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Static equivalence

The first equivalence does not involve process executions,
but only sequences of messages.

When are two sequences of messages distinguishable?

Examples

® (u,v,v) ~ (v u,v)?
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Static equivalence

The first equivalence does not involve process executions,
but only sequences of messages.

When are two sequences of messages distinguishable?

® (u,v,v) ~ (v u,v)?

o (m) ~(n') 7 ({n,m)) ~ ({n',n')) 7
e ((u,v)) ~(n') 7 (senc(u, k)) ~ (n') ?
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Static equivalence

The first equivalence does not involve process executions,
but only sequences of messages.

When are two sequences of messages distinguishable?

Examples

(u,v,v) ~(v,u,v) ?

() ~ () 7 ((m, m)) ~ (', 1)) 2

({u, ) ~ (1) 7 (senc(u, K)) ~ () ?

(senc(u, k)) ~ (senc(v, k)) ? (senc(u, k)) ~ (senc(u, k")) ?
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Static equivalence

The first equivalence does not involve process executions,
but only sequences of messages.

When are two sequences of messages distinguishable?

o (u,v,v)~(v,u,v)?
)~ (1) 7 ((n, m)) ~ (', ) 7
() ~ () 7 {senc(u, K)) ~ (') 7
senc(u, k)) ~ (senc(v, k)) ? (senc(u, k)) ~ (senc(u, k')) ?
aenc(u, pk), u, pk) ~ (aenc(v, pk), u, pk) 7
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Static equivalence

As before, consider frames in N'* x (W — Tc(N)):
1%t component = bound/private names, noted bn(®);
2"d component = intruder's knowledge, addressed via handles of dom(®).

Definition

Two frames ®; and 5, are statically equivalent when
@ they have the same domain: dom(®;) = dom(®;);
o forall M e TIWUN \ bn(®1,d3)), M) iff Md,J;

e forall M,N € TOW UN \ bn($1, dy)),
M®1l) =g NP1l iff Myl =g NPy).

Proposition

Static equivalence is an equivalence. It is stable by bijective renaming.
Beware: ®1 ~ &} and &3 ~ ¢, A &1 W Sy ~ D) WP,
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Static equivalence: examples

Suppose we have only constructors and
the standard equations for pairs and (a)symmetric encryption.

Examples (bis)

o {wi—~uw—v,w3—vi~{w = v,w— u,ws— v ?
o {wrnl~{w—n}?{w— (n,m}~{ww— (n,n)}?
o {w— (u,v)} ~{wwr n'} 7 {w — senc(u, k)} ~{w > n'}?
o {w > senc(u, k)} ~ {w > senc(v,k)} ?

{w — senc(u, k)} ~ {w — senc(u, k')} ?
e {w — aenc(u, pk),w' — u,w"” — pk} ~

{w > aenc(v, pk), w' — u,w” — pk} ?
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Application: guessing attacks

We usually assume that secrets cannot be guessed: no brute force attacks.

That is not reasonable for low/fixed entropy secrets, such as
PIN, passwords, one-time verification code, etc.

Offline guessing attacks

A protocol is resistant against offline guessing attacks on some name d
when any reachable frame & is such that

dU{w s d} ~dU{w — d'} for w,d’ fresh.

This notion is meaningful even with a passive adversary.
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Application: EKE

Assume public-key encryption but no PKI (public keys # identities).
A and B only share a weak password p, want to authenticate.

A — B: senc(pub(k),p)

B — A: senc(aenc(r, pub(k)), p)
A— B: senc(na,r)

B — A: senc({(na, np),r)

A — B: senc(np,r)

A o
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Application: EKE

Assume public-key encryption but no PKI (public keys # identities).
A and B only share a weak password p, want to authenticate.

1. A— B: senc(pub(k),p)
2. B— A: senc(aenc(r,pub(k)),p)
3. A— B: senc(na,r)
4. B — A: senc({(na, np),r)
5. A— B: senc(np,r)
Let ® = {w; — senc(pub(k),p), ..., ws — senc(np,r)}.

Can p be guessed offline, that is

dU{w s p} ~ dU{w—p'} ?
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Application: EKE

Assume public-key encryption but no PKI (public keys # identities).
A and B only share a weak password p, want to authenticate.

1. A— B: senc(pub(k),p)
2. B— A: senc(aenc(r,pub(k)),p)
3. A— B: senc(na,r)
4. B — A: senc({(na, np),r)
5. A— B: senc(np,r)
Let ® = {w; — senc(pub(k),p), ..., ws — senc(np,r)}.

Can p be guessed offline, that is

dU{w s p} ~ dU{w—p'} ?
Only if senc(sdec(x, y),y) = x...and no getkey primitive for aenc.
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May testing

The reduction semantics (cf. previous lectures) provide a first natural
definition of when two processes can be distinguished.

Definition

A test is a process with no free name and in which a special channel T
may occur. A process P may pass a test T, written P = T if

P|T ~*out(T,u)| Q for some u and Q.

Let T(P):={T|PET}.
Processes P and @ are in may-testing equivalence when T(P) = T(Q).
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definition of when two processes can be distinguished.

Definition

A test is a process with no free name and in which a special channel T
may occur. A process P may pass a test T, written P = T if

P|T ~*out(T,u)| Q for some u and Q.

Let T(P):={T|PET}.
Processes P and @ are in may-testing equivalence when T(P) = T(Q).

Arguably the most natural notion of equivalence in the symbolic model.
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May testing

The reduction semantics (cf. previous lectures) provide a first natural
definition of when two processes can be distinguished.

Definition

A test is a process with no free name and in which a special channel T
may occur. A process P may pass a test T, written P = T if

P|T ~*out(T,u)| Q for some u and Q.

Let T(P):={T|PET}.
Processes P and @ are in may-testing equivalence when T(P) = T(Q).

Arguably the most natural notion of equivalence in the symbolic model.
As such, may testing equivalence is hard to verify !

David Baelde (ENS Paris-Saclay) Protocol Equivalences 2019-2020 7/23



Trace equivalence

Weak labelled transitions

We write A <% B when:
@ tr only contains input and output actions (no 7);

@ there exists tr’ obtained from tr by adding 7s such that A v, B

v

Given a configuration A = (P, ®), define

Tr(A) = { (tr, &) | A2 (_, @) }.
We say that A and B are trace equivalent, noted A ~ B, iff

for all (tr,®’) € Tr(A) there exists (tr, W') € Tr(B) such that ¢’ ~ V'

and conversely.

v
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Alternative definition

Proposition

Close Tr(+) under static equivalence:
TI’/(P, ¢) = { (tr, (D,) | (P7 (j)) g (P/7¢l/)’ & ~ ¢ }

Then we have A ~ B iff Tr'(A) = Tr'(B).

o A~ B imposes ®(A) ~ ®(B), but not (A) = d(B).
@ The definition really makes sense only when bn(®(A)) = bn(P(B)).
@ In general we do not have that  ~ W implies (P, ®) ~ (P, V).
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@ in(c, x).out(c,0k) ~" in(c, x)|out(c, ok)

@ in(c,x).out(c,ok) =7 in(c,x).out(c,x)

@ new n, m. out(c, n).out(c,m) ~’ new n, m. out(c, n)|out(c, m)

@ new n, m. out(c, n).out(c,m) ~’ new n. out(c, n).out(c, hash(n))

@ out(c,uq)..... out(c, u,).in(c, x).if x = v then out(c, ok) ~’
out(c, uq)..... out(c, up).in(c, x).0
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Trace equivalence C may-testing ?

Proposition

If (P,0) ~ (Q,0) then they are in may-testing equivalence. . .
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Trace equivalence C may-testing ?

Proposition

If (P,0) = (Q,0) then they are in may-testing equivalence. . .
provided computation is deterministic, i.e.
for all t, u and v such that t || u, we have t || v iff u =g v.

David Baelde (ENS Paris-Saclay) Protocol Equivalences 2019-2020 11/23



Trace equivalence C may-testing ?

Proposition

If (P,0) =~ (Q,0) then they are in may-testing equivalence. . .
provided computation is deterministic, i.e.
for all t, u and v such that t || u, we have t || v iff u =g v.

Proof idea.

Decompose P| T ~~* out(T,_) | _ into internal reductions of P and T,
and communications between the two. This yields a trace of P, which @
can simulate. Compose this with the reductions of T to obtain

Q| T ~* out(T,_) O

Devil is in the details! there is a counter-example when computation is
non-deterministic because traces do not keep track of how recipes are
evaluated.
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May testing C trace equivalence 7

If P and Q are may-testing equivalent then P ~ Q, ...
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May testing C trace equivalence 7

Proposition

If P and Q are may-testing equivalent then P ~ Q,
provided the processes are image-finite:

for any tr, { ® | (tr,®) € Tr'(P,0) } is finite up to ~

and similarly for Q.
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May testing C trace equivalence 7

Proposition

If P and Q are may-testing equivalent then P ~ Q,
provided the processes are image-finite:

for any tr, { ® | (tr,®) € Tr'(P,0) } is finite up to ~

and similarly for Q.

Counter-example (assuming a private channel)

P :=new c. (out(c,0k) | !in(c,x).out(c, h(x)) | in(c,x).out(a, x))

Q := P | new n. out(a, n)
We have P % Q but P and Q are in may-testing equivalence.

David Baelde (ENS Paris-Saclay) Protocol Equivalences 2019-2020 12/23



May testing C trace equivalence 7

Proposition

If P and Q are may-testing equivalent then P ~ Q,
provided the processes are image-finite:

for any tr, { ® | (tr,®) € Tr'(P,0) } is finite up to ~

and similarly for Q.

Counter-example (assuming a private channel)

P :=new c. (out(c,0k) | !in(c,x).out(c, h(x)) | in(c,x).out(a, x))

Q := P | new n. out(a, n)
We have P % Q but P and Q are in may-testing equivalence.

This is “only” pathological !
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Application: strong secrecy

Definition
A protocol P ensures the strong secrecy of some variables X if,
for all (relevant) values @, v, P[X := U] = P[X := V].

Weak secrecy: some value cannot be (fully) derived by the attacker.
Strong secrecy: the attacker has no information at all about the value.
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Application: strong secrecy

Definition

A protocol P ensures the strong secrecy of some variables X if,
for all (relevant) values @, v, P[X := U] = P[X := V].

Weak secrecy: some value cannot be (fully) derived by the attacker.
Strong secrecy: the attacker has no information at all about the value.

Blanchet’s key exchange protocol:

1. A— B: aenc(sign({pka, pks, k), ska), pkg)
2. B— A: senc(x, k)
3. A= B: senc(y,k)

Scenario: A and B honest. Is x strongly secret? Is x, y strongly secret?
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Application: private authentication

Agents A and B want to authenticate, without revealing their identities.

I(ska, Pks) R(sks, pka)
new n,. new np.
let pk, = pub(sk,) in let pkp = pub(skp) in

out(c, aenc({(na, pka), pkp)). | in(c, x).let y = adec(x, skp) in
if proj,(y) = pk, then
out(c, aenc({proj;(y), np, pks), pka))

new ska, skp, skc. out(c, (pub(sk,), pub(skp), pub(skc))).R(skp, pub(skz))

~
~

new sk,, skp, skc. out(c, (pub(ska), pub(skp), pub(skc))).R(skp, pub(skc))
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Application: private authentication

Agents A and B want to authenticate, without revealing their identities.

I(ska, Pks) R(sks, pka)
new n,. new np.
let pk, = pub(sk,) in let pkp = pub(skp) in

out(c, aenc({(na, pka), pkp)). | in(c, x).let y = adec(x, skp) in

if proj,(y) = pk, then

out(c, aenc({projy(y), np, pkp), pka))
else out(c, aenc(np, pkp)) < decoy !

new ska, skp, skc. out(c, (pub(sk,), pub(skp), pub(skc))).R(skp, pub(skz))

~
~

new sk,, skp, skc. out(c, (pub(ska), pub(skp), pub(skc))).R(skp, pub(skc))
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Application: unlinkability

The BAC e-passport protocol is used between a tag T and a reader R.
After kg and kp are derived from optical scan (shared secrets),
a key is established as follows:

1. T—R: nrt
2. R—>T: senc((nR, nr, kR>, kE)7 mac(senc((nR, nr, kR>, kE), kM)
3. T— R: senc({nT,ng,kT), ke), mac(senc({nT, nr, k1), ke), km)
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Application: unlinkability

The BAC e-passport protocol is used between a tag T and a reader R.
After kg and kp are derived from optical scan (shared secrets),
a key is established as follows:

1. T—R: nrt
2. R—>T: senc((nR, nr, kR>, kE)7 mac(senc((nR, nr, kR>, kE), kM)
3. T— R: senc({nT,ng,kT), ke), mac(senc({nT, nr, k1), ke), km)

French implementation:

T(ke, km) := new nt, kt. out(c, nt).in(c, x).
if mac(proj;(x), knp) = projo(x) then
if nT = projy(sdec(projy(x), ke)) then ... else

out(c, ERR_nonce)
elseout(c, ERR_mac)
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Application: unlinkability

The BAC e-passport protocol is used between a tag T and a reader R.
After kg and kp are derived from optical scan (shared secrets),
a key is established as follows:
1. T—R: nrt
2. R—>T: senc((nR, nr, kR>, kE)7 mac(senc((nR, nr, kR>, kE), kM)
3. T— R: senc({nT,ng,kT), ke), mac(senc({nT, nr, k1), ke), km)

French implementation:

T(ke, km) := new nt, kt. out(c, nt).in(c, x).
if mac(proj;(x), knp) = projo(x) then
if nT = projy(sdec(projy(x), ke)) then ... else

out(c, ERR_nonce)
elseout(c, ERR_mac)

Linkability issue :
new Ke, km, kg, ki T(ke, km) | R(ke, km) % T (ke, km) | R(Kg, ki)
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Some general definitions

Let /(k, ) and R(k, i) be two roles of a protocol, where k represents
identity parameters and 7i represents session parameters.

The protocol ensures strong unlinkability when:

I new k. ! new . I(k,R) | R(k,R) ~ ! new k. new A. I(k,7)| R(k, )

Definition
The protocol ensures anonymity when:

M = M| ! new 7. I(ko, #) | R(ko, 1)

where M is the left process on the previous equivalence.
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Observational equivalence

We write P |} ¢ when P can output on c after internal reductions, i.e.
P ~~* out(c, u).P"| P".

Definition

The binary relation R over closed processes is a observational bisimulation
if it is symmetric and PR Q implies:

o forall ¢, P | c implies Q | c;
o for all P/, P ~~* P’ implies Q ~* R P’;
e forall R, (P|R)R(Q|R).

Observational equivalence is the largest observational bisimulation.
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Observational equivalence

We write P |} ¢ when P can output on c after internal reductions, i.e.
P ~~* out(c, u).P"| P".

Definition

The binary relation R over closed processes is a observational bisimulation
if it is symmetric and PR Q implies:

o forall ¢, P | c implies Q | c;
o for all P/, P ~~* P’ implies Q ~* R P’;
e forall R, (P|R)R(Q|R).

Observational equivalence is the largest observational bisimulation.

The quantification over all contexts R makes it hard to prove,
both by hand and mechanically.
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Labelled bisimulation

The binary relation R over configurations is a bisimulation if it is
symmetric and AR B implies:

o ®(A) ~ &(B);
o AL A implies B 5" RA
o AL A implies B2 RA.

Bisimilarity is the largest bisimulation.

Theorem (Abadi, Blanchet & Fournet 2001/2017)

P and @ are observationally equivalent iff they are bisimilar.
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Comparison with trace equivalence

Proposition
If A and B are bisimilar, then A =~ B.
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Comparison with trace equivalence

Proposition
If A and B are bisimilar, then A =~ B.

The converse does not hold because trace equivalence does not “see”
choice points. Trace equivalence is a linear-time property, bisimularity is
branching-time.

Counter-example

Assume a choice operator P; + P> = P; for i € {1,2}.
out(a, ok).(out(b, ok) 4 out(c, ok)) ~
out(a, ok).out(b, ok) + out(a, ok).out(c, ok) but they are not bisimilar.
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Comparison with trace equivalence
Proposition
If A and B are bisimilar, then A ~ B.

The converse does not hold because trace equivalence does not “see”
choice points. Trace equivalence is a linear-time property, bisimularity is
branching-time.

Counter-example

Assume a choice operator P; + P> = P; for i € {1,2}.
out(a, ok).(out(b, ok) 4 out(c, ok)) ~
out(a, ok).out(b, ok) + out(a, ok).out(c, ok) but they are not bisimilar.

A\

Counter-example without choice (Pous & Madiot)

Without choice, take two observably distinct actions o and .
Consider P := a.(a.(a.f.a|p.6)|5.«) and Q = a.f.ala.(c.B.(a| B)|B).
We have P =~ @ but P apa, a.f.a| 5.8 which cannot be matched by Q.
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Comparison with trace equivalence

Proposition
If A and B are determinate, and A =~ B, then A and B are bisimilar.

One possible definition of determinacy

A is determinate if, for all A =X A/,
A’ does not have two inputs (resp. outputs) on the same c at toplevel.
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Bisimilarity in practice

The gap between bisim and trace equivalence (determinacy)

may or may not matter depending on applications.

Bisimilarity is generally easier to prove than trace equivalence:
@ by hand: bisimulation proof technique;

@ mechanically: incrementally find matching processes.

In verification, even more constraining forms of equivalences are
considered, e.g. diff-equivalence where the two processes must have the
same structure and differ only in the terms that they use.

o diff-equivalence: proverif, tamarin (unbounded sessions)
@ bisimilarity: SPEC (bounded sessions)

@ trace equivalence: Apte/DeepSec, Akiss (bounded sessions)
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Equivalence examples

Diff-equivalence successes

@ Strong secrecy: P[x := u] vs P[x :=0] 7
@ Anonymity: P[x := A] vs P[x := B| ?

Unlinkability: gray zone

@ Not bisimilar in general, trace equiv. needed:

I 'new k ! new n,m. I(k,n)|R(k,m)

I 'new k new n,m. I(k,n) | R(k, m)

o Often diff-equivalent when no shared identity:

I new k ! new k'new n, m. I(k,n)| R(m)

| newk ! new k'new n,m. I(k’, n)| R(m)

v
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Static equivalence

@ Indistinguishable sequences of messages

@ Depends on equational theory, destructors vs. constructors

V.

May testing & trace equivalence

@ May testing: there exists an adversary (in the same model)

@ Trace equivalence: the same traces can be observed

@ Trace equivalence is a good approximation of may testing,
often used in practice for verification.

Obs. equiv., bisimulation and diff-equiv.

@ Obs. equiv = bisimulation = strongest “reasonable” equivalence

@ Good properties: compositional, congruence, easier to check

@ Common approximation for verification: diff-equivalence

V.
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