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The quest for formally analyzing e-voting
protocols

Steve Kremer

GT Méthodes Formelles pour la Sécurité
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Cryptographic protocols everywhere!

Distributed programs that
use crypto primitives (encryption, digital signature ,. . . )
to ensure security properties (confidentiality, authentication,
anonymity,. . . )
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Cryptographic protocols are tricky!

Bhargavan et al.:FREAK, Logjam, SLOTH, . . .
Cremers et al., S&P’16

Arapinis et al., CCS’12

Cortier & Smyth, CSF’11
Steel et al., CSF’08, CCS’10
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Electronic voting
Elections are a security-sensitive process
which is the cornerstone of modern democ-
racy

Electronic voting promises
convenient, efficient and secure facility
for recording and tallying votes
for a variety of types of elections: from
small committees or on-line communities
through to full-scale national elections

E-voting may include:

use of voting machines in polling stations
remote voting, via Internet (i-voting)
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Real-world Internet elections

Recent political legally binding Internet elections in Europe:
stepwise introduction in Switzerland (several cantons)
parliamentary election in Estonia (all eligible voters)
municipal and county elections in Norway (selected
municipalities, selected voter groups)
parliamentary elections in France (“expats”) in 2012

But also banned in Germany, Ireland, UK

Even more professional elections
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Attacks!

Attacks by Alex Halderman and his team:

attack on pilot project for overseas and military voters:
took control of vote server, changed votes, removed root kit
present on server, . . .
Indian voting machines: clip-on memory manipulator
Re-programmed e-voting machine used in US elections to play
pack-man
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Attacks!

Running PAC-MAN on a Sequaoia voting machine
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Attacks!

Attacks by Alex Halderman and his team:

attack on pilot project for overseas and military voters:
took control of vote server, changed votes, removed root kit
present on server, . . .
Indian voting machines: clip-on memory manipulator
Re-programmed e-voting machine used in US elections to play
pack-man

. . . and many more

There exist also attacks on paper based remote voting, e.g. attack
by Cortier et al. on a postal voting system used in CNRS elections
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How can we avoid attacks?
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Symbolic models for protocol verification
Main ingredient of symbolic models

messages = terms
enc

pair

s1 s2

k

perfect cryptography (equational theories)
dec(enc(x , y), y) = x fst(pair(x , y)) = x snd(pair(x , y)) = y

the network is the attacker
messages can be eavesdropped
messages can be intercepted
messages can be injected

Dolev, Yao: On the Security of Public Key Protocols. FOCS’81
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Modelling the protocol

Protocols modelled in a process calculus, e.g. the applied pi
calculus

P ::= 0
| in(c, x).P input
| out(c, t).P output
| if t1 = t2 then P else Q conditional
| P || Q parallel
| !P replication
| new n.P restriction

Specificities:

messages are terms (not just names as in the pi calculus)
equality in conditionals interpreted modulo an equational
theory
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Reasoning about attacker knowledge
Terms output by a process are organised in a frame:

φ = new n̄. {t1/x1 , . . . ,
tn /xn}
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Reasoning about attacker knowledge
Terms output by a process are organised in a frame:

φ = new n̄. {t1/x1 , . . . ,
tn /xn}

Deducibility:
φ `R t if R is a public term and Rφ =E t

Example

ϕ = new n1, n2, k1, k2. {enc(n1,k1)/x1 ,
enc(n2,k2) /x2 ,

k1 /x3}

ϕ `dec(x1,x3) n1 ϕ 6` n2 ϕ `1 1
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Reasoning about attacker knowledge
Terms output by a process are organised in a frame:

φ = new n̄. {t1/x1 , . . . ,
tn /xn}

Static equivalence:
φ1 ∼s φ2 if ∀ public terms R,R ′.

Rφ1 = R ′φ1 ⇔ Rφ2 = R ′φ2

Examples

new k. {enc(0,k)/x1} ∼s new k. {enc(1,k)/x1}
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Reasoning about attacker knowledge
Terms output by a process are organised in a frame:

φ = new n̄. {t1/x1 , . . . ,
tn /xn}

Static equivalence:
φ1 ∼s φ2 if ∀ public terms R,R ′.

Rφ1 = R ′φ1 ⇔ Rφ2 = R ′φ2

Examples

{enc(n,k)/x1 ,
k /x2} 6∼s {enc(0,k)/x1 ,

k /x2}

Check (dec(x1, x2) ?= 0)
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From authentication to privacy

Many good tools:
AVISPA, Casper, Maude-NPA, ProVerif, Scyther, Tamarin, . . .

Good at verifying trace properties (predicates on system
behavior), e.g.,

(weak) secrecy of a key
authentication (correspondence properties)

If B ended a session with A (and parameters p) then A
must have started a session with B (and parameters p′).

Not all properties can be expressed on a trace.

 recent interest in indistinguishability properties.
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Indistinguishability as a process equivalence

Naturally modelled using equivalences from process calculi

Testing equivalence (P ≈ Q)
for all processes A, we have that:

A | P ⇓ c if, and only if, A | Q ⇓ c

−→ P ⇓ c when P can send a message on the channel c.
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Symbolic verification of e-voting protocols

What properties should an e-voting protocol satisfy?

How do we model these properties?

How van we verify these properties (automatically)?

What are the underlying trust assumptions?
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Vote privacy

Anonymity of the vote:
no one should learn how I voted

We may want even more:

Receipt-freeness/coercion-resistance:
I cannot prove to someone else how I voted

 avoid vote-buying / coercion
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Election integrity through transparency

In traditional elections:
transparent ballot box
observers
. . .

In e-voting: End-to-end Verifiability

Individual verifiability: vote cast as intended
e.g., voter checks his encrypted vote is on a public bulletin board
Universal verifiability: vote counted as casted
e.g., crypto proof that decryption was performed correctly
Eligibility verifiability: only eligible votes counted
e.g., crypto proof that every vote corresponds to a credential

 Verify the election, not the system!
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How to model vote privacy?
How can we model

“the attacker does not learn my vote (0 or 1)”?

The attacker cannot learn the value of my vote

 but the attacker knows values 0 and 1

The attacker cannot distinguish A votes and B votes:
VA(v) ≈ VB(v)

 but identities are revealed

The attacker cannot distinguish A votes 0 and A votes 1:
VA(0) ≈ VA(1)

 but election outcome is revealed

The attacker cannot distinguish the situation where two
honest voters swap votes:

VA(0) || VB(1) ≈ VA(1) || VB(0)

K., Ryan: Analysis of an E-Voting Protocol in the Applied Pi Calculus. ESOP’05
Delaune, K., Ryan: Verifying privacy-type properties of e-voting protocols. JCS’09
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The Helios e-voting protocol (MixNet version)

V1

V2
...

Vn

〈id1, aenc(pkE , r1, v1)〉

〈id2, aenc(pkE , r2, v2)〉
...

〈idn, aenc(pkE , rn, vn)〉

〈id1, aenc(pkE , r1, v1)〉

〈id2, aenc(pkE , r2, v2)〉

〈idn, aenc(pkE , r3, vn)〉

v2
vn

v1

BBauthenticated channel

MIX Tally

where pkE is the election public key and MIX a verifiable mixnet.

Privacy: Helios(v1, v2) ?≈t Helios(v2, v1)  replay attack!
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Cortier,Smyth: Attacking and Fixing Helios: An Analysis of Ballot Secrecy. CSF’11
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The Helios e-voting protocol (MixNet version)

V1
V2
...

Vn

〈id1, aenc(pkE , r1, v1)〉
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BBauthenticated channel MIX Tally

where pkE is the election public key and MIX a verifiable mixnet.

Privacy: Helios(v1, v2) ?≈t Helios(v2, v1)  replay attack!

Fix: either use weeding, or zkp that voter knows encryption
randomness



18/27

Automated verification

Which scenario should we analyse?
How many honest/dishonest voters?
Which authorities may be dishonest?
Are voters allowed to revote? How many times?

Which tool to use?
verification of equivalence properties;
many crypto primitives, zero-knowledge proofs, ideally
homomorphic encryption;
private channels useful for encoding possibility to revote

All existing tools have some shortcomings.
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3 Voters are enough!

For a “reasonable” class of e-voting protocols, for vote privacy
(including Helios, Belenios Civitas, Prêt-à-Voter,. . . )

It is sufficient to consider 3 voters (2 honest + 1 dishonest).
When no revote is allowed 3 ballots are sufficient.
When revoting is allowed, 10 ballots are sufficient.
With identifiable ballots, 7 ballots are sufficient.

Finite, but large number of scenarios!

Arapinis, Cortier, K.: When are three voters are enough for privacy properties?
ESORICS’16
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deepsec: DEciding Equivalence Properties in SECurity protocols

Decision procedure for trace equivalence
(no approximation, but high complexity coNEXP!)
Bounded number of sessions
(no replication; otherwise full applied pi)
Crypto primitives specified by
destructor subterm convergent rewrite systems

Tool implemented in OCaml:
https://github.com/DeepSec-prover/deepsec

Input language similar to (untyped) ProVerif
Possibility to distribute the verification
(on multiple cores and multiple machines)

Implements state-of-the art POR techniques

Cheval, K., Rakotonirina: DEEPSEC: Deciding equivalence properties in security
protocols – Theory and Practice IEEE S&P’18

https://github.com/DeepSec-prover/deepsec
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Verification for a bounded number of sessions

Bounded number of sessions: why is it difficult?

The state space is still infinite: unbounded number of attacker
inputs!

Idea: represent infinite number of possible inputs symbolically in
a constraint system

Example
in(c, x).P transitions to P but keeps a deduction constraint X `? x

if t1 = t2 then P else Q : 2 transitions
to P with constraint t1 =?

R t2

to Q with constraint t1 6=?
R t2
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Constraint systems

A constraint system is a tuple C = (Φ,D,E1) where:
Φ = {ax1 7→ t1, . . . , axn 7→ tn} is a frame;
D is a conjunction of deduction facts X `? x ;
E1 is a conjunction of formulas u =?

R v or u 6=?
R v .

A solution is a pair of substitutions Σ, σ such that
Φσ `XΣ xσ for all X `? x ∈ D
uσ ./ vσ for all u ./ v ∈ E1

Note: Σ represents attacker inputs and constraints are such that
it completely defines σ
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Symbolic semantics

Symbolic semantics: associate a constraint system to the process
(sample rules)

(P ∪ {{if u = v then Q}}, (Φ,D,E1)) ε−→s (P ∪ {{Q}}, (Φ,D,E1 ∧ u =?
R v))

(P ∪ {{in(c, x).Q}}, (Φ,D,E1)) in(c,X)−−−−→s (P ∪ {{Q}}, (Φ,D ∧ X `? x ,E1))
(P ∪ {{out(c, t).Q}}, (Φ,D,E1)) out(c,ax)−−−−−→s (P ∪ {{Q}}, (Φ ∪ {ax 7→ t},D,E1))

Sound: if (A, C) `−→s (A′, C′) then for any (Σ, σ) ∈ Sol(C) we have
that Aσ `Σ−→ A′σ

Complete: if (Σ, σ) ∈ Sol(C) and Aσ `Σ−→ A′ then
(A, C) `−→s (A′, C′) and Σ′, σ′ ∈ Sol(C ′) and A′′σ′ = A′
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Symbolic semantics

Symbolic semantics: associate a constraint system to the process
(sample rules)

(P ∪ {{if u = v then Q}}, (Φ,D,E1)) ε−→s (P ∪ {{Q}}, (Φ,D,E1 ∧ u =?
R v))

(P ∪ {{in(c, x).Q}}, (Φ,D,E1)) in(c,X)−−−−→s (P ∪ {{Q}}, (Φ,D ∧ X `? x ,E1))
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Sound: if (A, C) `−→s (A′, C′) then for any (Σ, σ) ∈ Sol(C) we have
that Aσ `Σ−→ A′σ

Complete: if (Σ, σ) ∈ Sol(C) and Aσ `Σ−→ A′ then
(A, C) `−→s (A′, C′) and Σ′, σ′ ∈ Sol(C ′) and A′′σ′ = A′
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A simple example

Pb , in(c, x). if x = b then out(c, 0) else out(c, x) b ∈ {0, 1}
Q , in(c, x).out(c, x)

P0 ≈t Q but P1 6≈t Q (different behavior on input 1)

Symbolic transitions tree:

(Pb
0 , C∅) (Pb

1 , Cb
1 )

(Pb
2 , Cb

2 )

(Pb
3 , Cb

3 )

(Pb
4 , Cb

4 )

(Pb
5 , Cb

5 )

in(c, X)
s

ε
sε

s

out(c, ax1)
s

out(c, ax1)
s

(Q0, C∅) (Q1, C1 ) (Q2, C2)
in(c, X)

s
out(c, ax1)

s

C2 , ({ax1 7→ x},X `? x , ∅)
Cb

4 , ({ax1 7→ 0},X `? x , x =?
R b)

Cb
4 , ({ax1 7→ x},X `? x , x 6=?

R b)
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Partition Tree

Build a joint symbolic execution tree

Partition solutions (split nodes): ensure static equivalences of all
solutions in a same node
 done by constraint solving algorithm

(Q0, C∅)
(P0

0 , C∅)

( Q1, C1 ), (P0
1 , C0

1 )
(P0

2 , C0
2 ), (P0

3 , C0
3 )

in(c, X)
s

( Q2, C2 ),
(P0

4 , C0
4 ), (P0

5 , C0
5 )

out(c, ax1)
s

(Q2, C2),
(P0

4 , C0
4 )

X = 0
out(c, ax1)

s

(Q2, C2),
(P0

5 , C0
5 )

X 6= 0

out(c, ax1)

s

(Q2, C2),
X = 1out(c, ax1)

s
(P1

4 , C1
4 )

X = 1
out(c, ax1)

s
(Q2, C2),
(P0

5 , C0
5 )

X 6= 1

out(c, ax1)

s
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Need to partition: C0
4 enforces X = 0 and C0

5 enforces X 6= 0.
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Need to partition: C0
4 enforces X = 0 and C0

5 enforces X 6= 0.
P0 ≈t Q: each leaf contains processes derived from P0 and Q.



25/27

Partition Tree

Build a joint symbolic execution tree

Partition solutions (split nodes): ensure static equivalences of all
solutions in a same node
 done by constraint solving algorithm

(Q0, C∅)
(P1

0 , C∅)
( Q1, C1 ), (P1

1 , C1
1 )

(P1
2 , C1

2 ), (P1
3 , C1

3 )
in(c, X)

s

( Q2, C2 ),
(P1

4 , C1
4 ), (P1

5 , C1
5 )

out(c, ax1)
s

(Q2, C2),
(P0

4 , C0
4 )

X = 0
out(c, ax1)

s

(Q2, C2),
(P1

5 , C1
5 )

X 6= 0

out(c, ax1)

s

(Q2, C2),
X = 1out(c, ax1)

s
(P1

4 , C1
4 )

X = 1
out(c, ax1)

s
(Q2, C2),
(P0

5 , C0
5 )

X 6= 1

out(c, ax1)

s

Need to partition more to ensure static equivalence inside nodes.
P1 6≈t Q: leaves with processes only from P1.
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deepsec in practice
Verifying strong secrecy in classical authentication protocols

Protocol (# of roles) Akiss APTE SPEC Sat-Eq DeepSec

Denning-
Sacco

3 3<1s 3 <1s 3 11s 3 <1s 3 <1s
6 3<1s 3 1s OM 3 <1s 3 <1s
7 3 6s 3 3s 3 <1s 3 <1s

10 OM 3 9m49 3 <1s 3 <1s
12 � 3 <1s 3 <1s
29 3 <1s 3 6s

Yahalom-
Lowe

3 3<1s 3 <1s 3 7s 3 <1s 3 <1s
6 3 2s 3 41s OM 3 <1s 3 <1s
7 3 42s 334m38s 3 1s 3 <1s

10 OM � 3 1s 3 <1s
17 3 12s 3 8s

Otway-Rees

3 3 28s 3 2s 358m9s

7

3 <1s
6 OM OM � 3 <1s
7 3 <1s

14 3 5m28s
3 equivalence proved 7 out of scope

OM out of memory/stack overflow � timeout (12H)
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deepsec in practice

Verifying vote privacy on different versions of Helios

Helios variant (# roles) DeepSec
Vanilla 6 E <1s

No revote Weeding 6 3 1s
No revote ZKP 6 3 2s

Dishonest revote Weeding 10 330m 24s
Dishonest revote ZKP 10 3 9m 26s

Honest revote Weeding 11 E 2s
Honest revote ZKP 11 3 2h 42m

Honest revote {Weeding|ZKP} means
1 honest voter revotes; 7 ballots accepted.

Several honest revotes still out-of-scope because of state explosion.
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Conclusion

formal verification e-voting

better understanding

new developments

State explosion: more general POR techniques in deepsec
may enable verification of “full scenario”.

Nearly no work on verifiability. Still need for good definitions
that can be automatically verified.

E-voting on dishonest platforms: increases attacker power and
complicates the protocol.


