Symbolic Verification of Cryptographic Protocols Protocol Equivalences

David Baelde

LSV, ENS Paris-Saclay

2019-2020

The first equivalence does not involve process executions, but only sequences of messages.

When are two sequences of messages distinguishable?

Examples

• $\langle u, v, v \rangle \sim \langle v, u, v \rangle$?

The first equivalence does not involve process executions, but only sequences of messages.

When are two sequences of messages distinguishable?

- $\langle u, v, v \rangle \sim \langle v, u, v \rangle$?
- $\langle n \rangle \sim \langle n' \rangle$? $\langle \langle n, m \rangle \rangle \sim \langle \langle n', n' \rangle \rangle$?

The first equivalence does not involve process executions, but only sequences of messages.

When are two sequences of messages distinguishable?

- $\langle u, v, v \rangle \sim \langle v, u, v \rangle$?
- $\langle n \rangle \sim \langle n' \rangle$? $\langle \langle n, m \rangle \rangle \sim \langle \langle n', n' \rangle \rangle$?
- $\langle \langle u, v \rangle \rangle \sim \langle n' \rangle$? $\langle \text{senc}(u, k) \rangle \sim \langle n' \rangle$?

The first equivalence does not involve process executions, but only sequences of messages.

When are two sequences of messages distinguishable?

- $\langle u, v, v \rangle \sim \langle v, u, v \rangle$?
- $\langle n \rangle \sim \langle n' \rangle$? $\langle \langle n, m \rangle \rangle \sim \langle \langle n', n' \rangle \rangle$?
- $\langle \langle u, v \rangle \rangle \sim \langle n' \rangle$? $\langle \text{senc}(u, k) \rangle \sim \langle n' \rangle$?
- $\langle \operatorname{senc}(u,k) \rangle \sim \langle \operatorname{senc}(v,k) \rangle$? $\langle \operatorname{senc}(u,k) \rangle \sim \langle \operatorname{senc}(u,k') \rangle$?

The first equivalence does not involve process executions, but only sequences of messages.

When are two sequences of messages distinguishable?

- $\langle u, v, v \rangle \sim \langle v, u, v \rangle$?
- $\langle n \rangle \sim \langle n' \rangle$? $\langle \langle n, m \rangle \rangle \sim \langle \langle n', n' \rangle \rangle$?
- $\langle \langle u, v \rangle \rangle \sim \langle n' \rangle$? $\langle \text{senc}(u, k) \rangle \sim \langle n' \rangle$?
- $\langle \operatorname{senc}(u,k) \rangle \sim \langle \operatorname{senc}(v,k) \rangle$? $\langle \operatorname{senc}(u,k) \rangle \sim \langle \operatorname{senc}(u,k') \rangle$?
- $\langle \operatorname{aenc}(u, pk), u, pk \rangle \sim \langle \operatorname{aenc}(v, pk), u, pk \rangle$?

```
As before, consider frames in \mathcal{N}^* \times (\mathcal{W} \to \mathcal{T}_c(\mathcal{N})):

1^{\text{st}} component = bound/private names, noted bn(\Phi);

2^{\text{nd}} component = intruder's knowledge, addressed via handles of dom(\Phi).
```

Definition

Two frames Φ_1 and Φ_2 are statically equivalent when

- they have the same domain: $dom(\Phi_1) = dom(\Phi_2)$;
- for all $M \in \mathcal{T}(\mathcal{W} \cup \mathcal{N} \setminus \mathsf{bn}(\Phi_1, \Phi_2))$, $M\Phi_1 \Downarrow$ iff $M\Phi_2 \Downarrow$;
- for all $M, N \in \mathcal{T}(\mathcal{W} \cup \mathcal{N} \setminus bn(\Phi_1, \Phi_2))$, $M\Phi_1 \Downarrow =_E N\Phi_1 \Downarrow \text{ iff } M\Phi_2 \Downarrow =_E N\Phi_2 \Downarrow$.

Proposition

Static equivalence is an equivalence. It is stable by bijective renaming.

Beware: $\Phi_1 \sim \Phi_1'$ and $\Phi_2 \sim \Phi_2' \not\Rightarrow \Phi_1 \uplus \Phi_2 \sim \Phi_1' \uplus \Phi_2'$.

Static equivalence: examples

Suppose we have only constructors and the standard equations for pairs and (a)symmetric encryption.

Examples (bis)

- $\bullet \ \{w_1 \mapsto u, w_2 \mapsto v, w_3 \mapsto v\} \sim \{w_1 \mapsto v, w_2 \mapsto u, w_3 \mapsto v\} ?$
- $\{w \mapsto n\} \sim \{w \mapsto n'\}$? $\{w \mapsto \langle n, m \rangle\} \sim \{w \mapsto \langle n', n' \rangle\}$?
- $\{w \mapsto \langle u, v \rangle\} \sim \{w \mapsto n'\}$? $\{w \mapsto \operatorname{senc}(u, k)\} \sim \{w \mapsto n'\}$?
- $\{w \mapsto \operatorname{senc}(u, k)\} \sim \{w \mapsto \operatorname{senc}(v, k)\}$? $\{w \mapsto \operatorname{senc}(u, k)\} \sim \{w \mapsto \operatorname{senc}(u, k')\}$?
- $\{w \mapsto \operatorname{aenc}(u, pk), w' \mapsto u, w'' \mapsto pk\} \sim \{w \mapsto \operatorname{aenc}(v, pk), w' \mapsto u, w'' \mapsto pk\}$?

Application: guessing attacks

We usually assume that secrets cannot be guessed: no brute force attacks.

That is not reasonable for low/fixed entropy secrets, such as PIN, passwords, one-time verification code, etc.

Offline guessing attacks

A protocol is resistant against offline guessing attacks on some name d when any reachable frame Φ is such that

$$\Phi \cup \{w \mapsto d\} \sim \Phi \cup \{w \mapsto d'\}$$
 for w, d' fresh.

This notion is meaningful even with a passive adversary.

Application: EKE

Assume public-key encryption but no PKI (public keys \neq identities). A and B only share a weak password p, want to authenticate.

1. $A \rightarrow B$: $\operatorname{senc}(\operatorname{pub}(k), p)$ 2. $B \rightarrow A$: $\operatorname{senc}(\operatorname{aenc}(r, \operatorname{pub}(k)), p)$ 3. $A \rightarrow B$: $\operatorname{senc}(n_a, r)$ 4. $B \rightarrow A$: $\operatorname{senc}(\langle n_a, n_b \rangle, r)$ 5. $A \rightarrow B$: $\operatorname{senc}(n_b, r)$

Application: EKE

Assume public-key encryption but no PKI (public keys \neq identities). A and B only share a weak password p, want to authenticate.

- 1. $A \rightarrow B$: $\operatorname{senc}(\operatorname{pub}(k), p)$ 2. $B \rightarrow A$: $\operatorname{senc}(\operatorname{aenc}(r, \operatorname{pub}(k)), p)$ 3. $A \rightarrow B$: $\operatorname{senc}(n_a, r)$ 4. $B \rightarrow A$: $\operatorname{senc}(\langle n_a, n_b \rangle, r)$ 5. $A \rightarrow B$: $\operatorname{senc}(n_b, r)$
- Let $\Phi = \{w_1 \mapsto \operatorname{senc}(\operatorname{pub}(k), p), \ldots, w_5 \mapsto \operatorname{senc}(n_b, r)\}.$ Can p be guessed offline, that is

$$\Phi \cup \{w \mapsto p\} \sim \Phi \cup \{w \mapsto p'\} ?$$

Application: EKE

Assume public-key encryption but no PKI (public keys \neq identities). A and B only share a weak password p, want to authenticate.

- 1. $A \rightarrow B$: senc(pub(k), p) 2. $B \rightarrow A$: senc(aenc(r, pub(k)), p)
- 3. $A \rightarrow B$: senc (n_a, r)
- 4. $B \rightarrow A$: $senc(\langle n_a, n_b \rangle, r)$
- 5. $A \rightarrow B$: $senc(n_b, r)$

Let $\Phi = \{w_1 \mapsto \operatorname{senc}(\operatorname{pub}(k), p), \ldots, w_5 \mapsto \operatorname{senc}(n_b, r)\}.$ Can p be guessed offline, that is

$$\Phi \cup \{w \mapsto p\} \sim \Phi \cup \{w \mapsto p'\}$$
?

Only if senc(sdec(x, y), y) = x... and no getkey primitive for aenc.

May testing

The reduction semantics (cf. previous lectures) provide a first natural definition of when two processes can be distinguished.

Definition

A test is a process with no free name and in which a special channel \mathbb{T} may occur. A process P may pass a test T, written $P \models T$ if

$$P \mid T \leadsto^* \operatorname{out}(\mathbb{T}, u) \mid Q$$
 for some u and Q .

Let
$$T(P) := \{ T \mid P \models T \}.$$

Processes P and Q are in may-testing equivalence when T(P) = T(Q).

May testing

The reduction semantics (cf. previous lectures) provide a first natural definition of when two processes can be distinguished.

Definition

A test is a process with no free name and in which a special channel \mathbb{T} may occur. A process P may pass a test T, written $P \models T$ if

$$P \mid T \leadsto^* \operatorname{out}(\mathbb{T}, u) \mid Q$$
 for some u and Q .

Let $T(P) := \{ T \mid P \models T \}$. Processes P and Q are in may-testing equivalence when T(P) = T(Q).

Arguably the most natural notion of equivalence in the symbolic model.

May testing

The reduction semantics (cf. previous lectures) provide a first natural definition of when two processes can be distinguished.

Definition

A test is a process with no free name and in which a special channel \mathbb{T} may occur. A process P may pass a test T, written $P \models T$ if

$$P \mid T \leadsto^* \operatorname{out}(\mathbb{T}, u) \mid Q$$
 for some u and Q .

Let $T(P) := \{ T \mid P \models T \}$. Processes P and Q are in may-testing equivalence when T(P) = T(Q).

Arguably the most natural notion of equivalence in the symbolic model. As such, may testing equivalence is hard to verify!

Trace equivalence

Weak labelled transitions

We write $A \stackrel{\mathsf{tr}}{\Rightarrow} B$ when:

- tr only contains input and output actions (no τ);
- there exists tr' obtained from tr by adding τ s such that $A \xrightarrow{\operatorname{tr'}} B$.

Definition

Given a configuration $A = (P, \Phi)$, define

$$\mathsf{Tr}(A) := \{ (\mathsf{tr}, \Phi') \mid A \stackrel{\mathsf{tr}}{\Rightarrow} (\underline{\hspace{1em}}, \Phi') \}.$$

We say that A and B are trace equivalent, noted $A \approx B$, iff

for all $(\operatorname{tr},\Phi')\in\operatorname{Tr}(A)$ there exists $(\operatorname{tr},\Psi')\in\operatorname{Tr}(B)$ such that $\Phi'\sim\Psi'$

Alternative definition

Proposition

Close $Tr(\cdot)$ under static equivalence:

$$\mathsf{Tr}'(P,\Phi) := \{ (\mathsf{tr},\Phi') \mid (P,\Phi) \stackrel{\mathsf{tr}}{\Rightarrow} (P',\Phi''), \; \Phi'' \sim \Phi' \; \}$$

Then we have $A \approx B$ iff Tr'(A) = Tr'(B).

Remarks

- $A \approx B$ imposes $\Phi(A) \sim \Phi(B)$, but not $\Phi(A) = \Phi(B)$.
- The definition really makes sense only when $bn(\Phi(A)) = bn(\Phi(B))$.
- In general we do not have that $\Phi \sim \Psi$ implies $(P, \Phi) \approx (P, \Psi)$.

- in(c,x).out $(c,ok) \approx$? in(c,x).out(c,x)
- 1 new n, m. out(c, n).out $(c, m) \approx$? new n, m. out(c, n) out(c, m)
- new n, m. out(c, n).out $(c, m) \approx$? new n. out(c, n).out(c, hash(n))
- $\operatorname{out}(c, u_1)....\operatorname{out}(c, u_n).\operatorname{in}(c, x).\operatorname{if} x = v \text{ then } \operatorname{out}(c, \operatorname{ok}) \approx^? \operatorname{out}(c, u_1)....\operatorname{out}(c, u_n).\operatorname{in}(c, x).0$

Trace equivalence \subseteq may-testing?

Proposition

If $(P,\emptyset) \approx (Q,\emptyset)$ then they are in may-testing equivalence. . .

Trace equivalence \subseteq may-testing?

Proposition

If $(P,\emptyset) \approx (Q,\emptyset)$ then they are in may-testing equivalence... provided computation is deterministic, i.e. for all t, u and v such that $t \downarrow u$, we have $t \downarrow v$ iff $u =_{\mathsf{F}} v$.

Trace equivalence \subseteq may-testing?

Proposition

If $(P,\emptyset) \approx (Q,\emptyset)$ then they are in may-testing equivalence... provided computation is deterministic, i.e. for all t, u and v such that $t \Downarrow u$, we have $t \Downarrow v$ iff $u =_{\mathsf{E}} v$.

Proof idea.

Decompose $P \mid T \rightsquigarrow^* \operatorname{out}(\mathbb{T},\underline{\ }) \mid \underline{\ }$ into internal reductions of P and T, and communications between the two. This yields a trace of P, which Q can simulate. Compose this with the reductions of T to obtain $Q \mid T \rightsquigarrow^* \operatorname{out}(\mathbb{T},\underline{\ }) \mid \underline{\ }$.

Devil is in the details! there is a counter-example when computation is non-deterministic because traces do not keep track of how recipes are evaluated.

Proposition

If P and Q are may-testing equivalent then $P \approx Q, \ldots$

Proposition

If P and Q are may-testing equivalent then $P \approx Q$, provided the processes are image-finite:

for any tr,
$$\{ \Phi \mid (\mathsf{tr}, \Phi) \in \mathsf{Tr}'(P, \emptyset) \}$$
 is finite up to \sim

and similarly for Q.

Proposition

If P and Q are may-testing equivalent then $P \approx Q$, provided the processes are image-finite:

for any tr,
$$\{ \Phi \mid (\mathsf{tr}, \Phi) \in \mathsf{Tr}'(P, \emptyset) \}$$
 is finite up to \sim

and similarly for Q.

Counter-example (assuming a private channel)

$$P := \text{new } c. \ (\text{out}(c, \text{ok}) \mid ! \text{in}(c, x).\text{out}(c, h(x)) \mid \text{in}(c, x).\text{out}(a, x))$$

$$Q := P \mid \text{new } n. \text{ out}(a, n)$$

We have $P \not\approx Q$ but P and Q are in may-testing equivalence.

Proposition

If P and Q are may-testing equivalent then $P \approx Q$, provided the processes are image-finite:

for any tr,
$$\{ \Phi \mid (\mathsf{tr}, \Phi) \in \mathsf{Tr}'(P, \emptyset) \}$$
 is finite up to \sim

and similarly for Q.

Counter-example (assuming a private channel)

$$P := \text{new } c. \ (\text{out}(c, \text{ok}) \mid ! \text{in}(c, x).\text{out}(c, h(x)) \mid \text{in}(c, x).\text{out}(a, x))$$

$$Q := P \mid \text{new } n. \text{ out}(a, n)$$

We have $P \not\approx Q$ but P and Q are in may-testing equivalence.

This is "only" pathological!

Application: strong secrecy

Definition

A protocol P ensures the strong secrecy of some variables \vec{x} if, for all (relevant) values \vec{u} , \vec{v} , $P[\vec{x} := \vec{u}] \approx P[\vec{x} := \vec{v}]$.

Weak secrecy: some value cannot be (fully) derived by the attacker. Strong secrecy: the attacker has no information at all about the value.

Application: strong secrecy

Definition

A protocol P ensures the strong secrecy of some variables \vec{x} if, for all (relevant) values \vec{u} , \vec{v} , $P[\vec{x} := \vec{u}] \approx P[\vec{x} := \vec{v}]$.

Weak secrecy: some value cannot be (fully) derived by the attacker. Strong secrecy: the attacker has no information at all about the value.

Blanchet's key exchange protocol:

- 1. $A \rightarrow B$: aenc(sign($\langle pk_A, pk_B, k \rangle, sk_A$), pk_B)
- 2. $B \rightarrow A$: senc(x, k)
- 3. $A \rightarrow B$: senc(y, k)

Scenario: A and B honest. Is x strongly secret? Is x, y strongly secret?

Application: private authentication

Agents A and B want to authenticate, without revealing their identities.

$I(sk_a, pk_b)$	$R(sk_b, pk_a)$
new n_a .	new n_b .
$let pk_a = pub(sk_a) in$	$let pk_b = pub(sk_b) in$
$\operatorname{out}(c,\operatorname{aenc}(\langle n_a,pk_a\rangle,pk_b)).$	$in(c,x).let y = adec(x, sk_b) in$
	$\operatorname{in}(c,x).\operatorname{let} y = \operatorname{adec}(x,sk_b)$ in $\operatorname{if} \operatorname{proj}_2(y) = pk_a$ then $\operatorname{out}(c,\operatorname{aenc}(\langle \operatorname{proj}_1(y),n_b,pk_b\rangle,pk_a))$
	$\operatorname{out}(c,\operatorname{aenc}(\langle\operatorname{proj}_1(y),n_b,pk_b\rangle,pk_a))$

Anonymity

```
new sk_a, sk_b, sk_c. out(c, \langle pub(sk_a), pub(sk_b), pub(sk_c) \rangle).R(sk_b, pub(sk_a)) \approx? new sk_a, sk_b, sk_c. out(c, \langle pub(sk_a), pub(sk_b), pub(sk_c) \rangle).R(sk_b, pub(sk_c))
```

Application: private authentication

Agents A and B want to authenticate, without revealing their identities.

$I(sk_a, pk_b)$	$R(sk_b, pk_a)$
new n_a .	new n_b .
$let pk_a = pub(sk_a) in$	let $pk_b = pub(sk_b)$ in
$\operatorname{out}(c,\operatorname{aenc}(\langle n_a,pk_a\rangle,pk_b)).$	$in(c,x).let y = adec(x, sk_b) in$
	if $\operatorname{proj}_2(y) = pk_a$ then $\operatorname{out}(c, \operatorname{aenc}(\langle \operatorname{proj}_1(y), n_b, pk_b \rangle, pk_a))$ else $\operatorname{out}(c, \operatorname{aenc}(n_b, pk_b)) \leftarrow \operatorname{decoy}!$
	$\operatorname{out}(c,\operatorname{aenc}(\langle\operatorname{proj}_1(y),n_b,pk_b\rangle,pk_a))$
	$ else out(c, aenc(n_b, pk_b)) \leftarrow decoy !$

Anonymity

```
new sk_a, sk_b, sk_c. out(c, \langle pub(sk_a), pub(sk_b), pub(sk_c) \rangle).R(sk_b, pub(sk_a)) \approx? new sk_a, sk_b, sk_c. out(c, \langle pub(sk_a), pub(sk_b), pub(sk_c) \rangle).R(sk_b, pub(sk_c))
```

Application: unlinkability

The BAC e-passport protocol is used between a tag T and a reader R. After k_E and k_M are derived from optical scan (shared secrets), a key is established as follows:

- 1. $T \rightarrow R$: n_T
- 2. $R \rightarrow T$: $\operatorname{senc}(\langle n_R, n_T, k_R \rangle, k_E), \operatorname{mac}(\operatorname{senc}(\langle n_R, n_T, k_R \rangle, k_E), k_M)$
- 3. $T \rightarrow R$: $senc(\langle n_T, n_R, k_T \rangle, k_E), mac(senc(\langle n_T, n_R, k_T \rangle, k_E), k_M)$

Application: unlinkability

The BAC e-passport protocol is used between a tag T and a reader R. After k_E and k_M are derived from optical scan (shared secrets), a key is established as follows:

```
1. T \rightarrow R: n_T

2. R \rightarrow T: senc(\langle n_R, n_T, k_R \rangle, k_E), mac(senc(\langle n_R, n_T, k_R \rangle, k_E), k_M)

3. T \rightarrow R: senc(\langle n_T, n_R, k_T \rangle, k_E), mac(senc(\langle n_T, n_R, k_T \rangle, k_E), k_M)
```

French implementation:

```
T(k_E, k_M) := \text{new } n_T, k_T. \text{ out}(c, n_T).\text{in}(c, x).

if \text{mac}(\text{proj}_1(x), k_M) = \text{proj}_2(x) then

if n_T = \text{proj}_1(\text{sdec}(\text{proj}_1(x), k_E)) then ... else

out(c, \text{ERR\_nonce})

elseout(c, \text{ERR\_mac})
```

Application: unlinkability

The BAC e-passport protocol is used between a tag T and a reader R. After k_E and k_M are derived from optical scan (shared secrets), a key is established as follows:

```
1. T \rightarrow R: n_T

2. R \rightarrow T: senc(\langle n_R, n_T, k_R \rangle, k_E), mac(senc(\langle n_R, n_T, k_R \rangle, k_E), k_M)

3. T \rightarrow R: senc(\langle n_T, n_R, k_T \rangle, k_E), mac(senc(\langle n_T, n_R, k_T \rangle, k_E), k_M)
```

French implementation:

```
T(k_E, k_M) := \text{ new } n_T, k_T. \text{ out}(c, n_T).\text{in}(c, x).
if \text{mac}(\text{proj}_1(x), k_M) = \text{proj}_2(x) then
if n_T = \text{proj}_1(\text{sdec}(\text{proj}_1(x), k_E)) then ... else
out(c, \text{ERR\_nonce})
elseout(c, \text{ERR\_mac})
```

Linkability issue:

new
$$k_E, k_M, k_E', k_M'$$
. $T(k_E, k_M) | R(k_E, k_M) \not\approx T(k_E, k_M) | R(k_E', k_M')$

Some general definitions

Let $I(\vec{k}, \vec{n})$ and $R(\vec{k}, \vec{n})$ be two roles of a protocol, where \vec{k} represents identity parameters and \vec{n} represents session parameters.

Definition

The protocol ensures strong unlinkability when:

! new \vec{k} . ! new \vec{n} . $I(\vec{k}, \vec{n}) \mid R(\vec{k}, \vec{n}) \approx$! new \vec{k} . new \vec{n} . $I(\vec{k}, \vec{n}) \mid R(\vec{k}, \vec{n})$

Definition

The protocol ensures anonymity when:

$$\mathcal{M} pprox \mathcal{M} \mid$$
! new \vec{n} . $I(\vec{k_0}, \vec{n}) \mid R(\vec{k_0}, \vec{n})$

where \mathcal{M} is the left process on the previous equivalence.

Observational equivalence

We write $P \Downarrow c$ when P can output on c after internal reductions, i.e. $P \leadsto^* \operatorname{out}(c,u).P' \mid P''$.

Definition

The binary relation $\mathcal R$ over closed processes is a observational bisimulation if it is symmetric and $P\mathcal R Q$ implies:

- for all c, $P \Downarrow c$ implies $Q \Downarrow c$;
- for all P', $P \rightsquigarrow^* P'$ implies $Q \rightsquigarrow^* \mathcal{R} P'$;
- for all R, $(P | R) \mathcal{R}(Q | R)$.

Observational equivalence is the largest observational bisimulation.

Observational equivalence

We write $P \Downarrow c$ when P can output on c after internal reductions, i.e. $P \leadsto^* \operatorname{out}(c,u).P' \mid P''$.

Definition

The binary relation \mathcal{R} over closed processes is a observational bisimulation if it is symmetric and $P\mathcal{R}Q$ implies:

- for all c, $P \Downarrow c$ implies $Q \Downarrow c$;
- for all P', $P \rightsquigarrow^* P'$ implies $Q \rightsquigarrow^* \mathcal{R} P'$;
- for all R, $(P \mid R) \mathcal{R}(Q \mid R)$.

Observational equivalence is the largest observational bisimulation.

The quantification over all contexts R makes it hard to prove, both by hand and mechanically.

Labelled bisimulation

Definition

The binary relation $\mathcal R$ over configurations is a bisimulation if it is symmetric and $A\mathcal R B$ implies:

- $\Phi(A) \sim \Phi(B)$;
- $A \xrightarrow{\tau} A'$ implies $B \xrightarrow{\tau}^* \mathcal{R} A'$;
- $A \xrightarrow{\alpha} A'$ implies $B \xrightarrow{\alpha} \mathcal{R} A'$.

Bisimilarity is the largest bisimulation.

Theorem (Abadí, Blanchet & Fournet 2001/2017)

P and Q are observationally equivalent iff they are bisimilar.

Proposition

If A and B are bisimilar, then $A \approx B$.

Proposition

If A and B are bisimilar, then $A \approx B$.

The converse does not hold because trace equivalence does not "see" choice points. Trace equivalence is a linear-time property, bisimularity is branching-time.

Counter-example

Assume a choice operator $P_1 + P_2 \xrightarrow{\tau} P_i$ for $i \in \{1,2\}$. $\operatorname{out}(a,\operatorname{ok}).(\operatorname{out}(b,\operatorname{ok}) + \operatorname{out}(c,\operatorname{ok})) \approx \operatorname{out}(a,\operatorname{ok}).\operatorname{out}(b,\operatorname{ok}) + \operatorname{out}(a,\operatorname{ok}).\operatorname{out}(c,\operatorname{ok})$ but they are not bisimilar.

Proposition

If A and B are bisimilar, then $A \approx B$.

The converse does not hold because trace equivalence does not "see" choice points. Trace equivalence is a linear-time property, bisimularity is branching-time.

Counter-example

Assume a choice operator $P_1 + P_2 \xrightarrow{\tau} P_i$ for $i \in \{1,2\}$. $\operatorname{out}(a,\operatorname{ok}).(\operatorname{out}(b,\operatorname{ok}) + \operatorname{out}(c,\operatorname{ok})) \approx \operatorname{out}(a,\operatorname{ok}).\operatorname{out}(b,\operatorname{ok}) + \operatorname{out}(a,\operatorname{ok}).\operatorname{out}(c,\operatorname{ok})$ but they are not bisimilar.

Counter-example without choice (Pous & Madiot)

Without choice, take two observably distinct actions α and β .

Consider $P := \alpha.(\alpha.(\alpha.\beta.\alpha|\beta.\beta)|\beta.\alpha)$ and $Q := \alpha.\beta.\alpha|\alpha.(\alpha.\beta.(\alpha|\beta)|\beta)$.

We have $P \approx Q$ but $P \xrightarrow{\alpha.\beta.\alpha} \alpha.\beta.\alpha |\beta.\beta|\alpha$ which cannot be matched by Q.

Proposition

If A and B are determinate, and $A \approx B$, then A and B are bisimilar.

One possible definition of determinacy

A is determinate if, for all $A \stackrel{\text{tr}}{\Rightarrow} A'$,

A' does not have two inputs (resp. outputs) on the same c at toplevel.

Bisimilarity in practice

The gap between bisim and trace equivalence (determinacy) may or may not matter depending on applications.

Bisimilarity is generally easier to prove than trace equivalence:

- by hand: bisimulation proof technique;
- mechanically: incrementally find matching processes.

In verification, even more constraining forms of equivalences are considered, e.g. diff-equivalence where the two processes must have the same structure and differ only in the terms that they use.

Tools

- diff-equivalence: proverif, tamarin (unbounded sessions)
- bisimilarity: SPEC (bounded sessions)
- trace equivalence: Apte/DeepSec, Akiss (bounded sessions)

Equivalence examples

Diff-equivalence successes

- Strong secrecy: P[x := u] vs P[x := 0]?
- Anonymity: P[x := A] vs P[x := B]?

Unlinkability: gray zone

• Not bisimilar in general, trace equiv. needed:

! new k ! new n, m. I(k, n) | R(k, m)

! new k new n, m. $I(k, n) \mid R(k, m)$

Often diff-equivalent when no shared identity:

! new k! new k'new n, m. I(k, n) | R(m)

! new k ! new k' new n, m. I(k', n) | R(m)

Summary

Static equivalence

- Indistinguishable sequences of messages
- Depends on equational theory, destructors vs. constructors

May testing & trace equivalence

- May testing: there exists an adversary (in the same model)
- Trace equivalence: the same traces can be observed
- Trace equivalence is a good approximation of may testing, often used in practice for verification.

Obs. equiv., bisimulation and diff-equiv.

- Obs. equiv = bisimulation = strongest "reasonable" equivalence
- Good properties: compositional, congruence, easier to check
- Common approximation for verification: diff-equivalence