
Timed Concurrent Game Structures?

Thomas Brihaye, François Laroussinie, Nicolas Markey, and Ghassan Oreiby??

Laboratoire Spécification & Vérification – CNRS & ENS Cachan – France

Abstract. We propose a new model for timed games, based on con-
current game structures (CGSs). Compared to the classical timed game
automata of Asarin et al. [8], our timed CGSs are “more concurrent”,
in the sense that they always allow all the agents to act on the sys-
tem, independently of the delay they want to elapse before their action.
Timed CGSs weaken the “element of surprise” of timed game automata
reported by de Alfaro et al. [15].
We prove that our model has nice properties, in particular that model-
checking timed CGSs against timed ATL is decidable via region abstrac-
tion, and in particular that strategies are “region-stable” if winning ob-
jectives are. We also propose a new extension of TATL, containing ATL∗,
which we call TALTL. We prove that model-checking this logic remains
decidable on timed CGSs. Last, we explain how our algorithms can be
adapted in order to rule out Zeno (co-)strategies, based on the ideas of
Henzinger et al. [15,21].

1 Introduction

Verification and model-checking. Over the last 30 years, the crucial role of ver-
ification has been emphasized by the unprecedented development of automated
and embedded systems in various domains such as automotive industry, avionics
or mobile communications.

Model-checking [25] is a technique of formal, model-based verification. This
technique consists in exhaustively and automatically checking that all the be-
haviours of the (model representing the) system are consistent with some given
formal specification. It is classical to represent the system (e.g. a network of
computers and printers) as a finite-state system (a.k.a. Kripke structure), and to
express the specifications (e.g., that any message sent by some computer always
reaches its addressee) in some temporal logic, such as LTL (linear-time temporal
logic) or CTL (computation-tree logic) [17]. Several efficient model-checking tools
have been developped and applied with great success over an abundant number
of industrial case studies [24,13,22].

Since the early 90’s, this setting has been lifted to real-time, in particular
with the introduction of timed automata [2], the extension of temporal logics to
include quantitative requirements [1,4], and the development of efficient algo-
rithms and tools [20,14,9]. This area is now very mature and widely applied for
industrial case studies.
? Work partly supported by project DOTS (ANR-06-SETI-003).
?? This author is supported by a PhD grant from Région Ile-de-France.

Control and game theory. Control theory [11,27] is another facet of formal,
model-based verification, geared towards the analysis of open systems, inter-
acting with an (hostile) environment. The ultimate goal of this technique is to
automatically synthesize a controller that will restrict the behaviour of the sys-
tem in order to satisfy some given property. This problem is often encoded as a
game-theoretic problem: the game is played by several players on a board, e.g.
a concurrent game structure (CGS) [6]. CGSs are finite-state automata whose
evolution conforms to the following protocol: at each step, all the players select
one of the moves they are allowed to play, and the next state is looked up in the
transition table of the CGS.

Alternating-time temporal logic (ATL) [5] has been proposed as an extension
of CTL with strategy quantifiers. It can express controllability properties, e.g.
“A has a strategy to eventually get its request served”. Compared to CTL, this
extension comes with no extra cost: it can still be verified in polynomial time [6].

Timed games. Several research works have focused on extending games to the
real-time world. In that view, the best-established model is that of timed game
automata [23,8,15,12,21]. A timed game automaton (TGA) is a timed automaton
whose set of transitions is partitionned amongst the different players. At each
step, each player chooses one of her possible transitions, as well as some amount
of time she would like to wait before firing her selected transition. The player
with the smallest delay is “elected”, and her choices are applied. In case several
player draw a tie, one of them is elected non-deterministically (or there can be
a hierarchy among the players, but this breaks symmetry).

The logic ATL has also been extended to TATL, involving formula clocks to
express timing requirements. It is decidable in exponential time whether a TATL
formula is fulfilled in a timed game automaton [21]. Moreover, it is possible to
restrict to “fair” strategies, ruling out strategies that consist in preventing time
to diverge (a.k.a. Zeno strategies) [15,21].

Our contributions. Timed game automata are more of a game extension of timed
automata than a timed extension of game structures. In this paper, we propose
a timed extension of CGSs, which we call TCGSs. In those games, each player
still chooses a delay and a move she wants to play after that delay, but she also
proposes a function telling which moves she wants to play if someone proposes
a smaller delay. That way, even if an opponent chooses a smaller delay, her
behavior can still be “restricted” by the other players. This also avoids resorting
to non-determinism in case several players choose the same delay. This could be
useful in our example of a communication network, where two messages sent at
the same time would result in a collision.

We prove that our model has nice properties: the functions proposed by the
players can be chosen to be region-based (i.e., they can be constant on each re-
gion), and that the satisfaction of TATL properties is stable by regions. This pro-
vides us with an EXPTIME algorithm for model-checking TATL on our TCGSs,
which we prove can be extended to force the players to play “fairly” w.r.t. di-
vergence of time.

We also propose a new (to the best of our knowledge) temporal logic TALTL,
which contains TATL and ATL∗ (and can thus express e.g. fairness properties)
while remaining decidable (in 2EXPTIME). As a side result, we obtain that
model-checking the corresponding TCLTL logic (containing TCTL and LTL) on
timed automata is decidable in EXPSPACE.

Related works. As already mentionned, several papers have already dealt with
timed games, especially in the framework of timed game automata. In [28],
Schobbens and Bontemps propose a model for multi-agent games (called “real-
time concurrent game structures”, but that is still different from our TCGSs),
and describe an algorithm for model-checking a timed extension of ATL incor-
porating MITL [3]. Their algorithm relies on event-clock automata, and is very
different to our approach. The complexity of the procedure is not discussed there.

Outline of the paper. The paper is organized as follows: in Section 2, we formally
define our timed concurrent game structures. Section 3 is devoted to showing
that strategies can be made region-based (for region-based objectives). Section 4
proves that region-equivalence is a correct abstraction, and Section 5 describes
the model-checking algorithms for TATL and TALTL. Last, in Section 6, we
explain how our results can be extended to rule out Zeno strategies. Due to
lack of space, proofs are omitted. They are detailed in [10].

2 Definitions

2.1 Untimed concurrent game structures

We briefly recall the definition of concurrent game structures, which are multi-
agent extensions of transition systems [6]. We extend the original definition in not
requiring them to be finite-state, as we will use them for defining the semantics
of our timed game structures. In the whole paper, Σ is a fixed finite alphabet.

Definition 1. A concurrent game structure (CGS for short) is a tuple1 S =
〈Q,Q0, l, δ,Agt,M,Mv,Edg〉 where:

– 〈Q,Q0, l, δ〉 is a transition system with l : Q→ Σ,
– Agt = {a1, ..., ak} is a finite set of agents,
– M is the set of all possible moves of the agents,
– Mv : Q× Agt→ P(M) r ∅ defines the set of possible moves for each player,
– Edg : Q×Mk → δ is the transition table, assigning a transition to each set of

moves of the agents in each state. We further demand that transitions given
by Edg(q,ma1 , ...,mak) depart from q.

We write ExecS (resp. ExecF
S) for the set of (resp. finite) executions or trajec-

tories of S (i.e., of the underlying transition system). Let r = (ri)06i6n ∈ ExecF
S .

1 We might omit to mention M when it is clear from the context.

The length |r| of r is n, the last location last(r) of r is rn and, for any m 6 n,
the m-th prefix r6m of r is the finite execution (ri)06i6m.

In a CGS, the transitions to be fired are chosen concurrently by all the agents:
in some location q, each agent al selects a move ml ∈ Mv(q, al). The resulting
transition is indicated by the value of Edg(q, a1, ...ak). We now formalize this
behavior.

Definition 2. Let S = 〈Q,Q0, l, δ,Agt,M,Mv,Edg〉 be a CGS, and a ∈ Agt be
an agent. A strategy for a is a mapping λ : ExecF

S → M s.t., for any r ∈ ExecF
S ,

λ(r) ∈ Mv(last(r), al). Given a coalition A ⊆ Agt, a strategy for A is a family
λA = (λl)al∈A of strategies, one for each agent in A.

Given a location q and a set of moves ml ∈ Mv(q, al) for some agents al of
a coalition A, the set of possible transitions from q under choices (ml)al∈A is
defined as Next(q, (ml)al∈A) = {Edg(q,m′1, ...,m

′
l) | ∀al ∈ A. m′l = ml}. In the

same way, given a finite trajectory r and a strategy λA = (λl)al∈A, we define
Next(r, λA) = Next(last(r), (λl(r))al∈A).

An outcome of strategy λA after a finite execution r of length n is an ex-
ecution r′ = (r′i)i s.t. r is a prefix of r′ and, for any m, (r′n+m, r

′
n+m+1) ∈

Next(r′6n+m, λA). We write2 OutS(r, λA) for the set of outcomes of λA after r.
The aim of a strategy is generally to win the game, i.e., to enforce that any

(infinite) outcome belongs to a given set of winning trajectories. Such a set is
called a winning objective.

2.2 Timed concurrent game structures

Given a set C of clock variables, a clock valuation is a mapping v : C → R+.
Given a valuation v, a delay t ∈ R+ and a subset Z ⊆ C, the valuation v′ = v+ t
is defined by v′(c) = v(c) + t for all c ∈ C, and the valuation v′′ = v[Z ← 0] is
defined by v′′(c) = v(c) if c /∈ Z and v′′(c) = 0 otherwise. We write v0 for the
valuation s.t. v0(c) = 0 for any c ∈ C.

Let M be a positive integer. The set of clock constraints bounded by M is the
set of formulas defined by the following grammar:

Constr(C,M) 3 φ ::= c ∼ n | φ ∧ φ

where c ranges over C, n 6 M is an integer, and ∼ ∈ {<,6,=,>, >}. We write
Constr(C) for the set of unbounded clock constraints (i.e., when M = +∞). That
a clock valuation satisfies a clock constraint is defined in the obvious way.

Definition 3. A timed automaton (TA for short) [2] is a tuple A = 〈Q,Q0, l,
C, Inv, δ〉 where:

– Q is a finite set of locations, those in Q0 being initial;
– l : Q→ Σ labels each location with one letter of the alphabet;

2 We will omit to mention the subscript S when it is clear from the context.

– C is a finite set of clock variables;
– Inv : Q→ Constr(C) defines the invariants of each location;
– δ ⊆ Q × (Q × 2C)(R+)C is a finite set of transitions, required to fulfill the

following requirement: if (q, f) ∈ δ, then f is total, and there exists a positive
integer M s.t., if v and v′ are two clock valuations satisfying exactly the same
set of formulas in Constr(C,M), then f(v) = f(v′).

Note that our definition of a transition is unusual. In our setting, a transition
is a (total) function that assigns a location and a set of clocks to be reset to each
valuation of the clocks. While both definitions are expressively equivalent, our
modified definition will facilitate the extension to games.

The semantics of TAs is defined in terms of an infinite (timed) transition
system. Here, we combine a delay transition with an action transition:

Definition 4. With a TA A = 〈Q,Q0, l, C, Inv, δ〉, we associate an infinite timed
transition system (TTS for short) S = 〈S,S0, l

′, R〉 defined as follows:

– S = {(q, v) ∈ Q× (R+)C | v |= Inv(q)}, whose elements are called the states
of A;

– S0 = S ∩ (Q0 × {v0});
– l′((q, v)) = l(q);
– R ⊆ S × R+ × S is such that (s, d, s′) ∈ R iff, writing s = (q, v) and s′ =

(q′, v′), there exists a transition (q, f) ∈ δ and a subset Z ⊆ C s.t.(q, v+d) ∈
S, (q′, Z) = f(v + d), and v′ = v + d[Z ← 0].

A (continuous) execution ρ of A is a (finite or infinite) sequence ((si, di))i

s.t. (si, di, si+1) ∈ R for any i. Given such an execution ρ = ((si, di))i, a posi-
tion along ρ is a pair (k, d) ∈ N × R+ where 0 6 d 6 dk. Writing si = (qi, vi)
for each i, the position (k, d) represents the state (qk, vk + d). The set of po-
sitions of an execution are ordered lexicographically. Given two positions (k, d)
and (k′, d′) with (k, d) 6 (k′, d′), we define time((k, d), (k′, d′)) to be the delay
elapsed between those two positions, namely (dk − d) +

∑
k<j<k′ dj + d′.

We are now in a position to define our timed concurrent game structures:

Definition 5. A timed concurrent game structure (TCGS for short) is a tu-
ple T = 〈Q,Q0, l, C, Inv, δ,Agt,M,Mv,Edg〉 where

– 〈Q,Q0, l, C, Inv, δ〉 is a TA;
– Agt, M, Mv and Edg have the same properties as in CGSs.

In this paper, we focus on finite-state TCGS, where both Q and M ⊆ N are
finite. This restriction is implicit in the sequel.

In a TCGS, the agents do not only choose the discrete action they want to
play, but also the (non negative real) delay they would like to let elapse before
their action takes place, and the actions they would play if the transition were
to be taken earlier. Formally:

Definition 6. Let T = 〈Q,Q0, l, C, Inv, δ,Agt,M,Mv,Edg〉 be a TCGS, q ∈ Q,
and v ∈ (R+)C. A full move of a player a ∈ Agt from location q under valua-
tion v is a pair (t, f) where t ∈ R+ and f : R+ → Mv(q, a) s.t. v + t |= Inv(q).
We write FM((q, v), a) for the set of full moves of player a in location q un-
der v. We have that FM((q, v), a) = {t ∈ R+ | v + t |= Inv(q)} × (Mv(q, a))R+

.
We write FM(R+,M) for the set R+ ×MR+

of all possible full moves.

The semantics of a TGCS can then be defined in terms of an infinite CGS:

Definition 7. With a TCGS T = 〈Q,Q0, l, C, Inv, δ,Agt,M,Mv,Edg〉, we asso-
ciate the infinite CGS S = 〈S,S0, l

′, R,Agt,FM(R+,M),Mv′,Edg′〉 defined as
follows:

– 〈S,S0, l
′, R〉 is the TTS associated with the TA 〈Q,Q0, l, C, Inv, δ〉;

– for all (q, v) ∈ S and for all a ∈ Agt, Mv′((q, v), a) = FM((q, v), a);
– Edg′((q, v), ((t1, f1), ..., (tk, fk))) is defined as follows: letting t0 = min{ti |
i 6 k}, mi = fi(t0) for each i 6 k, (q, f) = Edg(q, (m1, ...,mk)), and f(v +
t0) = (q′, Z), we have Edg′((q, v), ((t1, f1), ..., (tk, fk))) = ((q, v), t0, (q′, v +
t0[Z ← 0])).

Example 8. Let us consider the 2-player game depicted on Figure 1. In that
figure, transitions are marked e.g. with 〈a, b〉 to indicate that they correspond
to Player 1 playing move a and Player 2 playing move b (moves not drawn are
assumed to be self-loops). One can be convinced that Player 1 has a strategy in
state (q2, x = 0) for always avoiding location q4. A possible full move is depicted
on Figure 2.

q1 q2 q4

q3

〈2,1〉

x≤5

〈2,1〉

x≤5

〈1,2〉

x≥5

〈1,2〉

x≥5

〈2,2〉

x=2

Fig. 1. Example of a TCGS.

f

1

2

5 = d

Fig. 2. A full move (d, f).

Remark 9. Even if we were not able to prove it formally, we think that our
TCGSs and the classical model of TGAs [8,15] are incomparable w.r.t. alternat-
ing bisimilarity.

Still, TCGSs can be extended in many ways (e.g. with different invariants
for each player, ...) while remaining decidable (with very little changes to our
algorithms, and in particular with the same complexities). One possible exten-
sion is to have several transition tables, depending on the orders (and possible
equalities) of the delays chosen by the different players. Such an extension would
encompass TGAs (with an extra player for resolving non-determinism).

3 Region equivalence and strategies

3.1 Region equivalence

Fix a family of integer constants Mx, one for each clock x ∈ C. Two clock
valuations v and v′ are equivalent [2], denoted by v ≈t v

′, if, and only if, the
following three conditions hold:

– for all c ∈ C, either bv(c)c = bv′(c)c or both v(c) and v′(c) are larger than Mc;
– for all c, c′ ∈ C with v(c) ≤ Mc and v(c′) ≤ Mc′ , frac(v(c)) ≤ frac(v(c′)) if

and only if frac(v′(c)) ≤ frac(v′(c′));
– for all c ∈ C with v(c) ≤Mc, frac(v(c)) = 0 if and only if frac(v′(c)) = 0.

The equivalence relation ≈t is extended to states and executions of a TA in the
classical way. An equivalence class for ≈t on states is called a region. We write
[(q, v)] for the region containing (q, v), and RA for the set of all such regions.
Since all the Mx are finite, the number of regions is finite.

Given a state (q, v) of a TA, the timed future of (q, v) Fut(q, v) : R+ → RA is
defined as: Fut(q, v)(t) = [(q, v+t)]. This function is piecewise constant and, since
there are finitely many regions, R+ can be partitioned into finitely many intervals
on which Fut(q, v) is constant. We write Fut(q, v) = I0 I1 I2 · · · Il to denote that
fact. In such a notation, (Ii)i6l is a sequence of intervals partitioning R+ and on
each of which Fut(q, v) is constant. We also require that this list is minimal, i.e.,
for all j > 0 and any t ∈ Ij and t′ ∈ Ij+1, we have Fut(q, v)(t) 6= Fut(q, v)(t′).

We also define the immediate successor of a region as the partial function
succ : RA → RA defined by succ(r) = r′ if r′ 6= r and there exists (q, v) ∈ r and
t ∈ R+ such that (q, v + t) ∈ r′ and ∀0 < t′ < t we have (q, v + t′) ∈ r ∪ r′. We
write succi for the i-th iterate of succ.

3.2 Simplifying strategies

As is classical when dealing with timed systems, we will restrict to winning
objectives that are region-definable, in the sense that a trajectory that is region-
equivalent to a winning trajectory is also winning. Under this assumption, we
prove that strategies can always be “region-definable”. This is twofold: on the one
hand, region-invariance means that the strategy does not depend on the whole
history but only on its region abstraction; on the other hand, region-uniformity
means that the value returned by the strategy is constant on the intermediate
regions being visited. In order to define formally these notions we define the
notion of isomorphism between two states. This notion will be the key tool in
the proofs of existence of “region-definable” strategies.

Definition 10. Let A be a TA and (q, v), (q′, v′) be two states of A. We say
that a bijection σ : R+ → R+ is an isomorphism for (q, v) and (q′, v′) when:

– (increasing) for all t1, t2 ∈ R+, t1 < t2 iff σ(t1) < σ(t2);
– (future-preserving) for all t ∈ R+, Fut(q, v)(t) = Fut(q′, v′)(σ(t)).

Definition 11. Let T be a TCGS, and λA be a strategy for a coalition A ⊆ Agt.

– λA is region-invariant if, for all finite executions ρ and ρ′ s.t. ρ ≈t ρ
′, there

is an isomorphism σ for last(ρ) and last(ρ′) s.t., writing (d, f) = λA(ρ) and
(d′, f ′) = λA(ρ′), we have d′ = σ(d) and f ′(t) = f(σ−1(t)) for all t ∈ R+.

– λA is region-uniform if, for all finite execution ρ s.t. λA(ρ) = (d, f), the value
of f is constant on regions, i.e., writing (q, v) = last(ρ), for any t, t′ ∈ R+,
if (q, v + t) ≈t (q, v + t′), then f(t) = f(t′).

Roughly, region-invariance means that the strategy only depends on the projec-
tion of the history on regions, while region-uniformity means that the full-moves
returned by the strategy are region-definable. In order to restrict to region-
uniform and region-invariant strategies, we prove the following results [7]:

Proposition 12. Let T be a TCGS and A ⊆ Agt be a coalition. For any two
finite trajectories r and r′ s.t. r ≈t r

′, for any strategy λA of coalition A, we
can build a region-uniform and region-invariant strategy λ′A s.t., for any ρ′ ∈
Out(r′, λ′A), there exists ρ ∈ Out(r, λA) with ρ ≈t ρ

′.

Corollary 13. Let T be a TCGS, A ⊆ Agt be a coalition and Ω be a region-
invariant winning objective. Let r and r′ be two finite trajectories s.t. r ≈t r

′.
There exists a winning strategy for A after r w.r.t. Ω if, and only if, there exists
a region-uniform and region-invariant winning strategy for A after r′ w.r.t Ω.

4 Region CGS

In this section, for a TCGS T , we define a finite CGS which we call the region
CGS of T . We show that this region CGS is game-bisimilar to the original TCGS.
This region CGS is the “concurrent game version” of the classical region automa-
ton [2]. Before we give the formal definition of the region CGS, we need to define
the time-abstract version of a full move.

Definition 14. Let T = 〈Q,Q0, l, C, Inv, δ,Agt,M,Mv,Edg〉 be a TCGS. A dis-
crete full move of a player a ∈ Agt from a region [(q, v)] is a pair (d, f) where d ∈
N and f : N→ Mv(q, a).

We write FM([(q, v)], a) for the set of discrete full moves of player a in re-
gion [(q, v)]. We have that FM([(q, v)], a) =

∣∣Fut((q, v))
∣∣ × (Mv(q, a))N. The set

FM(N,M) denotes the set N×MN of all possible discrete full moves.

As can be expected, the first element of a full move specifies the delay that
the agent would like to wait before firing her transition, in terms of the number of
regions to be visited. The second item is the move function for the intermediary
regions.

Definition 15. With a TCGS T = 〈Q,Q0, l, C, Inv, δ,Agt,M,Mv,Edg〉, we as-
sociate the (finite) region CGS R = 〈S,S0, l

′, R,Agt,FM(N,M),Mv′,Edg′〉 with

– 〈S,S0, l
′, R〉 is the region automaton associated with the TA 〈Q,Q0, l, C, Inv, δ〉;

– for all s ∈ S, for all a ∈ Agt, Mv′(s, a) = FM(s, a);
– Edg′(s, ((d1, f1), ..., (dk, fk))) is defined as follows: let d0 = min{di | i 6 k},
s′ = succd0(s), mi = fi(d0) for each i 6 k, (q, f) = Edg(q, (m1, ...,mk)), and
(q′, Z) = f(q, v′) for some (q, v′) ∈ s′ (this does not depend on the choice of v′

since f is definable with clock constraints); then Edg′(s, ((d1, f1), ..., (dk, fk))) =
[(q′, v′[Z ← 0])].

Let T be a TGCS and R be its region CGS. With a run r of T , one can
naturally associate a unique run of R, which we denote by [r].

Using Prop 12, it can be proved that this abstraction is correct, in the sense
that a TCGS T and its region abstraction R are game-bisimilar, i.e., that any
strategy in one of those structures can be “mimicked” in the other one [7].

Theorem 16. Let T be a TCGS. Region equivalence induces a game-bisimulation
between (the infinite CGS associated with) T and its region CGS R.

5 Timed ATL

We will study several extensions of the logic ATL defined originally in [5]. We
begin with defining the largest extension, namely TATL∗.

Definition 17. The logic TATL∗ is defined by the following grammar:

TATL∗ 3 φs ::= p | c ∼ n | ¬φs | φs ∨ φs | 〈〈A〉〉φp

φp ::= φs | c.φp | φp ∧ φp | φp ∨ φp | φp Uφp | φp Rφp

where p ranges over Σ, c ranges over a finite set of formula clocks, ∼ ∈ {<,6,=,
>, >}, n ∈ N, and A ⊆ Agt. Formulas of the form φs are called state formulas,
while formulas of the form φp are path formulas.

A TATL∗ formula φ is interpreted over a position p along a trajectory r of a
TCGS T w.r.t. a valuation w for formula clocks. The semantics of T , r, p |=w φ
is defined in the usual way for atomic propositions, clock comparisons and the
freeze quantifier “c.ψ” [4], boolean combinators, and (dual) modalities U and R.
As usual, we use Fφ as a shorthand for >Uφ (eventually φ), Gφ for ⊥Rφ (al-
ways φ),

∞
F φ for G Fφ, and

∞
G φ for F Gφ. The strategy quantifier 〈〈A〉〉ψp

expresses the existence of a strategy for coalition A all of whose outcomes sat-
isfy ψp [5]. The truth value of a state formula φs only depends on the cur-
rent position and the trajectory can then be omitted in that case. We write
T , (q, v) |=w φs when T , r, (0, 0) |=w φs for some trajectory starting in (q, v).

There is no hope of being able to verify TATL∗ as this logic is a superset
of TPTL, which is known to be undecidable on timed automata under our con-
tinuous semantics [4]. We thus focus on fragments of TATL∗ (that inherit their
semantics from the above semantics of TATL∗). We define ATL∗ as being the
(classical) fragment of TATL∗ not involving clocks, and TATL and ATL as the

fragments of TATL∗ and ATL∗, resp., in which path formulas restricted to the
following grammar:

φp ::= φs Uφs | φs Rφs | c.φp.

We also define a new fragment of TATL∗, which we call TALTL, containing both
ATL∗ and TATL:

Definition 18. The syntax of TALTL is defined by the following grammar:

TALTL 3 φs ::= p | c ∼ n | ¬φs | φs ∨ φs | 〈〈A〉〉φp | c.φs

φp ::= φs | φp ∧ φp | φp ∨ φp | φp Uφp | φp Rφp

Remark 19. To our knowledge, TALTL has never been studied earlier, even in the
setting of timed automata. The difference with TATL∗ lies in the fact that clocks
can now only be reset in state formulas, and not in path formulas. We believe
that our new intermediate logic is really interesting for model-checking (despite
is rather high complexity). Indeed, it extends timed branching-time logics with
e.g. fairness (for instance, c.A(

∞
F p⇒ F (q∧F (q′∧c 6 10))) is a TCLTL formula,

stating that along fair executions, q and then q′ will occur within 10 time units)
while remaining decidable3.

We begin with proving that TALTL cannot distinguish between two region-
equivalent states of a TCGS. This requires to extend our previous definitions:
given a TCGS T = 〈Q,Q0, l, C, Inv, δ,Agt,Mv,Edg〉 and a set of formula clocks C′
(disjoint from C), we define T ′ = 〈Q,Q0, l, C∪C′, Inv, δ,Agt,Mv,Edg〉. This TCGS
involves C′, but its clocks do not play any role in the semantics. In such an
extended TCGS, we write (q, v, w) for a state of the infinite CGS associated
with T ′, where v is a valuation of clocks in C and w is a valuation of the clocks
in C′. We write proj((q, v, w)) = (q, v), and extend this notation to map trajec-
tories in T ′ to their corresponding trajectory in T .

Theorem 20. Let T be a TCGS, and T ′ be the corresponding TCGS extended
with a set of formula clocks C′. Let φ be a (path- or state-) TALTL formula
built on the clocks in C′. For any region-equivalent states (q, v, w) and (q, v′, w′)
of T ′, and any two region-equivalent trajectories r and r′ starting from (q, v, w)
and (q, v′, w′), resp., we have

T , proj(r), (0, 0) |=w φ iff T , proj(r′), (0, 0) |=w′ φ.

Moreover, if φ is a state formula, then this result holds even if we relax the
hypothesis that r and r′ be region-equivalent.

Remark 21. It should be noticed that the above result fails to hold for TATL∗:
it is easy to find an example of two trajectories visiting the same sequence of
extended regions, but only one of which satisfies formula c.F (q∧c > 1). We don’t
know if the result of Theorem 20 holds for state-formulas of TATL∗.
3 From our results below, it is easy to convince that model-checking TCLTL (i.e.,

TALTL with path quantifiers instead of strategy quantifiers) is in EXPSPACE.

5.1 Model-checking

We now describe a region-based algorithm for model-checking TCGSs against
TALTL. Given a TCGS T and a set of formula clocks C′, we consider the TCGS T ′
extending T with the clocks in C′, and write R′ for the associated region CGS.
Our algorithm labels this finite-state CGS with state-subformulas of a given
TALTL state-formula ψ to be checked on T . This is achieved by recursively
filling a boolean table T ([(q, v, w)], ψ), where [(q, v, w)] ranges over the set of
regions of R′ and ψ ranges over the state-subformulas of φ. Our algorithm uses
an extra procedure ATLstar-labeling, which is the classical algorithm for ATL∗

model-checking, as defined in [6].

Theorem 22. Let T be a TCGS, C′ be a set of formula clocks, T ′ be the ex-
tended TCGS with clocks of C′, and R′ be the region CGS corresponding to T ′.
Let φ ∈ TALTL built on formula clocks in C′. Let T be the table obtained after
applying the algorithm described above on R′ and φ. Let (q, v, w) be a state in T ′.
Then T , (q, v) |=w φ iff T ([(q, v, w)], φ) = >.

Of course, a more efficient algorithm is obtained for TATL by replacing
ATLstar-labeling by the PTIME procedure ATL-labeling for ATL formulas.
As a corollary, we obtain the following theorem:

Theorem 23. Model-checking TALTL on TCGSs is decidable and 2EXPTIME-
complete. Model-checking TATL on TCGSs is EXPTIME-complete.

Remark 24. Strategies for ATL can always be chosen memoryless. This however
does not extend to TATL, since the region CGS contains extra information about
formula clocks, which are not part of the model.

6 Ruling out Zeno strategies

In the previous section, we proved the decidability of the TALTL model-checking
problem with no restriction on the strategies. In particular, a player could achieve
a safety objective by blocking time. In this section, in order to forbid this kind of
unrealistic behaviors, we explain how we can force the players to play “fairly”,
ruling out strategies that consist in preventing time to diverge (a.k.a. Zeno strate-
gies). Zenoness is the fact for an infinite execution to be time-convergent: an
infinite execution ((si, di))i∈N is Zeno if

∑
i∈N di <∞. To forbid Zeno strategies,

we use the framework introduced in [15]. Let us mention that a similar setting
appears in [18] in order to handle Zeno executions of Timed I/O Automata.

Following [15], we begin with detecting Zeno outcomes. In order to do so,
given a TCGS T , we add to it an extra clock z /∈ C which is reset when it
exceeds 1. This is formally achieved as follows: Let T = 〈Q,Q0, l, C, Inv, δ,Agt,
Mv,Edg〉 be a TCGS. We define Tz = 〈Q,Q0, l, Cz, Inv, δz,Agt,Mv,Edg′〉 where
Cz = C ∪ {z} and δz is defined from δ as follows: for each (q, f) ∈ δ, we have
(q, f ′) ∈ δ′ where f ′ : (R+)Cz → Q× 2Cz is defined as follows:

f ′(x1, . . . , xn, z) =

{
(q′, Z) if f ′(x1, . . . , xn) = (q′, Z) and z < 1
(q′, Z ∪ {z}) if f ′(x1, . . . , xn) = (q′, Z) and z ≥ 1.

The transition table Edg′ then is adapted to δz in the obvious way. Given an
infinite executions r of T ′, we clearly have that r is a non-Zeno execution if and
only if clock z is reset infinitely often.

When an execution is Zeno, it might be the case that only part of the players
are responsible for it. A player is responsible for the Zenoness of an execution
if she is “elected” infinitely many times for her choosing the smallest delay.
A coalition is responsible for Zenoness if at least one of its member is. To record
that information, we decorate the infinite CGS associated to a given TCGS T
with “blames”. This requires to extend the alphabet Σ to Σ′ = Σ×{tick, tick}×
{blA, blĀ, blAgt}. The first two symbols will be used when clock z reaches 1, while
the last three assign a blame to either coalition A, their opponent Ā, or to both.
This is the underlying alphabet in the extended CGS EA defined below:

Definition 25. Let T = 〈Q,Q0, l, Cz, Inv, δ,Agt,Mv,Edg〉 be a TCGS (assumed
to be already extended with a “tick”-clock z), S = 〈S,S0, l

′, R,Agt,Mv′,Edg′〉 be
the associated infinite CGS, and A ⊆ Agt be a coalition. We define the extended
CGS EA = 〈SE ,SE0 , lE , RE ,Agt,MvE ,EdgE〉 as follows:

– SE ⊆ S × {tick, tick} × {blA, blĀ, blAgt} and SE0 = S0 × {tick} × {blAgt} are
extensions of S and S0 with some extra informations for keeping track of
whose choice has been considered;

– lE((s, t, b)) = (l′(s), t, b),
– RE ⊆ SE × R+ × SE contains two kinds of transitions:
• for each (s, t, b) ∈ SE , with s = (q, v), and d ∈ R+ s.t. v(z) + d <

1, then for each (s, d, s′) ∈ R and b′ ∈ {blA, blĀ, blAgt}, the transition
((s, t, b), d, (s′, tick, b′)) is in RE ;

• for each (s, t, b) ∈ SE , with s = (q, v), and d ∈ R+ s.t. v(z) + d >
1, then for each (s, d, s′) ∈ R and b′ ∈ {blA, blĀ, blAgt}, the transition
((s, t, b), d, (s′, tick, b′)) is in RE ;

– EdgE is defined from Edg′ as follows: given the set of full moves ((dl, fl)al∈Agt,
we let d0 = min{dl | al ∈ Agt} as before, and set bl to be:
• blA if ∃al ∈ A. dl = d0 and ∀al ∈ Ā. dl > d0;
• blĀ if ∃al ∈ Ā. dl = d0 and ∀al ∈ A. dl > d0;
• blAgt if ∃al ∈ A. dl = d0 and ∃al ∈ Ā. dl = d0;

Then, if Edg′(s, ((d1, f1), ..., (dk, fk))) = (s, d0, s
′), with s = (q, v), we let

EdgE((s, t, b), ((d1, f1), ..., (dk, fk))) = ((s, t, b), d0, (s′, tick, bl))

if v(z) + d0 < 1, and for the other cases,

EdgE((s, t, b), ((d1, f1), ..., (dk, fk))) = ((s, t, b), d0, (s′, tick, bl)).

It should be noticed that this infinite CGS does not correspond to an in-
finite CGS associated with a TCGS: it is generally not possible to decorate a
TCGS with the informations about the players to blame. The clock-equivalence
is naturally extended to the state of EA. We say that (s, t, b) ≈t (s′, t′, b′) if and
only if s ≈t s

′, t = t′ and b = b′. We keep the terminology of region for the

equivalence class of an extended state (s, z, t, b) for ≈t. This equivalence relation
can also be extended to executions of EA. The definitions of region-invariant and
region-uniform strategy naturally extend to this context.

Now, for a strategy of coalition A to be winning without Zenoness, all of its
outcomes must either be non-Zeno and winning, or be Zeno and blame agents
in A only finitely many times. We then obtain a theorem similar to Corollary 13:

Theorem 26. Let T be a TCGS, A ⊆ Agt be a coalition and Ω be a region-
invariant winning objective. Let r and r′ be two isomorphic finite trajectories.
There exists a winning non-Zeno strategy for A after r w.r.t. Ω if, and only
if, there exists a region-uniform and region-invariant winning strategy without
Zenoness for A after r′ w.r.t Ω.

Note that making a strategy region-uniform modifies the blames in the outcomes:
only a weaker version of Prop. 12 holds in this case, but it is sufficient for our
purpose.

In order to model-check TALTL formulas, we define a modified semantics that
captures the notion of “winning without Zenoness”:

Definition 27. Let T = 〈Q,Q0, Σ, l, C, Inv, δ,Agt,M,Mv,Edg〉 be a TCGS, and,
for each coalition A ⊆ Agt, EA = 〈S,S0, l

′, R,Agt,FM(R+,M),Mv′,Edg′〉 be the
extended infinite CGS built in Definition 25. Let s = (q, v) be a state of S,
and w : C′ → R+ be a valuation of the formula clocks. Let φ ∈ TATL∗. That
T , s |=Z

w φ is defined in the same way as T , s |=w φ, except for φ = 〈〈A〉〉ψp:

T , s |=Z
w 〈〈A〉〉ψp ⇔

EA, (s, tick, blA) |=w 〈〈A〉〉 ((
∞
F ¬blĀ ⇒

∞
F tick) ∧ (

∞
F tick⇒ ψp))

Our first result is that TALTL under this semantics still cannot distinguish
between two region-equivalent states. Note that, though the proof is similar, this
result is not an immediate consequence of Theorem 20 as it is not possible to
directly decorate TCGSs with blames.

Theorem 28. Let T be a TCGS, and T ′ be the corresponding TCGS extended
with a set of formula clocks C′. Let φ be a TALTL formula built on the clocks
in C′. For any region-equivalent states (q, v, w) and (q, v′, w′) of T ′, and any
two region-equivalent trajectories r and r′ starting from (q, v, w) and (q, v′, w′),
resp., we have

T , proj(r), (0, 0) |=Z
w φ iff T , proj(r′), (0, 0) |=Z

w′ φ.

Moreover, if φ is a state-formula, then this result holds even if we relax the
assumption that r and r′ be region-equivalent.

It is then possible to extend the region CGS to include also the informations
about ticks and blames, and to adapt the algorithm for verifying the non-Zeno
semantics. Again, the correctness of the algorithm is not straightforward, as
region-equivalence is sometimes too coarse to keep precise informations about

blames. In the case of TALTL, the algorithm will still rely on ATLstar-labeling,
while for TATL, the state-formulas to verify will be in FairATL with one strong-
fairness constraint [6]. It should be noted that blames in the extended region
CGS do not always correspond to blames in the TCGS extended with formulas
clocks. In the end:

Theorem 29. Under the non-Zenoness semantics, model-checking TALTL on
TCGSs is decidable and 2EXPTIME-complete, model-checking TATL on TCGSs
is EXPTIME-complete.

7 Conclusion and perspectives

We have proposed a new model for timed games, by extending concurrent game
structures of [6] to the real-time setting. We proved that our model is compati-
ble with region abstraction, and that TATL can be model-checked in EXPTIME
(because of the binary encoding of the constants in the automaton and in the
formula), matching the complexity obtained in [21] for timed game automata.
We also proposed an extension of TATL that also embeds ATL∗, at the price of
an extra exponential blowup for model-checking.

algo. compl. w.r.t. φ and T theoretical complexity

ATL∗ 22O(|φ|)
· 2O(|T |) 2EXPTIME-complete

TATL 2O(|φ|)·O(|T |) EXPTIME-complete

TALTL 22O(|φ|)
· 2O(|T |) 2EXPTIME-complete

Table 1. Complexities of model-checking different logics on TCGSs.

As a future work, we plan to investigate synthesis of strategies. From our
results, we already know that restriction to region-based strategies will be suffi-
cient. The recent works of Harding et al. [19] could be a source of inspiration for
this direction of research. Beyond non-Zenoness, we also would like to study ro-
bustness issues in timed games [26,16], this notion allows to distinguish inifinitely
quick or precise strategies (that cannot be implemented over a real computer).
Thus it would be interesting to decide the existence of robust strategies.

References

1. R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time. Inf. &
Comp., 104(1):2–34, 1993.

2. R. Alur and D. Dill. A theory of timed automata. TCS, 126(2):183–235, 1994.
3. R. Alur, T. Feder, and Th. A. Henzinger. The benefits of relaxing punctuality.

J. ACM, 43(1):116–146, 1996.
4. R. Alur and T. Henzinger. A really temporal logic. J. ACM, 41(1):181–204, 1994.

5. R. Alur, T. Henzinger, and O. Kupferman. Alternating-time temporal logic. In
FOCS’97, p. 100–109. IEEE Comp. Soc. Press, 1997.

6. R. Alur, T. Henzinger, and O. Kupferman. Alternating-time temporal logic.
J. ACM, 49(5):672–713, 2002.

7. R. Alur, T. Henzinger, O. Kupferman, and M. Vardi. Alternating refinement rela-
tions. In CONCUR’98, LNCS 1466, p. 163–178. Springer, 1998.

8. E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for timed
automata. In Proc. Symp. System Structure & Control, p. 469–474. Elsevier, 1998.

9. G. Behrmann, A. David, and K. G. Larsen. A tutorial on Uppaal. In SFM-RT’04,
LNCS 3185, p. 200–236. Springer, 2004.

10. Th. Brihaye, F. Laroussinie, N. Markey, and G. Oreiby. Timed concurrent game
structures. Technical report, LSV, ENS Cachan, France, 2007.

11. J. R. Buchi and L. H. Landweber. Solving sequential conditions by finite-state
strategies. Trans. AMS, 138:295–311, Apr. 1969.

12. F. Cassez, A. David, E. Fleury, K. Larsen, and D. Lime. Efficient on-the-fly al-
gorithms for the analysis of timed games. In CONCUR’05, LNCS 3653, p. 66–80.
Springer, 2005.

13. A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: A new symbolic
model verifier. In CAV’99, LNCS 1633, p. 495–499. Springer, July 1999.

14. C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool kronos. In Hybrid
Systems III: Verification and Control, LNCS 1066, p. 208–219. Springer, 1996.

15. L. de Alfaro, M. Faella, T. Henzinger, R. Majumdar, and M. Stoelinga. The element
of surprise in timed games. In CONCUR’03, LNCS 2761, p. 144–158. Springer,
2003.

16. M. De Wulf, L. Doyen, N. Markey, and J.-F. Raskin. Robustness and imple-
mentability of timed automata. In FORMATS-FTRTFT’04, LNCS 3253, p. 118–
133. Springer, 2004.

17. E. Emerson. Temporal and modal logic. In Handbook of Theoretical Computer
Science, Volume B: Formal Models and Sematics, p. 995–1072. Elsevier, 1990.

18. R. Gawlick, R. Segala, J. Søgaard-Andersen, and N. Lynch. Liveness in timed and
untimed systems. In ICALP’94, LNCS 820, p. 166–177. Springer, 1994.

19. A. Harding, M. Ryan, and P.-Y. Schobbens. A new algorithm for strategy synthesis
in LTL games. In TACAS’05, LNCS 3440, p. 477–492. Springer, 2005.

20. T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for
real time systems. Inf. & Comp., 111(2):193–244, 1994.

21. T. Henzinger and V. Prabhu. Timed alternating-time temporal logic. In FOR-
MATS’06, LNCS 4202, p. 1–17. Springer, 2006.

22. G. Holzmann. The model checker spin. IEEE Trans. Software Engineering,
23(5):279–295, May 1997.

23. O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for
timed systems. In STACS’95, LNCS 900, p. 229–242. Springer, 1995.

24. K. McMillan. Symbolic Model Checking — An Approach to the State Explosion
Problem. PhD thesis, CMU, Pittsburgh, Pennsylvania, USA, 1993.

25. A. Pnueli. The temporal logic of programs. In FOCS’77, p. 46–57. IEEE Comp.
Soc. Press, 1977.

26. A. Puri. Dynamical properties of timed automata. In FTRTFT’98, LNCS 1486,
p. 210–227. Springer, Sept. 1998.

27. P. Ramadge and W. Wonham. The control of discrete event systems. Proc. IEEE,
77(1):81–98, 1989.

28. P.-Y. Schobbens and Y. Bontemps. Real-time concurrent game structures. Per-
sonnal communication, 2005.

	Timed Concurrent Game Structures
	Thomas Brihaye, François Laroussinie, Nicolas Markey, and Ghassan Oreiby

