Automata and Logics for Timed Message Sequence
Charts

S. Akshay2, Benedikt Bollig', and Paul Gastin

1 LSV, ENS Cachan, CNRS, France
2 Institute of Mathematical Sciences, Chennai, India

Abstract. We provide a framework for distributed systems that impadse t
ing constraints on their executions. We propose a timed frafdeommunicat-
ing finite-state machines, which communicate by exchangiegsages through
channels and use event clocks to generate collections efitimessage sequence
charts (T-MSCs). As a specification language, we propose r@adio second-
order logic equipped with timing predicates and interpietger T-MSCs. We
establish expressive equivalence of our automata and. Iblgiceover, we prove
that, for (existentially) bounded channels, emptinesssatidfiability are decid-
able for our automata and logic.

1 Introduction

One of the most famous connections between automata thedrglassical logic, es-
tablished in the early sixties byiBhi and Elgot [7], is the equivalence of finite-state
machines and monadic second-order logic (MSO) over worlis. §tudy of relations
between logical formalisms and automata has had many daagians including ex-
tensions and abstractions of the definition of words thevasel

A natural extension, for instance, are timed words whichvarg important in the
context of verification of safety critical timed systemsr Bos, we have automata mod-
els such as timed automata [1] and event-clock automata YEZJAThe latter have
implicit clocks allowing them to record or predict time l&ss This is well-suited for
real-time specifications (such as bounded response tindeglows for a suitable logi-
cal characterization by a timed MSO over timed words as shoJ8i.

On the other hand, in a distributed setting, we might havers¢agents interacting
to generate a global behavior. This interaction can be ipdceising message sequence
charts (MSCs) which generalize words and reflect the cays#lievents in a system
execution. MSCs have been known for a long time indepengesdl they serve as
documentation of design requirements that are referredigfimout the design process
and even in the final system integration and acceptancegesdSCs are used for
describing the behavior of communicating finite-state nraeh(CFMSs) [6], which are a
fundamental model for concurrent systems and commungatiotocols. These CFMs
have communicating channels between the constituent-tdte automata and a single
MSC diagram subsumes a whole set of sequential runs of the CFM

Our goal is to merge the timed and distributed approachegiomed above. For
this, we first consider timed MSCs (T-MSCs) which are just MSGth time stamps
at events (as in timed words). These are ideal to descrith¢imesystem executions,
keeping explicitly the causal relation between events.tNe® consider MSCs with
timing constraints (TC-MSCs) where we associate lower gububounds on the time

interval between certain pairs of events. This is more blgtéor a specifier and also
useful to describe a (possibly infinite) family of T-MSCs ifirdte way.

We introduce event clock communicating finite-state maehi(EC-CFM) recog-
nizing timed MSCs. These are CFMs equipped with implicitreveocks allowing
us to record or predict time lapses as in the ECA. For the éddiamework, we use a
timed version of monadic second-order logic (TMSO) withiiddal timing predicates
to specify necessary timing constraints. We interpret B RCFMs and TMSO over
T-MSCs and prove a constructive equivalence between thémawd without bounds
on channels. This is done by lifting the corresponding tesubm the untimed case
[12,11, 5] by using TC-MSCs, since they can be seen as MSCseMabelings are
extended by timing information and also as a representafigrfinite sets of T-MSCs.

Further, we prove that, over “existentially bounded” chelanthe emptiness check-
ing of our automaton model and, thus, the satisfiability fbof our logic are de-
cidable. Our approach consists of constructing a globakfined automaton that can
simulate the runs of the EC-CFM (which is a distributed maehand so, reduce the
problem to emptiness checking on a timed automaton. Thegzataf the construction
lies in “cleverly” maintaining the partial-order informan (of the T-MSC) along the
sequential runs of the global timed automaton, while usimlyg finitely many clocks.

Related WorkPast approaches to timing in MSCs with a formal semanticaaatysis
have been looked at in [3, 4, 8, 13]. While [3] and [4] only ddes single MSCs or
high-level MSCs, one of the first attempts to study channtdraata in the timed set-
ting goes back to Krcal and Yi [13], who provide local timed@uata with the means
to communicate via FIFO channels. They do not consider MS@ssemantics of their
automata but rather look at restricted channel architest(e.g., one-channel systems)
to transfer decidability of reachability problems from thetimed to the timed set-
ting. A similar automaton model was independently intraetlby Chandrasekaran and
Mukund in [8], who even define its semantics in terms of time®®4. They propose a
practical solution to a very specific matching problem ushegtool UPPAAL.

Outline We define MSCs in Section 2, together with their timed extmsi Our logic
and the automaton model are introduced in Section 3. We ibestite equivalence
results between our automata and logic over timed MSCs itidded. In Section 5, it
is shown that emptiness of automata is decidable for exiatBrbounded channels.

2 Timed Message Sequence Charts

We fix a finite setdg of at least twoagentsor processesThe set ofcommunication
actionson proces® is Act, = {plq | ¢ € Ag\ {p}} U {p?q | q € Ag\ {p}}, where
plg means that procegssends a message to procesandp?q means that procesgs
receives a message from procesburthermore, we lefict = UpeAg Acty,.

An Act-labeled partial orderis a triple M = (F, =<,) where(E, <) is a finite
partial order (elements fron’ are calledeventy} and\ : £ — Act is a labeling
function. Fore € E, |e denotes{e’ € E | ¢/ < e}. We define a message relation
Msg™ C E x E matching send events with their corresponding receivesinaing a
FIFO architecture on the channels. That(is,e’) € Msg™ if A(e) = plg and\(¢’) =
q?p for somep, ¢ € Ag, and|le N A71(plq)| = [Le/ N A" (q?p)].

A message sequence chétSC) is anAct-labeled partial orded = (E, <, \)
such that (i) for anyp € Ag, the restriction of< to procesg (denoted=,) is a total
order, (i) the partial ordex is the transitive closure dffsg™ U UpeAgjp, and (iii)
for any distinctp, ¢ € Ag, the number of send events is equal to the number of receive
events, i.e|]A"1(plg)| = [X\"1(¢?p)|.

Fig. 1 depicts an MSC as a diagram. The events of each process ¢ r
are arranged along the vertical lines and messages are stsdvan- ., es
izontal or downward-sloping directed edges. Note #at) = plg,
AMez) = q?p, e1 =, €}, (eh,e3) € Msg™ ande; < e3. The lin-
earizations of an MSC form a word language oxet under\. E.g., © €5
(plq)(q?p)(q!r)(p'r)(r?q)(r?p) is one linearization of the MSC in _.
Fig. 1. An MSC is uniquely determined by one of its lineariaas. Fig. 1. An MSC

The first natural attempt while trying to add timing infornast to MSCs would
be to add time stamps to the events of the MSCs. This is metiviabm timed words
where we have words with time stamps added at each actios.apmroach is quite
realistic when we want to model the real-time execution ofoctorent systems.

e €3

Definition 1. Atimed MSC(T-MSC)is atupléE, <, A\, t) where(E, <, \) is an MSC
andt : E — R=Y is a function such that if; < e, thent(e;) < t(es). The set of all
T-MSCs is denotetiMSC.

A timed linearizationof a T-MSC is a possible execution in terms of a word from
(Act x R=9)*, which thus respects both the causal order and the ordersiedduy the
time stamping. A T-MSC is shown in 2(a). Note that it has seM@med linearizations
as the concurrent eventgand f3 occur at the same time. A possible timed linearization
is (plq,2)(q?p,2.1)(plr, 3)(r?p, 3)(plq, 4)(¢?p, 4.5)(p!r, 6)(q!r, 6)(r?q, 6)(r7p, 7).

Now a family of T-MSCs with the same induced MSC can be spethigtiming
constraints on pairs of events of the MSC. This approachtigibsuited to a specifier
who can then decide and enforce constraints between oocesef events. As an
example consider Fig. 2(b). The lab@l, 1] on message from; to f; specifies the
lower bound and upper bound on the delay of message deliVkeylabel[1, 5] from
/1 to e represents the bounds on the delay betwgesnde’, and so on.

The question here is how flexible do we want this timing to ke, between which
pairs of events do we allow constraints. For an MBC= (F, <, \), one obvious set
of pairs is given byMsg™ which allows us to time messages. A more flexible approach
is to allow timing between the next (or previous) event of aaon and an event in the
MSC. For this, we define the relatioh&xt’’, Prev for everyo € Act as follows:

° Nextﬂ/[={(e,e) | Ae)=0,e<€, (e<e"ANANe")=0) = € 2€"}

o PrevM = {(e,¢) | N€/) =0, ¢ <e, (¢ <eANe")=0) = " <€}
E.g., in Fig. 2(b)(e2, e4) € Next)., (f1,€4) € Next)'7,, and(es, e3) € Prev,/, . Note
that these relations are in fact partial maps and hence or@lsawritef = Next?/ (e)
for (e, f) € Next} and similarly forPrev2’. In fact Msg™ can also been seen as a
partial functionZ' --» E mapping a send event to its corresponding receive in the MSC
M. Further, we remark that these relations can all be defined BMSCT as well.
Since they depend only on the underlying partial order, witeiisg”, Next?, etc.

P q p q r
e1,2 fi21 e R N [1.5]
€9,3 e,3 6/2 . /AN
ey, 4 fo, 4.5 Ve f2)
f3,6 ¢, 6 - i 0A e
e4,6 €5, 7 it rp/g

(a) (b)
Fig.2.A T-MSC and a TC-MSC

Let us denote the set of symbdldIsg} U {Prev, | o € Act} U {Next, | 0 €
Act} by TC (for timing constraints). For an MSC (or T-MSQY, we letTCM =
UaeTc(aM) be our set of allowed timing pairs. This is flexible enough peafy
what we need. It also generalizes the approach of D’Souza [8E timed words case.
Further, this is similar to the approach adopted by Alur ef3lto time MSCs and so
we can use their analysis tool to check consistency of thegronstraints in an MSC.

To specify timing constraints we will use rational boundeteivals over the real
line. These can be open or closed intervals but we require tbde nonempty and the
bounds to be rational. The set of all such intervals is dehbyeZ.

Definition 2. An MSC with timing constraint§TC-MSC) is a tuplé E, <, A, 7) where
M = (E,=,\)isan MSC and- : TCY --» T is a partial function. The TC-MSC is
called maximally definedf is a total function.

With this definition, TC-MSCs can be considered as abstastdf T-MSCs and
timed words. LetM = (E,=<,\,7) be a TC-MSC. A T-MSCI" = (E, <X, \ t) is a
realizationof M if, for all (e,e’) € dom(7), we havet(e) —t(e’)| € 7(e,e’). Thus for
instance, the T-MSC in Fig. 2(a) is a realization of the TC®/8 Fig. 2(b).

3 Logic and Automata for Timed MSCs

Monadic Second-Order LogigVe will define several monadic second-order logics as a
means to describe sets of T-MSCs. Their syntax depends driacfgbinary) relation
symbols, which settles the access to the partial-ordeioalaf an MSC or T-MSC. One
example isR< = {=, Msg} containing symbols for the partial order and the message
relation. The formal syntax of our logiEMSO(R) is given by:

pu=P(z)|zeX|z=y|Rx,y)|d(z,a(x) €el|~¢|pVe|Ize|IXe

whereos € Act, R € R,a € TC, I € Z, z,y are individual (or first-order) variables,
and X is a set (or second-order) variable (each from an infinitglupf variables).
LetT = (FE, <, A\, t) be a T-MSC and let be aninterpretationthat maps first-order
variables to elements i and second-order variables to subsetsrof_et us define
whenT,I = ¢ for ¢ € TMSO(R). As usual P, (x) expresses thatis labeled witho,
i.e.,A\(I(x)) = o. The novelty is the timing predicatéz, a(x)) € I by which we mean
that the time difference betweeranda” (z) is contained inl, i.e., T, I = §(x, a(x)) €
I'if I(x) € dom(a®) and|t(I(x)) — t(aT (I(zx)))| € I. For the seR of binary relation

symbols we will useR<x = {<,Msg} or Ry = {=, | p € Ag} U {Msg}. The
interpretation of<,, is the immediate successor relation on progess, := <, \ <,
The interpretation oMsg is indeedMsg”. The rest of the semantics is classical for
MSO logics. For sentenceg in this logic, we defineCy;,.(p) = {T € TMSC |
T E ¢}. Theexistentialfragment of TMSO(R), which is denoted bETMSO(R),
comprises all formulasX; ... 33X,y such thatp does not contain any set quantifier.
We will give TMSO formulas a natural semantics in terms of MGCs, too. The
only noteworthy difference is in the atomic predicate, a(z)) € I. For a TC-MSC
M = (E,=,\ 1), we defineM, I = §(z,a(x)) € Iif 7(I(z),a™((z))) C I,
which implicitly impliesI(z) € dom(a*) and(I(z), o™ (I(x))) € dom(r). The set
of TC-MSCs that satisfy a TMSO sentenges denoted byCr¢ (). The following
implication is easy to see. Its converse holds in a resttictse, as we will see later.

Lemma 3. Let a T-MSCT be a realization of some TC-MSW and letp be a TMSO
formula. ThenM € L¢ (@) impliesT € Lijme ().

Event-Clock Communicating Finite-State Machines (EC-GFM natural model of

communication protocols are communicating finite-statehmees [6], which consist
of finite-state machines with message channels betweenaingfihem. To introduce
the timed model we attach recording and predictilugks(as in [2]) to these machines.

Definition 4. An EC-CFMis a tupleA = (C, (Ap)peaq, F') whereC'is a finite set of
control messages4, = (Qp, —», Lp) is afinite transition system ovefct,, x [TC --»
I1xC (i.e.,i, € Q, istheinitial state and-,, is afinite subset o), x Act, x [TC --»
7] x C x Q) with [TC --» Z] denoting the set of partial maps frofC to Z, and
F C Il,ea, @pis asetof global final states.

The input of an EC-CFMA is a T-MSCT = (E, <, A\, t). Consideramap : E —

UpeAg @, labeling each event of procegswith a state fromQ),. Definer~ : E —

e Ag @, as follows: For event in proces, if there is an event’ in procesg such
thate’ <, e, then we set—(e) = r(¢’). Otherwise, we set™ (e) = ¢,. Thenr is said
to be arun of A on T if, for all (e, e’) € Msg” with e in procesg ande’ in process;,
there are guardg, ¢’ € [TC --» Z] and a control messages C such that
(1) (r—(e),A(e),g,¢c,r(e)) € —=pand(r—(e'),A(e’), g, c,r(€')) € —q,
(2) foralla € dom(g), we havee € dom(a®) and|t(e) — t(aT<7§))\ € g(a), and
(3) foralla € dom(g’), we havee’ € dom(a®) and|t(e') — t(al("))| € ¢'(a).

Letr be a run of4 onT. We defines, = r(e,), wheree,, is the maximal event in
proces%. If there are no events on procgssve sets, = ¢,. Then runr is successful
if the tuple(s,),c 44 belongs taF'. A T-MSC isacceptedy an EC-CFMA if it admits
a successful run. We denote By;,,.. (A) the set of T-MSCs that are accepted.hy

As in the logic, we can give EC-CFMs a semantics in terms ofI&Cs as well.
For definingarunon TC-MS@/ = (E, <, \, 7) we just replace condition (2) above by
saying that, for alte € dom(g), we must have € dom(a™) andr(e, o™ (e)) C g(a).
We do the same for condition (3). Then, with the same notiosicoEptance as above,
we can denote the set of all TC-MSCs accepted by a given EC-@RML ¢ (A).

Lemma 5. LetT be arealization of some TC-MS®Z and letA be an EC-CFM. Then,
M € Lpc(A) impliesT € Lime(A).

4 Equivalence of EC-CFMs and MSO Logic

In [5], the equivalence between EMSO formulas (with regdcsignature) and CFMs
over MSCs has been established. In [11], the equivaleneeeketfull MSO formulas
and CFMs over MSCs has been described in the context of bdwitdmnels. We will
lift these theorems to the timed setting, using the condepis the previous sections.

Theorem 6. Let L be a set of T-MSCs. The following are equivalent:
1. There is an EC-CFM such thatly;,,,.(A) = L.
2. There isp € ETMSO(R <) such thatl;,,.(¢) = L.

The construction of an ETMSO formula from an EC-CFM folloue similar con-
structions applied, for example, to finite and asynchroreatemata. In addition, we
have to cope with guards occurring on local transitions efgiven EC-CFM. Assume
thatg : TC --» Z is such a guard. To ensure that the timing constraints thmeaong
with g are satisfied we use the formuylg,, () 9(, a(z)) € g(a).

The rest of this section is devoted to the construction of @M from an
ETMSO formula, whose size is elementary in the size of thefda. The basic idea is
to reduce this to an analogous untimed result, which hasakso applied in the settings
of words and traces [9, 10]. For this, we establish a conoedtetween TMSO and or-
dinary MSO logic without timing predicate, and between EEM3 and their untimed
variant. Usually, these untimed formalisms are paranedrizy a finite alphabel’ to
speak about structures whose labelings are provided .bflence, in our framework,
we need to find a finite abstraction of the infinite set of pdedime stamps. Applying
this finite abstraction, we move from T-MSCs to TC-MSCs andldish the converse
of Lemmas 3 and 5 in Lemmas 8 and 9, resp. This finally allows trehslate ETMSO
formulas into EC-CFMs. We provide more details below.

First, we define proper interval sets. We call a set of inter$aC 7 proper if it
forms a finite partition oR=°. We say that an interval segfinesanother interval set if
every interval of the latter is the union of some collectiéimeervals of the former. For
any finite interval set, we can easily obtain a proper intesgarefining it.

LetT = (E, =,)\, t) be a T-MSC andS be a proper interval set. We introduce the
TC-MSC M3 := (E, =<, \,7) where, for any(e,¢’) € TCT, (e, ¢') is defined to be
the unique interval of containing|t(e) — t(e’)].

Lemma 7. LetT be a T-MSC and lef be a proper interval set. Thed/$ is the unique
maximally defined TC-MSC that uses intervals fi®@nd admitsl” as realization.

Given a TMSO formulap, we letInt(p) denote the finite set of intervals for
which ¢ has a sub-formula of the ford(z, a(x)) € I. Similarly, for any EC-CFMA,
we have dinite set, denotedint(.A4), of intervals occurring ind as guards. Now look at
any proper interval sef that refinednt (). We can translate the TMSO formujato
another TMSO formula° by replacing each sub-formula of the foltw, a(x)) € I
by the formula\/ ;. ;c; 6(z,a(z)) € J. Using Lemma 7, we can show the following
Lemmas, which then enable us to prove the reverse directibheorem 6.

Lemma 8. Given a T-MSCT, a TMSO formulap, and a proper interval sef that
refinesnt(y), we havel' = ¢ iff M3 = o iff M3 = 5.

Lemma 9. Let.A be an EC-CFM and lef be a proper interval set that refinést(.A).
For a T-MSCT, we havel’ € L. (A) iff M3 € Lrc(A).

Proof (of Theorem 6, (2)- (1)). Observe that any TC-MSC can be viewed as an MSC
with an additional labeling by removing the intervals froairg of events and attaching
them to the corresponding events. More precisely, a TC-MBE (E, <, A, 7) can be
represented as an MSU = (E, <, \,) with additional labelingy : £ — (TC --»

7) describing the timing constraints, i.e(e)(a) = 7(e, o™ (e)) if ¢ € dom(a™) and
(e,a™M(e)) € dom(7); otherwise;y(e) () is undefined. This view will allow us to ap-
ply equivalences between logic and automata in the untiraed.So far, however, the
additional labelingy is over an infinite alphabet, as there are infinitely manyrirztis
that might act as constraints. So, for any proper internviaSsave defineTCMSC(S)

as the set of TC-MSC8/ = (E, =<, A, 7) such thatr(e,e’) € S for any (e,¢’) €
dom(7). Note that, ifA/ € TCMSC(S) and! € S thenM,I = (x,a(z)) € I iff
7(I(x), o™ (I(z))) = I iff y(I(z))(«) = I. Hence a timing predicate can be trans-
formed into a labeling predicate: for anpye TMSO such thafint(p) C S, there is an
untimedMSO formula® such thatM, I |= ¢ iff M, = % for all M € TCMSC(S).

In the following, we denote by, () the set of MSCs with additional labelingthat
satisfy an untimed MSO sentengeWe can build an untimeNISO(R <) sentence:,
such thatC, (uS) is the set oinaximally definedSCsM = (E, <, \,v) with addi-
tional labelingy using intervals fron®, i.e., for alle € E, we haven € dom(v(e)) iff

e € dom(a™) and in this case(e)(a) € S.

Similarly, an EC-CFMA can be interpreted over MSCs with the additional labeling
~ by replacing conditions (2) and (3) of runs hye) = g and~(e’) = ¢’, resp. We
denote byZ, (A) the untimed MSCs with additional labelingthat are accepted hj.
Here, for a TC-MSCM € TCMSC(S) and an automatosl with guards infTC --»

S], we haveM € £, (A)impliesM € Lrc(A). The converse does not hold in general.

Let p € ETMSO(R<) be the given formula and I be a proper interval set that
refineslnt(y). Consider the untimeMSO(R <)-formulazy = 7° A uS. By [5], there
is an EC-CFMA with guards fromTC --» §] such that,(A) = £, (). We will
show thatl ;e (©) = Liime(A).

LetT be a T-MSC. By Lemma 8 we hate|= ¢ iff M$ | ¢°. Sincelnt(p°) C S
and Mg € TCMSC(S) we haveMs = oS iff M5 = 5. Now, MZ is maximally
defined, hence we obtaﬂi = uS. Therefore,I' € Lijme () iff H‘; € L,(v) =
L.(A). We have seen above that this impliégsf € Lrc(A). We show that here
the converse holds, too. M% € Lrc(A) we can build a TC-MSQW' = (E, =<
, A, 7') such thatlom(7’) C dom(7), 7’(e,€e’) = 7(e,€’) for all (e, e’) € dom(7’), and
M € L£,(A). Now, £, (A) C L,(u5) henceM is maximally defined and we obtain
M’ = MgZ. To summarize, we have shown tHat Ly;,..(¢) iff M2 € Lrc(A), and
we conclude with Lemma 9 that this is equivalenft@ L, (A). O

To characterize EC-CFMs in terms of full TMSO, we need to aefgstrictions on
the channel size. For an integBr > 0, a wordw € Act™ is B-boundedif, for any
p,q € Ag and any prefix; of w, the number of occurrences gliy in u exceeds that of
q?p by at mostB. An MSC M is said to beexistentiallyB-bounded3- B-bounded) if

it has someB-bounded linearization. A T-MSCE, <, A, t) is said to beuntimeds-B-
boundedf (E, <, \) is 3-B-bounded. Note that, directly lifting the definition of baim
from MSCs to T-MSCs is not completely intuitive: there ardinned-3-1-bounded T-
MSCs whose minimal channel capacity for a timed linearoraéixceeds 1.

Following the same lines as in the proof of Theorem 6 but usliregequivalence
result from [11], we can show the following theorem.

Theorem 10. Let B > 0 and letL be a set of untimed-B-bounded T-MSCs. There is
an EC-CFMA with Ly, (A) = L iff there isp € TMSO(R<) With L () = L.
Both directions are effective.

5 Deciding Emptiness of EC-CFMs

In this section, we investigate emptiness checking for BRBAE. While the problem is
of course undecidable in its full generality, we give a @ditblution to it.

Theorem 11. The following problem is decidable:
INPUT: An EC-CFM.A and an intege3 > 0.
QUESTION: Is thereT € Ly;,,.(A) such thatl” has aB-bounded timed linearization?

Here, a timed linearization &f is B-bounded if the channel size never exce&ds
during its execution.

We fix an EC-CFMA = (C, (Ap)peay, F), with A, = (Qp, —p,1p), andB > 0.
From A, we build a(finite) timed automatothat accepts a timed word € (Act x
R=%)* iff w is aB-bounded timed linearization of some T-MSC4g,,.. (A). As empti-
ness is decidable for finite timed automata [1], we have shbgorem 11.

Let us first recall the basic notion of a timed automaton. Feete€ of clocks the
setForm(Z) of clock formulasover Z is given by the grammap ::= true | false |
r~clr—y~clopl e Apa|pr Vg wherer,y € 2, ~ € {<,<,>,>, =},
andc ranges oveR=Y.

A timed automaton (with-transitions)over X' is a tupleB = (Q, Z, 4, ¢, F') where
Q is a set ofstates Z is a set ofclocks ¢ € @ is theinitial state, F' C @) is the set of
final statesands C Q x (¥ U {e}) x Form(Z) x 2% x (@ is the transition relation.
The definition of a run o3 and its languag& (B) C (¥ x R=%)* are as usual.

To keep track of the clock constraints used4nwe need to recover a partial order
from a word. Firstly, the partial order of an MSC can be recedefrom any of its
linearizations. Ifw is a linearization of MSCV/, then M is isomorphic to the unique
MSC (E, <,) such thatE = {u € Act™ | u # ¢ andw = wwv for somev} (i.e.,
E is the set of nonempty prefixes of), A(uo) = o for u € Act™ ando € Act,
and=<, = {(u,v) € E x E | uis a prefix ofv andA(u), A(v) € Act,}. Thus, we
might consider the partial-order relation df to be a relation over prefixes of a given
linearization of M. We go further to describe deterministic finite automataAPthat
actually run on words that are linearizations of an MSC arapcif the first and last
letter of it are related undet, Prev)’, or Next?’. More precisely, our finite automata
will run on linearizations of MSCs with additional labelis@ {0, ..., B — 1}. We say
that such an MSQE, <, \, p) (with p : E — {0,..., B — 1}) is B-well-stampedf,
foranye € E, p(e) = [leN A7t (A(e))| mod B.

Lemma 12. There are DFACY = (Q9, 49, s5, F'¥) andC> = (Q", 0, s5, F™) over
Act x {0,..., B — 1} with |Q?| = |Q”| = B®(44*) (for B > 2) such that, for any
w = (o,m)w'(r,n) € (Act x {0,...,B—1})*andu,v € (Act x {0,...,B —1})*,
the following holds: Ifuwv is a linearization of somé-well-stamped MS@/, then

o we L(CY iff (u(o,m)w(r,n), u(o,m)) € Prev} and

e we L(C) iff (u(o,m), u(o,m)w'(t,n)) € Next.

From now on, we suppos&' = (Q<,d9, s5, F'?) andC” = (Q", ", s§, F*) from
the above lemma to be fixed. We moreover suppose tharévéousautomatorC< has
a unique sink state?, ., from which there is no final state reachable anymore.

The Timed Automatoriet us describe a timed automat@hthat simulates the EC-
CFM A. To simplify the presentation, we allow infinitely many dkscand infinitely

many states, though on any run only finitely many states asakslwill be seen. Later,
we will modify this automaton in order to get down to finitelyany states and clocks.

We uselnd = Act x N as (an infinite) index set. A state of the timed automaton
B = (Qs, Z,9,.5, Fg) will be a tuplest = (5, x,n,£9,£%,+”,~+™) where
5= (sp)peag € [[,c4,@p is atuple of local states,

x : Ag?> — C=F describes the contents of the channels,

n: Act — {0,..., B — 1} gives the number that should be assigned to the next
occurrence of an action,

&9:Ind --» Q9 and¢” : Ind --» Q* associate with “active” indices, states in the
previousandnextautomata as given by Lemma 12,

~> : Ind --» Int(A) associatesextconstraints with active indices, and

™ Ag? x {0,...,B—1} --» Int(.A) describes the guards attached to messages.

The initial state isz = ((¢p)peags X0, M0, &5, €5, V55 70") Wherey andny map any
argument to the empty word ard resp., and the partial magg, £, 5, and~g* are
nowhere defined. We will use clocks from the (infinite) Set= {23 ;, 27, | (0,4) €

Ind}U{z i | (p,q,9) € Ag® x {0,...,B—1}}. Then,d C Qp x Act x Form(Z) x
22 xQp containg (3, x, 7, €%, €%, 9%, ™), T, 0, R, (3, X', 1, €19, €™, 4™, 4'™)) if there

is a local transitior(s,, 7, g, ¢, 5,) € —, on procesp such that

s, = s, forallr € Ag\ {p}.

if 7 = plg, thenx’(p, q) = ¢ x(p, q) andx'(r, s) = x(r, s) for (r,s) # (p,q).

if 7= p?q, thenx(q,p) = x'(¢,p) - candy’(r,s) = x(r,s) for (r,s) # (¢, p).

7' (1) = (n(7) + 1) mod B andn,n’ coincide on all other actions.

The states of thereviousautomata are updated. We initialize a new copy starting
on the current position in order to be able to determine whatter positions are
related with the current one lrev’ . We also reset a corresponding new clegk
(see below). Indeed, all existing copies®f are updated except those that would
reach thes?, . state which are released since they will not be needed amymor

89(sg, (1,0(7))) if o =7 A i=min(N\ dom(¢%(0)))
0%(&%(a, 1), (m,n(7))) if (0,7) € dom(€7) A
3%(&%(0, 1), (1, n(7))) 7 5im

undefined otherwise,

§%(0,1) =

e The states of thaextautomata are updated similarly, starting a new copy~dbr
each actiorr such that there is Next, constraint on the local transition. We also
reset corresponding new clocks, (see below).

o (s, (1,m(7))) if Next, € dom(g) A i =min(N\ dom(&*(0)))
oy - P E @A) T (00) € domle) A (o 27 v
’ 67 (&% (0,), (T,n(7))) ¢ F*)

undefined otherwise.

e Thenextguards are updated. Each guard generating a new cafy isfrecorded
with the same new index. Guards that were registered befateage matched by
the current action are released. All other recorded guaslkept unchanged.

g(Next,) if Next, € dom(g) A i =min(N\ dom(£”(0)))
7" (0,i) = { undefined ifo =7 A &%(7,i) € F>
v (o,i) otherwise.
e The guards attached to message constraints are updatéatigimi

g(Msg) if Msg € dom(g) A 7=rls A i=mn(7)
'™ (r,5,i) = { undefined ifr = s?r A i = n(r)
v™(r,s,i) otherwise.

e The guardy makes sure that all constraints that gedtchedat the current event
are satisfied. E.qg., if the local transition containBrav, constraint, then we have
to checkz; ; € g(Prev,) for the (unique) such that'<(o, i) € <. If there is no
suchi then there is no in the past of the current event and fPeev,, constraint of
the local transition cannot be satisfied. In this case, we seffalse.

0= /\ 2y € g(Prevy) A /\ false
(0,i) | Prev,€dom(g) o | Prev,€dom(g)
and¢’¥(o,i) € Fe and{i|¢'9(o,i)eF}=0
Y AN R C) S AW B L N)
icdom(y” (7)) | (g,p,i)€dom(y™) |
&P (Ti)EF” T=p?q, n(7)=i

e All newly defined clocks have to be reset, so we Reto be the union of sets
{22 | i = min(N'\ dom(&%(7)))}, {2, ; | 7 = plgandi = n(7)}, and{z7; |
Next, € dom(g) andi = min(N \ dom(&”(0)))}.

Finally, the set of accepting statég consists of all tuple$s, x, n, £, £%,4,v™)
in Qg such that € F, x = xo, and the partial mapg> and+™ are nowhere defined.
This ensures that each registered guard has been cheatteeld|ra constraint registered
in v~ or 4™ is released only when it is checked with the guard

One critical observation here is that, once we have spedifiedocal transition
of A, this global transition of5 gets determined uniquely. Thus, this step is always
deterministic. Note that the above automatbhas nce-transitions either.

Theorem 13. B accepts precisely thB-bounded timed linearizations @f;,,.(A).

A Finite Version of5 To get down to a finite timed automaton that is equivaleri to
we have to bound the number of copies of the autordd@ndC” that are active along
a run. We can show that the number of active copies‘ag already bounded:

Proposition 14. Assume thats, x, n, {9, £%,77,+4™) is a reachable state df. Then,
dom(¢9) C Act x {0,...,|Q%}.

We deduce that, for thpreviousconstraints, we can restrict to tfieite index set
Ind® = Act x {0,...,]|Q"|}: in areachable staté{ is a partial map fronind® to Q<.
This also implies thaB uses finitely manyreviousclocks from{z3 ; | (o,7) € Ind"}.

The remaining source of infinity comes fromextconstraints. The situation is not
as easy as faureviousconstraints. The problem is that the number of registéted.,
constraints|dom(+*)|, may be unbounded. Assume tlfat i), (o,j) € dom(~") for
somei # j. Then, alsqo,), (0, j) € dom(£”) and the clocksy, ; andz; ; have been
reset. If we haveé® (o,i) = £ (o, j) then the constraints associated witnd; will be
matched simultaneously. When matched, the guard on thsiticanof B will include
bothz} ; € 47 (o, i) andz; ; € 47(o,). The idea is to keep the stronger constraint and
to release the other one. To determine the stronger camsivaihave to deal separately
with the upper parts and the lower parts of the constraints.additional difficulty
comes from the fact that the two clocks have not been reseitsineously.

Letz ~ candz’ ~' ¢ be twoupperguards which means that,~' € {<,<}.
We say thatr ~ c is stronger thanz’ ~' ¢’ if, when evaluated at the same instant,
x ~ ¢ holds impliest’ ~' ¢’ holds as well. The stronger constraint can be determined
with a diagonal guarde ~ c is stronger than’ ~' ¢ if eitherz’ — x < ¢/ — c or else
' —xz < —cand(= < or~' = <). The relationstronger thans transitive and
total among upper-guards. We can define similattpnger tharfor lower-guards, i.e,
when~, ~' € {>, >}. We haver ~ c stronger than’ ~' ¢ if eitherz’ —z > ¢/ — ¢
orelsex’ —x>cd —cand ¢ =>or~" =>).

Now, we get back to our problem and show how to chalige that the size of
dom(&”) in a statest = (5, x, 1, €9, €>,9,7™) can be bounded byct| - (2|Q] + 1).
Note thatdom(1”) = dom(&>). A transition of B may initiate at mostAct| new copies
of C* (one for eaclr € Act such thaNext, € dom(g). Hence, we say that stateis
safeif for all o € Act we haveldom (£ (0))| < 2|Q”|. The transitions of8 are kept in
the new automato’ only when they start in a safe state.

If st is not safe, then{: | > (0,i) = q}| > 2 for someo € Act andg € Q. In this
case, we say that is unsafe for(o, ¢) and letActive(o, q) = {i | £ (0,7) = q}.

If Active(o,q) # 0, leti, € Active(o,q) be such that the upper-guard defined
by z; ;. € 7°(0,4.,) is stronger than all upper-guards definedfly. € 7~ (o, j) for
J € Active(o, q). Further, let, € Active(o, ¢) be defined similarly for lower-guards.

From the definition of the relatiostronger thanwe know that all constraints; ; €
7" (o, j) for j € Active(o, q) are subsumed by the conjunctionf;, € v”(o,4,) and
25 ;. € 7°(0,4,). Therefore, we can release a#xtconstraints associated with, j)
with j € Active(o, q) \ {i¢,u}-

To do this, we add td3’ an e-transition (st, (o, q,i¢,%4), €, 0,st’). The guard
should evaluate torue if i, andi, determine stronger lower- and upper-constraints
among those defined byctive(o, ¢). Since the relatiostronger tharcan be expressed

with diagonal constraints, we havgo, q,i,,%,) € Form(Z). We have that, in state
st = (3, x,1n,£%,¢™,+4™,~4™), only thenextinformation is changed:

P (1) undefined ifr = o andi € Active(o,q) \ {i¢, i}
T,0) =
AT 7> (r,i) otherwise

" (r,4) undefined ifr = o andi € Active(c,q) \ {ig, i}
T,1) =
’ € (r,i) otherwise.

Then,{i | £*(o,i) = q} = {ie¢, i, } andst’ is safe for(o, q).

We deduce that in the automat#, we can restrict to thénite index sefind” =
Act x{0,...,2|Q"|} for the partial mapg™ and~" used for thenextconstraints. Con-
sequently’ uses finitely manyiextclocks from{z}, ; | (o, 1) € Ind”}. The following
proves Theorem 11, from which we deduce a decidability tésubur logic.

Theorem 15. The timed automatof8’ is finite. It hasB®(49") many clocks (fol3 >
2), and we havel(B') = L(B).

Corollary 16. The following problem is decidable:
INPUT: » € TMSO(R<) and an integetB > 0.
QUESTION: Is thereT € Ly;me(¢) such thatl” has aB-bounded timed linearization?

AcknowledgmentVe thank Martin Leucker for motivating discussions.
References

1. R. Alurand D. L. Dill. A theory of timed automatd.CS 126(2):183-235, 1994.
2. R.Alur, L. Fix, and T. A. Henzinger. Event-clock automaiadeterminizable class of timed
automataTCS 211(1-2):253-273, 1999.
3. R. Alur, G. Holzmann, and D. Peled. An analyser for messaggience charts. [FACAS
1996 pages 35-48, 1996.
4. H. Ben-Abdallah and S. Leue. Timing constraints in messagjuence chart specifications.
In Proc. of FORTE 1997pages 91-106, 1997.
5. B. Bollig and M. Leucker. Message-passing automata greesgively equivalent to EMSO
logic. TCS 358(2-3):150-172, 2006.
6. D. Brand and P. Zafiropulo. On communicating finite-staéeines.Journal of the ACM
30(2), 1983.
7. J. Bichi. Weak second order logic and finite automataMath. Logik, Grundlag. Math.
5:66—62, 1960.
8. P. Chandrasekaran and M. Mukund. Matching scenariostimiiihg constraints. IiFOR-
MATS 2006pages 91-106, 2006.
9. D. D'Souza. A logical characterisation of event clockcem#ta. International Journal of
Foundations of Computer Sciendet(4):625—-640, 2003.
10. D. D'Souza and P. S. Thiagarajan. Product interval aatanf subclass of timed automata.
In FSTTCS 199%ages 60-71. Springer-Verlag, 1999.
11. B. Genest, D. Kuske, and A. Muscholl. A Kleene theoremrandel checking algorithms
for existentially bounded communicating automd, 204(6):920-956, 2006.
12. J. G. Henriksen, M. Mukund, K. N. Kumar, M. Sohoni, and PI8agarajan. A theory of
regular MSC language4$C, 202(1):1-38, 2005.
13. P. Krcal and W. Yi. Communicating timed automata: Theersynchronous, the more diffi-
cult to verify. InCAV 2006 volume 4144 of NCS pages 243-257. Springer, 2006.

