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1 Kripke semantics

DeVnition 1.1 (Kripke structure). A Kripke structure is given by:

• a setW of worlds;

• an order ≤ on worlds, often called accessibility relation;

• a monotonic mapping α :W → 2W .

The monotonicity condition means that α(P ) ⊆ α(Q) whenever P ≤ Q.

When K is a Kripke structure, we shall denote its set of worlds byW(K).

DeVnition 1.2 (Satisfaction). Given a Kripke structure K, a world w ∈ W(K) and a
formula φ ∈ F0(P), the satisfaction relation is deVned by induction on φ:

• K, w |= P iU P ∈ α(w), for P ∈ P ;

• K, w |= > always holds;

• K, w |= ⊥ never holds;

• K, w |= φ ∧ ψ iU K, w |= φ and K, w |= ψ;

• K, w |= φ ∨ ψ iU K, w |= φ or K, w |= ψ;

• K, w |= φ⇒ ψ iU for all w′ ≥ w, K, w′ |= φ implies K, w′ |= ψ;

• K, w |= ¬ψ iU for all w′ ≥ w, K, w′ 6|= φ.

We say that a set of formulas E is satisVed by w ∈ W(K) when K, w |= φ for all
φ ∈ E. When K is obvious, we simply omit it and write w |= φ or w |= φ.

DeVnition 1.3 (Validity, logical consequence). Let φ, ψ be formulas. We deVne validity
( |= φ) and logical consequence (φ |= ψ) as follows:

• |= φ when for all K and all w ∈ W(K), w |= φ.

• φ |= ψ when K, w |= ψ for all K and w ∈ W(K) such that K, w |= φ.
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When E is a set of formulas, E |= φ means that K, w |= φ for all K and w ∈ W(K)
such that w |= E.

Remark 1.4. Note that ¬φ is logically equivalent to φ ⇒ ⊥. This observation allows
us to often ignore negation in the following.

Example 1.5. Consider the validity of a few interesting formulas:

• ¬¬φ⇒ φ and φ⇒ ¬¬φ;

• de Morgan laws;

•
(
(φ ∧ φ′) ∨ ψ

)
⇒
(
(φ ∨ ψ) ∧ (φ′ ∨ ψ)

)
and the converse;

• (φ⇒ ψ) ∨ (ψ ⇒ φ);

• φ ∨ ¬φ.

Proposition 1.6 (Satisfaction is monotonic). w |= φ and w ≤ w′ implies w′ |= φ.

Proof. By (structural) induction on φ. This is obvious for logical constants (their sat-
isfaction does not depend on the world being considered) and propositional variables
(because α is assumed to be monotonic). It follows immediately from induction hy-
potheses for disjunction and conjunction formulas. We consider the case of implication:
assuming w ≤ w′ and w |= φ ⇒ ψ, let us show that w′ |= φ ⇒ ψ. We have to show
that w′′ |= ψ for all w′′ ≥ w′ such that w′′ |= φ. By transitivity of the accessibility
relation, we have w′′ ≥ w. By w |= φ ⇒ ψ and w′′ |= φ, we conclude w′′ |= ψ. The
case of negation is similar, as observed in Remark 1.4.

Proposition 1.7. Intuitionistically valid formulas are also classically valid.

Proof. It suXces to observe that any classical interpretation I ⊆ P can be seen as
Kripke structure KI with a single world w0 such that α(w0) = I , in such a way
that I |= φ (in the classical sense) is equivalent to KI , w0 |= φ (in the intuitionistic
sense).

2 Sequent calculus proof system

A sequent Γ ` φ is built from formula φ and a multiset of formulas Γ. It should be read
as “the conjunction of all formulas in Γ implies φ”.

DeVnition 2.1. The rules of intuitionistic sequent calculus LJ0 are given in Figure 1.
We write Γ `LJ φ when the sequent Γ ` φ admits a derivation in LJ0.

We brieWy motivate the organization of rules in three groups. The logical group
describes how connectives should be treated. For each connective, there is only rule
allowing to introduce a formula with that toplevel connective on the left of a sequent,
and one introducing such a formula on the right. The identity group contains the only
two rules whose application requires to check that two formulas are equal. The struc-
tural group deals with the multiset structure, allowing to increase of decrease the arity
of a formula in the multiset.

2



Logical group

Γ,⊥ ` φ ⊥L ` > ⊥R

Γ, φ1, φ2 ` ψ
Γ, φ1 ∧ φ2 ` ψ

∧L
Γ ` φ1 ∆ ` φ2
Γ,∆ ` φ1 ∧ φ2

∧R

Γ, φ1 ` ψ Γ, φ2 ` ψ
Γ, φ1 ∨ φ2 ` ψ

∨L
Γ ` φi

Γ ` φ1 ∨ φ2
∨R

Γ ` φ1 ∆, φ2 ` ψ
Γ,∆, φ1 ⇒ φ2 ` ψ

⇒L
Γ, φ ` ψ

Γ ` φ⇒ ψ
⇒R

Identity group

φ ` φ axiom
Γ ` ψ ψ,∆ ` φ

Γ,∆ ` φ cut

Structural group

Γ, φ, φ ` ψ
Γ, φ ` ψ contraction

Γ ` ψ
Γ, φ ` ψ weakening

Figure 1: Inference rules for LJ0
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3 Soundness

A sequent Γ ` φ is said to be valid when Γ |= φ, i.e., φ is a logical consequence of Γ
seen as a set of formulas.

Theorem 3.1. Γ `LJ φ implies Γ |= φ.

Proof. Straightforward (structural) induction on φ: for each rule of LJ0, can show that,
if the premises are valid, the conclusion is also valid.

Corollary 3.2. The sequent φ ∨ ¬φ is not derivable in LJ0.

4 Completeness

We shall now establish completeness: any sequent that is valid with respect to Kripke
semantics can be derived in LJ0. To do so, we introduce the universal Kripke structure
in which satisfaction is closely related to derivability.

We shall work under the assumption that the set of propositional variables P is
countably inVnite. This implies that there exists a bijection r : F0 → N.

DeVnition 4.1 (Saturated). Given a (possibly inVnite) set E of formulas, we write
E `LJ φ when there is a Vnite subset Γ ⊆ E such that Γ `LJ φ. A set of formu-
las E is saturated if, for any φ such that E `LJ φ, we have φ ∈ E. Given a set F , the
set F ∗ = { φ : F `LJ φ } is saturated.

DeVnition 4.2 (World-set). We say thatE is consistent if⊥ 6∈ E. We say thatE has the
disjunction property if for all φ1 ∨ φ2 ∈ E, there is some i ∈ {1, 2} such that φi ∈ E.
We say that Γ is a world-set when it is saturated, consistent and has the disjunction
property.

DeVnition 4.3 (Universal Kripke structure). The universal structure U is deVned by:
W(U) = { wE : E is a world-set }; wE ≤ wE′ iU E ⊆ E′; α(wE) = E ∩ P .

Lemma 4.4. Let E be a set of formulas, and φ a formula such that E 6`LJ φ. There
exists a world-set E′ such that E ⊆ E′ and E′ 6`LJ φ.

Proof. We deVne an increasing sequence (Ei)i∈N of saturated sets such that for all i,
φ 6∈ Ei. We set E0 = E∗. If En enjoys the disjunction property, then En+1 = En.
Otherwise, let φ1 ∨φ2 be the formula in En such that φ1 6∈ En and φ2 6∈ En, and such
that r(φ1 ∨ φ2) is minimal among the formulas having that property. It cannot be that
bothEn∪{φ1} `LJ φ andEn∪{φ2} `LJ φ, because by rule ∨L that would contradict
En 6`LJ φ. Let i be such that En ∪ {φi} 6`LJ φ, and let En+1 = (En ∪ {φi})∗.

Let us show that E′ =
⋃
i∈NEi satisVes the expected conditions. The set is sat-

urated: if for a Vnite subset Γ ∈ E′, we have Γ `LJ ψ, then because Γ is Vnite we
have Γ ⊆ Ek for some k, and by saturation of Ek we have ψ ∈ Ek ⊆ E′. The same
argument shows that E′ 6`LJ φ, and thus E′ is consistent: if ⊥ could be derived, φ
would also be derivable by rule ⊥L. It only remains to show that E′ enjoys the dis-
junction property. Let φ = φ1 ∨ φ2 ∈ E′, there must be some k such that φ ∈ Ek . By

4



construction, the disjunction property will be restored for that formula in at least r(φ)
steps, thus we have φ1 ∈ Ek+r(φ) or φ2 ∈ Ek+r(φ), and the disjunction property is
satisVed for φ in E′.

Lemma 4.5. Let E be a world-set and φ a formula. We have U , wE |= φ iU φ ∈ E.

Proof. We proceed by (structural) induction on the formula.

• Case of >. We always have wE |= > and also always have > ∈ E by saturation
and rule >R.

• Case of ⊥. We never have wE |= ⊥, and never have ⊥ ∈ E for a consistent E.

• Case of P . By deVnition, wE |= P iU P ∈ α(wE) = E ∩ P iU P ∈ E.

• Case of φ1 ∧ φ2.

(⇒) From wE |= φ1 ∧ φ2 we obtain wE |= φ1 and wE |= φ2. By induction
hypotheses we thus have E `LJ φ1 and E `LJ φ2, and we can conclude
by rule ∧R.

(⇐) By assumption we have E `LJ φ1 ∧ φ2. This allows us to conclude
E `LJ φi for each i ∈ {1, 2}, using rules ∧L, cut and axiom. By in-
duction hypotheses this yields wE |= φi for each i, which allows us to
conclude.

• Case of φ1 ∨ φ2.

(⇒) As in the previous case, but using rule ∨R instead of ∧R.
(⇐) If φ1 ∨ φ2 ∈ E, then by the disjunction property of world-sets we have

φi ∈ E for some i. By induction hypothesis this yields wE |= φi and thus
wE |= φ1 ∨ φ2.

• Case of φ1 ⇒ φ2.

(⇒) By rule ⇒R it suXces to show E ∪ {φ1} `LJ φ2. Assume the contrary.
Then by Lemma 4.4 there is some world-set E′ such that E ≤ E′, φ1 ∈
E′ and φ2 6∈ E′. By induction hypothesis wE′ |= φ1, but then by our
assumption wE |= φ1 ⇒ φ2 we must also have wE′ |= φ2. We then have
φ2 ∈ E′ by induction hypothesis, which is a contradiction.

(⇐) Assuming E `LJ φ1 ⇒ φ2, we show wE |= φ1 ⇒ φ2. We simply follow
the deVnition of satisfaction for an implication. For any E ≤ E′ such
that wE′ |= φ1, we have to establish wE′ |= φ2. By induction hypothesis
we have φ1 ∈ E′, or in other words E′ `LJ φ1. Since we also have
E′ `LJ φ1 ⇒ φ2, we conclude E′ `LJ φ2 by rules cut, axiom and ⇒L.
By induction hypothesis we can Vnally conclude: wE′ |= φ2.

Theorem 4.6. Γ |= φ implies Γ `LJ φ.
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Proof. Assume Γ |= φ and Γ 6`LJ φ. By Lemma 4.4 we have some world-set E such
that Γ ⊆ E and φ 6∈ E. We obviously have wE |= Γ, so by Γ |= φ we also have
wE |= φ. By Lemma 4.5, this implies φ ∈ E, which is a contradiction.

5 Atomic axiom

Proposition 5.1. The axiom rule can be restricted to apply only to propositional vari-
ables, without loosing completeness.

Proof. By induction on the φ, we build a derivation of φ ` φ in which the axiom is only
used on propositional variables.

6 Cut elimination

The cut rule is admissible. This is shown by means of a cut elimination procedure,
which gradually pushes cuts towards the leaves of the derivation tree. We do not detail
it here; it will be covered as an exercise.

Cut elimination has many consequences. It is at the basis of the Curry-Howard cor-
respondence between proofs and programs: proofs, equipped with their cut elimination
procedure, can naturally be seen as programs equipped with a reduction semantics. Cut
elimination also directly implies the consistency of the calculus. We see next another
simple but less classical corollary of cut elimination.

Proposition 6.1. The rule ∧L is invertible, meaning that if its conclusion is derivable,
then so is its premise. From the viewpoint of somebody trying to build a proof of the
conclusion, this means that applying the rule will never loose provability.

Proof. Assuming a derivation Π, with a conjunctive hypothesis in its conclusion se-
quent, we create a new one that ends with ∧L, then uses cut to “undo” the left conjunc-
tion rule and get back to the original sequent, proved by Π:

φ1 ` φ1 φ2 ` φ2
φ1, φ2 ` φ1 ∧ φ2

Π
Γ, φ1 ∧ φ2 ` ψ

Γ, φ1, φ2 ` ψ
cut

Γ, φ1 ∧ φ2 ` ψ

This shows that ∧L is invertible and by cut elimination it is also invertible in the cut-
free fragment of LJ0.

This simple argument is not so useful for proof search: we would like to know not
only that the application does not loose provability but also that it gets us closer to
completing a proof. To get some insight in that respect, we present an argument based
on proof transformations, or more precisely rule permutations. As a corollary, we will
obtain that the derivation starting with ∧L is no higher than the original one — under
the (harmless) hypothesis that the axiom is restricted to propositional variables.

Let Π be a derivation of Γ, (φ1 ∧ φ2)n ` ψ. We prove by induction on Π that there
is a derivation of Γ, φn1 , φ

n
2 ` ψ.
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• If the last rule does not apply to one of the φ1∧φ2 formulas, we apply essentially
the same rule and conclude by induction hypothesis where needed. For instance,
if Π performs a left introduction rule on ⊥, we do the same on Γ, φn1 , φ

n
2 ` ψ

and conclude immediately. If Π performs a contraction in Γ, we do the same and
conclude by induction hypothesis.

• If ∧L is performed on some occurrence of φ1 ∧ φ2 we conclude by induction
hypothesis with n− 1.

• Otherwise, a structural rule must be applied to one of our φ1 ∨ φ2 formulas. If
one of our formulas is weakened away, we produce the required derivation by
weakening the corresponding subformulas φ1 and φ2. If one of the φ1 ∧ φ2 is
contracted then by induction hypothesis we have a derivation of Γ, φn+1

1 , φn+1
2 `

ψ, and by applying two contraction rules we obtain the expected result.

Obviously, not all rules are invertible. The right rule for disjunction is not invert-
ible. Because of the splitting of the context, the right rule for conjunction is also not
invertible.

7 Eliminating structural rules

We give in Figure 2 a new set of rules, forming the system LJ−0 . Our purpose is to
obtain a system in which proof search is as simple as possible. They are similar to the
rules of LJ0, but we did not include the cut and structural rules. The latter removal
has forced us to modify the way other rules deal with their contexts. Rules axiom and
>R do not require an empty context; without this, weakening would not be admissible.
Rule ∧R and⇒L do not split their conclusion context, but copy it to their premises.

Proposition 7.1. LJ−0 enjoys the subformula property: all formulas occurring in a
derivation are subformulas of formulas occuring in the conclusion sequent.

Proof. Obvious, by a simple inspection of the rules. If needed, it may be done by induc-
tion over the derivation.

Proposition 7.2. Weakening is admissible: if Γ ` φ is derivable in LJ−0 , then so is
Γ, ψ ` φ.

Proof. Same as previously.

Proposition 7.3. Contraction is admissible in LJ−0 .

Proof. We do not give a complete proof. The idea is to add a contraction rule, then elim-
inate it by repeatedly applying local proof transformations that push the contraction
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towards the leaves, where it can be absorbed. The tricky cases are when a contraction
is followed by a left introduction rule on the contracted formula. Consider for instance:

Π
Γ, φ1 ∧ φ2, φ1, φ2 ` ψ

Γ, φ1 ∧ φ2, φ1 ∧ φ2 ` ψ
Γ, φ1 ∧ φ2 ` ψ

Here we cannot permute the two rules: if we Vrst apply the left introduction rule, the
formula φ1 ∧ φ2 won’t be available anymore for contraction. Instead we have to show
that the hypothesis φ1∧φ2 is not needed in Π, because φ1 and φ2 are already available.
Further, we have to eliminate that hypothesis without increasing the height of the proof.
This is what we actually proved in the reVned argument for Proposition 6.1. Similar
arguments are needed for ∨L and⇒L.

Proposition 7.4. LJ−0 is sound and complete with respect to LJ0.

Proof. Soundness is simple: anything that can be derived in LJ−0 can be derived in
LJ0, because each rule of LJ−0 can be simulated by the corresponding LJ0 rule, plus
structural rules.

We now show completeness, i.e.,, anything that can be derived in LJ0 can also be
derived in LJ−0 . We have seen that cut can be eliminated from LJ0, thus it suXces
to show that every other rule can be simulated by rules of LJ−0 . We have seen that
structural rules are admissible. For the logical rules, and axiom, it is simple to obtain
the LJ0 version from the LJ−0 version plus the admissibility of structural rules. For
instance, in the case of ∧R we have to show that if Γ ` φ1 and ∆ ` φ2 are derivable
in LJ−0 , then so is Γ,∆ ` φ1 ∧ φ2. By the admissibility of weakening and contraction
we have that Γ,∆ ` φi is derivable for both i, and we conclude using the LJ−0 rule
∧R.

Γ,⊥ ` φ ⊥L Γ, φ ` φ axiom
Γ ` > ⊥R

Γ, φ1, φ2 ` ψ
Γ, φ1 ∧ φ2 ` ψ

∧L
Γ ` φ1 Γ ` φ2

Γ ` φ1 ∧ φ2
∧R

Γ, φ1 ` ψ Γ, φ2 ` ψ
Γ, φ1 ∨ φ2 ` ψ

∨L
Γ ` φi

Γ ` φ1 ∨ φ2
∨R

Γ, φ1 ⇒ φ2 ` φ1 Γ, φ2 ` ψ
Γ, φ1 ⇒ φ2 ` ψ

⇒L
Γ, φ ` ψ

Γ ` φ⇒ ψ
⇒R

Figure 2: A complete intuitionistic sequent calculus without structural rules
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Example 7.5. This example shows that, in the system of Figure 2 it is necessary to keep
the implication formula in the left premise of the⇒L rule:

A,¬(A ∨ ¬A) ` A axiom

A,¬(A ∨ ¬A) ` A ∨ ¬A
∨R

A,¬(A ∨ ¬A) ` ⊥
⇒L

¬(A ∨ ¬A) ` ¬A
⇒R

¬(A ∨ ¬A) ` A ∨ ¬A
∨R

¬(A ∨ ¬A) ` ⊥
⇒L

` ¬¬(A ∨ ¬A)
⇒R

Starting from the conclusion sequent (which is valid) we always apply the only possible
rule, ruling out applications that would get us back to a previously encountered sequent.
The Vrst two rule applications are forced by the structure of the sequent: axiom is not
possible, and only the implication can be introduced, Vrst one the right and then on the
left. With ¬(A ∨ ¬A) ` ¬(A ∨ ¬A) we could introduce again the implication on the
left, but that would cycle, so we apply ∨R. We have to choose a disjunct, but if we
chose A we would be forced to do⇒L after that, and cycle. Without φ1 ⇒ φ2 in the
left premise of⇒L, we would have obtained ` ¬(A ∨ ¬A) which is not valid, hence
not provable.
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