variable is bound at most once in A. Note that the only free variables are
introduced by active substitutions (the x in {M/x}). Lastly, in an extended process, we require
that there is at most one substitution for each variable. An evaluation context is an extended
process with a hole instead of an extended process.

Extended processes built up from the null process, active substitutions using parallel com-
position and restriction are called frames (extending the notion of frame introduced in Sec-
tion 2.1.2). Given an extended process A we denote by φ(A) the frame obtained by replacing
any embedded plain processes in it with 0.

Example 2.12 Consider the following process:

A = new s, k1.(out(c, a) ‖ {
senc(s,k1)/x} ‖ new k2.out(c, senc(s, k2))).

We have that φ(A) = new s, k1.(0 ‖ {
senc(s,k1)/x} ‖ new k2.0).

2.2.2 Operational Semantics

To formally define the operational semantics of our calculus, we have to introduce three relations,
namely structural equivalence, internal reduction, and labelled transition.



2.2. PROTOCOLS 21

Structural Equivalence. Informally, two processes are structurally equivalent if they model
the same thing, even if the grammar permits different encodings. For example, to describe a
pair of processes PA and PB running in parallel, we have to write either PA ‖ PB , or PB ‖ PA.
These two processes are said to be structurally equivalent. More formally, structural equivalence
is the smallest equivalence relation closed by application of evaluation contexts and such that:

Par-0 A ‖ 0 ≡ A
Par-C A ‖ B ≡ B ‖ A
Par-A (A ‖ B) ‖ C ≡ A ‖ (B ‖ C)

New-Par A ‖ new n.B ≡ new n.(A ‖ B) n 6∈ fn(A)
New-C new n1.new n2.A ≡ new n2.new n1.A

Note that the side condition of the rule New-Par is always true on processes that are name
and variable distinct. Using structural equivalence, every extended process A can be rewritten
to consist of a substitution and a plain process with some restricted names, i.e.

A ≡ new n.({M1/x1
} ‖ . . . ‖ {Mk/xk

} ‖ P ).

In particular, any frame can be rewritten as new n.σ matching the notion of frame introduced in
Section 2.1.2. We note that unlike in the original applied pi calculus, active substitutions cannot
“interact” with the extended processes. As we will see in the following, active substitutions
record the outputs of a process to the environment. The notion of frames will be particularly
useful to define equivalence based security properties such as resistance against guessing attacks
and privacy type properties.

Internal Reduction. A process can be executed without contact with its environment, e.g.
execution of conditionals, or internal communications between processes in parallel. Formally,
internal reduction is the smallest relation on processes closed under structural equivalence and
application of evaluation contexts such that:

Repl !P
τ
−→ P ′ ‖ !P where P ′ is a fresh renaming of P

Then if M = N then P else Q
τ
−→ P where M↓ = N↓ and M↓ is a message

Else if M = N then P else Q
τ
−→ Q where M↓ 6= N↓ and M↓, N↓ are messages

Comm out(c,M1).P1 ‖ in(c,M2).P2
τ
−→ P1 ‖ P2θ where θ is such that

Dom(θ) = fv(M2), M2θ↓ = M1↓, and M1↓ is a message.

We write →∗ for the reflexive and transitive closure of
τ
−→. Note that, in some situations, a

process of the form if M = N then P else Q may block. This happens when M↓ (resp. N↓)
contains some destructors.

Labelled Transition. Communications are synchronous, but (as long as there is no private
channel) we can assume that they occur with the environment. We sketch here a labelled
transition semantics. The semantics given previously allow us to reason about protocols with
an adversary represented by a context. In order to prove that security properties hold for
all adversaries, quantification over all contexts is typically required, which can be difficult in
practise. The labelled semantics aim to eliminate universal quantification of the context. We
have two main rules:

In in(c, x).P
in(c,M)
−−−−→ℓ P{

M/x} where M is a message

Out out(c,M).P
out(c,M↓)
−−−−−−→ℓ P ‖ {

M↓/x} where x is a fresh variable and M↓ is a message



22 CHAPTER 2. A SMALL PROCESS CALCULUS

The labelled operational semantics is closed by structural equivalence and under some eval-
uation contexts. Actually, we have that:

A ≡ A′ A′
α
−→ℓ B

′ B′ ≡ B

A
α
−→ℓ B

A
α
−→ℓ B

C[A]
α
−→ℓ C[B]

where C is an evaluation context, and in case of an input, i.e. α = in(c,M), we have that
φ(C[A]) ⊢R M .

We write →ℓ to denote
τ
−→ ∪

α
−→ℓ and →

∗
ℓ to denote the reflexive and transitive closure of →ℓ.

Example 2.13 Going back to the handshake protocol described in Example 2.6, the derivation
described below represents a normal execution of the protocol. For simplicity of this example we
suppose that x 6∈ fv(P ).

new w.(PA(w) ‖ PB(w))
out(c,senc(n,w))
−−−−−−−−−−→ℓ new w,n.(PB(w) ‖ {

senc(n,w)/x1
} ‖ in(c, x). if sdec(x,w) = f(n) then P )

in(c,senc(n,w))
−−−−−−−−−→ℓ new w,n.(out(c,M) ‖ {senc(n,w)/x1

} ‖ in(c, x). if sdec(x,w) = f(n) then P )
out(c,M↓)
−−−−−−→ℓ new w,n.({senc(n,w)/x1

} ‖ {M↓/x2
} ‖ in(c, x). if sdec(x,w) = f(n) then P )

in(c,senc(f(n),w))
−−−−−−−−−−→ℓ new w,n.({senc(n,w)/x1

} ‖ {M↓/x2
} ‖ if sdec(senc(f(n), w), w) = f(n) then P )

τ
−→ new w,n.({senc(n,w)/x1

} ‖ {M↓/x2
} ‖ P )

where M = senc(f(sdec(senc(n,w), w)), w) →Rsenc senc(f(n), w).

Example 2.14 Continuing Example 2.7 we develop some transitions from

P1 = (new Na. PA(a, d)) ‖ (new Nb. PB(a, b)) ‖ out(c, sk(d))

For convenience, the names Na and Nb are pushed out. We obtain another process that is
structurally equivalent.
Case 1: The process PA may move first, yielding

P1
out(c,aenc(〈a,Na〉,pk(d)))
−−−−−−−−−−−−−−−→ℓ new Na.new Nb. ( {

aenc(〈a,Na〉,pk(d))/x1
}

‖ (in(c, aenc(〈Na, x〉, pk(a))). out(c, aenc(x, pk(b)))
‖ PB(a, b)
‖ out(c, sk(d)) )

Case 2: The process PB may also move first, and the resulting process depends on an input M1

such that new Na, Nb.(σ ⊢ aenc(〈a,M1〉, pk(b))) where Dom(σ) = ∅.

P1
in(c,M1)
−−−−−→ℓ= new Na, new Nb. ( PA(a, d)

‖ out(c, aenc(〈M1, Nb〉, pk(a))).in(c, aenc(Nb, pk(b)))
‖ out(c, sk(d)) )

Case 3: The last process may also move first, yielding

P1
out(c,sk(d))
−−−−−−−→ℓ new Na, new Nb. ( {

sk(d)/x1
} ‖ PA(a, d) ‖ PB(a, b) )

From the resulting processes, there are again several possible transitions. We do not continue
here the full transition sequence, which is too large to be displayed.

In the above example, we see that the transition system might actually be infinite. Indeed,
the term M1 is an arbitrary message that satisfies some deducibility conditions. Such deducibil-
ity conditions can be simplified (and decided). This will be the subject of Chapter 3 on bounded
process verification.



2.3. SECURITY PROPERTIES 23

2.3 Security Properties

This section presents mainly through examples how to formalise definitions of the most standard
security properties. To prove that security properties hold for all adversaries, quantification over
all contexts is required. However, in order to consider realistic adversary, we have to consider
processes that are built using public function symbols only and we have to ensure that these
processes are executable.

In practise, it may be difficult to reason with the quantification over all contexts. The
labelled transition semantics aim to eliminate universal quantification of the context and is
easier to manipulate. In this section, we rely on this semantics. Since our small process calculus
does not allow us to model private channels, we do not have to consider the rule Comm. The
attacker controls the entire network and can eavesdrop, block, intercept, and inject messages.

2.3.1 Secrecy

Intuitively, a protocol preserves the secrecy of some message M if an adversary cannot obtain M
by constructing it from the outputs of the protocol. We can formalise the adversary as a
process running in parallel with the protocol, that after constructing M outputs it on a public
channel. The adversary process does not have any of the secrets of the protocol. As explained
in introduction of this section, another possibility is to rely on the labelled semantics and to
simply ask that in any reachable extended process, M can not be deduced from the frame.
Below, you illustrate this property through several examples based on the Needham-Schroeder
protocol.

Example 2.15 (Scenario 1) Consider again the following process defined in Example 2.7 :

P1 = (new Na. PA(a, d)) ‖ (new Nb. PB(a, b)) ‖ out(c, sk(d)).

We typically wish to ensure the secrecy of the nonce Nb. For this, we have to show that, for any
extended process B such that P1 →

∗
ℓ B, we have that φ(B) 6⊢ Nb. Actually, this secrecy property

does not hold because of the attack described in Chapter 1. Note that, in this scenario, it is not
reasonable to require the secrecy of Na since Na is generated by an honest agent for a dishonest
one.

We may also want to express the secrecy of the nonce Na received by PB(a, b). This means
that we want that the value of y (this is the variable that represents the nonce Na in the process
PB(a, b) is not known by the attacker in any possible executions. For this, we have to show that
for each process B such that P1 →

∗
ℓ B and in which the variable y has been instantiated by some

message M , we have that φ(B) 6⊢M .

Example 2.16 (Scenario 2) Consider now

P2 = (new Na. in(c, xb). PA(a, xb)) ‖ (new Nb. in(c, xa). PB(xa, b)) ‖ out(c, sk(d))

In such a situation, neither Na nor Nb can be required to remain secret: this depends on the
inputs xa and xb. In this case, to express the secrecy of Nb, we can ask that for each process B
such that P1 →

∗
ℓ B and in which the variable xa has been instantiated by an honest agent ( i.e.

not d), we have that φ(B) 6⊢ Nb.

To express secrecy of a nonce in the scope of a replication, we need extra material. Consider
the following scenario

P3 =!(new Na. in(c, xb). PA(a, xb)) ‖ !(new Nb. in(c, xa). PB(xa, b)) ‖ out(c, sk(d)).



24 CHAPTER 2. A SMALL PROCESS CALCULUS

Intuitively, we wish that, in any copy of the process, in which xb 6= d, then Na is secret. Be
careful that xb is actually a local variable of the process and should actually be renamed in each
copy. Similarly, Na and Nb are renamed in each instance.

There are again several ways of specifying the desired properties For instance, we may split
the processes in those for which xb is bound to a honest party and those in which xb = d and
then forget about the different copies in the specification. We may also enrich the calculus with
status events. These status events are also very useful to express correspondence properties
explained in the following section.

2.3.2 Correspondence Properties

Correspondence properties are used to capture relationships between events that can be ex-
pressed in the form ”if an event e has been executed then event e has been previously executed.”
Moreover, these events may contain arguments. This will allows one to express agreement prop-
erties. To reason with correspondence properties, we have to annotate processes with events.
These events will mark the different control points reached by the protocol.

We say that an extended process A has reached an event event(M1, . . . ,Mn) if, and only if,
there exist an evaluation context C, a plain process P and an extended process B such that
A ≡ C[event(M1, . . . ,Mn).P ‖ B].

Aliveness. This property is the weakest form of authentication in Lowe’s hierarchy [?].

A protocol satisfies aliveness if, whenever an honest agent completes a run of the
protocol, apparently with another honest agent B, then B has previously run the
protocol.

Note that B may not necessarily believe that he was running the protocol with A. Also, the
agent B may not have run the protocol recently. The aliveness of principal B to initiator A can
be specified in our formalism. First, we have to consider two status events start and end. We
insert them at the beginning and at the end of each role respectively. For instance, in PA(a, d),
we insert start(a) at the beginning and end(a, d) at the end. This expresses the fact that the
role is executed by a with d. We insert start(b) and end(b, a) in PB(a, b). Now, the aliveness
property from the point of view of b can be specified as follows:

For any trace execution such that P1 →ℓ A1 →ℓ . . . →ℓ An such that An has reached
end(M1,M2) with M1 6= d and M2 6= d, there exists i such that Ai has reached start(M2). This
corresponds to the fact that the property “if end(x, y) has been executed then start(y) has been
previously executed when x and y are both honest agents.” For the Needham-Schroeder public
key protocol (e.g. Scenario 1) the aliveness property is satisfied.

Weak agreement. Weak agreement is slightly stronger than aliveness.

A protocol guarantees weak agreement if, whenever an honest agent completes a
run of the protocol, apparently with another honest agent B, then B has previously
been running the protocol, apparently with A.

The weak agreement property can also been expressed in our formalism. We have again to
add status events start and end in our specification. However, the predicate start will have also
two parameters: start(a, d) expresses the fact that a has started a session with d. Now, the
weak agreement property can be specified as follows:

For any trace execution such that P1 →ℓ A1 →ℓ . . . →ℓ An such that An has reached
end(M1,M2) with M1 6= d and M2 6= d, there exists i such that Ai has reached start(M2,M1).



2.3. SECURITY PROPERTIES 25

For the Needham-Schroeder public key protocol, it is well-known that this property is not
satisfied: b can complete a session apparently with a whereas a has never started a session
with b. The property is already falsified on Scenario 1.

We can also express some refinements of these properties by distinguishing the case where
an agent starts a session as an initiator or as a responder. Moreover, we can also express the fact
that the two agents agreed on some message M , e.g. the value of a nonce or a key. This allows
us to express the non-injective agreement security property. There are also stronger agreement
properties, that would require the mapping from end to start to be injective.

2.3.3 Guessing Attacks

Guessing attacks are a kind of dictionary attack in which the password is supposed to be weak,
i.e. part of a dictionary for which a brute force attack is feasible. A guessing attack works in
two phases. In a first phase the attacker eavesdrops and interacts with one or several protocol
sessions. In a second offline phase, the attacker tries each of the possible passwords on the
data collected during the first phase. To resist against a guessing attack, the protocol must be
designed such that the attacker cannot discover on the basis of the data collected whether his
current guess of the password is the actual password or not.

The idea behind the definition is the following. Suppose the frame φ represents the infor-
mation gained by the attacker by eavesdropping one or more sessions and let w be the weak
password. Then, we can represent resistance against guessing attacks by checking whether the
attacker can distinguish a situation in which he guesses the correct password w and a situation
in which he guesses an incorrect one, say w′. We model these two situations by adding {w/x}
(resp. {w

′
/x}) to the frame. We use static equivalence to capture the notion of indistinguisha-

bility. This definition is due to M. Baudet [?], inspired from the one of [?]. In our definition,
we allow multiple shared secrets, and write w for a sequence of such secrets.

Definition 2.3 Let φ ≡ new w.φ′ be a frame. We say that the frame φ is resistant to guessing
attacks against w if

new w.(φ′ ‖ {w/x}) ∼ new w′.new w.(φ′ ‖ {w
′
/x})

where w′ is a sequence of fresh names and x a sequence of variables such that x ∩ Dom(φ) = ∅.

Note that this definition is general w.r.t. to the equational theory and the number of
guessable data items. Now, we can define what it means for a protocol to be resistant against
guessing attacks.

Definition 2.4 Let A be a process and w ⊆ bn(A). We say that A is resistant to guessing
attacks against w if, for every process B such that A →∗ℓ B, we have that the frame φ(B) is
resistant to guessing attacks against w.

Example 2.17 Consider the handshake protocol described in Example 2.6. An interesting prob-
lem arises if the shared key w is a weak secret, i.e. vulnerable to brute-force off-line testing. In
such a case, the protocol has a guessing attack against w. Indeed, we have that

new w.(PA(w) ‖ PB(w))→
∗
ℓ D

with φ(D) = new w.new n.({senc(n,w)/x1
} ‖ {senc(f(n),w)/x2

}). The frame φ(D) is not resistant

to guessing attacks against w. The test f(sdec(x1, x))
?
= sdec(x2, x) allows us to distinguish the

two associated frames:

• new w.new n.({senc(n,w)/x1
} ‖ {senc(f(n),w)/x2

} ‖ {w/x}), and



26 CHAPTER 2. A SMALL PROCESS CALCULUS

• new w′.new w.new n.({senc(n,w)/x1
} ‖ {senc(f(n),w)/x2

} ‖ {w
′
/x}).

Hence, the process new w.(PA ‖ PB) is not resistant to guessing attacks against w.

2.3.4 Equivalence Properties

The notion of indistinguishability is a powerful concept which allows us to reason about complex
properties that cannot be expressed as secrecy or correspondence properties. Intuitively, two
processes are said to be equivalent if an observer has no way to tell them apart. While static
equivalence models indistinguishability of sequences of terms, it is also possible to lift it to an
observational equivalence, i.e. indistinguishability of processes that interact with an arbitrary
adversary. We define this observational equivalence by the means of a labelled bisimulation. The
processes may perform different computations, but they have to look the same to an external
observer. This notion allows us to define strong notions of secrecy and also privacy properties.

Before we formalise this notion of equivalence, we have to adapt the labelled semantics
provided in Section 2.2.2. Indeed, we will now assume that the attacker can observe the inter-
actions with the environment and we have to capture the fact that the attacker performs the
same experiment on both processes. Intuitively, we want that, for any experiment s (sequence

of labels) such that A
s
−→
∗

ℓ A′, there exists B′ such that B
s
−→
∗

ℓ B′ and φ(A′) ∼ φ(B′). However,
our labels are too fine grained.

Let A = new n.out(c, n) and B = new n, k.out(c, senc(n, k)). The only transitions that can
be performed by A and B are as follows:

• A
out(c,n)
−−−−−→ℓ new n.{n/x}, and

• B
out(c,senc(n,k))
−−−−−−−−−→ℓ new n, k.{senc(n,k)/x}.

However, in reality an attacker has no way to distinguish these two processes since he will not
see any difference between a fresh nonce and an encryption (he does not know the key). The
same situation also occurs with the two processes A = new n.in(c, y) and B = new n′.in(c, y).

We have that A
in(c,n′)
−−−−→ 0 and B can not mimic this step. B is not allowed to use the name n′

since it is restricted. Our labels contains too much information. We modify the In and Out
rules as follows:

In in(c, x).P
in(c,M)
−−−−→ℓ P{

M/x} where M is a message

Out out(c,M).P
out(c,x)
−−−−−→ℓ P ‖ {

M↓/x} where x is a fresh variable and M↓ is a message

The labelled operational semantics is closed by structural equivalence and under some eval-
uation contexts. Actually, we have that:

A ≡ A′ A′
α
−→ℓ B

′ B′ ≡ B

A
α
−→ℓ B

A
α
−→ℓ B

C[A]
α′

−→ℓ C[B]

where C is an evaluation context, and in case of an input, i.e. α = in(c,M), we have that
φ(C[A]) ⊢R M and α′ = in(c,M ′) where M ′ is a recipe witnessing the fact that φ(C[A]) ⊢R M .

Moreover, we now consider that structural equivalence is closed under α-renaming.

Example 2.18 Going back to the handshake protocol described in Example 2.6, the derivation
described below represents a normal execution of the protocol in the new labelled semantics.



2.3. SECURITY PROPERTIES 27

new w.(PA(w) ‖ PB(w))
out(c,x1)
−−−−−→ℓ new w,n.(PB(w) ‖ {

senc(n,w)/x1
} ‖ in(c, x). if sdec(x,w) = f(n) then P )

in(c,x1)
−−−−→ℓ new w,n.(out(c,M) ‖ {senc(n,w)/x1

} ‖ in(c, x). if sdec(x,w) = f(n) then P )
out(c,x2)
−−−−−→ℓ new w,n.({senc(n,w)/x1

} ‖ {M↓/x2
} ‖ in(c, x). if sdec(x,w) = f(n) then P )

in(c,x2)
−−−−→ℓ new w,n.({senc(n,w)/x1

} ‖ {M↓/x2
} ‖ if sdec(senc(f(n), w), w) = f(n) then P )

τ
−→ new w,n.({senc(n,w)/x1

} ‖ {M↓/x2
} ‖ P )

where M = senc(f(sdec(senc(n,w), w)), w) →Rsenc senc(f(n), w).

For every closed extended process A we define its set of traces, each trace consisting in a
sequence of visible actions (i.e. different from τ) together with the sequence of sent messages:

trace(A) = {(s, φ(B)) | A
s
−→ℓ B for some B}.

Note that, in the new versions of our labelled semantics, the sent messages are exclusively
stored in the frame and not in the sequence s (the outputs are made by “reference”).

Definition 2.5 (trace equivalence ≈t) Let A and B be two closed extended processes, A ⊑t

B if for every (s, ϕ) ∈ trace(A), there exists (s′, ϕ′) ∈ trace(B) such that s = s′ and ϕ ∼ ϕ′. The
extended processes A and B are trace equivalent, denoted by A ≈t B, if A ⊑t B and B ⊑t A.

Example 2.19 Consider the equational theory described in Example 2.1. We have that:

new s, k.out(c, senc(s, k)).in(c, x). if x = s then out(c, a) ≈t new s, k.out(c, senc(s, k)).in(c, x)

new s.out(c, senc(s, k)).in(c, x). if x = s then out(c, a) 6≈t new s.out(c, senc(s, k)).in(c, x)

out(c, a).out(c, a) ≈t out(c, a) ‖ out(c, a)

out(c1, a).out(c2, a) 6≈t out(c1, a) ‖ out(c2, a)

out(c, a); out(c, b) 6≈t out(c, a) ‖ out(c, b)

Now, we develop an example to illustrate how this notion of equivalence can be used to
formalise anonymity.

Example 2.20 We consider a slightly simplified version of a protocol given in [?] designed for
transmitting a secret without revealing its identity to other participants. In this protocol, A is
willing to engage in communication with B and wants to reveal its identity to B. However,
A does not want to compromise its privacy by revealing its identity or the identity of B more
broadly. The participants A and B proceed as follows:

A→ B : aenc(〈Na, pk(A)〉, pk(B))

B → A : aenc(〈Na, 〈Nb, pk(B)〉〉, pk(A))

First A sends to B a nonce Na and its public key encrypted with the public key of B. If the
message is of the expected form then B sends to A the nonce Na, a freshly generated nonce Nb

and its public key, all of this being encrypted with the public key of A. Otherwise, B sends out
a “decoy” message: aenc(Nb, pk(B)). This message should basically look like B’s other message
from the point of view of an outsider. This is important since the protocol is supposed to protect
the identity of the participants.

A session of role A played by agent a with b can be modelled by the following basic process
where M = dec(x, sk(a)).



28 CHAPTER 2. A SMALL PROCESS CALCULUS

A(a, b) =̂
out(c, aenc(〈Na, pk(a)〉, pk(b))).
in(c, x).
if 〈proj1(M), proj2(proj2(M))〉 = 〈Na, pk(b)〉 then 0

Similarly, a session of role B played by agent b with a can be modelled by the basic pro-
cess B(b, a) where N = dec(y, sk(b)).

B(b, a) =̂ in(c, y).
if proj2(N) = pk(a) then out(c, aenc(〈proj1(N), 〈Nb, pk(b)〉〉, pk(a)))

else out(c, aenc(Nb, pk(b))).

Intuitively, this protocol preserves anonymity if an attacker cannot distinguish whether b is
willing to talk to a (represented by the process B(b, a)) or willing to talk to a′ (represented by
the process B(b, a′)), provided a, a′ and b are honest participants. For illustration purposes, we
also consider the process B′(b, a) obtained from B(b, a) by replacing the else branch by else 0.
We will see that the “decoy” message plays a crucial role to ensure privacy.

We can ask whether the two following processes Pex and P ′ex are in equivalence:

• Pex = new Na.new Nb.[A(a, b) ‖ B(b, a) ‖ K(a, a′, b) ], and

• P ′ex = new Na.new Nb.[A(a
′, b) ‖ B(b, a′) ‖ K(a, a′, b) ].

where K(a, a′, b) = out(c, pk(a)).out(c, pk(a′)).out(c, pk(b)).
Actually, the ’decoy’ message is crucial to have this equivalence, and thus anonymity. We

have that Pex ≈t P
′
ex whereas:

new Na, Nb.[A(a, b) ‖ B
′(b, a) ‖ K(a, a′, b) ] 6≈t new Na, Nb.[A(a

′, b) ‖ B′(b, a′) ‖ K(a, a′, b) ].

Another notion of equivalence that has been quite well-studied is the notion of observa-
tionally equivalent. However, proofs of observational equivalences are difficult because of the
universal quantification over all contexts. In the context of the applied pi calculus, it has been
shown that observational equivalence coincides with labelled bisimilarity [?]. This should also
hold in the calculus presented here.

Definition 2.6 (labelled bisimilarity ≈ℓ) Labeled bisimilarity is the largest symmetric re-
lation R on closed extended processes such that A R B implies

1. φ(A) ∼ φ(B),

2. if A
τ
−→ A′, then B →∗ B′ and A′ R B′ for some B′,

3. if A
α
−→ℓ A

′ then B →∗
α
−→ℓ→

∗ B′ and A′ R B′ for some B′.

It is easy to see that observational equivalence (or labelled bisimilarity) implies trace equiv-
alence while the converse is false in general (see Example 2.21).

Lemma 2.1 Let A and B be two extended processes: A ≈ℓ B implies A ≈t B.

Example 2.21 For convenience we introduce for this example a non-deterministic choice op-
erator + and extend the internal reduction by the rule A + B → A and structural equivalence
by associativity and commutativity of +. Consider the two following processes:

A = (out(c, a).out(c, b1)) + (out(c, a).out(c, b2))

B = out(c, a).(out(c, b1) + out(c, b2))

We have that A ≈t B whereas A 6≈ℓ B. Intuitively, after B’s first move, B still has the
choice of emitting b1 or b2, while A, trying to follow B’s first move, is forced to choose between
two states from which she can only emit one of the two.



2.4. FURTHER READINGS 29

The notion of labelled bisimilarity is quite strong but is also used to express privacy type
properties. It is more or less a matter of taste to define anonymity w.r.t. trace equivalence or
w.r.t. the stronger version with labelled bisimilarity.

2.4 Further Readings

The calculus presented in this chapter is very close to the applied pi calculus [?]. A presentation
of this calculus in a tutorial style is also available [?]. Another calculus that is very close to the
applied pi calculus and for which there exists a tutorial presentation is the spi-calculus [?].

2.5 Exercises

Exercice 5 (⋆)
Consider the signature described in Example 2.1. Let

φ = new s, k1.{
senc(s,〈k1,k2〉)/x1

, senc(k1,k2)/x2
}.

1. Is s deducible fom φ?

2. Could you enumerate the subterms of φ? Among these subterms, give those that are
deducible.

3. Give a term that is deducible from φ and that is not a subterm.

Exercice 6 (⋆)
Give a reasonable formalisation of the following protocol:

A→ B : 〈A, {K}pk(B)〉
B → A : 〈B, {K}pk(A)〉

First, A generates a fresh key K and sends it encrypted with the public key of B. Only B
will be able to decrypt this message. In this way, B learns K and B also knows that this message
comes from A as indicated in the first part of the message he received. Hence, B answers to A
by sending again the key, this time encrypted with the public key of A.

Exercice 7 (⋆)
Consider the formalisation of the Needham-Schroeder protocol as described in Example 2.7,
and the following scenario (see Example 2.15).

(new Na. PA(a, d)) ‖ (new Nb. PB(a, b)) ‖ out(c, sk(d)).

Give the complete transition sequence that yields the attack on the secrecy of the nonce Nb.

Exercice 8 (⋆⋆)
Give a reasonable formalisation of the handshake protocol without using the conditional (if then else).
Give a trace that exists in the model presented in 2.6 and that does not exist in this new for-
malisation.



30 CHAPTER 2. A SMALL PROCESS CALCULUS



Part II

Verification in the Symbolic Setting

31





Chapter 3

Deducibility Constraints

In this chapter, we present the NP-complete decision procedure for a bounded number of sessions
by H. Comon-Lundh et al. [?]. In this setting (i.e. finite number of sessions), deducibility
constraint systems have become the standard model for verifying security properties, with a
special focus on secrecy. Starting with a paper by J. Millen and V. Shmatikov [?], many results
(e.g. [?, ?]) have been obtained within this framework.

Here, we consider only symmetric/asymmetric encryptions, and pairing. We show that any
deducibility constraint system can be transformed in (possibly several) much simpler deducibil-
ity constraint systems that are called solved forms, preserving all solutions of the original system,
and not only its satisfiability. In other words, the deducibility constraint system represents in
a symbolic way all the possible sequences of messages that are produced, following the protocol
rules, whatever are the intruder’s actions. This set of symbolic traces is infinite in general.
Solved forms are a simple (and finite) representation of such traces. The procedure preserves all
solutions. Hence, we can represent for instance, all attacks on the secrecy and not only decide if
there exists one. Moreover, presenting the decision procedure using a small set of simplification
rules yields more flexibility for further extensions and modifications.

3.1 Intruder Deduction problem

3.1.1 Preliminaries

An inference rule is a rule of the form
u1 . . . un

u0
where u0, u1, . . . , un are terms (with

variables). An inference system is a set of inference rules.

Example 3.1 The following inference system IDY represents the deduction capabilities of an
attacker. We consider the signature F = {senc, aenc, 〈 , 〉, sk} and the underlying rewriting
system R is empty. There are several possible ways of defining the intruder capabilities, we
choose here the “implicit destructors” formulation, in which the destructors do not appear. This
leads to an inference system that is slightly different from the one proposed in Section 2.1.3.
For sake of simplicity, we make a confusion between the identity of an agent and his public key.

x y
P

〈x, y〉

x y
PKE

aenc(x, y)

x y
SE

senc(x, y)

〈x, y〉
Left

x

〈x, y〉
Right

y

aenc(x, y) sk(y)
PKD

x

senc(x, y) y
SD

x

The rules P, SE, and PKE are composition rules whereas the rules Left, Right, SD, and PKD

are decomposition rules.

33



34 CHAPTER 3. DEDUCIBILITY CONSTRAINTS

Definition 3.1 (proof) Let I be an inference system. A proof Π of T ⊢ u in I is a tree such
that:

• every leaf of Π is labelled with a term v such that v ∈ T ,

• for every node labelled with v0 having n sons labelled with v1, . . . , vn , there is an instance
of an inference rule with conclusion v0 and hypotheses v1, . . . , vn. We say that Π ends
with this instance if the node is the root of Π,

• the root is labelled with u.

We denote by Hyp(Π) the set of labels of the leaves of a proof Π and Conc(Π) is the label
of the root of Π. Steps(Π) is the set of labels of all nodes of Π. The size of a proof Π is the
number of nodes in it. A proof Π of T ⊢ u is minimal if it does not exist any proof Π′ of T ⊢ u
having a size strictly smaller than the size of Π.

Example 3.2 Let φ = new a, b, s. {〈senc(s,〈a,b〉),a〉/x1
, senc(b,a)/x2

}. We may ask whether s is
deducible from φ, i.e. does there exist a proof of 〈senc(s, 〈a, b〉), a〉, senc(b, a) ⊢ s. Such a proof
is given below:

〈senc(s, 〈a, b〉), a〉

senc(s, 〈a, b〉)

〈senc(s, 〈a, b〉), a〉

a

senc(b, a)

〈senc(s, 〈a, b〉), a〉

a

b

〈a, b〉

s

The problem whether an intruder can gain certain information s from a set of knowledge T ,
i.e. whether there is a proof of T ⊢ s is called the intruder deduction problem.

Intruder deduction problem (for a fixed inference system I)

INPUT: a finite set of terms T , and a term s (the secret).

OUTPUT: Does there exist a proof of T ⊢ s?

This definition is in-line with the concept of deduction introduced in Section 2.1.3. Here, we
do not explicitly rely on the concept of frame. Note that for deduction, the ordering in which
the messages have been sent is not relevant. Moreover, restriction on names are not necessary.
It is assumed that each name is restricted.

3.1.2 Decidability via Locality

To show that the intruder deduction problem is decidable (in PTIME) for an inference system I,
we use the notion of locality introduced by D. McAllester [?].

Definition 3.2 (locality) Let I be an inference system. The system I is local if whenever
T ⊢ u in I, there exists a proof Π of T ⊢ u such that Steps(Π) ⊆ st(T ∪ {u}).

Given an inference system I, to establish that the intruder deduction problem is decidable,
it is actually sufficient to prove that:

1. a locality result for the inference system I: checking the existence of a proof of T ⊢ u
amounts to checking the existence of a local proof that only contains subterms of u and T
(there is a polynomial number of subterms),



3.2. DEDUCIBILITY CONSTRAINTS 35

2. a one-step-deducibility result to ensure that we can test (in PTIME) whether a term is
deducible in one step from a set of terms by using an instance of one of the inference rules.
This result trivially holds for the inference system presented in Example 3.1.

Then, the existence of a local proof of T ⊢ u can be checked in polynomial time by saturation
of T with terms deducible in one-step. Thanks to locality, the number of iteration to obtain a
saturated set is bounded by the number of terms that can be involved in a local proof. This
yields a PTIME algorithm.

Lemma 3.1 (locality) Let T be a set of terms and u be a term. A minimal proof Π of T ⊢ u
only contains terms in st(T ∪ {u}), i.e. Steps(Π) ⊆ st(T ∪ {u}). Moreover, if Π is reduced to a
leaf or ends with a decomposition rule, then we have that Steps(Π) ⊆ st(T ).

Proof : Let Π be a minimal proof of T ⊢ u. We prove the result by induction on the size of
the proof Π.

Base case: In such a case, the proof Π is reduced to a leaf and we easily conclude.

Induction step: We have that:

Π =





Π1

u1 · · ·

Πn

un
R

u

We distinguish several cases depending on the last inference rule of Π.

• If R is a composition rule, then u1, . . . , un are subterms of u and we easily conclude by
relying on our induction hypothesis.

• If R is a projection rule (say proj1), then u1 = 〈u, v〉 for some v. In such a case, by
minimality of Π, we know that Π1 does not end with a composition rule. Hence, by
relying on our induction hypothesis, we have that Steps(Π1) ⊆ st(T ), and thus u1 ∈ st(T ).
Moreover, we have that u ∈ st(u1), and thus u ∈ st(T ). This allows us to conclude that
Steps(Π) ⊆ st(T ).

The cases where Π ends with a decryption rule (symmetric and asymmetric) can be done in
a similar way. �

Proposition 3.1 The intruder deduction problem is decidable in PTIME for IDY. Actually,
this problem is PTIME complete.

The PTIME-hardness can be proved by a reduction from HORNSAT.

The concept of locality has been used to establish decidability of several inference systems.
For instance, we may want to model digital signature, exclusive or operator, commutative
encryption, . . .

3.2 Deducibility constraints

Assume processes without replication. Then the transition system is finite in depth but might
be infinitely branching, as we saw in Example 2.14. The idea then is to represent in a simple
symbolic way the set of terms that satisfy the required conditions. This is what we formalise
now.



36 CHAPTER 3. DEDUCIBILITY CONSTRAINTS

Definition 3.3 A Deducibility constraint system is either ⊥ or a conjunction of deducibility
constraints of the form:

T1

?
⊢ u1 ∧ . . . ∧ Tn

?
⊢ un

in which T1, . . . , Tn are finite sets of terms, u1, . . . , un are terms. Moreover, we assume that the
constraints can be ordered in such a way that:

• monotonicity: ∅ 6= T1 ⊆ T2 · · · ⊆ Tn

• origination: for every i, we have that fv(Ti) ⊆ fv(u1, . . . , ui−1)

Intuitively, the sets Ti correspond to messages that have been sent on the network, while
u1, . . . , un are the messages that are expected by the processes, hence have to be constructed
by the environment. The first condition, called monotonicity reflects the fact that the set of
messages that have been sent on the network can only increase. In other words, the ordering
on the atomic deducibility constraints is a temporal ordering of actions. The second condition
(called origination) reflects the properties of our processes: variables that occur in a message
sent on the network must appear before in messages received from the network.

Definition 3.4 (Tx) Let C = T1

?
⊢ u1 ∧ . . . ∧ Tn

?
⊢ un be a deducibility constraint system

and x be a variable that occurs in C. Tx is the minimal set (w.r.t. inclusion) among the sets

T1, . . . , Tn such that T
?
⊢ u ∈ C and x ∈ fv(u).

Thanks to the monotonicity and the origination properties, for any x ∈ fv(C), the set Tx

exists and is uniquely defined.

Such constraint systems may be enriched with equations/disequations between terms or
other constraints, that correspond to the conditions in the process calculus. We consider (for
now) only these simple constraints.

Definition 3.5 (solution) Let I be an inference system. A substitution σ is a solution of a

deducibility constraint system C = T1

?
⊢ u1 ∧ . . . ∧ Tn

?
⊢ un if there exists a proof of Tiσ ⊢ uiσ in

I for every i ∈ {1, . . . , n}.

Example 3.3 Consider the constraints corresponding to one of the possible Needham-Schroeder
symbolic trace. We give explicitly the free names to the attacker and assume that all names that
are not explicitly given are (supposedly) secret:

C =̂





a, b, d, sk(d), aenc(〈a,Na〉, d)
?
⊢ aenc(〈a, x〉, b)

a, b, d, sk(d), aenc(〈a,Na〉, d), aenc(〈x,Nb〉, a)
?
⊢ aenc(〈Na, y〉, a)

The failure of the secrecy of Nb (for this scenario) is given by the additional constraint:

a, b, d, sk(d), aenc(〈a,Na〉, d), aenc(〈x,Nb〉, a), aenc(y, d)
?
⊢ Nb

A solution of C in IDY is σ = {x 7→ Na, y 7→ Nb}.

3.3 Decision Procedure

We describe here a non-deterministic simplification procedure. It can be simplified in many
respects, but we will see that the problem of deciding whether a constraint system has at least
one solution is NP-complete anyway (for the IDY inference system given in Example 3.1). Many
parts of this section, including the set of simplification rules, are borrowed from [?].



3.3. DECISION PROCEDURE 37

3.3.1 Simplification Rules

We prove that any deducibility constraint system can be transformed into simpler ones, called
solved. Such simplified constraints are then used to decide the security properties.

R1 C ∧ T
?
⊢ u  C if T ∪ {x | (T ′

?
⊢ x) ∈ C, T ′ ( T}⊢u

R2 C ∧ T
?
⊢ u  σ Cσ ∧ Tσ

?
⊢ uσ if t ∈ st(T ), σ = mgu(t, u), t 6= u

t, u not variables

R3 C ∧ T
?
⊢ u  σ Cσ ∧ Tσ

?
⊢ uσ if t1, t2 ∈ st(T ), σ = mgu(t1, t2), and t1 6= t2

R4 C ∧ T
?
⊢ u  ⊥ if fv(T ∪ {u}) = ∅ and T 6⊢ u

Rf C ∧ T
?
⊢ f(u, v)  C ∧ T

?
⊢ u ∧ T

?
⊢ v for f ∈ {〈 , 〉, senc, aenc}

Figure 3.1: Simplification rules.

All the rules are indexed by a substitution (when there is no index then the identity sub-
stitution is assumed). We write C  ∗σ C

′ if there are constraint systems C1, . . . , Cn such that
C  σ0

C1  σ1
. . .  σn C

′ and σ = σ0σ1 . . . σn. We denote by σ = mgu(u, v) a most general
unifier of u and v, such that fv(vσ, uσ) ⊆ fv(v, u).

A constraint system is called solved if it is different from ⊥ and if each of its constraints is of

the form T
?
⊢ x, where x is a variable. Note that the empty constraint system is solved. Solved

constraint systems are particularly simple since they always have a solution. Indeed, let T1 be
the smallest (w.r.t. inclusion) left-hand side of a constraint. From the definition of a constraint
system we have that T1 6= ∅ and has no variable. Then the substitution τ defined by xτ = t1

where t1 ∈ T1 for every variable x, is a solution since T ⊢ xθ for any constraint T
?
⊢ x of the

solved constraint system.

Given a constraint system C, we say that Ti is a minimal unsolved left-hand side of C if Ti

is a left-hand side of C and for all T
?
⊢ u ∈ C such that T ( Ti, we have that u is a variable.

Lemma 3.2 The simplification rules transform a deducibility constraint system into a deducibil-
ity constraint system.

Theorem 3.1 Let C be an unsolved constraint system.

1. (Termination) There is no infinite chain C  σ1
C1 . . . σn Cn.

2. (Correctness) If C  ∗σ C
′ for some constraint system C′ and some substitution σ and if θ

is a solution of C′ then σθ is a solution of C.

3. (Completeness) If θ is a solution of C, then there exist a solved constraint system C′ and
substitutions σ, θ′ such that θ = σθ′, C  ∗σ C

′ and θ′ is a solution of C′.

Termination and correctness are quite easy to show. For termination, it is easy to see
that the number of variables is non-increasing. Furthermore, this number strictly decreases by
the rules R2 and R3. Any other rule strictly reduces the total size of the right hand sides of
the constraint (here, the “size” is the number of symbols in the term). Completeness is more
involved and its proof is detailed in Section 3.3.2. Getting a polynomial bound on the length
of simplification sequences requires to consider a particular strategy.



38 CHAPTER 3. DEDUCIBILITY CONSTRAINTS

3.3.2 Completeness

First, we show that proofs considered in solutions of constraints can be narrowed to so-called
simple proofs. Let T1 ⊆ T2 ⊆ . . . ⊆ Tn . We say that a proof Π of Ti ⊢ u is left minimal if,
whenever there is a proof of Tj ⊢ u for some j < i, then Π is also a proof of Tj ⊢ u. In other
words, the left-minimal proofs are those that can be performed in a minimal Tj . We say that a
proof is simple if all its subproofs are left minimal and there is no repeated label on any branch.
Note that a subproof of a simple proof is simple.

Lemma 3.3 Let T1 ⊆ T2 ⊆ . . . ⊆ Tn be a sequence of sets of terms and u be a term such that
Ti ⊢ u. There exists a simple proof Π of Ti ⊢ u.

Proof : Let i be a minimal index for which there is a proof of Ti ⊢ u. Thanks to Lemma 3.1,
there is a local proof Π0 of Ti ⊢ u. We prove the lemma by induction on the size of Π0.

Base case: Π0 is reduced to a leaf. In such a case, Π0 is a simple proof.

Induction step: Consider the last rule in the proof of u:

Π0 =





Π1

u1
· · ·

Πn

un
R

u

For every j = 1, ..., n, we have that Πj is a proof of Ti ⊢ uj . By induction hypothesis, there are
simple proofs Π′j of uj . If u appears as a node in some of these proofs, let Π be the corresponding
subproof and we get the desired result. Otherwise, let

Π =





Π′1

u1
· · ·

Π′n

un
R

u

The proof Π is a simple proof of u. �

Lemma 3.4 Let C be an unsolved constraint system, θ be a solution of C and Ti

?
⊢ ui be a

minimal unsolved constraint of C. Let u be a term. If there is a simple proof of Tiθ ⊢ u having
the last rule an axiom or a decomposition then there is t ∈ st(Ti)r X such that tθ = u.

Proof : Let Π be a simple proof of Tiθ ⊢ u such that its last rule is an axiom or a decomposition.
Let j be the minimal indice such that Tjθ ⊢ u. Note that j ≤ i and by definition of a simple
proof, we have that Π is also a simple proof of Tjθ ⊢ u.

• The last rule is an axiom. Then u ∈ Tjθ. There is t ∈ Tj (thus t ∈ st(Tj)) such that

tθ = u. If t is a variable then Tt

?
⊢ t is a constraint in C with Tt ( Tj (see the definition

of a constraint system). Hence Ttθ ⊢ tθ, that is Ttθ ⊢ u, which contradicts the minimality
of j. Thus, as required, t is not a variable.

• The last rule is a decomposition. Suppose that it is a symmetric decryption. That is,
there is w such that Tjθ ⊢ senc(u,w), and Tjθ ⊢ w. By simplicity of the proof, the last rule
applied when obtaining senc(u,w) is an axiom or a decomposition, otherwise the same
node would appear twice. Then, applying the induction hypothesis we have that there is
t ∈ st(Tj) r X such that tθ = senc(u,w). It follows that t = senc(t′, t′′) with t′θ = u. If
t′ is a variable then Tt′θ ⊢ t′θ. That is Tt′θ ⊢ u, which again contradicts the minimality
of j. Hence t′ is not variable, as required.



3.3. DECISION PROCEDURE 39

For the other decomposition rules the same reasoning holds. �

Lemma 3.5 Let C = T0

?
⊢ x0, . . . , Ti−1

?
⊢ xi−1, Ti

?
⊢ u, . . . be a constraint system and σ be a

solution of C such that

1. Ti does not contain two distinct subterms t1, t2 with t1σ = t2σ,

2. u is a non-variable subterm of Ti.

Then T ′i ⊢ u, where T ′i = Ti ∪ {x | (T
?
⊢ x) ∈ C, T ( Ti}.

Proof : Let j be minimal such that Tjσ ⊢ uσ. Thus j ≤ i and Tj ⊆ Ti. Consider a simple
proof Π of Tjσ ⊢ uσ. We reason by induction on the depth of Π.

Base case: Π is reduced to a leaf. Then there is t ∈ Tj such that tσ = uσ. By hypothesis 1, we
deduce that t = u. Hence, we have that u ∈ Tj and thus T ′i ⊢ u, as required.

Induction step: We analyse the different cases, depending on the last rule R of Π:

• Case R is a composition rule. Assume for example that R = SE. In such a case, we have
that:

Π =





Π1

v1

Π2

v2

senc(v1, v2)

with uσ = senc(v1, v2). Since u is not a variable, u = senc(u1, u2), u1σ = v1, and u2σ = v2.
If u1 (resp. u2) is a variable then u1 (resp. u2) belongs to fv(Ti) since u ∈ st(Ti). Again,
this implies u1 ∈ T ′i (resp. u2 ∈ T ′i ). Otherwise, u1 (resp. u2) is not a variable. Then, by
induction hypothesis, T ′i ⊢ u1 (resp. T ′i ⊢ u2). Hence in both cases we have that T ′i ⊢ u1
and T ′i ⊢ u2. This allows us to conclude that T ′i ⊢ u.

• Case R = SD. In such a case, there is w such that Tjσ ⊢ senc(uσ,w), and Tjσ ⊢ w:

Π =





Π1

senc(uσ,w)

Π2

w

uσ

By simplicity, the last rule of the proof Π1 is a decomposition or an axiom. By Lemma 3.4,
there is t ∈ st(Tj)rX such that tσ = senc(uσ,w). Let t = senc(t1, t2) with t1σ = uσ, and
t2σ = w. By induction hypothesis, T ′i ⊢ t. Since t1σ = uσ, by hypothesis 1, we have that
t1 = u.

Now, if t2 is a variable, and since t2 ∈ fv(Ti), we have that Tt2 ( Ti and thus t2 ∈ T ′i . If
t2 is not a variable, then, from Tjσ ⊢ t2σ and by induction hypothesis, T ′i ⊢ t2. So, in any
case, T ′i ⊢ t2.

Hence, we have both that T ′i ⊢ senc(u, t2) and T ′i ⊢ t2, from which we conclude that T ′i ⊢ u,
by symmetric decryption.

• Case R = PKD. In such a case, there is w such that Tjσ ⊢ sk(w) and Tjσ ⊢ aenc(uσ,w).
As in the previous case, there is t ∈ st(Tj)rX such that tσ = aenc(uσ,w). By induction
hypothesis, T ′i ⊢ t. Let t = aenc(t1, t2). As in the previous case, we have that t1σ = uσ,
and thus t1 = u (thanks to hypothesis 1).

The last rule in the proof of Tjσ ⊢ sk(w) is a decomposition (no composition rule can
yield a term headed with sk( )). Then, by Lemma 3.4 (Tj satisfies the hypotheses of the
lemma since Tj ⊆ Ti), there is a non-variable subterm w1 ∈ st(Tj) such that w1σ = sk(w).



40 CHAPTER 3. DEDUCIBILITY CONSTRAINTS

Let w1 = sk(w2). By induction hypothesis, T ′j ⊢ sk(w2). Moreover, since w2σ = t2σ, by
hypothesis 2, we have that w2 = t2,

Finally, from T ′i ⊢ aenc(u,w2) and T ′i ⊢ sk(w2), we conclude that T ′i ⊢ u.

The proof is similar for the other decomposition rules. �

Proposition 3.2 (Completeness for one step) If C is an unsolved deducibility constraint
system and θ is a solution of C, then there is a deducibility constraint system C′, a substitution
σ, and a solution θ′ of C′ such that C  σ C

′ and θ = σθ′.

Proof : Let C be an unsolved constraint system and θ be a solution of C. We show that there
is a constraint system C′ and a solution θ′ of C′ such that C  σ C

′ and θ = σθ′.

Consider a minimal unsolved constraint Ti

?
⊢ ui such that ui is not a variable. We have that

Tiθ ⊢ uiθ. Consider a simple proof Π of Tiθ ⊢ uiθ. We analyse the different cases depending on
the last rule of Π.

1. The last rule is a composition. Suppose that it is the pairing rule. That is, there are
w1, w2 such that Tiθ ⊢ w1, Tiθ ⊢ w2 and 〈w1, w2〉 = uiθ. Since ui is not a variable there
exists u′, u′′ such that ui = 〈u

′, u′′〉. Hence we can apply the simplification rule Rf in order
to obtain C′. Since u′θ = w1 and u′′θ = w2, the substitution θ is also a solution to C′. For
the other composition rules the same reasoning holds.

2. The last rule is an axiom or a decomposition. Applying Lemma 3.4 we obtain that there
is t ∈ st(Ti)r X such that tθ = uiθ. We can have the following two possibilities:

(a) If t 6= ui then we apply the simplification rule R2.

(b) Otherwise, if t = ui, then ui ∈ st(Ti) and we already know that ui is not a variable.
We consider two cases:

i. There are two distinct terms t1, t2 ∈ st(T ) such that t1θ = t2θ. Then we apply
the simplification rule R3.

ii. Otherwise, the simplification rule R1 can be applied (Lemma 3.5). �

3.3.3 Complexity

The termination stated in Theorem 3.1 does not provide with tight complexity bounds. In fact,
applying the simplification rules may lead to branches of exponential length in the size of the
constraint system [?]. Inspecting the completeness proof, there is still some room for choosing
a strategy to ensure that the length of each branch is polynomially bounded in C (while keeping
completeness). Note that correctness is independent of the order of the rules application.

Moreover, for any suitable representation of terms, we have that |uσ, vσ| < |u, v| where
σ = mgu(u, v). Hence, if we use a DAG representation of terms, when C  ∗σ C

′, we have that
the size of C′ is polynomially bounded in the size of C. As a consequence, the security problem
is in co-NP and it is actually co-NP-complete [?]. The NP-hardness can be established with a
reduction from 3-SAT.

3.4 Further Readings

Many parts of this section are borrowed from [?]. Hence, more details can be found in this
paper. Another decision procedure based on constraint simplification rules has been proposed
by J. Millen and V. Shmatikov [?]. Many results (e.g. [?, ?]) have been obtained within this
framework. In particular, this framework has been extended by several authors to deal with
algebraic properties of cryptographic primitives.



3.5. EXERCISES 41

3.5 Exercises

Exercice 9
Say whether each couple of terms are unifiable or not. If so, give a most general unifier (mgu).

1. 〈x, b〉 and 〈a, y〉,

2. aenc(x, a) and aenc(b, x),

3. 〈x, y〉 and 〈〈y, y〉, a〉,

4. z and 〈x, y〉.

Exercice 10 (⋆)
Consider the following inference system:

x y

〈x, y〉

〈x, y〉

x

〈x, y〉

y

x y

senc(x, y)

senc(x, y) y

x

Let T = {senc(s, 〈k1, k2〉), senc(k1, k3), k3, k2}.

1. Enumerate all the subterms of T .

2. The term s is deducible from T . Give a derivation witnessing this fact.

3. Among the subterms of T , give those that are deducible.

4. Give a term u that is not a subterm of T and such that T ⊢ u.

Exercice 11 (⋆ ⋆ ⋆)
Consider the following inference system:

x y

〈x, y〉

〈x, y〉

x

〈x, y〉

y

x y

senc(x, y)

senc(x, y) y

x

In order to decide whether a term s is deducible from a set of terms T in the inference
system described above, we propose the following algorithm:

Algorithm:

1. Apply as much as possible the decryption and the projection rules. This leads to a set of
terms called analz(T ).

2. Check whether s can be obtained by applying the encryption and the pairing rules. The
(infinite) set of terms obtained by applying the composition rules is denoted synth(analz(T )).

If s ∈ synth(analz(T )) then the algorithm return yes. Otherwise, it returns no.

1. Show that this algorithm terminates.

2. Show that this algorithm is sound, i.e. if the algorithm returns yes then T ⊢ s.

3. The algorithm is not complete, i.e. there exist T and s such that T ⊢ s, and for which
the algorithm returns no. Find an example illustrating this fact.

4. Give an hypothesis on T that allows one to restore completeness.

5. Show that the algorithm is complete when this hypothesis is fulfilled.



42 CHAPTER 3. DEDUCIBILITY CONSTRAINTS

Exercice 12 (⋆)
We consider the following inference system allowing us to model asymmetric encryption.

x y

aenc(x, y)

aenc(x, pk(z)) sk(z)

x

z

pk(z)

Is this inference system local, or not? If so, give a proof. If not, give a derivation witnessing
this fact.

Exercice 13 (⋆⋆)
Consider the following inference system allowing us to model digital signature.

x sk(z)

sign(x, sk(z))

sign(x, sk(z)) vk(z)

x

z

vk(z)

1. This inference system is not local according to Definition 3.2. Give an example witnessing
this fact.

2. Show that the intruder deduction problem is decidable.
You can use the technique described in this chapter and extend the notion of subterm to
restore the locality property.

Exercice 14 (⋆)
We consider the signature and the inference system given in Example 3.1. Let T0 = {a, b, c, sk(c), aenc(〈a, aenc(

and C = {T0

?
⊢ aenc(〈a, aenc(x1, b)〉, b)}. What are the solutions of C?

Exercice 15 (⋆⋆)
Consider the following protocol (defined informally):

A→ B : 〈aenc(k1, pk(b)), aenc(k2, pk(b))〉
B → A : senc(k1, k2)

Here k1 and k2 represent two keys that are freshly generated by A at the beginning of each
session.

1. Write formally the processes corresponding to an instance of the role A played by two
honest agents a,b and an instance of the role B with the same two honest agents

2. Give a deduction constraint system corresponding to the only relevant symbolic trace for
the processes of the previous question.

3. Apply the simplification rules to this constraint system and derive all possible attacks on
the secrecy of k1 (resp. k2) for this scenario.

Exercice 16 (⋆)
Give an example showing that the rule R3 is necessary for the completeness of the procedure.
More precisely, this example has to show that Proposition 3.2 will be wrong without this rule.

Exercice 17 (⋆⋆)
We consider the following variant of the rule R3

R′3 : C ∧ T
?
⊢ u  σ Cσ ∧ Tσ

?
⊢ uσ if t1, t2 ∈ st(T )r X , σ = mgu(t1, t2), and t1 6= t2

1. Show that R′3 is not sufficient to restore completeness, i.e. give an example witnessing the
fact that Proposition 3.2 is wrong if we use the rule R′3 instead of R3.

2. Consider the set of simplification rules R1, R2, R
′
3, Rf . Show that this set of rules is com-

plete if we consider symmetric encryption/decryption and pairing/projection (no asym-
metric encryption).



Chapter 4

Unbounded process verification

In this chapter, we first show that the problem of the verification of security protocols with an
unbounded number of sessions is undecidable. Next, we present a technique for solving this
problem, based on an abstract representation of the protocol by Horn clauses and implemented
in the tool ProVerif. Obviously, because of the undecidability, this technique does not always
solve the problem. (It may answer “I don’t know” or not terminate.)

4.1 Undecidability

First observe that the existence of an attack is undecidable:

Theorem 4.1 Given a process P (in our algebra) and a term t, the question of whether there

are σ,Q such that P
∗
−→ νn(σ‖Q) and νn.σ ⊢ t is undecidable.

This is even true when the attacker is passive, when the keys are atomic and/or the messages
are of bounded sizes ([?] for instance).

To give an idea of the proof, we encode a (modified) PCP:

The following problem is undecidable:

Input: two finite sequences v0, v1, . . . , vn, w0, w1, . . . , wn ∈ {a, b}
∗

Question: are there a k and a sequence of indices i1, . . . , ik ∈ [1..n] such that v0.vi1 · · · .vik =
w0.wi1 · · · .wik ?

For any word u ∈ {a, b}∗, we define inductively ũ as a function from terms to terms as
follows:

• if u is the empty word, then ũ is the identity

• ã · u(t) = 〈a, ũ(t)〉.

PA = out(c, {〈ṽ0(0), w̃0(0)〉}
s
kAB

).in(c, {〈x, x〉}skAB
).out(c, kAB)

PB = in(c, {〈x, y〉}skAB
).out(c, {〈ṽ1(x), w̃1(x)〉}

s
kAB

...out(c, {〈ṽn(x), w̃n(x)〉}
s
kAB

...

Let P = νkAB.(PA‖!PB). We can deduce kAB iff the modified PCP has a solution. Note
that the attacker has not much to do: only select one of the outputs of PB and send it to the
next instance of PB .

43



44 CHAPTER 4. UNBOUNDED PROCESS VERIFICATION

Protocol:
Pi calculus + cryptography

Properties to prove:
Secrecy, authenticity, . . .

Horn clauses Derivability queries

Resolution with selection

The property is true Potential attack

Automatic translator

Figure 4.1: Structure of ProVerif

4.2 Structure and Main Features of ProVerif

The structure of ProVerif is represented in Figure 4.1. ProVerif takes as input a model of
the protocol in an extension of the pi calculus with cryptography, similar to the calculus of
Chapter 2. It supports a wide variety of cryptographic primitives, modeled by rewrite rules or
by equations. ProVerif also takes as input the security properties that we want to prove. It
can verify various security properties, including secrecy, authentication (correspondences), and
some observational equivalence properties. It automatically translates this information into an
internal representation by Horn clauses: the protocol is translated into a set of Horn clauses, the
security properties to prove are translated into derivability queries on these clauses. ProVerif
uses an algorithm based on resolution with free selection to determine whether a fact is derivable
from the clauses. If the fact is not derivable, then the desired security property is proved. If the
fact is derivable, then there may be an attack against the considered property: the derivation
may correspond to an attack, but it may also correspond to a “false attack”, because the Horn
clause representation makes some abstractions. These abstractions are key to the key of an
unbounded number of sessions of protocols.

Section 4.3 presents the model of protocols. Section 4.4 presents the Horn clause represen-
tation of protocols and the resolution algorithm. Section 4.5 gives the translation from the pi
calculus model to Horn clauses for secrecy properties, with extensions to correspondences and
equivalences in Sections 4.6 and 4.7 respectively.

4.3 A Formal Model of Security Protocols

This section details the model of protocols used by ProVerif. This calculus was presented in [?];
we adapt that presentation.

4.3.1 Syntax and Informal Semantics

Figure 4.2 gives the syntax of terms (data) and processes (programs) of ProVerif’s input lan-
guage. The identifiers a, b, c, k, and similar ones range over names, and x, y, and z range over
variables. The syntax also assumes a set of symbols for constructors and destructors; we often
use f for a constructor and g for a destructor.

Constructors are used to build terms. Therefore, the terms are variables, names, and con-
structor applications of the form f(M1, . . . ,Mn); the terms are untyped. On the other hand,
destructors do not appear in terms, but only manipulate terms in processes. They are partial
functions on terms that processes can apply. The process let x = g(M1, . . . ,Mn) in P else Q



4.3. A FORMAL MODEL OF SECURITY PROTOCOLS 45

M,N ::= terms
x, y, z variable
a, b, c, k, s name
f(M1, . . . ,Mn) constructor application

P,Q ::= processes
out(M,N).P output
in(M,x).P input
0 nil
P ‖ Q parallel composition
!P replication
new a.P restriction
let x = g(M1, . . . ,Mn) in P else Q destructor application
let x = M in P local definition
if M = N then P else Q conditional

Figure 4.2: Syntax of the process calculus

tries to evaluate g(M1, . . . ,Mn); if this succeeds, then x is bound to the result and P is exe-
cuted, else Q is executed. More precisely, the semantics of a destructor g of arity n is given
by a set def(g) of rewrite rules of the form g(M1, . . . ,Mn) → M where M1, . . . ,Mn,M are
terms without names, and the variables of M also occur in M1, . . . ,Mn. We extend these
rules by g(M ′1, . . . ,M

′
n) → M ′ if and only if there exist a substitution σ and a rewrite rule

g(M1, . . . ,Mn) → M in def(g) such that M ′i = σMi for all i ∈ {1, . . . , n}, and M ′ = σM . We
assume that the set def(g) is finite. (It usually contains one or two rules in examples.)

Using these constructors and destructors, we can represent data structures, such as tuples,
and cryptographic operations, for instance as follows:

• ntuple(M1, . . . ,Mn) is the tuple of the terms M1, . . . ,Mn, where ntuple is a constructor.
(We sometimes abbreviate ntuple(M1, . . . ,Mn) to (M1, . . . ,Mn).) The n projections are
destructors ithn for i ∈ {1, . . . , n}, defined by

ithn(ntuple(x1, . . . , xn))→ xi

• senc(M,N) is the symmetric (shared-key) encryption of the message M under the key N ,
where senc is a constructor. The corresponding destructor sdec is defined by

sdec(senc(x, y), y)→ x

Thus, sdec(M ′, N) returns the decryption of M ′ if M ′ is a message encrypted under N .

• In order to represent asymmetric (public-key) encryption, we may use two constructors
pk and aenc: pk(M) builds a public key from a secret M and aenc(M,N) encrypts M
under N . The corresponding destructor adec is defined by

adec(aenc(x, pk(y)), y)→ x

• As for digital signatures, we may use a constructor sign, and write sign(M,N) for M
signed with the signature key N , and the two destructors check and getmess with the
rewrite rules:

check(sign(x, y), pk(y))→ x

getmess(sign(x, y))→ x



46 CHAPTER 4. UNBOUNDED PROCESS VERIFICATION

• We may represent a one-way hash function by the constructor h. There is no corresponding
destructor; so we model that the term M cannot be retrieved from its hash h(M).

Thus, the process calculus supports many of the operations common in security protocols.
It has limitations, though: for example, modular exponentiation or XOR cannot be directly
represented by a constructor or by a destructor. We explain how we can treat some of these
primitives in Section 4.5.3.

Exercice 18
Model signatures that do not reveal the signed message.

The other constructs in the syntax of Figure 4.2 are standard; most of them come from the
pi calculus, and were also present in the calculus of Chapter 2.

• The input process in(M,x).P inputs a message on channel M , and executes P with x
bound to the input message. The output process out(M,N).P outputs the message N
on the channel M and then executes P . Here, we use an arbitrary term M to represent
a channel: M can be a name, a variable, or a constructor application. The calculus is
monadic (in that the messages are terms rather than tuples of terms), but a polyadic
calculus can be simulated since tuples are terms. It is also synchronous (in that a process
P is executed after the output of a message). As usual, we may omit P when it is 0.

• The nil process 0 does nothing.

• The process P ‖ Q is the parallel composition of P and Q.

• The replication !P represents an unbounded number of copies of P in parallel.

• The restriction new a.P creates a new name a, and then executes P .

• The local definition let x = M in P executes P with x bound to the term M .

• The conditional if M = N then P else Q executes P if M and N reduce to the same
term at runtime; otherwise, it executes Q. As usual, we may omit an else clause when it
consists of 0.

The name a is bound in the process new a.P . The variable x is bound in P in the processes
in(M,x).P , let x = g(M1, . . . ,Mn) in P else Q, and let x = M in P . We write fn(P ) and
fv(P ) for the sets of names and variables free in P , respectively. A process is closed if it has
no free variables; it may have free names. We write {M1/x1, . . . ,Mn/xn} for the substitution
that replaces x1, . . . , xn with M1, . . . , Mn, respectively. When σ is such a substitution and D
is some expression, we may write σD or Dσ for the result of applying σ to D; the distinction
is one of emphasis at most. Except when stated otherwise, substitutions always map variables
(not names) to expressions.

ProVerif’s calculus resembles the applied pi calculus [?]. Both calculi are extensions of
the pi calculus with (fairly arbitrary) functions on terms. However, there are also important
differences between these calculi. The first one is that ProVerif uses destructors instead of
the equational theories of the applied pi calculus. (Section 4.5.3 contains further material
on equational theories.) The second difference is that ProVerif has a built-in error-handling
construct (the else clause of the destructor application), whereas in the applied pi calculus the
error-handling must be done “by hand”.



4.3. A FORMAL MODEL OF SECURITY PROTOCOLS 47

4.3.2 Example

We use as a running example a simplified version of the Denning-Sacco key distribution proto-
col [?], omitting certificates and timestamps:

Message 1. A→ B : {{k}skA
}pkB

Message 2. B → A : {s}k

This protocol involves two principals A and B. The key skA is the secret key of A, pkA its public
key. Similarly, skB and pkB are the secret and public keys of B, respectively. The key k is a
fresh key created by A. A sends this key signed with its private key skA and encrypted under
the public key of B, pkB . When B receives this message, B decrypts it and assumes, seeing the
signature, that the key k has been generated by A. Then B sends a secret s encrypted under
k. Only A should be able to decrypt the message and get the secret s. (The second message is
not really part of the protocol, we use it to check if the key k can really be used to exchange
secrets between A and B. In fact, there is an attack against this protocol [?], so s will not
remain secret.)

This protocol can be encoded by the following process:

P0 = new skA.new skB.let pkA = pk(skA) in let pkB = pk(skB) in out(c, pkA).out(c, pkB).

(PA(pkA, skA) ‖ PB(pkB, skB , pkA))

PA(pkA, skA) = ! in(c, x pkB).new k.out(c, aenc(sign(k, skA), x pkB)).

in(c, x).let z = sdec(x, k) in 0

PB(pkB , skB , pkA) = ! in(c, y).let y′ = adec(y, skB) in

let x k = check(y′, pkA) in out(c, senc(s, x k))

Such a process can be given as input to ProVerif, in an ASCII syntax. This process first creates
the secret keys skA and skB, computes the corresponding public keys pkA and pkB , and sends
these keys on the public channel c, so that the adversary has these public keys. Then, it runs
the processes PA and PB in parallel. These processes correspond respectively to the roles of A
and B in the protocol. They both start with a replication, which makes it possible to model an
unbounded number of sessions of the protocol.

The process PA first receives on the public channel c the key x pkB, which is the public key
of A’s interlocutor in the protocol. This message is not strictly speaking part of the protocol;
it makes it possible for the adversary to choose with whom A is going to execute a session. In
a standard session of the protocol, this key is pkB , but the adversary can also choose another
key, for instance one of his own keys. Then, PA executes the role of A: it creates a fresh key k,
signs it with its secret key skA, then encrypts this message under x pkB , and sends the obtained
message on channel c. PA then expects the second message of the protocol on channel c, stores
it in x and decrypts it. If decryption succeeds, the result (normally the secret s) is stored in z.

The process PB receives the first message of the protocol on channel c, stores it in y, decrypts
it with skB , and verifies the signature with pkA. (The signature is verified with the key pkA of
A and not with an arbitrary key chosen by the adversary since B sends the second message {s}k
only if its interlocutor is the honest participant A.) If these verifications succeed, B believes
that x k is a key shared between A and B, and it sends the secret s encrypted under x k. If
the protocol is correct, s should remain secret.

In the above model, we have assumed for simplicity that A and B each play only one role
of the protocol. One could easily write a more general model in which they play both roles, or
one could even provide the adversary with an interface that allows it to dynamically create new
protocol participants.

Exercice 19
Model the Needham-Schroeder public key protocol of Figure 1.1 in this calculus.



48 CHAPTER 4. UNBOUNDED PROCESS VERIFICATION

P ‖ 0 ≡ P
P ‖ Q ≡ Q ‖ P
(P ‖ Q) ‖ R ≡ P ‖ (Q ‖ R)

new a1.new a2.P ≡ new a2.new a1.P
new a.(P ‖ Q) ≡ P ‖ new a.Q if a /∈ fn(P )

P ≡ Q ⇒ P ‖ R ≡ Q ‖ R
P ≡ Q ⇒ !P ≡ !Q
P ≡ Q ⇒ new a.P ≡ new a.Q

P ≡ P
Q ≡ P ⇒ P ≡ Q
P ≡ Q, Q ≡ R ⇒ P ≡ R

out(N,M).Q ‖ in(N,x).P → Q ‖ P{M/x} (Red I/O)

let x = g(M1, . . . ,Mn) in P else Q→ P{M ′/x} (Red Destr 1)
if g(M1, . . . ,Mn)→M ′

let x = g(M1, . . . ,Mn) in P else Q→ Q (Red Destr 2)
if there exists no M ′ such that g(M1, . . . ,Mn)→M ′

let x = M in P → P{M/x} (Red Let)

if M = M then P else Q→ P (Red Cond 1)
if M = N then P else Q→ Q if M 6= N (Red Cond 2)

!P → P ‖ !P (Red Repl)

P → Q ⇒ P ‖ R → Q ‖ R (Red Par)
P → Q ⇒ new a.P → new a.Q (Red Res)

P ′ ≡ P, P → Q, Q ≡ Q′ ⇒ P ′ → Q′ (Red ≡)

Figure 4.3: Structural congruence and reduction

4.3.3 Formal Semantics

The formal semantics of this calculus can be defined in two ways. We can use a structural
congruence and a reduction relation (Figure 4.3), as in Chapter 2. We identify processes up
to renaming of bound names and variables. We just add reduction rules for the destructor
application, (Red Destr 1) and (Red Destr 2), corresponding respectively to the success and
failure of the destructor application. In rule (Red I/O), we allow communications on channels
that can be any term. We do not consider frames, extended processes, or labeled transitions.
(We define the adversary as a process in Definition 4.1 below, so we do not need to study the
interaction of the protocol with an external environment, which is the purpose of the labeled
semantics.)

We can also define the semantics by a reduction relation on semantic configurations, as in
Figure 4.4. A semantic configuration is a pair E,P where the environment E is a finite set
of names and P is a finite multiset of closed processes. The environment E must contain at
least all free names of processes in P. The configuration {a1, . . . , an}, {P1, . . . , Pn} corresponds
intuitively to the process new a1. . . . new an.(P1 ‖ . . . ‖ Pn). The semantics of the calculus is
defined by a reduction relation → on semantic configurations, shown in Figure 4.4. The rule
(Red Res) is the only one that uses renaming. The new semantics (in particular the fact that
only (Red Res) uses renaming) provides simplifications in the definitions of correspondences
(see Section 4.3.4.2) and in the proofs that correspondences hold. Except when mentioned
otherwise, we will focus on this new semantics.

4.3.4 Security Properties

4.3.4.1 Secrecy

We assume that the protocol is executed in the presence of an adversary that can listen to all
messages, compute, and send all messages it has, following the so-called Dolev-Yao model [?].
Thus, an adversary can be represented by any process that has a set of public names S in its



4.3. A FORMAL MODEL OF SECURITY PROTOCOLS 49

E,P ∪ { 0 } → E,P (Red Nil)

E,P ∪ { !P } → E,P ∪ {P, !P } (Red Repl)

E,P ∪ {P ‖ Q } → E,P ∪ {P,Q } (Red Par)

E,P ∪ { new a.P } → E ∪ {a′},P ∪ {P{a′/a} } (Red Res)

where a′ /∈ E.

E,P ∪ { out(N,M).Q, in(N,x).P } → E,P ∪ {Q,P{M/x} } (Red I/O)

E,P ∪ { let x = g(M1, . . . ,Mn) in P else Q } → E,P ∪ {P{M ′/x} } (Red Destr 1)

if g(M1, . . . ,Mn)→M ′

E,P ∪ { let x = g(M1, . . . ,Mn) in P else Q } → E,P ∪ {Q } (Red Destr 2)

if there exists no M ′ such that g(M1, . . . ,Mn)→M ′

E,P ∪ { let x = M in P } → E,P ∪ {P{M/x} } (Red Let)

E,P ∪ { if M = M then P else Q } → E,P ∪ {P } (Red Cond 1)

E,P ∪ { if M = N then P else Q } → E,P ∪ {Q } (Red Cond 2)

if M 6= N

Figure 4.4: Operational semantics

initial knowledge. (Although the initial knowledge of the adversary contains only names in S,
one can give any terms to the adversary by sending them on a channel in S.)

Definition 4.1 Let S be a finite set of names. The closed process Q is an S-adversary if and
only if fn(Q) ⊆ S.

Intuitively, a process P preserves the secrecy of M when M cannot be output on a public
channel, in a run of P with any adversary. Formally, we define that a trace outputs M as
follows:

Definition 4.2 We say that a trace T = E0,P0 →
∗ E′,P ′ outputs M if and only if T contains

a reduction E,P ∪ { out(c,M).Q, in(c, x).P } → E,P ∪ {Q,P{M/x} } for some E, P, x, P , Q,
and c ∈ S.

We can finally define secrecy:

Definition 4.3 The closed process P preserves the secrecy of M from S if and only if for
any S-adversary Q, for any E0 containing fn(P0) ∪ S ∪ fn(M), for any trace T = E0, {P0, Q}
→∗ E′,P ′, the trace T does not output M .

This notion of secrecy is similar to that of [?, ?, ?]: a term M is secret if the adversary
cannot get it by listening and sending messages, and performing computations.

4.3.4.2 Correspondences

As already mentioned in Section 2.3.2, correspondence properties are used to capture relation-
ships between events that can be expressed in the form ”if an event e has been executed, then
events e′1, . . . , e

′
n have been previously executed.” Moreover, these events may contain argu-

ments. Correspondences can be used to model authentication [?, ?].

In order to define correspondences, we add an instruction for executing events in the syntax
of processes:



50 CHAPTER 4. UNBOUNDED PROCESS VERIFICATION

P,Q ::= processes
. . . (see Figure 4.2)
event(M).P event

The semantics of events is defined by the transition:

E,P ∪ { event(M).P } → E,P ∪ {P } (Red Event)

We recall that, in the semantics of Figure 4.4, the rule (Red Res) is the only one that uses re-
naming. This is important so that the parameters of events are not renamed after the execution
of the event, to be able to compare them with the parameters of events executed later. This is
why this semantics simplifies the definition of correspondences.

We adapt the definition of an S-adversary, so that it does not contain events.

Non-injective correspondences

Definition 4.4 We say that a trace T = E0,P0 →
∗ E′,P ′ executes event(M) if and only if T

contains a reduction E,P ∪ { event(M).P } → E,P ∪ {P } for some E, P, P .

The correspondence event(M) 
∧l

k=1 event(Mk), formally defined below, means intuitively
that, if an instance of event(M) is executed, then a corresponding instance of each of the events
event(M1), . . . , event(Ml) has been executed.

Definition 4.5 The closed process P0 satisfies the correspondence

event(M) 

l∧

k=1

event(Mk)

against S-adversaries if and only if, for any S-adversary Q, for any E0 containing fn(P0) ∪
S ∪ fn(M) ∪

⋃
k fn(Mk), for any substitution σ, for any trace T = E0, {P0, Q} →

∗ E′,P ′, if T
executes event(σM), then there exists σ′ such that σ′M = σM and, for all k ∈ {1, . . . , l}, T
executes event(σ′Mk) as well.

The variables in M are universally quantified (because, in Definition 4.5, σ is universally
quantified). The variables in Mk that do not occur in M are existentially quantified (because
σ′ is existentially quantified).

This definition is very general; a particular case is non-injective agreement:

Definition 4.6 Non-injective agreement is a correspondence of the form event(e(x1, . . . , xn)) 
event(e′(x1, . . . , xn)).

Intuitively, the correspondence event(e(x1, . . . , xn))  event(e′(x1, . . . , xn)) means that, if an
event e(M1, . . . ,Mn) is executed, then the event e′(M1, . . . ,Mn) has also been executed. This
definition can be used to represent Lowe’s notion of non-injective agreement [?].

Injective correspondences

Definition 4.7 We say that the event event(M) is executed at step τ in a trace T = E0,P0 →
∗

E′,P ′ if and only if the τ -th reduction of T is of the form E,P ∪{ event(M).P } → E,P ∪{P }
for some E, P, P .

Intuitively, an injective correspondence event(M)  inj event(M ′) requires that each event
event(σM) is enabled by distinct events event(σM ′), while a non-injective correspondence
event(M)  event(M ′) allows several events event(σM) to be enabled by the same event
event(σM ′).



4.3. A FORMAL MODEL OF SECURITY PROTOCOLS 51

Definition 4.8 The closed process P0 satisfies the correspondence

event(M) 

l∧

k=1

inj event(Mk)

against S-adversaries if and only if, for any S-adversary Q, for any E0 containing fn(P0)∪S ∪
fn(M)∪

⋃
k fn(Mk), for any trace T = E0, {P0, Q} →

∗ E′,P ′, there exist injective functions φjk

from a subset of steps in T to steps in T such that for all τ , if the event event(σM) is executed
at step τ in T for some σ, then there exists σ′ such that σ′M = σM and, for all k ∈ {1, . . . , l},
φk(τ) is defined and event(σ′Mk) is executed at step φk(τ) in T .

The functions φk map execution steps of events event(σM) to the execution steps of the
events event(σ′Mk) that enable event(σM). The injectivity of φk guarantees that distinct exe-
cutions of event(σM) correspond to distinct executions of event(σ′Mk).

Definition 4.9 Injective agreement is a correspondence of the form event(e(x1, . . . , xn))  
inj event(e′(x1, . . . , xn)).

Injective agreement requires that the number of executions of event(e(M1, . . . ,Mn)) is smaller
than the number of executions of event(e′(M1, . . . ,Mn)): each execution of event(e(M1, . . . ,
Mn)) corresponds to a distinct execution of event(e′(M1, . . . ,Mn)). This corresponds to Lowe’s
agreement specification [?].

More general definitions of correspondences can be found in [?].

Example As an example, we consider a simplified version of the Woo and Lam one-way
public-key authentication protocol, version of [?], in which host names are replaced by public
keys, which makes interaction with a server useless. The protocol is:

Message 1. A→ B : pkA
Message 2. B → A : b
Message 3. A→ B : {pkA, pkB, b}skA

A first sends to B its public key, B replies with a nonce (fresh name), and A sends its public
key, the public key of B, and the nonce all signed with its private key skA. This protocol can
be represented by the process P :

PA(skA, pkA) = ! in(c, x pkB).event(eA(x pkB)).out(c, pkA).in(c, x b).

out(c, sign((pkA, x pkB , x b), skA))

PB(skB , pkB , pkA) = ! in(c, x pkA).new b.out(c, b).in(c,m).

if (x pkA, pkB , b) = check(m,x pkA) then

if x pkA = pkA then event(eB(pkB))

P = new skA.new skB .let pkA = pk(skA) in let pkB = pk(skB) in

out(c, pkA).out(c, pkB).(PA(skA, pkA) ‖ PB(skB , pkB , pkA))

The channel c is public: The adversary can send and listen on it. The process P begins with
the creation of the secret and public keys of A and B. The public keys are output on channel c
to model that the adversary has them in its initial knowledge. Then the protocol itself starts:
PA represents A, PB represents B. Both principals can run an unbounded number of sessions,
hence the replications. We consider that A and B are both willing to talk to any principal.
So, to determine to whom A will talk, we consider that A first inputs a message containing the
public key of its interlocutor (this interlocutor is therefore chosen by the adversary). Then A
starts the protocol by executing an event event(eA(x pkB)), whose intuitive meaning is “A has



52 CHAPTER 4. UNBOUNDED PROCESS VERIFICATION

started a session with the host of public key x pkB”. At the end of PB , when B thinks he talks
with A (that is, when x pkA = pkA), he executes an event event(eB(pkB)), whose meaning
is “B thinks he has completed a session with A”.1 If the protocol is correct, B should only
execute event(eB(pkB)) when A has first executed event(eA(pkB)). This can be formalized by
the correspondence:

event(eB(x)) event(eA(x))

We may also require that each execution of eB corresponds to a distinct event eA, so that
different runs of B correspond to different runs of A. This is formalized by the injective corre-
spondence:

event(eB(x)) inj event(eA(x))

This is what we are going to check next.

4.3.4.3 Observational Equivalence

The notion of indistinguishability is a powerful concept which allows us to reason about com-
plex properties that cannot be expressed as reachability or correspondence properties. The
notion of indistinguishability is generally named observational equivalence in the formal model.
Intuitively, two processes P and Q are observationally equivalent, written P ≈ Q, when an
active adversary cannot distinguish P from Q. Using this notion, one can for instance specify
that a process P follows its specification Q by saying that P ≈ Q. ProVerif can prove some
observational equivalences, but not all of them because their proof is complex. Formally, obser-
vational equivalence can be defined as follows, using the first semantics of ProVerif’s calculus.
An evaluation context C is a closed context built from [ ], C ‖ P , P ‖ C, and new a.C.

Definition 4.10 The process P emits on M (P ↓M ) if and only if P ≡ C[out(M,N).R] for
some evaluation context C that does not bind fn(M).

Observational equivalence ≈ is the largest symmetric relation R on closed processes such
that P R Q implies

1. if P →∗ ↓M then Q→∗ ↓M ;

2. if P →∗ P ′ then Q→∗ Q′ and P ′ R Q′ for some Q′;

3. C[P ] R C[Q] for all evaluation contexts C.

In the applied pi calculus, this notion coincides with the notion of labeled bisimilarity
presented in Section 2.3.4 [?]. It can be defined without using labeled transitions; on the other
hand, it uses a universal quantification over all contexts, which complicates its proof. (Typically,
the goal is to prove observational equivalence; a proof method is to design a labeled transition
system such that observational equivalence is equivalent to labeled bisimilarity, and to prove
labeled bisimilarity instead.)

Observational equivalence can also be used to formalize a notion of secrecy, strong secrecy,
which means that the attacker is unable to distinguish when the secret changes. In other words,
the value of the secret should not affect the observable behavior of the protocol. Such a notion is
useful to capture the adversary’s ability to learn partial information about the secret: when the
adversary learns the first component of a pair, for instance, the whole pair is secret in the sense
of reachability (the adversary cannot reconstruct the whole pair because it does not have the
second component), but it is not secret in the sense of strong secrecy (the adversary can notice
changes in the value of the pair, since it has its first component). Strong secrecy also detects

1Note that the event eB must not be executed when B thinks he talks to the adversary. Indeed, in this case,
it is correct that no event eA has been executed by the interlocutor of B, since the adversary never executes
events.



4.4. THE HORN CLAUSE REPRESENTATION OF PROTOCOLS 53

p ::= patterns
x variable
a[p1, . . . , pn] name
f(p1, . . . , pn) constructor application

F ::= pred(p1, . . . , pn) fact

R ::= F1 ∧ . . . ∧ Fn ⇒ F Horn clause

Figure 4.5: Syntax of ProVerif’s internal protocol representation

implicit flows, which happen for instance when the secret is compared with another value. The
concept of strong secrecy is particularly important when the secret consists of known values.
Consider for instance a process P that uses a boolean b. The variable b can take two values, true
or false, which are both known to the adversary, so it is not secret in the sense of reachability.
However, one may express that b is strongly secret by saying that P{true/b} ≈ P{false/b}: the
adversary cannot determine whether b is true or false. Strong secrecy can be formally defined
as follows:

Definition 4.11 P preserves the secrecy of its free variables if and only if for all closed sub-
stitutions θ and θ′ such that Dom(θ) = Dom(θ′) = fv(P ), Pθ ≈ Pθ′. (The substitution avoids
name captures by first alpha renaming P if necessary.)

4.3.5 Some Other Models

In addition to variants of the pi calculus, such as the spi calculus [?] and the applied pi cal-
culus [?], there also exist other models of security protocols, for instance strand spaces [?] and
multiset rewriting [?].

4.4 The Horn Clause Representation of Protocols

4.4.1 Definition of this Representation

Internally, ProVerif translates the protocol into a representation by a set of Horn clauses; the
syntax of these clauses is given in Figure 4.5. In this figure, x ranges over variables, a over names,
f over function symbols, and p over predicate symbols. The patterns p represent messages that
are exchanged between participants of the protocol. (Patterns are terms; we use the word
patterns to distinguish them from terms of the process calculus.) A variable can represent
any pattern. Names represent atomic values, such as keys and nonces (random numbers).
Each principal has the ability of creating new names: fresh names are created at each run of
the protocol. Here, the created names are considered as functions of the messages previously
received by the principal that creates the name. Thus, names are distinguished only when
the preceding messages are different. As noticed by Mart́ın Abadi (personal communication),
this approximation is in fact similar to the approximation done in some type systems (such
as [?]): the type of the new name depends on the types in the environment. It is enough
to handle many protocols, and can be enriched by adding other parameters to the name. In
particular, we shall see in Section 4.6 that, by adding as parameter a session identifier that takes
a different value in each run of the protocol, one can distinguish all names. This is necessary for
proving authentication but not for secrecy, so we omit session identifiers here for simplicity. The
constructor applications f(M1, . . . ,Mn) build patterns. A fact F = pred (p1, . . . , pn) expresses a
property of the messages p1, . . . , pn. Several predicates pred can be used but, for a first example,



54 CHAPTER 4. UNBOUNDED PROCESS VERIFICATION

we are going to use a single predicate attacker, such that the fact attacker(p) means “the attacker
may have the message p”. A clause R = F1 ∧ . . . ∧ Fn ⇒ F means that, if all facts F1, . . . , Fn

are true, then F is also true. A clause with no hypothesis ⇒ F is written simply F .

We use illustrate the encoding of a protocol on the example of Section 4.3.2:

Message 1. A→ B : {{k}skA
}pkB

Message 2. B → A : {s}k

4.4.1.1 Representation of the Abilities of the Attacker

We first present the encoding of the computation abilities of the attacker. The encoding of the
protocol itself will be detailed in Section 4.4.1.2.

During its computations, the attacker can apply all constructors and destructors. If f is a
constructor of arity n, this leads to the clause:

attacker(x1) ∧ . . . ∧ attacker(xn)⇒ attacker(f(x1, . . . , xn)).

If g is a destructor, for each rewrite rule g(M1, . . . ,Mn)→M in def(g), we have the clause:

attacker(M1) ∧ . . . ∧ attacker(Mn)⇒ attacker(M).

The destructors never appear in the clauses, they are coded by pattern-matching on their
parameters (here M1, . . . ,Mn) in the hypothesis of the clause and generating their result in the
conclusion. In the particular case of public-key encryption, this yields:

attacker(m) ∧ attacker(pk)⇒ attacker(aenc(m, pk )),

attacker(sk )⇒ attacker(pk(sk)),

attacker(aenc(m, pk(sk))) ∧ attacker(sk)⇒ attacker(m), (4.1)

where the first two clauses correspond to the constructors aenc and pk, and the last clause
corresponds to the destructor pdec. When the attacker has an encrypted message aenc(m, pk)
and the decryption key sk , then it also has the cleartext m. (We assume that the cryptography
is perfect, hence the attacker can obtain the cleartext from the encrypted message only if it has
the key.)

Clauses for signatures (sign, getmess, check) and for shared-key encryption (senc, sdec) are
given in Figure 4.6.

The clauses above describe the computation abilities of the attacker. Moreover, the at-
tacker initially has the public keys of the protocol participants. Therefore, we add the clauses
attacker(pk(skA[ ])) and attacker(pk(skB [ ])). We also give a name a to the attacker, that will
represent all names it can generate: attacker(a[ ]). In particular, a[ ] can represent the secret
key of any dishonest participant, his public key being pk(a[ ]), which the attacker can compute
by the clause for constructor pk.

4.4.1.2 Representation of the Protocol Itself

Now, we describe how the protocol itself is represented. We consider that A and B are willing
to talk to any principal, A, B but also malicious principals that are represented by the attacker.
Therefore, the first message sent by A can be aenc(sign(k, skA[ ]), pk(x)) for any x. We leave to
the attacker the task of starting the protocol with the principal it wants, that is, the attacker
will send a preliminary message to A, mentioning the public key of the principal with which A
should talk. This principal can be B, or another principal represented by the attacker. Hence,
if the attacker has some key pk(x), it can send pk(x) to A; A replies with his first message,



4.4. THE HORN CLAUSE REPRESENTATION OF PROTOCOLS 55

which the attacker can intercept, so the attacker obtains aenc(sign(k, skA[ ]), pk(x)). Therefore,
we have a clause of the form

attacker(pk(x))⇒ attacker(aenc(sign(k, skA[ ]), pk(x))).

Moreover, a new key k is created each time the protocol is run. Hence, if two different keys
pk(x) are received by A, the generated keys k are certainly different: k depends on pk(x). The
clause becomes:

attacker(pk(x))⇒ attacker(aenc(sign(k[pk(x)], skA[ ]), pk(x))). (4.2)

When B receives a message, he decrypts it with his secret key skB , so B expects a message
of the form aenc(x′, pk(skB[ ])). Next, B tests whether A has signed x′, that is, B evaluates
check(x′, pkA), and this succeeds only when x′ = sign(y, skA[ ]). If so, he assumes that the
key y is only known by A, and sends a secret s (a constant that the attacker does not have a
priori) encrypted under y. We assume that the attacker relays the message coming from A, and
intercepts the message sent by B. Hence the clause:

attacker(aenc(sign(y, skA[ ]), pk(skB [ ])))⇒ attacker(senc(s, y)).

Remark 4.1 With these clauses, A cannot play the role of B and vice-versa. In order to model
a situation in which all principals play both roles, we can replace all occurrences of skB [ ] with
skA[ ] in the clauses above. Then A plays both roles, and is the only honest principal. A single
honest principal is sufficient for proving secrecy properties by [?].

More generally, a protocol that contains n messages is encoded by n sets of clauses. If a
principal X sends the ith message, the ith set of clauses contains clauses that have as hypotheses
the patterns of the messages previously received by X in the protocol, and as conclusion the
pattern of the ith message. There may be several possible patterns for the previous messages
as well as for the sent message, in particular when the principal X uses a function defined by
several rewrite rules, such as the function exp of Section 4.5.3. In this case, a clause must be
generated for each combination of possible patterns. Moreover, the hypotheses of the clauses
describe all messages previously received, not only the last one. This is important since in some
protocols the fifth message for instance can contain elements received in the first message. The
hypotheses summarize the history of the exchanged messages.

4.4.1.3 Summary

To sum up, a protocol can be represented by three sets of Horn clauses, as detailed in Figure 4.6
for the protocol of Section 4.3.2:

• Clauses representing the computation abilities of the attacker: constructors, destructors,
and name generation.

• Facts corresponding to the initial knowledge of the attacker. In general, there are facts
giving the public keys of the participants and/or their names to the attacker.

• Clauses representing the messages of the protocol itself. There is one set of clauses for each
message in the protocol. In the set corresponding to the ith message, sent by principal
X, the clauses are of the form attacker(pj1) ∧ . . . ∧ attacker(pjn)⇒ attacker(pi) where pj1 ,
. . . , pjn are the patterns of the messages received by X before sending the ith message,
and pi is the pattern of the ith message.

Exercice 20
Give the representation by Horn clauses of the Needham-Schroeder public-key protocol of Fig-
ure 1.1.



56 CHAPTER 4. UNBOUNDED PROCESS VERIFICATION

Computation abilities of the attacker:
For each constructor f of arity n:

attacker(x1) ∧ . . . ∧ attacker(xn)⇒ attacker(f(x1, . . . , xn))
For each destructor g, for each rewrite rule g(M1, . . . ,Mn)→M in def(g):

attacker(M1) ∧ . . . ∧ attacker(Mn)⇒ attacker(M)
that is

aenc attacker(m) ∧ attacker(pk)⇒ attacker(aenc(m, pk))
pk attacker(sk)⇒ attacker(pk(sk))
pdec attacker(aenc(m, pk(sk))) ∧ attacker(sk)⇒ attacker(m)
sign attacker(m) ∧ attacker(sk)⇒ attacker(sign(m, sk))
getmess attacker(sign(m, sk ))⇒ attacker(m)
check attacker(sign(m, sk )) ∧ attacker(pk(sk))⇒ attacker(m)
senc attacker(m) ∧ attacker(k)⇒ attacker(senc(m,k))
sdec attacker(senc(m,k)) ∧ attacker(k)⇒ attacker(m)

Name generation: attacker(a[ ])

Initial knowledge: attacker(pk(skA[ ])), attacker(pk(skB[ ]))

The protocol:
First message: attacker(pk(x))⇒ attacker(aenc(sign(k[pk(x)], skA[ ]), pk(x)))
Second message: attacker(aenc(sign(y, skA[ ]), pk(skB [ ])))⇒ attacker(senc(s, y))

Figure 4.6: Summary the Horn clause representation of the protocol of Section 4.3.2

4.4.1.4 Approximations

The reader can notice that the Horn clause representation of protocols is approximate. Specifi-
cally, the number of repetitions of each action is ignored, since Horn clauses can be applied any
number of times. So a step of the protocol can be completed several times, as long as the previ-
ous steps have been completed at least once between the same principals (even when future steps
have already been completed). For instance, consider the following protocol (communicated by
Véronique Cortier)

First step: A sends {(N1,M)}k, {(N2,M)}k
Second step: If A receives {(x,M)}k, he replies with x
Third step: If A receives N1, N2, he replies with s

where N1, N2, and M are nonces. In an exact model, A never sends s, since {(N1,M)}k or
{(N2,M)}k can be decrypted, but not both. In the Horn clause model, even though the first
step is executed once, the second step may be executed twice for the same M (that is, the
corresponding clause can be applied twice), so that both {(N1,M)}k and {(N2,M)}k can be
decrypted, and A may send s. We have a false attack against the secrecy of s.

However, the important point is that the approximations are sound: if an attack exists in
a more precise model, such as the applied pi calculus [?] or multiset rewriting [?], then it also
exists in the Horn clause representation. This is shown for the applied pi calculus in [?] and
for multiset rewriting in [?]. In particular, [?] shows formally that the only approximation with
respect to the multiset rewriting model is that the number of repetitions of actions is ignored.
Performing approximations enables us to build a much more efficient verifier, which will be able
to handle larger and more complex protocols. Another advantage is that the verifier does not
have to limit the number of runs of the protocol. The price to pay is that false attacks may be
found by the verifier: sequences of clause applications that do not correspond to a protocol run,
as illustrated above. False attacks appear in particular for protocols with temporary secrets:
when some value first needs to be kept secret and is revealed later in the protocol, the Horn
clause model considers that this value can be reused in the beginning of the protocol, thus



4.4. THE HORN CLAUSE REPRESENTATION OF PROTOCOLS 57

breaking the protocol. When a false attack is found, we cannot know whether the protocol is
secure or not: a real attack may also exist. A more precise analysis is required in this case.
Fortunately, the Horn clause representation is precise enough so that false attacks are rare.
(This is demonstrated by the experiments, see Section 4.8.)

4.4.1.5 Secrecy Criterion

A basic goal is to determine secrecy properties: for instance, can the attacker get the secret s?
That is, can the fact attacker(s) be derived from the clauses? If attacker(s) can be derived, the
sequence of clauses applied to derive attacker(s) will lead to the description of an attack. This
is the notion of secrecy of Section 4.3.4.1.

In our running example, attacker(s) is derivable from the clauses. The derivation is as
follows. The attacker generates a fresh name a[ ] (considered as a secret key), it computes
pk(a[ ]) by the clause for pk, obtains aenc(sign(k[pk(a[ ])], skA[ ]), pk(a[ ])) by the clause for the
first message. It decrypts this message using the clause for pdec and its knowledge of a[ ],
thus obtaining sign(k[pk(a[ ])], skA[ ]). It reencrypts the signature under pk(skB [ ]) by the clause
for aenc (using its initial knowledge of pk(skB [ ])), thus obtaining aenc(sign(k[pk(a[ ])], skA[ ]),
pk(skB[ ])). By the clause for the second message, it obtains senc(s, k[pk(a[ ])]). On the other
hand, from sign(k[pk(a[ ])], skA[ ]), it obtains k[pk(a[ ])] by the clause for getmess, so it can
decrypt senc(s, k[pk(a[ ])]) by the clause for sdec, thus obtaining s. In other words, the attacker
starts a session between A and a dishonest participant of secret key a[ ]. It gets the first
message aenc(sign(k, skA[ ]), pk(a[ ])), decrypts it, reencrypts it under pk(skB [ ]), and sends it to
B. For B, this message looks like the first message of a session between A and B, so B replies
with senc(s, k), which the attacker can decrypt since it obtains k from the first message. The
obtained derivation corresponds to the known attack against this protocol. In contrast, if we fix
the protocol by adding the public key of B in the first message {{(pkB, k)}skA

}pkB
, attacker(s)

is not derivable from the clauses, so the fixed protocol preserves the secrecy of s.
Next, we formally define when a given fact can be derived from a given set of clauses. We

shall see in the next section how we determine that. Technically, the hypotheses F1, . . . , Fn of
a clause are considered as a multiset. This means that the order of the hypotheses is irrelevant,
but the number of times a hypothesis is repeated is important. (This is not related to multiset
rewriting models of protocols: the semantics of a clause does not depend on the number of
repetitions of its hypotheses, but considering multisets is necessary in the proof of the resolution
algorithm.) We use R for clauses (logic programming rules), H for hypothesis, and C for
conclusion.

Definition 4.12 (Subsumption) We say that H1 ⇒ C1 subsumes H2 ⇒ C2, and we write
(H1 ⇒ C1) ⊒ (H2 ⇒ C2), if and only if there exists a substitution σ such that σC1 = C2 and
σH1 ⊆ H2 (multiset inclusion).

We write R1 ⊒ R2 when R2 can be obtained by adding hypotheses to a particular instance of
R1. In this case, all facts that can be derived by R2 can also be derived by R1.

A derivation is defined as follows, as illustrated in Figure 4.7.

Definition 4.13 (Derivability) Let F be a closed fact, that is, a fact without variable. Let
R be a set of clauses. F is derivable from R if and only if there exists a derivation of F from
R, that is, a finite tree defined as follows:

1. Its nodes (except the root) are labeled by clauses R ∈ R;

2. Its edges are labeled by closed facts;

3. If the tree contains a node labeled by R with one incoming edge labeled by F0 and n outgoing
edges labeled by F1, . . . , Fn, then R ⊒ F1 ∧ . . . ∧ Fn ⇒ F0.



58 CHAPTER 4. UNBOUNDED PROCESS VERIFICATION

subroot

root

FnF1

. . . . . .. . .

. . .
. . .

. . .

η′

η

R′

R

F

F0

Figure 4.7: Derivation of F

4. The root has one outgoing edge, labeled by F . The unique son of the root is named the
subroot.

In a derivation, if there is a node labeled by R with one incoming edge labeled by F0 and n
outgoing edges labeled by F1, . . . , Fn, then F0 can be derived from F1, . . . , Fn by the clause R.
Therefore, there exists a derivation of F from R if and only if F can be derived from clauses in
R (in classical logic).

4.4.2 Resolution Algorithm

The internal protocol representation is a set of Horn clauses, and our goal is to determine
whether a given fact can be derived from these clauses or not. This is exactly the problem
solved by usual Prolog systems. However, we cannot use such systems here, because they would
not terminate. For instance, the clause:

attacker(aenc(m, pk(sk))) ∧ attacker(sk)⇒ attacker(m)

leads to considering more and more complex terms, with an unbounded number of encryptions.
We could of course limit arbitrarily the depth of terms to solve the problem, but we can do
much better than that.

As detailed below, the main idea is to combine pairs of clauses by resolution, and to guide
this resolution process by a selection function: ProVerif’s resolution algorithm is resolution with
free selection [?, ?, ?]. This algorithm is similar to ordered resolution with selection, used by [?],
but without the ordering constraints.

Notice that, since a term is secret when a fact is not derivable from the clauses, soundness
in terms of security (if the verifier claims that there is no attack, then there is no attack)
corresponds to the completeness of the resolution algorithm in terms of logic programming (if
the algorithm claims that a fact is not derivable, then it is not). The resolution algorithm that
we use must therefore be complete.

4.4.2.1 The Basic Algorithm

Let us first define resolution: when the conclusion of a clause R unifies with a hypothesis of
another (or the same) clause R′, resolution infers a new clause that corresponds to applying R
and R′ one after the other. Formally, resolution is defined as follows:

Definition 4.14 Let R and R′ be two clauses, R = H ⇒ C, and R′ = H ′ ⇒ C ′. Assume that
there exists F0 ∈ H ′ such that C and F0 are unifiable and σ is the most general unifier of C



4.4. THE HORN CLAUSE REPRESENTATION OF PROTOCOLS 59

saturate(R0) =
1. R← ∅.

For each R ∈ R0, R← elim({R} ∪ R).
2. Repeat until a fixpoint is reached

for each R ∈ R such that sel(R) = ∅,
for each R′ ∈ R, for each F0 ∈ sel(R′) such that R ◦F0

R′ is defined,
R← elim({R ◦F0

R′} ∪ R).
3. Return {R ∈ R | sel(R) = ∅}.

Figure 4.8: Resolution algorithm

and F0. In this case, we define R ◦F0
R′ = σ(H ∪ (H ′ \ {F0})) ⇒ σC ′. The clause R ◦F0

R′ is
the result of resolving R′ with R upon F0; it can be inferred from R and R′:

R = H ⇒ C R′ = H ′ ⇒ C ′

R ◦F0
R′ = σ(H ∪ (H ′ \ {F0}))⇒ σC ′

For example, ifR is the clause (4.2), R′ is the clause (4.1), and the fact F0 is F0 = attacker(aenc(m, pk(sk))),
then R ◦F0

R′ is

attacker(pk(x)) ∧ attacker(x)⇒ attacker(sign(k[pk(x)], skA[ ]))

with the substitution σ = {sk 7→ x,m 7→ sign(k[pk(x)], skA[ ])}.
We guide the resolution by a selection function:

Definition 4.15 A selection function sel is a function from clauses to sets of facts, such that
sel(H ⇒ C) ⊆ H. If F ∈ sel(R), we say that F is selected in R. If sel(R) = ∅, we say that no
hypothesis is selected in R, or that the conclusion of R is selected.

The resolution algorithm is correct (sound and complete) with any selection function, as we
show below. However, the choice of the selection function can change dramatically the behavior
of the algorithm. The essential idea of the algorithm is to combine clauses by resolution only
when the facts unified in the resolution are selected. We will therefore choose the selection
function to reduce the number of possible unifications between selected facts. Having several
selected facts slows down the algorithm, because it has more choices of resolutions to perform,
therefore we will select at most one fact in each clause. In the case of protocols, facts of the
form attacker(x), with x variable, can be unified will all facts of the form attacker(p). Therefore,
we should avoid selecting them. So a basic selection function is a function sel0 that satisfies the
constraint

sel0(H ⇒ C) =

{
∅ if ∀F ∈ H,∃x variable, F = attacker(x)

{F0} where F0 ∈ H and ∀x variable, F0 6= attacker(x)
(4.3)

The resolution algorithm is described in Figure 4.8. It transforms the initial set of clauses
into a new one that derives the same facts.

The resolution algorithm, saturate(R0), contains 3 steps.

• The first step inserts in R the initial clauses representing the protocol and the attacker
(clauses that are in R0), after elimination of subsumed clauses by elim: if R′ subsumes R,
and R and R′ are in R, then R is removed by elim(R).

• The second step is a fixpoint iteration that adds clauses created by resolution. The
resolution of clauses R and R′ is added only if no hypothesis is selected in R and the
hypothesis F0 of R′ that we unify is selected. When a clause is created by resolution, it
is added to the set of clauses R. Subsumed clauses are eliminated from R.



60 CHAPTER 4. UNBOUNDED PROCESS VERIFICATION

• At last, the third step returns the set of clauses of R with no selected hypothesis.

Basically, saturate preserves derivability (it is both sound and complete):

Theorem 4.2 (Correctness of saturate) Let F be a closed fact. F is derivable from R0 if
and only if it is derivable from saturate(R0).

This result is proved by transforming a derivation of F from R0 into a derivation of F from
saturate(R0). Basically, when the derivation contains a clause R′ with sel(R′) 6= ∅, we replace
in this derivation two clauses R, with sel(R) = ∅, and R′ that have been combined by resolution
during the execution of saturate with a single clause R ◦F0

R′. This replacement decreases the
number of clauses in the derivation, so it terminates, and, upon termination, all clauses of the
obtained derivation satisfy sel(R′) = ∅ so they are in saturate(R0). A detailed proof is given in
Section 4.4.2.2.

Usually, resolution with selection is used for proofs by refutation. That is, the negation of
the goal F is added to the clauses, under the form of a clause without conclusion: F ⇒. The
goal F is derivable if and only if the empty clause “⇒” can be derived. Here, for non-closed
goals, we also want to be able to know which instances of the goal can be derived. That is why
we prove that the clauses in saturate(R0) derive the same facts as the clauses in R0.

We can determine which instances of pred (p1, . . . , pn) are derivable, as follows:

Corollary 4.1 Let solveR0
(pred(p1, . . . , pn)) = {H ⇒ pred(p′1, . . . , p

′
n) | H ⇒ pred ′(p′1, . . . ,

p′n) ∈ saturate(R′0)}, where pred
′ is a new predicate and R′0 = R0∪{pred(p1, . . . , pn)⇒ pred ′(p1,

. . . , pn)}.
The fact σpred(p1, . . . , pn) is derivable from R0 if and only if there exists a clause H ⇒

pred(p′1, . . . , p
′
n) in solveR0

(pred(p1, . . . , pn)) and a substitution σ′ such that σ′pred(p′1, . . . , p
′
n) =

σpred(p1, . . . , pn) and σ′H is derivable from R′0.

Proof : The fact σpred(p1, . . . , pn) is derivable fromR0 if and only if σpred ′(p1, . . . , pn) is deriv-
able from R′0, so by Theorem 4.2, if and only if σpred ′(p1, . . . , pn) is derivable from saturate(R′0),
so if and only if there exists a clause H ⇒ pred(p′1, . . . , p

′
n) in solveR0

(pred(p1, . . . , pn)) and a
substitution σ′ such that σ′pred(p′1, . . . , p

′
n) = σpred (p1, . . . , pn) and σ′H is derivable from

saturate(R′0), that is, from R
′
0. ⊓⊔

In particular, if solveR0
(attacker(p)) = ∅, then attacker(p) is not derivable from R0 (and

if solveR0
(attacker(p)) is not empty for the selection function sel0, at least one instance of

attacker(p) is derivable, since H will contain facts of the form attacker(x), an instance of which
is derivable by attacker(a[ ])).

4.4.2.2 Proofs

In this section, we detail the proof of Theorem 4.2. We first need to prove a few preliminary
lemmas. The first one shows that two nodes in a derivation can be replaced by one when
combining their clauses by resolution.

Lemma 4.1 (Resolution) Consider a derivation containing a node η′, labeled R′. Let F0 be
a hypothesis of R′. Then there exists a son η of η′, labeled R, such that the edge η′ → η is
labeled by an instance of F0, R ◦F0

R′ is defined, and one obtains a derivation of the same fact
by replacing the nodes η and η′ with a node η′′ labeled R′′ = R ◦F0

R′.

Proof : This proof is illustrated in Figure 4.9. Let R′ = H ′ ⇒ C ′, H ′1 be the multiset
of the labels of the outgoing edges of η′, and C ′1 the label of its incoming edge. We have
R′ ⊒ (H ′1 ⇒ C ′1), so there exists a substitution σ such that σH ′ ⊆ H ′1 and σC ′ = C ′1. Since
F0 ∈ H ′, σF0 ∈ H ′1, so there is an outgoing edge of η′ labeled σF0. Let η be the node at the



4.4. THE HORN CLAUSE REPRESENTATION OF PROTOCOLS 61

η′′R′′

η′

η

R′

R

C ′1

H1

H ′1

C ′1

H1 ∪ (H ′1 \ {σF0})

σF0

Figure 4.9: Merging of nodes of Lemma 4.1

end of this edge, let R = H ⇒ C be the label of η. We rename the variables of R so that they
are distinct from the variables of R′. Let H1 be the multiset of the labels of the outgoing edges
of η. So R ⊒ (H1 ⇒ σF0). By the above choice of distinct variables, we can then extend σ so
that σH ⊆ H1 and σC = σF0.

The edge η′ → η is labeled σF0, instance of F0. Since σC = σF0, the facts C and F0 are
unifiable, so R◦F0

R′ is defined. Let σ′ be the most general unifier of C and F0, and σ′′ such that
σ = σ′′σ′. We have R ◦F0

R′ = σ′(H ∪ (H ′ \ {F0}))⇒ σ′C ′. Moreover, σ′′σ′(H ∪ (H ′ \ {F0})) ⊆
H1 ∪ (H

′
1 \ {σF0}) and σ′′σ′C ′ = σC ′ = C ′1. Hence R′′ = R ◦F0

R′ ⊒ (H1 ∪ (H
′
1 \ {σF0}))⇒ C ′1.

The multiset of labels of outgoing edges of η′′ is precisely H1 ∪ (H ′1 \ {σF0}) and the label of
its incoming edge is C ′1, therefore we have obtained a correct derivation by replacing η and η′

with η′′. ⊓⊔

Lemma 4.2 (Subsumption) If a node η of a derivation D is labeled by R, then one obtains
a derivation D′ of the same fact as D by relabeling η with a clause R′ such that R′ ⊒ R.

Proof : Let H be the multiset of labels of outgoing edges of the considered node η, and C be
the label of its incoming edge. We have R ⊒ H ⇒ C. By transitivity of ⊒, R′ ⊒ H ⇒ C. So
we can relabel η with R′. ⊓⊔

Lemma 4.3 (Saturation) At the end of saturate, R satisfies the following properties:

1. For all R ∈ R0, R is subsumed by a clause in R;

2. Let R ∈ R and R′ ∈ R. Assume that sel(R) = ∅ and there exists F0 ∈ sel(R′) such that
R ◦F0

R′ is defined. In this case, R ◦F0
R′ is subsumed by a clause in R.

Proof : To prove the first property, let R ∈ R0. We show that, after the addition of R to R,
R is subsumed by a clause in R.

In the first step of saturate, we execute the instruction R← elim({R} ∪R). After execution
of this instruction, R is subsumed by a clause in R.

Assume that we execute R ← elim({R′′} ∪ R) for some clause R′′ and that, before this
execution, R is subsumed by a clause in R, say R′. If R′ is removed by this instruction, there
exists a clause R′1 in R that subsumes R′, so by transitivity of subsumption, R′1 subsumes R,
hence R is subsumed by the clause R′1 ∈ R after this instruction. If R′ is not removed by this
instruction, then R is subsumed by the clause R′ ∈ R after this instruction.

Hence, at the end of saturate, R is subsumed by a clause inR, which proves the first property.



62 CHAPTER 4. UNBOUNDED PROCESS VERIFICATION

In order to prove the second property, we just need to notice that the fixpoint is reached at
the end of saturate, so R = elim({R ◦F0

R′} ∪R). Hence, R ◦F0
R′ is eliminated by elim, so it is

subsumed by some clause in R. ⊓⊔

Proof of Theorem 4.2: Assume that F is derivable from R0 and consider a derivation of F from
R0. We show that F is derivable from saturate(R0).

We consider the value of the set of clauses R at the end of saturate. For each clause R in R0,
R is subsumed by a clause in R (Lemma 4.3, Property 1). So, by Lemma 4.2, we can replace
all clauses R in the considered derivation with a clause in R. Therefore, we obtain a derivation
D of F from R.

Next, we build a derivation of F from R1, where R1 = saturate(R0). If D contains a node
labeled by a clause not in R1, we can transform D as follows. Let η′ be a lowest node of D
labeled by a clause not in R1. So all sons of η′ are labeled by elements of R1. Let R′ be the
clause labeling η′. Since R′ /∈ R1, sel(R

′) 6= ∅. Take F0 ∈ sel(R′). By Lemma 4.1, there exists
a son of η of η′ labeled by R, such that R ◦F0

R′ is defined, and we can replace η and η′ with a
node η′′ labeled by R ◦F0

R′. Since all sons of η′ are labeled by elements of R1, R ∈ R1. Hence
sel(R) = ∅. So, by Lemma 4.3, Property 2, R ◦F0

R′ is subsumed by a clause R′′ in R. By
Lemma 4.2, we can relabel η′′ with R′′. The total number of nodes strictly decreases since η
and η′ are replaced with a single node η′′.

So we obtain a derivation D′ of F from R, such that the total number of nodes strictly
decreases. Hence, this replacement process terminates. Upon termination, all clauses are in R1.
So we obtain a derivation of F from R1, which is the expected result.

For the converse implication, notice that, if a fact is derivable from R1, then it is derivable
from R, and that all clauses added to R do not create new derivable facts: if a fact is derivable
by applying the clause R ◦F0

R′, then it is also derivable by applying R and R′. ⊓⊔

4.4.2.3 Optimizations

The resolution algorithm uses several optimizations, in order to speed up resolution. The first
two are standard, while the last three are specific to protocols.

Elimination of duplicate hypotheses If a clause contains several times the same hypothe-
ses, the duplicate hypotheses are removed, so that at most one occurrence of each hypothesis
remains.

Elimination of tautologies If a clause has a conclusion that is already in the hypotheses,
this clause is a tautology: it does not derive new facts. Such clauses are removed.

Elimination of hypotheses attacker(x) If a clause H ⇒ C contains in its hypotheses
attacker(x), where x is a variable that does not appear elsewhere in the clause, then the hypoth-
esis attacker(x) is removed. Indeed, the attacker always has at least one message, so attacker(x)
is always satisfied for some value of x.

Decomposition of data constructors A data constructor is a constructor f of arity n that
comes with associated destructors gi for i ∈ {1, . . . , n} defined by gi(f(x1, . . . , xn))→ xi. Data
constructors are typically used for representing data structures. Tuples are examples of data
constructors. For each data constructor f , the following clauses are generated:

attacker(x1) ∧ . . . ∧ attacker(xn)⇒ attacker(f(x1, . . . , xn)) (Rf)

attacker(f(x1, . . . , xn))⇒ attacker(xi) (Rg)



4.4. THE HORN CLAUSE REPRESENTATION OF PROTOCOLS 63

Therefore, attacker(f(p1, . . . , pn)) is derivable if and only if ∀i ∈ {1, . . . , n}, attacker(pi) is deriv-
able. When a fact of the form attacker(f(p1, . . . , pn)) is met, it is replaced with attacker(p1) ∧
. . . ∧ attacker(pn). If this replacement is done in the conclusion of a clause H ⇒ attacker(f(p1,
. . . , pn)), n clauses are created: H ⇒ attacker(pi) for each i ∈ {1, . . . , n}. This replacement is
of course done recursively: if pi itself is a data constructor application, it is replaced again. The
clauses (Rf) and (Rg) for data constructors are left unchanged. (When attacker(x) cannot be
selected, the clauses (Rf) and (Rg) for data constructors are in fact not necessary, because they
generate only tautologies during resolution. However, when attacker(x) can be selected, which
cannot be excluded with certain extensions, these clauses may become necessary for soundness.)

Secrecy assumptions When the user knows that a fact will not be derivable, he can tell it
to the verifier. (When this fact is of the form attacker(p), the user tells that p remains secret.)
The tool then removes all clauses which have this fact in their hypotheses. At the end of the
computation, the tool checks that the fact is indeed underivable from the obtained clauses. If
the user has given erroneous information, an error message is displayed. Even in this case, the
verifier never wrongly claims that a protocol is secure.

Mentioning such underivable facts prunes the search space, by removing useless clauses. This
speeds up the resolution algorithm. In most cases, the secret keys of the principals cannot be
known by the attacker. So, examples of underivable facts are attacker(skA[ ]), attacker(skB[ ]),
. . .

For simplicity, the proofs given in Section 4.4.2.2 do not take into account these optimiza-
tions. For a full proof, we refer the reader to [?, Appendix C].

4.4.2.4 Termination

In general, the resolution algorithm may not terminate. (The derivability problem is undecid-
able.) In practice, however, it terminates in most examples.

Blanchet and Podelski have shown that it always terminates on a large and interesting
class of protocols, the tagged protocols [?]. They consider protocols that use as cryptographic
primitives only public-key encryption and signatures with atomic keys, shared-key encryption,
message authentication codes, and hash functions. Basically, a protocol is tagged when each
application of a cryptographic primitive is marked with a distinct constant tag. It is easy
to transform a protocol into a tagged protocol by adding tags. For instance, our example of
protocol can be transformed into a tagged protocol, by adding the tags c0, c1, c2 to distinguish
the encryptions and signature:

Message 1. A→ B : {(c1, {(c0, k)}skA
)}pkB

Message 2. B → A : {(c2, s)}k

Adding tags preserves the expected behavior of the protocol, that is, the attack-free executions
are unchanged. In the presence of attacks, the tagged protocol may be more secure. Hence,
tagging is a feature of good protocol design, as explained e.g. in [?]: the tags are checked when
the messages are received; they facilitate the decoding of the received messages and prevent
confusions between messages. More formally, tagging prevents type-flaw attacks [?], which
occur when a message is taken for another message. However, the tagged protocol is potentially
more secure than its untagged version, so, in other words, a proof of security for the tagged
protocol does not imply the security of its untagged version. (Note that the tagging scheme
considered here differs from the tagging schemes of Section 6.3.)

To illustrate the effect of tagging, we consider the Needham-Schroeder shared-key protocol.
The algorithm does not terminate on its original version, which is untagged. It terminates after



64 CHAPTER 4. UNBOUNDED PROCESS VERIFICATION

adding tags. In this protocol, we have two messages of the form:

Message 4. B → A : {NB}K

Message 5. A→ B : {NB − 1}K

where NB is a nonce. Representing this with a function minusone(x) = x − 1, the algorithm
does not terminate.

Indeed, message 5 is represented by a clause of the form:

H ∧ attacker(senc(n, k))⇒ attacker(senc(minusone(n), k))

where the hypothesis H describes other messages previously received by A. After some resolu-
tion steps, we obtain a clause of the form

attacker(senc(n,K))⇒ attacker(senc(minusone(n),K)) (Loop)

for some term K. The fact attacker(senc(minusone(NB),K)) is also derived, so a resolution step
with (Loop) yields: attacker(senc(minusone(minusone(NB)),K)). This can again be resolved
with (Loop), so that we finally have a cycle that derives attacker(senc(minusonen(NB),K)) for
all n.

When tags are added, the rule (Loop) becomes:

attacker(senc((c1, n),K))⇒ attacker(senc((c2,minusone(n)),K)) (NoLoop)

and the previous loop is removed because c2 does not unify with c1. The fact attacker(senc((c2,
minusone(NB)),K)) is derived, but this does not yield a loop.

Other authors have proved related results: Ramanujan and Suresh [?] have shown that
secrecy is decidable for tagged protocols. However, their tagging scheme is stronger since it
forbids blind copies. A blind copy happens when a protocol participant sends back part of a
message he received without looking at what is contained inside this part. On the other hand,
they obtain a decidability result, while [?] obtains a termination result for an algorithm which
is sound, efficient in practice, but approximate. Arapinis and Duflot [?] extend this result but
still forbid blind copies. Comon-Lundh and Cortier [?] show that an algorithm using ordered
binary resolution, ordered factorization and splitting terminates on protocols that blindly copy
at most one term in each message. In contrast, the result of [?] puts no limit on the number of
blind copies, but requires tagging.

For protocols that are not tagged, heuristics have been designed to adapt the selection
function in order to obtain termination more often. We refer the reader to [?, Section 8.2] for
more details.

It is also possible to obtain termination in all cases at the cost of additional abstractions.
For instance, Goubault-Larrecq shows that one can abstract the clauses into clauses in the
decidable class H1 [?], by losing some relational information on the messages.

4.5 Translation from the Pi Calculus

Given a closed process P0 in the language of Section 4.3 and a set of names S, ProVerif builds a
set of Horn clauses, representing the protocol in parallel with any S-adversary, in the same style
as the clauses presented in the previous section. This translation was originally given in [?].
The clauses use facts defined by the following grammar:

F ::= facts
attacker(p) attacker knowledge
mess(p, p′) message on a channel



4.5. TRANSLATION FROM THE PI CALCULUS 65

The fact attacker(p) means that the attacker may have p, and the fact mess(p, p′) means that
the message p′ may appear on channel p. The clauses are of the form F1 ∧ . . .∧Fn ⇒ F , where
F1, . . . , Fn, F are facts. They comprise clauses for the attacker and clauses for the protocol,
defined below. These clauses form the set RP0,S.

4.5.1 Clauses for the Attacker

The abilities of the attacker are represented by the following clauses:

For each a ∈ S, attacker(a[ ]) (Init)

attacker(b0[ ]) (Rn)

For each public constructor f of arity n,

attacker(x1) ∧ . . . ∧ attacker(xn)⇒ attacker(f(x1, . . . , xn))
(Rf)

For each destructor g,

for each rewrite rule g(M1, . . . ,Mn)→M in def(g),

attacker(M1) ∧ . . . ∧ attacker(Mn)⇒ attacker(M)

(Rg)

mess(x, y) ∧ attacker(x)⇒ attacker(y) (Rl)

attacker(x) ∧ attacker(y)⇒ mess(x, y) (Rs)

The clause (Init) represents the initial knowledge of the attacker. The clause (Rn) means that
the attacker can generate new names. The clauses (Rf) and (Rg) mean that the attacker can
apply all operations to all terms it has, (Rf) for constructors, (Rg) for destructors. For (Rg),
notice that the rewrite rules in def(g) do not contain names and that terms without names are
also patterns, so the clauses have the required format. Clause (Rl) means that the attacker can
listen on all channels it has, and (Rs) that it can send all messages it has on all channels it has.

If c ∈ S, we can replace all occurrences of mess(c[ ], p) with attacker(p) in the clauses. Indeed,
these facts are equivalent by the clauses (Rl) and (Rs).

4.5.2 Clauses for the Protocol

When a function ρ associates a pattern with each name and variable, and f is a constructor,
we extend ρ as a substitution by ρ(f(M1, . . . ,Mn)) = f(ρ(M1), . . . , ρ(Mn)).

The translation [[P ]]ρH of a process P is a set of clauses, where ρ is a function that associates
a pattern with each name and variable, and H is a sequence of facts of the form mess(p, p′).
The environment ρ maps each variable and name to its associated pattern representation. The
sequence H keeps track of messages received by the process, since these may trigger other
messages. The empty sequence is denoted by ∅; the concatenation of a fact F to the sequence
H is denoted by H ∧ F .

[[0]]ρH = ∅

[[P ‖ Q]]ρH = [[P ]]ρH ∪ [[Q]]ρH

[[!P ]]ρH = [[P ]]ρH

[[new a.P ]]ρH = [[P ]](ρ[a 7→ a[p′1, . . . , p
′
n] ])H

where H = mess(p1, p
′
1) ∧ . . . ∧mess(pn, p

′
n)

[[in(M,x).P ]]ρH = [[P ]](ρ[x 7→ x])(H ∧mess(ρ(M), x))

[[out(M,N).P ]]ρH = [[P ]]ρH ∪ {H ⇒ mess(ρ(M), ρ(N))}

[[let x = g(M1, . . . ,Mn) in P else Q]]ρH =
⋃
{[[P ]]((σρ)[x 7→ σ′p′])(σH)

| g(p′1, . . . , p
′
n)→ p′ is in def(g) and (σ, σ′) is a most general pair of

substitutions such that σρ(M1) = σ′p′1, . . . , σρ(Mn) = σ′p′n} ∪ [[Q]]ρH



66 CHAPTER 4. UNBOUNDED PROCESS VERIFICATION

[[let x = M in P ]]ρH = [[P ]](ρ[x 7→ ρ(M)])H

[[if M = N then P else Q]]ρH = [[P ]](σρ)(σH) ∪ [[Q]]ρH

where σ is the most general unifier of ρ(M) and ρ(N)

The translation of a process is a set of Horn clauses that express that it may send certain
messages.

• The nil process does nothing, so its translation is empty.

• The clauses for the parallel composition of processes P and Q are the union of clauses for
P and Q.

• The replication is ignored, because all Horn clauses are applicable arbitrarily many times.

• For the restriction, we replace the restricted name a in question with the pattern a[p′1,
. . . , p′n], where p′1, . . . , p

′
n are the previous inputs.

• The sequence H is extended in the translation of an input, with the input in question.

• The translation of an output adds a clause, meaning that the output is triggered when all
conditions in H are true.

• The translation of a destructor application is the union of the clauses for the cases where
the destructor succeeds (with an appropriate substitution) and where the destructor fails.
For simplicity, we assume that the else branch of destructors may always be executed;
this is sufficient in most cases, since the else branch is often empty or just sends an error
message. For a more precise treatment, see [?, Section 9.2].

• The conditional if M = N then P else Q is in fact equivalent to let x = equal(M,N) in P
else Q, where the destructor equal is defined by equal(x, x)→ x, so the translation of the
conditional is a particular case of the destructor application. We give it explicitly since it
is particularly simple.

This translation of the protocol into Horn clauses introduces approximations. The actions
are considered as implicitly replicated, since the clauses can be applied any number of times.
This approximation implies that the tool fails to prove protocols that first need to keep some
value secret and later reveal it. For instance, consider the process new d.(out(d, s).out(c, d) ‖
in(d, x)). This process preserves the secrecy of s, because s is output on the private channel d and
received by the input on d, before the adversary gets to know d by the output of d on the public
channel c. However, the Horn clause method cannot prove this property, because it treats this
process like a variant with additional replications new d.(!out(d, s).out(c, d) ‖ !in(d, x)), which
does not preserve the secrecy of s.

4.5.2.1 Summary and Correctness

Let ρ = {a 7→ a[ ] | a ∈ fn(P0)}. We define the clauses corresponding to the process P0 as:

RP0,S = [[P0]]ρ∅ ∪ {attacker(a[ ]) | a ∈ S} ∪ {(Rn), (Rf), (Rg), (Rl), (Rs)}

Exercice 21
Translate the process of Section 4.3.2 into clauses. Compare with the clauses given in Section 4.4.

Exercice 22
Translate the process of Exercise 19 into clauses.



4.5. TRANSLATION FROM THE PI CALCULUS 67

Theorem 4.3 (Correctness of the clauses) Let P0 be a closed process. Let M be a closed
term and p be the pattern obtained from the term M by replacing all names a with a[ ]. If
attacker(p) is not derivable from RP0,S, then P0 preserves the secrecy of M from S.

The proof of this result relies on a type system to express the soundness of the clauses on
P0, and on the subject reduction of this type system to show that soundness of the clauses is
preserved during all executions of the process. This technique was introduced in [?] where a
similar result is proved. [?] also shows an equivalence between an instance of a generic type
system for proving secrecy properties of protocols and the Horn clause verification method. This
instance is the most precise instance of this generic type system.

By combining Theorem 4.3 with Corollary 4.1, we obtain:

Corollary 4.2 Let P0 be a closed process. Let M be a closed term and p be the pattern obtained
from the term M by replacing all names a with a[ ]. If solveRP0,S

(attacker(p)) = ∅, then P0

preserves the secrecy of M from S.

4.5.3 Extension to Equational Theories

ProVerif has been extended to handle primitives defined by equational theories [?]. The term
algebra consists of constructors equipped with an equational theory, defined by a finite set of
equations. For example, we can model a symmetric encryption scheme in which decryption
always succeeds (but may return a meaningless message) by the equations

sdec(senc(x, y), y) = x

senc(sdec(x, y), y) = x
(4.4)

where senc and sdec are constructors. The first equation is standard; the second one makes it
possible to avoid that the equality test senc(sdec(M,N), N) = M reveals that M is a ciphertext
under N . These equations are satisfied by block ciphers, which are bijective.

We can also model the Diffie-Hellman key agreement [?] using equations. The Diffie-Hellman
key agreement relies on the following property of modular exponentiation: (ga)b = (gb)a =
gab in a cyclic multiplicative subgroup G of Z∗p, where p is a large prime number and g is a

generator of G, and on the assumption that it is difficult to compute gab from ga and gb, without
knowing the random numbers a and b (computational Diffie-Hellman assumption), or on the
stronger assumption that it is difficult to distinguish ga, gb, gab from ga, gb, gc without knowing
the random numbers a, b, and c (decisional Diffie-Hellman assumption). These properties are
exploited to establish a shared key between two participants A and B of a protocol: A chooses
randomly a and sends ga to B; symmetrically, B chooses randomly b and sends gb to A. A
can then compute (gb)a, since it has a and receives gb, while B computes (ga)b. These two
values being equal, they can be used to compute the shared key. The adversary, on the other
hand, has ga and gb but not a and b so by the computational Diffie-Hellman assumption, it
cannot compute the key. (This exchange resists passive attacks only; to resist active attacks,
we need additional ingredients, for instance signatures.) We can model the Diffie-Hellman key
agreement by the equation [?, ?]

exp(exp(g, x), y) = exp(exp(g, y), x) (4.5)

where g is a constant and exp is modular exponentiation. Obviously, this is a basic model: it
models the main functional equation but misses many algebraic relations that exist in the group
G.

The main idea of our extension to equations is to translate these equations into a set of
rewrite rules associated to constructors. For instance, the equations (4.4) are translated into



68 CHAPTER 4. UNBOUNDED PROCESS VERIFICATION

the rewrite rules

senc(x, y)→ senc(x, y) sdec(x, y)→ sdec(x, y)

senc(sdec(x, y), y)→ x sdec(senc(x, y), y)→ x
(4.6)

while the equation (4.5) is translated into

exp(x, y)→ exp(x, y) exp(exp(g, x), y) → exp(exp(g, y), x) (4.7)

Intuitively, these rewrite rules allow one, by applying them exactly once for each constructor, to
obtain the various forms of the terms modulo the considered equational theory.2 The construc-
tors are then simply evaluated like destructors in the calculus above. One has formally defined
when a set of rewrite rules models an equational theory, and designed algorithms that compute
from the equations the rewrite rules that model the equational theory in question [?, Section 5].
Then, each trace in the calculus with equational theory corresponds to a trace in the calculus
with rewrite rules, and conversely [?, Lemma 1].3 We are then reduced to the simpler case in
which there are no equations. The main advantage of this technique is that resolution can still
use ordinary syntactic unification (instead of having to use unification modulo the equational
theory), and therefore remains efficient.

This extension to equations still has limitations: it does not allow us to model associative
operations, such as exclusive or, since this would require an infinite number of rewrite rules. It
may be possible to handle these symbols using unification modulo the equational theory instead
of syntactic unification, at the cost of a larger complexity. In the case of a bounded number of
sessions, exclusive or is handled in [?, ?] and a more complete theory of modular exponentiation
is handled in [?]. A unification algorithm for modular exponentiation is presented in [?]. For an
unbounded number of sessions, extensions of the Horn clause approach that can handle XOR
and Diffie-Hellman key agreements with more detailed algebraic relations (including equations
of the multiplicative group modulo p) have been proposed by Küsters and Truderung: they
handle XOR provided one of its two arguments is a constant in the clauses that model the
protocol [?] and Diffie-Hellman key agreements provided the exponents are constants in the
clauses that model the protocol [?]; they proceed by transforming the initial clauses into richer
clauses on which the standard resolution algorithm is applied.

4.5.4 Extension to Scenarios with Several Phases

In some protocol studies, we consider scenarios in which a certain process is executed, then, in
a second phase, this process stops and another process starts. For instance, when we model the
compromise of long term keys, we consider that, in a first phase, the protocol runs normally,
then, in a second phase, some keys are published. We aim at determining which secrets of
the sessions of the protocol run in the first phase are preserved even though some keys are
compromised. (This is the notion of forward secrecy.)

Such scenarios can be represented in ProVerif thanks to an extension of the syntax: the
process phase n.P represents a process P that runs in phase number n. The system first runs
the processes in phase 0. Then, at some point during execution, it moves to phase 1. At this
point, only the processes phase n.P for n ≥ 1 ready to run are kept (that is, the processes in
phase 0 are stopped) and the processes phase 1.P are executed. Then, we move to phase 2, and
so on.

This extension is translated into Horn clauses as follows. We consider predicates attackern
and messn for each phase n, instead of the predicates attacker and mess. The clauses for the

2The rewrite rules like sdec(x, y) → sdec(x, y) are necessary so that sdec always succeeds. Thanks to this rule,
the evaluation of sdec(M,N) succeeds and leaves this term unchanged when M is not of the form senc(M ′, N).

3More precisely, the inequality tests of (Red Destr 2) must still be performed modulo the equational theory,
even in the calculus with rewrite rules.



4.6. EXTENSION TO CORRESPONDENCES 69

protocol use the predicate messn to translate the process P in phase n.P ; the clauses for the
adversary are repeated for each attackern. Moreover, the clauses

attackern(x)⇒ attackern+1(x) (Rp)

for all n transmit the knowledge of the adversary from one phase to the next.
This extension was presented in [?, Section 8] and [?, Section 9.3]. An application of this

extension will be mentioned in Section 4.7.1.

4.6 Extension to Correspondences

In this section, we extend the translation of the process calculus to Horn clauses, defined in the
previous section for secrecy, to the proof of correspondences.

4.6.1 From Secrecy to Correspondences

In the analysis for secrecy, when attacker(p) is derivable from the clauses the attacker may
have p, that is, when attacker(p) is not derivable from the clauses, we are sure that the attacker
cannot have p, but the converse is not true, because the Horn clauses can be applied any number
of times, which is not true in general for all actions of the process. Similarly, when mess(p, p′)
is derivable from the clauses, the message p′ may be sent on channel p. Hence the analysis
overapproximates the execution of actions.

Let us now consider that we want to prove a correspondence, for instance event(e1(x))  
event(e2(x)). In order to prove this correspondence, we can overapproximate the executions of
event e1: if we prove the correspondence with this overapproximation, it will also hold in the
exact semantics. So we can easily extend our analysis for secrecy with an additional predicate
event, such that event(p) means that event(p) may have been executed. We generate clauses
mess(p1, p

′
1) ∧ . . . ∧mess(pn, p

′
n) ⇒ event(p) when the process executes event(p) after receiving

p′1, . . . , p
′
n on channels p1, . . . , pn respectively. However, such an overapproximation cannot be

done for the event e2: if we prove the correspondence after overapproximating the execution of
e2, we are not really sure that e2 will be executed, so the correspondence may be wrong in the
exact semantics. Therefore, we have to use a different method for treating e2.

We use the following idea: we fix the exact set E of allowed events e2(p) and, in order to
prove event(e1(x))  event(e2(x)), we check that only events e1(p) for p such that e2(p) ∈ E
can be executed. If we prove this property for any value of E , we have proved the desired
correspondence. So we introduce a predicatem-event, such that m-event(e2(p)) is true if and only
if e2(p) ∈ E . We generate clauses mess(p1, p

′
1)∧ . . .∧mess(pn, p

′
n)∧m-event(e2(p0))⇒ mess(p, p′)

when the process outputs p′ on channel p after executing the event e2(p0) and receiving p′1, . . . ,
p′n on channels p1, . . . , pn respectively. In other words, the output of p′ on channel p can be
executed only when m-event(e2(p0)) is true, that is, e2(p0) ∈ E . (When the output of p′ on
channel p is under several events, the clause contains several m-event facts in its hypothesis. We
also have similar clauses with event(e1(p)) instead of mess(p, p′) when the event e1 is executed
after executing e2 and receiving p′1, . . . , p

′
n on channels p1, . . . , pn respectively.)

For instance, if the events e2(p1) and e2(p2) are executed in a certain trace of the protocol,
we define E = {e2(p1), e2(p2)}, so that m-event(e2(p1)) and m-event(e2(p2)) are true and all
other m-event facts are false. Then we show that the only events e1 that may be executed
are e1(p1) and e1(p2). We prove a similar result for all values of E , which proves the desired
correspondence.

In order to determine whether a fact is derivable from the clauses, we use a resolution-based
algorithm. The resolution is performed for an unknown value of E . So, basically, we keep
m-event facts without trying to evaluate them (which we cannot do since E is unknown). In
the vocabulary of resolution, we never select m-event facts. Thus the obtained result holds for



70 CHAPTER 4. UNBOUNDED PROCESS VERIFICATION

any value of E , which allows us to prove correspondences. In order to prove the correspondence
event(e1(x))  event(e2(x)), we show that event(e1(p)) is derivable only when m-event(e2(p))
holds. We transform the initial set of clauses into a set of clauses that derives the same facts.
If, in the obtained set of clauses, all clauses that conclude event(e1(p)) contain m-event(e2(p)) in
their hypotheses, then event(e1(p)) is derivable only when m-event(e2(p)) holds, so the desired
correspondence holds.

We still have to solve one problem: the reasoning above does not take into account that
patterns p which occur in clauses differ from terms M , which represent messages. In patterns,
we use a special encoding of names: a name a created by a restriction new a is represented by
a function a[p1, . . . , pn] of the messages p1, . . . , pn received above the restriction, so that names
created after receiving different messages are distinguished in the analysis (which is important
for the precision of the analysis). However, this encoding still merges names created by the
same restriction after receiving the same messages. For example, in the process !in(c, x)new a,
the names created by new a are represented by a[x], so several names created for the same
value of x are merged. This merging is not acceptable for the verification of correspondences,
because when we prove event(e1(x)) event(e2(x)), we must make sure that x contains exactly
the same names in e1(x) and in e2(x). In order to solve this problem, we label each replication
with a session identifier i, which is an integer that takes a different value for each copy of the
process generated by the replication. We add session identifiers as arguments to our encoding
of names, which becomes a[M1, . . . ,Mn, i1, . . . , in′ ] where i1, . . . , in′ are the session identifiers
of the replications above the restriction new a. For example, in the process !in(c, x)new a, the
names created by new a are represented by a[x, i]. Each execution of the restriction is then
associated with a distinct value of the session identifiers i1, . . . , in′ , so each name has a distinct
encoding. We detail and formalize this encoding in Section 4.6.2.

4.6.2 Instrumented Processes

We consider a closed process P0 representing the protocol we wish to verify. We assume that
the bound names of P0 have been renamed so that they are pairwise distinct and distinct from
names in S∪fn(P0) and in the correspondence to prove. We denote by Q a particular adversary;
below, we prove the correspondence properties for any Q. Furthermore, we assume that, in the
initial configuration E0, {P0, Q}, the names of E0 not in S ∪ fn(P0) or in the correspondence
to prove have been renamed to fresh names, and the bound names of Q have been renamed
so that they are pairwise distinct and fresh. (These renamings do not change the satisfied
correspondences, since new a.P and the renamed process new a′.P{a′/a} reduce to the same
configuration by (Red Res).)

In order to define formally the patterns associated with a name, we use a notion of instru-
mented processes. The syntax of instrumented processes is defined as follows:

• The replication !P is labeled with a variable i in the set Vs of variable session identifiers
(disjoint from the set Vo of ordinary variables): !iP . The process !iP represents copies of
P for a countable number of values of i. The variable i is a session identifier. It indicates
which copy of P , that is, which session, is executed.

• The restriction new a.P is labeled with a restriction label ℓ: new a : ℓ.P , where ℓ is
either a[M1, . . . ,Mn, i1, . . . , in′ ] for restrictions in honest processes or b0[a[i1, . . . , in′ ]] for
restrictions in the adversary. The symbol b0 is a special name function symbol, distinct
from all other such symbols. Using a specific instrumentation for the adversary is helpful
so that all names generated by the adversary are encoded by instances of b0[x]. They
are therefore easy to generate. This labeling of restrictions is similar to a Church-style
typing: ℓ can be considered as the type of a. (This type is polymorphic since it can contain
variables.)



4.6. EXTENSION TO CORRESPONDENCES 71

The instrumented processes are then generated by the following grammar:

P,Q ::= instrumented processes
!iP replication
new a : ℓ.P restriction
. . . (as in the standard calculus)

For instrumented processes, a semantic configuration S,E,P consists of a set S of session
identifiers that have not yet been used by P, an environment E that is a mapping from names
to closed patterns of the form a[. . .], and a finite multiset of instrumented processes P. The first
semantic configuration uses any countable set of session identifiers S0. The domain of E must
always contain all free names of processes in P, and the initial environment maps all names a
to the pattern a[ ]. The semantic rules (Red Repl) and (Red Res) become:

S,E,P ∪ { !iP } → S \ {λ}, E,P ∪ {P{λ/i}, !iP } where λ ∈ S (Red Repl)

S,E,P ∪ { new a : ℓ.P }

→ S,E[a′ 7→ E(ℓ) ],P ∪ {P{a′/a} } if a′ /∈ Dom(E)
(Red Res)

where the mapping E is extended to all terms as a substitution by E(f(M1, . . . ,Mn)) =
f(E(M1), . . . , E(Mn)) and to restriction labels by E(a[M1, . . . ,Mn, i1, . . . , in′ ]) = a[E(M1),
. . . , E(Mn), i1, . . . , in′ ] and E(b0[a[i1, . . . , in′ ]]) = b0[a[i1, . . . , in′ ]], so that it maps terms and
restriction labels to patterns. The rule (Red Repl) takes an unused constant session identifier λ
in S, and creates a copy of P with session identifier λ. The rule (Red Res) creates a fresh name
a′, substitutes it for a in P , and adds to the environment E the mapping of a′ to its encoding
E(ℓ). Other semantic rules E,P → E,P ′ simply become S,E,P → S,E,P ′.

The instrumented process P ′0 = instr(P0) associated with the process P0 is built from P0 as
follows:

• We label each replication !P of P0 with a distinct, fresh session identifier i, so that it
becomes !iP .

• We label each restriction new a of P0 with a[t, s], so that it becomes new a : a[t, s], where
s is the sequence of session identifiers that label replications above new a in the abstract
syntax tree of P ′0, in the order from top to bottom; t is the sequence of variables x that store
received messages in inputs in(M,x) above new a in P0 and results of non-deterministic
destructor applications let x = g(. . .) in P else Q above new a in P0. (A destructor is said to
be non-deterministic when it may return several different results for the same arguments.
Adding the result of destructor applications to t is useful to improve precision, only for
non-deterministic destructors. For deterministic destructors, the result of the destructor
can be uniquely determined from the other elements of t, so the addition is useless. If
we add the result of non-deterministic destructors to t, we can show that the relative
completeness result of [?] still holds in the presence of non-deterministic destructors. This
result shows that, for secrecy, the Horn clause approach is at least as precise as a large
class of type systems.)

Hence names are represented by functions a[t, s] of the inputs and results of destructor
applications in t and the session identifiers in s. In each trace of the process, at most one
name corresponds to a given a[t, s], since different copies of the restriction have different
values of session identifiers in s. Therefore, different names are not merged by the verifier.

For the adversary, we use a slightly different instrumentation. We build the instrumented
process Q′ = instrAdv(Q) as follows:

• We label each replication !P of Q with a distinct, fresh session identifier i, so that it
becomes !iP .



72 CHAPTER 4. UNBOUNDED PROCESS VERIFICATION

• We label each restriction new a of Q with b0[a[s]], so that it becomes new a : b0[a[s]],
where s is the sequence of session identifiers that label replications above new a in Q′.
(Including the session identifiers as arguments of nonces is necessary for soundness, as
discussed in Section 4.6.1. Including the messages previously received as arguments of
nonces is important for precision in the case of honest processes, in order to relate the
nonces to these messages. It is however useless for the adversary: since we consider any
S-adversary Q, we have no definite information on the relation between nonces generated
by the adversary and messages previously received by the adversary.)

Example 4.1 The instrumentation of the example process of Section 4.3.4.2 is

PA(skA, pkA) = !iA in(c, x pkB).event(eA(x pkB)).out(c, pkA).in(c, x b).

out(c, sign((pkA, x pkB , x b), skA))

PB(skB , pkB , pkA) = !iB in(c, x pkA).new b : b[x pkA, iB ].out(c, b).in(c,m).

if (x pkA, pkB, b) = check(m,x pkA) then

if x pkA = pkA then event(eB(pkB))

P = new skA : skA[ ].new skB : skB [ ].let pkA = pk(skA) in let pkB = pk(skB) in

out(c, pkA).out(c, pkB).(PA(skA, pkA) ‖ PB(skB , pkB, pkA))

The replications are instrumented with session identifiers iA and iB respectively, and the re-
striction new b is instrumented with the pattern b[x pkA, iB ].

The semantics of instrumented processes allows exactly the same communications and events
as the one of standard processes. More precisely, let P be a multiset of instrumented processes.
We define unInstr(P) as the multiset of processes of P without the instrumentation. We define
that an instrumented trace executes an event event(M) (at step τ) by naturally extending
Definitions 4.4 and 4.7. Thus we have:

Proposition 4.1 If E0, {P0, Q} →
∗ E1,P1, then there exist E′1 and P ′1 such that for any S,

countable set of session identifiers, there exists S′ such that S, {a 7→ a[ ] | a ∈ E0}, {instr(P0),
instrAdv(Q)} →∗ S′, E′1,P

′
1, Dom(E′1) = E1, unInstr(P ′1) = P1, and both traces execute the

same events at the same steps.
Conversely, if S, {a 7→ a[ ] | a ∈ E0}, {instr(P0), instrAdv(Q)} →∗ S′, E′1,P

′
1, then E0, {P0,

Q} →∗ Dom(E′1),unInstr(P
′
1), and both traces execute the same events at the same steps.

Proof : This is an easy proof by induction on the length of the traces. The reduction rules
applied in both traces are rules with the same name. ⊓⊔

We say that event(p) is executed (at step τ) in the instrumented trace T = S0, E0,P0 →
∗

S′, E′,P ′ when there exists a term M such that event(M) is executed (at step τ) in T and
E′(M) = p.

4.6.3 Generation of Horn Clauses and Resolution

Given a closed process P0 and a set of names S, ProVerif first instruments P0 to obtain P ′0 =
instr(P0), then it builds a set of Horn clauses, representing the protocol in parallel with any
S-adversary. The clauses use the facts:

F ::= facts
attacker(p) attacker knowledge
mess(p, p′) message on a channel
m-event(p) must-event
event(p) may-event



4.6. EXTENSION TO CORRESPONDENCES 73

The predicates attacker and mess are as before. The fact m-event(p) means that event(M) must
have been executed with M corresponding to p, and event(p) that event(M) may have been
executed with M corresponding to p. The clauses are of the form F1 ∧ . . .∧Fn ⇒ F , where F1,
. . . , Fn, F are facts. They comprise clauses for the attacker and clauses for the protocol, defined
below. These clauses form the set RP ′

0
,S.

The clauses describing the attacker are almost the same as for the verification of secrecy
in Section 4.5.1. The only difference is that, here, the attacker is given an infinite set of fresh
names b0[x], instead of only one fresh name b0[ ]. Indeed, we cannot merge all fresh names
created by the attacker, since we have to make sure that different terms are represented by
different patterns for the verification of correspondences to be correctly implemented, as seen
in Section 4.6.1. So the clause (Rn) becomes attacker(b0[x]).

The clauses for the protocol are modified as follows:

[[!iP ]]ρH = [[P ]](ρ[i 7→ i])H

[[new a : a[M1, . . . ,Mn, i1, . . . , in′ ].P ]]ρH =

[[P ]](ρ[a 7→ a[ρ(M1), . . . , ρ(Mn), ρ(i1), . . . , ρ(in′)] ])H

[[event(M).P ]]ρH = [[P ]]ρ(H ∧m-event(ρ(M))) ∪ {H ⇒ event(ρ(M))}

The other cases are the same as for secrecy.

• The replication only inserts the new session identifier i in the environment ρ. It is otherwise
ignored, because all Horn clauses are applicable arbitrarily many times.

• For the restriction, we replace the restricted name a in question with the pattern a[ρ(M1),
. . . , ρ(Mn), ρ(i1), . . . , ρ(in′)]. By definition of the instrumentation, this pattern contains
the previous inputs, results of non-deterministic destructor applications, and session iden-
tifiers.

• The translation of an event adds the hypothesis m-event(ρ(M)) to H, meaning that P
can be executed only if the event has been executed first. Furthermore, it adds a clause,
meaning that the event is triggered when all conditions in H are true.

Remark 4.2 Depending on the form of the correspondences we want to prove, we can some-
times simplify the clauses generated for events. Suppose that all arguments of events in the
process and in correspondences are of the form f(M1, . . . ,Mn) for some function symbol f .

If, for a certain function symbol f , events event(f(. . .)) occur only before  in the desired
correspondences, then it is easy to see in the following theorems that hypotheses of the form
m-event(f(. . .)) in clauses can be removed without changing the result, so the clauses generated
by the event event(M) when M is of the form f(. . .) can be simplified into:

[[event(M).P ]]ρH = [[P ]]ρH ∪ {H ⇒ event(ρ(M))}

(Intuitively, since the events event(f(. . .)) occur only before  in the desired correspondences,
we never prove that an event event(f(. . .)) has been executed, so the facts m-event(f(. . .)) are
useless.)

Similarly, if event(f(. . .)) occurs only after  in the desired correspondences, then clauses
that conclude a fact of the form event(f(. . .)) can be removed without changing the result, so the
clauses generated by the event event(M) when M is of the form f(. . .) can be simplified into:

[[event(M).P ]]ρH = [[P ]]ρ(H ∧m-event(ρ(M)))

(Intuitively, since the events event(f(. . .)) occur only after  in the desired correspondences,
we never prove properties of the form “if event(f(. . .)) has been executed, then . . . ”, so clauses
that conclude event(f(. . .)) are useless.)



74 CHAPTER 4. UNBOUNDED PROCESS VERIFICATION

Let ρ = {a 7→ a[ ] | a ∈ fn(P ′0)}. We define the clauses corresponding to the instrumented
process P ′0 as:

RP ′
0
,S = [[P ′0]]ρ∅ ∪ {attacker(a[ ]) | a ∈ S} ∪ {(Rn), (Rf), (Rg), (Rl), (Rs)}

Exercice 23
Give the clauses for the process of Section 4.3.4.2.

Exercice 24
Model mutual authentication in the Needham-Schroeder public-key protocol (see Figure 1.1),
by correspondences in a process. Give the corresponding Horn clauses.

Theorem 4.4 (Correctness of the clauses) Let P0 be a closed process and Q be an S-
adversary. Let P ′0 = instr(P0) and Q′ = instrAdv(Q). Consider a trace T = S0, E0, {P

′
0,

Q′} →∗ S′, E′,P ′, with fn(P ′0) ∪ S ⊆ Dom(E0) and E0(a) = a[ ] for all a ∈ Dom(E0). Assume
that, if T executes event(p), then m-event(p) ∈ Fme. Finally, assume that T executes event(p′).
Then event(p′) is derivable from RP ′

0
,S ∪ Fme.

This result shows that, if the only executed events are those allowed in Fme and an event
event(p′) is executed, then event(p′) is derivable from the clauses. It is proved in [?, Appendix B],
using a technique similar to that for secrecy.

We use the same resolution algorithm as for secrecy, except that we never select facts
m-event(p). So the selection function becomes

sel1(H ⇒ C) =





∅ if ∀F ∈ H, F = attacker(x) for some variable x or

F = m-event(p) for some pattern p

{F0} where F0 ∈ H and F0 6= attacker(x) for any variable x and

F0 6= m-event(p) for any pattern p

(4.8)

By adapting the proof of Theorem 4.2, taking into account that we never select m-event(p),
we obtain:

Theorem 4.5 (Correctness of saturate) Let F be a closed fact. F is derivable from R0∪Fme

if and only if F is derivable from saturate(R0) ∪ Fme.

Corollary 4.3 Let solveR0
(pred(p1, . . . , pn)) = {H ⇒ pred(p′1, . . . , p

′
n) | H ⇒ pred ′(p′1, . . . ,

p′n) ∈ saturate(R′0)}, where pred
′ is a new predicate and R′0 = R0∪{pred(p1, . . . , pn)⇒ pred ′(p1,

. . . , pn)}.
The fact σpred (p1, . . . , pn) is derivable from R0 ∪ Fme if and only if there exists a clause

H ⇒ pred (p′1, . . . , p
′
n) in solveR0

(pred (p1, . . . , pn)) and a substitution σ′ such that σ′pred(p′1, . . . ,
p′n) = σpred (p1, . . . , pn) and σ′H is derivable from R′0 ∪ Fme.

Theorem 4.6 below states formally how we can interpret the result of resolution in terms of
executed events. It is proved by combining Corollary 4.3 and Theorem 4.4.

Theorem 4.6 (Main theorem for events) Let P0 be a closed process and P ′0 = instr(P0).
Let Q be an S-adversary and Q′ = instrAdv(Q).

Consider a trace T = S0, E0, {P ′0, Q
′} →∗ S′, E′, P ′, with fn(P ′0)∪S ⊆ Dom(E0) and E0(a) =

a[ ] for all a ∈ Dom(E0).

If T executes an instance event(p′) of event(p), then there exist a clause H ⇒ C ∈ solveRP ′
0
,S
(event(p))

and a substitution σ such that event(p′) = σC and, for all m-event(p′′) in σH, T executes
event(p′′).



4.6. EXTENSION TO CORRESPONDENCES 75

Proof : Let Fme = {m-event(p′′) | T executes event(p′′)}. By Theorem 4.4, since T executes
event(p′), event(p′) is derivable from RP ′

0
,S ∪ Fme. By Corollary 4.3, there exist a clause R =

H ⇒ C in solveRP ′
0
,S
(event(p)) and a substitution σ such that σC = event(p′) and all elements

of σH are derivable from R′0 ∪ Fme. For all m-event(p) in σH, m-event(p) is derivable from
R′0 ∪ Fme. Since no clause in R′0 has a conclusion of the form m-event( ), m-event(p) ∈ Fme.
Given the choice of Fme, this means that T executes event(p). ⊓⊔

4.6.4 Non-injective correspondences

Theorem 4.7 Let P0 be a closed process and P ′0 = instr(P0). Let Mk (k ∈ {1, . . . , l}) and M
be terms. Let pk, p be the patterns obtained by replacing names a with patterns a[ ] in the terms
Mk,M respectively. Assume that, for all clauses R in solveRP ′

0
,S
(event(p)), there exist σ′ and

H such that R = H ∧m-event(σ′p1) ∧ . . . ∧m-event(σ′pl)⇒ σ′event(p).

Then P0 satisfies the correspondence event(M) 
∧l

k=1 event(Mk) against S-adversaries.

Proof : Let Q be an S-adversary and Q′ = instrAdv(Q). Consider a trace T = E0, {P0,
Q} →∗ E′,P ′ with fn(P ′0) ∪ S ∪ fn(M) ∪

⋃
k fn(Mk) ⊆ E0 that executes σevent(M) for some

substitution σ. Let T ′ = S0, {a 7→ a[ ] | a ∈ E0}, {P
′
0, Q

′} →∗ S′1, E
′
1,P

′
1 be the corresponding

instrumented trace, which executes event(E′1(σM)), instance of event(p). By Theorem 4.6, there
exist R = H ′ ⇒ C ′ ∈ solveRP ′

0
,S
(event(p)) and σ′′ such that event(E′1(σM)) = σ′′C ′ and for all

m-event(p′′) in σ′′H ′, T ′ executes event(p′′). All clauses R in solveRP ′
0
,S
(event(p)) are of the form

H ∧m-event(σ′p1) ∧ . . . ∧m-event(σ′pl)⇒ σ′event(p) for some σ′. So, there exists σ′ such that
for all k ∈ {1, . . . , l}, m-event(σ′pk) ∈ H ′ and C ′ = σ′event(p). Hence event(E′1(σM)) = σ′′C ′ =
σ′′σ′event(p) and for all k ∈ {1, . . . , l}, m-event(σ′′σ′pk) ∈ σ′′H ′, so T ′ executes event(σ′′σ′pk),
hence T executes event(M ′k) for some M ′k such that E′1(M

′
k) = σ′′σ′pk = σ′′σ′E′1(Mk). We also

have E′1(σM) = σ′′σ′p = σ′′σ′E′1(M). Since E′1 defines a suitable relation between terms and
patterns (more precisely, using [?, Lemma 9]), there exists a substitution σ0 such that for all
k ∈ {1, . . . , l}, M ′k = σ0Mk and σM = σ0M . So σM = σ0M and for all k ∈ {1, . . . , l}, T
executes event(M ′k) = event(σ0Mk), so we have the result. ⊓⊔

Example 4.2 For the process P of Section 4.3.4.2, letting P ′ = instr(P ) and S = {c}, we
have solveRP ′,S

(event(eB(x))) = {m-event(eA(pk(skB [ ]))) ⇒ event(eB(pk(skB[ ])))} so we have
proved the correspondence event(eB(x)) event(eA(x)).

4.6.5 Sketch for injective correspondences

Let P0 be a closed process and P ′0 = instr′(P0). We adapt the generation of clauses as follows:
the set of clauses R′P ′

0
,S is defined as RP ′

0
,S except that

[[out(M,N).P ]]ρH = [[P ]]ρH ∪ {H{ρ|Vo∪Vs
/�} ⇒ mess(ρ(M), ρ(N))}

[[!iP ]]ρH = [[P ]](ρ[i 7→ i])(H{ρ|Vo∪Vs
/�})

[[event(M, i).P ]]ρH = [[P ]]ρ(H ∧m-event(ρ(M),�)) ∪ {H{ρ|Vo∪Vs
/�} ⇒ event(ρ(M), i)}

where � is a special variable. The predicate event has as additional argument the session
identifier in which the event is executed. The predicate m-event has as additional argument
an environment ρ that contains the variables that have a single value for each execution of the
considered event event(M, i) and that are defined when we generate the clause. These variables
are the variables that are defined above the first replication that follows event(M, i) and above
the output or event that generates the clause. The special variable � is a placeholder for this
environment ρ.



76 CHAPTER 4. UNBOUNDED PROCESS VERIFICATION

Proposition 4.2 (Injective correspondences) Let P0 be a closed process, P ′0 = instr′(P0).
We assume that, in P0, all events are of the form event(f(M1, . . . ,Mn)) and that different
occurrences of event have different root function symbols.

Let Mk (k ∈ {1, . . . , l}) and M be terms. Let pk, p be the patterns obtained by replacing
names a with patterns a[ ] in the terms Mk,M respectively.

We also assume that p is of the form f(. . .) for some function symbol f and that, for all k,
pk = fk(. . .) for some function symbol fk.

Let solveR′
P ′
0
,S
(event(p, i)) = {Rr | r ∈ {1, . . . , n}}. Assume that there exist xk, ir, and ρrk

(r ∈ {1, . . . , n}, k ∈ {1, . . . , l}) such that

• For all r ∈ {1, . . . , n}, there exist H and σ such that Rr = H ∧m-event(σp1, ρr1) ∧ . . . ∧
m-event(σpl, ρrl)⇒ event(σp, ir).

• For all r and r′ in {1, . . . , n}, for all k ∈ {1, . . . , l}, ρrk(xk){λ/ir} does not unify with
ρr′k(xk){λ

′/ir′} when λ 6= λ′.

Then P0 satisfies the correspondence

event(M) 

l∧

k=1

inj event(Mk)

against S-adversaries.

By Theorem 4.7, after deleting session identifiers and environments, the first item shows that
P ′0 satisfies the correspondence

event(M) 

l∧

k=1

event(Mk) (4.9)

The environments and session identifiers as well as the second item serve in proving injec-
tivity. Denote by an unknown term. If two instances of event(p, i) are executed in P ′0, by
the first item, they are instances of event(σrp, ir) for some r, so they are event(σ′1σr1p, σ

′
1ir1)

and event(σ′2σr2p, σ
′
2ir2) for some σ′1 and σ′2. Furthermore, there is only one occurrence of

event(f(. . .), i) in P ′0, so the event event(f(. . .), i) can be executed at most once for each value
of the session identifier i, so σ′1ir1 6= σ′2ir2 . Then, by the first item, corresponding events
event(σ′1σr1pk, ) and event(σ′2σr2pk, ) have been executed, with associated environments σ′1ρr1k
and σ′2ρr2k. By the second item, ρr1k(xk){λ1/ir1} does not unify with ρr2k(xk){λ2/ir2} for dif-
ferent values λ1 = σ′1ir1 and λ2 = σ′2ir2 of the session identifier. (In this condition, r1 can
be equal to r2, and when r1 = r2 = r, the condition simply means that ir occurs in ρrk.)
So σ′1ρr1k(xk) 6= σ′2ρr2k(xk), so the events event(σ′1σr1pk, ) and event(σ′2σjr2pk, ) are distinct,
which shows injectivity. This point is very similar to the fact that injective agreement is im-
plied by non-injective agreement when the parameters of events contain nonces generated by
the agent to whom authentication is being made, because the event can be executed at most
once for each value of the nonce. (The session identifier ir in our theorem plays the role of the
nonce.) [Andrew Gordon, personal communication].

For the detailed proof of this result and more general results on correspondences, we refer
to [?], in particular Section 7.2.

Example 4.3 For the process P of Section 4.3.4.2, letting P ′ = instr(P ) and S = {c}, we
obtain solveR′

P ′,S
(event(eB(x, iB))) = {m-event(eA(pk(skB[ ])), {x b 7→ b[pk(skA[ ]), iB ], x pkB 7→

pk(skB[ ])})⇒ event(eB(pk(skB [ ])), iB)}, so we have proved the correspondence event(eB(x)) 
inj event(eA(x)) because iB occurs in ρ = {x b 7→ b[pk(skA[ ]), iB ], x pkB 7→ pk(skB [ ])}. (If
distinct events eB are executed, they have different values of iB, so they correspond to different
values of ρ, and to distinct events eA.)



4.7. EXTENSION TO THE PROOF OF OBSERVATIONAL EQUIVALENCES 77

4.7 Extension to the Proof of Observational Equivalences

We now present the extension of ProVerif to the proof of observational equivalences, which was
introduced in [?]. This section is adapted from that paper.

We focus on proving equivalences P ≈ Q in which P and Q are two processes that differ
only in the choice of some terms. These equivalences arise often in applications. ProVerif proves
these equivalences by proving a stronger equivalence that can be expressed as a property on the
traces of a process that represents P and Q at the same time.

We first introduce a minor extension of the syntax of processes:

D ::= term evaluations
M term
f(D1, . . . ,Dn) constructor application
g(D1, . . . ,Dn) destructor evaluation

P,Q ::= processes
. . . (as in Figure 4.2)
let x = D in P else Q term evaluation

This extension allows to evaluate several destructors in one step. This can help the proof of
equivalences succeed more often: if a destructor g1 fails in P but succeeds in Q, and a subsequent
destructor g2 fails in Q, the proof of equivalence will succeed if we evaluate g1 and g2 in one
step (the term evaluation fails in both P and Q), but fail if we evaluate them separately, even
if the processes P and Q are actually equivalent.

The semantics is defined as in 4.3, except that (Red Destr 1) and (Red Destr 2) are replaced
with (Red Fun 1) and (Red Fun 2) defined below. They use as auxiliary relation the term
evaluation relation D ⇓M , which means that D evaluates to the term M , and is formally
defined as follows:

M ⇓M
f(D1, . . . ,Dn)⇓ f(N1, . . . , Nn) if for all i, Di ⇓Ni

g(D1, . . . ,Dn)⇓σN if g(N1, . . . , Nn)→ N ∈ def(g) and, for all i, Di ⇓σNi

let x = D in P else Q→ P{M/x}
if D ⇓M (Red Fun 1)

let x = D in P else Q→ Q
if there is no M such that D ⇓M (Red Fun 2)

Next we introduce a new calculus that can represent pairs of processes that have the same
structure and differ only by the terms and term evaluations that they contain. We call such
a pair of processes a biprocess. The grammar for the calculus is a simple extension of the
grammar of Figure 4.2, with additional cases so that diff[M,M ′] is a term and diff[D,D′] is
a term evaluation. We also extend the definition of contexts to permit the use of diff, and
sometimes refer to contexts without diff as plain contexts.

Given a biprocess P , we define two processes fst(P ) and snd(P ), as follows: fst(P ) is obtained
by replacing all occurrences of diff[M,M ′] with M and diff[D,D′] with D in P , and similarly,
snd(P ) is obtained by replacing diff[M,M ′] with M ′ and diff[D,D′] with D′ in P . We define
fst(D), fst(M), snd(D), and snd(M) similarly. Our goal is to show that the processes fst(P ) and
snd(P ) are observationally equivalent:

Definition 4.16 Let P be a closed biprocess. We say that P satisfies observational equivalence
when fst(P ) ≈ snd(P ).

The semantics for biprocesses is defined as in Figure 4.3 with generalized rules (Red I/O),
(Red Fun 1), and (Red Fun 2) given in Figure 4.10. Reductions for biprocesses bundle those



78 CHAPTER 4. UNBOUNDED PROCESS VERIFICATION

out(N,M).Q ‖ in(N ′, x).P → Q ‖ P{M/x} (Red I/O)
if fst(N) = fst(N ′) and snd(N) = snd(N ′)

let x = D in P else Q→ P{diff[M1,M2]/x} (Red Fun 1)
if fst(D)⇓M1 and snd(D)⇓M2

let x = D in P else Q→ Q (Red Fun 2)
if there is no M1 such that fst(D)⇓M1 and
there is no M2 such that snd(D)⇓M2

Figure 4.10: Generalized rules for biprocesses

for processes: if P → Q then fst(P ) → fst(Q) and snd(P ) → snd(Q). Conversely, however,
reductions in fst(P ) and snd(P ) need not correspond to any biprocess reduction, in particular
when they do not match up. Our first theorem shows that the processes are equivalent when
this does not happen.

Definition 4.17 We say that the biprocess P is uniform when fst(P )→ Q1 implies that P → Q
for some biprocess Q with fst(Q) ≡ Q1, and symmetrically for snd(P )→ Q2.

Theorem 4.8 Let P0 be a closed biprocess. If, for all plain evaluation contexts C and reductions
C[P0]→

∗ P , the biprocess P is uniform, then P0 satisfies observational equivalence.

Proof : Let P be a closed biprocess such that C[P ]→∗≡ Q always yields a uniform biprocess
Q, and consider the relation

R = {(Q1, Q2) | ∃Q,C such that Q1 ≡ fst(Q), Q2 ≡ snd(Q), and C[P ]→∗≡ Q}

In particular, we have fst(P ) R snd(P ), so we can show that P satisfies observational equivalence
by establishing that the relation R′ = R ∪ R−1 meets the three conditions of Definition 4.10.
By symmetry, we focus on R. Assume Q1 R Q2. We have Q1 ≡ fst(Q), Q2 ≡ snd(Q), and
C[P ]→∗≡ Q for some C and Q. We show that

1. if P ↓M then Q ↓M ;

2. if P → P ′ then Q→ Q′ and P ′ R Q′ for some Q′;

3. C[P ] R C[Q] for all evaluation contexts C.

It is then easy to conclude the three conditions of Definition 4.10.

1. Assume Q1 ↓M , and let TM = in(M,x).out(c, c) for some fresh name c. As usual in the
pi calculus, the predicate ↓M tests the ability to send any message on M , hence for any
plain process Qi, we have Qi ↓M if and only if Qi ‖ TM → Ri ‖ out(c, c) for some Ri.

Here, we have Q1 ‖ TM → R1 ‖ out(c, c) for some R1. Since Q1 ≡ fst(Q), fst(Q) ‖
TM → R1 ‖ out(c, c). The reductions C[P ] →∗≡ Q imply C[P ] ‖ TM →

∗≡ Q ‖ TM . By
hypothesis (with the context C[ ] ‖ TM ), Q ‖ TM is uniform, hence Q ‖ TM → Q′ for some
Q′ with fst(Q′) ≡ R1 ‖ out(c, c). Since c does not occur anywhere in Q, by case analysis
on this reduction step with our semantics for biprocesses we obtain Q′ ≡ R ‖ out(c, c) for
some biprocess R. Thus, we obtain snd(Q) ‖ TM → snd(R) ‖ out(c, c), so Q2 ‖ TM →
snd(R) ‖ out(c, c), and finally snd(Q) ↓M .

2. IfQ1 → Q′1, then fst(Q)→ Q′1, so by uniformity, we haveQ→ Q′ with fst(Q′) ≡ Q′1. Thus,
C[P ] →∗≡→ Q′ and, by definition of R, we obtain Q′1 R snd(Q′). Finally, by definition
of the semantics of biprocesses, Q→ Q′ implies snd(Q)→ snd(Q′), so Q2 → snd(Q′).



4.7. EXTENSION TO THE PROOF OF OBSERVATIONAL EQUIVALENCES 79

3. Let C ′ be a plain evaluation context. By definition of the semantics of biprocesses,
C[P ] →∗≡ Q always implies C ′[C[P ]] →∗≡ C ′[Q]. Moreover, C ′[Q1] ≡ C ′[fst(Q)] =
fst(C ′[Q]) and C ′[Q2] ≡ C ′[snd(Q)] = snd(C ′[Q]), hence C ′[Q1] R C ′[Q2]. ⊓⊔

Our plan is to establish the hypothesis of Theorem 4.8 by automatically verifying that all
the biprocesses P in question meet conditions that imply uniformity. The next corollary details
those conditions, which guarantee that a communication and an evaluation, respectively, succeed
in fst(P ) if and only if they succeed in snd(P ):

Corollary 4.4 Let P0 be a closed biprocess. Suppose that, for all plain evaluation contexts C,
all evaluation contexts C ′, and all reductions C[P0]→

∗ P ,

1. if P ≡ C ′[out(N,M).Q ‖ in(N ′, x).R], then fst(N) = fst(N ′) if and only if snd(N) =
snd(N ′),

2. if P ≡ C ′[let x = D in Q else R], then there exists M1 such that fst(D)⇓M1 if and only
if there exists M2 such that snd(D)⇓M2.

Then P0 satisfies observational equivalence.

Proof : We show that P is uniform, then we conclude by Theorem 4.8. Let us show that, if
fst(P ) → P ′1 then there exists a biprocess P ′ such that P → P ′ and fst(P ′) ≡ P ′1. The case for
snd(P )→ P ′2 is symmetric.

By induction on the derivation of fst(P )→ P ′1, we first show that there exist C, Q, and Q′1
such that P ≡ C[Q], P ′1 ≡ fst(C)[Q′1], and fst(Q)→ Q′1 using one of the four process rules (Red
I/O), (Red Fun 1), (Red Fun 2), or (Red Repl): every step in this derivation trivially commutes
with fst, except for structural steps that involve a parallel composition and a restriction, in case
a ∈ fn(P ) but a /∈ fn(fst(P )). In that case, we use a preliminary renaming from a to some fresh
a′ /∈ fn(P ).

For each of these four rules, relying on a hypothesis of Corollary 4.4, we find Q′ such that
fst(Q′) = Q′1 and Q→ Q′ using the corresponding biprocess rule:

(Red I/O): We have Q = out(N,M).R ‖ in(N ′, x).R′ with fst(N) = fst(N ′) and Q′1 = fst(R) ‖
fst(R′){fst(M)/x}. For Q′ = R ‖ R′{M/x}, we have fst(Q′) = Q′1 and, by hypothesis 1,
snd(N) = snd(N ′), hence Q→ Q′.

(Red Fun 1): We have Q = let x = D in R else R′ with fst(D)⇓M1 and Q′1 = fst(R){M1/x}.
By hypothesis 2, snd(D)⇓M2 for some M2. We take Q′ = R{diff[M1,M2]}, so that
fst(Q′) = Q′1 and Q→ Q′.

(Red Fun 2): We have Q = let x = D in R else R′ with no M1 such that fst(D)⇓M1 and
Q′1 = fst(R′). By hypothesis 2, there is no M2 such that snd(D)⇓M2. We obtain Q→ Q′

for Q′ = R′.

(Red Repl): We have Q = !R and Q′1 = fst(R) ‖ !fst(R). We take Q′ = R ‖ !R, so that
fst(Q′) = Q′1 and Q→ Q′.

To conclude, we take the biprocess P ′ = C[Q′] and the reduction P → P ′. ⊓⊔

Thus, we have a sufficient condition for observational equivalence of biprocesses. This con-
dition is essentially a reachability condition on biprocesses. We adapt existing techniques for
reasoning about processes in order to prove this condition. The condition is however not nec-
essary: if P ≈ Q, then if diff[true, false] = true then P else Q satisfies observational equivalence,
but Theorem 4.8 and Corollary 4.4 will not enable us to prove this fact.



80 CHAPTER 4. UNBOUNDED PROCESS VERIFICATION

Example 4.4 Probabilistic encryption is a variant of public-key encryption that further protects
the secrecy of the plaintext by embedding some additional, fresh value in each encryption. It can
be modeled using three functions for public-key decryption, public-key encryption, and public-key
derivation, linked by the equation

adec(aenc(x, pk(y), z), y) = x

where z is the additional random parameter for the encryption. A key property of probabilistic
encryption is that, without knowledge of the decryption key, ciphertexts appear to be unrelated
to the plaintexts, even if the attacker knows the plaintexts and the encryption key. A strong
version of this property is that the ciphertexts cannot be distinguished from freshly generated
random values. Formally, we state that

new s.(out(c, pk(s)) ‖ !in(c′, x).new a.out(c, diff[aenc(x, pk(s), a), a]))

satisfies equivalence. This biprocess performs a first output to reveal the public key pk(s) (but
not s!), then repeatedly inputs a term x from the environment and either outputs its encryption
under pk(s) or outputs a fresh, unrelated name. Thus, a single biprocess represents the family
of static equivalences that relate a series of probabilistic encryptions for any series of plaintext
to a series of fresh, independent names. (Formally, each such equivalence can be obtained as
a corollary of this biprocess equivalence, by applying the congruence property of equivalence for
the particular context that sends the plaintexts of values on channel c′ and reads the encryption
key and encryptions on channel c.)

As usual, we can prove the reachability properties that occur as assumptions of Corollary 4.4
by translating the process into Horn clauses. Clauses are built from the following predicates:

F ::= facts
attacker′(p, p′) attacker knowledge
mess′(p1, p2, p

′
1, p
′
2) output message p2 on p1 (resp. p′2 on p′1)

input′(p, p′) input on p (resp. p′)
nounif(p, p′) impossible unification
bad bad

Informally, attacker′(p, p′) means that the attacker may obtain p in fst(P ) and p′ in snd(P ) by
the same operations; mess′(p1, p2, p

′
1, p
′
2) means that message p2 may appear on channel p1 in

fst(P ) and that message p′2 may appear on channel p′1 in snd(P ) after the same reductions;
input′(p, p′) means that an input may be executed on channel p in fst(P ) and on channel p′ in
snd(P ), thus enabling the attacker to infer whether p (resp. p′) is equal to another channel used
for output; nounif(p, p′) means that p and p′ cannot be unified by substituting elements of GVar
with patterns; finally, bad serves in detecting violations of observational equivalence: when bad

is not derivable, we have observational equivalence.
An evident difference with respect to previous translations from processes to clauses is that

predicates have twice as many arguments: we use the binary predicate attacker′ instead of the
unary one attacker and the 4-ary predicate mess′ instead of the binary one mess. This extension
allows us to represent information for both variants of a biprocess.

The predicate nounif is not defined by clauses, but by special simplification steps in the
solver. We omit the details of the generation of the clauses and of the resolution algorithm,
which can be found in [?].

Example 4.5 The biprocess of Example 4.4 yields the clauses:

mess′(c, pk(s), c, pk(s))

mess′(c′, x, c′, x′)⇒ mess′(c, aenc(x, pk(s), a[i, x]), c, a[i, x′ ])



4.7. EXTENSION TO THE PROOF OF OBSERVATIONAL EQUIVALENCES 81

The first clause corresponds to the output of the public key pk(s). The second clause corresponds
to the other output: if a message x (resp. x′) is received on channel c′, then the message
aenc(x, pk(s), a[i, x]) in the first variant (resp. a[i, x′] in the second variant) is sent on channel
c. The fresh name a is encoded as a pattern a[i, x].

In a similar way as for previous security properties, we can prove:

Theorem 4.9 If bad is not a logical consequence of the clauses, then P0 satisfies observational
equivalence.

In order to determine whether bad is a logical consequence of the clauses, we use again an
algorithm based on resolution with free selection, adapting the algorithm presented previously,
in particular with specific simplification steps for nounif.

4.7.1 Weak Secrets

A weak secret represents a secret value with low entropy, such as a human-memorizable pass-
word. Protocols that rely on weak secrets are often subject to guessing attacks, whereby an
attacker guesses a weak secret, perhaps using a dictionary, and verifies its guess. The guess ver-
ification may rely on interaction with protocol participants or on computations on intercepted
messages (e.g., [?, ?, ?]). With some care in protocol design, however, those attacks can be
prevented:

• On-line guessing attacks can be mitigated by limiting the number of retries that partic-
ipants allow. An attacker that repeatedly attempts to guess the weak secret should be
eventually detected and stopped if it tries to verify its guesses by interacting with other
participants.

• Off-line guessing attacks can be prevented by making sure that, even if the attacker
(systematically) guesses the weak secret, it cannot verify whether its guess is correct by
computing on intercepted traffic.

Off-line guessing attacks can be explained and modeled in terms of a 2-phase scenario. In
phase 0, on-line attacks are possible, but the weak secret is otherwise unguessable. In phase 1,
the attacker obtains a possible value for the weak secret (intuitively, by guessing it). The
absence of off-line attacks is characterized by an equivalence: the attacker cannot distinguish
the weak secret used in phase 0 from an unrelated fresh value.

In our calculus, we arrive at the following definition:

Definition 4.18 (Weak secrecy) Let P be a closed process with no phase prefix. We say that
P prevents off-line attacks against w when new w.(phase 0.P ‖ phase 1.new w′.out(c, diff[w,w′]))
satisfies observational equivalence.

This definition is in line with the work of Cohen, Corin et al., Delaune and Jacquemard, Drielsma
et al., and Lowe [?, ?, ?, ?, ?, ?]. Lowe uses the model-checker FDR to handle a bounded number
of sessions, while Delaune and Jacquemard give a decision procedure in this case. Corin et
al. give a definition based on equivalence like ours, but do not consider the first, active phase;
they analyze only one session.

As a first example, assume that a principal attempts to prove knowledge of a shared password
w to a trusted server by sending a hash of this password encrypted under the server’s public
key. (For simplicity, the protocol does not aim to provide freshness guarantees, so anyone may
replay this proof.) Omitting the code for the server, a first protocol may be written:

P = new s.out(c, pk(s)).out(c, aenc(h(w), pk(s)))



82 CHAPTER 4. UNBOUNDED PROCESS VERIFICATION

The first output reveals the public key of the server; the second output communicates the proof
of knowledge of w. This protocol does not prevent off-line attacks against w. ProVerif finds an
attack that corresponds to the following adversary:

A = phase 0.in(c, pk).in(c, e).
phase 1.in(c, w).if e = aenc(h(w), pk) then out(Guessed, ())

A corrected protocol uses probabilistic encryption (see Example 4.4):

P = new s, a.out(c, pk(s)).out(c, aenc(h(w), pk(s), a))

ProVerif automatically produces a proof for this corrected protocol.

4.7.2 Authenticity

Abadi and Gordon [?] use equivalences for characterizing authenticity properties, and treat a
variant of the Wide-Mouth-Frog protocol as an example. Essentially, authenticity is defined as
an equivalence between the protocol and a specification. The technique presented here automat-
ically proves authenticity for the one-session version of this protocol [?, Section 3.2.2], thereby
eliminating the need for a laborious manual proof. (Authenticity properties are often formu-
lated as correspondence assertions on behaviors, rather than as equivalences. Those assertions
can also be verified with ProVerif, as shown in Section 4.6.)

4.8 Applications

The automatic protocol verifier ProVerif is available at http://proverif.inria.fr/. It was
successfully applied to many protocols of the literature, to prove secrecy and authentication
properties: flawed and corrected versions of the Needham-Schroeder public-key [?, ?] and shared-
key [?, ?, ?], Woo-Lam public-key [?, ?] and shared-key [?, ?, ?, ?, ?], Denning-Sacco [?, ?],
Yahalom [?], Otway-Rees [?, ?, ?], and Skeme [?] protocols. No false attack occurred in these
tests and the only non-termination cases were some flawed versions of the Woo-Lam shared-
key protocol. The other protocols were verified in less than one second each on a Pentium M
1.8 GHz [?].

Moreover, ProVerif was also used in more substantial case studies:

• Abadi and Blanchet [?] applied it to the verification of a certified email protocol [?]. They
use correspondence properties to prove that the receiver receives the message if and only
if the sender has a receipt for the message. (They use simple manual arguments to take
into account that the reception of sent messages is guaranteed.) One of the tested versions
includes the SSH transport layer in order to establish a secure channel. (Total runtime:
6 min on a Pentium M 1.8 GHz.)

• Abadi, Blanchet, and Fournet [?] studied the JFK protocol (Just Fast Keying) [?], which
was one of the candidates to the replacement of IKE as key exchange protocol in IPSec.
They combined manual proofs and ProVerif to prove correspondences and equivalences.
(Total runtime: 3 min on a Pentium M 1.8 GHz.)

• Blanchet and Chaudhuri [?] studied the secure filesystem Plutus [?] with ProVerif, which
allowed them to discover and fix weaknesses of the initial system.

• Bhargavan et al. [?, ?, ?] use it to build the Web services verification tool TulaFale: Web
services are protocols that send XML messages; TulaFale translates them into the input
format of ProVerif and uses ProVerif to prove the desired security properties.

http://proverif.inria.fr/


4.9. FURTHER READINGS 83

• Bhargavan et al. [?, ?, ?] use ProVerif for verifying implementations of protocols in F#
(a functional language of the Microsoft .NET environment): a subset of F# large enough
for expressing security protocols is translated into the input format of ProVerif. The TLS
protocol, in particular, was studied using this technique [?].

• Canetti and Herzog [?] use ProVerif for verifying protocols in the computational model:
they show that, for a restricted class of protocols that use only public-key encryption, a
proof in the Dolev-Yao model implies security in the computational model, in the universal
composability framework. Authentication is verified using correspondences, while secrecy
of keys corresponds to strong secrecy.

• ProVerif was also used for verifying a certified email web service [?], a certified mailing-list
protocol [?], e-voting protocols [?, ?], the ad-hoc routing protocol ARAN (Authenticated
Routing for Adhoc Networks) [?], and zero-knowledge protocols [?].

Finally, Goubault-Larrecq and Parrennes [?] also use the Horn clause method for analyzing
implementations of protocols written in C. However, they translate protocols into clauses of the
H1 class and use the H1 prover by Goubault-Larrecq [?] rather than ProVerif to prove secrecy
properties of the protocol.

4.9 Further Readings

The verifier ProVerif has been presented in several research papers. The translation from
the spi calculus to Horn clauses for secrecy and its relation with typing was presented in [?].
Its extension to correspondence assertions was presented in [?]. Its extension to the proof of
equivalences, the treatment of equational theories, and the extension to scenarios with several
phases (named stages in [?]) was presented in [?]. ProVerif can also reconstruct attacks against
protocols [?], although we did not detail this point.

4.10 Exercises

Exercice 25
We assume the formal model of cryptography (the so-called Dolev-Yao model) and we consider
the following protocol by Otway and Rees (1987).

Message 1. A→ B : M,A,B, {Na,M,A,B}Kas M,Na fresh

Message 2. B → S : M,A,B, {Na,M,A,B}Kas , {Nb,M,A,B}Kbs
Nb fresh

Message 3. S → B : M, {Na,Kab}Kas , {Nb,Kab}Kbs
Kab fresh

Message 4. B → A : M, {Na,Kab}Kas

Message 5. A→ B : {s}Kab

We recall that the notation above describes the messages exchanged in a correct execution of
the protocol. Three participants are involved in this protocol: A and B aim at establishing a
session, using an authentication server S. In the protocol, A and B are the identities of A and
B; Kas is a long-term key shared between A and S; similarly, Kbs is a key shared between B
and S; M , Na, and Nb are nonces; Kab is the session key between A and B, established by
the protocol (it is chosen by the server S); s is a message that A wants to send to B, with the
guarantee that the adversary will not be able to obtain it. The notation {M}K represents the
shared-key encryption of the message M under the key K.

One shall consider that A is willing to execute the protocol with B, but also with other
participants, which are included in the adversary. However, Message 5 is sent by A only if
its interlocutor is B. (This message is used in order to test that the key Kab shared between



84 CHAPTER 4. UNBOUNDED PROCESS VERIFICATION

two honest participants A and B is really secret.) B is also willing to execute the protocol
not only with A, but also with other participants. The server S is willing to interact with any
participants. The server S has a table that relates the identity of each participant X (A, B,
. . . ) to the secret key Kxs shared between X and S.

1. Explain the actions of the three participants of the protocol: one shall explain how each
participant verifies the messages that he receives and how he constructs the messages that
he sends.

2. Code this protocol in the variant of the spi calculus presented during the course. (One
shall give both the process and the definition of the destructors used in the protocol.)

Indication: In order to represent the table that S has and that relates the identity of each
participant X with the secret key Kxs shared between X and S, one may consider that
the identity X is coded by the term host(Kxs), and that the server uses a function getkey
such that getkey(X) = getkey(host(Kxs)) = Kxs in order to reconstruct the key Kxs from
the identity X.

3. Give the Horn clauses associated to this protocol, in order to show that s is secret. Give
a succinct intuitive explanation of each of these clauses (or groups of clauses).

(Several variants are possible.)

Exercice 26
Similar exercise with the following protocol by Carlsen:

Message 1. A→ B : A,Na Na fresh

Message 2. B → S : A,Na, B,Nb Nb fresh

Message 3. S → B : {Kab, Na, A}Kbs
, {Na, B,Kab}Kas Kab fresh

Message 4. B → A : {Na, B,Kab}Kas , {Na}Kab
, N ′b N ′b fresh

Message 5. A→ B : {N ′b}Kab

Message 6. A→ B : {s}Kab

In this protocol, A and B are the identities of A and B; Kas is a long-term key shared between
A and S; similarly, Kbs is a key shared between B and S; Na, Nb, and N ′b are nonces; Kab is
the session key between A and B, established by the protocol (it is chosen by the server S); s is
a message that A wants to send to B, with the guarantee that the adversary will not be able to
obtain it. The notation {M}K represents the shared-key encryption of the message M under
the key K.

Message 6 is sent by A only if its interlocutor is B. (This message is used in order to test
that the key Kab shared between two honest participants A and B is really secret.)



Chapter 5

Static equivalence

5.1 Definitions and Applications

In the first part we have seen how to verify trace properties such as secrecy, formulated as
non-deducibility, and authentication properties in a symbolic model. Now we will investigate
equivalence properties. These properties formalize the notion of indistinguishability in a sym-
bolic model.

5.1.1 Static equivalence

Remember that messages can be modelled as terms over an abstract algebra: given a set of
function symbols F , a set of names N and a set of variables X we denote the set of all terms
constructed over these sets by T (F ,N ⊎X ). We consider here a slightly simplified setting where
F only contains public symbols, i.e., F = Fpub. Moreover, the algebra will be equipped with
an equational theory. Let us now be a bit more precise.

Definition 5.1 An equational theory E is a set of pairs {(M,N)|M,N ∈ T (F ,N ⊎ X )}. We
define equality modulo E denoted =E to be the smallest equivalence relation such that

• (M,N) ∈ E implies that M =E N ,

• =E is closed under substitutions of terms for variables,

• =E is closed under application of function symbols, i.e. M1 =E N1, . . . ,Mk =E Nk implies
that f(M1, . . . ,Mk) =E f(N1, . . . , Nk) for all f ∈ F of arity k,

• =E is closed under bijective renaming of names.

For convenience in examples we will often just say that E is defined by the equations

M1 = N1 . . . Mn = Nn

rather than writing E = {(M1, N1), . . . , (Mn, Nn)}. So we will for instance define the equational
theory enc which models symmetric encryption and pairings by the equations

proj1(〈x, y〉) = x proj2(〈x, y〉) = y sdec({x}y , y) = x.

Hence we have that proj2(〈n, sdec({s}k, k)〉) =enc s.
In Section 2.1.4 we have already introduced static equivalence. Let us rephrase this definition

now in this slightly simplified setting. We write new n1.σ1 =α new n2.σ2 when these two frames
are the same up to α-conversion, i.e. up to a bijective renaming of the bound names. Before
defining static equivalence between frames we define what it means for two terms to be equal
in a frame. Let phi = new n.σ. We say that (M =E N)φ iff φ =α new n′.σ′ for some n′ and σ′

such that names(M,N) ∩ n′ = ∅ and Mσ′ =E Nσ′.

85



86 CHAPTER 5. STATIC EQUIVALENCE

Definition 5.2 Two frames φ1 = new n1.σ1 and φ2 = new n2σ2 are statically equivalent,
written φ1 ∼E φ2 iff Dom(σ1) = Dom(σ2) and for all terms M,N we have that (M =E N)φ1 ⇔
(M =E N)φ2.

Note that it follows directly from the definition that static equivalence is closed under α-
conversion.

5.1.2 Applications of static equivalence

We have already seen some uses of static equivalence in Section 2.3. There we used static
equivalence to model guessing attacks and to define equivalence properties. We will give here
some additional examples.

Password protocols. It is not always possible to rely on previously shared keys or on an
existing public key infrastructure. In these cases protocols often rely on shared passwords.
However, such passwords are weak secrets and can be subject to brute-force attacks. Brute-
force attacks on passwords are also refered to as dictionnary attacks (refering to a dictionnary
containing all passwords) or guessing attacks (the search space is small enough that the attacker
can guess the password). As we have seen before (Definition 2.3) resistance against offline
guessing attacks can be modelled by the means of static equivalence.

Example 5.1 Let us now consider an example of a password protocol, which indeed resists
offline guessing attacks. The EKE protocol [?] can be described by the following 5 steps.

1. A→ B : {(pk(k))}w (EKE.1)
2. B→ A : {aenc(r, pk(k))}w (EKE.2)
3. A→ B : {na}r (EKE.3)
4. B→ A : {〈na, nb〉}r (EKE.4)
5. A→ B : {nb}r (EKE.5)

This protocol uses both ciphers and public key encryption. It does however not rely on a public
key infrastructure, i.e. we do not assume that public keys are known and can be associated to
a particular identity. In the first step (EKE.1) A generates a new private key k and sends the
corresponding public key pk(k) to B, encrypted (using symmetric encryption) with the shared
password w. Then, B generates a fresh session key r, which he encrypts (using asymmetric
encryption) with the previously received public key pk(k). Finally, he encrypts the resulting
ciphertext with the password w and sends the result to A (EKE.2). The last three steps (EKE.3-
5) perform a handshake to avoid replay attacks. One may note that this is a password-only
protocol. A new private and public key are used for each session and the only shared secret
between different sessions is the password w.

We use the equational theory EKE defined by the equations

adec(aenc(x, pk(y)), y) = x sdec(senc(x, y), y) = x senc(sdec(x, y), y) = x
proj1(〈x1, x2〉) = x1 proj2(〈x1, x2〉) = x2

Note the modelling of ciphers with the additional equation senc(sdec(x, y), y) = x. The fact
that decryption always succeeds is one of the differences between a cipher and a symmetric



5.1. DEFINITIONS AND APPLICATIONS 87

encryption. The protocol can be modeled in our process calculus by new w.(PA || PB) where

PA = new k, na. PB = new r, nb.
out(c, {pk(k)}w)). in(c, y1).
in(c, x1). out(c, {aenc(r, sdec(y1, w))}w).
let ra = adec(sdec(x1, w), k). in(c, y2).
out(c, {na}ra) out(c, {〈sdec(y2, r), nb〉}r).
in(c, x2). in(c, y3)
if proj1(sdec(x2, ra)) = na then if sdec(y3, r) = nb then

out(c, {proj2(sdec(x2, ra))}ra) 0

We use the let construction for readability, with the obvious meaning, i.e., let x = M.P stands
for P{M/x}. An honest execution of this protocol yields the frame new w, k, r, na, nb.σ where

σ = {x1 7→ {pk(k)}w, x2 7→ {aenc(r, pk(k))}w, x3 7→ {na}r, x4 7→ {〈na, nb〉}r, x5 7→ {nb}r}

We indeed have that new w, k, r, na, nb.σ⊎{xw 7→ w} ∼EKE new w,w′, k, r, na, nb.σ⊎{xw 7→ w′}.
Using the tool ProVerif [?] it is possible to show that this equivalence holds for all reachable
frames declaring w as weaksecret.

Remark 5.1 We have used static equivalence to model resistance against guessing attacks. One
can note that the same modelization captures real-or-random properties in general.

Anonymity in electronic voting. Consider the following toy protocol for electronic voting
where a voter sends his vote to an administrator, encrypted with the administrator’s public key
and signed with his private key. When the administrator has received all the votes he decrypts
them and publishes the result. This can be modelled by the following voter and administrator
processes. We consider the same equational theory for asymmetric encryption as before, with
the slight difference that aenc will be a ternary function symbol, modelling randomization of
the encryption.

V = new r; out(c1, sign(aenc(v, r, pk(skA)), skV )

A = in(c1, y); out(c2, adec(check(y, pk(skV )), skA))

To model anonymity we consider two situations each involving two voters. In the first situation
V1 votes v1 and V2 votes v2; in the second situation V1 votes v2 and V2 votes v1, i.e. the two voters
swap their vote. The protocol provides anonymity if these two situations are indistinguishable.
Let σ = {z1 7→ pk(skA), z2 7→ pk(skV1), z3 7→ pk(skV2) model the knowledge of public keys.
The previous scenario can then be modelled by the following two general process:

V P1 = new skA, skV1, skV2;
(σ‖V {skV1/skV }{

v1/v}{
r1/r}‖V {

skV2/skV }{
v2/v}{

r2/r}‖A{
skV1/skV }‖A{

skV2/skV })
V P2 = new skA, skV1, skV2;

(σ‖V {skV1/skV }{
v2/v}{

r1/r}‖V {
skV2/skV }{

v1/v}{
r2/r}‖A{

skV1/skV }‖A{
skV2/skV })

Two frames which can be derived from this protocol are

φ1 = new skA, skV1, skV2, v1, r1, v2, r2;σ⊎
{x1 7→ sign(aenc(v1, r1, pk(skA)), skV1);x2 7→ sign(aenc(v2, r2, pk(skA)), skV2;
x3 7→ v1;x4 7→ v2}

φ2 = new skA, skV1, skV2, v1, r1, v2, r2;σ⊎
{x1 7→ sign(aenc(v2, r1, pk(skA)), skV1);x2 7→ sign(aenc(v1, r2, pk(skA)), skV2;
x3 7→ v1;x4 7→ v2}

and anonymity can be modelled as φ1 ∼E φ2.



88 CHAPTER 5. STATIC EQUIVALENCE

5.1.3 Some properties of static equivalence

We will now show some properties of static equivalence.

Proposition 5.1

new n1.σ1 ∼E new n2.σ2 iff new n1 ⊎m.(σ1 ⊎ θ) ∼E new n2 ⊎m.(σ2 ⊎ θ)

where m ∩ (names(σ1) ∪ names(σ2)) = ∅ and (n1 ∪ n2) ∩ names(θ) = ∅.

A direct corollary of this proposition is the following.

Corollary 5.1

new n1.σ1 ∼E new n2.σ2 and new m1.θ1 ∼E new m2.θ2
iff

new n1 ⊎m1.(σ1 ⊎ θ1) ∼E new n2 ⊎m2.(σ2 ⊎ θ2)

where mi ∩ names(σi) = ∅ and ni ∩ names(θi) = ∅ (i ∈ {1, 2}).

The ⇒ direction can be seen as a composition result provided the frames do not share any
secret name. The ⇐ direction states that whenever two frames are statically equivalent then
any subframe is also statically equivalent.

When proving results on static equivalence it is often more convenient to use the following
equivalent definition of static equivalence.

Definition 5.3 Two frames φ1 = new n.σ1 and φ2 = new n.σ2 (having the same set of restricted
names) are statically equivalent, written φ1 ∼E φ2 iff Dom(σ1) = Dom(σ2) and for all terms
M,N , such that (names(M)∪ names(N))∩n = ∅ we have that Mσ1 =E Nσ1 ⇔Mσ2 =E Nσ2.

We leave it as an exercise to show that these two definitions are equivalent.

Proof : [of Proposition 5.1]
⇒ We will show the contrapositive. Suppose that new n1 ⊎m.(σ1 ⊎ θ) 6∼E new n2 ⊎m.(σ2 ⊎ θ).
Hence there exist two terms M,N such that names(M,N)∩(n1∪n2∪m) = ∅ and M(σ1⊎θ) =E
N(σ1 ⊎ θ) and M(σ2 ⊎ θ) 6=E N(σ2 ⊎ θ) (or vice-versa). As σi are ground M(σi ⊎ θ) = (Mθ)σi
and N(σi ⊎ θ) = (Nθ)σi. Because names(M,N) ∩ (n1 ∪ n2) = ∅ and (n1 ∪ n2) ∩ names(θ) = ∅
we have that names(Mθ,Nθ) ∩ (n1 ∪ n2) = ∅. Hence, Mθ,Nθ gives a valid test to distinguish
new n1.σ1 and new n2.σ2.

⇐ We again show the contrapositive. Suppose that new n1.σ1 6∼E new n2.σ2. Hence there
exist two terms M,N such that names(M,N) ∩ (n1 ∪ n2) = ∅ and Mσ1 =E Nσ1 and Mσ2 6=E
Nσ2 (or vice-versa). Let M ′ and N ′ be two terms obtained from M and N by applying a
bijective renaming of names in names(M,N) ∩ m and variables in Dom(θ) by fresh names.
Hence, names(M ′, N ′) ∩ (m ∪ n1 ∪ n2) = ∅ and vars(M ′, N ′) ∩ Dom(θ) = ∅. Because =E and
6=E are closed under bijective renaming and m ∩ (names(σ1) ∪ names(σ2)) = ∅ we have that
M ′σ1 =E N

′σ1 and M ′σ2 6=E N
′σ2. As vars(M

′, N ′)∩Dom(θ) = ∅ and σi are ground we obtain
that M ′(σ1 ⊎ θ) =E N

′(σ1 ⊎ θ) and M ′(σ2 ⊎ θ) 6=E N
′(σ2 ⊎ θ). ⊓⊔

While composition with shared secrets does not hold in general, resistance against offline
guessing attacks (in the presence of a passive attacker) composes when the same password is
used.

Proposition 5.2

new w.new n1.(σ1 ⊎ {x 7→ w}) ∼E new w.new w′.new n1.(σ1 ⊎ {x 7→ w′})
and new w.new n2.(σ2 ⊎ {x 7→ w}) ∼E new w.new w′.new n2.(σ2 ⊎ {x 7→ w′})

implies that
new w.new n1 ⊎ n2.(σ1 ⊎ σ2 ⊎ {x 7→ w}) ∼E new w.new w′.new n1 ⊎ n2.(σ1 ⊎ σ2 ⊎ {x 7→ w′})



5.2. PROCEDURE FOR SUBTERM CONVERGENT EQUATIONAL THEORIES 89

where w′ 6∈ names(σi) and n1 ∩ names(σ2) = n2 ∩ names(σ1) = ∅.

Exercise 30 will guide us through the proof of this proposition.

5.1.4 Further readings

This section does not give an exhaustive overview of all papers on the subject. The aim is
to give some pointers to the interested reader to papers that are closely related (using similar
techniques and notations) to the subjects covered in this chapter.

Static equivalence was first introduced in the applied pi calculus [?] which is a process
calculus for cryptographic proptocols. In this context it was used to characterize observational
equivalence by a labelled bisimulation, relying on static equivalence. Many properties of static
equivalence were already introduced in that paper. Deducibility and static equivalence for
equational theories are also discussed in detail in [?]. This paper also presents decidability and
complexity results, which we will cover in the next section.

Guessing attacks were first formalized using static equivalence in [?] (other previous formal-
izations not based on static equivalence were presented in [?, ?] but they seem less natural).
Composition results for guessing attacks were shown in [?]: this paper includes Proposition 5.2
showing that offline guessing attacks do compose in the presence of a passive adversary, it is
shown that offline guessing attacks do not compose in general in the presence of an active
adversary, but sufficient conditions are given to achieve this composition.

The modelling of anonymity by the use of static and above all observational equivalence
has been adressed for electronic voting in [?, ?, ?]. Anonymity in a different context is studied
in [?]: there it is shown how to model anonymity in authentication protocols by the use of
observational equivalence.

5.2 Procedure for subterm convergent equational theories

In this chapter we show that for a large class of equational theories, namely subterm convergent
equational theories, static equivalence can be decided in polynomial time. This part follows
closely the paper by Abadi and Cortier [?]. Other results and more practical procedures will
be discussed in the further readings section.

5.2.1 Preliminaries

Let us first introduce some preliminary definitions and notations.

Notations. Given a set of function symbols F we write ar(F) for the maximal arity of f ∈ F .
Sometimes in this section, we will write == when we want to emphasize that we mean syntactic
equality. For a term t we define |t| to be its size as follows: |t| = 1 if t is a variable, a name or
a constant and f(t1, . . . , tn) = 1 +

∑
1≤i≤n |ti|. We denote by st(t) the set of all subterms of t

and by pos(t) the set of its positions. Then, for p ∈ pos(t) we write t|p for the subterm of t at
position p. t[u]p is the term obtained by replacing the subterm at position p by u. The notions
of size and subterms are naturally lifted to frames: for ϕ = new n.{x1 7→M1, . . . xn 7→Mn} we
define |ϕ| =

∑
1≤i≤n |Mi| and st(ϕ) = ∪1≤i≤nst(Mi).

Rewrite systems and equational theories. A rewrite system R is a set of rewrite rules
ℓ → r such that vars(r) ⊆ vars(ℓ). We say that a term t rewrites to u by R if there exists
ℓ → r ∈ R and p ∈ pos(t) such that t|p = ℓσ for some substitution σ and u = t[rσ]p. A
rewrite system R is terminating if there is no infinite chain t1 →R t2 →R . . .. A rewrite
system R is confluent if for any t1, t2 such that t →∗R t1, t →R t2 there exists u such that
t1 →

∗
R u and t2 →

∗
R u. R is convergent if it is both confluent and terminating. For a convergent



90 CHAPTER 5. STATIC EQUIVALENCE

rewrite system R we denote by t ↓R the unique normal form of t. A rewrite system is subterm
convergent if for any rule ℓ → r ∈ R we have that r is either a strict subterm of ℓ or r is a
constant. Given an equational theory E we associate a rewrite system RE to it by orienting
the equations in E . For readability we generally write →E instead of →RE

. We say that an
equational theory is subterm convergent if it can be oriented to a subterm convergent rewrite
system.

Example 5.2 The equational theories enc, cipher and EKE encountered before are subterm
convergent. However, the equational theories for homomorphic encryption homo, extending enc

by the equations

{〈x, y〉}z = 〈{x}z , {y}z〉 sdec(〈x, y〉, z) = 〈sdec(x, z), sdec(y, z)〉

and for blind signatures blind defined by

check(sign(x, y), pk(y)) = x
unblind(blind(x, y), y) = x

unblind(sign(blind(x, y), z), y) = sign(x, z)

are not subterm convergent.

DAG representation of terms. In order to achieve a polynomial time complexity we will
use a DAG representation of terms (which can be exponentially more succint than its tree
representation). A DAG representation of a term is a directed acyclic graph (V, l, E, v0) where

• V is the set of vertices;

• l : V → F ∪N ∪ X is a labelling function;

• E ⊆ (V × {1..ar(F)}) × V is the edge relation;

• v0 is the root vertex.

For each vertex v ∈ V such that l(v) = f ∈ F , v has exactly ar(f) outgoing edges labelled by
1 to ar(f). Vertices labelled by names and variables have no outgoing edge. We denote by
E(v, i) the unique vertex v′ such that (v, i, v′) ∈ E. A DAG D = (V, l, E, v0) defines a term
t(D) as t(D) = f(t(V, l, E,E(v0 , 1)), . . . , t(V, l, E,E(v0, ar(f))) if l(v0) = f ∈ F and t(D) = l(v0)
if l(v0) ∈ N ∪ X . We say that a DAG representation (V, l, E, v0) is minimal if there are no two
distinct vertices v1, v2 ∈ V such that t(V, l, E, v1) = t(V, l, E, v2).

The size of a DAG D denoted |D| is the number of its vertices. We define the DAG size
of a term t, denoted |t|DAG, as |st(t)| which coincides with |D| when D is a minimal DAG
representation of t.

Given a DAG representation D we can compute its minimal DAG representation in O(|D|3).
We check whether there are two vertices v1, v2 (at most |D|2 possibilities) such that l(v1) = l(v2)
and E(v1, i) = E(v2, i) for 1 ≤ i ≤ ar(l(v1)). In that case we delete v2 from V and replace any
occurence of v2 by v1. We iterate this at most |D| times.

Hence, we can also check whether t(D1) == t(D2) in polynomial time in |D1|+ |D2|.
Given a subterm convergent rewrite system R and a minimal DAG representation D =

(V, l, E, v0) of a term t we can compute the minimal DAG representation of t ↓R in O(|D|4). To
see this note that each rewrite rule is of the form C[x1, . . . , xn]→ C ′[x1, . . . , xn] or C[x1, . . . , xn]→
c. Starting from the root we check whether the rewrite rule applies in D (at most |C||D| tests).
If it applies to some vertex v, i.e. t(V, l, E, v) = C[x1, . . . , xn]θ for some θ, replace v by the
vertex representing C ′[x1, . . . , xn]θ (if it is not a constant this vertex exists because it is a sub-
term; otherwise add a vertex labelled by the constant c). Then minimize the DAG in O(|D|3).
At each step (except for a constant number of cases) we delete one vertex. Hence the procedure
stops after at most |D| iterations and we compute the DAG representation of t ↓R in O(|D|4).



5.2. PROCEDURE FOR SUBTERM CONVERGENT EQUATIONAL THEORIES 91

5.2.2 Deciding ∼E in polynomial time for subterm convergent equational

theories

Let E be a subterm convergent equational theory defined by the axioms ∪1≤i≤n{(ℓi, ri)}. We
define the theory constant cE = max1≤i≤n(|ℓi|, ar(F) + 1). By convention, we define cE to be 1
in the case where E and F are empty.

Theorem 5.1 Let ϕ and ϕ′ be two frames. We can decide whether ϕ ∼E ϕ
′ in polynomial time

in |ϕ|+ |ϕ′|.

The remaining of this section will be dedicated to the proof of this result. The proof can be
split into 3 steps:

1. frame saturation,

2. caracterization of a frame by a finite set of equalities,

3. decidability of ∼E .

We now detail each of these steps.

5.2.2.1 Frame saturation

For each frame ϕ we can compute a set of terms sat(ϕ). This set contains all terms that are
deducible from the frame by applying only “small” contexts.

Definition 5.4 Given a frame ϕ = new n.{x1 7→M1, . . . , xk 7→Mk} we define sat(ϕ) to be the
smallest set such that

1. {M1, . . . ,Mk} ⊆ sat(ϕ),

2. if M1, . . . ,Mn ∈ sat(ϕ) and f(M1, . . . ,Mn) ∈ st(ϕ) then f(M1, . . . ,Mn) ∈ sat(ϕ),

3. if M1, . . . ,Mn ∈ sat(ϕ) and C is a context such that C[M1, . . . ,Mn]→E M and |C| ≤ cE ,
names(C) ∩ n = ∅ and M ∈ st(ϕ) then M ∈ sat(ϕ).

Example 5.3 We again consider the equational theory enc which can be oriented into the fol-
lowing subterm convergent equational theory:

sdec({x}y, y)→enc x
proji(〈x1, x2〉)→enc xi (i ∈ {1, 2})

We have that cenc = 5. Consider the frame

ϕ = new s1, s2, k1, k2.{x1 7→ {〈s1, s2〉}〈k1,k2〉, x2 7→ k1, x3 7→ k2}

We have that sat(ϕ) = {{〈s1, s2〉}〈s1,s2〉, k1, k2, 〈k1, k2〉, 〈s1, s2〉, s1, s2}. The first three terms
result directly from the frame (rule 1). The term 〈k1, k2〉 can be added by applying the pairing
function symbol (rule 2). Term 〈s1, s2〉 can be added in two different ways using rule 3: either
apply the context sdec( , ) on {〈s1, s2〉}〈s1,s2〉 and 〈k1, k2〉 or sdec( , 〈 , 〉) on {〈s1, s2〉}〈k1,k2〉,
k1 and k2. si can be added by applying proji( ) on 〈s1, s2〉. Note that we are not allowed to
directly use the context C = proji(sdec( , 〈 , 〉)) (corresponding to the actual recipe for deducing
si directly from ϕ) because |C| > 5.

We now show that this set can be computed in polynomial time in |ϕ|

Proposition 5.3 The set sat(ϕ) can be computed in O(|ϕ|max(ar(F),cE )+2).



92 CHAPTER 5. STATIC EQUIVALENCE

Proof : We initialize the set with the elements {M1, . . . ,Mk} (rule 1) and then saturate the
set using rules 2 and 3. We notice that sat(ϕ) ⊆ st(ϕ). Hence, we have that sat(ϕ) contains at
most |ϕ| elements and the saturation will take at most |ϕ| steps.

• If the step is an application of rule 2 we have to construct at most |F||ϕ|ar(F) terms. For
each of these terms we check whether it is in sat(ϕ) which can be done in linear time in
|ϕ|. Hence, this step can be computed in O(|ϕ|ar(F)+1).

• If the step is an application of rule 3 we have to compare whether any context of size
≤ cE applied to some Mis in sat(ϕ) is an instance of the lhs of a rewrite rule and check
whether the resulting term is in sat(ϕ). This can be computed in O(|ϕ|cE+1). To see this
note that the number of contexts is constant (as cE is fixed) and that a context has at
most cE holes. Hence, we need to consider at most O(|ϕ|cE ) terms for which we need to
check whether they are in sat(ϕ).

Hence each step can be computed in O(|ϕ|max(ar(F),cE )+1). As there are at most |ϕ| steps we
can compute sat(ϕ) in O(|ϕ|max(ar(F),cE )+2).

Moreover any element of sat(ϕ) can be deduced using a recipe of small DAG size.

Proposition 5.4 Let ϕ = new n.σ. For all M ∈ sat(ϕ) there exists a recipe RM such that
|RM |DAG ≤ cE · |ϕ|, names(RM ) ∩ n = ∅ and RMσ =E M .

Proof : For each termM ∈ sat(ϕ) we can give a recipeRM according to the rule of Definition 5.4
which added M to sat(ϕ).

1. Let RM = xi if xiσ = M and M is added by rule 1.

2. Let RM = f(RM1
, . . . RMn) if M is added by rule 2.

3. Let RM = C(RM1
, . . . RMn) if M is added by rule 3.

We can now construct a graph which contains each DAG corresponding to RM for M ∈ sat(ϕ).
The graph is constructed as follows.

1. For each recipe RM constructed by rule 1 add a vertex labelled by xi.

2. For each recipe RM = f(RM1
, . . . RMn) constructed by rule 2 add a vertex labelled by f

and connect it to the vertices corresponding to the terms RM1
, . . . RMn .

3. For each recipe RM = C(RM1
, . . . RMn) constructed by rule 3 construct the minimal DAG

corresponding to C and connect it to the vertices corresponding to the terms RM1
, . . . RMn .

Steps 1 and 2 add 1 vertex to the graph. As |C| ≤ cE each step 3 adds at most cE vertices to
the graph. Moreover, we know that the graph can be constructed in |ϕ| steps. Hence its size is
bounded by cE · |ϕ|.

Example 5.4 Continuing Example 5.3, let

M1 = {〈s1, s2〉}〈k1,k2〉
M2 = k1
M3 = k2

M4 = 〈k1, k2〉
M5 = 〈s1, s2〉
M6 = s1
M7 = s2

denote the elements of sat(ϕ). We can define the following recipes

RMi
= xi (1 ≤ i ≤ 3)

RM4
= 〈x2, x3〉

RM5
= sdec(x1, RM4

)
RM6

= proj1(RM5
)

RM7
= proj2(RM6

)



5.2. PROCEDURE FOR SUBTERM CONVERGENT EQUATIONAL THEORIES 93

5.2.2.2 Caracterization of a frame by a finite set of equalities

To each frame ϕ, we can associate a set Eq(ϕ) which is finite (up to renaming) and caracterizes
all equalities which hold in ϕ.

Definition 5.5 Given a frame ϕ we define Eq(ϕ) to be the set of equalities

C1[RM1
, . . . RMk

] = C2[RN1
, . . . RNℓ

]

such that |C1|, |C2| ≤ cE , M1≤i≤k, N1≤j≤ℓ ∈ sat(ϕ) and (C1[RM1
, . . . RMk

] =E C2[RN1
, . . . RNℓ

])ϕ.
We write ϕ′ |= Eq(ϕ) iff (M =E N)ϕ′ for all (M = N) ∈ Eq(ϕ).

Example 5.5 Let us continue with Example 5.4. Omitting redundant and trivial equations we
have that Eq(ϕ) = {({RM5

}RM4
= RM1

), 〈RM6
, RM7

〉 = RM5
)}. Intuitively these equalities state

that M1 is indeed an encryption with the key M4 and M1 is the encryption of a pair.

We now show two crucial properties of Eq(ϕ).

Lemma 5.1 Let ϕ = new n.σ and ϕ′ be two frames such that ϕ′ |= Eq(ϕ). For all contexts
C1 and C2 such that names(C1, C2) ∩ n = ∅ and for all terms M1≤i≤k, N1≤j≤ℓ ∈ sat(ϕ) if
C1[M1, . . . ,Mk] == C2[N1, . . . , Nℓ] then (C1[RM1

, . . . , RMk
] =E C2[RN1

, . . . , RNℓ
])ϕ′.

Proof : The proof is done by induction on |C1|+ |C2|.

Base case. |C1|, |C2| ≤ cE . We have that

C1[M1, . . . ,Mk] == C2[N1, . . . , Nℓ]

As Mi, Nj ∈ sat(ϕ) we have by Proposition 5.4 that RMi
, resp. RNj

, are recipes for Mi, resp.
Nj , in ϕ. Hence,

(C1[RM1
, . . . , RMk

] =E C2[RN1
, . . . , RNℓ

])ϕ

As |C1|, |C2| ≤ cE , we have that (C1[RM1
, . . . , RMk

] = C2[RN1
, . . . , RNℓ

]) ∈ Eq(ϕ) and hence

(C1[RM1
, . . . , RMk

] =E C2[RN1
, . . . , RNℓ

])ϕ′.

Inductive case. We consider two cases.

• C1 6= and C2 6= .
In that case, we have that C1 == f(C1

1 , . . . C
n
1 ) and C2 == f(C1

2 , . . . C
n
2 ) and for 1 ≤ i ≤ n

Ci
1[M1, . . . ,Mk] == Ci

2[N1, . . . , Nℓ].

By induction hyptothesis, we have that (Ci
1[RM1

, . . . , RMk
] =E C

i
2[RN1

, . . . , RNℓ
])ϕ′. Hence,

as =E is closed under application of function symbols we also have that

(C1[RM1
, . . . , RMk

] =E C2[RN1
, . . . , RNℓ

])ϕ′.

• Either C1 == or C2 == . Let us suppose that C1 == f(C1
1 , . . . C

n
1 ) and C2 == .

Let M,M1, . . . ,Mk ∈ sat(ϕ) such that C1[M1, . . . ,Mk] == M . Hence we have

f(C1
1 [M1, . . . ,Mk], . . . , C

n
1 [M1, . . . ,Mk]) == M.

Let Ni = Ci
1[M1, . . . ,Mk] for 1 ≤ i ≤ n. As M ∈ sat(ϕ) and Ni ∈ st(M) we have

that Ni ∈ st(sat(ϕ)). Applying iteratively rule 2 of Definition 5.4 we obtain that Ni ∈
sat(ϕ). We can apply the induction hypothesis on Ni == Ci

1[M1, . . . ,Mk] and obtain



94 CHAPTER 5. STATIC EQUIVALENCE

that (RNi
=E Ci

1[RM1
, . . . , RMk

])ϕ′. Moreover, M == f(N1, . . . , Nn). Applying the base
case (with contexts and f( , . . . , )) we obtain that (RM =E f(RN1

, . . . , RNn))ϕ
′. From

(RNi
=E C

i
1[RM1

, . . . , RMk
])ϕ′ and (RM =E f(RN1

, . . . , RNn))ϕ
′ we conclude that

(C1[RM1
, . . . , RMk

] =E RM )ϕ′.

Lemma 5.2 Let ϕ = new n.σ and C1 a context such that names(C1) ∩ n = ∅. For all
M1, . . . ,Mk ∈ sat(ϕ) and T such that C1[M1, . . . ,Mk] →

∗
E T there exist C2 and M ′1, . . . ,M

′
ℓ ∈

sat(ϕ) such that names(C2) ∩ n = ∅ and T == C2[M
′
1, . . .M

′
ℓ]. Moreover, if ϕ′ |= Eq(ϕ) then

(C1[RM1
, . . . RMk

] =E C2[RM ′
1
, . . . RM ′

k
])ϕ′.

5.2.2.3 Decidability of ∼E

We now show the key proposition of the decidability proof.

Proposition 5.5

ϕ ∼E ϕ
′ ⇔ ϕ |= Eq(ϕ′) and ϕ′ |= Eq(ϕ)

Proof :
⇒ It follows directly from the definition of static equivalence that ϕ ∼E ϕ′ ⇒ ϕ |=
Eq(ϕ′) and ϕ′ |= Eq(ϕ).

⇐ We have that ϕ′ |= Eq(ϕ). Let M,N be such that (M =E N)ϕ, i.e., ϕ =α new n.σ such
that names(M,N) ∩ n = ∅ and Mσ =E Nσ. Hence Mσ ↓E== Nσ ↓E . Let T = Mσ ↓E . By
Lemma 5.2 we have that there exist CM and M1, . . . ,Mk ∈ sat(ϕ) such that names(CM )∩n = ∅
and

T == CM [M1, . . .Mk] and (M =E CM [RM1
, . . . RMk

])ϕ′.

Similarly, as T == Nσ ↓E there exist CN and N1, . . . , Nℓ ∈ sat(ϕ) such that names(CN )∩n = ∅
and

T == CN [N1, . . . Nℓ] and (N =E CN [RN1
, . . . RNℓ

])ϕ′.

We obtain that CM [M1, . . .Mk] == CN [N1, . . . Nℓ] and by Lemma 5.1 we obtain that

(CM [RM1
, . . . RMk

] =E CN [RN1
, . . . RNℓ

])ϕ′

and hence (M =E N)ϕ′.

Conversely, assuming ϕ |= Eq(ϕ′) and (M =E N)ϕ′ we obtain that (M =E N)ϕ. We
conclude that ϕ ∼E ϕ

′.

From this and previous propositions follows a polynomial time decision procedure. To de-
cide ϕ ∼E ϕ

′ construct sat(ϕ) and sat(ϕ′). These constructions can be done in polynomial time
(Proposition 5.3). Moreover, each term in sat(ϕ) ∪ sat(ϕ′) has polynomial DAG size (Propo-
sition 5.4). Because of renamings, Eq(ϕ) and Eq(ϕ′) may be infinite. However, as each of
the equalities in Eq(ϕ) and Eq(ϕ′) is of the form C1[RM1

, . . . , RMk
] = C2[RN1

, . . . , RNℓ
] with

|Ci| ≤ cE each equality contains at most 2 · cE distinct names which can be fixed. There are
at most O((|ϕ|cE )2) equalities in Eq(ϕ) each having a polynomial DAG size. Checking whether
two terms in DAG representation are equal can be done in polynomial time as well. Hence, we
can check in polynomial time that ϕ |= Eq(ϕ′) and ϕ′ |= Eq(ϕ).



5.3. EXERCISES 95

5.2.3 Deciding ∼E vs deciding ⊢E

An interesting question is what is the relation between the decidability problems for ∼E and ⊢E .
In general, these problems cannot be reduced to each other: there exist an equational theory,
such that ⊢E is decidable and ∼E is not; there also exists (more surprisingly) an equational
theory, such that ∼E is decidable and ⊢E is not. Indeed for many equational theories deciding
⊢E can be reduced to ∼E . In particular, suppose that ∼E is decidable over a signature F ⊎ {h}
where h is a free symbol. Then we can decide ⊢E over the signature F by the following encoding:

new n.σ ⊢E t iff new n.σ ⊎ {x 7→ h(t)} ∼E new n, a.σ ⊎ {x 7→ a}

where a 6∈ names(σ). In particular this implies that ⊢E is decidable in polynomial time for
subterm convergent equational theories.

5.2.4 Further readings

While the here described procedure (from [?]) is indeed effective a direct implementation would
not be efficient. Procedures for deciding static equivalence for subterm convergent equational
theories have been proposed in [?, ?] and have been implemented in the tools YAPA and KISS.
Both procedures can also be used to decide the theories blind and homo presented in Example 5.2.
(The procedure presented in [?] and its implementation in the tool KISS is actually the outcome
of an M2 internship following this course.) In [?], decidability for blind and homo (and a more
general class of equational theories) was already shown, however, no generic procedure was
presented.

In [?] it is shown that static equivalence is also decidable for a class of monoidal theories
(which are theories over associative commutative operators including theories for exclusive or
and abelian groups). Another important result [?] is that (under some mild assumptions)
decision procedures for disjoint equational theories can be combined to obtain a procedure for
deciding the joint equational theory.

While decidability of static equivalence has been extensively studied, the current knowl-
edge on decidability of obervational equivalence (the generalization to the active case) is very
partial. We currently only have approximate procedures for an unboundned number of ses-
sions [?] (implemented in the tool ProVerif), approximate procedures for a bounded number of
sessions [?, ?, ?] and a decision procedure for a restricted class of processes [?].

The relationship between deciding deducibility and static equivalence has been first inves-
tigated in [?]. There the above encoding of deducibility into static equivalence is proposed and
its correctness proven in detail. An equational theory which is decidable for static equivalence
but not for deducibility is also presented. In [?] another example of such a theory is given with
detailed proofs.

5.3 Exercises

Exercice 27
Consider the equational theory enc defined by the equations

sdec({x}y, y) = x proj1(〈x1, x2〉) = x1 proj2(〈x1, x2〉) = x2



96 CHAPTER 5. STATIC EQUIVALENCE

and cipher which extends enc by the equation {sdec(x, y)}y = x. Which of the following pairs
of frames are statically equivalent? Whenever applicable give the distinguishing test.

{x 7→ a}
?
∼enc {x 7→ b}

{x 7→ {0}k}
?
∼enc {x 7→ {1}k}

new k.{x 7→ {0}k}
?
∼enc new k.{y 7→ {1}k}

new k.{x 7→ {0}k}
?
∼enc new k.{x 7→ {1}k}

new n, k.{x 7→ {n}k, y 7→ k}
?
∼enc new n, k, k′.{x 7→ {n}k, y 7→ k′}

new n, k.{x 7→ {n}k, y 7→ k}
?
∼cipher new n, k, k′.{x 7→ {n}k, y 7→ k′}

Exercice 28
In Section 5.1.2 we considered a toy voting protocol. However, the anonymity relied on the fact
that the administrator waits to have both votes before publishing the result (to model this we
could enhance the language with a synchronization construct). Show that as specified above
V P1 6≈ℓ V P2.

Exercice 29
Proposition 5.1 does not hold any more if we drop one of the condition m ∩ (names(σ1) ∪
names(σ2)) = ∅ and (n1 ∪ n2) ∩ names(θ) = ∅. Give a counter-example in each case when a
condition is omitted.

Exercice 30
The aim of this exercise is to guide us through a proof of Proposition 5.2. This proof requires
us to prove several properties of static equivalence. Suppose new n1.σ1 ∼E new n2.σ2. Show
that

new n.new n1.σ1 ∼E new n.new n2.σ2 where n 6∈ (n1 ∪ n2), (5.1)

new n1.σ1{
s/n} ∼E new n2.σ2{

s/n} where n 6∈ (n1 ∪ n2) and s is a fresh name. (5.2)

Let s 6∈ (n1 ∪ n2). Show that

new n1.σ1 ∼E new n2.σ2 iff new s.new n1.σ1 ⊎ {x 7→ s} ∼E new s.new n2.σ2 ⊎ {x 7→ s} (5.3)

Use these properties (as well as Proposition 5.1) to show that the following 3 statements are
equivalent.

1. new w.new n.σ ⊎ {x 7→ w} ∼E new w.new w′.new n.σ ⊎ {x 7→ w}

2. new n.σ ∼E new w.new n.σ

3. new n.σ ∼E new n.σ{w
′
/w} where w′ is a fresh name.

From these results show Proposition 5.2.

Exercice 31
Give an example illustrating that the procedure given in Section 5.2 is wrong if we would define
the theory constant cE to be max1≤i≤n(|ℓi|) instead of max1≤i≤n(|ℓi|, ar(F) + 1).

Exercice 32
We discussed the modelling of guessing attacks by static equivalence. Use the procedure of
Section 5.2 to show that

new w.new n.{z1 7→ {n}w;xw 7→ w} 6∼enc new w.new w′.new n.{z1 7→ {n}w;xw 7→ w′}

and

new w.new n.{z1 7→ {n}w;xw 7→ w} ∼cipher new w.new w′.new n.{z1 7→ {n}w;xw 7→ w′}



5.3. EXERCISES 97

Exercice 33
The here presented procedure terminates in polynomial time given that terms are implemented
by DAGs rather than trees. Give an example of two frames ϕ1, ϕ2 such that ϕ1 6∼enc ϕ2 but
every distinguishing test is of exponential size in |ϕ1|+ |ϕ2|.

Exercice 34
Give an example of two frames ϕ1 and ϕ2 such that ϕ1 6∼homo ϕ2 (for the theory of homomorphic
encryption introduced in Example 5.2) for which the above procedure fails to distinguish the
frames.



98 CHAPTER 5. STATIC EQUIVALENCE



Chapter 6

Composition Results

This chapter is related to the work of R. Canetti et al. who study universal composability
of protocols [?] in a different context (cryptographic model). They consider composition of
a protocol with arbitrary other protocols and composition of a protocol with copies of itself.
However, in the initial approach [?], they do not allow shared data between protocols, meaning
that new encryption and signing keys have to be generated for each component. Note that
in the symbolic setting, this kind of composition trivially holds since the definition of security
properties always involved an arbitrary context. Indeed, if new n.P1 satisfies a secrecy property,
this means that (new n.P1) ‖ A satisfies the secrecy property for any attacker A. Hence, in
particular, we have that the secrecy property holds if we consider a protocol P2 running in
parallel.

Composition theorems that allow joint states between protocols are proposed in further work
(see e.g. [?, ?, ?]). Such composition theorems are more useful. They allows one to compose
different protocols that share some keying material.

“if new n.P1 is secure, then new n.(P1 ‖ P2) is secure.”

In this chapter, we prove composability for tagged protocols and secrecy property only.
Many parts of this chapter is borrowed from [?] and [?].

6.1 Motivation

When a protocol has been proved secure for an unbounded number of sessions, against a fully
active adversary that can intercept, block and send new messages, there is absolutely no guar-
antee if the protocol is executed in an environment where other protocols are executed, possibly
sharing some common keys like public keys or long-term symmetric keys. The interaction with
the other protocols may dramatically damage the security of a protocol. Consider for example
the two following naive protocols.

P1 : A→ B : aenc(s, pk(b))
P2 : A→ B : aenc(Na, pk(b))

B → A : Na

In protocol P1, the agent A simply sends a secret s encrypted under B’s public key. In
protocol P2, the agent sends some fresh nonce to B encrypted underB’s public key. The agent B
acknowledges A’s message by forwarding A’s nonce. While P1 executed alone easily guarantees
the secrecy of s, even against active adversaries, the secrecy of s is no more guaranteed when the
protocol P2 is executed. Indeed, an adversary may use the protocol P2 as an oracle to decrypt
any message. More realistic examples illustrating interactions between protocols can be found
in e.g. [?].

99



100 CHAPTER 6. COMPOSITION RESULTS

The purpose of this chapter is to investigate sufficient conditions for a protocol to be safely
used in an environment where other protocols may be executed as well. We show that whenever
a protocol is proved secure when it is executed alone, its security is not compromised by the
interactions with any other protocol, provided each protocol is given an identifier (e.g. the
protocol’s name) that should appear in any encrypted message. Continuing our example, let us
consider the two slightly modified protocols.

P ′1 : A→ B : aenc(〈1, s〉, pk(b))
P ′2 : A→ B : aenc(〈2, Na〉, pk(b))

B → A : Na

The composition theorem (formally stated in Section 6.2) will ensure that P ′1 can be safely
executed together with P ′2, without compromising the secrecy of s.

Being able to share keys between protocols is a very desirable property as it allows to save
both memory (for storing keys) and time since generating keys is time consuming in particular
in the case of public key encryption. We provide in Section 6.2.3 examples of protocols that
share secret materials. For security reasons however, most protocols currently make use of
different keys.

The idea of adding an identifier in encrypted messages follows the spirit of the rules proposed
in the paper of M. Abadi and R. Needham on prudent engineering practice for cryptographic
protocols [?] (Principle 10). The use of unique protocol identifiers is also recommended in [?, ?]
and has also been used in the design of fail-stop protocols [?]. In this chapter, we prove that
it is sufficient for securely executing several protocols in the same environment. We will see in
Section 6.3 how to extend this technique to compose a protocol with copies of itself.

6.2 Parallel Composition under Shared Keys

For sake of simplicity, we consider symmetric encryption only. We consider protocol written
with pattern matching (no conditionals) and we do not use explicitly destructors.

6.2.1 Theorem

Even if a protocol is secure for an unbounded number of sessions, its security may collapse if
the protocol is executed in an environment where other protocols sharing some common keys
are executed. We have seen a first example in the previous section. We need to consider some
restrictions.

Hypothesis 1. To avoid a ciphertext from a protocol P1 to be decrypted in an another
protocol P2, we introduce the notion of well-tagged protocol. This notion is formally defined
below and relies on the following notion of encrypted subterms.

Let α be a term. We say that a term t is α-tagged if for every senc(t1, t2) ∈ st(t), we have
that t1 = 〈α, t

′
1〉 for some term t′1. A term is said well-tagged if it is α-tagged for some term α. A

protocol P is α-tagged if any term occurring in the role of the protocol is α-tagged. A protocol
is said well-tagged if it is α-tagged for some term α.

Requiring that a protocol is well-tagged can be very easily achieved in practice: it is sufficient
for example to add the name of the protocol in each encrypted term. Moreover, note that (as
opposite to [?]) this does not require that the agents check that nested encrypted terms are
correctly tagged. For example, let P be the following protocol:

P = in(c, senc(〈α, x〉, k)). out(c, senc(〈α, x〉, k′)).

The protocol P is α-tagged. Note that the message senc(〈α, senc(a, k)〉, k) (which is not
α-tagged) would be accepted by P .



6.2. PARALLEL COMPOSITION UNDER SHARED KEYS 101

Hypothesis 2. Tagging protocols is not sufficient, indeed critical long-term keys should not
be revealed in clear. Consider for example the two well-tagged protocols

P3 : A→ B : senc(〈α, s〉, kab) P4 : A→ B : kab

The security of protocol P3 is again compromised by the execution of P4. Thus we will
require that long-term keys do not occur in plaintext in the protocol. The set plaintext(t) of
plaintext of a term t is the set of names and variables, that is recursively defined as follows:

• plaintext(u) = {u} when u is a variable or a name,

• plaintext(〈u1, u2〉) = plaintext (u1) ∪ plaintext(u2), and

• plaintext(senc(u1, u2)) = plaintext(u1).

This notation is extended to set of terms and protocols as expected.

Some weird protocols may still reveal critical keys in a hidden way. Consider for example
the following (α-tagged) protocol.

P = new kab.(out(c, senc(〈α, a〉, kab)) ‖ in(c, senc(〈α, a〉, x)). out(c, x))

While the long-term key kab does not appear in plaintext, the key kab is revealed after simply
one normal execution of the protocol. This protocol is however not realistic since an unknown
value cannot be learned (and sent) if it does not appear previously in plaintext. Thus we will
further require (Condition 2 of Theorem 6.1) that a variable occurring in plaintext in a sent
message, has to previously occur in plaintext in a received message.

We show that two well-tagged protocols can be safely composed as soon as they use different
tags and that critical long-term keys do not appear in plaintext. Here, we assume that names
are restricted. In other words, names are not known by the attacker unless they are explicitly
given in his initial knowledge. Sometimes, we write new n.(P ‖ Q) to insist on the fact that
those names n are not known by the attacker or shared between the processes P and Q.

Theorem 6.1 Let P1 and P2 be two well-tagged protocols such that P1 is α-tagged and P2 is
β-tagged with α 6= β. Let T0 (intuitively the initial knowledge of the intruder) be a set of names.
Let n = (fn(P1) ∪ fn(P2))r T0 be the set of critical names. Let m be a term constructed from
P1 such that m is α-tagged and fv(m) ⊆ bv(P1). Moreover, we assume that

1. critical names do not appear in plaintext, that is

n ∩ (plaintext (P1) ∪ plaintext(P2)) = ∅.

2. any x ∈ bv(P1) (resp. bv(P2)) “occurs first” at a plaintext position.

Then new n.P1 preserves the secrecy of m for the initial knowledge T0 if, and only if, new n.(P1 ‖
P2) preserves the secrecy of m for T0.

We require that terms from P1 and P2 are tagged with distinct tags for simplicity. The key
condition is actually that for any encrypted subterm t1 of P1 and for any encrypted subterm t2
of P2, the terms t1 and t2 cannot be unified.

Theorem 6.1 is proved by contradiction. Assume that new n.(P1 ‖ P2) does not preserve the
secrecy of m for T0. It means that there exists a scenario sce for new n.(P1 | P2) such that the
constraint system associated to this scenario, T0 and m is satisfiable. In this case, the scenario
can be turned into a scenario for P1 such that the constraint system associated to this new
scenario, T0 and m is satisfiable, which means that P1 does not preserve the secrecy of m for
some initial knowledge T0, contradiction.

To prove this composition result, we first need to show that messages from two combined
protocols do not need to be mixed up to mount an attack. For this purpose, we refine the
decision procedure presented in Chapter 3 that allows us to control the form of the execution
traces.



102 CHAPTER 6. COMPOSITION RESULTS

6.2.2 Main Steps of the Proof

To prove our composition result, we first refine the decision procedure presented in Chapter 3
for solving constraint systems. The simplification rules we consider are the following ones:

R1 : C ∧ T
?
⊢ u  C if T ∪ {x | T ′

?
⊢ x ∈ C, T ′ ( T} ⊢ u

R2 : C ∧ T
?
⊢ u  σ Cσ ∧ Tσ

?
⊢ uσ if σ = mgu(t, u) where t ∈ st(T ), t 6= u,

and t, u are neither variables nor pairs

R3 : C ∧ T
?
⊢ u  σ Cσ ∧ Tσ

?
⊢ uσ if σ = mgu(t1, t2), t1, t2 ∈ st(T ), t1 6= t2,

and t1, t2 are neither variables nor pairs

R4 : C ∧ T
?
⊢ u  ⊥ if vars(T, u) = ∅ and T 6⊢ u

Rf : C ∧ T
?
⊢ f(u, v)  C ∧ T

?
⊢ u ∧ T

?
⊢ v for f ∈ {〈〉, senc}

Our rules are the same than those presented in Chapter 3 (or more precisely those given
in Exercise 17) except that we forbid unification of terms headed by 〈 , 〉. Correction and
termination are still ensured and we show that they still form a complete decision procedure.
Intuitively, unification between pairs is useless since pairs can be decomposed in order to perform
unification on its components. Then, it is possible to build again the pair if necessary. Note
that this is not always possible for encryption since the key used to decrypt or encrypt may
be unknown by the attacker. Proving that forbidding unification between pairs still leads to
a complete decision procedure required in particular to introduce a new notion of minimality
for tree proofs for deduction (see Exercises 35 and 36). Note that this result is of independent
interest. Indeed, we provide a more efficient decision procedure for solving constraint systems,
thus for deciding secrecy for a bounded number of sessions. Of course, the theoretical complexity
remains the same (NP).

Theorem 6.2 Let C be an unsolved constraint system.

1. (Correctness) If C  ∗σ C
′ for some constraint system C′ and some substitution σ and if θ

is a solution of C′ then σθ is a solution of C.

2. (Completeness) If θ is a solution of C, then there exist a solved constraint system C′ and
substitutions σ, θ′ such that θ = σθ′, C  ∗σ C

′ and θ′ is a solution of C′.

3. (Termination) There is no infinite chain C  σ1
C1 . . . σn Cn.

Theorem 6.1 is then proved by contradiction in three main steps. First, Theorem 6.2 serves
as a key result for proving that if C is satisfiable, then there exists a solution θ where messages
from P1 and P2 are not mixed up. This is obtained by observing that the simplification rules
enable us to build θ step by step through unification of subterms of P1 and P2. Now, since
unification between pairs is forbidden, the rules R2 and R3 only involve subterms that convey
the same tag, i.e subterms issued from the same protocol. Second, conditions 1 and 2 ensure that
for any solution θ of C, the critical names of n do not appear in plaintext in Cθ. Third, thanks
to the two previous steps, we prove that β-tagged terms (intuitively messages from P2) are not
useful for deducing α-tagged terms. For this, we establish that T ⊢ u implies T ⊢ u where · is
a function that keep the terms issued from P1 unchanged and projects the terms issued from P2

on a public name. The proof is done by induction on the proof tree witnessing T ⊢ u. It
requires in particular the introduction of a new locality lemma for deduction of ground terms
(see Exercise 37). Then, we deduce that, removing from C all constraints inherited from P2 and
all β-tagged terms, we obtain a satisfiable constraint C′ that is associated to a scenario of P1.



6.3. FROM ONE SESSION TO MANY 103

6.2.3 Applications

Security protocols can be analysed using several existing tools, e.g. [?, ?]. The security of a
protocol P is however guaranteed provided that no other protocols share any of the private data
of P . Our result shows that, once the security of an isolated protocol has been established, this
protocol can be safely executed in environments that may use some common data provided that
a tag is added each time a party performs an encryption.

For security reasons however, most protocols actually make use of different keys. In this
section, we provide a simple criteria for safely composing protocols that share keys. This would
allow to save both memory (for storing keys) and time since generating keys is time consuming
in particular in the case of public key encryption. For example, the SSL protocol should contain
the name “ssl2.0” in any of its encrypted messages. This would ensure that no armful interaction
can occur with any other protocols even if they share some data with the SSL protocol, provided
that these other protocols are also tagged. In other words, to avoid armful interaction between
protocols, one should simply use a tagged version of them.

There are also situations were running different protocols with common keys already occur.
We provide three examples of such cases.

• It is often the case that several versions of a protocol can be used concurrently. In this
case and for backward compatibility reasons, the same keys can be used in the different
versions of the protocol, which may lead to potentially dangerous interactions.

• When encrypting emails the same public key can be used for two distinct encryption
protocols: the PGP protocol (Pretty Good Privacy) and its open source version OpenPGP.
Note that the PGP protocol contains also other sub-protocols such as digitally signing
message, all sharing the same public-key infrastructure.

• In the slightly different context of APIs, J. Clulow [?] discovered an attack when the VISA
PIN verification values (PVV) protocol and the IBM CCA API share the same verification
key.

6.3 From One Session to Many

In this section we briefly present a protocol transformation which maps a protocol that is secure
for a single session to a protocol that is secure for an unbounded number of sessions. This is
another kind of parallel composition. Moreover, this provides an effective strategy to design
secure protocols: (i) design a protocol intended to be secure for one protocol session (this can
be efficiently verified with existing automated tools); (ii) apply our transformation and obtain
a protocol which is secure for an unbounded number of sessions.

6.3.1 Protocol Transformation

Suppose that Π is a protocol between k participants A1, . . . , Ak. Our transformation adds to Π a
preamble in which each participant sends a freshly generated nonce Ni together with his identity
to all other participants. This allows each participant to compute a dynamic, session dependent
tag 〈A1, N1〉, . . . , 〈Ak, Nk〉 that will be used to tag each encryption and signature in Π. Our
transformation is surprisingly simple and does not require any cryptographic protection of the
preamble. Intuitively, the security relies on the fact that the participant Ai decides on a given tag
for a given session which is ensured to be fresh as it contains his own freshly generated nonce Ni.
The transformation is computationally light as it does not add any cryptographic application;
it may merely increase the size of messages to be encrypted or signed. The transformation
applies to a large class of protocols, which may use symmetric and asymmetric encryption,
digital signature and hash function.



104 CHAPTER 6. COMPOSITION RESULTS

We may note that, en passant, we identify a class of tagged protocols for which security is
decidable for an unbounded number of sessions. This directly follows from our main result as
it stipulates that verifying security for a single protocol session is sufficient to conclude security
for an unbounded number of sessions.

Given an input protocol Π, our transformation will compute a new protocol Π̃ which consists
of two phases. During the first phase, the protocol participants try to agree on some common,
dynamically generated, session identifier τ . For this, each participant sends a freshly generated
nonce Ni together with his identity Ai to all other participants. (Note that if broadcast is
not practical or if not all identities are known to each participant, the message can be sent
to some of the participants who forward the message.) At the end of this preamble, each
participant computes a session identifier: τ = 〈〈A1, N1〉, . . . , 〈Ak, Nk〉〉. Note that an active
attacker may interfere with this initialisation phase and may intercept and replace some of the
nonces. Hence, the protocol participants do not necessarily agree on the same session identifier τ
after this preamble. In fact, each participant computes his own session identifier, say τj. During
the second phase, each participant j executes the original protocol in which the dynamically
computed identifier is used for tagging each application of a cryptographic primitive. In this
phase, when a participant opens an encryption, he will check that the tag is in accordance with
the nonces he received during the initialisation phase. In particular he can test the presence of
his own nonce.

The transformation, using the informal Alice-Bob notation, is described below and relies on
the tagging operation that is formally defined in Definition ??.

Π =





Ai1 → Aj1 : m1
...

Aiℓ → Ajℓ : mℓ

Π̃ =





Phase 1 Phase 2

A1 → All : 〈A1, N1〉 Ai1 → Aj1 : [m1]τ
...

...
Ak → All : 〈Ak, Nk〉 Aiℓ → Ajℓ : [mℓ]τ

where τ = 〈tag1, . . . , tagk〉 with tagi = 〈Ai, Ni〉

Note that, the Alice-Bob notation only represents what happens in a normal execution, i.e.
with no intervention of the attacker. Of course, in such a situation, the participants agree on
the same session identifier τ used in the second phase.

A k-tag is a term 〈〈a1, v1〉, . . . , 〈ak, vk〉〉 where each ai is a name of an agent and each vi is
a term. Let u be a term and tag be a k-tag. The k-tagging of u with tag, denoted [u]tag, is
inductively defined as follows:

[〈u1, u2〉]tag = 〈[u1]tag, [u2]tag〉
[senc(u1, u2)]tag = senc(〈tag, [u1]tag〉, [u2]tag)
[u]tag = u otherwise

6.3.2 Composition Result

We only state the composition result informally.

“if the compiled protocol admits an attack that may involve several honest and dishonest
sessions, then there exists an attack which only requires one honest session of each role (and

no dishonest sessions). “

The situation is however slightly more complicated than it may seem at first sight since there
is an infinite number of honest sessions, which one would need to verify separately. Actually
we can avoid this combinatorial explosion thanks to the following well-known result [?]: when
verifying secrecy properties it is sufficient to consider one single honest agent (which is allowed



6.4. FURTHER READINGS 105

to “talk to herself”). Hence we can instantiate all the parameters with the same honest agent
name.

Our dynamic tagging is useful to avoid interaction between different sessions of the same
role in a protocol execution and allows us for instance to prevent man-in-the-middle attacks.
We need also to forbid long-term secrets in plaintext position (even under an encryption). Note
that this condition is generally satisfied by protocols and considered as a prudent engineering
practice.

6.3.3 Other ways of tagging

We can also considered an alternative, slightly different transformation that does not include
the identities in the tag, i.e., the tag is simply the sequence of nonces. In that case we obtain a
different result: if a protocol admits an attack then there exists an attack which only requires
one (not necessarily honest) session for each role. In this case, we need to additionally check
for attacks that involve a session engaged with the attacker. On the example of the Needham-
Schroeder protocol the man-in-the-middle attack is not prevented by this weaker tagging scheme.
However, the result requires one to also consider one dishonest session for each role, hence
including the attack scenario. In both cases, it is important for the tags to be collaborative, i.e.
all participants do contribute by adding a fresh nonce.

6.4 Further Readings

First, the results presented in this chapter are still true in a more general setting [?, ?], e.g.
asymmetric encryption, authentication properties, . . . Some other results have been obtained
for a broader class of composition operations [?, ?]. In particular, their results allow sequential
composition. This is useful to do refinement. For instance, we may study a protocol where a
key is magically shared between two agents. Then, we want to ensure that the security property
still hold when a real key establishment protocol is used.

Finally, different kinds of tags have also been considered in [?, ?, ?]. However these tags
are static and have a different aim. While our dynamic tagging scheme presented in Section 6.3
avoids confusing messages from different sessions, these static tags avoid confusing different
messages inside a same session and do not prevent that a same message is reused in two dif-
ferent sessions. Under some additional assumptions (e.g. no temporary secret, no ciphertext
forwarding), several decidability results [?, ?] have been obtained by showing that it is sufficient
to consider one session per role. But those results can not deal with protocols such as the
Yahalom protocol or protocols which rely on a temporary secret. In the framework we consider
here, the question whether such static tags would be sufficient to obtain decidability is still an
open question (see [?]). In a similar way, static tags have also been used by Heather et al. [?]
to avoid type confusion attacks.

Following the approach presented in this chapter, it has been shown [?] that tagging hashes
enable to preserve resistance against guessing attacks under parallel composition. This allows
one to safely reuse the same passwords for different applications.

A. Datta et al. (e.g. [?]) have also studied secure protocol composition in a broader sense:
protocols can be composed in parallel, sequentially or protocols may use other protocols as
components. However, they do not provide any syntactic conditions for a protocol P to be
safely executed in parallel with other protocols. For any protocol P ′ that might be executed
in parallel, they have to prove that the two protocols P and P ′ satisfy each other invariants.
Their approach is thus rather designed for component-based design of protocols.



106 CHAPTER 6. COMPOSITION RESULTS

6.5 Exercises

Exercice 35 (⋆⋆)
Let T1 ⊆ T2 ⊆ . . . ⊆ Tn. We say that a proof Π of Ti ⊢ u is left-minimal if for any j < i such
that Tj ⊢ u, Π is also a proof of Tj ⊢ u.
We say that a proof Π is simple if

1. any subproof of Π is left-minimal,

2. a composition rule is not directly followed by a decomposition rule,

3. any term of the form 〈u1, u2〉 obtained by application of a decomposition rule or an axiom
rule is followed by a projection rule.

Questions:

1. Let T1 = {a} and T2 = {a, senc(〈a, b〉, k), k}. We have that T2 ⊢ 〈a, b〉. Give a proof of
T2 ⊢ 〈a, b〉 that is not simple.

2. Give a simple proof of T2 ⊢ 〈a, b〉.

3. Show that if there exists a proof of Ti ⊢ u then there exists a simple proof of it.

Exercice 36 (⋆⋆)
We consider symmetric encryption/decryption and pairing/projection (again no asymmetric
encryption). Show that the procedure made up of the rules R1, R2, R

′
3, and Rf is still complete

if we do not perform unification on pairs. This result is stated in Theorem 6.2.
hint: use the notion of simple proof introduced in Exercise 35.

Exercice 37 (⋆)
Consider the following inference system:

x y

〈x, y〉

〈x, y〉

x

〈x, y〉

y

x y

senc(x, y)

senc(x, y) y

x

Let T be a set of ground terms and u be a ground term such that T ⊢ u. Then, we have that
plaintext(u) ⊆ plaintext(T ).

Exercice 38 (⋆)
Apply the transformation described in Section 6.3 on the Needham-Schroeder protocol.

1. Check that the man-in-the-middle attack does not exist anymore.

2. Remove the identity of the agent from the tag. Is this tag sufficient to avoid the man-in-
the-middle attack?

Exercice 39 (⋆)
In this chapter, we consider static tags to compose different protocols, and dynamic tags to
compose different sessions coming from the same protocol. Show that dynamic tags, as described
in Section 6.3 are not sufficient to compose different protocols.



Part III

Verification in the Computational

Setting

107





Chapter 7

The Computational Model

7.1 Introduction

Since the beginning of public-key cryptography, with the seminal Diffie-Hellman paper [?], many
suitable algorithmic problems for cryptography have been proposed and many cryptographic
schemes have been designed, together with more or less heuristic proofs of their security. How-
ever, as already explained, most of those schemes have thereafter been broken, even when some
kind of proofs existed. The simple fact that a cryptographic algorithm withstood cryptan-
alytic attacks for several years has often been considered as a kind of validation procedure,
but some schemes take a long time before being broken. An example is the Chor-Rivest cryp-
tosystem [?, ?], based on the knapsack problem, which took more than 10 years to be totally
broken [?], whereas before this attack it was believed to be strongly secure. As a consequence,
the lack of attacks at some time should never be considered as a security validation of the
proposal.

A completely different paradigm is provided by the concept of “provable” security in the
computational model. A significant line of research has tried to provide proofs in the framework
of complexity theory (a.k.a. “reductionist” security proofs [?]): the proofs provide reductions
from a well-studied computational problem (RSA or the discrete logarithm) to an attack against
a cryptographic protocol. Adversaries, and any player, are now modeled by probabilistic Turing
machines.

At the beginning, people just tried to define the security notions required by actual crypto-
graphic schemes, and then to design protocols which achieve these notions. The techniques were
directly derived from the complexity theory, providing polynomial reductions. However, their
aim was essentially theoretical. They were indeed trying to minimize the required assumptions
on the primitives (one-way functions or permutations, possibly trapdoor, etc) [?, ?, ?, ?] with-
out considering practicality. Therefore, they just needed to design a scheme with polynomial
algorithms, and to exhibit polynomial reductions from the basic assumption on the primitive
into an attack of the security notion, in an asymptotic way.

However, as just said, such a result has no practical impact on actual security. Indeed, even
with a polynomial reduction, one may be able to break the cryptographic protocol within a few
hours, whereas the reduction just leads to an algorithm against the underlying problem which
requires many years. Therefore, those reductions only prove the security when very huge (and
thus maybe unpractical) parameters are in use, under the assumption that no polynomial time
algorithm exists to solve the underlying problem.

7.1.1 Exact Security and Practical Security

For more than 10 years now, more efficient reductions have been expected, under the denom-
inations of either “exact security” [?] or “concrete security” [?], which provide more practical

109



110 CHAPTER 7. THE COMPUTATIONAL MODEL

security results. The perfect situation is reached when one manages to prove that, from an
attack, one can describe an algorithm against the underlying problem, with almost the same
success probability within almost the same amount of time. We have then achieved “practical
security”.

Unfortunately, in many cases, even just provable security is at the cost of an important loss
in terms of efficiency for the cryptographic protocol. Thus some models have been proposed,
trying to deal with the security of efficient schemes: some concrete objects are identified with
ideal (or black-box) ones.

For example, it is by now usual to identify hash functions with ideal random functions, in the
so-called “random-oracle model”, informally introduced by Fiat and Shamir [?], and formalized
by Bellare and Rogaway [?]. Similarly, block ciphers are identified with families of truly random
permutations in the “ideal cipher model” [?].

From a more algebraic point of view, another kind of idealization was introduced in cryp-
tography: the black-box group [?, ?]. Here, the group operation is defined by a black-box: a
new element necessarily comes from the addition (or the subtraction) of two already known
elements. It is by now called the “generic model”. It has been more recently extended to bi-
linear groups [?]. Some works [?, ?] even require several ideal models together to provide some
validations.

7.2 Security Proofs and Security Arguments

7.2.1 Computational Assumptions

In both symmetric and asymmetric scenarios, many security notions can not be unconditionally
guaranteed (whatever the computational power of the adversary). Therefore, security generally
relies on a computational assumption: the existence of one-way functions, or permutations,
possibly trapdoor. A one-way function is a function f which anyone can easily compute, but
given y = f(x) it is computationally intractable to recover x (or any pre-image of y). A one-way
permutation is a bijective one-way function. For encryption, one would like the inversion to be
possible for the recipient only: a trapdoor one-way permutation is a one-way permutation for
which a secret information (the trapdoor) helps to invert the function on any point.

Given such objects, and thus computational assumptions about the intractability of the
inversion without possible trapdoors, we would like that security could be achieved without
extra assumptions. The only way to formally prove such a fact is by showing that an attacker
against the cryptographic protocol can be used as a sub-part in an algorithm that can break
the basic computational assumption.

A partial order therefore exists between computational assumptions (and intractable prob-
lems too): if a problem P is more difficult than the problem P ′ (P ′ reduces to P , see below)
then the assumption of the intractability of the problem P is weaker than the assumption of
the intractability of the problem P ′. The weaker the required assumption is, the more secure
the cryptographic scheme is.

7.2.2 Complexity

In complexity theory, such an algorithm which uses the attacker as a sub-part in a global
algorithm is called a reduction. If this reduction is polynomial, we can say that the attack of
the cryptographic protocol is at least as hard as inverting the function: if one has a polynomial
algorithm to solve the latter problem, one can polynomially solve the former one. In the
complexity theory framework, a polynomial algorithm is the formalization of efficiency.

Therefore, in order to prove the security of a cryptographic protocol, one first needs to make
precise the security notion one wants the protocol to achieve: which adversary’s goal one wants



7.2. SECURITY PROOFS AND SECURITY ARGUMENTS 111

to be intractable, under which kind of attack. At the beginning of the 1980’s, such security no-
tions have been defined for encryption [?] and signature [?, ?], and provably secure schemes have
been suggested. However, those proofs had a theoretical impact only, because both the proposed
schemes and the reductions were completely unpractical, yet polynomial. The reductions were
indeed efficient (i.e. polynomial), and thus a polynomial attack against a cryptosystem would
have led to a polynomial algorithm that broke the computational assumption. But the latter
algorithm, even polynomial, may require hundreds of years to solve a small instance.

For example, let us consider a cryptographic protocol based on integer factoring. Let us
assume that one provides a polynomial reduction from the factorization into an attack. But
such a reduction may just lead to a factorization algorithm with a complexity in 225k10, where
k is the bit-size of the integer to factor. This indeed contradicts the assumption that no-
polynomial algorithm exists for factoring. However, on a 1024-bit number (k = 210), it provides
an algorithm that requires 2125 basic operations, which is much more than the complexity of the
best current algorithm, such as NFS [?], which needs less than 2100 (see Section 8.2). Therefore,
such a reduction would just be meaningful for numbers above 4096 bits (since with k = 212,
2145 < 2149, where 2149 is the estimate effort for factoring a 4096-bit integer with the best
algorithm.) Concrete examples are given later.

7.2.3 Practical Security

Moreover, most of the proposed schemes were unpractical as well. Indeed, the protocols were
polynomial in time and memory, but not efficient enough for practical implementation.

For a few years, people have tried to provide both practical schemes, with practical reduc-
tions and exact complexity, which prove the security for realistic parameters, under a well-
defined assumption: exact reduction in the standard model (which means in the complexity-
theoretic framework). For example, under the assumption that a 1024-bit integer cannot be
factored with less than 270 basic operations, the cryptographic protocol cannot be broken with
less than 260 basic operations. We will see such an example later.

Unfortunately, as already remarked, practical or even just efficient reductions in the standard
model can rarely be conjugated with practical schemes. Therefore, one needs to make some
hypotheses on the adversary: the attack is generic, independent of the actual implementation
of some objects

• hash functions, in the “random-oracle model”;

• symmetric block ciphers, in the “ideal-cipher model”;

• algebraic groups, in the “generic model”.

The “random-oracle model” was the first to be introduced in the cryptographic community [?, ?],
and has already been widely accepted. By the way, flaws have been shown in the “generic
model” [?] on practical schemes, and the “random-oracle model” is not equivalent to the
standard one either. Several gaps have already been exhibited [?, ?, ?]. However, all the
counter-examples in the random-oracle model are pathological, counter-intuitive and not natu-
ral. Therefore, in the sequel, we focus on security analyses in this model, for real and natural
constructions. A security proof in the random-oracle model will at least give a strong argument
in favor of the security of the scheme. Furthermore, proofs in the random-oracle model under a
weak computational assumption may be of more practical interest than proofs in the standard
model under a strong computational assumption.

7.2.4 The Random-Oracle Model

As said above, efficiency rarely meets with provable security. More precisely, none of the most
efficient schemes in their category have been proven secure in the standard model. However,



112 CHAPTER 7. THE COMPUTATIONAL MODEL

some of them admit security validations under ideal assumptions: the random-oracle model is
the most widely accepted one.

Many cryptographic schemes use a hash function H (such as MD5 [?], SHA-1 [?] or more
recent functions). This use of hash functions was originally motivated by the wish to sign
long messages with a single short signature. In order to achieve non-repudiation, a minimal
requirement on the hash function is the impossibility for the signer to find two different messages
providing the same hash value. This property is called collision-resistance.

It was later realized that hash functions were an essential ingredient for the security of,
first, signature schemes, and then of most cryptographic schemes. In order to obtain security
arguments, while keeping the efficiency of the designs that use hash functions, a few authors
suggested using the hypothesis thatH behaves like a random function. First, Fiat and Shamir [?]
applied it heuristically to provide a signature scheme “as secure as” factorization. Then, Bellare
and Rogaway [?, ?, ?] formalized this concept for cryptography, and namely for signature and
public-key encryption.

In this model, the so-called “random-oracle model”, the hash function can be formalized
by an oracle which produces a truly random value for each new query. Of course, if the same
query is asked twice, identical answers are obtained. This is precisely the context of relativized
complexity theory with “oracles,” hence the name.

About this model, no one has ever been able to provide a convincing contradiction to its
practical validity, but just theoretical counter-examples on either clearly wrong designs for
practical purpose [?], or artificial security notions [?, ?]. Therefore, this model has been strongly
accepted by the community, and is considered as a good one, in which security analyses give a
good taste of the actual security level. Even if it does not provide a formal proof of security (as
in the standard model, without any ideal assumption), it is argued that proofs in this model
ensure security of the overall design of the scheme provided that the hash function has no
weakness, hence the name “security arguments”.

This model can also be seen as a restriction on the adversary’s capabilities. Indeed, it simply
means that the attack is generic without considering any particular instantiation of the hash
functions. Therefore, an actual attack would necessarily use a weakness or a specific feature of
the hash function. The replacement of the hash function by another one would rule out this
attack.

On the other hand, assuming the tamper-resistance of some devices, such as smart cards, the
random-oracle model is equivalent to the standard model, which simply requires the existence
of pseudo-random functions [?, ?].

As a consequence, almost all the standards bodies by now require designs provably secure,
at least in that model, thanks to the security validation of very efficient protocols.

7.2.5 The General Framework

Before going into more details of this kind of proofs, we would like to insist on the fact that in the
current general framework, we model all the players by (interactive) probabilistic polynomial
Turing machines, and we give the adversary complete access to the cryptographic primitive,
but as a black-box. It can ask any query of its choice, and the box always answers correctly,
in constant time. Such a model does not consider timing attacks [?], where the adversary tries
to extract the secrets from the computational time. Some other attacks analyze the electrical
energy required by a computation to get the secrets [?], or to make the primitive fail on some
computation [?, ?]. They are not captured either by this model.



Chapter 8

Provable Security

8.1 Security Notions

In this section we describe more formally what a signature scheme and an encryption scheme
are. Moreover, we make precise their goals, and thus the security notions one wants the schemes
to achieve. This is the first imperative step towards provable security.

8.1.1 Public-Key Encryption

The aim of a public-key encryption scheme is to allow anybody who knows the public key of
Alice to send her a message that she will be the only one able to recover, granted her private
key.

8.1.1.1 Definitions

A public-key encryption scheme S = (K, E ,D) is defined by the three following algorithms:

• The key generation algorithm K. On input 1k where k is the security parameter, the
algorithm K produces a pair (pk, sk) of matching public and private keys. Algorithm K is
probabilistic.

• The encryption algorithm E . Given a message m and a public key pk, E produces a
ciphertext c of m. This algorithm may be probabilistic. In the latter case, we write
Epk(m; r) where r is the random input to E .

• The decryption algorithm D. Given a ciphertext c and the private key sk, Dsk(c) gives
back the plaintext m. This algorithm is necessarily deterministic.

8.1.1.2 Security Notions

The goals of the adversary may be various. The first common security notion that one would
like for an encryption scheme is one-wayness (OW): with just public data, an attacker cannot
get back the whole plaintext of a given ciphertext. More formally, this means that for any
adversary A, its success in inverting E without the private key should be negligible over the
probability space M×Ω, where M is the message space and Ω is the space of the random coins
r used for the encryption scheme, and the internal random coins of the adversary:

SuccowS (A) = Pr
m,r

[(pk, sk)← K(1k) : A(pk, Epk(m; r)) = m].

However, many applications require more from an encryption scheme, namely the semantic
security (IND) [?], a.k.a. polynomial security/indistinguishability of encryptions: if the attacker

113



114 CHAPTER 8. PROVABLE SECURITY

has some information about the plaintext, for example that it is either “yes” or “no” to a crucial
query, any adversary should not learn more with the view of the ciphertext. This security
notion requires computational impossibility to distinguish between two messages, chosen by the
adversary, which one has been encrypted, with a probability significantly better than one half:
its advantage AdvindS (A), formally defined as

2× Pr
b,r

[
(pk, sk)← K(1k), (m0,m1, s)← A1(pk),
c = Epk(mb; r) : A2(m0,m1, s, c) = b

]
− 1,

where the adversary A is seen as a 2-stage attacker (A1,A2), should be negligible.
A later notion is non-malleability (NM) [?]. To break it, the adversary, given a ciphertext,

tries to produce a new ciphertext such that the plaintexts are meaningfully related. This
notion is stronger than the above semantic security, but it is equivalent to the latter in the
most interesting scenario [?] (the CCA attacks, see below). Therefore, we will just focus on
one-wayness and semantic security.

On the other hand, an attacker can play many kinds of attacks, according to the available
information: since we are considering asymmetric encryption, the adversary can encrypt any
plaintext of its choice, granted the public key, hence the chosen-plaintext attack (CPA). It may
furthermore have access to additional information, modeled by partial or full access to some
oracles:

• A validity-checking oracle which, on input a ciphertext c, answers whether it is a valid
ciphertext or not. Such a weak oracle, involved in the so-called reaction attacks [?] or
Validity-Checking Attack (VCA), had been enough to break some famous encryption sche-
mes [?, ?].

• A plaintext-checking oracle which, on input a pair (m, c), answers whether c encrypts the
message m. This attack has been termed the Plaintext-Checking Attack (PCA) [?].

• The decryption oracle itself, which on any ciphertext answers the corresponding plaintext.
There is of course the natural restriction not to ask the challenge ciphertext to that oracle.

For all these oracles, access may be restricted as soon as the challenge ciphertext is known, the
attack is thus said non-adaptive since oracle queries cannot depend on the challenge ciphertext,
while they depend on previous answers. On the opposite, access can be unlimited and attacks are
thus called adaptive attacks (w.r.t. the challenge ciphertext). This distinction has been widely
used for the chosen-ciphertext attacks, for historical reasons: the non-adaptive chosen-ciphertext
attacks (CCA1) [?], a.k.a. lunchtime attacks, and adaptive chosen-ciphertext attacks (CCA2) [?].
The latter scenario which allows adaptively chosen ciphertexts as queries to the decryption
oracle is definitely the strongest attack, and will be named the chosen-ciphertext attack (CCA).

Furthermore, multi-user scenarios can be considered where related messages are encrypted
under different keys to be sent to many people (e.g. broadcast of encrypted data). This may
provide many useful data for an adversary. For example, RSA is well-known to be weak in such
a scenario [?, ?], namely with a small encryption exponent, because of the Chinese Remainders
Theorem. But once again, semantic security has been shown to be the appropriate security level,
since it automatically extends to the multi-user setting: if an encryption scheme is semantically
secure in the classical sense, it is also semantically secure in multi-user scenarios, against both
passive [?] and active [?] adversaries.

A general study of these security notions and attacks was conducted in [?], we therefore
refer the reader to this paper for more details. See also the summary diagram on Figure 8.1.
However, we can just review the main scenarios we will consider in the following:

• one-wayness under chosen-plaintext attacks (OW-CPA) – where the adversary wants to
recover the whole plaintext from just the ciphertext and the public key. This is the weakest
scenario.



8.1. SECURITY NOTIONS 115

OW-CPA OW-VCA OW-CCA

IND-CPA IND-CCA

NM-CPA NM-CCA

OW – One-Wayness
IND – Indistinguishability

(a.k.a. Semantic Security)
NM – Non-Malleability

CPA – Chosen-Plaintext Attack
VCA – Validity-Checking Attack

(a.k.a. Reaction Attack)
CCA – Chosen-Ciphertext Attack

Figure 8.1: Relations between the Security Notions for Asymmetric Encryption

• semantic security under adaptive chosen-ciphertext attacks (IND-CCA) – where the ad-
versary just wants to distinguish which plaintext, between two messages of its choice, has
been encrypted, while it can ask any query it wants to a decryption oracle (except the
challenge ciphertext). This is the strongest scenario one can define for encryption (still in
our general framework.) Thus, this is our goal when we design a cryptosystem.

8.1.2 Digital Signature Schemes

Digital signature schemes are the electronic version of handwritten signatures for digital docu-
ments: a user’s signature on a message m is a string which depends on m, on public and secret
data specific to the user and —possibly— on randomly chosen data, in such a way that anyone
can check the validity of the signature by using public data only. The user’s public data are
called the public key, whereas his secret data are called the private key. The intuitive security
notion would be the impossibility to forge user’s signatures without the knowledge of his private
key. In this section, we give a more precise definition of signature schemes and of the possible
attacks against them (most of those definitions are based on [?]).

8.1.2.1 Definitions

A signature scheme S = (K,S,V) is defined by the three following algorithms:

• The key generation algorithm K. On input 1k, which is a formal notation for a machine
with running time polynomial in k (1k is indeed k in basis 1), the algorithm K produces
a pair (pk, sk) of matching public and private keys. Algorithm K is probabilistic. The
input k is called the security parameter. The sizes of the keys, or of any problem involved
in the cryptographic scheme, will depend on it, in order to achieve an appropriate security
level (the expected minimal time complexity of any attack).

• The signing algorithm S. Given a message m and a pair of matching public and private
keys (pk, sk), S produces a signature σ. The signing algorithm might be probabilistic.

• The verification algorithm V. Given a signature σ, a message m and a public key pk,
V tests whether σ is a valid signature of m with respect to pk. In general, the verification
algorithm need not be probabilistic.



116 CHAPTER 8. PROVABLE SECURITY

8.1.2.2 Forgeries and Attacks

In this subsection, we formalize some security notions which capture the main practical situa-
tions. On the one hand, the goals of the adversary may be various:

• Disclosing the private key of the signer. It is the most serious attack. This attack is
termed total break.

• Constructing an efficient algorithm which is able to sign messages with good probability
of success. This is called universal forgery.

• Providing a new message-signature pair. This is called existential forgery. The corre-
sponding security level is called existential unforgeability (EUF).

In many cases the latter forgery, the existential forgery, is not dangerous because the output
message is likely to be meaningless. Nevertheless, a signature scheme which is existentially
forgeable does not guarantee by itself the identity of the signer. For example, it cannot be used
to certify randomly looking elements, such as keys. Furthermore, it cannot formally guarantee
the non-repudiation property, since anyone may be able to produce a message with a valid
signature.

On the other hand, various means can be made available to the adversary, helping it
into its forgery. We focus on two specific kinds of attacks against signature schemes: the no-
message attacks and the known-message attacks (KMA). In the former scenario, the attacker
only knows the public key of the signer. In the latter, the attacker has access to a list of valid
message-signature pairs. According to the way this list was created, we usually distinguish many
subclasses, but the strongest is definitely the adaptive chosen-message attack (CMA), where the
attacker can ask the signer to sign any message of its choice, in an adaptive way: it can adapt
its queries according to previous answers.

When signature generation is not deterministic, there may be several signatures correspond-
ing to a given message. And then, some notions defined above may become ambiguous [?].
First, in known-message attacks, an existential forgery becomes the ability to forge a fresh
message/signature pair that has not been obtained during the attack. There is a subtle point
here, related to the context where several signatures may correspond to a given message. We
actually adopt the stronger rule that the attacker needs to forge the signature of message, whose
signature was not queried. The more liberal rule, which makes the attacker successful when it
outputs a second signature of a given message different from a previously obtained signature
of the same message, is called malleability, while the corresponding security level is called non-
malleability (NM). Similarly, in adaptive chosen-message attacks, the adversary may ask several
times the same message, and each new answer gives it some information. A slightly weaker
security model, by now called single-occurrence adaptive chosen-message attack (SO-CMA), al-
lows the adversary at most one signature query for each message. In other words the adversary
cannot submit the same message twice for signature.

When one designs a signature scheme, one wants to computationally rule out at least exis-
tential forgeries, or even achieve non-malleability, under adaptive chosen-message attacks. More
formally, one wants that the success probability of any adversary A with a reasonable time is
small, where

SucceufS (A) = Pr
[
(pk, sk)← K(1k), (m,σ)← ASsk(pk) : V(pk,m, σ) = 1

]
.

We remark that since the adversary is allowed to play an adaptive chosen-message attack,
the signing algorithm is made available, without any restriction, hence the oracle notation ASsk.
Of course, in its answer, there is the natural restriction that, at least, the returned message-
signature has not been obtained from the signing oracle Ssk itself (non-malleability) or even the
output message has not been queried (existential unforgeability).



8.2. THE COMPUTATIONAL ASSUMPTIONS 117

8.2 The Computational Assumptions

There are two major families in number theory-based public-key cryptography:

1. the schemes based on integer factoring, and on the RSA problem [?];

2. the schemes based on the discrete logarithm problem, and on the Diffie-Hellman prob-
lems [?], in any “suitable” group. The first groups in use were cyclic subgroups of Z⋆

p, the
multiplicative group of the modular quotient ring Zp = Z/pZ. But many schemes are now
converted on cyclic subgroups of elliptic curves, or of the Jacobian of hyper-elliptic curves,
with namely the so-called ECDSA [?], the US Digital Signature Standard [?] on elliptic
curves. The pairing-based cryptography also works in groups (elliptic curves) where the
discrete logarithm problem is difficult, but a bilinear map provides variable intractability
levels for the Diffie-Hellman problems, according to the actual curve.

8.2.1 Integer Factoring and the RSA Problem

The most famous intractable problem is factorization of integers: while it is easy to multiply
two prime integers p and q to get the product n = p · q, it is not simple to decompose n into its
prime factors p and q.

Currently, the most efficient algorithm is based on sieving on number fields. The Num-
ber Field Sieve (NFS) method [?] has a super-polynomial, but sub-exponential, complexity in
O(exp((1.923+o(1))(ln n)1/3(ln lnn)2/3)). It has been used to establish the main records, in au-
gust 1999 (by factoring a 155-digit integer, 512-bit long [?]) and in december 2009 (by factoring
a 232-digit integer, 768-bit long [?]). The factored numbers, called RSA-155 and RSA-768, were
taken from the “RSA Challenge List”, which is used as a yardstick for the security of the RSA
cryptosystem (see later). The latter is used extensively in hardware and software to protect
electronic data traffic such as in the SSL (Security Sockets Layer) Handshake Protocol.

RSA-155 =

1094173864157052742180970732204035761200373294544920\

5990913842131476349984288934784717997257891267332497\

625752899781833797076537244027146743531593354333897

= 102639592829741105772054196573991675900\

716567808038066803341933521790711307779

* 106603488380168454820927220360012878679\

207958575989291522270608237193062808643

RSA-232 =

1230186684530117755130494958384962720772853569595334792197\

3224521517264005072636575187452021997864693899564749427740\

6384592519255732630345373154826850791702612214291346167042\

9214311602221240479274737794080665351419597459856902143413

= 3347807169895689878604416984821269081770479498371376856891\

2431388982883793878002287614711652531743087737814467999489

* 3674604366679959042824463379962795263227915816434308764267\

6032283815739666511279233373417143396810270092798736308917

Unfortunately, integer multiplication just provides a one-way function, without any possi-
bility to invert the process. No information is known to make factoring easier. However, some
algebraic structures are based on the factorization of an integer n, where some computations
are difficult without the factorization of n, but easy with it: the finite quotient ring Zn which
is isomorphic to the product ring Zp × Zq if n = p · q.



118 CHAPTER 8. PROVABLE SECURITY

Year Required Complexity modulus bitlength

before 2000 64 768
before 2010 80 1024
before 2020 112 2048
before 2030 128 3072

192 7680
256 15360

Figure 8.2: Bitlength of RSA Moduli

For example, the e-th power of any element x can be easily computed using the square-and-
multiply method. It consists in using the binary representation of the exponent e = ekek−1 . . . e0,
computing the successive 2 powers of x (x2

0

, x2
1

, . . . , x2
k
) and eventually to multiply altogether

the ones for which ei = 1. However, to compute e-th roots, it seems that one requires to know
an integer d such that ed = 1 mod ϕ(n), where ϕ(n) is the totient Euler function which denotes
the cardinality of the multiplicative subgroup Z⋆

n of Zn. In the particular case where n = pq,
ϕ(n) = (p − 1)(q − 1). And therefore, ed − 1 is a multiple of ϕ(n) which is equivalent to the
knowledge of the factorization of n [?]. In 1978, Rivest, Shamir and Adleman [?] defined the
following problem:

The RSA Problem. Let n = pq be the product of two large primes of similar size
and e an integer relatively prime to ϕ(n). For a given y ∈ Z⋆

n, compute the modular
e-th root x of y (i.e. x ∈ Z⋆

n such that xe = y mod n.)

The Euler function can be easily computed from the factorization of n, since for any n =
∏

pvii ,

ϕ(n) = n×
∏(

1−
1

pi

)
.

Therefore, with the factorization of n (the trapdoor), the RSA problem can be easily solved.
But nobody knows whether the factorization is required, and how to do without it either:

The RSA Assumption. For any product of two primes, n = pq, large enough,
the RSA problem is intractable (presumably as hard as the factorization of n).

More precisely, the intractability level is assumed as depicted on Figure 8.2. Until 2000, a
security level of 264 was considered enough since the computational power that an adversary
could collect within a reasonable time was bounded by 264. Since 2010, 280 is no longer con-
sidered enough, and thus 2048-bit RSA moduli are recommended. However, this is under the
assumption that the RSA problem can be efficiently reduced to an attack, without any loss
(practical security).

8.2.2 The Discrete Logarithm and the Diffie-Hellman Problems

The setting is quite general: one is given

• a cyclic group G of prime order q (such as the finite group (Zq,+), a subgroup of (Z⋆
p,×)

for q|p− 1, of an elliptic curve, etc);

• a generator g (i.e. G = 〈g〉).

We note in bold (such as g) any element of the group G, to distinguish it from a scalar x ∈ Zq.
But such a g could be an element in Z⋆

p or a point of an elliptic curve, according to the setting.
Above, we talked about a “suitable” group G. In such a group, some of the following problems
have to be hard to solve (using the additive notation).



8.3. PROOF METHODOLOGY 119

• the Discrete Logarithm problem (DL): given y ∈ G, compute x ∈ Zq such that y =
x · g = g + . . .+ g (x times), then one writes x = log

g
y.

• the Computational Diffie-Hellman problem (CDH): given two elements in the group
G, a = a · g and b = b · g, compute c = ab · g. Then one writes c = DH(a,b).

• the Decisional Diffie-Hellman Problem (DDH): given three elements in the group G,
a = a · g, b = b · g and c = c · g, decide whether c = DH(a,b) (or equivalently, whether
c = ab mod q).

It is clear that they are sorted from the strongest problem to the weakest one. Furthermore, one
may remark that they all are “random self-reducible”, which means that any instance can be
reduced to a uniformly distributed instance: for example, given a specific element y for which
one wants to compute the discrete logarithm x in basis g, one can choose a random z ∈ Zq,
and compute z = z · y. The element z is therefore uniformly distributed in the group, and the
discrete logarithm α = log

g
z leads to x = α/z mod q. As a consequence, there are only average

complexity cases. Thus, the ability to solve a problem for a non-negligible fraction of instances
in polynomial time is equivalent to solve any instance in expected polynomial time.

A variant of the Diffie-Hellman problem has been defined by Tatsuaki Okamoto and David
Pointcheval [?], the so-called Gap Diffie-Hellman Problem (GDH), where one wants to solve
the CDH problem with an access to a DDH oracle. One may easily remark the following
properties about above problems: DL ≥ CDH ≥ {DDH,GDH}, where A ≥ B means that
the problem A is at least as hard as the problem B. However, in practice, no one knows how to
solve any of them without breaking the DL problem itself. On pairing-friendly elliptic curves,
the DDH can be easy to decide.

Currently, the most efficient algorithms to solve the latter problem depend on the underlying
group. For generic groups (for which no specific algebraic property can be used), algorithms
have a complexity in the square root of q, the order of the generator g [?, ?]. For example, on
well-chosen elliptic curves only these algorithms can be used.

However, for subgroups of Z⋆
p, some better techniques can be applied. The best algorithm

is based on sieving on number fields, as for the factorization. The General Number Field
Sieve method [?] has a super-polynomial, but sub-exponential, complexity in O(exp((1.923 +
o(1))(ln p)1/3(ln ln p)2/3)).

For signature applications, one only requires groups where the DL problem is hard, whereas
encryption needs trapdoor problems and therefore requires groups where some of the DH’s
problems are also hard to solve.

8.3 Proof Methodology

The actual security proof consists of a reduction of the underlying computational problem to an
attack against the cryptographic scheme: if there exist an adversary A able to win the security
game, we can use this adversary A as a subroutine to solve the computational problem, as
shown of Figure 8.3. More precisely, a proof consists in building a simulator. In order to be
able to evaluate the success probability of the simulator in solving the computational problem,
we have to show that the view of the adversary remains unchanged from the one its has during
a real attack.

Until the early 2000’s, a proof consisted in exhibiting the simulator, and then to directly
analyze the success probability. This analysis was intricate and error-prone. Victor Shoup
introduced in [?, ?, ?] a game-based approach, also revisited by Bellare and Rogaway [?], that
we will extensively use in these notes.

In this technique, we define a sequence G1, G2, etc., of modified attack games starting from
the actual security game G0. Each of the games operates on the same underlying probability



120 CHAPTER 8. PROVABLE SECURITY

Figure 8.3: Proof by Reduction

space: the public and private keys of the cryptographic scheme, the coin tosses of the adversary
A and the various oracles. Only the rules defining how the view is computed differ from game
to game: we modify the behavior of the oracles and of the challenger. The view of the adversary
(similar to the trace of an execution in the symbolic model) can be seen as a random variable
following a distribution probability Di in the game Gi.

Then, several situations can appear:

• the distribution remains perfectly unchanged, then the distance between the two distri-
butions is 0;

• the distribution remains statistically unchanged, then the distance between the two dis-
tributions is negligible;

• the distributions are computationally indistinguishable, then a decisional problem is in-
volved;

In these three cases, the probability of any event is almost the same in the two games: the
difference is bounded by the distance between the two distributions.

We can also modify the distributions, but in specific cases only: unless an event is raised,
the two games run identically. As a consequence, the distributions of outputs of the two games
are related by the event. We can indeed apply the following Shoup lemma:

Lemma 8.1 Let E1, E2 and F1, F2 be events defined on a probability space

Pr[E1 | ¬F1] = Pr[E2 | ¬F2] and Pr[F1] = Pr[F2] = ε ⇒ |Pr[E1]− Pr[E2]| ≤ ε.

Proof : The proof follows from easy computations:

|Pr[E1]− Pr[E2]| = |Pr[E1 |F1] · Pr[F1] + Pr[E1 | ¬F1] · Pr[¬F1]

−Pr[E2 |F2] · Pr[F2]− Pr[E2 | ¬F2] · Pr[¬F2]|

= |(Pr[E1 |F1]− Pr[E2 |F2]) · ε

+(Pr[E1 | ¬F1]− Pr[E2 | ¬F2]) · (1− ε)|

= |(Pr[E1 |F1]− Pr[E2 |F2]) · ε| ≤ ε.

8.4 Exercises

Exercice 40 (Amplification of RSA)
Let us consider the RSA problem, with modulus n and exponent e, prime to ϕ(n). We say that
the algorithm A is an (ε, t)-adversary against RSA with parameters (n, e) if, within time t, its



8.4. EXERCISES 121

success probability is greater than ε:

Succ(A) = Pr
x∈Z⋆

n

[A(n, e, xe mod n) = x] ≥ ε.

Show that if there exists an (ε, t)-adversary A against RSA with parameters (n, e), then for
any 0 < η < 1, there exists an (η, t′)-adversary B against RSA with the same parameters (n, e),
within a reasonable time bound t′.

Exercice 41 (Amplification of Diffie-Hellman)
Let us consider the Diffie-Hellman problem in a cyclic group G of prime order q, with a generator
g: given X = gx and Y = gy, one has to compute Z = gxy.

We say that the algorithm A is an (ε, t)-adversary against DH with parameters (G, g) if,
within time t, its success probability is greater than ε:

Succ(A) = Pr
x,y∈Z⋆

q

[A(gx, gy) = gxy] ≥ ε.

1. Can we use the same amplification method as above to build an (η, t′)-adversary for any
0 < η < 1?

From an instance (A = ga, B = gb), let us derive two instances: (Xi = Aαigui , Yi =
Bβigvi), for i = 0, 1, with random exponents αi, βi, ui, vi. We then run twice our adversary
A on each derived instance.

2. Show that we can detect if A succeeded on the two instances with negligible error

3. Show that we can detect if A failed for at least one instance, with negligible error

4. Describe the amplified algorithm B, and estimate the time and the success probability

5. Show that ui and vi are important in the randomization: zero values could lead to a wrong
algorithm B.



122 CHAPTER 8. PROVABLE SECURITY



Chapter 9

Public-Key Encryption Schemes

9.1 Introduction

9.1.1 The RSA Encryption Scheme

In their seminal paper [?], Rivest, Shamir and Adleman proposed both signature and public-
key encryption schemes, thanks to the “trapdoor one-way permutation” property of the RSA
function: the generation algorithm produces a large composite number N = pq, a public key e,
and a private key d such that e · d = 1 mod ϕ(N). The encryption of a message m, encoded as
an element in Z⋆

N , is simply c = me mod N . This ciphertext can be easily decrypted thanks to
the knowledge of d, m = cd mod N . Clearly, this encryption is OW-CPA, relative to the RSA
problem. The determinism makes a plaintext-checking oracle useless. Indeed, the encryption
of a message m, under a public key pk is always the same, and thus it is easy to check whether
a ciphertext c really encrypts m, by re-encrypting it. Therefore the RSA-encryption scheme is
OW-PCA relative to the RSA problem as well.

Because of this determinism, it cannot be semantically secure: given the encryption c of
either m0 or m1, the adversary simply computes c′ = me

0 mod N and checks whether c′ = c.
Furthermore, with a small exponent e (e.g. e = 3), any security vanishes under a multi-user
attack: given c1 = m3 mod N1, c2 = m3 mod N2 and c3 = m3 mod N3, one can easily compute
m3 mod N1N2N3 thanks to the Chinese Remainders Theorem, which is exactly m3 in Z and
therefore leads to an easy recovery of m.

9.1.2 The El Gamal Encryption Scheme

In 1985, El Gamal [?] also designed both signature and public-key encryption schemes. The
latter is based on the Diffie-Hellman key exchange protocol [?]: given a cyclic group G of order
prime q and a generator g, the generation algorithm produces a random element x ∈ Z⋆

q as
private key, and a public key y = x · g. The encryption of a message m, encoded as an element
m in G, is a pair (c = a · g,d = a · y +m), for a random a ∈ Zq. This ciphertext can be easily
decrypted thanks to the knowledge of x, since

a · y = ax · g = x · c,

and thus m = d− x · c. This encryption scheme is well-known to be OW-CPA relative to the
Computational Diffie-Hellman problem. It is also semantically secure (against chosen-plaintext
attacks) relative to the Decisional Diffie-Hellman problem [?].

As we have seen above, the expected security level is IND-CCA, whereas the RSA encryption
just reaches OW-CPA under the RSA assumption, and the El Gamal encryption achieves IND-
CPA under the DDH assumption. Can we achieve IND-CCA for practical encryption schemes?

123



124 CHAPTER 9. PUBLIC-KEY ENCRYPTION SCHEMES

9.2 The Cramer-Shoup Encryption Scheme

As we will see later, the scheme using hash functions, modeled as random oracles in the security
analyses, are definitely the most efficient schemes, but let us first start with a nice variation
of the ElGamal encryption scheme, proposed by Cramer and Shoup [?], that is both rather
efficient and IND-CCA secure under the DDH assumption.

9.2.1 Description

For the description of this scheme, we will use the multiplicative notation, as in the original
paper: We thus work in a cyclic group G of order prime q, with two independent generators
g1 and g2. We will also need a hash function H, that will be assumed to be second-preimage
resistant. Then the encryption scheme CS = (K, E ,D) can be described as follows:

• K(1k): produces a random element z ∈ Z⋆
q, as in the above ElGamal scheme, but also

four additional scalars x1, x2, y1, y2 ∈ Z⋆
q as private key. The public key is defined by the

values h = gz1 and c = gx1

1 gx2

2 , d = gy11 gy22 . The public key pk is therefore (c, d, h) and the
private key sk is (x1, x2, y1, y2, z).

• Epk(m; r): given a message m ∈ G and a random scalar r ∈ Zq, one computes

u1 = gr1, u2 = gr2, e = m× hr, v = (cdα)r where α = H(u1, u2, e).

• Dsk(u1‖u2‖e‖v): thanks to the private key, the decryption algorithm Dsk first checks the
validity of the ciphertext:

v
?
= ux1+αy1

1 ux2+αy2
2 where α = H(u1, u2, e).

If the equality holds, the plaintext is m = e/uz1, otherwise it returns “Reject.”

9.2.2 Security Analysis

About this construction, one can prove:

Theorem 9.1 Let A be a CCA-adversary against the semantic security of the above encryption
scheme CS. Assume that A has advantage ε and running time τ and makes qd queries to the
decryption oracle. Then

Advddh(T ) ≥
ε

2
−

1

2
× SuccH(T )−

3qd
2q

,

where T = t+ (10 + 4qd)Texp, and Texp the time for one exponentiation.

Proof : In the following we use starred letters (r⋆, u⋆1, u
⋆
2, e

⋆, v⋆, α⋆, and c⋆) to refer to the
challenge ciphertext, whereas unstarred letters (r, u1, u2, e, v, α and c) refer to the ciphertext
asked to the decryption oracle.

Game G0: A pair of keys (pk, sk) is generated using K(1k). Adversary A1 is fed with pk, and
outputs a pair of messages (m0,m1). Next a challenge ciphertext is produced by flipping a coin
b and producing a ciphertext c⋆ = u⋆1‖u

⋆
2‖e

⋆‖v⋆ of mb. This ciphertext comes from a random

r⋆
R
← Zq and u⋆1 = gr1, u

⋆
2 = gr2, e

⋆ = mb × hr, v⋆ = (cdα
⋆
)r where α⋆ = H(u⋆1, u

⋆
2, e

⋆). On input
c⋆, A2 outputs bit b′. In both stages, the adversary is given additional access to the decryption
oracle Dsk. The only requirement is that the challenge ciphertext c⋆ cannot be queried from the
decryption oracle.



9.2. THE CRAMER-SHOUP ENCRYPTION SCHEME 125

K
O
ra
cl
e One generates four random scalars x1, x2, y1, y2 ∈ Z⋆

q.

◮Rule GenSK(0)

One chooses a random scalar z ∈ Zq, and sets h = gz1 .

The private consists of all the random scalars. The public key is defined by h and
c = gx1

1 gx2

2 , d = gy11 gy22 .

D
O
ra
cl
e Query Dsk(u1‖u2‖e‖v):

◮Rule DecM(0)

One computes m = e/hz .

◮Rule CheckV(0)

One computes α = H(u1, u2, e), and v′ = ux1+αy1
1 ux2+αy2

2 .
If v 6= v′ then one returns “Reject.”

One returns m.

C
h
al
le
n
ge
r For two messages (m0,m1), flip a coin b and set m⋆ = mb.

◮Rule Chal−Output(0)

Choose randomly r⋆, then set
u⋆1 = gr

⋆

1 , u⋆2 = gr
⋆

2 , e⋆ = m⋆ × hr
⋆
, v⋆ = (cdα

⋆
)r

⋆

where α⋆ = H(u⋆1, u
⋆
2, e

⋆).

Then, output c⋆ = u⋆1‖u
⋆
2‖e

⋆‖v⋆.

Figure 9.1: Formal Simulation of the IND-CCA Game against the CS Construction

We denote by S0 the event b′ = b and use a similar notation Si in any Gi below. By
definition, we have

Pr[S0] =
1

2
+

ε

2
. (9.1)

Game G1: In the previous game, we define an event CBad0 that is raised during a decryption
querying (u1‖u2‖e‖v) if v = ux1+αy1

1 ux2+αy2
2 , but u1 = gr11 and u2 = gr22 with r1 6= r2. In this

new game, when this event is raised, one stops the game and outputs a random bit bit b′. Then,
clearly,

Pr[CBad1] = Pr[CBad0] Pr[S1 | ¬CBad1] = Pr[S0 | ¬CBad0] Pr[S1 |CBad1] =
1

2
|Pr[S1]− Pr[S0] | = |Pr[S1 | ¬CBad1] Pr[¬CBad1] + Pr[S1 |CBad1] Pr[CBad1]

−Pr[S0 | ¬CBad0] Pr[¬CBad0]− Pr[S0 |CBad0] Pr[CBad0] |

= |Pr[S1 |CBad1]− Pr[S0 |CBad0] | × Pr[CBad0]

=

∣∣∣∣
1

2
− Pr[S0 |CBad0]

∣∣∣∣× Pr[CBad0]

As a consequence,

|Pr[S1]− Pr[S0] | ≤
1

2
× Pr[CBad1] (9.2)

Let us now evaluate Pr[CBad1]. This event is raised if, knowing the public parameters c = gx1

1 gx2

2

and d = gy11 gy22 and the challenge ciphertext u⋆1 = gr
⋆

1 , u⋆2 = gr
⋆

2 , and v⋆ = (cdα
⋆
)r

⋆
where



126 CHAPTER 9. PUBLIC-KEY ENCRYPTION SCHEMES

α⋆ = H(u⋆1, u
⋆
2, e

⋆), the adversary generates u1 = gr11 , u2 = gr22 , and v such that r1 6= r2 and
v = ux1+αy1

1 ux2+αy2
2 .

If we denote (formally), g2 = gβ1 , c = gγ1 , and d = gδ1, together with v = gµ1 and chv = gµ
⋆

1

we have

x1 + βx2 = γ

y1 + βy2 = δ

r⋆(x1 + αy1) + βr⋆(x2 + αy2) = µ⋆

r1(x1 + αy1) + βr2(x2 + αy2) = µ

By construction, the third equation is a linear combination of the two first one (µ⋆ can thus be
uniquely determined). However, the fourth is linearly independent (r1 6= r2), µ is unpredictable,
and thus v is so too. As a consequence, even a powerful adversary has no chance to raise CBad1
but by chance:

Pr[CBad0] = Pr[CBad1] ≤
qd
q

(9.3)

Game G2: In this game we modify the key generation, with

◮Rule GenSK(2)

One chooses two random scalars z1, z2 ∈ Zq, and sets h = gz11 gz22 .

and thus the decryption procedure becomes:

◮Rule DecM(2)

One computes m = e/uz11 uz22 .

Since we still abort when an acceptable ciphertext satisfies r1 6= r2, where u1 = gr11 and u2 = gr22 ,
then necessarily, a decryption only happens when r = r1 = r2: uz11 uz22 = (gz11 gz22 )r = hr. If we
formally denote h = gz1 , which means that z = z1 + βz2, then uz11 uz22 = (gr1)

z1+βz2 = uz1, and
thus the decryption is identical to the previous game.

Pr[S2] = Pr[S1] (9.4)

Game G3: We now want to involve a DDH instance. Let us be given a tuple (g1, g2, U =
gr

⋆
1

1 , V = gr
⋆
2

2 ), with r⋆1 = r⋆2. We use it for the challenge ciphertext generation:

◮Rule Chal−Output(3)

Set u⋆1 = U , u⋆2 = V , e⋆ = m⋆ × U z1V z2 , v⋆ = Ux1+α⋆y1V x2+α⋆y2

where α⋆ = H(u⋆1, u
⋆
2, e

⋆).

Since we assume that r⋆ = r⋆1 = r⋆2, u⋆1 = gr
⋆

1 , u⋆2 = gr
⋆

2 , e⋆ = m⋆ × (gz11 gz22 )r
⋆
= hr

⋆
,

and v⋆ = gr
⋆x1+α⋆r⋆y1

1 gr
⋆x2+α⋆r⋆y2

2 = cr
⋆
dα

⋆r⋆ where α⋆ = H(u⋆1, u
⋆
2, e

⋆). Hence, the challenge
generation is identical to the previous game:

Pr[S3] = Pr[S2] (9.5)

Game G4: Now, we would like to replace the Diffie-Hellman tuple by a random tuple, and use
the DDH assumption. However, our current simulation is not polynomial: in order to detect
the event CBad and then abort, one needs to be able to compute discrete logarithms (or at least
to make the DDH decision). We thus forget this event, and do not abort anymore, even in case



9.2. THE CRAMER-SHOUP ENCRYPTION SCHEME 127

of wrong acceptable ciphertexts. Since v⋆ still leads to a linear combination of the exponents of
the public key, we can make exactly the same analysis as in game G1:

|Pr[S4]− Pr[S3] | ≤
qd
2q

(9.6)

Game G5: We are now given a random input tuple (g1, g2, U = gr
⋆
1

1 , V = gr
⋆
2

2 ). By simply
outputting the boolean b′ = b, we have a distinguisher against the DDH problem, within time
T , which takes into account the time complexity t of the adversary, and the simulations of
the key generation (6 exponentiations), the decryption oracle (4qd exponentiations) and the
challenger (4 exponentiations):

|Pr[S5]− Pr[S4] | ≤ Advddh(t+ (10 + 4qd)Texp) (9.7)

Game G6: In order to be sure that no additional information is revealed about the secret key,
we again abort the simulation when the event CBad is detected. Now, v⋆ does no longer leads
to a linear combination of the exponents of the public key. We can thus take the first part of
the analysis of the game G1:

|Pr[S6]− Pr[S5] | ≤
1

2
× Pr[CBad6] (9.8)

The analysis of the event CBad is a bit more intricate: the adversary knows c = gx1

1 gx2

2 and d =

gy11 gy22 and the challenge ciphertext u⋆1 = gr
⋆
1

1 , u⋆2 = gr
⋆
2

2 , and v⋆ = gr
⋆
1x1+α⋆r⋆1y1

1 gr
⋆
2x2+α⋆r⋆2y2

2

where α⋆ = H(u⋆1, u
⋆
2, e

⋆) and wants to generate u1 = gr11 , u2 = gr22 , and v such that r1 6= r2 (to
learn something) and v = ux1+αy1

1 ux2+αy2
2 (to be accepted).

If we denote (formally), g2 = gβ1 , c = gγ1 , and d = gδ1, together with v = gµ1 and chv = gµ
⋆

1

we have

x1 + βx2 = γ

y1 + βy2 = δ

r⋆1(x1 + α⋆y1) + βr⋆2(x2 + α⋆y2) = µ⋆

r1(x1 + αy1) + βr2(x2 + αy2) = µ

A powerful adversary is able to compute α, β, γ, δ, r⋆1, r
⋆
2 and µ⋆. Is goal is to generate

r1 6= r2 and µ that satisfies the appropriate equation with the variables “x1, x2, y1, y2 used by
the simulator. However, for any r1 6= r2, we can show that the following determinant is

∣∣∣∣∣∣∣∣

1 β 0 0
0 0 1 β
r⋆1 βr⋆2 r⋆1α

⋆ βr⋆2α
⋆

r1 βr2 r1α βr2α

∣∣∣∣∣∣∣∣
= β2 × (r⋆2 − r⋆1)× (r2 − r1)× (α⋆ − α).

But for a decryption query (u1, u2, e, α), three cases appear:

• (u1, u2, e) = (u⋆1, chu2, e
⋆), then necessarily chv 6= v otherwise the query is exactly the

challenge ciphertext, and this is not allowed. Then, we know that the verification check
will not pass, the decryption will be rejected;

• (u1, u2, e) 6= (u⋆1, chu2, e
⋆), but α⋆ = α, which means that H(u1, u2, e) = H(u

⋆
1, chu2, e

⋆),
and then the adversary has found a second pre-image for H;

• (u1, u2, e) 6= (u⋆1, chu2, e
⋆), and α⋆ 6= α. If r⋆1 6= r⋆2, then the above determinant is

non-zero, and thus the value µ is unpredictable.



128 CHAPTER 9. PUBLIC-KEY ENCRYPTION SCHEMES

As a consequence, even a powerful adversary has no chance to raise CBad6 but by chance:

Pr[CBad5] = Pr[CBad6] ≤
qd
q

+ SuccH(t+ (10 + 4qd)Texp) (9.9)

Furthermore, in this last game the challenge ciphertext contains e⋆ = m⋆ × U z1V z2 , and the
public key h = gz11 gz22 just reveals a linear relation between z1 and z2, and any decryption

queries for valid ciphertexts where r1 = r2. On the opposite, since U = gr
⋆
1

1 and V = gr
⋆
2

2 with
r⋆1 6= r⋆2, even a powerful adversary has no information about the value of U z1V z2 , hence b′ is
independent of b:

Pr[S6] =
1

2
(9.10)

As a conclusion, one can see that

Pr[S0] =
1

2
+

ε

2

|Pr[S1]− Pr[S0] | ≤
qd
2q

|Pr[S2]− Pr[S1] | = 0

|Pr[S3]− Pr[S2] | = 0

|Pr[S4]− Pr[S3] | ≤
qd
2q

|Pr[S5]− Pr[S4] | ≤ Advddh(T )

|Pr[S6]− Pr[S5] | ≤
qd
2q

+
1

2
× SuccH(T )

Pr[S6] =
1

2

where T = t+ (10 + 4qd)Texp, and thus

ε

2
= |Pr[S6]− Pr[S0] | ≤

3qd
2q

+ Advddh(T ) +
1

2
× SuccH(T )

9.3 A Generic Construction

In [?], Bellare and Rogaway proposed the first generic construction which applies to any trapdoor
one-way permutation f onto X.

9.3.1 Description

We need two hash functions G and H:

G : X −→ {0, 1}n and H : {0, 1}⋆ −→ {0, 1}k1 ,

where n is the bit-length of the plaintexts, and k1 a security parameter. Then the encryption
scheme BR = (K, E ,D) can be described as follows:

• K(1k): specifies an instance of the function f , and of its inverse f−1. The public key pk

is therefore f and the private key sk is f−1.

• Epk(m; r): given a message m ∈ {0, 1}n, and a random value r
R
← X, the encryption

algorithm Epk computes

a = f(r), b = m⊕ G(r) and c = H(m, r),

and outputs the ciphertext y = a‖b‖c.



9.3. A GENERIC CONSTRUCTION 129

• Dsk(a‖b‖c): thanks to the private key, the decryption algorithm Dsk extracts

r = f−1(a), and next m = b⊕ G(r).

If c = H(m, r), the algorithm returns m, otherwise it returns “Reject.”

9.3.2 Security Analysis

About this construction, one can prove:

Theorem 9.2 Let A be a CCA-adversary against the semantic security of the above encryption
scheme BR. Assume that A has advantage ε and running time τ and makes qd, qg and qh queries
to the decryption oracle, and the hash functions G and H, respectively. Then

Succowf (τ ′) ≥
ε

2
−

2qd
2k1

,

with τ ′ ≤ τ + (qg + qh) · Tf ,

where Tf denotes the time complexity for evaluating f .

Proof : In the following we use starred letters (r⋆, a⋆, b⋆, c⋆ and y⋆) to refer to the challenge
ciphertext, whereas unstarred letters (r, a, b, c and y) refer to the ciphertext asked to the
decryption oracle.

Game G0: A pair of keys (pk, sk) is generated using K(1k). Adversary A1 is fed with pk,
the description of f , and outputs a pair of messages (m0,m1). Next a challenge ciphertext is
produced by flipping a coin b and producing a ciphertext y⋆ = a⋆‖b⋆‖c⋆ of mb. This ciphertext

comes from a random r⋆
R
← X and a⋆ = f(r⋆), b⋆ = mb ⊕ G(r

⋆) and c⋆ = H(mb, r
⋆). On input

y⋆, A2 outputs bit b′. In both stages, the adversary is given additional access to the decryption
oracle Dsk. The only requirement is that the challenge ciphertext y⋆ cannot be queried from
the decryption oracle.

We denote by S0 the event b′ = b and use a similar notation Si in any Gi below. By
definition, we have

Pr[S0] =
1

2
+

ε

2
. (9.11)

Game G1: In this game, one makes the classical simulation of the random oracles, with
random answers for any new query, as shown on Figure 9.2. This game is clearly identical to
the previous one.

Game G2: In this game, one randomly chooses h+
R
← {0, 1}k1 , and uses it instead ofH(m⋆, r⋆).

◮Rule Chal−Hash(2)

The value h+
R
← {0, 1}k1 has been chosen ahead of time, choose

randomly r⋆, then set a⋆ = f(r⋆), g⋆ = G(r⋆), b⋆ = m⋆ ⊕ g⋆, and
c⋆ = h+.

The two games G2 and G1 are perfectly indistinguishable unless (m⋆, r⋆) is asked for H, either
by the adversary or the decryption oracle. But the latter case is not possible, otherwise the
decryption query would be the challenge ciphertext. More generally, we denote by AskR2 the
event that r⋆ has been asked to G or to H, by the adversary. We have:

|Pr[S2]− Pr[S1] | ≤ Pr[AskR2]. (9.12)

Game G3: We start modifying the simulation of the decryption oracle, by rejecting any
ciphertext (a‖b‖c) for which the corresponding (m, r) has not been queried to H:



130 CHAPTER 9. PUBLIC-KEY ENCRYPTION SCHEMES

G
,
H

O
ra
cl
es

Query G(r): if a record (r, g) appears in G-List, the answer is g.
Otherwise the answer g is chosen randomly: g ∈ {0, 1}n and the record (r, g) is
added in G-List.
Query H(m, r): if a record (m, r, h) appears in H-List, the answer is h.
Otherwise the answer h is chosen randomly: h ∈ {0, 1}k1 and the record (m, r, h)
is added in H-List.

D
O
ra
cl
e Query Dsk(a‖b‖c): one applies the following rules:

◮Rule Decrypt−R(1)

Compute r = f−1(a);

Then, compute m = b⊕ G(r), and finally,

◮Rule Decrypt−H(1)

If c = H(m, r), one returns m, otherwise one returns
“Reject.”

C
h
al
le
n
ge
r For two messages (m0,m1), flip a coin b and set m⋆ = mb.

◮Rule Chal−Hash(1)

Choose randomly r⋆, then set
a⋆ = f(r⋆),
g⋆ = G(r⋆), b⋆ = m⋆ ⊕ g⋆,
c⋆ = H(m⋆, r⋆).

Then, output y⋆ = a⋆‖b⋆‖c⋆.

Figure 9.2: Formal Simulation of the IND-CCA Game against the BR Construction

◮Rule Decrypt−H(3)

Look up in H-List for (m, r, c). If such a triple does not exist, then
output “Reject”, otherwise output m.

Such a simulation differs from the previous one if the value c has been correctly guessed, by
chance:

|Pr[S3]− Pr[S2] | ≤
qd
2k1

|Pr[AskR3]− Pr[AskR2] | ≤
qd
2k1

. (9.13)

Game G4: In this game, one randomly chooses r+
R
← X and g+

R
← {0, 1}n, and uses r+

instead of r⋆, as well as g+ instead of G(r⋆).

◮Rule Chal−Hash(4)

The three values r+
R
← X, g+

R
← {0, 1}n and h+

R
← {0, 1}k1 have been

chosen ahead of time, then set a⋆ = f(r+), b⋆ = m⋆ ⊕ g+, c⋆ =
h+.

The two games G4 and G3 are perfectly indistinguishable unless r⋆ is asked for G, either by the
adversary or the decryption oracle. The former case has already been cancelled in the previous
game, in AskR3. The latter case does not make any difference since either H(m, r⋆) has been
queried by the adversary, which falls in AskR3, or the ciphertext is rejected in both games. We
have:

Pr[S4] = Pr[S3] Pr[AskR4] = Pr[AskR3]. (9.14)



9.4. OAEP: THE OPTIMAL ASYMMETRIC ENCRYPTION PADDING 131

m 0k1 r

G

H

s t

Figure 9.3: Optimal Asymmetric Encryption Padding

In this game, m⋆ is masked by g+, a random value which never appears anywhere else. Thus,
the input to A2 follows a distribution that does not depend on b. Accordingly:

Pr[S4] =
1

2
. (9.15)

Game G5: Finally, one randomly chooses a+
R
← X, which implicitly defines a random r+ in

X. Actually, a+ is the given random challenge for which one is looking for the pre-image r+.

◮Rule Chal−Hash(5)

The three values a+
R
← X, g+

R
← {0, 1}n and h+

R
← {0, 1}k1 have been

chosen/given ahead of time, then set a⋆ = a+, b⋆ = m⋆⊕g+, c⋆ =
h+.

The two games G5 and G4 are perfectly indistinguishable, thanks to the permutation property
of f .

One may now note that the event AskR5 leads to the pre-image of a+ by f in the queries
asked to G and H, by the adversary. By checking all of them, one gets it:

Pr[AskR5] ≤ Succowf (τ + (qg + qh)Tf ). (9.16)

9.4 OAEP: the Optimal Asymmetric Encryption Padding

9.4.1 Description

The problem with the above generic construction is the high over-head. When one encrypts
with a trapdoor one-way permutation onto X, one could hope the ciphertext to be an element in
X, without anything else. In 1994, Bellare and Rogaway proposed such a more compact generic
conversion [?], in the random-oracle model, the “Optimal Asymmetric Encryption Padding”
(OAEP, see Figure 9.3), obtained from a trapdoor one-way permutation f onto {0, 1}k , whose
inverse is denoted by f−1. We need two hash functions G and H:

G : {0, 1}k0 −→ {0, 1}k−k0 and H : {0, 1}k−k0 −→ {0, 1}k0 ,

for some k0. We also need n and k1 which satisfy k = n+ k0 + k1. Then the encryption scheme
OAEP = (K, E ,D) can be described as follows:

• K(1k): specifies an instance of the function f , and of its inverse f−1. The public key pk

is therefore f and the private key sk is f−1.



132 CHAPTER 9. PUBLIC-KEY ENCRYPTION SCHEMES

• Epk(m; r): given a message m ∈ {0, 1}n, and a random value r
R
← {0, 1}k0 , the encryption

algorithm Epk computes

s = (m‖0k1)⊕ G(r) and t = r ⊕H(s),

and outputs the ciphertext c = f(s, t).

• Dsk(c): thanks to the private key, the decryption algorithm Dsk extracts

(s, t) = f−1(c), and next r = t⊕H(s) and M = s⊕ G(r).

If [M ]k1 = 0k1 , the algorithm returns [M ]n, otherwise it returns “Reject.”

In the above description, [M ]k1 denotes the k1 least significant bits of M , while [M ]n denotes
the n most significant bits of M .

9.4.2 About the Security

Paper [?] includes a proof that, provided f is a one-way trapdoor permutation, the resulting
OAEP encryption scheme is both semantically secure and weakly plaintext-aware. This implies
the semantic security against indifferent chosen-ciphertext attacks, also called security against
lunchtime attacks (IND-CCA1). Indeed, the Weak Plaintext-Awareness means that the adver-
sary cannot produce a new valid ciphertext, until it has seen any valid one, without knowing
(awareness) the plaintext. This is more formally defined by the existence of a plaintext-extractor
which, on input a ciphertext and the list of the query-answers of the random oracles, outputs
the corresponding plaintext. This plaintext-extractor is thus enough for simulating the decryp-
tion oracle, but in the first step of the attack only. We briefly comment on the intuition behind
(weak) plaintext-awareness. When the plaintext-extractor receives a ciphertext c, then:

• either s has been queried to H and r has been queried to G, in which case the extractor
finds the cleartext by inspecting the two query lists G-List and H-List,

• or else the decryption of (s, t) remains highly random and there is little chance to meet
the redundancy 0k1 : the plaintext extractor can safely declare the ciphertext invalid.

The argument collapses when the plaintext-extractor receives additional valid ciphertexts, since
this puts additional implicit constraints on G and H. These constraints cannot be seen by
inspecting the query lists. Hence the requirement of a stronger notion of plaintext-awareness.
In [?], Bellare, Desai, Pointcheval, and Rogaway defined such a stronger notion which extends
the previous awareness of the plaintext even after having seen valid ciphertexts. But such a
plaintext-awareness notion had never been studied for OAEP, while it was still widely admitted.

9.4.2.1 Shoup’s Counter-Example

In his papers [?, ?], Shoup showed that it was quite unlikely to extend the results of [?] to obtain
adaptive chosen-ciphertext security, under the sole one-wayness of the permutation. His counter-
example made use of the ad hoc notion of an XOR-malleable trapdoor one-way permutation:
for such permutation f0, one can compute f0(x ⊕ a) from f0(x) and a, with non-negligible
probability.

Let f0 be such an XOR-malleable permutation. Define f by f(s‖t) = s‖f0(t). Clearly, f
is also a trapdoor one-way permutation. However, it leads to a malleable encryption scheme
as we now show. Start with a challenge ciphertext y = f(s‖t) = s‖u, where s‖t is the output
of the OAEP transformation on the redundant message m‖0k1 and the random string r (see
Figure 9.4),

s = G(r)⊕ (m‖0k1), t = H(s)⊕ r and u = f0(t).



9.4. OAEP: THE OPTIMAL ASYMMETRIC ENCRYPTION PADDING 133

m 0k1 r

G

H

s t

⊕ ∆

⊕ ∆

m 0k1 r

G

H

s t

⊕H(s)⊕H(s′)

Figure 9.4: Shoup’s attack.

Since f is the identity on its leftmost part, we know s, and can define ∆ = δ‖0k1 , for any
random string δ, and s′ = s ⊕ ∆. We then set t′ = H(s′) ⊕ r = t ⊕ (H(s) ⊕ H(s′)). The
XOR-malleability of f0 allows one to obtain u′ = f0(t

′) from u = f0(t) and H(s)⊕H(s
′), with

significant probability. Finally, y′ = s′‖u′ is a valid ciphertext of m′ = m⊕ δ, built from r′ = r,
since:

t′ = f−10 (u′) = t⊕ (H(s)⊕H(s′)) = H(s′)⊕ r, r′ = H(s′)⊕ t′ = r

and

s′ ⊕ G(r′) = ∆⊕ s⊕ G(r) = ∆⊕ (m‖0k1) = (m⊕ δ)‖0k1 .

Note that the above definitely contradicts adaptive chosen-ciphertext security: asking the
decryption of y′ after having received the ciphertext y, an adversary obtains m′ and easily
recovers the actual cleartext m from m′ and δ. Also note that Shoup’s counter-example exactly
stems from where the intuition developed at the end of the previous section failed: a valid
ciphertext y′ was created without querying the oracle at the corresponding random seed r′,
using in place the implicit constraint on G coming from the received valid ciphertext y.

Using methods from relativized complexity theory, Shoup [?, ?] built a non-standard model
of computation, where there exists an XOR-malleable trapdoor one-way permutation. As a
consequence, it is very unlikely that one can prove the IND-CCA security of the OAEP con-
struction, under the sole one-wayness of the underlying permutation. Indeed, all methods of
proof currently known still apply in relativized models of computation.

9.4.3 The Actual Security of OAEP

Shoup [?, ?] furthermore provided a specific proof for RSA with public exponent 3. However,
there is little hope of extending this proof for higher exponents. Hopefully, Fujisaki, Okamoto,
Pointcheval, and Stern provided a general security analysis, but under a stronger assumption
about the underlying permutation [?, ?]. Indeed, they prove that the scheme is IND-CCA in the
random-oracle model [?], relative to the partial-domain one-wayness of permutation f .

9.4.3.1 Partial-Domain One-Wayness

Let us first introduce this new computational assumption. Let f be a permutation f : {0, 1}k −→
{0, 1}k , which can also be written as

f : {0, 1}n+k1 × {0, 1}k0 −→ {0, 1}n+k1 × {0, 1}k0 ,

with k = n+ k0 + k1. In the original description of OAEP from [?], it is only required that f is
a trapdoor one-way permutation. However, in the following, we consider two additional related
problems, namely partial-domain one-wayness and set partial-domain one-wayness:



134 CHAPTER 9. PUBLIC-KEY ENCRYPTION SCHEMES

• Permutation f is (τ, ε)-one-way if any adversary A whose running time is bounded by τ
has success probability Succowf (A) upper-bounded by ε, where

Succowf (A) = Pr
s,t
[A(f(s, t)) = (s, t)].

• Permutation f is (τ, ε)-partial-domain one-way if any adversary A whose running time is

bounded by τ has success probability Succ
pd-ow
f (A) upper-bounded by ε, where

Succ
pd-ow
f (A) = Pr

s,t
[A(f(s, t)) = s].

• Permutation f is (ℓ, τ, ε)-set partial-domain one-way if any adversary A, outputting a set

of ℓ elements within time bound τ , has success probability Succ
s-pd-ow
f (A) upper-bounded

by ε, where

Succ
s-pd-ow
f (A) = Pr

s,t
[s ∈ A(f(s, t))].

We denote by Succowf (τ) (resp. Succ
pd-ow
f (τ) and Succ

s-pd-ow
f (ℓ, τ)) the maximal success proba-

bility Succowf (A) (resp. Succpd-owf (A) and Succ
s-pd-ow
f (A)). The maximum ranges over all adver-

saries whose running time is bounded by τ . In the third case, there is an obvious additional
restriction on this range from the fact that A outputs sets with ℓ elements. It is clear that for
any τ and ℓ ≥ 1,

Succ
s-pd-ow
f (ℓ, τ) ≥ Succ

pd-ow
f (τ) ≥ Succowf (τ).

Note that, by randomly selecting an element in the set returned by an adversary to the set
partial-domain one-wayness, one breaks partial-domain one-wayness with probability Succs-pd-owf (A)/ℓ.
This provides the following inequality

Succ
pd-ow
f (τ) ≥ Succ

s-pd-ow
f (ℓ, τ)/ℓ.

However, for specific choices of f , more efficient reductions may exist. Also, in some cases, all
three problems are polynomially equivalent. This is the case for the RSA permutation [?], hence
the global security result for RSA-OAEP.

9.4.4 Intuition behind the Proof of Security

In the following we use starred letters (r⋆, s⋆, t⋆ and y⋆) to refer to the challenge ciphertext,
whereas unstarred letters (r, s, t and y) refer to the ciphertext asked to the decryption oracle.

Referring to our description of the intuition behind the original OAEP proof of security,
given above, we can carry a more subtle analysis by distinguishing the case where s has not
been queried from oracle H from the case where r has not been queried from G. If s is not
queried, then H(s) is random and uniformly distributed and r is necessarily defined as t⊕H(s).
This holds even if s matches with the string s⋆ coming from the valid ciphertext y⋆. There is a
minute probability that t⊕H(s) is queried from G or equals r⋆. Thus, G(r) is random: there is
little chance that the redundancy 0k1 is met and the extractor can safely reject.

We claim that r cannot match with r⋆, unless s⋆ is queried from H. This is because
r⋆ = t⋆ ⊕ H(s⋆) equals r = t ⊕ H(s) with minute probability. Thus, if r is not queried, then
G(r) is random and we similarly infer that the extractor can safely reject. The argument fails
only if s⋆ is queried.

Thus rejecting when it cannot combine elements of the lists G-List and H-List so as to build
a pre-image of y, the plaintext-extractor is only wrong with minute probability, unless s⋆ has
been queried by the adversary. This seems to show that OAEP leads to an IND-CCA encryption
scheme if it is difficult to invert f “partially”, which means: given y⋆ = f(s⋆‖t⋆), find s⋆.



9.4. OAEP: THE OPTIMAL ASYMMETRIC ENCRYPTION PADDING 135

Chosen-ciphertext security is actually addressed, by turning the intuition explained above
into a formal argument, involving a restricted variant of plaintext-awareness (where the list C
of ciphertexts is limited to only one ciphertext, the challenge ciphertext y⋆):

Theorem 9.3 Let A be a CCA-adversary against the semantic security of the encryption
scheme OAEP. Assume that A has advantage ε and running time τ and makes qd, qg and
qh queries to the decryption oracle, and the hash functions G and H, respectively. Then

Succ
s-pd-ow
f (qh, τ

′) ≥
ε

2
−

(
2(qd + 2)(qd + 2qg)

2k0
+

3qd
2k1

)
,

with τ ′ ≤ τ + qg · qh · (Tf +O(1)),

where Tf denotes the time complexity for evaluating f .

Unfortunately, because of the additional reduction of the basic RSA to the partial-domain
RSA problem, the global reduction is very expensive, and is thus meaningful for huge moduli
only, more than 4096-bit long. Indeed, the RSA inverter we can build, thanks to the full
reduction, has a complexity at least greater than qh · (qh + 2qg)×O(k

3). As already remarked,
the adversary can ask up to 260 queries to the hash functions, and thus this overhead in the
inversion is at least 2151. However, current factoring algorithms can factor up to 4096 bit-long
integers within this number of basic operations (see [?] for complexity estimates of the most
efficient factoring algorithms).

Anyway, the formal proof shows that the global design of OAEP is sound, and that it is still
probably safe to use it in practice (e.g. in PKCS #1 v2.0, while being very careful during the
implementation [?]).



136 CHAPTER 9. PUBLIC-KEY ENCRYPTION SCHEMES



Chapter 10

Digital Signature Schemes

10.1 Introduction

Until 1996, no practical DL-based cryptographic scheme has ever been formally studied, but
heuristically only. And surprisingly, at the Eurocrypt ’96 conference, two opposite studies were
conducted on the El Gamal signature scheme [?], the first DL-based signature scheme designed
in 1985 and depicted on Figure 10.1.

Initialization → (p, g)

g a generator of Z⋆
p,

where p is a large prime
→ (p, g)

K: Key Generation → (y, x)

private key x ∈ Z⋆
p−1

public key y = gx mod p
→ (y, x)

S: Signature of m→ (r, s)

K is randomly chosen in Z⋆
p−1

r = gK mod p s = (m− xr)/K mod p− 1
→ (r, s) is a signature of m

V: Verification of (m, r, s)

check whether gm
?
= yrrs mod p

→ Yes/No

Figure 10.1: The El Gamal Signature Scheme.

Whereas existential forgeries were known for that scheme, it was believed to prevent uni-
versal forgeries. The first analysis, from Daniel Bleichenbacher [?], showed such a universal
forgery when the generator g is not properly chosen. The second one, from David Pointcheval
and Jacques Stern [?], proved the security against existential forgeries under adaptive chosen-
message attacks of a slight variant with a randomly chosen generator g. The latter variant
simply replaces the message m by H(m, r) in the computation, while one uses a hash function
H that is assumed to behave like a random oracle. It is amazing to remark that the Ble-
ichenbacher’s attack also applies on Pointcheval-Stern’s variant. Therefore, depending on the
initialization, the variant could be a very strong signature scheme or become a very weak one!

As a consequence, a proof has to be performed in details, with precise assumptions and
achievements. Furthermore, the conclusions have to be strictly followed by developers, otherwise
the concrete implementation of a secure scheme can be very weak.

137



138 CHAPTER 10. DIGITAL SIGNATURE SCHEMES

10.2 Some Schemes

The first secure signature scheme was proposed by Goldwasser et al. [?] in 1984. It used
the notion of claw-free permutations. A pair of permutations (f, g) is said claw-free if it is
computationally impossible to find a claw (x, y), which satisfies f(x) = g(y). Their proposal
provided polynomial algorithms with a polynomial reduction between the research of a claw
and an existential forgery under an adaptive chosen-message attack. However, the scheme was
totally unpractical. What about practical schemes?

10.2.1 The RSA Signature Scheme

Two years after the Diffie-Hellman paper [?], Rivest, Shamir and Adleman [?] proposed the
first signature scheme based on the “trapdoor one-way permutation paradigm”, using the RSA
function: the generation algorithm produces a large composite number N = pq, a public key e,
and a private key d such that e · d = 1 mod ϕ(N). The signature of a message m, encoded as
an element in Z⋆

N , is its e-th root, σ = m1/e = md mod N . The verification algorithm simply
checks whether m = σe mod N .

However, the RSA scheme is not secure by itself since it is subject to existential forgery: it
is easy to create a valid message-signature pair, without any help of the signer, first randomly
choosing a certificate σ and getting the signed message m from the public verification relation,
m = σe mod N .

10.2.2 The Schnorr Signature Scheme

In 1986 a new paradigm for signature schemes was introduced. It is derived from fair zero-
knowledge identification protocols involving a prover and a verifier [?], and uses hash functions
in order to create a kind of virtual verifier. The first application was derived from the Fiat–
Shamir [?] zero-knowledge identification protocol, based on the hardness of extracting square
roots, with a brief outline of its security. Another famous identification scheme [?], together
with the signature scheme [?], has been proposed later by Schnorr, based on that paradigm:
the generation algorithm produces two large primes p and q, such that q ≥ 2k, where k is the
security parameter, and q | p − 1, as well as an element g in Z⋆

p of order q. It also creates a pair
of keys, the private key x ∈ Z⋆

q and the public key y = g−x mod p The signature of a message m

is a triple (r, e, s), where r = gK mod p, with a random K ∈ Zq, the “challenge” e = H(m, r)
and s = K + ex mod q. The latter satisfies r = gsye mod p with e = H(m, r), which is checked
by the verification algorithm.

The security results for that paradigm have been considered as folklore for a long time but
without any formal validation.

10.3 DL-Based Signatures

In [?, ?], David Pointcheval and Jacques Stern formally proved the above paradigm when H
is assumed to behave like a random oracle. The proof is based on the by now classical oracle
replay technique: by a polynomial replay of the attack with different random oracles (the Qi’s
are the queries and the ρi’s are the answers), one make the attacker forge signatures that are
suitably related. This generic technique is depicted on Figure 10.2, where the signature of a
message m is a triple (σ1, h, σ2), with h = H(m,σ1) which depends on the message and the first
part of the signature, both bound not to change for the computation of σ2, which really relies
on the knowledge of the private key. If the probability of fraud is high enough, then with good
probability, the adversary is able to answer to many distinct outputs from the H function, on
the input (m,σ1).



10.3. DL-BASED SIGNATURES 139

-

-

A

H

H′

Q1 · · · Qi−1Qi

(m,σ1)

· · · Qj . . .

ρi

ρ′i

· · · ρj · · ·

· · · ρ′j · · ·

(m,σ1, h = ρi, σ2)

(m,σ1, h
′ = ρ′i, σ

′

2
)

ρ1 · · · ρi−1

Figure 10.2: The Oracle Replay Technique

Initialization (security parameter k) → (G, g,H)

g a generator of any cyclic group (G,+)
of order q, with 2k−1 ≤ q < 2k

H a hash function: {0, 1}⋆ → Zq

→ (G, g,H)

K: Key Generation → (y, x)

private key x ∈ Z⋆
q

public key y = −x · g
→ (y, x)

S: Signature of m→ (r, h, s)

K is randomly chosen in Z⋆
q

r = K · g h = H(m, r) s = K + xh mod q
→ (r, h, s) is a signature of m

V: Verification of (m, r, s)

check whether h
?
= H(m, r)

and r
?
= s · g + h · y

→ Yes/No

Figure 10.3: The Schnorr Signature Scheme.

To be more concrete, let us consider the Schnorr signature scheme, which is presented on Fig-
ure 10.3, in any “suitable” cyclic group G of prime order q, where at least the Discrete Logarithm
problem is hard. We expect to obtain two signatures (r = σ1, h, s = σ2) and (r′ = σ′1, h

′, s′ = σ′2)
of an identical message m such that σ1 = σ′1, but h 6= h′. Thereafter, we can easily extract the
discrete logarithm of the public key:

r = s · g + h · y
r = s′ · g + h′ · y

}
⇒ (s − s′) · g = (h′ − h) · y,

which leads to log
g
y = (s − s′) · (h′ − h)−1 mod q.

10.3.1 General Tools

First, let us recall the “Splitting Lemma” which will be the main probabilistic tool for the
“Forking Lemma”. It translates the fact that when a subset A is “large” in a product space X×
Y , it has many “large” sections.

Lemma 10.1 (The Splitting Lemma) Let A ⊂ X × Y such that Pr[(x, y) ∈ A] ≥ ε. For
any α < ε, define

B =

{
(x, y) ∈ X × Y | Pr

y′∈Y
[(x, y′) ∈ A] ≥ ε− α

}
,

then the following statements hold:

(i) Pr[B] ≥ α



140 CHAPTER 10. DIGITAL SIGNATURE SCHEMES

(ii) ∀(x, y) ∈ B,Pry′∈Y [(x, y
′) ∈ A] ≥ ε− α.

(iii) Pr[B |A] ≥ α/ε.

Proof : In order to prove statement (i), we argue by contradiction, using the notation B̄ for
the complement of B in X × Y . Assume that Pr[B] < α. Then

ε ≤ Pr[B] · Pr[A |B] + Pr[B̄] · Pr[A | B̄] < α · 1 + 1 · (ε− α) = ε.

This implies a contradiction, hence the result.
Statement (ii) is a straightforward consequence of the definition.
We finally turn to the last assertion, using Bayes’ law:

Pr[B |A] = 1− Pr[B̄ |A]

= 1− Pr[A | B̄] · Pr[B̄]/Pr[A] ≥ 1− (ε− α)/ε = α/ε.

10.3.2 No-Message Attacks

The following Forking Lemma just states that the above oracle replay technique will often
success with any good adversary.

Theorem 10.1 (The Forking Lemma) Let (K,S,V) be a digital signature scheme with se-
curity parameter k, with a signature as above, of the form (m,σ1, h, σ2), where h = H(m,σ1) and
σ2 depends on σ1 and h only. Let A be a probabilistic polynomial time Turing machine whose
input only consists of public data and which can ask qh queries to the random oracle, with qh > 0.
We assume that, within the time bound T , A produces, with probability ε ≥ 7qh/2

k, a valid sig-
nature (m,σ1, h, σ2). Then, within time T ′ ≤ 16qhT/ε, and with probability ε′ ≥ 1/9, a replay
of this machine outputs two valid signatures (m,σ1, h, σ2) and (m,σ1, h

′, σ′2) such that h 6= h′.

Proof : We are given an adversary A, which is a probabilistic polynomial time Turing machine
with random tape ω. During the attack, this machine asks a polynomial number of questions
to the random oracle H. We may assume that these questions are distinct: for instance, A can
store questions and answers in a table. Let Q1, . . . ,Qqh be the qh distinct questions and let
ρ = (ρ1, . . . , ρqh) be the list of the qh answers of H. It is clear that a random choice of H exactly
corresponds to a random choice of ρ. Then, for a random choice of (ω,H), with probability ε,
A outputs a valid signature (m,σ1, h, σ2). Since H is a random oracle, it is easy to see that the
probability for h to be equal to H(m,σ1) is less than 1/2k, unless it has been asked during the
attack. So, it is likely that the question (m,σ1) is actually asked during a successful attack.
Accordingly, we define IndH(ω) to be the index of this question: (m,σ1) = QIndH(ω) (we let
IndH(ω) =∞ if the question is never asked). We then define the sets

S =
{
(ω,H) | AH(ω) succeeds & IndH(ω) 6=∞

}
,

and Si =
{
(ω,H) | AH(ω) succeeds & IndH(ω) = i

}
for i ∈ {1, . . . , qh}.

We thus call S the set of the successful pairs (ω,H).
One should note that the set {Si | i ∈ {1, . . . , qh}} is a partition of S. With those definitions,

we find a lower bound for the probability of success, ν = Pr[S] ≥ ε− 1/2k. Since we did the
assumption that ε ≥ 7qh/2

k ≥ 7/2k, then ν ≥ 6ε/7. Let I be the set consisting of the most
likely indices i,

I = {i | Pr[Si |S] ≥ 1/2qh} .

The following lemma claims that, in case of success, the index lies in I with probability at least
1/2.



10.3. DL-BASED SIGNATURES 141

Lemma 10.2

Pr[IndH(ω) ∈ I |S] ≥
1

2
.

Proof : By definition of the sets Si, Pr[IndH(ω) ∈ I |S] =
∑

i∈I Pr[Si |S]. This probability is
equal to 1−

∑
i 6∈I Pr[Si |S]. Since the complement of I contains fewer than qh elements, this

probability is at least 1− qh × 1/2qh ≥ 1/2.

We now run the attacker 2/ε times with random ω and random H. Since ν = Pr[S] ≥ 6ε/7,
with probability greater than 1− (1− 6ε/7)2/ε, we get at least one pair (ω,H) in S. It is easily
seen that this probability is lower bounded by 1− e−12/7 ≥ 4/5.

We now apply the Splitting-lemma (Lemma 10.1, with ε = ν/2qh and α = ε/2) for each
integer i ∈ I: we denote by H|i the restriction of H to queries of index strictly less than i. Since
Pr[Si] ≥ ν/2qh, there exists a subset Ωi of executions such that,

for any (ω,H) ∈ Ωi,Pr
H′
[(ω,H′) ∈ Si |H

′
|i = H|i] ≥

ν

4qh

Pr[Ωi |Si] ≥
1

2
.

Since all the subsets Si are disjoint,

Pr
ω,H

[(∃i ∈ I) (ω,H) ∈ Ωi ∩ Si |S]

= Pr

[
⋃

i∈I

(Ωi ∩ Si) |S

]
=
∑

i∈I

Pr[Ωi ∩ Si |S]

=
∑

i∈I

Pr[Ωi |Si] · Pr[Si |S] ≥

(
∑

i∈I

Pr[Si |S]

)
/2 ≥

1

4
.

We let β denote the index IndH(ω) corresponding to the successful pair. With probability
at least 1/4, β ∈ I and (ω,H) ∈ Sβ ∩ Ωβ. Consequently, with probability greater than 4/5 ×
1/5 = 1/5, the 2/ε attacks have provided a successful pair (ω,H), with β = IndH(ω) ∈ I and
(ω,H) ∈ Sβ. Furthermore, if we replay the attack, with fixed ω but randomly chosen oracle H′

such that H′|β = H|β, we know that PrH′ [(ω,H′) ∈ Sβ |H
′
|β = H|β] ≥ ν/4qh. Then

Pr
H′
[(ω,H′) ∈ Sβ and ρβ 6= ρ′β |H

′
|β = H|β]

≥ Pr
H′
[(ω,H′) ∈ Sβ |H

′
|β = H|β]− Pr

H′
[ρ′β = ρβ ] ≥ ν/4qh − 1/2k,

where ρβ = H(Qβ) and ρ′β = H′(Qβ). Using again the assumption that ε ≥ 7qh/2
k, the above

probability is lower-bounded by ε/14qh. We thus replay the attack 14qh/ε times with a new
random oracle H′ such that H′|β = H|β, and get another success with probability greater than

1− (1− ε/14qh)
14qh/ε ≥ 1− e−1 ≥ 3/5.

Finally, after less than 2/ε+ 14qh/ε repetitions of the attack, with probability greater than
1/5 × 3/5 ≥ 1/9, we have obtained two signatures (m,σ1, h, σ2) and (m′, σ′1, h

′, σ′2), both valid
w.r.t. their specific random oracle H or H′, and with the particular relations

Qβ = (m,σ1) = (m′, σ′1) and h = H(Qβ) 6= H
′(Qβ) = h′.

One may have noticed that the mechanics of our reduction depend on some parameters
related to the attacker A, namely, its probability of success ε and the number qh of queries to
the random oracle. This induces a lack of uniformity. A uniform version, in expected polynomial
time is also possible.



142 CHAPTER 10. DIGITAL SIGNATURE SCHEMES

Theorem 10.2 (The Forking Lemma – The Uniform Case) Let (K,S,V) be a digital sig-
nature scheme with security parameter k, with a signature as above, of the form (m,σ1, h, σ2),
where h = H(m,σ1) and σ2 depends on σ1 and h only. Let A be a probabilistic polynomial time
Turing machine whose input only consists of public data and which can ask qh queries to the ran-
dom oracle, with qh > 0. We assume that, within the time bound T , A produces, with probability
ε ≥ 7qh/2

k, a valid signature (m,σ1, h, σ2). Then there is another machine which has control
over A and produces two valid signatures (m,σ1, h, σ2) and (m,σ1, h

′, σ′2) such that h 6= h′, in
expected time T ′ ≤ 84480Tqh/ε.

Proof : Now, we try to design a machine M which succeeds in expected polynomial time:

1. M initializes j = 0;

2. M runs A until it outputs a successful pair (ω,H) ∈ S and denotes by Nj the number of
calls to A to obtain this success, and by β the index IndH(ω);

3. M replays, at most 140Njα
j times, A with fixed ω and random H′ such that H′|β = H|β,

where α = 8/7;

4. M increments j and returns to 2, until it gets a successful forking.

For any execution of M, we denote by J the last value of j and by N the total number of
calls to A. We want to compute the expectation of N . Since ν = Pr[S], and Nj ≥ 1, then
Pr[Nj ≥ 1/5ν] ≥ 3/4. We define ℓ = ⌈logα qh⌉, so that, 140Njα

j ≥ 28qh/ε for any j ≥ ℓ, when-
ever Nj ≥ 1/5ν. Therefore, for any j ≥ ℓ, when we have a first success in S, with probability
greater than 1/4, the index β = IndH(ω) is in the set I and (ω,H) ∈ Sβ ∩ Ωβ. Furthermore,
with probability greater than 3/4, Nj ≥ 1/5ν. Therefore, with the same conditions as before,
that is ε ≥ 7qh/2

k, the probability of getting a successful fork after at most 28qh/ε iterations
at step 3 is greater than 6/7.
For any t ≥ ℓ, the probability for J to be greater or equal to t is less than (1− 1/4× 3/4 × 6/7)t−ℓ,
which is less than γt−ℓ, with γ = 6/7. Furthermore,

E[N |J = t] ≤

j=t∑

j=0

(
E[Nj ] + 140E[Nj ]α

j
)
≤

141

ν
×

j=t∑

j=0

αj ≤
141

ν
×

αt+1

α− 1
.

So, the expectation of N is E[N ] =
∑

tE[N |J = t] · Pr[J = t] and then it can be shown to be
less than 84480qh/ε. Hence the theorem.

10.3.3 Chosen-Message Attacks

However, this just covers the no-message attacks, without any oracle access. Since we can
simulate any zero-knowledge protocol, even without having to restart the simulation because
of the honest verifier (i.e. the challenge is randomly chosen by the random oracle H) one can
easily simulate the signer without the private key:

• one first chooses random h, s ∈ Zq;

• one computes r = s · g + h · y and defines H(m, r) to be equal to h, which is a uniformly
distributed value;

• one can output (r, h, s) as a valid signature of the message m.



10.4. RSA-BASED SIGNATURES 143

This furthermore simulates the oracle H, by defining H(m, r) to be equal to h. This simulation
is almost perfect since H is supposed to output a random value to any new query, and h is
indeed a random value. Nevertheless, if the query H(m, r) has already been asked, H(m, r)
is already defined, and thus the definition H(m, r) ← h is impossible. But such a situation is
very rare, which allows us to claim the following result, which stands for the Schnorr signature
scheme but also for any signature derived from a three-round honest verifier zero-knowledge
interactive proof of knowledge:

Theorem 10.3 Let A be a probabilistic polynomial time Turing machine whose input only con-
sists of public data. We denote respectively by qh and qs the number of queries that A can ask
to the random oracle and the number of queries that A can ask to the signer. Assume that,
within a time bound T , A produces, with probability ε ≥ 10(qs + 1)(qs + qh)/2

k, a valid signa-
ture (m,σ1, h, σ2). If the triples (σ1, h, σ2) can be simulated without knowing the secret key, with
an indistinguishable distribution probability, then, a replay of the attacker A, where interactions
with the signer are simulated, outputs two valid signatures (m,σ1, h, σ2) and (m,σ1, h

′, σ′2) such
that h 6= h′, within time T ′ ≤ 23qhT/ε and with probability ε′ ≥ 1/9.

A uniform version of this lemma can also be found in [?]. From a more practical point of
view, these results state that if an adversary manages to perform an existential forgery under
an adaptive chosen-message attack within an expected time T , after qh queries to the random
oracle and qs queries to the signing oracle, then the discrete logarithm problem can be solved
within an expected time less than CqhT , for some constant C. This result has thereafter been
extended to the transformation of any identification scheme secure against passive adversaries
into a signature scheme [?].

Brickell, Pointcheval, Vaudenay, and Yung also extended the forking lemma technique [?, ?]
to many variants of El Gamal [?] and DSA [?], such as the Korean Standard KCDSA [?].
However, the original El Gamal and DSA schemes were not covered by this study, and are
certainly not provably secure, even if no attack has ever been found against DSA.

10.4 RSA-Based Signatures

Unfortunately, with the above signatures based on the discrete logarithm, as any construction
using the Fiat-Shamir paradigm, we do not really achieve our goal, because the reduction is
costly, since qh can be huge, as much as 260 in practice. This security proof is meaningful for
very large groups only.

In 1996, Bellare and Rogaway [?] proposed other candidates, based on the RSA assumption.
The first scheme is the by-now classical hash-and-decrypt paradigm (a.k.a. the Full-Domain
Hash paradigm): as for the basic RSA signature, the generation algorithm produces a large
composite number N = pq, a public key e, and a private key d such that e · d = 1 mod ϕ(N). In
order to sign a messagem, one first hashes it using a full-domain hash functionH : {0, 1}⋆ → Z⋆

N ,
and computes the e-th root, σ = H(m)d mod N . The verification algorithm simply checks
whether the following equality holds, H(m) = σe mod N .

More generally, the Full-Domain Hash signature can be defined as described on figure 10.4,
for any trapdoor one-way permutation f .

For this scheme, Bellare and Rogaway proved, in the random-oracle model:

Theorem 10.4 Let A be an adversary which can produce, with success probability ε, an exis-
tential forgery under a chosen-message attack within a time t, after qh and qs queries to the
hash function and the signing oracle respectively. Then the permutation f can be inverted with
probability ε′ within time t′ where

ε′ ≥
ε

qs + qh + 1
and t′ ≤ t+ (qs + qh)Tf ,



144 CHAPTER 10. DIGITAL SIGNATURE SCHEMES

K: Key Generation → (f, f−1)

public key f : X −→ X, a trapdoor one-way permutation onto X
private key f−1

→ (f, f−1)

S: Signature of m→ σ

r = H(m) and σ = f−1(r)
→ σ is the signature of m

V: Verification of (m,σ)

check whether f(σ)
?
= H(m)

→ Yes/No

Figure 10.4: The FDH Signature.

with Tf the time for an evaluation of f .

10.4.1 Basic Proof of the FDH Signature

In this proof, we incrementally define a sequence of games starting at the real game G0 and
ending up at G5. We make a very detailed sequence of games in this proof, since this is the
first one. Some steps will be skipped in the other proofs. The goal of this proof is to reduce the
inversion of the permutation f on an element y (find x such that y = f(x)) to an attack. We
are thus given such a random challenge y.

Game G0: This is the real attack game, in the random-oracle model, which includes the
verification step. This means that the attack game consists in giving the public key to the
adversary, and a full access to the signing oracle. When it outputs its forgery, one furthermore
checks whether it is actually valid or not. Note that if the adversary asks qs queries to the
signing oracle and qh queries to the hash oracle, at most qs + qh + 1 queries are asked to the
hash oracle during this game, since each signing query may make such a new query, and the last
verification step too. We are interested in the following event: S0 which occurs if the verification
step succeeds (and the signature is new).

Succeuffdh(A) = Pr[S0]. (10.1)

Game G1: In this game, we simulate the oracles, the hash oracle H and the signing oracle
S, and the last verification step, as shown on Figure 10.5. From this simulation, we easily see
that the game is perfectly indistinguishable from the real attack.

Pr[S1] = Pr[S0]. (10.2)

Game G2: Since the verification process is included in the attack game, the output message
is necessarily asked to the hash oracle. Let us guess the index c of this (first) query. If the
guess failed, we abort the game. Therefore, only a correct guess (event GoodGuess) may lead
to a success.

Pr[S2] = Pr[S1 ∧ GoodGuess] = Pr[S1 |GoodGuess]× Pr[GoodGuess]

≥ Pr[S1]×
1

qh + qs + 1
. (10.3)

Game G3: We can now simulate the hash oracle, incorporating the challenge y, for which we
want to extract the pre-image x by f :



10.4. RSA-BASED SIGNATURES 145

H
or
ac
le

For a hash-query H(q), such that a record (q, ⋆, r) appears in H-List, the answer
is r. Otherwise the answer r is defined according to the following rule:

◮Rule H(1)

Choose a random element r ∈ X. The record (q,⊥, r) is
added to H-List.

Note: the second component of the elements of this list will be explained later.

S
or
ac
le

For a sign-query S(m), one first asks for r = H(m) to the H-oracle, and then the
signature σ is defined according to the following rule:

◮Rule S(1)

Computes σ = f−1(r).

V
or
ac
le

The game ends with the verification of the output (m,σ) from the adversary. One
first asks for r = H(m), and checks whether r = f(σ).

Figure 10.5: Simulation of the Attack Game against FDH

◮Rule H(3)

If this is the c-th query, set r ← y; otherwise, choose a random
element r ∈ X. The record (q,⊥, r) is added to H-List.

Because of the random choice for the challenge y, this rule lets the game indistinguishable from
the previous one.

Pr[S3] = Pr[S2]. (10.4)

Game G4: We now modify the simulation of the hash oracle for other queries, which may be
used in signing queries:

◮Rule H(4)

If this is the c-th query, set r ← y and s ← ⊥; otherwise, choose a
random element s ∈ X, and compute r = f(s). The record (q, s, r)
is added to H-List.

Because of the permutation property of f , and the random choice for s, this rule lets the game
indistinguishable from the previous one.

Pr[S4] = Pr[S3]. (10.5)

Game G5: By now, excepted for the c-th hash query, which will be involved in the forgery
(and thus not asked to the signing oracle), the pre-image is known. One can thus simulate the
signing oracle without quering f−1:

◮Rule S(5)

Lookup for (m, s, r) in H-List, and set σ = s.

Since the message corresponding to the c-th query cannot be asked to the signing oracle, other-
wise it would not be a valid forgery, this rule lets the game indistinguishable from the previous
one.

Pr[S5] = Pr[S4]. (10.6)



146 CHAPTER 10. DIGITAL SIGNATURE SCHEMES

Note that now, the simulation can easily be performed, without any specific computational
power or oracle access. Just a few more evaluations of f are done to simulate the hash oracle,
and the forgery leads to the pre-image of y:

Pr[S5] = Succowf (t+ (qh + qs)Tf ). (10.7)

As a consequence, using equations (10.1), (10.2), (10.3), (10.4), (10.5), (10.6) and (10.7)

Succowf (t+ (qh + qs)Tf ) = Pr[S5] = Pr[S3] = Pr[S4] = Pr[S2]

≥
1

qh + qs + 1
× Pr[S1] ≥

1

qh + qs + 1
× Pr[S0].

And thus,
Succeuffdh(A) ≤ (qh + qs + 1)× Succowf (t+ (qh + qs)Tf ).

⊓⊔

10.4.2 Improved Security Result

This reduction has been thereafter improved [?], thanks to the random self-reducibility of the
RSA function. The following result applies as soon as the one-way permutation has some
homomorphic property on the group X:

f(x⊗ y) = f(x)⊗ f(y).

Theorem 10.5 Let A be an adversary which can produce, with success probability ε, an exis-
tential forgery under a chosen-message attack within a time t, after qh and qs queries to the
hash function and the signing oracle respectively. Then the permutation f can be inverted with
probability ε′ within time t′ where

ε′ ≥
ε

qs
× exp(−2) and t′ ≤ t+ (qs + qh)Tf ,

with Tf the time for an evaluation of f .

This proof can be performed as the previous one, and thus starts at the real game G0,
then we can use the same simulation as in the game G1. The sole formal difference in the
simulation will be the H-List which elements have one more field, and are thus initially of the
form (q,⊥,⊥, r). Things differ much after that, using a real value p between 0 and 1, which will
be made precise later. The idea here, is to make any forgery useful for inverting the permutation
f , not only a specific (guessed) one. On the other hand, one must still be able to simulate the
signing oracle. The probability p will separate the two situations:

Game G2: A random coin decides whether we introduce the challenge y in the hash answer,
or an element with a known pre-image:

◮Rule H(2)

One chooses a random s ∈ X. With probability p, one sets r ←
y ⊗ f(s) and t ← 1; otherwise, r ← f(s) and t ← 0. The record
(q, t, s, r) is added to H-List.

Because of the homomorphic property on the group X of the permutation f , this rule lets the
game indistinguishable from the previous one. Note again that elements in H-List contain one
more field t than in the previous proof. One may see that r = yt ⊗ f(s).

Game G3: For a proportion 1−p of the signature queries, one can simulate the signing oracle
without having to invert the permutation f :



10.4. RSA-BASED SIGNATURES 147

◮Rule S(3)

Lookup for (m, t, s, r) in H-List, if t = 1 then halt the game, otherwise
set σ = s.

This rule lets the game indistinguishable, unless one signing query fails (t = 1), which happens
with probability p, for each signature:

Pr[S3] = (1− p)qs × Pr[S2]. (10.8)

Note that now, the simulation can easily be performed, without any specific computational
power or oracle access. Just a few more exponentiations are done to simulate the hash oracle, and
the forgery (m,σ) leads to the pre-image of y, if (t = 1). The latter case holds with probability
p. Indeed, (m, t, s, r) can be found in the H-List, and then r = yt ⊗ f(s) = y ⊗ f(s) = f(σ),
which easily leads to the pre-image of y by f :

Succowf (t+ (qh + qs)Tf ) = p× Pr[S3]. (10.9)

Using equations (10.1), (10.2), (10.8) and (10.9)

Succowf (t+ (qh + qs)Tf ) = p× Pr[S3] = p× (1− p)qs × Pr[S2]

= p× (1− p)qs × Pr[S1] = p× (1− p)qs × Pr[S0].

And thus,

Succeuffdh(A) ≤
1

p(1− p)qs
× Succowf (t+ (qh + qs)Tf ).

Therefore, the success probability of our inversion algorithm is p(1−p)qsε, if ε is the success
probability of the adversary. If qs > 0, the latter expression is optimal for p = 1/(qs + 1). And
for this parameter, and a huge value qs, the success probability is approximately ε/eqs. It is
anyway larger than ε/e2qs (where e = exp(1) ≈ 2.17 . . .).

As far as time complexity is concerned, each random oracle simulation (which can be
launched by a signing simulation) requires a modular exponentiation to the power e, hence
the result. ⊓⊔

This is a great improvement since the success probability does not depend anymore on qh.
Furthermore, qs can be limited by the user, whereas qh cannot. In practice, one only assumes
qh ≤ 260, but qs can be limited below 230.

10.4.3 PSS: The Probabilistic Signature Scheme

However, one would like to get more, suppressing any coefficient. In their paper [?], Bellare
and Rogaway proposed such a better candidate, the Probabilistic Signature Scheme (PSS, see
Figure 10.6): the key generation is still the same, but the signature process involves three hash
functions

F : {0, 1}k2 → {0, 1}k0 , G : {0, 1}k2 → {0, 1}k1 ,
H : {0, 1}⋆ → {0, 1}k2 ,

where k = k0 + k1 + k2 + 1 satisfies {0, 1}k−1 ⊂ X ⊂ {0, 1}k . We remind that f is a trapdoor
one-way permutation onto X, with an homomorphic relationship. For each message m to be
signed, one chooses a random string r ∈ {0, 1}k1 . One first computes w = H(m, r), s = G(w)⊕r
and t = F(w). Then one concatenates y = 0‖w‖s‖t, where a‖b denotes the concatenation of
the bit strings a and b. Finally, one computes the pre-image by f , σ = f−1(y). The verification
algorithm first computes y = f(σ), and parses it as y = b‖w‖s‖t. Then, one can get r = s⊕G(w),
and checks whether b = 0, w = H(m, r) and t = F(w).

About this PSS construction, Bellare and Rogaway proved the security in the random-oracle
model.



148 CHAPTER 10. DIGITAL SIGNATURE SCHEMES

H

rm

G

F

0 w s t

Figure 10.6: Probabilistic Signature Scheme

Theorem 10.6 Let A be a CMA-adversary against f–PSS which produces an existential forgery
within a time t, after qf , qg, qh and qs queries to the hash functions F , G and H and the signing
oracle respectively. Then its success probability is upper-bounded by

Succowf (t+ (qs + qh)k2 · Tf ) +
1

2k2
+ (qs + qh) ·

(
qs
2k1

+
qf + qg + qh + qs + 1

2k2

)
,

with Tf the time for an evaluation of f .

The important point in this security result is the very tight link between success probabilities,
but also the almost linear time of the reduction. Thanks to this exact and efficient security
result, RSA–PSS has become the new PKCS #1 v2.1 standard for signature [?]. Another variant
has been proposed with message-recovery: PSS-R which allows one to include a large part of
the message inside the signature. This makes a signed-message shorter than the size of the
signature plus the size of the message, since the latter is inside the former one.



Chapter 11

Automating Game-Based Proofs

11.1 Introduction

Let us recall that there exist two main models for analyzing security protocols:

• In the symbolic model, often called Dolev-Yao model [?], cryptographic primitives are
considered as perfect blackboxes, modeled by function symbols in an algebra of terms,
possibly with equations. Messages are terms on these primitives and the adversary can
compute only using these primitives.

• In contrast, in the computational model, messages are bitstrings, cryptographic primitives
are functions from bitstrings to bitstrings, and the adversary is any probabilistic Turing
machine.

The computational model is close to the real execution of protocols, but the proofs are usually
manual and informal. The Dolev-Yao model is an abstract model that makes it easier to build
automatic verification tools, but the security proofs are in general not sound with respect to
the computational model. Automatic verification in the Dolev-Yao model was the subject of
Part II.

In order to mechanize proofs in the computational model, several approaches have been
considered.

• In the indirect approach, following the seminal paper by Abadi and Rogaway [?], one
shows the soundness of the Dolev-Yao model with respect to the computational model,
that is, one proves that the security of a protocol in the Dolev-Yao model implies its
security in the computational model, modulo additional assumptions. Combining such
a result with a Dolev-Yao automatic verifier, one obtains automatic proofs of protocols
in the computational model. This approach received much interest [?, ?, ?, ?, ?, ?] and
a tool [?] was developed based on [?] to obtain computational proofs using the Dolev-
Yao verifier AVISPA, for protocols that rely on public-key encryption and signatures.
However, this approach has limitations: since the computational and Dolev-Yao models
do not correspond exactly, soundness requires additional hypotheses. (For example, key
cycles have to be excluded, or a specific security definition of encryption is needed [?].)
This approach is studied in Part IV.

In a related approach, Backes, Pfitzmann, and Waidner [?, ?, ?] have designed an abstract
cryptographic library including symmetric and public-key encryption, message authenti-
cation codes, signatures, and nonces and shown its soundness with respect to compu-
tational primitives, under arbitrary active attacks. This framework has been used for
a computationally-sound machine-checked proof of the Needham-Schroeder-Lowe proto-
col [?].

149



150 CHAPTER 11. AUTOMATING GAME-BASED PROOFS

Canetti [?] introduced the notion of universal composability. With Herzog [?], they show
how a Dolev-Yao-style symbolic analysis can be used to prove security properties of pro-
tocols within the framework of universal composability, for a restricted class of protocols
using public-key encryption as only cryptographic primitive. Then, they use the automatic
Dolev-Yao verification tool ProVerif [?] for verifying protocols in this framework.

• Techniques used previously in the Dolev-Yao model have also been adapted in order to
obtain proofs in the computational model.

For instance, Datta, Derek, Mitchell, Shmatikov, and Turuani [?, ?] have adapted the logic
PCL (Protocol Composition Logic), first designed for proving protocols in the Dolev-Yao
model, to the computational model. Other computationally sound logics include CIL
(Computational Indistinguishability Logic) [?] and a specialized Hoare logic designed for
proving asymmetric encryption schemes in the random oracle model [?, ?].

Similarly, type systems [?, ?, ?, ?] can provide computational security guarantees. For
instance, [?] handles shared-key and public-key encryption, with an unbounded number
of sessions. This system relies on the Backes-Pfitzmann-Waidner library. A type inference
algorithm is given in [?].

• In the direct approach, one aims at mechanizing proofs in the computational model, with-
out using a Dolev-Yao protocol verifier. As detailed in the previous chapters, computa-
tional proofs made by cryptographers are typically presented as sequences of games [?, ?]:
the initial game represents the protocol to prove; the goal is to show that the probability
of breaking a certain security property is negligible in this game; intermediate games are
obtained each from the previous one by transformations such that the difference of prob-
ability between consecutive games is negligible; the final game is such that the desired
probability is obviously negligible from the form of the game. The desired probability is
then negligible in the initial game. Halevi [?] suggested to use tools for mechanizing these
proofs, and several techniques have been used for reaching this goal.

This chapter presents such a tool, CryptoVerif [?, ?, ?, ?]. CryptoVerif generates proofs by
sequences of games automatically or with little user interaction. The games are formalized
in a probabilistic process calculus. CryptoVerif provides a generic method for specifying
security properties of many cryptographic primitives. It proves secrecy and authentication
properties. It also provides a bound on the probability of success of an attack. It consid-
erably extends early works by Laud [?, ?] which were limited either to passive adversaries
or to a single session of the protocol. More recently, Tšahhirov and Laud [?, ?] developed
a tool similar to CryptoVerif but that represents games by dependency graphs; it handles
only public-key and shared-key encryption and proves secrecy properties.

The tool CertiCrypt [?, ?, ?, ?, ?] enables the machine-checked construction and verifica-
tion of cryptographic proofs by sequences of games. It relies on the general-purpose proof
assistant Coq, which is widely believed to be correct. EasyCrypt [?] generates CertiCrypt
proofs from proof sketches that formally represent the sequence of games and hints, which
makes the tool easier to use. Nowak et al. [?, ?, ?] follow a similar idea by providing Coq
proofs for several basic cryptographic primitives.

In the tool CryptoVerif, games are represented in a process calculus inspired by the pi-
calculus and by the calculi of [?] and of [?]. In this calculus, messages are bitstrings, and cryp-
tographic primitives are functions from bitstrings to bitstrings. The calculus has a probabilistic
semantics. The main tool for specifying security assumptions is observational equivalence: Q is
observationally equivalent to Q′ up to probability p, Q ≈p Q′, when the adversary has proba-
bility at most p of distinguishing Q from Q′. With respect to previous calculi mentioned above,
our calculus introduces an important novelty which is key for the automatic proof of security



11.1. INTRODUCTION 151

protocols: the values of all variables during the execution of a process are stored in arrays. For
instance, x[i] is the value of x in the i-th copy of the process that defines x. Arrays replace
lists often used by cryptographers in their manual proofs of protocols. For example, consider
the standard security assumption on a message authentication code (MAC). Informally, this
assumption says that the adversary has a negligible probability of forging a MAC, that is, that
all correct MACs have been computed by calling the MAC oracle. So, in cryptographic proofs,
one defines a list containing the arguments of calls to the MAC oracle, and when verifying a
MAC of a message m, one can additionally check that m is in this list, with a negligible change
in probability. In our calculus, the arguments of the MAC oracle are stored in arrays, and
we perform a lookup in these arrays in order to find the message m. Arrays make it easier
to automate proofs since they are always present in the calculus: one does not need to add
explicit instructions to insert values in them, in contrast to the lists used in manual proofs.
Therefore, many trivially sound but difficult to automate syntactic transformations disappear.
Furthermore, relations between elements of arrays can easily be expressed by equalities, possibly
involving computations on array indices.

CryptoVerif relies on a collection of game transformations, in order to transform the initial
protocol into a game on which the desired security property is obvious. The most important
kind of transformations exploits the security assumptions on cryptographic primitives in order
to obtain a simpler game. As described in Section 11.3.2, these transformations can be specified
in a generic way: we represent the security assumption of each cryptographic primitive by an
observational equivalence L ≈p R, where the processes L and R encode oracles: they input the
arguments of the oracle and send its result back. Then, the prover can automatically transform
a process Q that calls the oracles of L (more precisely, contains as subterms terms that perform
the same computations as oracles of L) into a process Q′ that calls the oracles of R instead. We
have used this technique to specify several variants of shared-key and public-key encryption,
signature, message authentication codes, hash functions, Diffie-Hellman key agreement, simply
by giving the appropriate equivalence L ≈p R to the prover. Other game transformations are
syntactic transformations, used in order to be able to apply an assumption on a cryptographic
primitive, or to simplify the game obtained after applying such an assumption.

In order to prove protocols, these game transformations are organized using a proof strategy
based on advice: when a transformation fails, it suggests other transformations that should
be applied before, in order to enable the desired transformation. Thanks to this strategy,
protocols can often be proved in a fully automatic way. For delicate cases, CryptoVerif has
an interactive mode, in which the user can manually specify the transformations to apply. It
is usually sufficient to specify a few transformations coming from the security assumptions of
primitives, by indicating the concerned cryptographic primitive and the concerned secret key if
any; the prover infers the intermediate syntactic transformations by the advice strategy. This
mode is helpful for proving some public-key protocols, in which several security assumptions on
primitives can be applied, but only one leads to a proof of the protocol. Importantly, CryptoVerif
is always sound: whatever indications the user gives, when the prover shows a security property
of the protocol, the property indeed holds assuming the given assumptions on the cryptographic
primitives.

CryptoVerif has been implemented in Ocaml (29800 lines of code for version 1.12 of Cryp-
toVerif) and is available at http://cryptoverif.inria.fr/.

Outline The next section presents the process calculus for representing games. Section 11.3
describes the game transformations that serve for proving protocols. Section 11.4 gives criteria
for proving secrecy properties of protocols. Section 11.5 explains how the prover chooses which
transformation to apply at each point. Section 11.6 presents applications of CryptoVerif and
Section 11.7 concludes.

http://cryptoverif.inria.fr/


152 CHAPTER 11. AUTOMATING GAME-BASED PROOFS

M,N ::= terms
i replication index
x[M1, . . . ,Mm] variable access
f(M1, . . . ,Mm) function application

Q ::= input process
0 nil
Q ‖ Q′ parallel composition
!i≤nQ replication n times
newChannel c;Q channel restriction

in(c[M1, . . . ,Ml], (x1 [̃i] : T1, . . . , xk [̃i] : Tk));P input

P ::= output process
out(c[M1, . . . ,Ml], (N1, . . . , Nk));Q output
new x[i1, . . . , im] : T ;P random number
let x[i1, . . . , im] : T = M in P assignment
if defined(M1, . . . ,Ml) ∧M then P else P ′ conditional

find (
⊕m

j=1 uj1[̃i] ≤ nj1, . . . , ujmj
[̃i] ≤ njmj

suchthat

defined(Mj1, . . . ,Mjlj ) ∧Mj then Pj) else P array lookup
event e(M1, . . . ,Ml);P event

Figure 11.1: Syntax of the process calculus

Notations We recall the following standard notations. We denote by {M1/x1, . . . ,Mm/xm}
the substitution that replaces xj with Mj for each j ≤ m. The cardinal of a set or multiset

S is denoted by |S|. If S is a finite set, x
R
←S chooses a random element uniformly in S and

assigns it to x. If A is a probabilistic algorithm, x← A(x1, . . . , xm) denotes the experiment of
choosing random coins r and assigning to x the result of running A(x1, . . . , xm) with coins r.
Otherwise, x←M is a simple assignment statement.

11.2 A Calculus for Games

11.2.1 Syntax and Informal Semantics

CryptoVerif represents games in the syntax of Figure 11.1. This calculus assumes a countable
set of channel names, denoted by c. It uses parameters, denoted by n, which are integers that
bound the number of executions of processes. It also uses types, denoted by T , which are
subsets of bitstring⊥ = bitstring ∪ {⊥} where bitstring is the set of all bitstrings and ⊥ is a
special symbol. Let fixed-length types be types that consist of the set of all bitstrings of a
certain length. Particular types are predefined: bool = {true, false}, where false is 0 and true
is 1; bitstring ; bitstring⊥; [1, n] where n is a parameter. (We consider integers as bitstrings
without leading zeroes.)

The calculus also uses function symbols f . Each function symbol comes with a type decla-
ration f : T1 × . . . × Tm → T , and represents an efficiently computable, deterministic function
that maps each tuple in T1 × . . .× Tm to an element of T . Particular functions are predefined,
and some of them use the infix notation: M = N for the equality test, M 6= N for the inequality
test (both taking two values of the same type T and returning a value of type bool ), M ∨N for
the boolean or, M ∧N for the boolean and, ¬M for the boolean negation (taking and returning
values of type bool ).

In this calculus, terms represent computations on bitstrings. The replication index i is an



11.2. A CALCULUS FOR GAMES 153

integer which serves in distinguishing different copies of a replicated process !i≤n. (Replication
indices are typically used as array indices.) The variable access x[M1, . . . ,Mm] returns the
content of the cell of indices M1, . . . ,Mm of them-dimensional array variable x. We use x, y, z, u
as variable names. The function application f(M1, . . . ,Mm) returns the result of applying
function f to M1, . . . ,Mm.

The calculus distinguishes two kinds of processes: input processes Q are ready to receive a
message on a channel; output processes P output a message on a channel after executing some
internal computations. The input process 0 does nothing; Q ‖ Q′ is the parallel composition
of Q and Q′; !i≤nQ represents n copies of Q in parallel, each with a different value of i ∈
[1, n]; newChannel c;Q creates a new private channel c and executes Q; the semantics of the
input in(c[M1, . . . ,Ml], (x1 [̃i] : T1, . . . , xk [̃i] : Tk));P will be explained below together with the
semantics of the output.

The output process new x[i1, . . . , im] : T ;P chooses a new random number uniformly in
T , stores it in x[i1, . . . , im], and executes P . (The type T must be a fixed-length type, be-
cause probabilistic Turing machines can choose random numbers uniformly only in such types.)
Function symbols represent deterministic functions, so all random numbers must be chosen by
new x[i1, . . . , im] : T . Deterministic functions make automatic syntactic manipulations easier:
we can duplicate a term without changing its value. The process let x[i1, . . . , im] : T = M in P
stores the bitstring value of M (which must be in T ) in x[i1, . . . , im] and executes P . The pro-
cess event e(M1, . . . ,Ml);P executes the event e(M1, . . . ,Ml), then runs P . This event records
that a certain program point has been reached with certain values of M1, . . . ,Ml, but otherwise
does not affect the execution of the process. Next, we explain the process find (

⊕m
j=1 uj1[̃i] ≤

nj1, . . . , ujmj
[̃i] ≤ njmj

suchthat defined(Mj1, . . . ,Mjlj ) ∧Mj then Pj) else P , where ĩ denotes
a tuple i1, . . . , im′ . The order and array indices on tuples are taken component-wise, so for in-
stance, uj1[̃i] ≤ nj1, . . . , ujmj

[̃i] ≤ njmj
can be further abbreviated ũj [̃i] ≤ ñj. A simple example

is the following: find u ≤ n suchthat defined(x[u])∧x[u] = a then P ′ else P tries to find an index
u such that x[u] is defined and x[u] = a, and when such a u is found, it executes P ′ with that
value of u; otherwise, it executes P . In other words, this find construct looks for the value a in
the array x, and when a is found, it stores in u an index such that x[u] = a. Therefore, the find
construct allows us to access arrays, which is key for our purpose. More generally, find u1[̃i] ≤
n1, . . . , um [̃i] ≤ nm suchthat defined(M1, . . . ,Ml) ∧ M then P ′ else P tries to find values of
u1, . . . , um for which M1, . . . ,Ml are defined and M is true. In case of success, it executes P ′.
In case of failure, it executes P . This is further generalized to m branches: find (

⊕m
j=1 uj1[̃i] ≤

nj1, . . . , ujmj
[̃i] ≤ njmj

suchthat defined(Mj1, . . . ,Mjlj) ∧ Mj then Pj) else P tries to find a
branch j in [1,m] such that there are values of uj1, . . . , ujmj

for which Mj1, . . . ,Mjlj are de-
fined and Mj is true. In case of success, it executes Pj . In case of failure for all branches, it
executes P . More formally, it evaluates the conditions defined(Mj1, . . . ,Mjlj) ∧Mj for each j

and each value of uj1[̃i], . . . , ujmj
[̃i] in [1, nj1] × . . . × [1, njmj

]. If none of these conditions is
true, it executes P . Otherwise, it chooses randomly with uniform1 probability one j and one
value of uj1[̃i], . . . , ujmj

[̃i] such that the corresponding condition is true and executes Pj . The
conditional if defined(M1, . . . ,Ml) ∧M then P else P ′ executes P if M1, . . . ,Ml are defined and
M evaluates to true. Otherwise, it executes P ′. This conditional is equivalent to find suchthat

defined(M1, . . . ,Ml)∧M then P else P ′. The conjunct defined(M1, . . . ,Ml) can be omitted when
l = 0 and M can be omitted when it is true.

Finally, let us explain the output out(c[M1, . . . ,Ml], (N1, . . . , Nk));Q. A channel c[M1, . . . ,
Ml] consists of both a channel name c and a tuple of terms M1, . . . ,Ml. Channel names c can

1 A probabilistic Turing machine can choose a random number uniformly in a set of cardinal m only when m

is a power of 2. When m is not a power of 2, there exist approximate algorithms: for example, in order to obtain
a random integer in [0, m− 1], we can choose a random integer r uniformly among [0, 2k − 1] for a certain k large
enough and return r mod m. The distribution can be made as close as we wish to the uniform distribution by
choosing k large enough.



154 CHAPTER 11. AUTOMATING GAME-BASED PROOFS

be declared private by newChannel c; the adversary can never have access to channel c[M1,
. . . ,Ml] when c is private. (This is useful in the proofs, although all channels of protocols are
often public.) Terms M1, . . . ,Ml are intuitively analogous to IP addresses and ports, which are
numbers that the adversary may guess. A semantic configuration always consists of a single
output process (the process currently being executed) and several input processes. When the
output process executes out(c[M1, . . . ,Ml], (N1, . . . , Nk));Q, one looks for an input on channel
c[M ′l . . . ,M

′
l ], where M ′1, . . . ,M

′
l evaluate to the same bitstrings as M1, . . . ,Ml, and with the

same arity k, in the available input processes. If no such input process is found, the process
blocks. Otherwise, one such input process in(c[M ′1, . . . ,M

′
l ], (x1 [̃i] : T1, . . . , xk [̃i] : Tk));P is cho-

sen randomly with uniform probability. The communication is then executed: for each j ≤ k,
the output message Nj is evaluated and stored in xj [̃i] if it is in Tj (otherwise the process
blocks). Finally, the output process P that follows the input is executed. The input process
Q that follows the output is stored in the available input processes for future execution. The
syntax requires an output to be followed by an input process, as in [?]. If one needs to output
several messages consecutively, one can simply insert fictitious inputs between the outputs. The
adversary can then schedule the outputs by sending messages to these inputs.

Using different channels for each input and output allows the adversary to control the
network. For instance, we may write !i≤nin(c[i], x[i] : T ) . . . out(c′[i],M) . . . The adversary can
then decide which copy of the replicated process receives its message, simply by sending it on
c[i] for the appropriate value of i.

An else branch of find or if may be omitted when it is else out(yield, ()); 0. (Note that “else 0”
would not be syntactically correct.) Similarly, out(yield, ); 0 may be omitted after an event or
a restriction. A trailing 0 after an output may be omitted.

The current replication indices at a certain program point in a process are i1, . . . , im where
the replications above the considered program point are !i1≤n1 . . . !im≤nm . We often abbre-
viate x[i1, . . . , im] by x when i1, . . . , im are the current replication indices, but it should be
kept in mind that this is only an abbreviation. Variables x defined under a replication must
be arrays with indices the current replication indices at the definition of x: for example
!i1≤n1 . . . !im≤nm let x[i1, . . . , im] : T = M in . . . More formally, we require the following in-
variant:

Invariant 11.1 (Single definition) The process Q0 satisfies Invariant 11.1 if and only if

1. in every definition of x[i1, . . . , im] in Q0, the indices i1, . . . , im of x are the current repli-
cation indices at that definition, and

2. two different definitions of the same variable x in Q0 are in different branches of a find

(or if).

Invariant 11.1 guarantees that each variable is assigned at most once for each value of its indices.
(Indeed, item 2 shows that only one definition of each variable can be executed for given indices
in each trace.)

Invariant 11.2 (Defined variables) The process Q0 satisfies Invariant 11.2 if and only if
every occurrence of a variable access x[M1, . . . ,Mm] in Q0 is either

• syntactically under the definition of x[M1, . . . ,Mm] (in which case M1, . . . ,Mm are in fact
the current replication indices at the definition of x);

• or in a defined condition in a find process;

• or in M ′j or Pj in a process of the form find (
⊕m′′

j=1 ũj [̃i] ≤ ñj suchthat defined(M ′j1, . . . ,
M ′jlj ) ∧M ′j then Pj) else P where for some k ≤ lj, x[M1, . . . ,Mm] is a subterm of M ′jk.



11.2. A CALCULUS FOR GAMES 155

Invariant 11.2 guarantees that variables can be accessed only when they have been initialized.
It checks that the definition of the variable access is either in scope (first item) or checked by a
find (last item).

We use a type system, detailed in [?, Appendix A], to check that bitstrings of the proper
type are given to each function and that array indices are used correctly.

Invariant 11.3 (Typing) The process Q0 satisfies Invariant 11.3 if and only if it is well-typed.

We require the adversary to be well-typed. This requirement does not restrict its computing
power, because it can always define type-cast functions f : T → T ′ to bypass the type system.
Similarly, the type system does not restrict the class of protocols that we consider, since the
protocol may contain type-cast functions. The type system just makes explicit which set of
bitstrings may appear at each point of the protocol. The three invariants are checked by the
prover for the initial game and preserved by all game transformations.

The formal semantics is defined by a probabilistic reduction relation; the asymptotic version
of the semantics is detailed in [?, Appendix B] (see page 154 for an explanation of asymptotic
versus exact security). Our semantics is such that all processes can be simulated by probabilistic
Turing machines, and conversely. The notation E,M ⇓ a means that the term M evaluates to
the bitstring a in environment E, which associates a value to each array cell x[ã].

We say that a function f : T1 × . . . × Tm → T is poly-injective when it is injective and its
inverses are efficiently computable, that is, there exist functions f−1j : T → Tj (1 ≤ j ≤ m) such

that f−1j (f(x1, . . . , xm)) = xj and f−1j is efficiently computable. When f is poly-injective, we de-
fine a pattern matching construct let f(x1, . . . , xm) = M in P else Q as an abbreviation for let y :
T = M in let x1 : T1 = f−11 (y) in . . . let xm : Tm = f−1m (y) in if f(x1, . . . , xm) = y then P else Q.
We naturally generalize this construct to let N = M in P else Q where N is built from poly-
injective functions and variables.

We denote by fv(Q) the set of variables that occur in Q.

11.2.2 Example

Let us introduce two cryptographic primitives that we use below.

Definition 11.1 Let Tmr, Tmk, and Tms be types that correspond intuitively to random seeds,
keys, and message authentication codes, respectively; Tmr is a fixed-length type. A message
authentication code scheme MAC [?] consists of three function symbols:

• mkgen : Tmr → Tmk is the key generation algorithm taking as argument a random bitstring
and returning a key. (Usually, mkgen is a randomized algorithm; here, since we separate
the choice of random numbers from computation, mkgen takes an additional argument
representing the random coins.)

• mac : bitstring × Tmk → Tms is the MAC algorithm taking as arguments a message and a
key, and returning the corresponding tag. (We assume here that mac is deterministic; we
could easily encode a randomized mac by adding an additional argument as for mkgen.)

• verify : bitstring ×Tmk×Tms → bool is a verification algorithm such that verify(m,k, t) =
true if and only if t is a valid MAC of message m under key k. (Since mac is deterministic,
verify(m,k, t) is typically mac(m,k) = t.)

We have ∀m ∈ bitstring ,∀r ∈ Tmr,verify(m,mkgen(r),mac(m,mkgen(r))) = true.



156 CHAPTER 11. AUTOMATING GAME-BASED PROOFS

The advantage of an adversary against unforgeability under chosen message attacks (UF-
CMA) is

Succuf−cma
MAC (t, qm, qv, l) = max

A
Pr



r

R
←Tmr; k ← mkgen(r);

(m, s)← Amac(.,k),verify(.,k,.) : verify(m,k, s)
∧m was never queried to the oracle mac(., k)




where the adversary A is any probabilistic Turing machine that runs in time at most t, calls
mac(., k) at most qm times with messages of length at most l, and calls verify(., k, .) at most qv
times with messages of length at most l.

Informally, Succuf−cma
MAC (t, qm, qv, l) is the probability that an adversary forges a MAC, that is,

returns a pair (m, s) where s is a correct MAC for m, without having queried the MAC oracle
mac(., k) on m. Intuitively, when the MAC is secure, this probability is small: the adversary
has little chance of forging a MAC. Hence, the MAC guarantees the integrity of the MACed
message because one cannot compute the MAC without the secret key.

Two frameworks exist for expressing security properties. In the asymptotic framework used
in [?, ?], the length of keys is determined by a security parameter η, and a MAC is UF-CMA
when Succuf−cma

MAC (t, qm, qv, l) is a negligible function of η when t is polynomial in η. (f(η) is
negligible when for all polynomials q, there exists ηo ∈ N such that for all η > η0, f(η) ≤

1
q(η) .)

The assumption that functions are efficiently computable means that they are computable in
time polynomial in η and in the length of their arguments. The goal is to show that the
probability of success of an attack against the protocol is negligible, assuming the parameters
n are polynomial in η and the network messages are of length polynomial in η. In contrast, in
the exact security framework, on which we focus in this course, one computes the probability
of success of an attack against the protocol as a function of the probability of breaking the
primitives such as Succuf−cma

MAC (t, qm, qv, l), of the runtime of functions, of the parameters n,
and of the length of messages, thus providing a more precise security result. Intuitively, the
probability Succuf−cma

MAC (t, qm, qv, l) is assumed to be small (otherwise, the computed probability
of attack will be large), but no formal assumption on this probability is needed to establish the
security theorem.

Definition 11.2 Let Tr and T ′r be fixed-length types used for random coins; let Tk and Te be
types for keys and ciphertexts respectively. A symmetric encryption scheme SE [?] consists of
three function symbols:

• kgen : Tr → Tk is the key generation algorithm taking as argument random coins and
returning a key,

• enc : bitstring×Tk×T
′
r → Te is the encryption algorithm taking as arguments the cleartext,

the key, and random coins, and returning the ciphertext,

• dec : Te × Tk → bitstring⊥ is the decryption algorithm taking as arguments the cipher-
text and the key, and returning either the cleartext when decryption succeeds or ⊥ when
decryption fails,

such that ∀m ∈ bitstring ,∀r ∈ Tr,∀r
′ ∈ T ′r, dec(enc(m, kgen(r), r′), kgen(r)) = m.

Let LR(x, y, b) = x if b = 0 and LR(x, y, b) = y if b = 1, defined only when x and y are
bitstrings of the same length. The advantage of an adversary against indistinguishability under
chosen plaintext attacks (IND-CPA) is

Succ
ind−cpa
SE (t, qe, l) = max

A
2Pr

[
b

R
←{0, 1}; r

R
←Tr; k ← kgen(r);

b′ ← Ar′
R
←T ′

r ;enc(LR(.,.,b),k,r′) : b′ = b

]
− 1



11.2. A CALCULUS FOR GAMES 157

where A is any probabilistic Turing machine that runs in time at most t and calls r′
R
←T ′r;

enc(LR(., ., b), k, r′) at most qe times on messages of length at most l.

Given two bitstrings a0 and a1 of the same length, the left-right encryption oracle r′
R
←T ′r;

enc(LR(., ., b), k, r′) returns r′
R
←T ′r; enc(LR(a0, a1, b), k, r

′), that is, encrypts a0 when b = 0

and a1 when b = 1. Succ
ind−cpa
SE (t, qe, l) is the probability that the adversary distinguishes the

encryption of the messages a0 given as first arguments to the left-right encryption oracle from
the encryption of the messages a1 given as second arguments. Intuitively, when the encryption
scheme is IND-CPA secure, this probability is small: the ciphertext gives almost no information
what the cleartext is (one cannot determine whether it is a0 or a1 without having the secret
key). The adversary returns its guess b′ for bit b, and succeeds when b′ = b. By simply choosing

a random bit b′, the adversary has probability 1/2 of succeeding, so Succ
ind−cpa
SE (t, qe, l) is 2

times the probability that b′ = b minus 1, so that Succ
ind−cpa
SE (t, qe, l) = 0 when the adversary

just returns a random guess b′ and Succ
ind−cpa
SE (t, qe, l) = 1 when the adversary always finds the

correct b.

Example 11.1 Let us consider the following trivial protocol:

A→ B : e,mac(e, xmk) where e = enc(x′k, xk, x
′
r) and x′r, x

′
k are fresh random numbers

A and B are assumed to share a key xk for a symmetric encryption scheme and a key xmk for a
message authentication code. A creates a fresh key x′k and sends it encrypted under xk to B. A
MAC is appended to the message, in order to guarantee integrity. In other words, the protocol
sends x′k encrypted using the encrypt-then-MAC scheme, in which the encryption of x under
(xk, xmk) is e,mac(e, xmk) where e = enc(x, xk, x

′
r) and x′r represents fresh random coins. The

goal of the protocol is that x′k should be a secret key shared between A and B. This protocol can
be modeled in our calculus by the following process Q0:

Q0 = in(start, ()); new xr : Tr; let xk : Tk = kgen(xr) in

new xmr : Tmr; let xmk : Tmk = mkgen(xmr) in out(c, ()); (QA ‖ QB)

QA = !i≤nin(cA[i], ()); new x′k : Tk; new x′r : T
′
r;

let xm : bitstring = enc(k2b(x′k), xk, x
′
r) in out(cA[i], (xm,mac(xm, xmk)))

QB = !i
′≤nin(cB [i

′], (x′m, xma)); if verify(x
′
m, xmk, xma) then

let i⊥(k2b(x
′′
k)) = dec(x′m, xk) in out(cB [i

′], ())

When Q0 receives a message on channel start, it begins execution: it generates the keys xk
and xmk by choosing random coins xr and xr′ and applying the appropriate key generation
algorithms. Then it yields control to the adversary, by outputting on channel c. After this
output, n copies of processes for A and B are ready to be executed, when the adversary outputs on
channels cA[i] or cB [i] respectively. In a session that runs as expected, the adversary first sends
a message on cA[i]. Then QA creates a fresh key x′k (Tk is assumed to be a fixed-length type),
encrypts it under xk with random coins x′r, computes the MAC under xmk of the ciphertext, and
sends the ciphertext and the MAC on cA[i]. The function k2b : Tk → bitstring is the natural
injection k2b(x) = x; it is needed only for type conversion. The adversary is then expected to
forward this message on cB [i]. When QB receives this message, it verifies the MAC, decrypts,
and stores the obtained key in x′′k. (The function i⊥ : bitstring → bitstring⊥ is the natural
injection; it is useful to check that decryption succeeded.) This key x′′k should be secret.

The adversary is responsible for forwarding messages from A to B. It can send messages in
unexpected ways in order to mount an attack.

This very small example is sufficient to illustrate the main features of CryptoVerif. Sec-
tion 11.6 presents results obtained on more realistic protocols.



158 CHAPTER 11. AUTOMATING GAME-BASED PROOFS

11.2.3 Observational Equivalence

Let us now formally define game indistinguishability, which we name observational equivalence
by analogy with that notion in the Dolev-Yao model. A context is a process containing a hole
[ ]. An evaluation context C is a context built from [ ], newChannel c;C, Q ‖ C, and C ‖ Q. We
use an evaluation context to represent the adversary. We denote by C[Q] the process obtained
by replacing the hole [ ] in the context C with the process Q. The executed events can be used
to distinguish games, so we introduce an additional algorithm, a distinguisher D that takes
as input a sequence of events E and returns true or false. An example of distinguisher is De

defined by De(E) = true if and only if e ∈ E : this distinguisher detects the execution of event
e. We denote the distinguisher De simply by e, so that e(E) is true if and only if e ∈ E . More
generally, distinguishers can detect various properties of the sequence of events E executed by
the game. We denote by Pr[Q : D] the probability that Q executes a sequence of events E such
that D(E) returns true.

Definition 11.3 (Observational equivalence) Let Q and Q′ be two processes and V a set
of variables. Assume that Q and Q′ satisfy Invariants 11.1, 11.2, and 11.3 and the variables of
V are defined in Q and Q′, with the same types.

An evaluation context is said to be acceptable for Q with public variables V if and only if
fv(C) ∩ fv(Q) ⊆ V and C[Q] satisfies Invariants 11.1, 11.2, and 11.3.

We say that Q and Q′ are observationally equivalent up to probability p with public variables
V , written Q ≈V

p Q′, when for all evaluation contexts C acceptable for Q and Q′ with public
variables V , for all distinguishers D, |Pr[C[Q] : D]− Pr[C[Q′] : D]| ≤ p(C,D).

This definition formalizes that algorithms C and D distinguish Q and Q′ with probability
at most p(C,D). The probability p typically depends on the runtime of C and D, but may
also depend on other parameters, such as the number of messages sent by C to each replicated
process. That is why p takes as arguments C and D themselves.

The unusual requirement on variables of C comes from the presence of arrays and of the
associated find construct which gives C direct access to variables of Q and Q′: the context C is
allowed to access variables of Q and Q′ only when they are in V . (In more standard settings,
the calculus does not have constructs that allow the context to access variables of Q and Q′.)
When V is empty, we write Q ≈p Q

′ instead of Q ≈V
p Q′.

The following result is not difficult to prove:

Lemma 11.1 1. Reflexivity: Q ≈V
0 Q.

2. Symmetry: if Q ≈V
p Q′, then Q′ ≈V

p Q.

3. Transitivity: if Q ≈V
p Q′ and Q′ ≈V

p′ Q
′′, then Q ≈V

p+p′ Q
′′.

4. If Q ≈V
p Q′ and C is an evaluation context acceptable for Q and Q′ with public variables

V , then C[Q] ≈V ′

p′ C[Q′], where p′(C ′,D) = p(C ′[C],D) and V ′ ⊆ V ∪ fv(C).

Proofs by sequences of games consist of a sequence of observationally equivalent games Q0 ≈
V
p1

Q1 ≈
V
p2 . . . ≈V

pn Qn. By transitivity, Q0 ≈
V
p1+...+pn Qn, so by definition of observational equiva-

lence, Pr[C[Q0] : D] ≤ Pr[C[Qn] : D] + (p1 + . . .+ pn)(C,D).

11.3 Game Transformations

In this section, we describe the game transformations that allow us to transform the process
that represents the initial protocol into a process on which the desired security property can be
proved directly, by criteria given in Section 11.4. These transformations are parameterized by



11.3. GAME TRANSFORMATIONS 159

the set V of variables that the context can access. As we shall see in Section 11.4, V contains
variables that we would like to prove secret. (The context will contain test queries that access
these variables.) These transformations transform a process Q0 into a process Q′0 such that
Q0 ≈

V
p Q′0; CryptoVerif evaluates the probability p.

11.3.1 Syntactic Transformations

RemoveAssign(x): When x is defined by an assignment let x[i1, . . . , il] : T = M in P and x
does not occur in M (non-cyclic assignment), we replace x with its value. When x has several
definitions, we simply replace x[i1, . . . , il] with M in P . (For accesses to x guarded by find, we
do not know which definition of x is actually used.) When x has a single definition, we replace
everywhere in the game x[M1, . . . ,Ml] with M{M1/i1, . . . ,Ml/il}. We additionally update the
defined conditions of find to preserve Invariant 11.2 and to make sure that, if a condition of find
guarantees that x[M1, . . . ,Ml] is defined in the initial game, then so does the corresponding
condition of find in the transformed game. (Essentially, when y[M ′1, . . . ,M

′
l′ ] occurs in M , the

transformation typically creates new occurrences of y[M ′′1 , . . . ,M
′′
l′ ] for some M ′′1 , . . . ,M

′′
l′ , so

the condition that y[M ′′1 , . . . ,M
′′
l′ ] is defined must sometimes be explicitly added to conditions

of find in order to preserve Invariant 11.2.) When x ∈ V , its definition is kept unchanged.
Otherwise, when x is not referred to at all after the transformation, we remove the definition
of x. When x is referred to only at the root of defined tests, we replace its definition with a
constant. (The definition point of x is important, but not its value.)

Example 11.2 In the process of Example 11.1, the transformation RemoveAssign(xmk) sub-
stitutes mkgen(xmr) for xmk in the whole process and removes the assignment let xmk : Tmk =
mkgen(xmr). After this substitution, mac(xm, xmk) becomes mac(xm,mkgen(xmr)) and verify(x′m,
xmk, xma) becomes verify(x′m,mkgen(xmr), xma), thus exhibiting terms required in Section 11.3.2.
The situation is similar for RemoveAssign(xk).

SArename(x): The transformation SArename (single assignment rename) aims at renaming
variables so that each variable has a single definition in the game; this is useful for distinguishing
cases depending on which definition of x has set x[̃i]. This transformation can be applied only
when x /∈ V . When x has m > 1 definitions, we rename each definition of x to a different
variable x1, . . . , xm. Terms x[̃i] under a definition of xj [̃i] are then replaced with xj [̃i]. Each

branch of find FB = ũ[̃i] ≤ ñ suchthat defined(M1, . . . ,Ml)∧M then P where x[M̃ ] is a subterm

of some Mk for k ≤ l is replaced with m branches FB{xj [M̃ ]/x[M̃ ]} for 1 ≤ j ≤ m.

Example 11.3 Consider the following process

in(start, ()); new rA : Tr; let kA : Tk = kgen(rA) in

new rB : Tr; let kB : Tk = kgen(rB) in out(yield, ()); (QK ‖ QS)

QK = !i≤nin(c[i], (h : Th, k : Tk))

if h = A then let k′ : Tk = kA in out(yield, ()) else

if h = B then let k′ : Tk = kB in out(yield, ()) else

let k′ : Tk = k in out(yield, ())

QS = !i
′≤n′

in(c′[i′], (h′ : Th)); find u ≤ n suchthat

defined(h[u], k′[u]) ∧ h′ = h[u] thenP1(k
′[u]) elseP2

The process QK stores in (h, k′) a table of pairs (host name, key): the key for A is kA, for B,
kB, and for any other h, the adversary can choose the key k. The process QS queries this table
of keys to find the key k′[u] of host h′, then executes P1(k

′[u]). If h′ is not found, it executes
P2.



160 CHAPTER 11. AUTOMATING GAME-BASED PROOFS

By the transformation SArename(k′), we can perform a case analysis, to distinguish the
cases in which k′ = kA, k′ = kB, or k′ = k. After transformation, we obtain the following
processes:

Q′K = !i≤nin(c[i], (h : Th, k : Tk))

if h = A then let k′1 : Tk = kA in out(yield, ()) else

if h = B then let k′2 : Tk = kB in out(yield, ()) else

let k′3 : Tk = k in out(yield, ())

Q′S = !i
′≤n′

in(c′[i′], h′ : Th);

find u ≤ n suchthat defined(h[u], k′1[u]) ∧ h′ = h[u] then P1(k
′
1[u])

⊕ u ≤ n suchthat defined(h[u], k′2[u]) ∧ h′ = h[u] then P1(k
′
2[u])

⊕ u ≤ n suchthat defined(h[u], k′3[u]) ∧ h′ = h[u] then P1(k
′
3[u]) else P2

After the simplification (sketched below), Q′S becomes:

Q′′S = !i
′≤n′

in(c′[i′], h′ : Th);

find u ≤ n suchthat defined(h[u], k′1[u]) ∧ h′ = A then P1(kA)

⊕ u ≤ n suchthat defined(h[u], k′2[u]) ∧ h′ = B then P1(kB)

⊕ u ≤ n suchthat defined(h[u], k′3[u]) ∧ h′ = h[u] then P1(k[u]) else P2

since, when k′1[u] is defined, k′1[u] = kA and h[u] = A, and similarly for k′2[u] and k′3[u].

Simplify: The prover uses a simplification algorithm, based on an equational prover, using an
algorithm similar to the Knuth-Bendix completion [?]. This equational prover uses:

• User-defined equations, of the form ∀x1 : T1, . . . ,∀xm : Tm,M which mean that for all
environments E, if for all j ≤ m, E(xj) ∈ Tj, then E,M ⇓ true. For example, considering
MAC and encryption schemes as in Definitions 11.1 and 11.2 respectively, we have:

∀r : Tmr,∀m : bitstring , verify(m,mkgen(r),mac(m,mkgen(r))) = true (mac)

∀m : bitstring ;∀r : Tr,∀r
′ : T ′r,dec(enc(m, kgen(r), r′), kgen(r)) = i⊥(m) (enc)

We express the poly-injectivity of the function k2b of Example 11.1 by

∀x : Tk,∀y : Tk, (k2b(x) = k2b(y)) = (x = y)

∀x : Tk, k2b
−1(k2b(x)) = x

(k2b)

where k2b−1 is a function symbol that denotes the inverse of k2b. We have similar formulas
for i⊥.

• Equations that come from the process. For example, in the process if M then P else P ′,
we have M = true in P and M = false in P ′.

• The low probability of collision between random values. For example, when x is defined
by new x : T under replications bounded by n1, . . . , nm, x[M1, . . . ,Mm] = x[M ′1, . . . ,M

′
m]

implies M1 = M ′1, . . . , Mm = M ′m up to probability p = (n1...nm)2

2|T | . Indeed, the ar-
ray x consists of n1 . . . nm independent uniformly distributed random numbers and, if
x[M1, . . . ,Mm] = x[M ′1, . . . ,M

′
m] and (M1, . . . ,Mm) 6= (M ′1, . . . ,M

′
m), then the array x

contains two equal cells. There are (n1 . . . nm)2/2 sets of two cells of x, and the probabil-
ity that two independent uniformly distributed random elements of T are equal is 1/|T |,
which yields probability p. The replacement of x[M1, . . . ,Mm] = x[M ′1, . . . ,M

′
m] with



11.3. GAME TRANSFORMATIONS 161

M1 = M ′1, . . . , Mm = M ′m is performed when the type T is large, which means that |T | is
large enough so that the probability p can be considered small.

Similarly, when 1) x is defined by new x : T and T is a large type, 2) for each value of
M1, there is at most one value of x (or of a part of x of a large type) that can yield that
value of M1, and 3) M2 does not depend on x, then M1 6= M2 up to a small probability.
The fact that M2 does not depend on x is proved using a dependency analysis.

The prover combines these properties to simplify terms, and uses simplified forms of terms to
simplify processes. For example, if M simplifies to true, then if M then P else P ′ simplifies to
P . Similarly, a branch of find is removed when the associated condition simplifies to false.

Details on the simplification procedure can be found in [?, Appendix C]. The asymptotic
version of the following proposition is proved in [?, Appendix E.1].

Proposition 11.1 Let Q0 be a process that satisfies Invariants 11.1, 11.2, and 11.3 and Q′0 the
process obtained from Q0 by one of the transformations above. Then Q′0 satisfies Invariants 11.1,
11.2, and 11.3, and Q0 ≈

V
p Q′0, where p = 0 for the transformations RemoveAssign and

SArename, and p is the probability of eliminated collisions for Simplify.

11.3.2 Applying the Security Assumptions on Primitives

The security of cryptographic primitives is defined using observational equivalences given as
axioms. Importantly, this formalism allows us to specify many different primitives in a generic
way. Such equivalences are then used by the prover in order to transform a game into another,
observationally equivalent game, as explained below.

The primitives are specified using equivalences of the form (G1, . . . , Gm) ≈p (G′1, . . . , G
′
m)

where G is defined by the following grammar, with l ≥ 0 and m ≥ 1:

G ::= group of oracles
!i≤nnew y1 : T1; . . . ; new yl : Tl; (G1, . . . , Gm) replication, restrictions
O(x1 : T1, . . . , xl : Tl) := OP oracle

OP ::= oracle processes
M term

new x[̃i] : T ;OP random number

let x[̃i] : T = M in OP assignment

find (
⊕m

j=1 ũj [̃i] ≤ ñj suchthat

defined(Mj1, . . . ,Mjlj ) ∧Mj then OPj) else OP array lookup

Intuitively, O(x1 : T1, . . . , xl : Tl) := OP represents an oracle O that takes as argument values
x1, . . . , xl of types T1, . . . , Tl respectively and returns a result computed by OP . The observa-
tional equivalence (G1, . . . , Gm) ≈p (G′1, . . . , G

′
m) expresses that the adversary has probability

at most p of distinguishing oracles in the left-hand side from corresponding oracles in the right-
hand side. Formally, oracles can be encoded as processes that input their arguments and output

their result on a channel, as shown in Figure 11.2: [[OP ]]j̃
ĩ
denotes the translation of the ora-

cle process OP into an output process; [[G]]j̃
ĩ
denotes the translation of the group of oracles G

into an input process. The translation of !i≤nnew y1 : T1; . . . ; new yl : Tl; (G1, . . . , Gm) inputs
and outputs on channel cj̃ so that the context can trigger the generation of random numbers

y1, . . . , yl. The translation of O(x1 : T1, . . . , xl : Tl) := OP inputs the arguments of the oracle
on channel cj̃ and translates OP , which outputs the result of OP on cj̃ . (In the left-hand side of

equivalences, the result OP of oracles must simply be a term M .) The observational equivalence
(G1, . . . , Gm) ≈p (G

′
1, . . . , G

′
m) is then an abbreviation for [[(G1, . . . , Gm)]] ≈p [[(G

′
1, . . . , G

′
m)]].



162 CHAPTER 11. AUTOMATING GAME-BASED PROOFS

[[(G1, . . . , Gm)]] = [[G1]]
1 ‖ . . . ‖ [[Gm]]m

[[!i≤nnew y1 : T1; . . . ; new yl : Tl; (G1, . . . , Gm)]]j̃
ĩ
=

!i≤nin(cj̃ [̃i, i], ()); new y1 : T1; . . . ; new yl : Tl; out(cj̃ [̃i, i], ()); ([[G1]]
j̃,1

ĩ,i
‖ . . . ‖ [[Gm]]j̃,m

ĩ,i
)

[[O(x1 : T1, . . . , xl : Tl) := OP ]]j̃
ĩ
= in(cj̃ [̃i], (x1 : T1, . . . , xl : Tl)); [[OP ]]j̃

ĩ

[[M ]]j̃
ĩ
= out(cj̃ [̃i],M)

[[new x[̃i] : T ;OP ]]j̃
ĩ
= new x[̃i] : T ; [[OP ]]j̃

ĩ

[[let x[̃i] : T = M in OP ]]j̃
ĩ
= let x[̃i] : T = M in [[OP ]]j̃

ĩ

[[find (
⊕m

j=1 ũj [̃i] ≤ ñj suchthat defined(Mj1, . . . ,Mjlj ) ∧Mj then OP j) else OP ]]j̃
ĩ
=

find (
⊕m

j=1 ũj [̃i] ≤ ñj suchthat defined(Mj1, . . . ,Mjlj ) ∧Mj then [[OP j ]]
j̃

ĩ
) else [[OP ]]j̃

ĩ

where cj̃ are pairwise distinct channels, ĩ = i1, . . . , il′ , and j̃ = j0, . . . , jl′ .

Figure 11.2: Translation from oracle processes to processes

For example, the security of a MAC (Definition 11.1) is represented by the equivalence
L ≈pmac

R where:

L = !i
′′≤n′′

new r : Tmr; (

!i≤nOmac(x : bitstring) := mac(x,mkgen(r)),

!i
′≤n′

Overify(m : bitstring ,ma : Tms) := verify(m,mkgen(r),ma))

R = !i
′′≤n′′

new r : Tmr; (

!i≤nOmac(x : bitstring) := mac′(x,mkgen′(r)),

!i
′≤n′

Overify(m : bitstring ,ma : Tms) :=

find u ≤ n suchthat defined(x[u]) ∧ (m = x[u])

∧ verify′(m,mkgen′(r),ma) then true else false)

pmac(C,D) = n′′ Succuf−cma
MAC (tC + (n′′ − 1)(time(mkgen) + n time(mac,maxl(x))

+ n′ time(verify,maxl(m)), n, n′,max(maxl(x),maxl(m)))

(maceq)

where mac′, verify′, and mkgen′ are function symbols with the same types as mac, verify, and
mkgen respectively. (We use different function symbols on the left- and right-hand sides, just
to prevent a repeated application of the transformation induced by this equivalence. Since we
add these function symbols, we also add the equation

∀r : Tmr,∀m : bitstring , verify′(m,mkgen′(r),mac′(m,mkgen′(r))) = true (mac′)

which restates (mac) for mac′, verify′, and mkgen′.) Intuitively, the equivalence L ≈pmac
R

leaves MAC computations unchanged (except for the use of primed function symbols in R), and
allows one to replace a MAC verification verify(m,mkgen(r),ma) with a lookup in the array
x of messages whose mac has been computed with key mkgen(r): if m is found in the array x
and verify(m,mkgen(r),ma), we return true; otherwise, the verification fails (up to negligible
probability), so we return false. (If the verification succeeds with m not in the array x, then
the adversary has forged a MAC.) Obviously, the form of L requires that r is used only to
compute or verify MACs, for the equivalence to be correct. In the probability pmac(C,D), tC is
the runtime of context C; n′′ is the maximum number of considered MAC keys; n′ and n′′ are



11.3. GAME TRANSFORMATIONS 163

respectively the maximum number of calls to Omac and Overify for each MAC key (n, n′, n′′ are
in fact functions of C); time(f, l1, . . . , lk) is the maximum runtime of f , called with arguments
of length at most l1, . . . , lk (the lengths l1, . . . , lk are omitted when the type of the argument
already bounds its length); maxl(x) is the maximum length of x. Formally, the following result
shows the correctness of our modeling. It is a fairly easy consequence of Definition 11.1, and its
asymptotic version is proved in [?, Appendix E.3].

Proposition 11.2 If (mkgen,mac, verify) is a UF-CMA message authentication code, and the
symbols mkgen′, mac′, and verify′ represent the same functions as mkgen, mac, and verify
respectively, then [[L]] ≈pmac

[[R]].

Similarly, if (kgen, enc,dec) is an IND-CPA symmetric encryption scheme (Definition 11.2),
then we have the following equivalence:

!i
′≤n′

new r : Tr; !
i≤nOenc(x : bitstring) := new r′ : T ′r; enc(x, kgen(r), r

′)

≈penc !
i′≤n′

new r : Tr; !
i≤nOenc(x : bitstring) := new r′ : T ′r; enc

′(Z(x), kgen′(r), r′)
(enceq)

where penc(C,D) = n′ Succind−cpaSE (tC+tD+(n′−1)(time(kgen)+n time(enc,maxl(x))+n time(Z,
maxl(x))), n,maxl(x)), enc′ and kgen′ are function symbols with the same types as enc and kgen
respectively, and Z : bitstring → bitstring is the function that returns a bitstring of the same
length as its argument, consisting only of zeroes. Using equations such as ∀x : T,Z(T2b(x)) =
ZT , we can prove that Z(T2b(x)) does not depend on x when x is of a fixed-length type T and
T2b : T → bitstring is the natural injection.

Exercice 42
The advantage of the adversary against strong unforgeability under chosen message attacks
(SUF-CMA) of MACs is:

Succsuf−cma
MAC (t, qm, qv, l) =

max
A

Pr

[
k

R
←mkgen; (m, s)← Amac(.,k),verify(.,k,.) : verify(m,k, s) ∧

s is not the result of calling the oracle mac(., k) on m

]

where A runs in time at most t, calls mac(., k) at most qm times with messages of length at
most l, calls verify(., k, .) at most qv times with messages of length at most l. The difference
with UF-CMA MACs is that, for SUF-CMA MACs, generating a different MAC for a message
whose MAC has already been computed is considered as a forgery.

Represent SUF-CMA MACs in the CryptoVerif formalism.

Exercice 43
A signature scheme S consists of

• a key generation algorithm (pk, sk)
R
← kgen

• a signature algorithm sign(m, sk)

• a verification algorithm verify(m, pk, s)

such that verify(m, pk, sign(m, sk)) = 1.
The advantage of the adversary against unforgeability under chosen message attacks (UF-

CMA) of signatures is:

Succuf−cma
S (t, qs, l) =

max
A

Pr

[
(pk, sk)

R
← kgen; (m, s)← Asign(.,sk)(pk) : verify(m, pk, s) ∧

m was never queried to the oracle sign(., sk)

]



164 CHAPTER 11. AUTOMATING GAME-BASED PROOFS

where A runs in time at most t, calls sign(., sk) at most qs times with messages of length at
most l. Signatures are similar to MACs, except that one uses a key pair instead of a single key:
the signature is computed using the secret key sk and verified using the public key pk.

Represent UF-CMA signatures in the CryptoVerif formalism.

Exercice 44
The advantage of the adversary against ciphertext integrity (INT-CTXT) of a symmetric en-
cryption scheme SE is:

Succint−ctxtSE (t, qe, qd, le, ld) =

max
A

Pr

[
k

R
← kgen; c← Aenc(.,k),dec(.,k)6=⊥ : dec(c, k) 6= ⊥ ∧

c is not the result of a call to the enc(., k) oracle

]

where A runs in time at most t, calls enc(., k) at most qe times with messages of length at
most le, calls dec(., k) 6= ⊥ at most qd times with messages of length at most ld. Intuitively,
ciphertext integrity means that the adversary is unable to compute a ciphertext that correctly
decrypts, except by calling the encryption oracle.

Represent INT-CTXT encryption in the CryptoVerif formalism.

Exercice 45
A public-key encryption scheme AE consists of

• a key generation algorithm (pk, sk)
R
← kgen

• a probabilistic encryption algorithm enc(m, pk)

• a decryption algorithm dec(m, sk)

such that dec(enc(m, pk), sk) = m.

The advantage of the adversary against indistinguishability under adaptive chosen-ciphertext
attacks (IND-CCA2) is

Succind−cca2AE (t, qd) =

max
A

2Pr




b
R
←{0, 1}; (pk, sk)

R
← kgen;

(m0,m1, s)← A
dec(.,sk)
1 (pk); y ← enc(mb, pk);

b′ ← A
dec(.,sk)
2 (m0,m1, s, y) : b

′ = b ∧
A2 has not called dec(., sk) on y


− 1

where A = (A1,A2) runs in time at most t and calls dec(., sk) at most qd times. The adversary
first chooses two messages m0 and m1; y is the encryption of one of them mb under pk, and
the adversary should be unable to guess which one was encrypted from the ciphertext y. The
adversary has access to the public key pk (so that it can encrypt) and to the decryption oracle
dec(., sk), but obviously it must not call the decryption oracle on the ciphertext y, otherwise
it could always find which message was encrypted. The variable s contains some state that is
passed from the first part of the adversary A1 to the second part A2.

Represent IND-CCA2 encryption in the CryptoVerif formalism.

The representation of these and other primitives can be found in [?, Appendix D.3]. The
equivalences that formalize the security assumptions on primitives are designed and proved
correct by hand from security assumptions in a more standard form, as in the MAC example.
Importantly, these manual proofs are done only once for each primitive, and the obtained
equivalence can be reused for proving many different protocols automatically.



11.3. GAME TRANSFORMATIONS 165

Assuming L ≈p R, Lemma 11.1 yields C[[[L]]] ≈V
p′ C[[[R]]] with p′(C ′,D) = p(C ′[C],D),

for all evaluation contexts C acceptable for [[L]] and [[R]] with no public variables, so we can
transform a process Q0 such that Q0 ≈

V
0 C[[[L]]] into a process Q′0 such that Q0 ≈

V
0 C[[[L]]] ≈V

p′

C[[[R]]] ≈V
0 Q′0. In order to check that Q0 ≈

V
0 C[[[L]]], the prover uses sufficient conditions,

which essentially guarantee that all uses of certain secret variables of Q0, in a set S, can be
implemented by calling oracles of L. LetM be a set of occurrences of terms, corresponding to
uses of variables of S. Informally, the prover shows the following properties.

• For each M ∈ M, there exist a term NM , which is the result of an oracle of L, and a
substitution σM such that M = σMNM . (Precisely, σM applies to the abbreviated form
of NM in which we write x instead of x[̃i].) Intuitively, the evaluation of M in Q0 will
correspond to a call to the oracle with result NM in C[[[L]]].

• The variables of S do not occur in V , are bound by restrictions in Q0, and occur only in
terms M = σMNM ∈ M in Q0, at occurrences that are images by σM of variables bound
by restrictions in L. (To be precise, the variables of S are also allowed to occur at the root
of defined conditions; in that case, their value does not matter, just the fact that they are
defined.)

• Let ĩ and ĩ′ be the sequences of current replication indices at NM in L and at M in
Q0, respectively. The prover shows that there exists a function mapIdxM that maps
the array indices at M in Q0 to the array indices at NM in L: the evaluation of M
when ĩ′ = ã will correspond in C[[[L]]] to the evaluation of NM when ĩ = mapIdxM (ã).
Thus, σM and mapIdxM induce a correspondence between terms and variables of Q0 and
variables of L: for all M ∈ M, for all x[ĩ′′] that occur in NM , (σMx){ã/ĩ′} corresponds
to x[ĩ′′]{mapIdxM (ã)/̃i}, that is, (σMx){ã/ĩ′} in a trace of Q0 has the same value as
x[ĩ′′]{mapIdxM (ã)/̃i} in the corresponding trace of C[[[L]]] (ĩ′′ is a prefix of ĩ). We detail
below conditions that this correspondence has to satisfy.

For example, consider a process Q0 that contains M1 = enc(M ′1, kgen(xr), x
′
r[i1]) under a

replication !i1≤n1 and M2 = enc(M ′2, kgen(xr), x
′′
r [i2]) under a replication !i2≤n2 , where xr, x

′
r, x
′′
r

are bound by restrictions. Let S = {xr, x
′
r, x
′′
r},M = {M1,M2}, and NM1

= NM2
= enc(x[i′, i],

kgen(r[i′]), r′[i′, i]). The functions mapIdxM1
and mapIdxM2

are defined by

mapIdxM1
(a1) = (1, a1) for a1 ∈ [1, n1]

mapIdxM2
(a2) = (1, a2 + n1) for a2 ∈ [1, n2]

Then M ′1{a1/i1} corresponds to x[1, a1], xr to r[1], x′r[a1] to r′[1, a1], M
′
2{a2/i2} to x[1, a2+n1],

and x′′r [a2] to r′[1, a2 + n1]. The functions mapIdxM1
and mapIdxM2

are such that x′r[a1] and
x′′r [a2] never correspond to the same cell of r′; indeed, x′r[a1] and x′′r [a2] are independent random
numbers in Q0, so their images in C[[[L]]] must also be independent random numbers.

The above correspondence must satisfy the following soundness conditions:

• when x is an oracle argument in L, the term that corresponds to x[ã′] must have the same
type as x[ã′], and when two terms correspond to the same x[ã′], they must evaluate to the
same value;

• when x is bound by new x : T in L, the term that corresponds to x[ã′] must evaluate to
z[ã′′] where z ∈ S and z is bound by new z : T in Q0, and the relation that associates z[ã′′]
to x[ã′] is an injective function (so that independent random numbers in L correspond to
independent random numbers in Q0).

It is easy to check that, in the previous example, these conditions are satisfied.
The transformation of Q0 into Q′0 consists in two steps. First, we replace the restric-

tions that define variables of S with restrictions that define fresh variables corresponding to



166 CHAPTER 11. AUTOMATING GAME-BASED PROOFS

variables bound by new in R. The correspondence between variables of Q0 and variables of
C[[[L]]] is extended to include these fresh variables. Second, we reorganize Q0 so that each
evaluation of a term M ∈ M first stores the values of the arguments x1, . . . , xm of the oracle
O(x1 : T1, . . . , xm : Tm) := NM in fresh variables, then computes NM and stores its result in
a fresh variable, and uses this variable instead of M ; then we simply replace the computation
of NM with the corresponding oracle process of R, taking into account the correspondence of
variables.

The full formal description of this transformation is given in [?, Appendix D.1]. The following
proposition shows the soundness of the transformation; its asymptotic version is proved in [?,
Appendix E.4].

Proposition 11.3 Let Q0 be a process that satisfies Invariants 11.1, 11.2, and 11.3 and Q′0
the process obtained from Q0 by the above transformation. Then Q′0 satisfies Invariants 11.1,
11.2, and 11.3 and, if [[L]] ≈p [[R]], then Q0 ≈

V
p′ Q

′
0 where p′(C ′,D) = p(C ′[C],D) and C is an

evaluation context such that Q0 ≈
V
0 C[[[L]]] ≈V

p′ C[[[R]]] ≈V
0 Q′0.

Example 11.4 In order to treat Example 11.1, the prover is given as input the indication that
Tmr, Tr, T

′
r, and Tk are fixed-length types; the type declarations for the functions mkgen,mkgen′ :

Tmr → Tmk, mac,mac′ : bitstring × Tmk → Tms, verify, verify
′ : bitstring × Tmk × Tms → bool ,

kgen, kgen′ : Tr → Tk, enc, enc
′ : bitstring×Tk×T

′
r → Te, dec : Te×Tk → bitstring⊥, k2b : Tk →

bitstring, i⊥ : bitstring → bitstring⊥, Z : bitstring → bitstring, and the constant Zk : bitstring;
the equations (mac), (mac′), (enc), and ∀x : Tk,Z(k2b(x)) = Zk (which expresses that all keys
have the same length); the indication that k2b and i⊥ are poly-injective (which generates the
equations (k2b) and similar equations for i⊥); equivalences L ≈p R for MAC (maceq) and
encryption (enceq); and the process Q0 of Example 11.1. Let V = {x′′k}.

The prover first applies RemoveAssign(xmk) to the process Q0 of Example 11.1, as de-
scribed in Example 11.2, yielding Q1. The process can then be transformed using the security
of the MAC. Let S = {xmr}, M1 = mac(xm[i],mkgen(xmr)), M2 = verify(x′m[i′],mkgen(xmr),
xma[i

′]), and M = {M1,M2}. Hence NM1
= mac(x[i′′, i],mkgen(r[i′′])), NM2

= verify(m[i′′, i′],
mkgen(r[i′′]),ma[i′′, i′]), mapIdxM1

(a1) = (1, a1), and mapIdxM2
(a2) = (1, a2), so xm[a1] cor-

responds to x[1, a1], xmr to r[1], x′m[a2] to m[1, a2], and xma[a2] to ma[1, a2].

After transformation, we get the following process Q2:

Q2 = in(start, ()); new xr : Tr; let xk : Tk = kgen(xr) in new xmr : Tmr; out(c, ()); (Q2A ‖ Q2B)

Q2A = !i≤nin(cA[i], ()); new x′k : Tk; new x′r : T
′
r;

let xm : bitstring = enc(k2b(x′k), xk, x
′
r) in out(cA[i], (xm,mac′(xm,mkgen′(xmr))))

Q2B = !i
′≤nin(cB [i

′], (x′m, xma));

find u ≤ n suchthat defined(xm[u]) ∧ x′m = xm[u] ∧

verify′(x′m,mkgen′(xmr), xma)

then (if true then let i⊥(k2b(x
′′
k)) = dec(x′m, xk) in out(cB [i

′], ()))

else (if false then let i⊥(k2b(x
′′
k)) = dec(x′m, xk) in out(cB [i

′], ()))

The initial definition of xmr is removed and replaced with a new definition, which we still
call xmr. The term mac(xm,mkgen(xmr)) is replaced with mac′(xm,mkgen′(xmr)). The term
verify(x′m,mkgen(xmr), xma) becomes find u ≤ n suchthat defined(xm[u]) ∧ x′m = xm[u] ∧
verify′(x′m,mkgen′(xmr), xma) then true else false, which yields Q2B after transformation of
oracle processes into processes. The process looks up the message x′m in the array xm, which
contains the messages whose MAC has been computed with key mkgen(xmr). If the MAC of x′m
has never been computed, the verification always fails (it returns false) by the security assumption
on the MAC. Otherwise, it returns true when verify′(x′m,mkgen′(xmr), xma). By instantiating



11.3. GAME TRANSFORMATIONS 167

the probability formula given in (maceq), Q1 ≈
V
p′mac

Q2 where

p′mac(C,D) = pmac(C[C ′],D)

= Succuf−cma
MAC (tC + time(kgen) + n time(enc, length(Tk)) + n time(dec,maxl(x′m)),

n, n,max(maxl(x′m),maxl(xm)))

since we use one MAC key (n′′ = 1), there are at most n calls to mac and verify for that
key (n′ = n), and the runtime of the adversary against (maceq) is tC[C′] = tC + time(kgen) +
n time(enc, length(Tk)) + n time(dec,maxl(x′m)).

Applying Simplify yields a game Q3: Q2A is unchanged and Q2B becomes

Q3B = !i
′≤nin(cB [i

′], (x′m, xma));

find u ≤ n suchthat defined(xm[u], x′k[u]) ∧ x′m = xm[u] ∧

verify′(x′m,mkgen′(xmr), xma) then

let x′′k : Tk = x′k[u] in out(cB [i
′], ())

First, the tests if true then . . . and if false then . . . are simplified. The term dec(x′m, xk)
is simplified knowing x′m = xm[u] by the find condition, xm[u] = enc(k2b(x′k[u]), xk, x

′
r[u])

by the assignment that defines xm, xk = kgen(xr) by the assignment that defines xk, and
dec(enc(m, kgen(r), r′), kgen(r)) = i⊥(m) by (enc). So we have dec(x′m, xk) = dec(xm[u],
xk) = dec({(}k2b(x

′
k[u]), xk, x

′
r[u]), xk) = i⊥(k2b(x

′
k[u])). By injectivity of i⊥ and k2b, the

assignment to x′′k simply becomes x′′k = x′k[u], using the equations ∀x : bitstring , i−1⊥ (i⊥(x)) = x
and ∀x : Tk, k2b

−1(k2b(x)) = x.

After applying RemoveAssign(xk), which yields Q4, we use the security of encryption,
yielding Q5: enc(k2b(x

′
k), kgen(xr), x

′
r) becomes enc′(Z(k2b(x′k)), kgen

′(xr), x
′
r). We have Q4 ≈

V
p′enc

Q5 where

p′enc(C,D) = penc(C[C ′′],D)

= Succ
ind−cpa
SE (tC + tD + (n+ n2)time(mkgen) + n time(mac,maxl(m)) +

n2 time(verify,maxl(m′)) + n2 time(=bitstring ,maxl(m′),maxl(m)),

n, length(Tk)).

(The evaluation of the runtime of the context C ′′ is rather naive since we consider that mkgen(xmr)
is computed once in each execution of Q4A and once for each find test in Q4B, and similarly
verify is computed once for each find test in Q4B. By noticing that it is enough to compute
mkgen(xmr) once, and verify once in each execution of Q4B, one would obtain Succ

ind−cpa
SE (tC +

tD + time(mkgen) + n time(mac,maxl(m)) + n time(verify,maxl(m′)) + n2 time(= bitstring ,
maxl(m′),maxl(m)), n, length(Tk)).) After Simplify, enc′(Z(k2b(x′k)), kgen

′(xr), x
′
r) becomes

enc′(Zk, kgen
′(xr), x

′
r), using ∀x : Tk,Z(k2b(x)) = Zk (which expresses that all keys have the

same length).

So we obtain the following game:

Q6 = in(start, ()); new xr : Tr; new xmr : Tmr; out(c, ()); (Q6A ‖ Q6B)

Q6A = !i≤nin(cA[i], ()); new x′k : Tk; new x′r : T
′
r;

let xm : bitstring = enc′(Zk, kgen
′(xr), x

′
r) in out(cA[i], (xm,mac′(xm,mkgen′(xmr))))

Q6B = Q3B

By transitivity of ≈ (Lemma 11.1), Q0 ≈
V
p′mac+p′enc

Q6 since the probability is 0 for steps other
than applying the security of MAC and encryption.



168 CHAPTER 11. AUTOMATING GAME-BASED PROOFS

Using lists instead of arrays simplifies games transformation: we do not need to add instruc-
tions that insert values in the list, since all variables are always implicitly arrays. Moreover,
if there are several occurrences of mac(xi, k) with the same key in the initial process, each
verify(mj, k,maj) is replaced with a find with one branch for each occurrence of mac. There-
fore, the prover distinguishes automatically the cases in which the verified MAC maj comes
from each occurrence of mac, that is, it distinguishes cases depending on the value of i such
that mj = xi. Typically, distinguishing these cases is useful in the following steps of the proof
of the protocol. (A similar situation arises for other cryptographic primitives specified using
find.)

11.4 Criteria for Proving Secrecy Properties

Let us now define syntactic criteria that allow us to prove secrecy properties of protocols. The
proofs of asymptotic versions of these results can be found in [?, Appendix E.5].

Definition 11.4 (One-session secrecy) Suppose that the variable x of type T is defined in
Q under a single !i≤n. Q preserves the one-session secrecy of x up to probability p when, for
all evaluation contexts C acceptable for Q ‖ Qx without public variables that do not contain S,
2Pr[C[Q ‖ Qx] : S]− 1 ≤ p(C), where

Qx = in(c0, ()); new b : bool; out(c0, ());

(in(c, u : [1, n]); if defined(x[u]) then if b then out(c, x[u]) else new y : T ; out(c, y)

‖ in(c′, b′ : bool); if b = b′ then event S)

c0, c, c
′, b, b′, u, y, and S do not occur in Q.

Intuitively, the adversary C distinguishes the value of each secret x[u] from a random number
with probability at most p(C). (But the elements x[u] need not be independent.) The adversary
performs a single test query on x[u], modeled by sending u on channel c in Qx. This test query
returns x[u] when the random bit b is true and a random number otherwise. The adversary
then tries to guess b, by sending its guess b′ on channel c′. When the guess is correct, event S

is executed.

Proposition 11.4 (One-session secrecy) Consider a process Q such that there exists a set
of variables S such that 1) the definitions of x are either restrictions new x[̃i] : T and x ∈ S, or
assignments let x[̃i] : T = z[M1, . . . ,Ml] where z is defined by restrictions new z[i′1, . . . , i

′
l] : T ,

and z ∈ S, and 2) all accesses to variables y ∈ S in Q are of the form “let y′ [̃i] : T ′ =
y[M1, . . . ,Ml]” with y′ ∈ S. Then Q preserves the one-session secrecy of x up to probability 0.

Intuitively, only the variables in S depend on the restriction that defines x; the sent messages
and the control flow of the process are independent of x, so the adversary obtains no information
on x. In the implementation, the set S is computed by fixpoint iteration, starting from x or z
and adding variables y′ defined by “let y′ [̃i] : T ′ = y[M1, . . . ,Ml]” when y ∈ S.

Definition 11.5 (Secrecy) Assume that the variable x of type T is defined in Q under a
single !i≤n. Q preserves the secrecy of x up to probability p when, for all evaluation contexts C
acceptable for Q ‖ Rx without public variables that do not contain S, 2Pr[C[Q ‖ Rx] : S]− 1 ≤
p(C), where

Rx = in(c0, ()); new b : bool; out(c0, ());

(!i≤n
′
in(c, u : [1, n]); if defined(x[u]) then if b then out(c, x[u]) else

find u′ ≤ n′ suchthat defined(y[u′], u[u′]) ∧ u[u′] = u then out(c, y[u′])



11.4. CRITERIA FOR PROVING SECRECY PROPERTIES 169

else new y : T ; out(c, y)

‖ in(c′, b′ : bool); if b = b′ then event S)

c0, c, c
′, b, b′, u, u′, y, and S do not occur in Q, and n′ ≥ n.

Intuitively, the adversary C distinguishes the secret array x from an array of independent
random numbers with probability at most p(C). In this definition, the adversary can perform
several test queries, modeled by Rx, which all return the value of x if b is true and a random
number if b is false. This corresponds to the “real-or-random” definition of security [?]. (As
shown in [?], this notion is stronger than the more standard approach in which the adversary
can perform a single test query and some reveal queries, which always reveal x[u].)

Proposition 11.5 (Secrecy) Assume that Q satisfies the hypothesis of Proposition 11.4.

When T is a trace of C[Q] for some evaluation context C, we define defRestrT (x[ã]), the
defining restriction of x[ã] in trace T , as follows: if x[ã] is defined by new x[ã] : T in T ,
defRestrT (x[ã]) = x[ã]; if x[ã] is defined by let x[ã] : T = z[M1, . . . ,Ml], defRestrT (x[ã]) =
z[a′1, . . . , a

′
l] where E,Mk ⇓ a′k for all k ≤ l and E is the environment in T at the definition of

x[ã].

For all evaluation contexts C acceptable for Q with public variables {x}, let p(C) = Pr[∃(T , ã,
ã′), C[Q] reduces according to T ∧ã 6= ã′∧defRestrT (x[ã]) = defRestrT (x[ã′])]. Then Q preserves
the secrecy of x up to probability 2p.

The collisions defRestrT (x[ã]) = defRestrT (x[ã′]) are eliminated using the same equational
prover as for Simplify in Section 11.3.1, which yields a bound on p(C). Intuitively, when
ã 6= ã′, we have defRestrT (x[ã]) 6= defRestrT (x[ã′]) (except in cases of probability p(C)), so x[ã]
and x[ã′] are defined by different restrictions, so they are independent random numbers.

As we show in [?], secrecy composed with correspondence assertions [?] can be used to
prove security of a key exchange. (Correspondence assertions are properties of the form “if

some event e(M̃ ) has been executed then some events ei(M̃i) for i ≤ m have been executed”.
The verification of correspondence assertions in CryptoVerif in presented in [?].)

Lemma 11.2 If Q ≈
{x}
p Q′ and Q preserves the one-session secrecy of x up to probability p′

then Q′ preserves the one-session secrecy of x up to probability p′′(C) = p′(C)+2p(C[[ ] ‖ Qx],S).
A similar result holds for secrecy.

We can then apply the following technique. When we want to prove that Q0 preserves the
(one-session) secrecy of x, we transform Q0 by the transformations described in Section 11.3
with V = {x}. By Propositions 11.1 and 11.3, we obtain a process Q′0 such that Q0 ≈

V
p Q′0.

We use Propositions 11.4 or 11.5 to show that Q′0 preserves the (one-session) secrecy of x and
finally conclude that Q0 also preserves the (one-session) secrecy of x up to a certain probability
by Lemma 11.2.

Example 11.5 After the transformations of Example 11.4, the only variable access to x′k in
the considered process is let x′′k : Tk = x′k[u] and x′′k is not used in the considered process.
So by Proposition 11.4, the considered process preserves the one-session secrecy of x′′k (with
S = {x′k, x

′′
k}). By Lemma 11.2, the process of Example 11.1 also preserves the one-session

secrecy of x′′k up to probability 2(p′mac + p′enc)(C[[ ] ‖ Qx],S). (The runtimes of Qx and of the
distinguisher S can be neglected inside this formula.) However, this process does not preserve
the secrecy of x′′k, because the adversary can force several sessions of B to use the same key
x′′k, by replaying the message sent by A. Accordingly, the hypothesis of Proposition 11.5 is not
satisfied.



170 CHAPTER 11. AUTOMATING GAME-BASED PROOFS

The criteria given in this section might seem restrictive, but in fact, they should be sufficient
for all protocols, provided the previous transformation steps are powerful enough to transform
the protocol into a simpler protocol, on which these criteria can then be applied.

11.5 Proof Strategy

Up to now, we have described the available game transformations. Next, we explain how we
organize these transformations in order to prove protocols.

At the beginning of the proof and after each successful cryptographic transformation (that
is, a transformation of Section 11.3.2), the prover executes Simplify and tests whether the
desired security properties are proved, as described in Section 11.4. If so, it stops.

In order to perform the cryptographic transformations and the other syntactic transfor-
mations, our proof strategy relies of the idea of advice. Precisely, the prover tries to execute
each available cryptographic transformation in turn. When such a cryptographic transforma-
tion fails, it returns some syntactic transformations that could make the desired transformation
work. (These are the advised transformations.) Then the prover tries to perform these syntactic
transformations. If they fail, they may also suggest other advised transformations, which are
then executed. When the syntactic transformations finally succeed, we retry the desired crypto-
graphic transformation, which may succeed or fail, perhaps with new advised transformations,
and so on.

Examples of advised transformations include:

• Assume that we try to execute a cryptographic transformation, and need to recognize a cer-
tain term M of L, but we find in Q0 only part of M , the other parts being variable accesses
x[. . .] while we expect function applications. In this case, we advise RemoveAssign(x).
For example, if Q0 contains enc(M ′, xk, x

′
r) and we look for enc(xm, kgen(xr), x

′
r), we ad-

vise RemoveAssign(xk). If Q0 contains let xk = mkgen(xr) and we look for mac(xm,
mkgen(xr)), we also advise RemoveAssign(xk). (The transformation of Example 11.2
is advised for this reason.)

• When we try to execute RemoveAssign(x), x has several definitions, and there are
accesses to variable x guarded by find in Q0, we advise SArename(x).

• When we want to prove that x is secret or one-session secret, we have an assignment
let x[̃i] : T = y[M̃ ] in P , and there is at least one assignment defining y, we advise the
transformation RemoveAssign(y).

When we want to prove that x is secret or one-session secret, we have an assignment
let x[̃i] : T = y[M̃ ] in P , y is defined by restrictions, y has several definitions, and

some variable accesses to y are not of the form let y′[ĩ′] : T = y[M̃ ′] in P ′, we advise
SArename(y).

11.6 Experimental Results

CryptoVerif has been tested on a number of protocols given in the literature. We proved secrecy
of keys for the Otway-Rees and Yahalom protocols as well as original and corrected versions of
the Needham-Schroeder shared-key and public-key and Denning-Sacco public-key protocols, as
reported in [?]. We proved authentication properties for these protocols as well as for original
and corrected versions of the Woo-Lam shared-key and public-key protocols [?]. The proof
succeeded in most cases (it failed for only 3 properties that in fact hold). For some proofs, for
public-key protocols, we needed to provide manual indications of the game transformations to
perform, mainly because several game transformations are sometimes applicable, and the proof
succeeds only for a particular choice of the applied game transformation.



11.7. CONCLUSION 171

For each proof, the prover outputs the sequence of games it has built, a succinct explanation
of the transformation performed between consecutive games, and an indication of whether the
proof succeeded or failed. When the proof fails, the prover still outputs a sequence of games, but
the last game of this sequence does not show the desired property and cannot be transformed
further by the prover. Manual inspection of this game often makes it possible to understand
why the proof failed: because there is an attack (if there is an attack on the last game),
because of a limitation of the prover (if it should in fact be able to prove the property or to
transform the game further), for other reasons (such as the protocol cannot be proved from
the given assumptions; this situation may not lead immediately to a practical attack in the
computational model).

CryptoVerif can also be used for proving cryptographic schemes, such as the FDH signature
scheme [?]. It has been used for studying more complex protocols: the Kerberos protocol, with
and without its public-key extension PKINIT [?], as well as parts of the record protocol and of
the handshake protocol of TLS [?].

11.7 Conclusion

CryptoVerif produces proofs by sequences of games, in the computational model. The security
assumptions on primitives are given as observational equivalences, which are proved once for
each primitive and can be reused for proving many different protocols. The protocol or cryp-
tographic scheme to prove is specified in a process calculus. CryptoVerif provides the sequence
of games that leads to the proof and a bound on the probability of success of an attack. The
user is allowed, but does not have, to provide manual indications on the game transformations
to perform.

The essential idea of simulating proofs by sequences of games in an automatic tool can
be applied to any protocol or cryptographic scheme. However, CryptoVerif applies in a fairly
direct way the security assumptions on the primitives and cannot perform deep mathematical
reasoning. Therefore, it is best suited for proving security protocols that use rather high-level
primitives such as encryption and signatures. It is more limited for proving the security of such
primitives from lower-level primitives, since more subtle mathematical arguments are often
needed.

Future work includes adding support for more primitives, for example associativity for exclu-
sive or and primitives with internal state. Improvements in the proof strategy and the possibility
to give more precise manual hints would also be useful. Future case studies will certainly suggest
additional extensions. In the long term, it would be interesting to certify CryptoVerif, possibly
to combine it with the Coq-based framework CertiCrypt [?]. Grand challenges include the proof
of protocol implementations in the computational model, by analyzing them (as started in [?]
for instance) or by generating them from specifications, and taking into account side-channel
attacks.

11.8 More Exercises

The next definition will be useful in Exercise 46.

Definition 11.6 (IND-CCA2 symmetric encryption) A symmetric encryption scheme SE
is indistinguishable under adaptive chosen-ciphertext attacks (IND-CCA2) if and only if the
probability Succind−cca2SE (t, qe, qd, le, ld) is negligible when t is polynomial in the security parameter:

Succind−cca2SE (t, qe, qd, le, ld) =

max
A

2Pr

[
b

R
←{0, 1}; k

R
← kgen; b′ ← Aenc(LR(.,.,b),k),dec(.,k) : b′ = b ∧

A has not called dec(., k) on the result of enc(LR(., ., b), k)

]
− 1



172 CHAPTER 11. AUTOMATING GAME-BASED PROOFS

where A runs in time at most t, calls enc(LR(., ., b), k) at most qe times on messages of length
at most le, calls dec(., k) at most qd times on messages of length at most ld.

Exercice 46
1. Show using CryptoVerif that, if the MAC scheme is SUF-CMA and the encryption scheme

is IND-CPA, then the encrypt-then-MAC scheme is IND-CCA2.

We recall that, in the encrypt-then-MAC scheme, the encryption of m under key (k,mk)
is (e,mac(e,mk)) where e = enc(m,k, r) and r represents random coins.

2. Show using the same assumptions that the encrypt-then-MAC scheme is INT-CTXT.

3. What happens if the MAC scheme is only UF-CMA?

For the next exercise, please read [?] first.

Exercice 47
Suppose that H is a hash function in the Random Oracle Model and that f is a one-way
trapdoor permutation.

Consider the encryption function Epk(x) = fpk(r)||H(r)⊕x, where || denotes concatenation
and ⊕ denotes exclusive or (Bellare & Rogaway, CCS’93).

1. What is the decryption function?

2. Show using CryptoVerif that this public-key encryption scheme is IND-CPA. (IND-CPA
is defined like IND-CCA2 except that the adversary does not have access to a decryption
oracle.)



Part IV

Links between the two Settings

173





175

In this part, we will relate several previous parts of these lecture notes, trying to answer,
at least partly, the paradoxical situation described in the section 1.3. The goal is to explicit
under which conditions, the symbolic reasoning that has been developed in the chapters 3,5,6,4
accounts for any attack that could be mounted in the model that described in the chapters 7,11.

In other words: when is the term model and the associated definitions of security properties
accurate enough, so as to cover all attacks that could be mounted by an arbitrary Probabilistic
Polynomial Time attacker ? At a first glance, the computational attacker seems to be more
powerful since it can perform any (polynomial time) computation, whereas the symbolic one
can only forge messages using a fixed set of primitives (corresponding to the function symbols
in the signature), all of which computable in polynomial time. The soundness results show in
which cases the additional capabilities of a computational attacker are actually useless.

In their seminal research paper [?], M. Abadi and P. Rogaway show the first soundness result,
roughly proving that the static equivalence (defined for instance in the chapter 5) implies the
computational indistinguishability, in case of a symmetric IND-CPA encryption scheme. This
is the first result that we want to demonstrate in these lecture notes.



176



Chapter 12

Soundness of Static Equivalence

We will show that under some assumptions on the cryptographic primitives static equivalence
is sound with respect to a computational model, i.e. whenever two frames ϕ1 and ϕ2 are
statically equivalent, the distributions corresponding to the implementations of these frames
are computationally indistinguishable.

12.1 Security properties of symmetric encryption schemes

We recast first the security definition of IND-CPA (defined in the section 8.1 for public-key
encryption), in the case of symmetric key encryption.

We wrile AO a Probabilistic Polynomial Time Turing machine, equipped with an oracle O.
Let us recall that such machines include in particular a random tape, which is read-only and
whose content is drawn uniformly at random when the machine starts. The polynomial time
computation should only depend on the input of the machine, not on the actual values on the
random tape. We sometimes write A(x | R) for the result of the (deterministic) computation
of A on x with a random tape R.

The machine has also a special tape for oracle calls (and replies). It may write on this tape
and, from a special state corresponding to the oracle call, there is a transition of the machine
from a configuration γ to a configuration in which only the control state and the content of the
oracle tape have changed; if the oracle tape contains m before the call to the oracle, it contains
O(m) after the transition. In case the oracle itself is randomized, it is assumed to be equiped
with a random (infinite) string R, which is drawn at its first call. Each time the oracle needs
a random input, it takes the appropriate prefix of R and removes this prefix from R. When
needed, we write O(m | R) to explicitly state what is the random input of the oracle.

The following definition captures the minimal expectations for a symmetric encryption
scheme: key generation/ encryption/decryption can be performed in polynomial time and the
decryption with a correct key of the encryption of a plaintext gives back the plaintext.

Definition 12.1 A symmetric encryption scheme consists of three deterministic polynomial
time functions G, E ,D.

• G is the key generation algorithm. We assume here that the length of G(x) only depends
on the length of x.

• E is an encryption algorithm, that, given x, k, r (a plaintext, a key and a random seed)
returns E(x, k, r). We assume that the length of E(x, k, r) only depends on the length of x
for a fixed length key k. E(x,G(y), r) is also assume to depend only on a prefix of length
|y| of r: E(x,G(y), r1) = E(x,G(y), r2) if r1 and r2 have the same prefix of length |y|.

177



178 CHAPTER 12. SOUNDNESS OF STATIC EQUIVALENCE

• D is the decryption algorithm. It is assumed to satisfy the equation

D(E(x,G(y), r),G(y)) = x

for all x, y, r.

Note that in case of key mismatches, or a key that is not in the range of G, the result of D is
not specified.

Sometimes it is more convenient to hide the key generation algorithm and to use a key
distribution. Given η ∈ N, we write K(η) the distribution defined by the image of the uniform
distribution on {0, 1}η by G: for every a, P[k ← K(η) : k = a] = P[r← U({0, 1}η) : G(r) = a].

Now, as in the section 8.1, we are going to use encryption oracles. Given a symmetric
encryption scheme G, E ,D and a key k in G({0, 1}η), we define the two randomized oracles
O1

k( | R) and O2
k( | R) as follows:

• on an input x#y where x, y ∈ {0, 1}∗ and |x| = |y|, O1
k(x#y | R) returns E(x, k, r) and

O2
k(x#y | R) returns E(y, k, r), for a bitstring r that is taken from R.

• If the input does not have the above format, O1
k (resp. O2

k) returns 0.

Note that two successive calls to Oi
k with the same input may return different values, as the

value r is drawn at each call.

Finally, the security cannot be ensured for fixed length keys (there is always then an at-
tacker); it is rather an asymptotic property. We therefore use the following definition of negli-
gible functions:

Definition 12.2 A function f : N → Q is negligible if, for any positive polynomial P in one
variable, there is an N ∈ N such that, for every η > N , f(η) < 1

P (η) .

We are now ready to define IND-CPA:

Definition 12.3 Let S = (G, E ,D) be a symmetric encryption scheme.
Given any oracle PPT machine A and any security parameter η ∈ N we define

Adv(A, η) =

|P[k ← K(η), R1, R2 ← U : AO
1

k( |R2)(0η | R1) = 1]

−P[k ← K(η), R1, R2 ← U : AO
2

k
( |R2)(0η | R1) = 1]|

S is IND-CPA if, for any PPT machine A, Adv(A, η) is a negligible function of η.

This property states intuitively that an attacker cannot distinguish between the encryption
of two plaintexts of his choice.

Exercice 48
Show that the following is a symmetric encryption scheme and is not IND-CPA:

• G is the identity

• E(x, k, r) = x

• D(y, k) = y

Exercice 49
Show that any encryption scheme, in which E(x, k, r) is independent of r is not IND-CPA.



12.2. THE SYMBOLIC MODEL 179

Exercice 50
Show that there is no encryption scheme that satisfies

∀P,∃N,∀A,∀η > N. Adv(A, η) < 1
P (η)

Where A ranges over PPTs and P over positive polynomials in one variable.

Exercice 51
Show that there is no symmetric encryption scheme that satisfies

∀A,∃N,∀η > N. Adv(A, η) <
1

2η

where A ranges over PPTs.

Exercice 52
Given a symmetric encryption scheme, we let

Adv′(A, η) = |2× P[b← U({1, 2}), k ← K(η), R1, R2 ← U : AO
b
k( |R1)(0η | R2) = 1]− 1|

Show that IND-CPA is equivalent to:

For every PPT A, Adv′(A, η) is a negligible function of η.

Exercice 53
Given a symmetric encryption scheme, we define

Adv′′(A, η) = Average[k ← K(η) :
|P[R1, R2 ← U : AO

1

k( |R1)(0η | R2) = 1]

− P[R1, R2 ← U : AO
2

k( |R1)(0η | R2) = 1]|
]

Is IND-CPA equivalent to the following property:

For every PPT A, Adv′′(A, η) is a negligible function of η.

12.2 The symbolic model

We consider here a fixed set of function symbols F : symmetric encryption { } , pairing 〈 , 〉,
symmetric decryption dec( , ), projections π1( ), π2( ), as well as a collection of constants W.
In addition, N is a set of names. This set of names can be partitioned into different sets, for
instance keys, random seeds and nonces. For simplicity, we are going to consider in what follows
only one name sort.

We also consider the equational theory E:

dec({x}rk, k) = x For every k, r ∈ N
π1(〈x, y〉) = x π2(〈x, y〉) = y

Orienting the equations from left to right, we get a (recursive) convergent rewriting system:
every term u in T (F ,X ) has a unique normal form u ↓.

In what follows, we consider only (for simplicity) the set of valid terms M0, that is the least
set of terms such that:

• N ∪W ⊆M0

• if u, v ∈M0, then pairuv ∈ M0

• if u ∈ M0, r, k ∈ N , then {u}rk ∈M0



180 CHAPTER 12. SOUNDNESS OF STATIC EQUIVALENCE

For convenience, we re-define the static equivalence (and we will see later that it may match
the definition of chapter 5: instead of only checking equalities, we give the attacker the ability
to check some other predicates.

Valid messages: the unary predicate symbol M is assumed to check the well-formedness of
messages.

Its interpretation in our message structure is set M I of ground terms u such that u ↓∈ M0.

Equality: the binary predicate EQ checks the equality of messages: its interpretation EQI is
the set of pairs of messages (u, v) such that u ∈M I , v ∈M I and u↓ = v↓.

Note that, for instance (dec(k, k), dec(k, k)) /∈ EQI : pairs of ill-formed terms are not
considered as equal.

Equal keys: as we will see, we will need a predicate EK checking that two ciphertexts use the
same encryption keys (the indistinguishability of two such ciphertexts is not guaranteed
by IND-CPA).

EKI is true on pairs of ciphertexts that are using the same encryption key: (u, v) ∈ SKI iff
there is a k ∈ N , there are r1, r2 ∈ N , there are terms u1, v1 ∈ M0 such that u ↓= {u1}

r1
k

and v ↓= {v1}
r2
k .

Equal lengths: in the computational model, if two plaintexts have different lengths, then the
corresponding ciphertexts have different lengths. Hence we need to reflect this ability to
distinguish messages in the symbolic model. Formally, we use the binary predicate symbol
EL, whose interpretation will be formally defined later in this section. Informally, ELI

is the pair of terms (u, v) such that there are terms u1, v1 ∈ M0, names k1, k2, r1, r2 such
that u ↓= {u1}

r1
k1
, v ↓= {v1}

r2
k2

and, for every η ∈ N, l(u1, η) = l(v1, η).

Let us recall that a frame is an expression νn.{x1 7→ s1, . . . , xm 7→ sm} where s1, . . . , sm are
ground terms, x1, . . . , xm are distinct variables and n is a sequence of distinct names.

The free names fn(φ) of a frame φ = νn.{x1 7→ s1, . . . , xm 7→ sm}. are the names appearing
in s1, . . . , sm, that are not in n. If φ = νn.{x1 7→ s1, . . . , xm 7→ sm}, we write σφ the substitution
{x1 7→ s1, . . . , xm 7→ sm}.

A frame is defined up to the renaming of the names in n: φ = νn1, . . . , nk.σφ is considered
to be the same frame as φ′ = νn′1, . . . , n

′
k.σφ′ if fn(φ) = fn(φ′) and σφ′ is obtained by replacing

each ni with n′i in σφ.

Definition 12.4 Given a set of predicate symbols P, two frames φ1 = νn1.{x1 7→ s1, . . . , xk 7→
sk} and φ2 = νn2.{x1 7→ t1, . . . , xm 7→ tm}, such that fn(φ1) ∩ n2 = fn(φ2) ∩ n1 = ∅, are
statically equivalent, which we write φ1 ∼ φ2, if k = m and

∀P ∈ P, ∀u1, . . . , ui ∈ T (F ∪ (N \ (n1 ∪ n2)), {x1, . . . , xk}),
(u1σφ1

, . . . , uiσφ1
) ∈ P I ⇔ (u1σφ2

, . . . , uiσφ2
) ∈ P I

Exercice 54
Let F be the set of function symbols that has been defined in the beginning of this section and
P be {M,EQ,EK}. Show that the above definition coincides with the definition of chapter 5,
for a well chosen (recursive) equational theory E .

12.3 Indistinguishability of ensembles

Two sequences of distributions (called ensembles) parametrized by η ∈ N are indistinguishable,
if any PPT adversary, when faced to the two experiments, cannot guess with a significant
advantage with which of the two experiments it is faced:



12.4. THE COMPUTATIONAL INTERPRETATION OF TERMS 181

Definition 12.5 Let D = {Dη}η∈N and D′ = {D′η}η∈N be two ensembles. D and D′ are
computationally indistinguishable, which is written D ≈ D′ if, for any PPT A, the advantage:

ǫ(A, η) = |P[x← Dη, r ← U : A(x, 0η | r) = 1]− P[x← D′η, r ← U : A(x, 0η | r) = 1]|

is a negligible function of η.

Exercice 55
Show that the Dirac ensemble defined by P[x← δη : x = 0η] = 1 and the uniform ensemble
P[x← U({0, 1}η) : x = a] = 1

2η for every a ∈ {0, 1}η are distinguishable.

Exercice 56
Fix k ∈ N. Show that the two following ensembles are indistinguishable: the uniform distribu-

tion on {0, 1}η and the distribution Uk
η defined by:

P[x← Uk
η : x = a] =

{
0 if a = b0n−k for some b

1
2n−2k

Otherwise

12.4 The computational interpretation of terms

We let G, E ,D be a symmetric encryption scheme and assume that p is a polynomial time
pairing function on bitstrings: p is an injection from {0, 1}∗ × {0, 1}∗ intp {0, 1}∗, whose two
inverses p−11 and p−12 are also polynomially computable and such that, forall x, y ∈ {0, 1}∗,
p−11 (p(x, y)) = x and p−12 (p(x, y)) = y. We also assume that, if |x1| = |x2| and |y1| = |y2|, then
|p(x1, x2)| = |p(y1, y2)|.

We define here, for each security parameter η ∈ N the interpretation of terms as bitstrings.
First, each w ∈ W is interpreted as [[w]] ∈ {0, 1}∗. Typically, the constants w denote some
specific bitstrings and we could have [[0101]] = 0101.

Next, given η, we let τ be a mapping from N to {0, 1}η . Then [[·]]τη is the homomorphism
from T (F ∪N ) to {0, 1}∗ that extends τ :

• If w ∈ W, [[w]]η = ([[w]])η

• If n ∈ N , [[n]]τη = τ(n)

• If k, r ∈ N and u ∈ M0, then [[{u}rk]]
τ
η = E([[u]]τη , [[k]]

τ
η , [[r]]

τ
η)

• If u, v ∈ M0, [[〈u, v〉]]
τ
η = p([[u]]τη , [[v]]

τ
η).

• [[dec(u, v)]]τη = D([[u]]τη , [[v]]
τ
η)

• [[π1(u)]]
τ
η = p−11 ([[u]]τη)

• [[π2(u)]]
τ
η = p−12 ([[u]]τη)

If the names occurring in a ground term u are partitioned into N1 andN2 and τ1 is a mapping
from N1 to {0, 1}η and τ2 is a mapping from N2 to {0, 1}η , then [[u]]τ1η defines a distribution:
P[x← [[u]]τ1η : x = a] = P[τ2 : [[u]]

τ1∪τ2
η = a]. As a particular case, [[u]]η is an ensemble, in which

all names in u are sampled in {0, 1}η (according to a distribution that is not precised here, and
which may be assumed to be uniform, for simplicity).

Similarly, if u1, . . . , uk is a sequences of terms and τ is a partial interpretation of the names
occurring in u1, . . . , uk, [[u1, . . . , uk]]

τ
η is an ensemble: for each η, it defines a distribution on

k-uples of bitstrings.



182 CHAPTER 12. SOUNDNESS OF STATIC EQUIVALENCE

Exercice 57
Assume that the names occurring in s1, . . . , sn are disjoints from the names occurring in
t1, . . . , tm then show that [[s1, . . . , sn, t1, . . . , tm]]η = [[s1, . . . , sn]]η × [[t1, . . . , tm]]η .

Show, (using a uniform distribution of name interpretations) that it is not always true when
the assumption on the disjointness of the set of names is dropped.

We may now precise the interpretation of EL. We first observe that, according to the
assumptions on E , p and the name samples, |[[u]]τη | is independent of τ (that interprets all names
occurring in u) and only depends on η. We let then l(u, η) = |[[u]]τη |, which completes the
definition of EL.

12.5 Preliminary indistinguishability results relying on the prop-

erty of the encryption scheme

Lemma 12.1 Fix an interpretation τ of the names occurring in a term u. Assume that the
encryption scheme is IND-CPA. Let u ∈ M0 be such that k, r do not occur in u and are not in
the domain of τ . Then:

[[{u}rk]]
τ
η ≈ [[{0l(u,η)}rk]]

τ
η

Proof : Let A be a PPT machine and

ǫ(A, η) = |P[x← [[{u}rk]]
τ
η , R← U : A(x, 0η | R) = 1]−P[x← [[{0l(u,η)}rk]]

τ
η , R← U : A(x, 0η | R) = 1]|

Consider now the oracle PPT machine B (which may depend on τ) such that:

1. Computes [[u]]τη and stores this in y

2. Submits the pair (y, 0l(u,η)) to the oracle

3. Simulates A on the reply x of the oracle.

B runs in polynomial time,as each computation step runs in polynomial time. Furthermore,
|y| = l(u, η). Hence the machine B is an attacker on IND − CPA, whose advantage is exactly
Adv(B, η) = ǫ(A, η). Therefore ǫ(A, η) is negligible.

This is easily generalized to sequences of ciphertexts:

Lemma 12.2 Let u1, . . . , um ∈ M0. Fix an interpretation τ of the names occurring in u1, . . . , um.
Assume that the encryption scheme is IND-CPA. If the names k, r1, . . . , rm are distinct and do
not occur in u1, . . . , um, then

[[{u1}
r1
k , . . . , {um}

rm
k ]]τη ≈ [[{0l(u1,η)}r1k , . . . , {0l(um ,η)}rmk ]]τη

Exercice 58
Complete the proof of the above lemma, using the same ideas as in the proof of the lemma 12.1.

The condition on the occurrences of k, r in u is necessary for lemma 12.1, as shown by the
following

Exercice 59
Assume that there exists at least one IND-CPA symmetric encryption scheme. Construct
another IND-CPA encryption scheme such that [[{k}rk]]η 6≈ [[{0η}rk]]η.

We may, however, relax a little bit the assumptions:



12.6. PROOF OF SOUNDNESS OF STATIC EQUIVALENCE: A SPECIAL CASE 183

Exercice 60
Assume that the encryption scheme is IND-CPA and that u, v ∈ M0 are such that l(u, η) =
l(v, η) and, for any name n not occuring in u, v, [[〈u, n〉]]η ≈ [[〈u, k〉]]η and [[〈v, n〉]]η ≈ [[〈v, k〉]]η.
Prove then [[{u}rk]]η ≈ [[{v}rk]]η for any name r not occurring in u, v, k.

Give an example of such u, v that do contain occurrences of k.

12.6 Proof of soundness of static equivalence: a special case

As we saw above, we need some assumptions on the sequence of terms, ruling out situations
such as a key encrypting itself.

Given a sequence of terms s1, . . . , sn, we define the relation k >s1,...,sn k′ between names, as
the least transitive relation such that:

If k1 occurs in u and there is an index i and a subterm {u}rk2 of si, then k2 >s1,...,sn k1

A random seed is a name that is used as a third argument of an encryption symbol.

Definition 12.6 A valid frame (resp. valid term sequence) is a frame (resp. term sequence)
νn.{x1 7→ s1, . . . , xn 7→ sn} (resp. s1, . . . , sn), such that

1. s1, . . . , sn ∈ M0

2. n is the set of names occurring in s1, . . . , sn

3. ≥s1,...,sn is an ordering.

4. each random seed is used only once in s1, . . . , sn

Example 12.1 The following are not valid term sequences

1. {k}rk

2. {{k1}
r1
k2
}r2k3 , {{k2}

r3
k1
}r4k3

3. {{k1}
r1
k2
}r2k3 , {{k1}

r3
k3
}r4k2

4. {{k1}
r1
k2
}r2k2 , {{k2}

r3
k3
}r4k3

The main restriction imposed by the first condition is the use of names as keys: only atomic
keys are considered.

The second condition is not a restriction: we may always bind all names and disclose ex-
plicitly the names that are supposed to be available to the attacker.

The third condition is a real (strong) restriction. Some restriction that rules out key cycles is
necessary (with the current state of the art). The above condition rules out terms {{u}r1k }

r2
k in

the frames. We will see in the section 12.7, that the condition can be slightly relaxed, allowing
for such terms in the frames.

The last condition forbids several occurrences of the same ciphertext in the frames. This
condition will also be relaxed in the section 12.7.

Theorem 12.1 Let νn.{x1 7→ s1, . . . xn 7→ sn} and νn′.{x1 7→ t1, . . . , xn 7→ tn} be two valid
frames.

νn.{x1 7→ s1, . . . xn 7→ sn} ∼ νn′.{x1 7→ t1, . . . , xn 7→ tn} ⇒ [[s1, . . . , sn]]η ≈ [[t1, . . . , tn]]η



184 CHAPTER 12. SOUNDNESS OF STATIC EQUIVALENCE

In other words, if the two frames are statically equivalent, then they are computationally
indistinguishable.

In what follows, we drop the name binders and the variables, since all names are bound
and the variable symbols can be inferred from the context. Furthermore, if P is a predicate
symbol and u, v are valid recipes (terms that do not use any names in our case), we write
s1, . . . , sn |= P (u, v) insteand of (u{x1 7→ s1, . . . , xn 7→ sn}, v{x1 7→ s1, . . . , xn 7→ sn}) ∈ P I .

Proof : We use an induction on |s1| + · · · + |sn| + |t1| + · · · |tn| where |s| is the number of
function symbols and names appearing in s (we do not count the constants). In each case, we
leave to the reader the verification that the induction hypothesis is applied to valid sequences
indeed.

Base case: s1, . . . , sn and t1, . . . , tn are constants. Since there is no names in the frames, si
is a valid recipe: s1, . . . , sn |= EQ(xi, si) and therefore t1, . . . , tn |= EQ(xi, si). It follows
that, for every i, si = ti, hence the indistinguishability of the two sequences.

Induction case: We successively investigate cases. In each case, we assume that the previous
cases do not apply.

1. If one of the two sequences contains a pair.
w.l.o.g., assume s1 = 〈s11, s12〉. Then s1, . . . , sn |= M(π1(x1)), hence t1, . . . , tn |=
M(π1(x1)). This implies that there are terms t11, t12 ∈ M0 such that t1 = pairt11t12.

Then s11, s12, s2, . . . , sn ∼ t11, t12, t2, . . . , tn:

s11, s12, s2, . . . , sn |= P (u, v) iff s1, s2, . . . , sn |= P (u, v){x11 7→ π1(x1), x12 7→ π2(x1)}
iff t1, t2, . . . , tn |= P (u, v){x11 7→ π1(x1), x12 7→ π2(x1)}
iff t11, t12, t2, . . . , tn |= P (u, v)

By induction hypothesis, [[s11, s12, s2, . . . , sn]]η ≈ [[t11, t12, t2, . . . , tn]].

We use then the following exercise:

Exercice 61
Let f be a function symbol, whose computational interpretation is a PPT function
[[f ]]. Assume [[s1, . . . sp, sp+1 . . . , sn]]η ≈ [[t1, . . . , tp, tp+1, . . . , tn]]η and r /∈ fn(s1, . . . , sn, t1, . . . , tn).
Prove that [[f(s1, . . . , sp | r), sp+1, . . . , sn]]η ≈ [[f(t1, . . . , tp | r), tp+1, . . . , tn]]η (r is as-
sumed to be drawn according to a polynomial distribution).

With the pairing function for f and conclude that [[s1, . . . , sn]]η ≈ [[t1, . . . , tn]]η .

2. If si = sj(resp. ti = tj) for some i 6= j and si is not a constant. Then s1, . . . , sn |=
EQ(xi, xj), hence t1, . . . , tn |= EQ(xi, xj), which implies ti = tj. Then s1, . . . , si−1, si+1, . . . , sn ∼
t1, . . . , ti−1, ti+1, . . . , tn and, by induction hypothesis, [[s1, . . . , si−1, si+1, . . . , sn]]η ≈
[[t1, . . . , ti−1, ti+1, . . . , tn]]η , hence the result.

3. If some si = {ui}
ri
k (or some ti; this case is symmetric) where ui is not a constant

and k is maximal w.r.t. ≥s1,...,sn and k /∈ {s1, . . . , sn}. After possibly renumbering
the terms, let s1 = {u1}

r1
k , . . . sp = {up}

rp
k and sp+1, . . . , sn are not encryptions with

k.

k does not occur in u1, . . . , up, sp+1, . . . , sn since every si is either a name (different
from k), a constant, or a ciphertext (thanks to step 1) and, in the latter case, k does
not occur in si by maximality of k.

Let σ = {x1 7→ s1, . . . , xn 7→ sn} and σ′ = {x1 7→ s′1, . . . , xn 7→ s′n} and let ρ be the
replacement of s1, . . . , sp with {0l(u1,η)}r1k , . . . , {0l(up,η)}

rp
k respectively. We observe

first that, for any recipe u, ρ(uσ↓) = uσ′↓ by consistency of use of the random seeds.



12.6. PROOF OF SOUNDNESS OF STATIC EQUIVALENCE: A SPECIAL CASE 185

If s1, . . . , sn |= P (u, v), (uσ↓, vσ↓) ∈ P I . For P ∈ {M,EQ,EK,EL}, (u1, u2) ∈ P I

iff (ρ(u1), ρ(u2)) ∈ P I (for instance, when P = EL, this is thanks to the presevation
of plaintexts lengths by ρ). Hence

s1. . . . , sn |= P (u, v) iff (ρ(uσ↓), ρ(vσ↓)) ∈ P I

iff (uσ′↓, vσ′↓) ∈ P I

iff s′1, . . . , s
′
n |= P (u, v)

s1, . . . , sn ∼ t1, . . . , tn therefore implies s′1, . . . , s
′
n ∼ t1, . . . , tn. Since, by assumption,

at least one si is such that si{ui}
ri
k where ui is not a constant and s′i = {0

l(ui,η)}rik
has a sctritly smaller size, we may apply the induction hypothesis:

[[s′1, . . . , s
′
n]]η ≈ [[t1, . . . , tn]]η

Then, thanks to our assumptions (validity of the sequences) and lemma 12.2, [[s1, . . . , sn]]η ≈
[[s′1, . . . , s

′
n]]η .

We conclude [[s1, . . . , sn]]η ≈ [[t1, . . . , tn]].

4. If there are two indices i, j such that si = {ui}
ri
sj . Assume w.l.o.g i = 1. s1, . . . , sn |=

M(dec(x1, xj)) implies t1, . . . , tn |= M(dec(x1, xj)), hence t1 = {v1}
r′
1

tj
for some v1.

We claim that u1, s2, . . . , sn ∼ v1.t2, . . . , tn:

u1, s2 . . . sn |= P (w1, w2) iff s1, s2 . . . , sn |= P (w1{x1 7→ dec(x1, xj)}, w2{x1 7→ dec(x1, xj)})
iff t1, . . . , tn |= P (w1{x1 7→ dec(x1, xj)}, w2{x1 7→ dec(x1, xj)})
iff v1, t2, . . . , tn |= P (w1, w2)

By induction hypothesis, [[u1, s2, . . . , sn]]η ≈ [[v1, t2, . . . , tn]]η . By exercise 61 and since
we assumed that each random seed is used only once, we conclude [[s1, . . . , sn]]η ≈
[[t1, . . . , tn]]η. (We sill see in the next section how to modify this part, to avoid the
assumption on the unique use of random seeds).

5. Now we have only to consider sequences s1, . . . , sn, t1, . . . , tn that consist of encryp-
tions of constants, names that are not used as encryption keys, and constants. If
one of the sequence contains at least one ciphertext, assume w.l.o.g. that this is
s1: s1 = {c1}

r1
k . Let s1, . . . sp be all ciphertexts in the sequence s1, . . . , sn, whose

encryption key is k: vsi = {ci}
ri
k for 1 ≤ i ≤ p.

For every 1 ≤ i, j ≤ p, s1, . . . , sn |= EK(xi, xj), hence t1, . . . , tp |= EK(xi, xj): for

i = 1, ..., p, ti = {c
′
i}

r′i
k′ for some constants c′i. Furthermore, thanks to EL, for every

i = 1, ..., p, l(ci, η) = l(c′i, η). It follows that [[s1, . . . , sp]]η ≈ [[t1, . . . , tp]]η by lemma
12.2.

The key k does not occur in the sequence sp+1, ldots, sn and, by symmetry, the key
k′ does not occur in the sequence tp+1, . . . , tn. Then, by consistency of use of random
seeds,

[[s1, . . . , sn]]η = [[s1, . . . , sp]]η × [[sp+1, . . . , sn]]η

and

[[t1, . . . , tp]]η × [[tp+1, . . . , tn]]η = [[t1, . . . , tn]]η

By induction hypothesis, and since sp+1, . . . , sn ∼ tp+1, . . . , tn, [[sp+1, . . . , sn]]η ≈
[[tp+1, . . . , tn]]η. It follows that

[[s1, . . . , sn]]η = [[s1, . . . , sp]]η×[[sp+1, . . . , sn]]η ≈ [[t1, . . . , tp]]η×[[tp+1, . . . , tn]]η = [[t1, . . . , tn]]η



186 CHAPTER 12. SOUNDNESS OF STATIC EQUIVALENCE

6. We are left to a case where s1, . . . , sn, (and t1, . . . tn) are sequences of distinct names
and constants. If there is at least one name in the sequence, say s1, then t1 must
also be a name (otherwise EQ(x1, t1) would be satisfied in the second sequence and
not in the first one). By induction hypothesis, [[s2, . . . , sn]]η ≈ [[t2, . . . , tn]]η and then

[[s1, . . . , sn]]η = [[s1]]η × [[s2, . . . , sn]]η ≈ [[t1]]η × [[t2, . . . , tn]]η = [[t1, . . . , tn]]η

Exercice 62
Give an example showing that the above proof does not work when a random seed may occur
twice in a valid frame.

12.7 The proof in the general case

In this section, we prove exactly the same result as in the previous section, however relaxing
two assumptions.

First, we relax the condition on keys occurences, in order to allow for instance terms {{u}rk}
r′

k

in the sequence. We define the relation ⊑ on terms (read s ⊑ t as “s occurs as plaintext in t”)
as the least symmetric and transitive relation such that:

• If u ⊑ u1 or u ⊑ u2, then u ⊑ 〈u1, u2〉.

• If u ⊑ v then u ⊑ {v}rk.

Now,≫s1....,sn is redefined as the (more general) least transitive relation such that, k2 ≫s1,...,sn

l1 whenever there is a subterm {u}rk2 of some si such that k1 ⊑ u.

Definition 12.7 A sequence of terms s1, . . . , sn in M0 has no key cycle if ≫s1,...,sn
is an

ordering. Dually, if there is a name k such that k ≫s1,...,sn k, then s1, . . . , sn contains a key-
cycle.

Key cycles are defined now according to this new ordering.

Example 12.2 1. {k}rk contains a key cycle

2. {{k1}
r1
k2
}r2k3 , {{k2}

r3
k1
}r4k3 contains a key-cycle

3. {{k1}
r1
k2
}r2k3 , {{k1}

r3
k3
}r4k2 does not contains a key-cycle

4. {{k1}
r1
k2
}r2k2 , {{k2}

r3
k3
}r4k3 does not contains a key-cycle

Second, we relax the conditions on random seeds, allowing several copies of the same cipher-
text:

Definition 12.8 A sequence s1, . . . , sn of terms uses the random seeds in a consistent way if

1. Any random seed occurring in s1, . . . , sn, only occurs in s1, . . . , sn as the third argument
of an encryption

2. If {u1}rk1 and {u2}rk2 are two subterms of s1, . . . , sn, then u1 = u2 and k1 = k2.

Definition 12.9 A sequence of terms (resp. a frame) s1, . . . , sn is weakly valid if

• it has no key cycle

• the sandom seeds are used in a consistent way



12.7. THE PROOF IN THE GENERAL CASE 187

Example 12.3 {{u}rk}
r′

k , {{u}
r
k}

r′′

k′ , {k
′}r

′′′

k is a weakly valid sequence, with k ≫ k′.

Definition 12.10 A key k is deducible from a frame φ, if there is a recipe u such that uσφ↓ = k.

Now we can generalize theorem 12.1 to:

Theorem 12.2 Let νn.{x1 7→ s1, . . . xn 7→ sn} and νn′.{x1 7→ t1, . . . , xn 7→ tn} be two weakly
valid frames.

νn.{x1 7→ s1, . . . xn 7→ sn} ∼ νn′.{x1 7→ t1, . . . , xn 7→ tn} ⇒ [[s1, . . . , sn]]η ≈ [[t1, . . . , tn]]η

The proof is basically the same as the proof of theorem 12.1. The only difference lies in
points 3 and 4: at step 3, we need to replace ciphertexts {u}rk with {0l(u,η)}rk at every position.
And, at step 4, we have to show that maximal keys for one sequence correspond to maximal
keys for the other sequence.

The following two lemmas prepare these steps.
Again, we confuse the frames and the term sequences, as all names are assumed to be bound.

Lemma 12.3 Let v1, . . . , vm be a valid sequence of terms, let u ∈ M0, k, r be names such that
k 6⊑ u, v1, . . . , vm, and r occurs in u, v1, . . . , vm only as a random seed in subterms {u}rk. Then

[[v1, . . . , vm]]η ≈ [[v1[{u}
r
k 7→ {0

l(u,η)}rk], . . . , vm[{u}rk 7→ {0
l(u,η)}rk]]]η

and

(νn)v1, . . . , vm ∼ (νn)v1[{u}
r
k 7→ {0

l(u,η)}rk], . . . , vm[{u}rk 7→ {0
l(u,η)}rk]

Proof : We prove first the first claim of the lemma.

Let τ be a partial assigment of all names, except k and the random seeds s that are used in
ciphertexts {w}sk occurring in v1, . . . vm. We prove actually

[[v1, . . . , vm]]τη ≈ [[v1[{u}
r
k 7→ {0

l(u,η)}rk], . . . , vm[{u}rk 7→ {0
l(u,η)}rk]]]

τ
η

Assume that A can distinguish the two above sequences with an advantage ǫ:

ǫ = |P[k,R, r1, . . . , rn : A([[v1, . . . , vm]]τη |R) = 1]

−P[k,R, r1, . . . , rn : A([[v1[{u}
r
k 7→ {0

l(u,η)}rk], . . . , vm[{u}rk 7→ {0
l(u,η)}rk]]]

τ
η |R) = 1]|

We construct as follows an adversary B on IND-CPA: let w1, . . . , wn be the set of terms w
such that w ⊑ v1, . . . , vm. w1, . . . , wn are ordered in such a way that i < j whenever wi is a
subterm of wj.

1. B stores in its memory a table associating the terms wi with their computational inter-
pretations: For i = 1 to n, B

(a) if wi is a constant or a name (which is then in he domain of τ), B stores in its table
[[wi]]

τ
η

(b) if wi = 〈wj , wk〉, then B retrieves the values of [[wj ]]
τ
η , [[wk]]

τ
η , that are stored in its

table, computes teh pair of them and stores the result in the table

(c) if wi = {wj}
r′

k′ where k′ 6= k, then B retreives [[wj ]]
τ
η and computes [[wi]]

τ
η and stores

the result

(d) if wi = {wj}
r′

k , with r 6= r′, then B retrieves [[wj ]]
τ
η from its table, queries the encryp-

tion oracle with ([[wj ]]
τ
η , [[wj ]]

τ
η) and stores the result.



188 CHAPTER 12. SOUNDNESS OF STATIC EQUIVALENCE

(e) if wi = {u}
r
k, then B retrieves [[u]]τη from its table and queries the encryption oracle

with ([[u]]τη , 0
l(u,η)) and strores the result

At the end of this (PTIME) procedure, B has stored in its table all the computational
interpretations of the subterms of v1, . . . , vm, if it was interacting with the left-oracle. Oth-
erwise, the stores contains the computational interpretation of the subterms of v1[{u}

r
k 7→

{0l(u,η)}rk], . . . , vm[{u}rk 7→ {0
l(u,η)}rk], u.

2. B simulates A with the inputs corresponding to the values stored at v1, . . . , vm locations.
It produces the same output as A.

The advantage of B is ǫ: if A distinguishes the two sequences of terms with non negligible
probability, then B breaks IND-CPA.

Now, remains to prove the second claim.
We let ρ be the replacement of {u}rk with {0l(u,η)}rk and, for every i, v′i = ρ(vi). The

consistency of the use of random seeds implies that ρ is a bijection, whose inverse is ρ′. We
claim that v1, . . . , vn ∼ v′1, . . . , v

′
n. To see this, let σ = {x1 7→ v1, . . . , xn 7→ vn} and σ′ = {x1 7→

v′1, . . . , xn 7→ v′n}. Note first that there is no recipe w such that wσ ↓= k, because k 6⊑ vi for
every i (and since, for every rewrite rule l→ r, rσ = k implies that r ⊑ l).

By induction on m, we prove that, for any recipe t, tσ
m
−→ s iff tσ′

m
−→ ρ(s). If m = 0

this is because none of the random seeds of v1, . . . , vn is occurring in t, hence ρ(tσ) = tσ′.
Otherwise, there is a position p in tσ, a rewrite rule l → r and a subsitution θ such that

tσ|p = lθ and tσ[rθ]p
m−1
−−−→ s. If l = πi(〈x1, x2〉) and r = xi, ρ(lθ) = πi(〈ρ(x1σ), ρ(x2σ)〉). It

follows that tσ′|p = lθ′ and ρ(tσ[rθ]p) = tσ′[rθ′]p and we may apply the induction hypothesis.
If l = dec({x}r1k1 , k1), then k1 6= k and ρ(lθ) = dec({ρ(xθ)}r1k1 , k1). Again ρ(tσ[xθ]p) = tσ′[xθ′]p
and tσ′ −→ ρ(uσ[rθ]p): we may apply the induction hypothesis.

Now, v1, . . . , vn |= P (t1, t2) iff (t1σ↓, t2σ↓) ∈ P I . As already observed, for P ∈ {M,EQ,EK,EL},
P I is invariant by ρ (and ρ′): (t1σ↓, t2σ↓) ∈ P I iff (ρ(t1σ↓), ρ(t2σ↓)) ∈ P I . Thanks to
what we proved above, ρ(tiσ↓) = tiσ

′↓, hence v1, . . . , vn |= P (t1, t2) iff (t1σ
′↓, t2σ

′↓) ∈ P I

iff v′1, . . . , v
′
n |= P (t1, t2). This concludes the proof of the second claim.

Lemma 12.4 Assume that (s1, . . . , sn), (t1, . . . , tn) are weakly valid term sequences such that

• (s1, . . . , sn) ∼ (t1, . . . , tn)

• for every t = {u}rk ∈ M0, if u /∈ W and t occurs in some si (resp. some ti), then there is
a recipe v such that v{x1 7→ s1, . . . , xn 7→ sn}↓ = k (resp. v{x1 7→ t1, . . . , xn 7→ tn}↓ = k).

Then, for every j1 6= j2,

sj1 /∈ W and sj1 ⊑ sj2 implies tj1 /∈ W and tj1 ⊑ tj2.

Proof : We prove the lemma by induction on |sj2 |.
In the base case, |sj2 | = 1, then sj1 = sj2 . Using EQ, it follows that tj1 = tj2 .

Now, for the induction step. If sj2 =
〈
s′j2 , s

′′
j2

〉
, using M , tj2 must also be a pair tj2 =

〈
t′j2 , t

′′
j2

〉
and

(s1, . . . , sj2−1, s
′
j2 , s

′′
j2 , sj2+1, . . . , sn) ∼ (t1, . . . , tj2−1, t

′
j2 , t
′′
j2 , tj2+1, . . . , tn)

Moreover, either sj1 ⊑ s′j2 or else sj1 ⊑ s′′j2 . By induction hypothesis, tj1 is a name and tj1 ⊑ t′j2

or tj1 ⊑ t′′j2 . In any case, tj1 ⊑
〈
t′j2 , t

′′
j2

〉
.



12.7. THE PROOF IN THE GENERAL CASE 189

If sj2 = {s′j2}
rj2
kj2

, then sj1 ⊑ s′j2 and sj1 6= kj2 and sj1 6= rj2 (because the sequences

are weakly valid). In particular, s′j2 /∈ W, hence, by hypothesis, there is a recipe u such
that u{x1 7→ s1, . . . , xn 7→ sn}↓ = kj2 . Using M again, u{x1 7→ t1, . . . , xn 7→ tn}↓ = k′j2

is a key and, considering the recipe dec(xj2 , u), tj2 must be {t′j2}
r′j2
k′j2

for some t′j2 . Now,

s1, . . . , sj2−1, s
′
j2
, sj2+1, . . . , sn) ∼ (t1, . . . , tj2−1, t

′
j2
, tj2+1, . . . , tn) and, by induction hypothesis,

sj1 ⊑ s′j2 implies tj1 ⊑ t′j2 . It follows that tj1 ⊑ tj2 .

Proof of the theorem 12.2 : Again, we use an induction on |s1|+ · · ·+ |sn|+ |t1|+ · · ·+ |tn|
(where constants are not counted in |si|, |ti|). The base case and cases 1,2 are exactly the same
as in the proof of theorem 12.1.

Let us assume now that the two sequences only consists of ciphertexts, constants and names.

• If in one of the two sequences, there is a subterm {u}rk such that u is not a constant and
k is not deducible.

Assume for instance that such a term occurs as a subterm in the sequence s1, . . . , sn.
Consider a key k, which is maximal w.r.t. ≫s1,...,sn

among the keys that are not deducible
from s1, . . . , sn and that encrypt at least one non-constant term.

We claim that k 6⊑ s1, . . . , sn. If it was the case, say k ⊑ s1, we prove, by induction on s1,
that either k is deducible from the sequence, or else there is a non-deducible key k′ such
that k′ ≫ k. In the base case, s1 = k is deducible. If s1 = 〈s11, s12〉, then either k ⊑ s11
or else k ⊑ s12 and, by induction hypothesis, k is deducible from s11, s12, s2, . . . , sn or
else there is a non deducible key k′ such that k′ ≫s11,s12,s2,...,sn k. In the first case, k is
deducible from s1, . . . , sn (replacing x11 with π1(x1) and x12 with π2(x1) in the recipe)
and, in the second case, k′ ≫s1,...,sn k. Now, if s1 = {s11}

r
k′ , then, by weak validity of the

sequence, k 6= k′. Then k′ ≫s1,...,sn k. Either k′ is not deducible, and we are done, or else,
there is a recipe u such that u{x1 7→ s1, . . . , xn 7→ sn}↓ = k′. Then dec(x1, u) is a recipe
yielding s11. Since, in addition, k ⊑ s11, by induction hypothesis, either k is deducible
from s11, s2, . . . , sn, hence from s1, . . . , sn (replacing x1 with dec(x1, u) in the recipe) or
there is a key k′, that is not deducible from s11, . . . , sn, such that k′ ≫s11,s2,...,sn k. In the
latter case, k′ is neither deducible from s1, . . . , sn and k′ ≫s1,...,sn k, which concludes the
proof of our claim.

Then, we may use the lemma 12.3: let, for every i, s′i = si{{u}
r
k 7→ {0

l(u,η)}rk} where {u}
r
k

is any subterm of the sequence s1, . . . , sn such that u is not a constant. (There is such a
term by assumption). By lemma 12.3,

[[s1, . . . , sn]]η ≈ [[s′1, . . . , s
′
n]]η

and s1, . . . , sn ∼ s′1, . . . , s
′
n. It follows that s′1, . . . , s

′
n ∼ t1, . . . , tn, hence, by induction

hypothesis, [[s′1, . . . , s
′
n]]η ≈ [[t1, . . . , tn]]η and, since [[s′1, . . . , s

′
n]]η ≈ [[s1, . . . , sn]]η , we get the

desired result: [[s1, . . . , sn]]η ≈ [[t1, . . . , tn]]η.

• We assume now that all terms of both sequences are either names, constants or ciphertexts
and that every ciphertext {u}rk occurring in the sequences is such that either k is deducible
or else u is a constant. Furthermore, none of the sequences contain two identical terms.

If one of the sequences contains a ciphertext {u}rk such that k is deducible: si = {ui}
ri
k

and there is a recipe v such that vσ↓ = k where σ = {x1 7→ s1, . . . , xn 7→ sn}.

After a possible renumbering, let s1 = {u1}
r1
k be a term in the sequence, whose encryption

key k is deducible and which is maximal w.r.t. ⊑. This implies that s1 has no other
occurrence in the sequence (because the plaintext of encryptions with non-deducible keys
are constant).



190 CHAPTER 12. SOUNDNESS OF STATIC EQUIVALENCE

Since s1, . . . , sn |= M(dec(x1, v)), we must have t1, . . . , tn |= M(dec(x1, v)): t1 = {v1}
r′
1

k′

and k′ is a deducible key (using the recipe v). By lemma 12.4, t1 is also maximal w.r.t.
⊑, and, for the same reason as above, has no other occurrence in the sequence.

As before, u1, s2, . . . , sn ∼ v1, t2, . . . , tn. By induction hypothesis, we therefore have
[[u1, s2, . . . , sn]]η ≈ [[v1, t2, . . . , tn]]η. Then, by maximality w.r.t. ⊑ of s1, t1 and by the con-
sistency of use of random numbers, r has no other occurrence in the sequence s1, . . . , sn
and r′ has no other occurrence in the sequence t1, . . . , tn. From [[u1, s2, s2, s3, . . . , sn]]η ≈
[[v1, t2, t2, t3, . . . , tn]]η and exercice 61, it follows [[s1, . . . , sn]]η ≈ [[t1, . . . , tn]]η .

Now, we can proceed with the last cases of the proof, as in the proof of theorem 12.1 and
conclude.

Exercice 63
We say that frame (νn) s1, . . . , sn is transparent if:

• for every ciphertext {u}rk that occurs in s1, . . . , sn, either u is constant or else k is de-
ducible.

• The random seeds are used in a consistent way

Given a transparent frame φ = (νn).s1, . . . , sn, we define the flatened frame F (φ) by induc-
tion as follows:

• If there is an index i such that si = 〈si1, si2〉, then F (φ) = F ((νn).s1, . . . , si−1, si1, si2, si+1, . . . , sn).

• If there is are indices i, j such that si = {si1}
ri
sj , then F (φ) = F ((νn).s1, . . . , si−1, si1, si+1, . . . , sn)

• Otherwise, F (φ) = φ.

1. Show that, if φ is a transparent frame, then F (φ) contains only names, constants and
encryptions of constants with non-deducible keys.

2. Show that, if φ, φ′ are two transparent frames (that may contain key-cycles), then F (φ) ∼
F (φ′) implies [[F (φ)]]η ≈ [[F (φ′)]]η

3. Given two transparent frames φ, φ′, show that φ ∼ φ′ implies F (φ) ∼ F (φ′).

4. Given two transparent frames φ, φ′ such that φ ∼ φ′, show that [[φ]]η ≈ [[φ′]]η iff [[F (φ)]]η ≈
[[F (φ′)]]η.

5. Prove an extension of the theorem 12.2, in which the frames may contain key-cycles on
deducible keys.

Exercice 64
If we allow arbitrary ground terms (not containing decryption or pairing symbols) as keys, show
that the soundness of static equivalence does not hold.

More precisely, construct (from any IND-CPA encryption scheme) another IND-CPA en-
cryption scheme, for which, for two well-chosen terms t1, t2, {u}

r
t1 ∼ {u}

r
t2 , none of the names

occurring in t1, t2 occurs in u, and [[{u}rt1 ]]η 6≈ [[{u}rt2 ]]η .

Exercice 65
Assume here that the encryption scheme is not only IND-CPA, but also which-key concealing,
which is defined as follows: for any PPT machine A that has access to two oracles, and security
parameter η, let

ǫ1(A, η) =
|P
[
k, k′ ← K(η), R ← U : AO

1

k
,O1

k′ (0η | R) = 1
]

−P
[
k ← K(η), R ← U : AO

2

kO
2

k(0η | R) = 1
]
|



12.8. COMPLETENESS 191

Where O1
k(x, y) = E(x, k, r) and O

2
k(x, y) = E(y, k, r) if |x| = |y| (and 0 otherwise).

The encryption scheme is which-key concealing if, for every PPT machine A, ǫ1(A, η) is
negligible.

We consider a new definition of static equivalence ∼1, in which we do not have the predicate
EK but, instead, a unary predicate Cipher, which is true exactly on terms that are inM0 and
whose top symbol is an encryption.

1. Show that νk, k′k′′, r, r′. {k′′}rk, {k
′′}r

′

k′ ∼1 νk, k
′, k′′, r, r′. {k′′}rk, {k

′′}r
′

k

2. Let u1, . . . , um ∈ M0 be such that all names occurring in u1, . . . , um are in the domain
of τ and k, k1, . . . , km, n1, . . . , nm /∈ Dom(τ). Assume the encryption scheme is which-key
concealing. Prove

[[{u1}
n1

k1
, . . . , {um}

nm

km
]]τη ≈ [[{0l(u1,η)}n1

k , . . . , {0l(um,η)}nm

k ]]τη

3. Assume that (s1, . . . , sn) and (t1, . . . , tn) are two valid sequences of terms and that the
encryption scheme is which-key concealing, then prove

(νn)s1, . . . , sn ∼1 (νm)t1, . . . , tn ⇒ [[s1, . . . , sn]]η ≈ [[t1, . . . , tn]]η

12.8 Completeness

The completeness problem is the converse of theorem 12.2: given two sequences of terms that are
computationally indistinguishable, are they statically equivalent ? In other words, completeness
ensures that we did not give too much power to the symbolic attacker.

The main issue is to be sure that the distinguishing capabilities of the symbolic attacker,
the predicates, can be implemented. That is what we consider first.

12.8.1 Predicate implementation

We assume a set of function symbols, all of which have a computational interpretation as a PPT
algorithm. Then, ifM is the set of ground terms constructed using this set of function symbols
and a set of names, for every mapping τ from names to bitstrings, [[ ]]τη is the unique extension
of τ as a homomorphism from M to {0, 1}∗. As before, we consider name distributions that
are parametrized by a security parameter η ∈ N and, when τ is a partial interpretation only,
[[ ]]τη is the corresponding distribution.

Definition 12.11 A predicate P ∈ P of arity k is implementable if there is a PPT algorithm
[[P ]] such that:

∀s1, . . . , sk ∈ M,∃Q ∈ POL1,∃N ∈ N,∀η > N.

P
[
(x1, . . . , xk)← [[s1, . . . , sk]]η : [[P ]]A(x1, . . . , xk) = P I(s1, . . . , sk)

]
>

1

2
+

1

Q(η)

We will see later examples of predicate symbols that are (not) implementable.

Definition 12.12 Given a convergent rewrite system S on M, and an interpretation of the
predicate symbols, a S,PI -computational structure is a computational interpretation of the
function symbols and the predicate symbols such that

∀s, t ∈ M,∀η ∈ N,∀τ. (s =S t ⇒ [[s]]τη = [[t]]τη)

and, for every P ∈ P, P is implementable.

Note here that we require not only indistinguishability, but true equality: τ is universally
quantified over the assignments of appropriate lengths.



192 CHAPTER 12. SOUNDNESS OF STATIC EQUIVALENCE

12.8.2 Completeness

Theorem 12.3 (completeness) For any computational structure,

[[s1, . . . , sn]]η ≈ [[t1, . . . , tn]]η ⇒ (νn) s1, . . . , sn ∼ (νm) t1, . . . , tn.

Proof : By definition, if s1, . . . , sn 6∼ t1, . . . , tn, then there are recipes u1, . . . , uk and a predicate
P ∈ P such that P I(u1σ↓, . . . , ukσ↓) 6⇔ P I(u1σ

′↓, . . . , ukσ
′↓). where σ = {x1 7→ s1, . . . , xn 7→

sn} and σ′ = {x1 7→ t1; . . . , xn 7→ tn}. For instance, assume w.l.o.g. that P I(u1σ↓, . . . , ukσ↓) =
1 and P I(u1σ

′↓, . . . , ukσ
′↓) = 0.

Moreover, u1, . . . , uk do not contain any name, by a simple induction on the length of the
rewrite sequence, there is a deterministic polynomial time Turing machine B, which, on input
[[v1, . . . , vn]]

τ
η , computes [[P (u1θ↓, . . . , ukθ↓)]]

τ
η , where θ = {x1 7→ v1, . . . , xn 7→ vn}. By definition,

for every η ∈ N, for every assignment τ of keys and random numbers occcurring in v1, . . . , vn,

B([[v1, . . . vn]]
τ
η) = [[P ]]([[u1θ↓]]

τ
η , . . . [[ukθ↓]]

τ
η)

So,
P [(x1, . . . , xn)← [[v1, . . . , vn]]η : B(x1, . . . , xn) = 1] =

P [(y1, . . . , yk)← [[u1θ↓, . . . , ukθ↓]]η : [[P ]](y1, . . . , yk) = 1]

On the other hand, according to the definition, there are Q1 and N1 such that, for all η > N1,

P [(y1, . . . , yk)← [[u1σ↓, . . . , ukσ↓]]η : [[P ]](y1, . . . , yk) = 1] >
1

2
+

1

Q1(η)

and there are Q2 and N2 such that, for all η > N2,

P
[
(y1, . . . , yk)← [[u1σ

′↓, . . . , ukσ
′↓]]η : [[P ]](y1, . . . , yk) = 0

]
>

1

2
+

1

Q2(η)

Altogether, if we let

ǫ(η) =
P [(x1, . . . , xn)← [[s1, . . . , sn]]η : B(x1, . . . , xn) = 1]−

P [(x1, . . . , xn)← [[t1, . . . , tn]]η : B(x1, . . . , xn) = 1]
,

For η > max(N1, N2),

ǫ(η) > (
1

2
+

1

Q1(η)
)− (

1

2
−

1

Q2(η)
) =

1

Q1(η)
+

1

Q2(η)

It follows that ([[s1, . . . , sn]]η)η∈N 6≈ ([[t1, . . . , tn]]η)η∈N.

12.8.3 Examples of computational structures

M , the predicate defining “valid messages” can be implemented if there is an algorithm, which
can recognize when a message is a pair (which we always assume), an algorithm which can
recognize when a message is a key, and also an algorithm, which decides when the decryption
algorithm is used with a valid input.

More precisely, we assume a particular bitstring ⊥ (an error message), which is returned
when πi is applied on a bitstring, which is not a pair, or when there is an attempt to encrypt
a message, which is not a key or when trying to decrypt something, which is not a ciphertext.
Following a strict interpretation, we also assume that any function applied to the error message⊥
returns ⊥. This corresponds actually to a typing predicate, which we assume to be implemented
deterministically, for instance using tags (it would also work with a probabilistic implementation
of such predicates). Finally, we assume confusion freeness as defined below (a definition taken
from [?], who also show that such a condition is necessary for completeness, and is not ensured
by IND-CPA):



12.8. COMPLETENESS 193

Definition 12.13 An encryption scheme is confusion free if, for every bitstring x,

P [k1, k2 ← K(η), r ← U : D(E(x, k1 | r), k2) 6=⊥] = ν(η)

is negligible.

In other words: it is very likely to get an error message when trying to decrypt with a wrong
key.

Proposition 12.1 If the encryption scheme is confusion-free, then the predicates M,EQ are
implementable.

Proof : Let us start with M . Let [[M ]](x) = 1 iff x 6=⊥.
Let s ∈ M. We have to compute

ǫ(s, η)
def
= P

[
x← [[s]]η : M I(s) 6= [[M ]](x)

]

If s ∈ M0, then M I(s) = 1 and [[M ]](x) = 1 and therefore ǫ(s, η) = 0. So, we only have to
consider the case M I(s) = 0. We proceed by induction on s. If s is a constant, then the only
possibility for not being accepted by M I is s =⊥, in which case [[M ]](x) = 0.

Otherwise, if s is a pair or an encryption with a valid key, then, since M I has a strict
interpretation, there must be a direct subterm of s which does not belong toM0. Then, we use
the induction hypothesis and the strictness of [[M ]]: if s1, s2 are the direct subterms of s,

ǫ(s, η) = P [(x1, x2)← [[s1, s2]]η : [[M ]](x1) = 1 ∧ [[M ]](x2) = 1]
≤ min(P [(x1, x2)← [[s1, s2]]η : [[M ]](x1) = 1],P [(x1, x2)← [[s1, s2]]η : [[M ]](x2) = 1])
= min(P [x1 ← [[s1]]η : [[M ]](x1) = 1],P [x2 ← [[s2]]η : [[M ]](x2) = 1])
≤ min(ǫ(s1, η), ǫ(s2, η))

If s = {u}rv and v is not a valid key or if s is a projection of a term which is not a pair, or if
s is a decryptoin of a term which is not a ciphertext, then [[s]]η is always ⊥, by definition, hence
[[M ]](x) = 0 (for all x ∈ [[s]]η).

Finally, if s = D({t}rk1 , k2), if {t}
r
k1

is not in M I , we are back to the previous computation.

Assume now that {t}rk1 ∈ M I and therefore that k2 6= k1. Then, by definition of confusion
freeness, ǫ(s, η) = ν(η)

Next, [[EQ]](x, y) is defined as [[M ]](x) ∧ [[M ]](y) ∧ x = y, which is implementable, as MA is
implementable.

Now there are several symmetric encryption schemes that are proved to ensure confusion-
freeness. Typically, the encryption schemes that satisfy, additionally to IND-CPA, some in-
tegrity properties. A discussion and constructions on such authenticated encryption schemes
can be found in [?].

The converse of theorem 12.2 follows then from the theorem 12.3 and the implementability
of EK,EL, which is satisfied by some (but not all) IND-CPA encryption schemes.

Exercice 66
Given an IND-CPA encryption scheme, construct another IND-CPA encryption scheme for
which the predicates EK and EL are implementable.

Exercice 67
We extend here the definition of the computational interpretation of terms to terms that may
contain decryption symbols. [[dec(s, t)]]τη is defined by:

1. draw all names occurring in s, t and not in Dom(τ),



194 CHAPTER 12. SOUNDNESS OF STATIC EQUIVALENCE

2. The previous step yielda, together with τ , an assignment τ ′; Apply the function D to [[s]]τ
′

η

and [[t]]τ
′

η . This function returns a special bitstring ⊥ in case it is not defined on the input.

An encryption scheme is decryption-confusing if:

1. for every name k, [[{0η}rk]]η ≈ [[k]]η

2. for every x ∈ M0 and every two distinct names k1, k2 not occurring in x,

[[{{x}r1k1}
r2
k2
, k2]]η ≈ [[{x}r1k1 , k2]]η

1. Show that, if the encryption scheme is decryption confusing, then

(a) for every distinct names k1, k2,

[[dec(k1, k2), k2]]η ≈ [[k1, k2]]η ≈ [[{k1}
r
k2 , k2]]

(b) For any term x not containing projection symbols, and for any names k1, k2 such
that k1 6= k2, and k1, k2 do not occur in x,

[[dec({x}rk1 , k2), k2]]η ≈ [[{x}rk1 , k2]]η ≈ [[{{x}r1k1}
r2
k2
, k2]]η

2. In what follows, we assume the encryption scheme IND-CPA and which-key concealing,
as defined in exercise 65.

The definition of static equivalence is modified, using a different set of predicate symbols.
We use three predicates El and Eq, m which are interpreted in a slightly different way
as before since, now, decryption can not fail. m is interpreted as the set of terms, which
do not contain projection symbols. El is interpreted as the set of pairs of terms whose
lengths are identical, where the length L is defined by:

L(k) = S For k ∈ N L(D(x, k)) = L(x)
L(c) = S for any constant c L({x}rk) = L(x)

L(〈x, y〉) = L(x) + L(y)

S is an integer constant, used only for the purpose of this definition. Also, we assume
L(c) = S for every constant, for simplicity, which means thatW is now restricted to words
whose length is a multiple of S. We can think of S as the length of a block in a block
cipher encryption scheme.

Eq is interpreted as equality on the terms that are in m. The rewrite system is unchanged.
This defines a staticic equivalence ∼c.

Show that the following sequences are (statically as well as computationally) distinguish-
able:

(a) ({〈0, k0〉}
r
k1
, k2, k1) and ({〈1, k0〉}

r′

k′
1

, k′1, k
′
2)

(b) ({{〈0, k0〉}
r1
k2
}r2k1 , k2, k1) and ({{〈0, k0〉}

r′
1

k′
2

}
r′
2

k′
1

, k′1, k
′
2)

(c) ({k0}
r1
k1
, k1, {〈k2, k3〉}

r2
k1
, k2) and ({k′0}

r′
1

k′
1

, k′2, {〈k
′
2, k
′
3〉}

r′
2

k′
1

, k′1)

Where 0 and 1 are sequences of 0’s and 1’s respectively, of the same appropriate length.

3. Show that the following are statically equivalent:

(a) ({{〈0, k0〉}
r1
k3
}r2k1 , k2, k1) and ({{〈1, k0〉}

r′
1

k′
3

}
r′
2

k′
1

, k′1, k
′
2)



12.8. COMPLETENESS 195

(b) ({k0}
r1
k1
, k1, k2, {{k3}

r2
k2
}r3k1) and ({k′0}

r′
1

k′
1

, k′2, k
′
1, {{k

′
3}

r′
2

k′
2

}
r′
3

k′
1

)

4. Valid sequences are defined as before: sequences of messages in M0 (in particular not
containing decryption symbols) with a consistent use of random numbers and no key-
cycle.

We say that a term sequence is transparent if, for every ciphertext {u}rk occurring in
s1, . . . , sn, either k is deducible from s1, . . . , sn or else u ∈ W.

Let (s1, . . . , sn) be a transparent sequence such that

(a) s1, . . . , sn are names or ciphertexts

(b) the only occurrences of w ∈ W in the sequence are in expressions {w}rk where k is
not deducible.

(c) s1, . . . , sn do not contain any pairing

(d) for every i 6= j, si 6⊑(s1,...,sn) sj

Prove then
[[s1, . . . , sn]]η ≈ [[{0l(s1,η)}r1k1 , . . . , {0

l(sn,η)}rnkn ]]η

where k1, . . . , kn ∈ N are distinct and r1, . . . , rn are distinct.

5. Prove that, if (s1, . . . , sn) and (t1, . . . , tn) are valid transparent sequences of terms and
(s1, . . . , sn) ∼c (t1, . . . , tn), then si ⊑(s1,...,sn) sj implies ti ⊑(t1,...,tn) tj.

6. Assuming the encryption scheme is decryption confusing, if s1, . . . , sn and t1, . . . , tn are
valid sequences, prove

(s1, . . . , sn) ∼c (t1, . . . , tn)⇒ [[s1, . . . , sn]]η ≈ [[t1, . . . , tn]]η



196 CHAPTER 12. SOUNDNESS OF STATIC EQUIVALENCE



Bibliography

[1] Spore, the security protocol open repository. http://www.lsv.ens-cachan.fr/spore.

[2] M. Abadi and B. Blanchet. Secrecy types for asymmetric communication. In F. Honsell
and M. Miculan, editors, Foundations of Software Science and Computation Structures
(FoSSaCS 2001), volume 2030 of Lecture Notes on Computer Science, pages 25–41, Gen-
ova, Italy, Apr. 2001. Springer.

[3] M. Abadi and B. Blanchet. Analyzing security protocols with secrecy types and logic
programs. Journal of the ACM, 52(1):102–146, Jan. 2005.

[4] M. Abadi and B. Blanchet. Computer-assisted verification of a protocol for certified email.
Science of Computer Programming, 58(1–2):3–27, Oct. 2005. Special issue SAS’03.

[5] M. Abadi, B. Blanchet, and C. Fournet. Just fast keying in the pi calculus. ACM
Transactions on Information and System Security (TISSEC), 10(3):1–59, 2007.

[6] M. Abadi and V. Cortier. Deciding knowledge in security protocols under equational
theories. Theoretical Computer Science, 387(1-2):2–32, 2006.

[7] M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In
Proc. 28th Symposium on Principles of Programming Languages (POPL’01), pages 104–
115. ACM Press, 2001.

[8] M. Abadi and C. Fournet. Private authentication. Theoretical Computer Science,
322(3):427–476, 2004.

[9] M. Abadi, N. Glew, B. Horne, and B. Pinkas. Certified email with a light on-line trusted
third party: Design and implementation. In 11th International World Wide Web Confer-
ence, pages 387–395, Honolulu, Hawaii, May 2002. ACM Press.

[10] M. Abadi and A. Gordon. A calculus for cryptographic protocols: the spi calculus. In-
formation and Computation, 148(1), 1999.

[11] M. Abadi and R. M. Needham. Prudent engineering practice for cryptographic protocols.
IEEE Trans. Software Eng., 22(1):6–15, 1996.

[12] M. Abadi and P. Rogaway. Reconciling two views of cryptography: the computational
soundness of formal encryption. In Proc. 1rst IFIP International Conference on Theoreti-
cal Computer Science, volume 1872 of Lecture Notes in Computer Science, Sendai, Japan,
2000.

[13] M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computational
soundness of formal encryption). Journal of Cryptology, 15(2):103–127, 2002.

[14] M. Abdalla, P.-A. Fouque, and D. Pointcheval. Password-based authenticated key ex-
change in the three-party setting. IEE Proceedings Information Security, 153(1):27–39,
Mar. 2006.

197

http://www.lsv.ens-cachan.fr/spore


198 BIBLIOGRAPHY

[15] P. Adão, G. Bana, J. Herzog, and A. Scedrov. Soundness of formal encryption in the
presence of key-cycles. In S. de Capitani di Vimercati, P. Syverson, and D. Gollmann,
editors, Proceedings of the 10th European Symposium On Research In Computer Security
(ESORICS 2005), volume 3679 of Lecture Notes on Computer Science, pages 374–396,
Milan, Italy, Sept. 2005. Springer.

[16] R. Affeldt, D. Nowak, and K. Yamada. Certifying assembly with formal cryptographic
proofs: the case of BBS. In 9th International Workshop on Automated Verification of
Critical Systems (AVoCS’09), volume 23 of Electronic Communications of the EASST.
EASST, Sept. 2009.

[17] W. Aiello, S. M. Bellovin, M. Blaze, R. Canetti, J. Ioannidis, K. Keromytis, and O. Rein-
gold. Just Fast Keying: Key agreement in a hostile Internet. ACM Transactions on
Information and System Security, 7(2):242–273, May 2004.

[18] X. Allamigeon and B. Blanchet. Reconstruction of attacks against cryptographic proto-
cols. In 18th IEEE Computer Security Foundations Workshop (CSFW-18), pages 140–154,
Aix-en-Provence, France, June 2005. IEEE.

[19] American National Standards Institute. Public Key Cryptography for the Financial Ser-
vices Industry: The Elliptic Curve Digital Signature Algorithm. ANSI X9.62-1998. Jan-
uary 1999.

[20] R. Anderson and R. Needham. Programming Satan’s computer. In J. van Leeuven, editor,
Computer Science Today: Recent Trends and Developments, volume 1000 of Lecture Notes
on Computer Science, pages 426–440. Springer, 1995.

[21] S. Andova, C. Cremers, K. G. Steen, S. Mauw, S. M. lsnes, and S. Radomirović. Sufficient
conditions for composing security protocols. Information and Computation, 206(2-4):425–
459, 2008.

[22] M. Arapinis, S. Delaune, and S. Kremer. From one session to many: Dynamic tags
for security protocols. In I. Cervesato, H. Veith, and A. Voronkov, editors, Proceedings
of the 15th International Conference on Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR’08), volume 5330 of Lecture Notes in Artificial Intelligence, pages
128–142, Doha, Qatar, Nov. 2008. Springer.

[23] M. Arapinis and M. Duflot. Bounding messages for free in security protocols. In Proc. 27th
Conference on Foundations of Software Technology and Theoretical Computer Science
(FST&TCS’07), volume 4855 of LNCS, pages 376–387. Springer, 2007.

[24] A. Armando, D. A. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuéllar, P. H.
Drielsma, P.-C. Héam, O. Kouchnarenko, J. Mantovani, S. Mödersheim, D. von Oheimb,
M. Rusinowitch, J. Santiago, M. Turuani, L. Viganò, and L. Vigneron. The AVISPA tool
for the automated validation of Internet security protocols and applications. In Computer
Aided Verification, volume 3576 of Lecture Notes in Computer Science. Springer, 2005.

[25] M. Arnaud, V. Cortier, and S. Delaune. Combining algorithms for deciding knowledge in
security protocols. In F. Wolter, editor, Proceedings of the 6th International Symposium on
Frontiers of Combining Systems (FroCoS’07), volume 4720 of Lecture Notes in Artificial
Intelligence, pages 103–117, Liverpool, UK, Sept. 2007. Springer.

[26] L. Bachmair and H. Ganzinger. Resolution theorem proving. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume 1, chapter 2, pages
19–100. North Holland, 2001.



BIBLIOGRAPHY 199

[27] M. Backes, D. Hofheinz, and D. Unruh. CoSP: A general framework for computa-
tional soundness proofs. In ACM Conference on Computer and Communications Security
(CCS’09), pages 66–78, Chicago, IL, USA, Nov. 2009. ACM.

[28] M. Backes, C. Hritcu, and M. Maffei. Automated verification of remote electronic voting
protocols in the applied pi-calculus. In Proc. 21st IEEE Computer Security Foundations
Symposium, (CSF’08), pages 195–209. IEEE Comp. Soc. Press, 2008.

[29] M. Backes and P. Laud. Computationally sound secrecy proofs by mechanized flow analy-
sis. In Proceedings of 13th ACM Conference on Computer and Communications Security
(CCS’06), pages 370–379, Alexandria, VA, Nov. 2006. ACM.

[30] M. Backes, M. Maffei, and D. Unruh. Zero-knowledge in the applied pi-calculus and auto-
mated verification of the direct anonymous attestation protocol. In 29th IEEE Symposium
on Security and Privacy, pages 202–215, Oakland, CA, May 2008. IEEE. Technical report
version available at http://eprint.iacr.org/2007/289.

[31] M. Backes, M. Maffei, and D. Unruh. Computationally sound verification of source code.
In 17th ACM Conference on Computer and Communications Security (CCS’10), pages
387–398, Chicago, IL, USA, Oct. 2010. ACM Press.

[32] M. Backes and B. Pfitzmann. Symmetric encryption in a simulatable Dolev-Yao style
cryptographic library. In 17th IEEE Computer Security Foundations Workshop, pages
204–218, Pacific Grove, CA, June 2004. IEEE.

[33] M. Backes and B. Pfitzmann. Relating symbolic and cryptographic secrecy. IEEE Trans-
actions on Dependable and Secure Computing, 2(2):109–123, Apr. 2005.

[34] M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library with
nested operations. In 10th ACM conference on Computer and communication security
(CCS’03), pages 220–230, Washington D.C., Oct. 2003. ACM.

[35] B. Barak, R. Canetti, J. Nielsen, and R. Pass. Universally composable protocols with re-
laxed set-up assumptions. In Proc. 45th Symposium on Foundations of Computer Science
(FOCS’04), pages 186–195. IEEE Comp. Soc. Press, 2004.

[36] G. Barthe, M. Daubignard, B. Kapron, and Y. Lakhnech. Computational indistin-
guishability logic. In 17th ACM Conference on Computer and Communications Security
(CCS’10), pages 375–386, Chicago, IL, USA, Oct. 2010. ACM Press.

[37] G. Barthe, B. Grégoire, S. Z. Béguelin, and Y. Lakhnech. Beyond provable security.
Verifiable IND-CCA security of OAEP. In A. Kiayias, editor, Topics in Cryptology -
CT-RSA 2011, volume 6558 of Lecture Notes on Computer Science, pages 180–196, San
Francisco, CA, USA, Feb. 2011. Springer.

[38] G. Barthe, B. Grégoire, S. Heraud, and S. Z. Béguelin. Computer-aided security proofs for
the working cryptographer. In Advances in Cryptology – CRYPTO 2011, Santa Barbara,
CA, USA, Aug. 2011. To appear.

[39] G. Barthe, B. Grégoire, S. Heraut, and S. Z. Béguelin. Formal certification of ElGamal
encryption. a gentle introduction to CertiCrypt. In P. Degano, J. Guttman, and F. Mar-
tinelli, editors, 5th International Workshop on Formal Aspects in Security and Trust,
FAST 2008, volume 5491 of Lecture Notes on Computer Science, pages 1–19, Malaga,
Spain, 2009. Springer.

http://eprint.iacr.org/2007/289


200 BIBLIOGRAPHY

[40] G. Barthe, B. Grégoire, and S. Zanella. Formal certification of code-based cryptographic
proofs. In 36th ACM SIGPLAN - SIGACT Symposium on Principles of Programming
Languages (POPL’09), pages 90–101, Savannah, Georgia, Jan. 2009. ACM.

[41] M. Baudet. Deciding security of protocols against off-line guessing attacks. In Proc. 12th
Conference on Computer and Communications Security, pages 16–25. ACM Press, 2005.

[42] M. Baudet. Sécurité des protocoles cryptographiques : aspects logiques et calcula toires.
Thèse de doctorat, LSV, ENS Cachan, France, Jan. 2007.

[43] M. Baudet, V. Cortier, and S. Delaune. YAPA: A generic tool for computing intruder
knowledge. In R. Treinen, editor, Proceedings of the 20th International Conference on
Rewriting Techniques and Applications (RTA’09), volume 5595 of Lecture Notes in Com-
puter Science, pages 148–163, Braśılia, Brazil, June-July 2009. Springer.

[44] O. Baudron, D. Pointcheval, and J. Stern. Extended Notions of Security for Multicast
Public Key Cryptosystems. In Proc. of the 27th ICALP, LNCS 1853, pages 499–511.
Springer-Verlag, Berlin, 2000.

[45] S. Z. Béguelin, G. Barthe, S. Heraud, B. Grégoire, and D. Hedin. A machine-checked
formalization of sigma-protocols. In 23rd Computer Security Foundations Symposium
(CSF’10), pages 246–260, Edinburgh, UK, July 2010. IEEE.

[46] S. Z. Béguelin, B. Grégoire, G. Barthe, and F. Olmedo. Formally certifying the security of
digital signature schemes. In 30th IEEE Symposium on Security and Privacy, S&P 2009,
pages 237–250, Oakland, CA, May 2009. IEEE.

[47] M. Bellare. Practice-Oriented Provable Security. In ISW ’97, LNCS 1396. Springer-Verlag,
Berlin, 1997.

[48] M. Bellare, A. Boldyreva, and S. Micali. Public-key Encryption in a Multi-User Set-
ting: Security Proofs and Improvements. In Eurocrypt ’00, LNCS 1807, pages 259–274.
Springer-Verlag, Berlin, 2000.

[49] M. Bellare, A. Boldyreva, and A. Palacio. A Separation between the Random-Oracle
Model and the Standard Model for a Hybrid Encryption Problem, 2003. Cryptology
ePrint Archive 2003/077.

[50] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of
symmetric encryption. In Proceedings of the 38th Symposium on Foundations of Computer
Science (FOCS’97), pages 394–403, Miami Beach, Florida, Oct. 1997. IEEE. Full paper
available at http://www-cse.ucsd.edu/users/mihir/papers/sym-enc.html.

[51] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among Notions of
Security for Public-Key Encryption Schemes. In Crypto ’98, LNCS 1462, pages 26–45.
Springer-Verlag, Berlin, 1998.

[52] M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block chaining message
authentication code. Journal of Computer and System Sciences, 61(3):362–399, Dec. 2000.

[53] M. Bellare and C. Namprempre. Authenticated encryption: relations among notions and
analysis of the generic composition paradigm. In Advances in Cryptology – ASIACRYPT
2000, volume 1976 of Lecture Notes in Computer Science, pages 531–545, Kyoto, 2000.

[54] M. Bellare and A. Palacio. GQ and Schnorr Identification Schemes: Proofs of Security
against Impersonation under Active and Concurrent Attacks. In Crypto ’02, LNCS 2442,
pages 162–177. Springer-Verlag, Berlin, 2002.

http://www-cse.ucsd.edu/users/mihir/papers/sym-enc.html


BIBLIOGRAPHY 201

[55] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated Key Exchange Secure Against
Dictionary Attacks. In Eurocrypt ’00, LNCS 1807, pages 139–155. Springer-Verlag, Berlin,
2000.

[56] M. Bellare and P. Rogaway. Random Oracles Are Practical: a Paradigm for Designing
Efficient Protocols. In Proc. of the 1st CCS, pages 62–73. ACM Press, New York, 1993.

[57] M. Bellare and P. Rogaway. Optimal Asymmetric Encryption – How to Encrypt with
RSA. In Eurocrypt ’94, LNCS 950, pages 92–111. Springer-Verlag, Berlin, 1995.

[58] M. Bellare and P. Rogaway. The Exact Security of Digital Signatures – How to Sign with
RSA and Rabin. In Eurocrypt ’96, LNCS 1070, pages 399–416. Springer-Verlag, Berlin,
1996.

[59] M. Bellare and P. Rogaway. The Game-Playing Technique and its Application to Triple
Encryption, 2004. Cryptology ePrint Archive 2004/331.

[60] M. Bellare and P. Rogaway. The security of triple encryption and a framework for
code-based game-playing proofs. In S. Vaudenay, editor, Advances in Cryptology – Eu-
rocrypt 2006 Proceedings, volume 4004 of Lecture Notes on Computer Science, pages
409–426, Saint Petersburg, Russia, May 2006. Springer. Extended version available at
http://eprint.iacr.org/2004/331.

[61] S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-based protocols secure
against dictionary attacks. In Proc. Symposium on Security and Privacy (SP’92), pages
72–84. IEEE Comp. Soc., 1992.

[62] K. Bhargavan, R. Corin, C. Fournet, and A. Gordon. Secure sessions for web services. In
ACM Workshop on Secure Web Services (SWS’04), Washington DC, Oct. 2004.

[63] K. Bhargavan, R. Corin, C. Fournet, and E. Zălinescu. Cryptographically verified im-
plementations for TLS. In Proceedings of the 15th ACM Conference on Computer and
Communications Security (CCS’08), pages 459–468. ACM, Oct. 2008.

[64] K. Bhargavan, C. Fournet, and A. Gordon. Verifying policy-based security for web ser-
vices. In ACM Conference on Computer and Communications Security (CCS’04), pages
268–277, Washington DC, Oct. 2004. ACM.

[65] K. Bhargavan, C. Fournet, and A. Gordon. Verified reference implementations of WS-
Security protocols. In M. Bravetti, M. Núñez, and G. Zavattaro, editors, 3rd International
Workshop on Web Services and Formal Methods (WS-FM 2006), volume 4184 of Lecture
Notes on Computer Science, pages 88–106, Vienna, Austria, Sept. 2006. Springer.

[66] K. Bhargavan, C. Fournet, A. Gordon, and N. Swamy. Verified implementations of the
information card federated identity-management protocol. In ACM Symposium on Infor-
mation, Computer and Communications Security (ASIACCS’08), pages 123–135, Tokyo,
Japan, Mar. 2008. ACM.

[67] K. Bhargavan, C. Fournet, A. Gordon, and S. Tse. Verified interoperable implemen-
tations of security protocols. In 19th IEEE Computer Security Foundations Workshop
(CSFW’06), pages 139–152, Venice, Italy, July 2006. IEEE Computer Society.

[68] K. Bhargavan, C. Fournet, A. D. Gordon, and R. Pucella. TulaFale: A security tool
for web services. In F. S. de Boer, M. M. Bonsangue, S. Graf, and W.-P. de Roever,
editors, Formal Methods for Components and Objects (FMCO 2003), volume 3188 of
Lecture Notes on Computer Science, pages 197–222, Leiden, The Netherlands, Nov. 2003.
Springer. Paper and tool available at http://securing.ws/.

http://eprint.iacr.org/2004/331
http://securing.ws/


202 BIBLIOGRAPHY

[69] E. Biham and A. Shamir. Differential Fault Analysis of Secret Key Cryptosystems. In
Crypto ’97, LNCS 1294, pages 513–525. Springer-Verlag, Berlin, 1997.

[70] B. Blanchet. ProVerif Automatic Cryptographic Protocol Verifier User Manual.
http://www.proverif.ens.fr/proverif-manual.pdf.

[71] B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In Com-
puter Security Foundations Workshop (CSFW’01), 2001.

[72] B. Blanchet. Automatic proof of strong secrecy for security protocols. In IEEE Symposium
on Security and Privacy, pages 86–100, Oakland, California, May 2004.

[73] B. Blanchet. Security protocols: From linear to classical logic by abstract interpretation.
Information Processing Letters, 95(5):473–479, Sept. 2005.

[74] B. Blanchet. Computationally sound mechanized proofs of correspondence assertions.
In 20th IEEE Computer Security Foundations Symposium (CSF’07), pages 97–111,
Venice, Italy, July 2007. IEEE. Extended version available as ePrint Report 2007/128,
http://eprint.iacr.org/2007/128.

[75] B. Blanchet. Automatic verification of correspondences for security protocols. Report
arXiv:0802.3444v1, 2008. Available at http://arxiv.org/abs/0802.3444v1.

[76] B. Blanchet. A computationally sound mechanized prover for security protocols. IEEE
Transactions on Dependable and Secure Computing, 5(4):193–207, Oct.–Dec. 2008.

[77] B. Blanchet. Automatic verification of correspondences for security protocols. Journal of
Computer Security, 17(4):363–434, July 2009.

[78] B. Blanchet, M. Abadi, and C. Fournet. Automated verification of selected equivalences
for security protocols. Journal of Logic and Algebraic Programming, 75(1):3–51, Feb.–Mar.
2008.

[79] B. Blanchet and A. Chaudhuri. Automated formal analysis of a protocol for secure file
sharing on untrusted storage. In IEEE Symposium on Security and Privacy, pages 417–
431, Oakland, CA, May 2008. IEEE.

[80] B. Blanchet, A. D. Jaggard, A. Scedrov, and J.-K. Tsay. Computationally sound mech-
anized proofs for basic and public-key Kerberos. In ACM Symposium on Information,
Computer and Communications Security (ASIACCS’08), pages 87–99, Tokyo, Japan,
Mar. 2008. ACM.

[81] B. Blanchet and A. Podelski. Verification of cryptographic protocols: Tagging enforces
termination. Theoretical Computer Science, 333(1-2):67–90, Mar. 2005. Special issue
FoSSaCS’03.

[82] B. Blanchet and D. Pointcheval. Automated security proofs with sequences of games. In
C. Dwork, editor, Advances in Cryptology – CRYPTO 2006, volume 4117 of Lecture Notes
on Computer Science, pages 537–554, Santa Barbara, CA, Aug. 2006. Springer.

[83] D. Bleichenbacher. Generating El Gamal Signatures without Knowing the Secret Key. In
Eurocrypt ’96, LNCS 1070, pages 10–18. Springer-Verlag, Berlin, 1996.

[84] D. Bleichenbacher. A Chosen Ciphertext Attack against Protocols based on the RSA
Encryption Standard PKCS #1. In Crypto ’98, LNCS 1462, pages 1–12. Springer-Verlag,
Berlin, 1998.

http://www.proverif.ens.fr/proverif-manual.pdf
http://eprint.iacr.org/2007/128
http://arxiv.org/abs/0802.3444v1


BIBLIOGRAPHY 203

[85] C. Bodei. Security Issues in Process Calculi. PhD thesis, Università di Pisa, Jan. 2000.

[86] D. Boneh, R. DeMillo, and R. Lipton. On the Importance of Checking Cryptographic
Protocols for Faults. In Eurocrypt ’97, LNCS 1233, pages 37–51. Springer-Verlag, Berlin,
1997.

[87] J. Borgström. Static equivalence is harder than knowledge. Electr. Notes Theor. Comput.
Sci., 154(3):45–57, 2006.

[88] X. Boyen. The uber-assumption family. In Pairing ’08, LNCS 5209, pages 39–56. Springer-
Verlag, Berlin, 2008.

[89] E. Brickell, D. Pointcheval, S. Vaudenay, and M. Yung. Design Validations for Discrete
Logarithm Based Signature Schemes. In PKC ’00, LNCS 1751, pages 276–292. Springer-
Verlag, Berlin, 2000.

[90] D. R. L. Brown and D. B. Johnson. Formal Security Proofs for a Signature Scheme with
Partial Message Recovery. In CT – RSA ’01, LNCS 2020, pages 126–142. Springer-Verlag,
Berlin, 2001.

[91] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. Proceedings of the
Royal Society of London A, 426(1871):233–271, dec 1989. A preliminary version appeared
as Digital Equipment Corporation Systems Research Center report No. 39, February 1989.

[92] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In Proc. 42nd Annual Symposium on Foundations of Computer Science (FOCS’01), pages
136–145. IEEE Comp. Soc., 2001.

[93] R. Canetti, Y. Dodis, R. Pass, and S. Walfish. Universally composable security with
global setup. In Proc. 4th Theory of Cryptography Conference, (TCC’07), LNCS, pages
61–85. Springer, 2007.

[94] R. Canetti, O. Goldreich, and S. Halevi. The Random Oracle Methodology, Revisited. In
Proc. of the 30th STOC, pages 209–218. ACM Press, New York, 1998.

[95] R. Canetti and J. Herzog. Universally composable symbolic analysis of mutual authentica-
tion and key exchange protocols. In S. Halevi and T. Rabin, editors, Proceedings, Theory
of Cryptography Conference (TCC’06), volume 3876 of Lecture Notes on Computer Sci-
ence, pages 380–403, New York, NY, Mar. 2006. Springer. Extended version available at
http://eprint.iacr.org/2004/334.

[96] R. Canetti, C. Meadows, and P. F. Syverson. Environmental requirements for authentica-
tion protocols. In Proc. Symposium on Software Security – Theories and Systems, volume
2609 of LNCS, pages 339–355. Springer, 2002.

[97] R. Canetti and T. Rabin. Universal composition with joint state. In Proc. 23rd Interna-
tional Cryptology Conference (CRYPTO’03), LNCS, pages 265–281. Springer, 2003.

[98] L. Cardelli, G. Ghelli, and A. D. Gordon. Secrecy and group creation. In C. Palamidessi,
editor, CONCUR 2000: Concurrency Theory, volume 1877 of Lecture Notes on Computer
Science, pages 365–379. Springer, Aug. 2000.

[99] S. Cavallar, B. Dodson, A. K. Lenstra, W. Lioen, P. L. Montgomery, B. Murphy,
H. te Riele, K. Aardal, J. Gilchrist, G. Guillerm, P. Leyland, J. Marchand, F. Morain,
A. Muffett, C. Putnam, C. Putnam, and P. Zimmermann. Factorization of a 512-bit RSA
Modulus. In Eurocrypt ’00, LNCS 1807, pages 1–18. Springer-Verlag, Berlin, 2000.

http://eprint.iacr.org/2004/334


204 BIBLIOGRAPHY

[100] Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani. Deciding the security of
protocols with Diffie-Hellman exponentiation and products in exponents. In P. K. Pandya
and J. Radhakrishnan, editors, FST TCS 2003: Foundations of Software Technology
and Theoretical Computer Science, 23rd Conference, volume 2914 of Lecture Notes on
Computer Science, pages 124–135, Mumbai, India, Dec. 2003. Springer.

[101] Y. Chevalier, R. Küsters, M. Rusinowitch, and M. Turuani. An NP decision procedure
for protocol insecurity with XOR. Theoretical Computer Science, 338(1–3):247–274, June
2005.

[102] B. Chor and R. L. Rivest. A Knapsack Type Public Key Cryptosystem based on Arith-
metic in Finite Fields. In Crypto ’84, LNCS 196, pages 54–65. Springer-Verlag, Berlin,
1985.

[103] Ş. Ciobâcă and V. Cortier. Protocol composition for arbitrary primitives. In Proceed-
ings of the 23rd IEEE Computer Security Foundations Symposium (CSF’10), Edinburgh,
Scotland, UK, July 2010. IEEE Computer Society Press. To appear.

[104] Ş. Ciobâcă, S. Delaune, and S. Kremer. Computing knowledge in security protocols
under convergent equational theories. In R. Schmidt, editor, Proceedings of the 22nd
International Conference on Automated Deduction (CADE’09), Lecture Notes in Artificial
Intelligence, pages 355–370, Montreal, Canada, Aug. 2009. Springer.

[105] J. Clark and J. Jacob. A survey of authentication protocol literature.
http://www.cs.york.ac.uk/~jac/papers/drareviewps.ps, 1997.

[106] J. Clulow. The design and analysis of cryptographic APIs for security devices. Master’s
thesis, University of Natal, Durban, South Africa, 2003. Chapter 3.

[107] E. Cohen. Proving protocols safe from guessing. In Foundations of Computer Security,
Copenhagen, Denmark, July 2002.

[108] H. Comon-Lundh and V. Cortier. New decidability results for fragments of first-order
logic and application to cryptographic protocols. In R. Nieuwenhuis, editor, 14th Int.
Conf. Rewriting Techniques and Applications (RTA’2003), volume 2706 of Lecture Notes
on Computer Science, pages 148–164, Valencia, Spain, June 2003. Springer.

[109] H. Comon-Lundh and V. Cortier. Security properties: two agents are sufficient. Science
of Computer Programming, 50(1-3):51–71, 2004.

[110] H. Comon-Lundh and V. Cortier. Computational soundness of observational equivalence.
In Proceedings of the 15th ACM Conference on Computer and Communications Security
(CCS’08), pages 109–118, Alexandria, Virginia, USA, Oct. 2008. ACM Press.

[111] H. Comon-Lundh, V. Cortier, and E. Zlinescu. Deciding security properties of crypto-
graphic protocols. application to key cycles. Transaction on Computational Logic, 11(2),
2010.

[112] H. Comon-Lundh and V. Shmatikov. Intruder deductions, constraint solving and insecu-
rity decision in presence of exclusive or. In P. Kolaitis, editor, Eighteenth Annual IEEE
Symposium on Logic in Computer Science, Ottawa, Canada, June 2003. IEEE Computer
Society.

[113] R. Corin, J. Doumen, and S. Etalle. Analysing password protocol security against off-line
dictionary attacks. ENTCS, 121:47–63, 2005.

http://www.cs.york.ac.uk/~jac/papers/drareviewps.ps


BIBLIOGRAPHY 205

[114] R. Corin, S. Malladi, J. Alves-Foss, and S. Etalle. Guess what? here is a new tool that
finds some new guessing attacks. In R. Gorrieri, editor, Workshop on Issues in the Theory
of Security (WITS’03), Warsaw, Poland, Apr. 2003.

[115] J.-S. Coron. On the Exact Security of Full-Domain-Hash. In Crypto ’00, LNCS 1880,
pages 229–235. Springer-Verlag, Berlin, 2000.

[116] V. Cortier, J. Delaitre, and S. Delaune. Safely composing security protocols. In Proc. 27th
Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’07), volume 4855 of LNCS, pages 352–363. Springer, 2007.

[117] V. Cortier and S. Delaune. Deciding knowledge in security protocols for monoidal equa-
tional theories. In N. Dershowitz and A. Voronkov, editors, Proceedings of the 14th In-
ternational Conference on Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR’07), volume 4790 of Lecture Notes in Artificial Intelligence, pages 196–210, Yere-
van, Armenia, Oct. 2007. Springer.

[118] V. Cortier and S. Delaune. A method for proving observational equivalence. In Proceedings
of the 22nd IEEE Computer Security Foundations Symposium (CSF’09), pages 266–276,
Port Jefferson, NY, USA, July 2009. IEEE Computer Society Press.

[119] V. Cortier and S. Delaune. Safely composing security protocols. Formal Methods in
System Design, 34(1):1–36, Feb. 2009.

[120] V. Cortier, S. Delaune, and P. Lafourcade. A survey of algebraic properties used in
cryptographic protocols. Journal of Computer Security, 14(1):1–43, 2006.

[121] V. Cortier, H. Hördegen, and B. Warinschi. Explicit randomness is not necessary when
modeling probabilistic encryption. In C. Dima, M. Minea, and F. Tiplea, editors, Work-
shop on Information and Computer Security (ICS 2006), volume 186 of Electronic Notes
in Theoretical Computer Science, pages 49–65, Timisoara, Romania, Sept. 2006. Elsevier.

[122] V. Cortier and B. Warinschi. Computationally sound, automated proofs for security pro-
tocols. In M. Sagiv, editor, Proc. 14th European Symposium on Programming (ESOP’05),
volume 3444 of Lecture Notes on Computer Science, pages 157–171, Edimbourg, U.K.,
Apr. 2005. Springer.

[123] J. Courant, M. Daubignard, C. Ene, P. Lafourcade, and Y. Lakhnech. Towards automated
proofs for asymmetric encryption schemes in the random oracle model. In Proceedings
of the 15th ACM conference on Computer and communications security (CCS’08), pages
371–380, Alexandria, Virginia, USA, Oct. 2008. ACM.

[124] J. Courant, M. Daubignard, C. Ene, P. Lafourcade, and Y. Lakhnech. Automated proofs
for asymmetric encryption. In D. Dams, U. Hannemann, and M. Steffen, editors, Con-
currency, Compositionality, and Correctness, volume 5930 of Lecture Notes on Computer
Science, pages 300–321. Springer, 2010.

[125] J. Courant, C. Ene, and Y. Lakhnech. Computationally sound typing for non-interference:
The case of deterministic encryption. In V. Arvind and S. Prasad, editors, 27th Conference
on Foundations of Software Technology and Theoretical Computer Science (FSTTCS’07),
volume 4855 of Lecture Notes on Computer Science, pages 364–375, New Delhi, India,
Dec. 2007. Springer.

[126] R. Cramer and V. Shoup. A Practical Public Key Cryptosystem Provably Secure against
Adaptive Chosen Ciphertext Attack. In Crypto ’98, LNCS 1462, pages 13–25. Springer-
Verlag, Berlin, 1998.



206 BIBLIOGRAPHY

[127] A. Datta, A. Derek, J. C. Mitchell, and A. Roy. Protocol composition logic (PCL). Electr.
Notes Theoretical Computer Science, 172:311–358, 2007.

[128] A. Datta, A. Derek, J. C. Mitchell, V. Shmatikov, and M. Turuani. Probabilistic
polynomial-time semantics for a protocol security logic. In L. Caires and L. Monteiro,
editors, ICALP 2005: the 32nd International Colloquium on Automata, Languages and
Programming, volume 3580 of Lecture Notes on Computer Science, pages 16–29, Lisboa,
Portugal, July 2005. Springer.

[129] A. Datta, A. Derek, J. C. Mitchell, and B. Warinschi. Computationally sound composi-
tional logic for key exchange protocols. In Proceedings of 19th IEEE Computer Security
Foundations Workshop (CSFW’06), pages 321–334, Venice, Italy, July 2006. IEEE Com-
puter Society.

[130] H. de Nivelle. Ordering Refinements of Resolution. PhD thesis, Technische Universiteit
Delft, Oct. 1995.

[131] S. Delaune and F. Jacquemard. A theory of dictionary attacks and its complexity. In 17th
IEEE Computer Security Foundations Workshop, pages 2–15, Pacific Grove, CA, June
2004. IEEE.

[132] S. Delaune and F. Jacquemard. Decision procedures for the security of protocols with
probabilistic encryption against offline dictionary attacks. Journal of Automated Reason-
ing, 36(1-2):85–124, Jan. 2006.

[133] S. Delaune, S. Kremer, and M. D. Ryan. Composition of password-based protocols. In
Proceedings of the 21st IEEE Computer Security Foundations Symposium (CSF’08), pages
239–251, Pittsburgh, PA, USA, June 2008. IEEE Computer Society Press.

[134] S. Delaune, S. Kremer, and M. D. Ryan. Symbolic bisimulation for the applied pi calculus.
Journal of Computer Security, 2009. To appear.

[135] S. Delaune, S. Kremer, and M. D. Ryan. Verifying privacy-type properties of electronic
voting protocols. Journal of Computer Security, 17(4):435–487, July 2009.

[136] G. Denker, J. Meseguer, and C. Talcott. Protocol specification and analysis in Maude. In
N. Heintze and J. Wing, editors, Workshop on Formal Methods and Security Protocols,
Indianapolis, Indiana, 25 June 1998.

[137] D. E. Denning and G. M. Sacco. Timestamps in key distribution protocols. Commun.
ACM, 24(8):533–536, Aug. 1981.

[138] W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE Transactions on
Information Theory, IT–22(6):644–654, November 1976.

[139] D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. SIAM Journal on
Computing, 30(2):391–437, 2000.

[140] D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transactions on
Information Theory, IT-29(12):198–208, Mar. 1983.

[141] P. H. Drielsma, S. Mödersheim, and L. Viganò. A formalization of off-line guessing for
security protocol analysis. In F. Baader and A. Voronkov, editors, Logic for Programming,
Artificial Intelligence, and Reasoning: 11th International Conference, LPAR 2004, volume
3452 of Lecture Notes on Computer Science, pages 363–379, Montevideo, Uruguay, Mar.
2005. Springer.



BIBLIOGRAPHY 207

[142] N. A. Durgin, P. D. Lincoln, J. C. Mitchell, and A. Scedrov. Undecidability of bounded
security protocols. In Workshop on Formal Methods and Security Protocols (FMSP’99),
Trento, Italy, 5 July 1999.

[143] T. El Gamal. A Public Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms. IEEE Transactions on Information Theory, IT–31(4):469–472, July 1985.

[144] F. J. T. Fábrega, J. C. Herzog, and J. D. Guttman. Strand spaces: Proving security
protocols correct. Journal of Computer Security, 7(2/3):191–230, 1999.

[145] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions of Identification and
Signature Problems. In Crypto ’86, LNCS 263, pages 186–194. Springer-Verlag, Berlin,
1987.

[146] C. Fournet and M. Abadi. Hiding names: Private authentication in the applied pi calculus.
In Proc. International Symposium on Software Security (ISSS’02), volume 2609 of Lecture
Notes in Computer Science, pages 317–338. Springer, 2003.

[147] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA–OAEP is Secure under the
RSA Assumption. In Crypto ’01, LNCS 2139, pages 260–274. Springer-Verlag, Berlin,
2001. Also appeared as RSA–OAEP is Still Alive in the Cryptology ePrint Archive
2000/061. November 2000.
Available from http://eprint.iacr.org/.

[148] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA–OAEP is Secure under the
RSA Assumption. Journal of Cryptology, 17(2):81–104, 2004.

[149] J. C. Godskesen. Formal verification of the ARAN protocol using the applied pi-calculus.
In Proceedings of the Sixth International IFIP WG 1.7 Workshop on Issues in the Theory
of Security (WITS’06), pages 99–113, Vienna, Austria, Mar. 2006.

[150] O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Functions. Journal
of the ACM, 33(4):792–807, 1986.

[151] S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and System
Sciences, 28:270–299, 1984.

[152] S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge Complexity of Interactive Proof
Systems. In Proc. of the 17th STOC, pages 291–304. ACM Press, New York, 1985.

[153] S. Goldwasser, S. Micali, and R. Rivest. A “Paradoxical” Solution to the Signature
Problem. In Proc. of the 25th FOCS, pages 441–448. IEEE, New York, 1984.

[154] S. Goldwasser, S. Micali, and R. Rivest. A Digital Signature Scheme Secure Against
Adaptative Chosen-Message Attacks. SIAM Journal of Computing, 17(2):281–308, April
1988.

[155] L. Gong. Verifiable-text attacks in cryptographic protocols. In INFOCOM ’90, The
Conference on Computer Communications, pages 686–693, San Francisco, CA, June 1990.
IEEE.

[156] L. Gong, T. M. A. Lomas, R. M. Needham, and J. H. Saltzer. Protecting poorly cho-
sen secrets from guessing attacks. IEEE Journal on Selected Areas in Communications,
11(5):648–656, June 1993.

[157] L. Gong and P. Syverson. Fail-stop protocols: An approach to designing secure protocols.
In Proc. 5th International Working Conference on Dependable Computing for Critical
Applications, pages 44–55, 1995.



208 BIBLIOGRAPHY

[158] A. Gordon and A. Jeffrey. Authenticity by typing for security protocols. Journal of
Computer Security, 11(4):451–521, 2003.

[159] J. Goubault-Larrecq. Deciding H1 by resolution. Information Processing Letters,
95(3):401–408, Aug. 2005.

[160] J. Goubault-Larrecq and F. Parrennes. Cryptographic protocol analysis on real C code.
In R. Cousot, editor, Proceedings of the 6th International Conference on Verification,
Model Checking and Abstract Interpretation (VMCAI’05), volume 3385 of Lecture Notes
on Computer Science, pages 363–379, Paris, France, Jan. 2005. Springer.

[161] J. D. Guttman and F. J. Thayer. Protocol independence through disjoint encryption.
In Proc. 13th Computer Security Foundations Workshop (CSFW’00), pages 24–34. IEEE
Comp. Soc. Press, 2000.

[162] S. Halevi. A plausible approach to computer-aided cryptographic proofs.
Cryptology ePrint Archive, Report 2005/181, June 2005. Available at
http://eprint.iacr.org/2005/181.

[163] C. Hall, I. Goldberg, and B. Schneier. Reaction Attacks Against Several Public-Key
Cryptosystems. In Proc. of ICICS ’99, LNCS, pages 2–12. Springer-Verlag, 1999.

[164] J. H̊astad. Solving Simultaneous Modular Equations of Low Degree. SIAM Journal of
Computing, 17:336–341, 1988.

[165] J. Heather, G. Lowe, and S. Schneider. How to prevent type flaw attacks on security
protocols. In Proc. 13th Computer Security Foundations Workshop (CSFW’01), pages
255–268. IEEE Comp. Soc. Press, 2000.

[166] R. Janvier, Y. Lakhnech, and L. Mazaré. Completing the picture: Soundness of formal
encryption in the presence of active adversaries. In M. Sagiv, editor, Proc. 14th European
Symposium on Programming (ESOP’05), volume 3444 of Lecture Notes on Computer
Science, pages 172–185, Edimbourg, U.K., Apr. 2005. Springer.

[167] A. Joux and R. Lercier. Improvements to the general Number Field Sieve for discrete
logarithms in prime fields. Mathematics of Computation, 2000. to appear.

[168] M. Joye, J. J. Quisquater, and M. Yung. On the Power of Misbehaving Adversaries and
Security Analysis of the Original EPOC. In CT – RSA ’01, LNCS 2020, pages 208–222.
Springer-Verlag, Berlin, 2001.

[169] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu. Plutus: Scalable secure
file sharing on untrusted storage. In 2nd Conference on File and Storage Technologies
(FAST’03), pages 29–42, San Francisco, CA, Apr. 2003. Usenix.

[170] KCDSA Task Force Team. The Korean Certificate-based Digital Signature Algorithm.
Submission to IEEE P1363a. August 1998.
Available from http://grouper.ieee.org/groups/1363/.

[171] J. Kelsey, B. Schneier, and D. Wagner. Protocol interactions and the chosen protocol
attack. In Proc. 5th International Workshop on Security Protocols, volume 1361 of LNCS,
pages 91–104. Springer, 1997.

[172] H. Khurana and H.-S. Hahm. Certified mailing lists. In Proceedings of the ACM Sym-
posium on Communication, Information, Computer and Communication Security (ASI-
ACCS’06), pages 46–58, Taipei, Taiwan, Mar. 2006. ACM.

http://eprint.iacr.org/2005/181


BIBLIOGRAPHY 209

[173] T. Kleinjung, K. Aoki, J. Franke, A. Lenstra, E. Thomé, J. Bos, P. Gaudry, A. Kruppa,
P. Montgomery, D. A. Osvik, H. te Riele, A. Timofeev, and P. Zimmermann. Factorization
of a 768-bit RSA modulus, 2010. Cryptology ePrint Archive 2010/006.

[174] D. E. Knuth and P. B. Bendix. Simple word problems in universal algebras. In J. Leech,
editor, Computational Problems in Abstract Algebra, pages 263–297. Pergamon Press,
Oxford, U.K., 1970.

[175] P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Other Systems. In Crypto ’96, LNCS 1109, pages 104–113. Springer-Verlag, Berlin, 1996.

[176] P. C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In Crypto ’99, LNCS
1666, pages 388–397. Springer-Verlag, Berlin, 1999.

[177] H. Krawczyk. SKEME: A versatile secure key exchange mechanism for internet. In
Internet Society Symposium on Network and Distributed Systems Security, Feb. 1996.
Available at http://bilbo.isu.edu/sndss/sndss96.html.

[178] S. Kremer and M. D. Ryan. Analysis of an electronic voting protocol in the applied pi-
calculus. In M. Sagiv, editor, Programming Languages and Systems — Proceedings of the
14th European Symposium on Programming (ESOP’05), volume 3444 of Lecture Notes in
Computer Science, pages 186–200, Edinburgh, U.K., Apr. 2005. Springer.

[179] R. Küsters and T. Truderung. Reducing protocol analysis with XOR to the XOR-free
case in the Horn theory based approach. In Proceedings of the 15th ACM conference on
Computer and communications security (CCS’08), pages 129–138, Alexandria, Virginia,
USA, Oct. 2008. ACM.

[180] R. Küsters and T. Truderung. Using ProVerif to analyze protocols with Diffie-Hellman
exponentiation. In 22nd IEEE Computer Security Foundations Symposium (CSF’09),
pages 157–171, Port Jefferson, New York, USA, July 2009. IEEE.

[181] P. Laud. Handling encryption in an analysis for secure information flow. In P. Degano, ed-
itor, Programming Languages and Systems, 12th European Symposium on Programming,
ESOP’03, volume 2618 of Lecture Notes on Computer Science, pages 159–173, Warsaw,
Poland, Apr. 2003. Springer.

[182] P. Laud. Symmetric encryption in automatic analyses for confidentiality against active ad-
versaries. In IEEE Symposium on Security and Privacy, pages 71–85, Oakland, California,
May 2004.

[183] P. Laud. Secrecy types for a simulatable cryptographic library. In 12th ACM Conference
on Computer and Communications Security (CCS’05), pages 26–35, Alexandria, VA, Nov.
2005. ACM.

[184] P. Laud and I. Tšahhirov. A user interface for a game-based protocol verification tool.
In P. Degano and J. Guttman, editors, 6th International Workshop on Formal Aspects
in Security and Trust (FAST2009), volume 5983 of Lecture Notes on Computer Science,
pages 263–278, Eindhoven, Netherlands, Nov. 2009. Springer.

[185] P. Laud and V. Vene. A type system for computationally secure information flow. In
M. Lískiewicz and R. Reischuk, editors, 15th International Symposium on Fundamentals
of Computation Theory (FCT’05), volume 3623 of Lecture Notes on Computer Science,
pages 365–377, Lübeck, Germany, Aug. 2005. Springer.

[186] A. Lenstra and H. Lenstra. The Development of the Number Field Sieve, volume 1554 of
Lecture Notes in Mathematics. Springer-Verlag, 1993.



210 BIBLIOGRAPHY

[187] A. Lenstra and E. Verheul. Selecting Cryptographic Key Sizes. In PKC ’00, LNCS 1751,
pages 446–465. Springer-Verlag, Berlin, 2000.

[188] H. Lenstra. On the Chor-Rivest Knapsack Cryptosystem. Journal of Cryptology, 3:149–
155, 1991.

[189] G. Lowe. An attack on the Needham-Schroeder public-key authentication protocol. In-
formation Processing Letters, 56(3):131–133, 1996.

[190] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In
Margaria and Steffen, editors, Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), volume 1055 of Lecture Notes in Computer Science, pages 147–166,
1996.

[191] G. Lowe. A hierarchy of authentication specification. In 10th Computer Security Foun-
dations Workshop (CSFW ’97), June 10-12, 1997, Rockport, Massachusetts, USA, pages
31–44. IEEE Computer Society, 1997.

[192] G. Lowe. Towards a completeness result for model checking of security protocols. Journal
of Computer Security, 7(1), 1999.

[193] G. Lowe. Analysing protocols subject to guessing attacks. Journal of Computer Security,
12(1):83–98, 2004.

[194] K. D. Lux, M. J. May, N. L. Bhattad, and C. A. Gunter. WSEmail: Secure internet mes-
saging based on web services. In International Conference on Web Services (ICWS’05),
pages 75–82, Orlando, Florida, July 2005. IEEE Computer Society.

[195] C. Lynch. Oriented equational logic programming is complete. Journal of Symbolic
Computation, 21(1):23–45, 1997.

[196] J. Manger. A Chosen Ciphertext Attack on RSA Optimal Asymmetric Encryption
Padding (OAEP) as Standardized in PKCS#1. In Crypto ’01, LNCS 2139, pages 230–238.
Springer-Verlag, Berlin, 2001.

[197] D. McAllester. Automatic recognition of tractability in inference relations. J. ACM, 40(2),
1993.

[198] C. Meadows and P. Narendran. A unification algorithm for the group Diffie-Hellman
protocol. In Workshop on Issues in the Theory of Security (WITS’02), Portland, Oregon,
Jan. 2002.

[199] D. Micciancio and B. Warinschi. Completeness theorems for the abadi-rogaway language
of encrypted expressions. Journal of Computer Security, 2004.

[200] D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence of active
adversaries. In M. Naor, editor, Theory of Cryptography Conference (TCC’04), volume
2951 of Lecture Notes on Computer Science, pages 133–151, Cambridge, MA, USA, Feb.
2004. Springer.

[201] J. Millen and V. Shmatikov. Constraint solving for bounded-process cryptographic proto-
col analysis. In Proc. 8th ACM Conference on Computer and Communications Security,
2001.

[202] G. Miller. Riemann’s Hypothesis and Tests for Primality. Journal of Computer and
System Sciences, 13:300–317, 1976.



BIBLIOGRAPHY 211

[203] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, i & ii. Inf. Comput.,
100(1):1–77, 1992.

[204] J. C. Mitchell, A. Ramanathan, A. Scedrov, and V. Teague. A probabilistic polynomial-
time calculus for the analysis of cryptographic protocols. Theoretical Computer Science,
353(1–3):118–164, Mar. 2006.

[205] D. M’Räıhi, D. Naccache, D. Pointcheval, and S. Vaudenay. Computational Alterna-
tives to Random Number Generators. In Fifth Annual Workshop on Selected Areas in
Cryptography (SAC ’98), LNCS 1556, pages 72–80. Springer-Verlag, Berlin, 1998.

[206] M. Naor and M. Yung. Public-Key Cryptosystems Provably Secure against Chosen Ci-
phertext Attacks. In Proc. of the 22nd STOC, pages 427–437. ACM Press, New York,
1990.

[207] V. I. Nechaev. Complexity of a Determinate Algorithm for the Discrete Logarithm. Math-
ematical Notes, 55(2):165–172, 1994.

[208] R. Needham and M. Schroeder. Using encryption for authentification in large networks
of computers. Communications of the ACM, 21(12):993–999, 1978.

[209] R. M. Needham and M. D. Schroeder. Authentication revisited. Operating Systems
Review, 21(1):7, 1987.

[210] J. B. Nielsen. Separating Random Oracle Proofs from Complexity Theoretic Proofs: The
Non-committing Encryption Case. In Crypto ’02, LNCS 2442, pages 111–126. Springer-
Verlag, Berlin, 2002.

[211] NIST. Digital Signature Standard (DSS). Federal Information Processing Standards
PUBlication 186, November 1994.

[212] NIST. Secure Hash Standard (SHS). Federal Information Processing Standards PUBli-
cation 180–1, April 1995.

[213] D. Nowak. A framework for game-based security proofs. In Information and Communica-
tions Security, 9th International Conference, ICICS 2007, volume 4861 of Lecture Notes
on Computer Science, pages 319–333, Zhengzhou, China, Dec. 2007. Springer.

[214] D. Nowak. On formal verification of arithmetic-based cryptographic primitives. In In-
formation Security and Cryptology - ICISC 2008, 11th International Conference, volume
5461 of Lecture Notes on Computer Science, pages 368–382, Seoul, Korea, Dec. 2008.
Springer.

[215] K. Ohta and T. Okamoto. On Concrete Security Treatment of Signatures Derived from
Identification. In Crypto ’98, LNCS 1462, pages 354–369. Springer-Verlag, Berlin, 1998.

[216] T. Okamoto and D. Pointcheval. REACT: Rapid Enhanced-security Asymmetric Cryp-
tosystem Transform. In CT – RSA ’01, LNCS 2020, pages 159–175. Springer-Verlag,
Berlin, 2001.

[217] T. Okamoto and D. Pointcheval. The Gap-Problems: a New Class of Problems for the
Security of Cryptographic Schemes. In PKC ’01, LNCS 1992. Springer-Verlag, Berlin,
2001.

[218] D. Otway and O. Rees. Efficient and timely mutual authentication. Operating Systems
Review, 21(1):8–10, 1987.



212 BIBLIOGRAPHY

[219] L. C. Paulson. The inductive approach to verifying cryptographic protocols. Journal of
Computer Security, 6(1–2):85–128, 1998.

[220] D. Pointcheval and J. Stern. Security Proofs for Signature Schemes. In Eurocrypt ’96,
LNCS 1070, pages 387–398. Springer-Verlag, Berlin, 1996.

[221] D. Pointcheval and J. Stern. Security Arguments for Digital Signatures and Blind Signa-
tures. Journal of Cryptology, 13(3):361–396, 2000.

[222] D. Pointcheval and S. Vaudenay. On Provable Security for Digital Signature Algorithms.
Technical Report LIENS-96-17, LIENS, October 1996.

[223] J. M. Pollard. Monte Carlo Methods for Index Computation (mod p). Mathematics of
Computation, 32(143):918–924, July 1978.

[224] C. Rackoff and D. R. Simon. Non-Interactive Zero-Knowledge Proof of Knowledge and
Chosen Ciphertext Attack. In Crypto ’91, LNCS 576, pages 433–444. Springer-Verlag,
Berlin, 1992.

[225] R. Ramanujam and S. P. Suresh. Tagging makes secrecy decidable for unbounded nonces
as well. In Proc. 23rd Conference on Foundations of Software Technology and Theoretical
Computer Science (FST&TCS’03), volume 2914 of LNCS, pages 363–374. Springer, 2003.

[226] R. Ramanujam and S. P. Suresh. Decidability of context-explicit security protocols. Jour-
nal of Computer Security, 13(1):135–165, 2005.

[227] R. Rivest. The MD5 Message-Digest Algorithm. RFC 1321, The Internet Engineering
Task Force, April 1992.

[228] R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures and
Public Key Cryptosystems. Communications of the ACM, 21(2):120–126, February 1978.

[229] RSA Data Security, Inc. Public Key Cryptography Standards – PKCS.
Available from http://www.rsa.com/rsalabs/pubs/PKCS/.

[230] M. Rusinowitch and M. Turuani. Protocol insecurity with finite number of sessions is np-
complete. In Proc.14th IEEE Computer Security Foundations Workshop, Cape Breton,
Nova Scotia, June 2001.

[231] M. Ryan and B. Smyth. Applied pi calculus. In V. Cortier and S. Kremer, editors, Formal
Models and Techniques for Analyzing Security Protocols. IOS Press, To appear.

[232] C. P. Schnorr. Efficient Identification and Signatures for Smart Cards. In Crypto ’89,
LNCS 435, pages 235–251. Springer-Verlag, Berlin, 1990.

[233] C. P. Schnorr. Efficient Signature Generation by Smart Cards. Journal of Cryptology,
4(3):161–174, 1991.

[234] C. P. Schnorr and M. Jakobsson. Security of Signed ElGamal Encryption. In Asiacrypt
’00, LNCS 1976, pages 458–469. Springer-Verlag, Berlin, 2000.

[235] D. Shanks. Class Number, a Theory of Factorization, and Genera. In Proceedings of the
Symposium on Pure Mathematics, volume 20, pages 415–440. AMS, 1971.

[236] H. Shimizu. On the Improvement of the H̊astad Bound. In 1996 IEICE Fall Conference,
Volume A-162, 1996. In Japanese.



BIBLIOGRAPHY 213

[237] V. Shoup. Lower Bounds for Discrete Logarithms and Related Problems. In Eurocrypt
’97, LNCS 1233, pages 256–266. Springer-Verlag, Berlin, 1997.

[238] V. Shoup. OAEP Reconsidered. In Crypto ’01, LNCS 2139, pages 239–259. Springer-
Verlag, Berlin, 2001. Also appeared in the Cryptology ePrint Archive 2000/060. November
2000.
Available from http://eprint.iacr.org/.

[239] V. Shoup. OAEP Reconsidered. Journal of Cryptology, 15(4):223–249, September 2002.

[240] V. Shoup. Sequences of games: a tool for taming complexity in security proofs, 2004.
Cryptology ePrint Archive 2004/332.

[241] G. Smith and R. Alṕızar. Secure information flow with random assignment and encryption.
In 4th ACM Workshop on Formal Methods in Security Engineering (FMSE’06), pages 33–
43, Alexandria, Virginia, Nov. 2006.

[242] C. Sprenger, M. Backes, D. Basin, B. Pfitzmann, and M. Waidner. Cryptographically
sound theorem proving. In 19th IEEE Computer Security Foundations Workshop (CSFW-
19), pages 153–166, Venice, Italy, July 2006. IEEE.

[243] J. Stern, D. Pointcheval, J. Malone-Lee, and N. Smart. Flaws in Applying Proof Method-
ologies to Signature Schemes. In Crypto ’02, LNCS 2442, pages 93–110. Springer-Verlag,
Berlin, 2002.

[244] I. Tšahhirov and P. Laud. Application of dependency graphs to security protocol analysis.
In G. Barthe and C. Fournet, editors, 3rd Symposium on Trustworthy Global Computing
(TGC’07), volume 4912 of Lecture Notes on Computer Science, pages 294–311, Sophia-
Antipolis, France, Nov. 2007. Springer.

[245] Y. Tsiounis and M. Yung. On the Security of El Gamal based Encryption. In PKC ’98,
LNCS. Springer-Verlag, Berlin, 1998.

[246] S. Vaudenay. Cryptanalysis of the Chor-Rivest Scheme. In Crypto ’98, LNCS 1462, pages
243–256. Springer-Verlag, Berlin, 1998.

[247] B. Warinschi. A computational analysis of the Needham-Schröeder-(Lowe) protocol. In
Proceedings of the 16th IEEE Computer Security Foundations Workshop (CSFW’03).
IEEE Computer Society, 2003.

[248] C. Weidenbach. Towards an automatic analysis of security protocols in first-order logic.
In H. Ganzinger, editor, 16th International Conference on Automated Deduction (CADE-
16), volume 1632 of Lecture Notes in Artificial Intelligence, pages 314–328, Trento, Italy,
July 1999. Springer.

[249] T. Y. C. Woo and S. S. Lam. Authentication for distributed systems. Computer, 25(1):39–
52, Jan. 1992.

[250] T. Y. C. Woo and S. S. Lam. A semantic model for authentication protocols. In Pro-
ceedings IEEE Symposium on Research in Security and Privacy, pages 178–194, Oakland,
California, May 1993.

[251] T. Y. C. Woo and S. S. Lam. Authentication for distributed systems. In D. Denning and
P. Denning, editors, Internet Besieged: Countering Cyberspace Scofflaws, pages 319–355.
ACM Press and Addison-Wesley, Oct. 1997.


	I Modelling Protocols and Security Properties
	An Introductory Example
	An Informal Description
	A More Formal Analysis
	An Attack on the Fixed Version of the Protocol
	Further Readings
	Exercises

	A Small Process Calculus
	Preliminaries
	Messages
	Assembling Terms into Frames
	Deduction
	Static Equivalence

	Protocols
	Protocol Language
	Operational Semantics

	Security Properties
	Secrecy
	Correspondence Properties
	Guessing Attacks
	Equivalence Properties

	Further Readings
	Exercises


	II Verification in the Symbolic Setting
	Deducibility Constraints
	Intruder Deduction problem
	Preliminaries
	Decidability via Locality

	Deducibility constraints
	Decision Procedure
	Simplification Rules
	Completeness
	Complexity

	Further Readings
	Exercises

	Unbounded process verification
	Undecidability
	Structure and Main Features of ProVerif
	A Formal Model of Security Protocols
	Syntax and Informal Semantics
	Example
	Formal Semantics
	Security Properties
	Some Other Models

	The Horn Clause Representation of Protocols
	Definition of this Representation
	Resolution Algorithm

	Translation from the Pi Calculus
	Clauses for the Attacker
	Clauses for the Protocol
	Extension to Equational Theories
	Extension to Scenarios with Several Phases

	Extension to Correspondences
	From Secrecy to Correspondences
	Instrumented Processes
	Generation of Horn Clauses and Resolution
	Non-injective correspondences
	Sketch for injective correspondences

	Extension to the Proof of Observational Equivalences
	Weak Secrets
	Authenticity

	Applications
	Further Readings
	Exercises

	Static equivalence
	Definitions and Applications
	Static equivalence
	Applications of static equivalence
	Some properties of static equivalence
	Further readings

	Procedure for subterm convergent equational theories
	Preliminaries
	Deciding E in polynomial time for subterm convergent equational theories
	Deciding E vs deciding E
	Further readings

	Exercises

	Composition Results
	Motivation
	Parallel Composition under Shared Keys
	Theorem
	Main Steps of the Proof
	Applications

	From One Session to Many
	Protocol Transformation
	Composition Result
	Other ways of tagging

	Further Readings
	Exercises


	III Verification in the Computational Setting
	The Computational Model
	Introduction
	Exact Security and Practical Security

	Security Proofs and Security Arguments
	Computational Assumptions
	Complexity
	Practical Security
	The Random-Oracle Model
	The General Framework


	Provable Security
	Security Notions
	Public-Key Encryption
	Digital Signature Schemes

	The Computational Assumptions
	Integer Factoring and the RSA Problem
	The Discrete Logarithm and the Diffie-Hellman Problems

	Proof Methodology
	Exercises

	Public-Key Encryption Schemes
	Introduction
	The RSA Encryption Scheme
	The El Gamal Encryption Scheme

	The Cramer-Shoup Encryption Scheme
	Description
	Security Analysis

	A Generic Construction
	Description
	Security Analysis

	OAEP: the Optimal Asymmetric Encryption Padding
	Description
	About the Security
	The Actual Security of OAEP
	Intuition behind the Proof of Security


	Digital Signature Schemes
	Introduction
	Some Schemes
	The RSA Signature Scheme
	The Schnorr Signature Scheme

	DL-Based Signatures
	General Tools
	No-Message Attacks
	Chosen-Message Attacks

	RSA-Based Signatures
	Basic Proof of the FDH Signature
	Improved Security Result
	PSS: The Probabilistic Signature Scheme


	Automating Game-Based Proofs
	Introduction
	A Calculus for Games
	Syntax and Informal Semantics
	Example
	Observational Equivalence

	Game Transformations
	Syntactic Transformations
	Applying the Security Assumptions on Primitives

	Criteria for Proving Secrecy Properties
	Proof Strategy
	Experimental Results
	Conclusion
	More Exercises


	IV Links between the two Settings
	Soundness of Static Equivalence
	Security properties of symmetric encryption schemes
	The symbolic model
	Indistinguishability of ensembles
	The computational interpretation of terms
	Preliminary indistinguishability results relying on the property of the encryption scheme
	Proof of soundness of static equivalence: a special case
	The proof in the general case
	Completeness
	Predicate implementation
	Completeness
	Examples of computational structures




