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Cryptographic protocols everywhere!

Distributed programs that
use crypto primitives (encryption, digital signature ,...)

to ensure security properties (confidentiality, authentication,

anonymity,. . . )




Cryptographic protocols are tricky!
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Electronic voting
Elections are a security-sensitive process

. . "It's not who votes that counts.

which is the cornerstone of modern democ- It's who counts the votes.”
racy

Electronic voting promises

convenient, efficient and secure facility
for recording and tallying votes

for a variety of types of elections: from
small committees or on-line communities
through to full-scale national elections




Electronic voting
Elections are a security-sensitive process

. . "It's not who votes that counts.

which is the cornerstone of modern democ- It's who counts the votes.”
racy

Electronic voting promises

convenient, efficient and secure facility
for recording and tallying votes

for a variety of types of elections: from
small committees or on-line communities
through to full-scale national elections

E-voting may include:
use of voting machines in polling stations

remote voting, via Internet (i-voting)



Real-world Internet elections

Recent political legally binding Internet elections in Europe:
stepwise introduction in Switzerland (several cantons)
parliamentary election in Estonia (all eligible voters)

municipal and county elections in Norway (selected
municipalities, selected voter groups)

parliamentary elections in France (“expats”) in 2012

But also banned in Germany, Ireland, UK

Even more professional elections



Attacks!

Attacks by Alex Halderman and his team:

attack on pilot project for overseas and military voters:

took control of vote server, changed votes, removed root kit
present on server, ...

Indian voting machines: clip-on memory manipulator

Re-programmed e-voting machine used in US elections to play
pack-man
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Attacks!

Attacks by Alex Halderman and his team:

attack on pilot project for overseas and military voters:
took control of vote server, changed votes, removed root kit
present on server, ...

Indian voting machines: clip-on memory manipulator

Re-programmed e-voting machine used in US elections to play
pack-man

...and many more

There exist also attacks on paper based remote voting, e.g. attack
by Cortier et al. on a postal voting system used in CNRS elections



How can we avoid attacks?
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5.1.

Controle du protocole cryptographique

5.11

Criteres de contréle: le protocole doit étre conforme a I'objectif de sécurité et aux hypothe-
ses de confiance figurant dans le modéle abstrait décrit au ch. 4. Pour cela, il doit exister
une preuve cryptographique et une preuve symbolique. En ce qui concerne les composants
cryptographiques fondamentaux, les preuves peuvent étre apportées sur la base des hypo-
theses de sécurité généralement admises (par exemple « random oracle model », « deci-
sional Diffie-Hellman assumption » et « Fiat-Shamir heuristic »). Le protocole doit se fonder
si possible sur des protocoles éprouvés.




Symbolic models for protocol verification

Main ingredient of symbolic models

messages = terms
enc

RN
pair k
e N
S1 52

perfect cryptography (equational theories)
dec(enc(x,y),y) = x fst(pair(x,y)) = x snd(pair(x,y)) =y

the network is the attacker

messages can be eavesdropped
messages can be intercepted
messages can be injected

Dolev, Yao: On the Security of Public Key Protocols. FOCS'81



Modelling the protocol

Protocols modelled in a process calculus, e.g. the applied pi

calculus
P = 0
| in(c,x).P input
| out(c,t).P output
| if t; =t then P else Q@ conditional
| P|Q parallel
| 1P replication
|

new n.P restriction



Modelling the protocol

Protocols modelled in a process calculus, e.g. the applied pi

calculus
P = 0

| in(c,x).P input

| out(c,t).P output

| if t; =t then P else Q@ conditional

| P| @ parallel

| 1P replication

| new n.P restriction
Specificities:

messages are terms (not just names as in the pi calculus)

equality in conditionals interpreted modulo an equational
theory



Reasoning about attacker knowledge

Terms output by a process are organised in a frame:

d=new fi. {"/s,- " /x}



Reasoning about attacker knowledge

Terms output by a process are organised in a frame:
d=new fi. {"/s,- " /x}

Deducibility:
¢ FR tif Ris a public term and R¢ =g t

Example

k k k
@ = new ny, ny, kla k2- {enc(nl’ 1)/XlaenC(n2’ 2) /Xza ! /X3}

© l_dec(xl,X3) n © }7/ ny © |—1 1



Reasoning about attacker knowledge

Terms output by a process are organised in a frame:
d=new fi. {"/s,- " /x}

Static equivalence:
@1 ~s ¢ if V public terms R, R'.

Ré1 = R'¢1 < Rpp = R'¢»
Examples

new k. {enc(O,k)/Xl} ~¢ new k. {enC(l,k)/Xl}



Reasoning about attacker knowledge

Terms output by a process are organised in a frame:
d=new fi. {"/s,- " /x}

Static equivalence:
@1 ~s ¢ if V public terms R, R'.
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Examples
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Reasoning about attacker knowledge

Terms output by a process are organised in a frame:
d=new fi. {"/s,- " /x}

Static equivalence:
@1 ~s ¢ if V public terms R, R'.

Ré1 = R'¢1 < Rpp = R'¢»
Examples

(TR o b g} s (OR )
Check (dec(x1, x2) < 0)



From authentication to privacy

Many good tools:
AVISPA, Casper, Maude-NPA, ProVerif, Scyther, Tamarin, ...

Good at verifying trace properties (predicates on system
behavior), e.g.,

(weak) secrecy of a key

authentication (correspondence properties)

If B ended a session with A (and parameters p) then A
must have started a session with B (and parameters p').



From authentication to privacy

Many good tools:
AVISPA, Casper, Maude-NPA, ProVerif, Scyther, Tamarin, ...

Good at verifying trace properties (predicates on system
behavior), e.g.,

(weak) secrecy of a key
authentication (correspondence properties)

If B ended a session with A (and parameters p) then A
must have started a session with B (and parameters p').

Not all properties can be expressed on a trace.

~> recent interest in indistinguishability properties.



Indistinguishability as a process equivalence

Naturally modelled using equivalences from process calculi

Testing equivalence (P ~ Q)
for all processes A, we have that:

Al P | cif andonlyif, A| Q |l ¢

— P |l ¢ when P can send a message on the channel c.



Symbolic verification of e-voting protocols

What properties should an e-voting protocol satisfy?
How do we model these properties?
How van we verify these properties (automatically)?

What are the underlying trust assumptions?



Vote privacy

Anonymity of the vote:
no one should learn how | voted

14/27



Vote privacy

Anonymity of the vote:
no one should learn how | voted

We may want even more:

[N <1,

- i i i .
=Y Receipt-freeness/coercion-resistance:
| cannot prove to someone else how | voted

~~ avoid vote-buying / coercion



Election integrity through transparency

In traditional elections:
transparent ballot box

observers



Election integrity through transparency

-

In traditional elections: -
transparent ballot box ($j :‘\ 1
observers 1! I ] ! i

R 4

In e-voting: End-to-end Verifiability

Individual verifiability: vote cast as intended
e.g., voter checks his encrypted vote is on a public bulletin board

Universal verifiability: vote counted as casted
e.g., crypto proof that decryption was performed correctly

Eligibility verifiability: only eligible votes counted
e.g., crypto proof that every vote corresponds to a credential

~> Verify the election, not the system!



How to model vote privacy?
How can we model

“the attacker does not learn my vote (0 or 1)"?
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~~ but the attacker knows values 0 and 1
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The attacker cannot distinguish A votes and B votes:
Va(v) =~ Vg(v)
~> but identities are revealed
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How to model vote privacy?
How can we model

“the attacker does not learn my vote (0 or 1)"?
Fhe-attackereannottearnthevalueef-myvote

T | stingich_/ B :
Vatvy=Vp{v)

- | sticgesish A o and A |
Va(0)Vatl)

The attacker cannot distinguish the situation where two
honest voters swap votes:

Va(0) | VB(1) = Va(1) | V5(0)

K., Ryan: Analysis of an E-Voting Protocol in the Applied Pi Calculus. ESOP’'05
Delaune, K., Ryan: Verifying privacy-type properties of e-voting protocols. JCS'09



The Helios e-voting protocol (MixNet version)

authenticated channel BB

(idy, aenc(pkg, ri, v1))

Vl <id1?aenc(pkE? I, V1)>

where pkg is the election public key and MIX a verifiable mixnet.
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The Helios e-voting protocol (MixNet version)

authenticated channel BB MIX Ta”y
(idy, aenc(pkg, ri, v1)) .

Vl (id1, aenc(pkE? ri, vi)) : Y
(idy, aenc(pkg, 2, v2)) .

Vo (id2, aenc(pkg, 2, v2)) Vn
(idp, aenc(pkg, r3, vn)) . 4

Vn <Idn7 aenc(pkE7 rﬂ7 Vﬂ)> . Vl

where pkg is the election public key and MIX a verifiable mixnet.

?
Privacy: Helios(v1, v2) = Helios(v, v1) ~~ replay attack!

Cortier,Smyth: Attacking and Fixing Helios: An Analysis of Ballot Secrecy. CSF'11



The Helios e-voting protocol (MixNet version)

authenticated channel BB MIX Ta”y
(idy, aenc(pkg, r1, v1)) .

Vl (id1, aenc(pkE? ri, vi)) : L V2
(idy, aenc(pkg, 2, v2)) .

Vo (id2, aenc(pkg, 2, v2)) Vn
(idp, aenc(pkg, r3, vn)) . ’ )

Vn <Idn’ aenc(pkE7 rﬂ7 Vﬂ)> . Vl

where pkg is the election public key and MIX a verifiable mixnet.

?
Privacy: Helios(vy, v») ~; Helios(v», v1) ~- replay attack!

Fix: either use weeding, or zkp that voter knows encryption
randomness
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Which scenario should we analyse?
How many honest/dishonest voters?
Which authorities may be dishonest?

Are voters allowed to revote? How many times?
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private channels useful for encoding possibility to revote



Automated verification

Which scenario should we analyse?
How many honest/dishonest voters?
Which authorities may be dishonest?

Are voters allowed to revote? How many times?

Which tool to use?
verification of equivalence properties;

many crypto primitives, zero-knowledge proofs, ideally
homomorphic encryption;

private channels useful for encoding possibility to revote

All existing tools have some shortcomings.



3 Voters are enough!

For a “reasonable” class of e-voting protocols, for vote privacy
(including Helios, Belenios Civitas, Prét-a-Voter,...)

It is sufficient to consider 3 voters (2 honest + 1 dishonest).
When no revote is allowed 3 ballots are sufficient.

When revoting is allowed, 10 ballots are sufficient.

With identifiable ballots, 7 ballots are sufficient.



3 Voters are enough!

For a “reasonable” class of e-voting protocols, for vote privacy
(including Helios, Belenios Civitas, Prét-a-Voter,...)

It is sufficient to consider 3 voters (2 honest + 1 dishonest).
When no revote is allowed 3 ballots are sufficient.

When revoting is allowed, 10 ballots are sufficient.

With identifiable ballots, 7 ballots are sufficient.

Finite, but large number of scenarios!

Arapinis, Cortier, K.: When are three voters are enough for privacy properties?

ESORICS’16



DEEPSEC: DEcipiNG EQUIVALENCE PROPERTIES IN SECURITY PROTOCOLS

Decision procedure for trace equivalence
(no approximation, but high complexity coNEXP!)

Bounded number of sessions
(no replication; otherwise full applied pi)

Crypto primitives specified by
destructor subterm convergent rewrite systems

Tool implemented in OCaml:
https://github.com/DeepSec-prover/deepsec

Input language similar to (untyped) ProVerif

Possibility to distribute the verification
(on multiple cores and multiple machines)

Implements state-of-the art POR techniques

Cheval, K., Rakotonirina: DEEPSEC: Deciding equivalence properties in security
protocols — Theory and Practice IEEE S&P'18


https://github.com/DeepSec-prover/deepsec

Verification for a bounded number of sessions

Bounded number of sessions: why is it difficult?
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Verification for a bounded number of sessions

Bounded number of sessions: why is it difficult?

The state space is still infinite: unbounded number of attacker
inputs!

Idea: represent infinite number of possible inputs symbolically in
a constraint system

Example
in(c, x).P transitions to P but keeps a deduction constraint X -7 x
if t; = trthen Pelse Q : 2 transitions

to P with constraint t; =% t

to Q with constraint t; #5 t»



Constraint systems

A constraint system is a tuple C = (¢, D, E') where:
& = {axy = t1,...,ax, —> t,} is a frame;
D is a conjunction of deduction facts X F x:

. . . ? ?
E! is a conjunction of formulas u =% v or u #% v.

A solution is a pair of substitutions X, ¢ such that
®o X xo for all X ' x € D
uo i vo for all uav € E!

Note: X represents attacker inputs and constraints are such that
it completely defines o



Symbolic semantics

Symbolic semantics: associate a constraint system to the process
(sample rules)

(P U {if u= vthen Q},(¢,D,EY)) S, (PU{QY, (®,D,E'Au=] v))

(P U {in(c, x).QY, (, D, EV)) 1Y, (PU{Q}} (®,D A X F x, E1))
(P U {out(c,t).Q}, (¢,D,EL)) s (PU{Q}, (®U{ax > t},D,E))

out(c,ax)



Symbolic semantics

Symbolic semantics: associate a constraint system to the process
(sample rules)

(P U {if u= vthen Q},(¢,D,EY)) S, (PU{QY, (®,D,E'Au=] v))

(P U {in(c, x).QY, (, D, EV)) 1Y, (PU{Q}} (®,D A X F x, E1))
(P U {out(c,t).Q}, (¢,D,EL)) s (PU{Q}, (®U{ax > t},D,E))

out(c,ax)

Sound: if (A,C) L, (A, C') then for any (X,0) € Sol(C) we have
that Ac = Ao

Complete: if (¥,0) € Sol(C) and Ac 2= A’ then

(A,C) 5 (A,C) and X/, 0" € Sol(C') and A’ = A’



A simple example

P2

Q

(1>

in(c, x).if x = bthenout(c, 0) else out(c, x)
in(c, x).out(c, x)

PO

~
~

b e {0,1}
¢+ @ but P! %, Q (different behavior on input 1)



A simple example

Pb 2 in(c,x).if x = bthenout(c,0) elseout(c,x) b€ {0,1}
Q = in(c, x).out(c, x)

P% ~; @ but P! %, Q (different behavior on input 1)

Symbolic transitions tree:

out(c, ax1)

b in(c, (P2,C ) (P4uc4)
(PO ) C(Z)) (Pl ,C1 ) out(c, x1)
(PRl ——(Ph.Ch)
in(c, X) out(c, ax1)
(Qo0,Cp) ——,(21,C1) . (Q2,C2)
Ca = ({axy = x}L X x,0)
C? 2 ({axy = 0}, X F' x,x =% b)
C & ({axy = x}, X F' x,x #5 b)
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Build a joint symbolic execution tree

Partition solutions (split nodes): ensure static equivalences of all
solutions in a same node
~ done by constraint solving algorithm

(Qo,Co)
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Partition Tree

Build a joint symbolic execution tree

Partition solutions (split nodes): ensure static equivalences of all
solutions in a same node
~ done by constraint solving algorithm

(Qo,Cp) (e X) (Qy,C1), (P},Cf) out(c,ax1) (22,0),
(Pg,Co) s (P3,03), (P3.C3) s (Pi.CY), (P3,C3)

Need to partition: C§ enforces X = 0 and C{ enforces X # 0.



Partition Tree

Build a joint symbolic execution tree

Partition solutions (split nodes): ensure static equivalences of all
solutions in a same node
~ done by constraint solving algorithm

(Q2,C2),
out(c,ax;) (Ps,Cq)

(Q0,Cp) n(e:;X) (01,C1), (PY,CY) 2 X0

(PS.Co) — s (PLCD), (P5.C) e 1) (g, ),

s (P,C9)
X#0

Need to partition: C§ enforces X = 0 and C{ enforces X # 0.



Partition Tree

Build a joint symbolic execution tree

Partition solutions (split nodes): ensure static equivalences of all
solutions in a same node
~» done by constraint solving algorithm

(Q2> CZ)7
out(c, ax1) (792, Cz?)

(Qo.Co) MEX) (Qu.cr), (P.CD) 2 X=0

PO C . 0 0 0 o0 ,
( 0> (?)) s (P27 2)7 (7)37 3) 0@) (Q2,C2)7
s (Ps,C3)
X#£0

Need to partition: C§ enforces X = 0 and C enforces X # 0.
PO ~, Q: each leaf contains processes derived from P and Q.



Partition Tree

Build a joint symbolic execution tree

Partition solutions (split nodes): ensure static equivalences of all
solutions in a same node
~» done by constraint solving algorithm

(Q2,C2),

out(c,ax1) X =1

s

(Qo,Co) in(c, X) (Q1,C1), ('Pl,C ) out(c, ax1) (phci)
(P(}7C@) S (P217C2) (P37C3) out c axl) X=1
\ (Q2,0C),

s (Ps.Cs)

X#1

Need to partition more to ensure static equivalence inside nodes.
P! %, Q: leaves with processes only from P1.



DEEPSEC in practice

Verifying strong secrecy in classical authentication protocols

Protocol (# of roles)|Akiss| APTE | SPEC |Sat-Eq DeepSec‘

3 V28s |V 2s |/58m9s
6 X
7
14
v/ equivalence proved X out of scope
(v out of memory/stack overflow timeout (12H)

<ls

<ls

<1s
5m28s

Otway-Rees

3 /<Is|vV <1s |/ 1lls |/ <1s |/ <ls
6 /<Is|/ 1s / <ls |V <Is
Denning- 7 v/ 6s |V 3s v/ <1ls |V <l1s
Sacco 10 @ v 9m49 v/ <1ls |V <1s
12 v/ <ls |V <I1s
29 v/ <1s |/ 6s
3 V<Is|V <1Is |/ T7s |/ <ls |/ <ls
6 v/ 2s |/ 4ls v/ <ls |V <Is
Yahalom- 7 v 42s |/34m38s v/ 1s |V <1s
Lowe 10 ) v/ 1ls |/ <l1s
17 v/ 12s |/ 8s

v

v

v

v




DEEPSEC in practice

Verifying vote privacy on different versions of Helios

Helios variant (# roles) DeepSec
Vanilla 6 | 7 <ls
No revote Weeding 6 | v/ s
No revote ZKP 6 |V 2s

Dishonest revote Weeding | 10 | v'30m 24s
Dishonest revote ZKP 10 | v/ 9m 26s
Honest revote Weeding | 11 | / 2s

Honest revote ZKP 11 | v/ 2h 42m

Honest revote {Weeding|ZKP} means
1 honest voter revotes; 7 ballots accepted.

Several honest revotes still out-of-scope because of state explosion.



Conclusion

better understanding

T

formal verification e-voting

\/

new developments
State explosion: more general POR techniques in DEEPSEC
may enable verification of “full scenario™.

Nearly no work on verifiability. Still need for good definitions
that can be automatically verified.

E-voting on dishonest platforms: increases attacker power and
complicates the protocol.



