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Abstract

We recall some basic notions regarding logical theories, introduce the
quanti�er elimination technique for showing that a theory is decidable (or
complete), and illustrate it on the theory of discrete orders1.

1 De�nitions
Two notions of theories are used in logic: a theory is sometimes a set of closed
formulas, sometimes a set of closed formulas that is closed under deduction, i.e.
a set T such that T = {φ | closed and T |= φ}. We shall use the second style in
this document. We can thus equivalently write φ ∈ T or T |= φ; T is recursive
or {φ | φ closed and T |= φ} is recursive.

De�nition 1.1. Let F ,P be a language. An F ,P-theory is a set of closed F ,P-
formulas that is closed under deduction.

∗Modi�cations made since the original version of the document are indicated in margins with
their corresponding revision.

1 This presentation is based on earlier notes by Hubert Comon.
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Theories are often generated from axioms: starting from some set of axioms
one takes the set of its closed logical consequences. Reasonable set of axioms are
recursive, but the theories that they generate may not be recursive: it is the case
with the axioms of arithmetic, but also with the empty set of axioms.

It is also possible to de�ne a theory from a model, i.e. by taking all the closed
formulas that are satis�ed in that structure.

Exercise 1.2. Consider the canonical structures over N and Z for the language
of arithmetic. Show that the theories that they generate are disjoint.

De�nition 1.3. A theory T is complete when, for any closed formula φ, either
φ ∈ T or ¬φ ∈ T .

The theory of a structure S is always complete. But complete theories may
have very di�erent models — for an extremely simple example, take F = ∅ and
P = ∅, and observe that the theory of any structure is the set of valid formu-
las, but there are still non-isomorphic models. Models of a complete theory are
however equivalent in the following sense:

De�nition 1.4. TwoF ,P-structures S and S ′ are elementarily equivalent when,
for all closed formulas φ, we have S |= φ i� S ′ |= φ.

In other words, S and S ′ are elementarily equivalent i� they have the same
theory.

We will use one last notion, related to language extensions. We say that a
language F ′,P ′ extends F ,P when F ⊆ F ′ and P ⊆ P ′. In that case, for any
F ′,P ′-structure S we de�ne S|F ,P as the F ,P-structure obtained from S by
forgetting the interpretation of predicates and function symbols that are not in
F ,P . We obviously have S |= φ i� S|F ,P |= φ for any closed F ,P-formula φ.

De�nition 1.5. Let T be anF ,P-theory and T ′ anF ′,P ′-theory for some exten-
sion F ′,P ′ of F ,P . We say that T ′ is a conservative extension of T when T ⊆ T ′ rev. 1
and, for any model S of T , there exists a model S ′ of T ′ such that S = S ′|F ,P .

Exercise 1.6. Assume that T ′ is a conservative extension of T . Show that, for rev. 1
any F ,P-formula φ, we have φ ∈ T i� φ ∈ T ′.
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2 Quanti�er elimination
The quanti�er elimination technique is a method that allows to reduce important
decision problems to their quanti�er-free version.

De�nition 2.1. We say that a theory T admits quanti�er elimination when one
can compute, given a quanti�er-free formula φ, another quanti�er-free formula
ψ such that T |= (∀x.φ)⇔ ψ.

Note that, in the above de�nition, the formulas φ and ψ are not necessarily
closed. Free variables in a logical consequence are implicitly universally quanti-
�ed: explicitly, we require that T |= ∀~y. (∀x.φ)⇔ ψ where ~y = fv(φ, ψ) \ {x}.

Theorem 2.2. Let T be a theory that admits quanti�er elimination. If the set of
closed quanti�er-free formulas of T is recursive, then T is recursive.

Proof. Starting from some closed formula φ, we compute a closed quanti�er-free
formula ψ such that T |= φ⇔ ψ. The process is iterative, starting from φ = φ0

and computing φi+1 from φi as follows as long as φi still contains quanti�ers:

1. Consider a quanti�ed subformula Qx.φ′ of φi of maximal depth, i.e. such
that φ′ is quanti�er-free.

2. Since T admits quanti�er elimination we can compute some quanti�er-free
ψ′ such that T |= (Qx.φ′) ⇔ ψ′. This is immediate if Q = ∀, otherwise
one simply has to apply quanti�er elimination to ¬(Qx.φ′).

3. Let φi+1 be φi where Qx.φ′ has been replaced by ψ′.

This process terminates as φi+1 has one less quanti�er than φi. Let k be the �rst
index such that φk is quanti�er-free, and let ψ := φk. We have T |= φi ⇔ φi+1

for all 0 ≤ i < k, hence T |= φ ⇔ ψ. Hence T |= φ i� T |= ψ, and the latter is
decidable by hypothesis.

Theorem 2.3. Let T be a theory that admits quanti�er elimination and such
that, for any closed quanti�er-free formula φ, one has φ ∈ T or ¬φ ∈ T . Then
T is complete.

Exercise 2.4. Adapt the proof of theorem 2.2 to prove theorem 2.3.
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For some F ,P-theories T , eliminating quanti�ers is not feasible without in-
troducing new symbols in the logical language. Then the above results only yield
the decidability (or completeness) of T seen as some F ′,P ′-theory. But the de-
sired result for the original language can still be obtained thanks to the following
observation.

Proposition 2.5. Let T be a theory and T ′ be a conservative extension of T . If
T ′ is recursive, then so is T . If T ′ is complete, then so is T .

3 Application to the theory of discrete orders
The theory D of discrete orders is the theory over F = ∅ and P = {≤,=}
generated by the axioms of equality and the axioms of �g. 1.

(Re�) ∀x. x ≤ x
(Trans) ∀x, y, z. (x ≤ y ∧ y ≤ z)⇒ x ≤ z

(Anti) ∀x, y. (x ≤ y ∧ y ≤ x)⇒ x = y
(Total) ∀x, y. x ≤ y ∨ y ≤ x

(Min) ∃x.∀y. x ≤ y
(Succ) ∀x.∃y. x ≤ y ∧ x 6= y ∧ ∀z. (x ≤ z ∧ z 6= x)⇒ y ≤ z
(Pred) ∀x. (∀y. x ≤ y) ∨ ∃y. y ≤ x ∧ y 6= x ∧ ∀z. y ≤ z ⇒ (z = y ∨ x ≤ z)

Figure 1: Axioms of discrete orders

This theory has a canonical model over N, but it admits much more complex
models. Despite this, we will see that it is recursive and complete. The next exer-
cises aim to get accustomed to the axioms, appreciate the complexity of discrete
orders, and avoid abusive reasoning in the technical development that follows.

Exercise 3.1. Give a model of the theory of discrete orders in which the order
is not well-founded.

Exercise 3.2. Show that the predecessor axiom (Pred) is not a consequence of
the other axioms of the theory of discrete orders.

Exercise 3.3. Show that the totality axiom (Total) is not a consequence of the
other axioms.
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Unsurprisingly, it is more convenient to talk about discrete orders using a
successor function symbol. We therefore de�ne the theory D1 in the language
F ′,P ′ extended with a constant symbol 0 and a successor symbol s(_), gener-
ated by the axioms of �g. 1 and:
(Def-0) ∀x. x = 0⇔ ∀y. x ≤ y
(Def-s) ∀x, y. x = s(y)⇔

(
y ≤ x ∧ y 6= x ∧ ∀z. (y ≤ z ∧ y 6= z)⇒ x ≤ z

)
As we shall see, the axioms added to D1 force the values of the new function

symbols. This leads to the following conservativity result.

Proposition 3.4. The theory D1 is a conservative extension of D.

Proof. Given a model S ofD, we de�ne anF ′,P ′-structure S ′ such that S ′|F ,P =
S . We only have to de�ne 0S′ and sS′ .

Since S |= (Min) there exists some element a in the domain of S such that
S, {x 7→ a} |= ∀y. x ≤ y: we choose 0S′ := a. We can already check that
S ′ |= (Def-0): it follows from the axioms of equality and the fact that, for any b
such that S ′, {x 7→ b} |= ∀y. x ≤ y we also have S, {x 7→ b, y 7→ a} |= x ≤ y
and symmetrically, so by (Anti) we conclude S, {x 7→ b, y 7→ a} |= x = y and
S, {x 7→ b} |= x = 0.

For the successor, axiom (Succ) gives us, for any a, a value b such thatS, {x 7→
a, y 7→ b} |= x ≤ y ∧ x 6= y ∧∀z. (x ≤ z ∧ z 6= x)⇒ y ≤ z. It is exactly what is
required by (Def-s), so we can simply set s(a) = b. Again, there might be several
values b satisfying the above formula but the precise choice does not matter up
to equality, because another b′ would be such that b ≤S b′ ≤S b.

Proposition 3.5. The following formulas belong to D1:
(Zero) ∀y. 0 ≤ y

(Succ-<) ∀x. x ≤ s(x) ∧ x 6= s(s)
(Succ-Tot) ∀x. x = 0 ∨ ∃y. x = s(y)

(Succ-0) ∀x. s(x) 6= 0
(Succ-Succ) ∀x, y. x ≤ y ⇔ s(x) ≤ s(y)

(Discrete) ∀x, y. (x ≤ y ∧ x 6= y)⇒ s(x) ≤ y

Proof. We leave it as an exercise. It would typically be veri�ed by selecting a
sound proof system and deriving each formula from the axioms of D1.

Proposition 3.6 (Predecessor, predn(a)). Let S be a model of the theory D1, of
domain DS , such that =S is the identity over DS . Assume that

S, σ{x 7→ a} |= sn(u) ≤ x
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for some n ∈ N, a ∈ DS and term u such that x 6∈ fv(u). There exists a unique
element predn(a) ∈ DS such that a = sn(predn(a)) and

S, σ{x 7→ predn(a)} |= u ≤ x.

Moreover, when predn(a) is de�ned, we have predn(sS(a)) = sS(pred
n(a)).

Proof. By induction on n using the fact that S satis�es (Succ-Succ) and (Succ-
Tot) there exists b ∈ DS such that a = snS(b) and S, σ{x 7→ b} |= u ≤ x. It is
unique by antisymmetry and by assumption on =S .

Theorem 3.7. The theory D1 admits quanti�er elimination.

Proof. Consider ∃x.φ where φ is quanti�er-free. We construct an equivalent
quanti�er-free ψ by transforming φ as follows:

1. We replace any atom of the form u = v by u ≤ v∧v ≤ u, which is logically
equivalent by the axioms of equality and the antisymmetry axiom.

2. We put the formula in negative normal form and replace any literal of the
form ¬(u ≤ v) by s(v) ≤ u, which is again equivalent by totality and the rev. 1
axioms on successor. The obtained formula does not contain any negation.

3. We repeatedly simplify occurrences of s(u) ≤ s(v) into u ≤ v, which is
equivalent by (Succ-Succ). We change any occurrence of s(u) ≤ 0 into ⊥
and 0 ≤ u into >, which is equivalent by (Succ-0) and (Zero).

4. We simplify literals of the form x ≤ sn(x) into > and sn(x) ≤ x with
n > 0 into ⊥, which is justi�ed by (Succ-<).

At this point we obtain a formula φ′ that contains only literals of the form y ≤ u
or u ≤ y where y does not occur in u. As explained during the construction of
φ′, we have D |= (∃x.φ)⇔ (∃x.φ′).

We assume wlog that φ′ is a conjunction of literals, and we set out to compute
an equivalent formula (under D) which does not feature the existentially quan-
ti�ed variable x anymore – we can indeed put φ′ in disjunctive normal form and
replace any of its disjuncts by an equivalent formula without x. We also assume
wlog that 0 ≤ x is part of φ′. Our formula φ′ can be reorganized into φ0∧φ+∧φ−
where:

• x 6∈ fv(φ0);
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• φ+ is a conjunction of literals of the form u ≤ sn(x);

• φ− is a conjunction of literals of the form sm(x) ≤ v.

Intuitively, ∃x.φ′ holds i� sm(u) ≤ sn(v) for all of the above literals. We thus
de�ne ψ as follows:

ψ
def
= φ0 ∧

∧
(u≤sn(x))∈φ+,(sm(x)≤v)∈φ−

sm(u) ≤ sn(v)

We have D |= (∃x.φ′) ⇒ ψ by (Succ-Succ) and transitivity. Let us verify the
converse.

Consider a model S of domain DS and an assignemnt σ such that S, σ |= ψ.
We need to extend it into some σ{x 7→ ax} such that S, σ{x 7→ ax} |= φ. We
can assume wlog that =S is the identity relation over DS , thanks to the axiom
of equality.

For each sn(x) ≤ t in φ−, we have sn(0) ≤ t in ψ because 0 ≤ x is in φ+.
Since S, σ |= ψ, the predecessors predn(t) of these terms are well-de�ned, and
so is the following de�nition:

ax
def
= min

sn(x)≤t∈φ−
predn(JtKσ)

In other words, we propose to interpret x by the greatest possible value that
satis�es the inequalities of φ−. This is expressed as the minimum of a �nite
(totally ordered) set, which is thus reached: there exists sN(x) ≤ T in φ− such
that ax = predN(JT Kσ). Let us verify that S, σ{a 7→ ax} |= φ:

• We obviously have S, σ{a 7→ ax} |= φ0 because S, σ |= φ0 and x does not
occur in that formula.

• For each u ≤ sn(x) in φ+ we have sk(T ) ≥ sN(u) in ψ and thus this
inequality is satis�ed by S, σ, and we have predN(Jsk(T )Kσ) ≥S JuKσ.
Thus Jsk(x)Kσ ≥S JuKσ, i.e. S, σ |= sk(x) ≥ u.

• For each sm(x) ≤ v in φ− we have ax ≤S predm(JvKσ) by de�nition of ax,
and thus S, σ |= sm(x) ≤ v by de�nition of predm.

Example 3.8. We give a few examples of the equivalent formulas computed
using our quanti�er elimination technique. Let u, v and v′ be arbitrary terms.
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The formula ∃x. u ≤ s(x) is equivalent to >. The formula ∃x. s(x) ≤ u is
equivalent to s(0) ≤ u. The formula

∃x. s2(x) ≤ v ∧ s(x) ≤ v′ ∧ u ≤ s(x)

is equivalent to

s2(0) ≤ v ∧ s(0) ≤ v′ ∧ u ≤ v′ ∧ s(u) ≤ v.

Theorem 3.9. The theories D and D1 are recursive and complete.

Proof. Closed literals over F ′ are of the form sn(0) = sm(0) and sn(0) ≤ sm(0).
We verify easily that D1 |= sn(0) = sm(0) i� n = m, and similarly for ≤. Given
a closed quanti�er-free formula φ, we can thus replace all its literals by either >
or ⊥ (and this choice is computable) to obtain an equivalent boolean expression
that we can simply evaluate to know whether D1 |= φ.

If it is not the case, then it will obviously hold for ¬φ. Hence D1 is recursive
and complete by theorem 2.2 and theorem 2.3. By proposition 2.5, D is also
recursive and complete.

As a corollary of the completeness result and exercise 3.1, we can also deduce
that no F ,P-formula can express the well-foundedness of the order.
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