Trusted Logic

RAPPORT TECHNIQUE EVA

The EVA translator, version 6

Auteur . Florent Jacquemard
Date : July 2, 2003
Rapport EVA numéro : 9
Version 1.2
TRUSTED LOGIC S.A. Laboratoire Spécification Vérification
5 rue du Bailliage CNRS UMR 8643, ENS Cachan
78000 Versailles, France 61, avenue du président-Wilson
www.trusted-logic.fr 94235 Cachan Cedex, France

www.lsv.ens-cachan.fr

Laboratoire Verimag
CNRS UMR 5104,
Univ. Joseph Fourier, INPG
2 av. de Vignate,
38610 Gieres, France
www-verimag.imag.fr



Adresse :Laboratoire Spécification et Vérification,
CNRS UMR 8643, ENS Cachan
61, Avenue du Président Wilson, 94230 Cachan, France

Résumé :In this report we describe the last syntactic and semantic changes to the EVA protocol specifi-
cation language as well as the modifications of the EVA translator.



The EVA translator, version 6

Florent Jacquemard

July 2, 2003

In this report we describe the last syntactic and semantic changes to the EVA pro-
tocol specification languagé8][as well as the modifications of the EVA translator.

Contents

1 Translator package 1
1.1 Main changestothe previousversion. . . . ... ... ... ... 1
1.2 Installation . . . . ... ... .. 2
1.3 Commandline . . . ... ... .. .. . ... ... 3
1.4 Translator sourcesand ARI. . . . . ... ... ... ... ... .. 3
1.5 Ermormessages . . . . . . . ot it 4
1.6 Outputsyntaxes . . . . . . . . . . . it 4

2 LAEVA Input Syntax 5
2.1 Main changesto the previousversion. . . . . ... ... ..... 5
2.2 ldentifiers. . . . . .. 5
2.3 Keywords. . . . . . .. 5
2.4 Extrarestrictions. . . . . . . . ... 6
25 Grammar . . . . ... e 6

3 Abstract syntax 15
3.1 alaBAN and multi-process specifications. . . . . ... ... ... 15
3.2 Datatypes . . . . . . . 16
3.3 Thetranslation procedure. . . . . . . ... ... 21
3.4 Restrictions. . . . . . . . e 22

4 Semantics 22
4.1 TYPES . . . e 23
4.2 Protocolvariables . . . . . . ... o 24
4.3 Interpretationdomain . . . . .. ... ... 25
4.4 States. . . . . .. e e e 27
45 Transitions . . . . . . . ... e e 29
4.6 Correctnessofclaimformulas . . ... ... ... ......... 31

5 Output syntaxes 32
5.1 Extended LAEVAsyntax . . .. ... ... ... ... . ...... 32
5.2 CPL . ... e 32



1 Translator package

The purpose of the translator of the EVA proje8}is to compile a high level specifi-
cation of a security protocol written in the LAEVA language into a model that can be
handled by all the verification tools of the project.

LAEVA has been designedi] as a common protocol specification language for
all the partners (and developers of verification tools) of the EVA project and follows
the main characteristics of th@ealizeddescriptions of protocols found in the papers
concerned with security protocol verification, starting from the BAN logic papler [
This description language focuses on the form of the messages exchanged during the
protocol, rather than on the actions of the processes sending and receiving the messages
(we call such a presentatiaria BANbelow). While this presentation has the advantage
of conciseness and is generally sufficient for discussions, a specification at a lower
level, with description of the processes, is required for formal automatic verification
of protocols. We call such a low level specificatiomalti-procesgpresentation of a
protocol.

The low level language for compiled protocols specifications is CR]) § syn-
tax a la LISP which permits to describe (non-ambiguously) several communicating
processes representing the principal of a protocol. CPL's syntax and semantics are
formally defined in §].

1.1 Main changes to the previous version
The version 6 of the EVA translator offers, to summarize, the following main changes:

« the LAEVA language, also calledoncrete syntaor input syntax has been
modified following in particular remarks and demands of the developers of Her-
mes B, 7] (Section2),

< anabstract syntaxs defined in this version as a collection of abstract data types,
presented in a programming interface, and used to store both the parsed “a la
BAN” and the compiled “multi process” forms of a protocol specification (Sec-
tion 3). Note that in fi], the term abstract syntax is used for CPL; here, we call
CPL (the modified version presented in Sect®f) an output syntax How-
ever, extracting a CPL program for the abstract syntax is just a matter of pretty
printing.

« the semantics, defined id][for CPL is adapted here and defined for #imstract
syntaxin Section4.

The purpose of the “abstraction” of the abstract syntax (compared to CPL) and of
its presentation in a programming interface is to improve the usability of the translator
and its code (see Figudg. From the user point of view, a command line which takes
as input a specification written in LAEVA and prints its translation in CPL is still
possible (see Sectidn3, but other output formats can be added as options, and at low
development cost (Sectids).

From the developer point of view, it is possible to call the translator from the code
of e.g. a protocol verification tool, using the data types of the abstract syntax, (see
Sectionl.4for a short description of the translator modules), and this can prevent from
having to write a parser for CPL.

From now on, a protocol specification in abstract syntax is calleabatract spec-
ification.



LAEVA
input file

compilation

protocol spec.
in abstract syntax

yetwprinting

Horn

clauses verification tool

parsing

verification tool

Figure 1:Architecture and usage of the EVA translator v.6

1.2 Installation
The package of the EVA translator contains:
» the documented source code of the translator and a makefile,

« the latex source of the translator documentation (in direatory, and scripts to
extract latex file from the some part of source code, like grammars (produce this
document),

« some examples and test files in LAEVA.

To compile the translator and the documentations (refer to th®@EOMEQgO to
the directory where the translator source where unpacked, andbkge GNU make
andOCAML v. 3.06 are required for the compilation

To produce the documentation (translator guide and html source documentation),
in the same directory, typeake doc. The guide, in postscript and pdf\(Atrans6.ps
andEVAtrans6.pdf ) is left in directorydoc, and the html files of the APIs in direc-
tory html . The guide and the APIs documentation can be produced separately by the
respective commanasake rapport andmake html .

IATEX 2¢, dvips anddvipdfm are required in order to produces the translator’s guide
andocamldoc (OCAML v. 3.06) is necessary for building the html documentation of
the sources.

1.3 Command line

The compilation leaves an executablatrans in the current directorywhich can be
called as follows:

levatrans is actually a symbolic link to a commarsia2cpl .



evatrans [options] input.eva
The options are the following:
e cpl prints the compiled protocol in CPL syntax on the standard output

e -eva pretty-prints the compiled protocol in the LAEVA syntax (with additional
syntax for the multi-process protocols) on the standard output

« -horn pretty-prints the compiled protocol as a set of horn clauses

e -tptp pretty-prints the compiled protocol as a set of horn clauses in TPTP format
 -trace verbose mode (prints debug information)

e -help prints an usage message and exit

The options-eva and--cpl are exclusive, only the last is taken into account. By
default, the compiled protocol is not printed, and the translator only returns an error
message or nothing if the compilation was successful.

1.4 Translator sources and API

We shall describe here briefly the organization of the sources of the translator and its
main functionalities.

« a parser (modulevaparse ), generated bycamlyacc, reads a protocol specifi-
cation written in LAEVA (Sectior2) and stores it in a structure of the abstract
syntax (Sectior8.3.7). Hence, parsing produces a new abstract specification.

« the different kinds of identifiers (e.g. parameters or aliases, see S&tarn
stored in different structures in the abstract syntax, whereas they can not be dis-
tinguished at parse time. Hence, an additional conversion (funzténce_spec
of moduletranslator ) is necessary after parsing (see SecBah2for more
details).

« the abstract syntax is a strongly typed language. The maghde is for type
checking. The type discipline of the LAEVA concrete syntax is slightly differ-
ent from the one of the abstract syntax (see Sectidn Indeed, the tuples of
elements of various types are allowed in LAEVA and not in the abstract syntax.
Hence, during the compilation of an LAEVA specification in abstract syntax, like
in previous versions3], some coercion symbols (see Sectib8.3 are added by
the functioncoerce_spec (in moduletranslator ) to the terms to ensure their
weel-typingness.

» some functions (in moduleanslator ) permit to check the non-syntactic re-
strictions on the LEVA language presented in Sec#ah

« The functiontranslate ~ of the modulédranslator converts an abstract speci-
fication of a protocol presented “a la BAN” (all the principal programs presented
in one, see SectioB) into an abstract specification with a multi-process presen-
tation of the protocol (list of separate programs, one for each principal). More
details on this module are given in Secti@3.5



 several module¥pp are given for pretty printing an abstract specification into
special formats (in particular CPL, see Sect®n

When they are chained in the above order (ending with the CPL pretty printer), these
functions of this version of the translator, like in the other versions, printa CPL protocol
specification which is the (multi-process) translation of a LAEVA specification given
in an input file in LAEVA syntax.

1.5 Error messages

A protocol specification given as input to the translator must conform to the LAEVA
syntax and to the additional restrictions described in Se&ibn

Otherwise, the translator will fail with an error message. There is one specific error
message for each of the restrictions (marked with)eof Section2.5.

1.6 Output syntaxes

Several pretty-printing formats have been implemented. The following ones are of
particular interest:

< an extended LAEVA format (SectioB.1). This ouput format is proposed for
information and debugging purposes (rather than for an input format for verifi-
cation tools).

» a CPL format with the output syntax of Sectibrg,
« set of Horn clauses to be used by first order theorem provers.

The definition of the abstract syntax leaves many other possibilities, like for instance
(conditional) rewrite systems etc.

However, the abstract syntax and the modular architecture of the translator have
been designed to permit to the developers of tools in the EVA project to reuse the
translators modules directly in their code, preventing them from the burden of parsing
CPL files.

2 LAEVA Input Syntax

A protocol specifications in the LAEVA concrete syntax contains, to summarize:
« the declarations of the protocol identifiers,
« a description of the messages exchanges during an execution of the protocaol,
« some other declarations more specific to the verification procedures:
— the declarations of the identifiers representing values of domain of the pro-

tocol execution,

— a description of the initial state of the system to be verified (number of
sessions of the protocol in parallel, and initial local state of every principal
in every session),

— the hypothesizes (formulas) concerning the initial state of the of the hostile
environment,

— the security properties to verify.



2.1 Main changes to the previous version

The main syntactical changes to the LAEVA input language w.r.t. the previous ver-
sion [3] are:

« the addition of a qualifieconstant or parameter for the declaration of identifiers.
See Sectiod for their respective meaning,

 extended syntax for the declaration of sessions,

« special and restricted form for the declaration of values which instantiate the
initial states of principals in the sessions declarations,

« syntax of Horn clauses for the formulas, both &ssume formulas describing
the initial state of the hostile environment and for theém formulas defining the
security properties to verify.

2.2 ldentifiers

ID An identifier is a non-empty sequence of letters ('a’ to 'z’ and 'A to 'Z’), digits,
and the underscore character’_’, starting with a letter.

INT A integer literal is a non-empty sequence of digits.

LABEL A label is either a an identifier immediately followed by a dot charadiz) (
or an integer literal immediately followed by a dot characts ().

2.3 Keywords

The following character sequences and identifiers are reserved:

( ) { } [ ]

, ; : = A *

_ -> => == 1= =

% @ "

alias assume asym_algo axiom basetype case
claim constant everybody false fresh hash
honest  keypair knows number parameter principal

secret  session  sym_algo switch value

The characters * and ’; ’ are right associative.

2.4 Extrarestrictions

Some restrictions on the LAEVA language checked by the translator are not of a syn-
tactical nature. They are marked withsain the LAEVA grammar given in Sectio.5.

If one of such conditions fails, the translator will stop with an appropriate error
message on the standard output.



2.5 Grammar
2.5.1 Specification

An EVA specification, contains in this order:
a label (the protocol name)
the declaration of the specification identifiers, aliases, base types, principals knowl-
edge, axioms,
a presentation a la BAN of the protocol messages,
the declaration of the identifiers used to construct the sessions values,
the declaration of sessions (principals initial state)
the formulas:assume formulas to define the initial state of the environment aliain
formulas to be verified
spec =
ID declarations block value_declarations sessions statements EOF

2.5.2 Type identifiers

type_id =
‘principal’

| 'number’

| '"asym_algo’

| 'sym_algo’

| ID

2.5.3 Declarations

reversed list of declarations.
=- every symbol declared here must not be declared twice in the sedtiolasa-
tions andvalue_declarations

declarations ::=
declarations declaration

| 1

declaration

declaration ::=

typing_declaration declaration of first order or functional identifiers
| 'alias’ ID '=" atomic_term_or_ciphertext
declaration of global alias

= thelD must be distinct from 'I’ (intruder’'s name)
| ids *;" "alias’ ID =" atomic_term_or_ciphertext
declaration of local alias

= thelD must be distinct from 'I’ (intruder’'s name)
| 'basetype’ ID declaration of base type



= thelD must be distinct from 'I’ (intruder’'s name)
| 'everybody’ ’knows’ tuple initial knowledge common to every principal
| ID 'knows’ tuple initial knowledge of principalD

= ID must be declared as a first order identifier of type
principal
| 'axiom’ atomic_term_or_ciphertext '=" atomic_term_or_ciphertext optional_quantification
global equational axiom

= every leave in theéerms must be an variable of the
optional_quantification

= bothterms (members of the atom) must have the
same type

guantification for the formulasagésume) andaxiom
= the symbols are bounded, they can be declared elsewherednlamation or
value_declaration
= every (variable) symbol must occur at most once in quantification

optional_quantification  ::=

T quantified_vars T
|
non-empty reversed list of universally quantified variables

quantified_vars ::=
quantified_var
| quantified_vars ’; quantified_var

universally quantified variable with optional type
= the default type isumber

quantified_var ::=
ID
| ID "y type_id

type declaration for identifiers

typing_declaration ::=
scope ids_decl ’; type_id  declaration of first order identifiers

| scope ID (" type_list )’ ’;’ type_id optional_hash optional_secret

declaration of functional identifier
= thelD must be distinct from 'I’ (intruder’s name)

| scope 'keypair’ optional_encryption_algorithm ID ;' ID optional_type_list ’;’ type_id
declaration of a pair of asymmetric keys, btibis
can be first order or functional symbols.
note: nohash keyword, every keypair is assumed to be
hash.



= the twolDs (public and private keys) must be dis-
tinct
= the twolDs must be distinct of 'I’ (intruder’s name)

non empty reversed list of identifiers
ids =
ID
lids ', ID
non-empty reversed list of identifiers for declaration

ids_decl ::=
id_decl
| ids_decl ’; id_decl

first order identifier declared with freshness

id_decl :=
‘fresh’ ID fresh first order identifier:
= thelD must be distinct from 'I’ (intruder’s name)
= thelD must be declared with thezope parameter
| ID non fresh first order identifier:

= thelID must be distinct from I’ (intruder’'s name)
reversed list of types
type_list ::=
non_empty_type_list
|
non-empty reversed list of types
non_empty_type_list :=

type_id
| non_empty_type_list’, type_id

list of types
optional_type_list =
'( type_list’)’
| 1
optional qualifier of one-way functions
optional_hash ::=
‘hash’
| 1



optional qualifier of secret functions

optional_secret ::=
'secret’

|

quality of identifier

scope =
‘constant’ global constant
| ‘parameter’ session parameter

invocation of an encryption algorithm
= must have an algorithm type

optional_encryption_algorithm =

™ atomic_term the atomic_term describes a symmetric or asymmetric
key algorithm

[ default symmetric key algorithm

2.5.4 Protocol messages
protocol or sub-protocol

block ::=

'{" messages '}’
reversed list of instructions
messages =
messages message
|
message label

label ::=
LABEL

protocol instruction
everyterm andatomic_term_or_ciphertext in the instruction:
= can contain (at leaves positions) first order symbols, and functional symbols, and
key symbols, declared either witkiope constant or parameter
can contain declared alias symbols
must not contain located variables
must not contain identifiers declared as values
can contain '%’ (Lowe’s notation)

44l

message =

label ID *->" ID ’;’ term sending/receiving message

10



= the twolD’s (sender and receiver) must be declared
as first order identifiers with typerincipal

| ID ;" ID '=="atomic_term_or_ciphertext

equality test

= the firstiD must be declared as first order identifier
with typeprincipal

= the secondD must not be known to the firt (call
it r), i.e. it must not have be assigned in the local
state ofr at this point.

| ID ' ID ":=" atomic_term_or_ciphertext

| block

local assignment

= the firstID must be declared as first order identifier
with type principal

= the secondD must not be known to the firéd (call
it r), i.e. it must not have be assigned in the local
state ofr at this point (reassignements are not al-
lowed).

sub-protocol

| 'switch’ atomic_term_or_ciphertext '{’ cases '}’

conditional

reversed list of cases

cases ..

cases case

|11

conditional branching

case

‘case’ atomic_term_or_ciphertext ;" block

2.5.5 Terms

term

term

tuple

non-empty reversed list of terms

tuple

atomic_term_or_ciphertext
| tuple ’; atomic_term_or_ciphertext

non-empty parenthesized reversed list of terms

non_empty_term_list :=

11



(" tuple 'y’
parenthesized reversed list of terms
term_list =
)
| non_empty_term_list
atomic term

atomic_term_or_ciphertext =

atomic_term
| {’ term '}’ atomic_term optional_encryption_algorithm
ciphertext
| ’[ term T "_" atomic_term optional_encryption_algorithm
signature

| atomic_term_or_ciphertext '%’ atomic_term_or_ciphertext
schizo-notation a la Lowe

= "%’ is not allowed inside the terms
| ID’@’ ID located term

= for formulasclaim only

= the secondD must be declared as first order identi-
fier with typeprincipal

= the firstID must be declared as first order or func-
tional or key identifier

= the type of the firstD only is considered in type

evaluation
atomic term
atomic_term =
ID term_list function call
= ID must be declared as functional symbol or func-
tional member okeypair
= the length of theerm_list must match the declared
signature ofiD (use parenthezing tuples to apply
function to more arguments).
= the types of terms in th&rm_list must match the
declared signature @b
| ID identifier
= ID must be declared as first order symbol or value
| non_empty_term_list singleton list for optional parenthezing of tuples

12



2.5.6 Declaration of values (domain constructors)

reversed list of value declarations for instantiating the sessions
= the value identifiers must not be declared otherwise

value_declarations =
value_declarations value_declaration

| 1
non-empty reversed list of values identifiers

values ::=
ID
| values ', ID
declaration of the symbols used to construct the terms of interpretation domain,
they can be used below to instanciate the sessions declared
value_declaration ::=
‘value’ values ”;’ type_id declaration of nullary value symbols
| typing_declaration declaration of constructor for values

= it must be a declaration of functional or key identi-
fier (not first order id)
= thescope of declaration must beonstant

2.5.7 Sessions

reversed list of parallel sessions
(initial state of the principals)

sessions =
sessions session

|

Session definition

session =
'session’ ¥ arbitrary number of sessions over arbitrary domains
| 'session’ ™' ’[’ session_constraints T
arbitrary number of sessions with domain satisfying a
constraint
| 'session’ ™' ’(’ session_assignments ')’
arbitrary number of copies of the given session
| 'session’ (" session_assignments ’)’
fixed session
| label 'session’ ’(’ session_assignments ')’
fixed session with label

non empty reversed list of constraints on domains for instantiating sessions

13



session_constraints =

session_constraint
| session_constraints ’;’ session_constraint

constraint on domains for session instances

session_constraint =
ID '=="ID equality constaint
= bothIDs must be declared witktope parameter
| ID =" 1D disequality constaint
= bothIDs must be declared witktope parameter

[ 1D { tuple '}’ membership constraint:
theparameter ID belongs to a finite set of values.

= ID must be declared witbcope parameter

= thetuple is a sequence of terms can contain only at
leaves positions: values symbols, first order, func-
tional and key symbols declared witizcope con-
stant.

| ID ;" predicate domain constraint:
the firstID is in the model of theredicate.

= ID must be declared witkcope parameter

predicate symbol for membership constraints in session declarations

predicate ::=

'secret’ reserved unary predicate "secret"
| 'honest’ reserved unary predicate "honest"
| ID user predicate

= ID, the name of the predicate, must not be a de-
clared identifer. it can only occur as a predicate
symbol in anatom of a statement.

non-empty list of assignments for the parameters of a session

session_assignments =

session_assignment
| session_assignments ’;’ session_assignment

instantiation of a parameter for the definition of a session

session_assignment =
ID '=" atomic_term_or_ciphertext
= theID must have been declared as a parameter

14



= theatomic_term_or_ciphertext can contain (at leaves
positions) either: value symbols, first order, func-
tional and key symbols declared wititope con-
stant, 'I', the name of the intruder, or aliases to
terms of the above form

= thelD andatomic_term_or_ciphertext must have the
same type

2.5.8 Formulas

reversed list of hypotheses and properties

statements =
statements assumption

| statements claim
| 1
hypothesis on the initial state of the environment

assumption =
"assume’ formula optional_quantification

property to prove
claim :=

"claim’ formula
Horn clause

formula ::=

optional_label atom
| optional_label atoms '=>’ 'false’

| optional_label atoms '=>" atom

optional formula name
optional_label ::=
label
|
reversed list of atoms
atoms ::=
non_empty_atom_list
|
non-empty reversed list of atoms

non_empty_atom_list =

15



atom
| non_empty_atom_list’;” atom

atomic proposition.

Everyterm in the folloing atoms must be such that:
= in assume: every leave in theerm must be a protocalonstant, a declaredalue,
or a quantified variable.
= in claim: every leave in theerm must be a protocalonstant, a declaredalue,
or a located variable
= in both: theterm must not contain '%’ (Lowe’s notation)

atom =
atomic_term_or_ciphertext '=="atomic_term_or_ciphertext
term equality
| atomic_term_or_ciphertext ''=" atomic_term_or_ciphertext
term disequality
| 'secret’ '(" atomic_term_or_ciphertext ')’
the intruder ignoregerm
| ’honest’ '(" atomic_term_or_ciphertext ')’
theterm is the identifier of an honest principal.

| 1D *( tuple ) user defined predicate

= ID, the name of the predicate, must not be an iden-
tifer declared elsewhere
= there must be exactly one argument.

3 Abstract syntax

Theabstract syntais a collection of abstract data types used to store a protocol speci-
fication. It is defined exhaustively in Secti8r2

3.1 alaBAN and multi-process specifications

The structures used to store the declaratidakif Section3.2), the sessionséssion)
and the hypotheses and claimsatement) mimic the corresponding definitions of the
concrete syntax LAEVA described in secti@n

Concerning the protocol instructions and messages (tygecol) there are two
alternatives in the abstract syntax:

1 the first option is the same as in the concrete syntax, i.e. a presentatioradalled
BAN of all the programs of the different principals in a single list of instructions
and messages.

2 the second option, calledulti-process protocois a list of programs, one for
each principal. Every program contains a list of instructions and of send or
received messages. The received messages are patterns which may contain fresh
variables which are not declared in the specification (they correspond to cipher
or hashed text that a receiver cannot read). These variables (peillatk) are
declared in the program.

16



Note that a protocol specification in LAEVA syntax (Sectignhcan be straightfor-
wardly stored in a typapec, with a componenprotocol of the kind 1 (a la BAN)
above. The compilation procedure of the translator consists in converting this a la
BAN abstract specification into a multi-process abstract specification (see S28jion

3.2 Datatypes

We give below the complete description of the data types of the abstract syntax. The
typesIiD andLABEL are defined in SectioR.2
Top level container for a protocol specification in EVA syntax.

spec =
spec(ID, (dcl list), protocol, (dcl list), (session list), (statement list))
contents:
— protocol label
— the declarations of the spec
— the messages of the spec

— declarations of values (for the session domains) in
the spec

— the session defined in the spec
— the hypotheses and formulas in the spec

The label of messages, claims or sessions.

label =
nolabel empty label
| label(LABEL) other label
EVA types
type =
void NULL type
| principal predefined type "principal”
| number predefined type "number"
| aalgo predefined type for asymmetric encryption algo
| salgo predefined type for symmetric encryption algo
| talgo union of the two above
| usertype(ID) type of the specification = subtype of "number"
| basetype(ID) user type of the specification declared as basetype

quality of identifiers

scope =
cst global constant

| param session parameter

| private local variable in some principal 's program

17



value to be assigned to a identifier in a session declaration

value =
intruder
| value(ID)

term =

term_id(ID)

| term_cst(ID)

| term_value(value)
| quantified(ID, type)
| located(ID, ID)

| term_alias(ID, term)

| cons(term list)

| app(ID, (term list))

| crypt(algo, term, term)

| sign(algo, term, term)

| p(term)

| a(term)

| sa(term)

| aa(term)

| u(ID, term)

| pcent(term, term)

special value for the intruder
arbitrary value

identifier declared as parameter or private variable, can
be a first order symbol or a function symbol or a keypair
symbol

identifier declared as constant, can be a first order symbol
or a function symbol or a keypair symbol

first order identifier, declared as value constant
quantified variable, only for axioms and assume formulas
located variable var@role, only for claim formulas

— the firstID is a parameter
— the secondD is a role

alias symbol

— name of the identifier
— type declared in quantification (defaultrismber)

tuple of terms
application of function symbol

— root symbol
— arguments

cipher text

— algo

— key

— contents
signature

— algo

— key

— contents
coercion fromprincipal to number
coercion fromalgo to number
coercion fromsalgo to talgo
coercion fromaalgo to talgo
coercion from user typeto number
Lowe’s notation

name of an encryption algorithm

algo =

18



vanilla generic symmetric key algorithm
| algo(term) other algorithm, theerm is restricted to be a constant

description of the initial knowledge of a principal

knowledge =
know_id(ID) first order or functional identifier
| know_term(term) well formed term

declarations in the EVA protocol specification

dcl =
dcl_id((ID, bool) list, scope, type)
declaration of first order identifiers
— list of pairs of (identifier, flag) where the flag is true
iff the identifier is declared to be fresh
— scope common to all the identifiers of the list
— type common all the identifiers of the list
| del_fun(ID, scope, type, (type list), bool, bool)
declaration of functional identifier
— name of the function symbol
— scope of the identifier
— domain type
— list of the respective types of the arguments of the
function symbol
— flag true iff the function symbol is declared to be
hash (one-way)
— flag true iff the function symbol is declared to be
secret
| dcl_keypair(algo, ID, ID, scope, type, (type list))
declaration of a pair of asymmetric keys
— associated encryption algorithm
— name of first key
name of second key
scope of both keys
— (domain) type of both keys
list of the respective types of the arguments of both
keys (can be empty)

| dcl_alias(ID, term) declaration of an alias

— name of the alias
— term for replacement

| dcl_localalias((ID list), ID, term)
declaration of local alias

| dcl_basetype(ID) declaration of user base type, specific to verifying tool

19



| dcl_know(ID, (knowledge list))
declaration of initial knowledge of a principal,
for initialization of the components of its local state

— principal name

— list of initial knowledge
| dcI_every(term list) declaration of local state of every principal
| dcl_axiom(term, term, ((ID, type) list))

equational axiom

— leftterm

— right term

— quantified variables with types

| dcl_value((value list), type)
values (for session instantiation)

— list of value identifiers declared
— type common all the identifiers of the list

protocol instruction

instr =
skip do nothing

| msg(label, ID, ID, term) protocol message
— label
— sender
— receiver
— body

| assign( ID, ID, term) assignment of a principal’s local variable
— role
— variable
— value

| comp(ID, ID, term) comparison between two local variables in a principal’'s
state

— role
— left variable
— right variable
| block(instr list) block of instructions
| switch(term, ((term, (instr list)) list))
switch case branching
specification of the messages of the protocol

protocol =
mp(instr list) presentation a la BAN of all the programs in one block

| program(ID, (ID list), (instr list)) list
list of programs presented separately.
For each program:

20



— the principal to which the program is associated

— list of variables (in messages) private to the pro-
gram

— list of messages, which contain protocol constants
and parameters and program variables

constraints on the session instances

constraint =
eq_constraint(ID, ID) id==id
| neq_constraint(ID, ID) id!=id
| membership_constraint(ID, term list)
id in val list
| domain_constraint(ID,ID) firstid in the interpration domain of the predicate (second
id)
declaration of a system assignment for verification
session =
BANG

| constrained_sessions(constraint list)

| sessions((ID, value) list)  copies of a single session - association list (var = value)

| session(label, ((ID, value) list))
single session

— label
— association list (var = value)
atom =
true
| false
| eq(term, term)
| neq(term, term)
| honest(term)
| secret(term)
| user_predicate(ID, term)

statement =
assume(((ID, type) list), (atom list), atom)
hypothesis
— quantification
— formula

— tail of Horn clause
— head of Horn clause
| claim(label, (atom list), atom)
formula to verify
— optional label
— tail of Horn clause
— head of Horn clause

21



3.3 The translation procedure

We summarize here the role w.r.t. abstract specifications of the main functions of the
translator, which are presented in Sectio

3.3.1 Parsing

Theparsingstores a protocol specification given in a file in LAEVA syntax into a new
element of typespec of abstract specification. The third component of sphec, of
type protocol, has the formmp(instr list) (aka presentation a la BAN).

During parsing, some decorations are added to the data types of the abstract syn-
tax (Sectior3.2); they contain location information (in the original file containing the
LAEVA spec) and are used for the output error messages to the user.

3.3.2 Conversions

After parsing, every identifieroccurring in a term is stored intarm_id(i), whatever
its declaration. The translator converts these subterms, according to the declaration of
the identifieri, as described in the following table:

declaration of conversion
parameter del_id([...,(i,b),...],parameter, 1) term_id(i)
constant symbol del_id([...,(i,b),...],constant, T) term_cst(i)
value constant symbol dcl_value([...,i,...],T) term_value(value(i))
intruder symbol I term_value(value(intruder))
alias dcl_alias(i,t) term_alias(i,t)
quantification in axiom | dcl_axiom(ty,ta,[. .., (i,type),...]) quantified(i,type)
quantification in formula]  assume(][...,(i,type,...],...) quantified(i,type)
user type type occ. in alcl ERROR

3.3.3 Coercion symbols

As outlined in Sectiod.1.3 the type discipline for lists of terms, in terms of the form
cons(...) andapp(...), is not the same in the EVA concrete syntax and in the abstract
syntax, and the translator adds some coercions symbols to cast the terms of these lists
to the typenumber.

While adding coercion symbols, the translator checks whether in the terms of the
form app(f, (term list)), the types of the arguments of tleem list conform to the sig-
nature in the declaratiode!_fun(f,...) of the symbolf.

3.3.4 Basic verifications, typing

After this, the translator performs some additional tests on the abstract specification ob-
tained, including the conformity to the extra restrictions described Se2tidmarked

with =) and typing, following the definition of Sectiohl1

3.3.5 Compilation

Then, compilation consists in converting gretocol of thespec from the formmp(instr list)
(presentation “a la BAN” of the messages) into a ligp@igram(r, [X1, . . . , Xq], [instra, . .. ,instry))

22



(multi-process presentation), wharés a role (as defined in Secti@h2.2), x1,... Xn
are the private variables of the program.

The main functions of th&ranslationmodule are similar to the functiatompose
andexpect of CASRUL [2].

Moreover, the Lowe’s constructopsent are eliminated. In every program (of the
protocol) a pcent(mg, Mp) in @ message sent is replacedrbyand apcent(my,my) in a
message received is replacedry

3.3.6 Printing

The translator can then dump the abstract specification obtained in a required abstract
syntax.

3.4 Restrictions

As explained above, a protocol specifications in LAEVA syntax given as input to the
translator, must conform to the restrictions described in Seetién

After translation, the abstract multi-process specification obtained fulfills the same
restrictions (translated from concrete to abstract syntax) and additional ones:

« all the restrictions described in Secti@rb for the terms in a protocol a la BAN
are still valid for the terms in a multi-process protocol,

* in the terms of the forneons(term list) andapp( f,term list), all the components
of theterm lists must have the typeumber (as defined in Sectio#.1). Hence,
the declared signature of the function symbols is obsolete in the abstract syntax,
but it is checked at compilation (see Sect®B8.3.

« the terms in a multi-process protocol contain no constrystent.

These conditions can be assumed safely by each program which uses an abstract spec-
ification produced by the translator functions.

4 Semantics

We propose in this section an adaptation of the semantics defin&jl o {he new
version of the abstract syntax. This operational semantics is defined by a infinite states
/ transitions model for a given protocol w.r.t. declared values.

We assume given a protocol specification in abstract syntax in multi-process form
(see Sectiol), conforming to the restrictions of Secti@m.

We shall define first a type discipline (Sectiéri) and a domain of interpretation
for the specified protocol (Sectigh3.4, as a multi-sorted term algebra defined essen-
tialy with the function symbols presented in Secti@i& The states and transitions of
our model are presented in the respective Secdofhand4.5. Finally, in Sectiord.6
we define the satisfiability of a claim formula in a given state.

4.1 Types

We shall define here a type system for an interpretation of the protocol specified.

23



4.1.1 Reserved types

The typesprincipal, number, sym_algo, asym_algo andalgo are predefined in the ab-
stract syntax.

4.1.2 User and base types

The other types occurring in the protocol specification (tytpge’_id’ in Section3.2)
are calleduser types Every user type is a subtype eimber. Thebase typesire the
user types declared with the special declaraticnbasetype.

4.1.3 Types of lists

The type of lists (tuples) afumbers isnumber. No other tuples are allowed in the ab-
stract syntax. Note though that polymorphic tuples are allowed in the LAEVA syntax.
The translator adds some coercions functions symbols (given in S&#pim order

to transform these tuples into tupleshoimbers (see also Sectiords4, 3.3.4and4.3.6.

4.1.4 Types of functions

We assume that every function symidadleclared in the protocol abstract specification
with a declaration (see Secti@):

del_fun(f,scopet,type_listh_flags_flag

wheret is a type of Sectiond.1.1and4.1.2 takes a single argument which is a tuple of
numbers. Hence, the functiof has signatureumber — 1. This type is abbreviated by
thumber \whenf is declared has not one-way and not sedreflag=s_flag= false.

The typestnumber ysnumber thsnumber gr6 for functions declared respectively

as one-way and not secrdt_flag= true, s_flag= falsg, not one-way and secret
(h_flag= false s_flag= true), one-way and secreh(flag=s_flag= true). The dis-
tinction between these types is used below to define intruder decomposition rules (Sec-
tion4.5.2.

4.1.5 Types of keys

We define another type denotefP for the two function symbold;, f» declared with
typet in a key pair declaration of the protocol abstract specification:

dcl_keypair(algo, f1, f2, scopet, type_lis}

The role of this type is explained in SectidrB8.2below.

4.2 Protocol variables

Let X be the set of protocol variables defined in Sectidiisland4.2.1and4.2.4
below.

24



4.2.1 Variables identifiers

A variable symbol is associated to each identifief or k,k' declared in the abstract
protocol specification with one of the following declarations (see Se&tign

del_id((...,(x,fresh_flag,...),scopety)
dcl_fun(f,scopets,type_listh_flags_flag
dcl_keypair(algo, k, k', scopety, type_lis)

wherescope# CST. Indeed, see Sectigh3.], the identifiers of scopest are consid-
ered as values of the interpretation domain. The types of the above protocol variables
areTy for x, Thumber fAnumber ‘ysnumber o tAsnumber for according to the re-

spective values di_flagands_flag(see sectiod.1.4), rllfp for k, K’ (see sectiod.1.5.

A variable symbol is also associated to each ofgiheate variablesx,. .. x, in a
programprogram(r, [X, . .., Xn], [instr1, ..., instry]) of theprotocol part of thespec. The
type of every private variable isumber.

4.2.2 Roles

Let us consider the following declaration opeotocol in an abstract specification (see
Section3.2):

[program(rl, [X11,-..],[instry1,...]),...,program(rn, Xn 1, -], [iNStrn 1, . . .])}

Each identifier of 1,. .. ,r is called aole of the protocol. Each elemeft;, [X; 1,.. ], [instrj 1,...])
(1< j <njis called theprogramof the roler; (it is unique thanks to a restriction of
Section3.4).

4.2.3 Located variables

For each protocol variable of Section4.2.1, and each role of Section4.2.2 we
consider a unique new protocol variable denote@r”’.

4.2.4 Fresh variables

Finally we assume a infinite sat_freshor fresh variables disjoint from the variables
of Section4.2.1and4.2.1

4.25 Aliases

The alias symbols are not protocol variables.

An alias symboh occurring in a subterm is understood as its syntactic replacement
by the aliased term (as defined in the corresponding declarddioalias(a,t)). More
precisely, a the subtermerm_alias(a,t) in an abstract specification is interpreted as
(see Sectiod.3.6.

4.3 Interpretation domain

The execution domain in our operational semantics is defined as a set of ground terms
built with the following function symbols. Almost all these symbols are declared in the
abstract specification, except two constructors for lists and coercions symbols.

25



4.3.1 Declared constants function symbols

We associate a set of constants (nullary function symbols) to the abstract specifica-
tion.

For each predefined or user typg¢see Sectiond.1.1and4.1.2, let valuest) be
the set of identifiers declared as values of tygen the abstract specification, with a
declaration (the fourth component of protocol specificatiger is reserved for values
declarations, see Secti@):

del_value((...,i,...),T)

Note thatdcl_value allow only to declare first order identifiers of a predefined or user
type (Sectiong.1.1and4.1.2), but no functions, or keys symbols (Sectidgn$.44.1.5.
Every constant ofaluegt) has typer.

Moreover, for each type, letconstantst) be the set of identifieriandi’) declared
with typet by one of the declarations (kirdt! in Section3.2):

del_id((..., (i,fresh_flag,...),cst, 1)
del_fun(f,cst,T,type_listh_flags_flag
dcl_keypair(algo,i,i’, cst, T, type_lis)

(the scope component must be equal det).

Note that the restrictions (Sectidh4) on the specification ensure that the sets
valuegt) andconstantét) are pairwise disjoint. The constants afnstantét) may
have typet (dcl_id) or thumber chnumber ;snumber hsnumber o fyn, see sec-

tion 4.1.4 or T%P (dcl_keypair, sectior4.1.5.
The setC of constants associated to the abstract specification is the union of the
above sets, plus a reserved constaat typeprincipal, for the intruder's name:

C = |4Jvaluest) & constantsr) w {1}

4.3.2 Other function symbols
We have the following other function symbols:
empty_list, nullary, of typenumber

cons, binary, of typenumber — number — number

oneapp;, binary, of typet"UMbPer _, number — 1, for each predefined or user type
(of sections4.1.1and4.1.2. Similarly, we havehapp, of type fhnumber _,
number — T, sapp; of typetSMUMber _, numper — 1, hsapp, of typethsnumber _,
number — T,

oneappkey;, binary, of typetkP — number — T,

crypt, ternary, of typealgo — number — number — number. The first argument is
the encryption algorithm, the second is the encryption key (note that it can be an
arbitrary term) and the third is the plain text to be encrypted.

For sake of simplicity, all the symbodgp;, happ,, sapp;, hsapp;, appkey; are denoted
app below.

26



4.3.3 Coercions symbols

In addition we have some unary symbols to perform types coercions (see remark in
Section4.1.3:

p of typeprincipal — number,
a of typealgo — number,

sa of typesym_algo — algo,
aa of typeasym_algo — algo,

u; of typet — number for each user type of the abstract specification.

4.3.4 Domain

Lets call ¥ the set of the above function symbols (of Sectidriz 1 4.3.2 4.3.3. The
domain of interpretation of the given protocol (abstract specification), w.r.t. to the given
set of values (see Sectidn3.]) is the setZ () of well typed ground terms build on
the above signature.

We shall also consider below the termsBf ¥, X) with containing variables of
Section4.2.1

4.3.5 Axioms

The domain is considered modulo the axioms declareddelttaxiom (see SectioB3.2),
Note that the coercions functions are added by the translator to the terms of the
axioms too.

4.3.6 Terms of domain and abstract syntax

The translation betwedrrmsof the abstract syntax (i.e. elements of the data type
in Section3.2) and terms of the above dom&i ¥, X) is straithforward. One only
need to encode lists tdrms by terms of the domain using the constructargty_list
andcons, and interprete located variables and aliases as expected.

More precisally, this coding is performed by the following recursive interpretation

27



f of an abstracterm t into a term of T (¥, X):

term_id(x) = xeX
term_cst(c) = ceC
term_value(intruder) = 1€C
term_value(value(v)) = ve_C
quantified(X,t) = Xfresh € Xiresh
located(x,r) = x@r e X
alias(x,t) = 1
cons(ty,...,tn) = cons(fz,cons(...cons(f,empty_list)))
app(f,(t1,...,tn)) := app(f,cons(i1,cons(...cons(f,,empty_list))))
crypt(a,k,t) = crypt(a ki)
sign(a,k,t) := crypt(a ki)
p(t) = p(
a(t) := a()
sa(t) = sa(f)
aa(t) = aa(f)
ue(t) ur ()

Note that there is no interpretation of the terms of the fauant(t1,t2) since it is
assume (SectioB.4) that there is no such terms in the abstract specifications.

4.4 States
4.4.1 Substitutions

Due to some syntactic constructions in LAEVA, we shall use a special notion of substi-
tutions in the definition of states below. Indeed, we call a substitution a mapping from
terms of 7 (¥, X) to terms of7 (¥ ,X) (and not only from variables of to terms).

The reason is that terms are allowed in the declaratioh&now and that these decla-
rations are used in the construction of initial states (see Seétibf. The definition
domain of a substitutiow is denoteddom(o). The applicatiorto of a substitutioro

to atermt € T (¥, X) is recursively defined by:

» to:=o0o(t) if t e domo),

o f(t1,...,th)o:= f(t10,...,th0) otherwise.
Moreover, we consider only substitution which respect types, in the serisahdto
must have the same type, according to the definitions of Sectidné.2and4.3.
4.4.2 Processes
A procesds a tuple made of:

* a unique session identifier, which i$ABEL in the sense of the LAEVA syntax
(see Sectior),

* arole,

* a program counter, which is an index in the list of instructiorss(( list) in
Section3.2) of the program associated to the role in the abstract specification,

28



* a substitution (well typed) from a finite subset ®f{ ¥, X) into the protocol
interpretation domaiff () (as defined in Sectio#.3).

4.4.3 Predicates

The predicatesof the protocol are the predicates identifiers occuring in the formulas
(akastatement) of the abstract specification. They can be eithgneq, honest, secret,
or a user predicate symbploccurring in an atom of the formser_predicate(p,t).

4.4.4 States
A protocolstateis a pair(S, I) where:
» Sis aset of processes,

« I is an interpretation of the predicates of the protocol: to each predgdte
associates a subset of the interpretation dorp&ia 7 ().

4.45 Initial state: environment

We define the second part of an initial state as an interpret&iihich satisfies every
assume formula of the abstract specification. Such an interpretation defines in partic-
ular a set of honest principal$'°"est, and a set of data initially known to the intruder
‘T(_‘T) \ Iosecret.

In order to fix a uniqudp from a given abstract specification, we make the follow-
ing assumptions on thessume formulas:

« every equality atom has the foreq(x,y) or eq(x,a) or eq(x, f(y,z)) wherex, y,
z are protocol variables arad f are function symbols of (respectively nullary
and binary),

« every disequality atom has the fommag(x,t) wherex is a protocol variable and
t is a ground term.

With these restrictions, the sdtof assume formulas can be transformed (by elimina-
tion of eq() andneq()) into a equivalent sef’ of Horn clauses all the atom of which
are build with unary predicates. Hendg,is defined as the smallest Herbrand model
of 2.

4.4.6 Initial state: processes
Let P be a fixed infinite set of processes such that:

« for all (i,r,pc,0) € 2, r is a role of the protocolpcis 0 (the index of the first
instruction (nstr in Section3.2) in the program of), the substitutioro takes its
values in the protocol interpretation domaif{ ¥ ) and its definition domain is
exactly the set of terms of the list of termién the initial knowledge declaration
for the roler, dcl_know(r, ), in the abstract specification. According to the re-
strictions on the specification (Sectid), there is at most one such declaration.
If there is no such declaration, then the domaiwd$ empty.

« P contains an infinite number of procesdes, pc,o) (with different session
identifiers) for each triplér, pc,g) as above,

29



« every two distinct processés, ri, pci,01), (i2,r2, pc2,02) € P have different
session identifierd{ # i7).

« freshness constraint: given any two distinct processd3 of respective substi-
tutionso; ando», and for each protocol variabledeclared a$reshin the spec-
ification, with a declaration of the formatcl_id((..., (X, true),...), parameter,T),
if x € dom(o1) Ndom(oz), thenxo; # xa2 (the “nonce generator” is collision
free).

To each declaratiod of kind session in the abstract specification (see Sect®op)
we associate a set of procespesc(d), defined as follows:

procbang) = P
proc(constrained_sessions(¢)) = [, CONstrainedc)
constrainedeq_constraint(Xy,X2)) =
{(i,r,pc,0) € 7 | if x10,%0 are defined ther;0 = x,0}
constrainedneq_constraint(x1,X2)) =
{(i,r,pc,0) € 7 | if x10,%0 are defined ther, 0 # x,0}
constrainedmembership_constraint(x,v)) =
{(i,r,pc,0) € 2 | if xo is defined themxo € v}
constraineddomain_constraint(x, pred)) =
{(i,r,pc.0) € P | if xois defined themo € 19"}
proc(sessions(a) = {(i,r,pc,0’) € P| 0’ Ca}
proc(session(label,0)) = {(i1,r1,pc.01),...,(in,n, PC,On) |
every(ij,rj, pc,gj) € P, j C g, ry,...,ry are the roles of the protocpl

In these definitionsy’ € o meansdom(a’) € dom(0) anda|goner) = 0’
Note thatproc(session(label, 6)) is finite, whereagproc(sessions(g)) is infinite, it is
an infinite set of copies of the processepiac(session(label, g)).

The initial set of processe% (first component of the initial state of the system)
is defined as the union of all the sgi®c(d) for everysession declarationd in the
abstract specification.

4.5 Transitions
4.5.1 Inverse key
The inversek— of a termk (representing a cryptographic key) is defined as follows:

if k=app(i,¢) andi is a symbol of typerkp, for some typea, which was declared by:
dcl_keypair(algo,i,i’, scopet,type_lis}, thenk—1 = app(i’, ¢).

if k=app(i’,¢) andi’ is a symbol of typerkp, for some typer, which was declared
by: dcl_keypair(algo,i,i’, scopet, type_lis}, thenk—* = app(i, ¢).

if k = cons(t,empty-list), thenk= = cons(t 2, empty-list).

otherwisek ! = k (k is a symmetric key).

30



4.5.2 Intruder’s deductions

We assume that in each reachable statg) of the protocol, the intruder’s knowledge
T (F)\ 1€l is saturated with the classical deduction rules of the Dolev-Yao model,
formalized by the following inferences. Each inference means that the conclusion, if
well typed, is added t& provided that the premises belongEoand are well-typed
terms.
a,mKk My, My _ m
————— Encrypt ——Empty — Pair ———— Apply
crypt(a, k,m) empty-list cons (Mg, M) app(f,m)

In the ruleApply, the termf must have a type of the formumPer oy chnumber (¢
nottSnuMber o thsnumbery “Hance, like in the previous versio8][ the intruder is as-
sumed to be able to perform every non secret functions (including one way functions).

cons(Imy, M) cons(Imy, M)
——  Unpair_L —  Unpair_R
my 1 m
crypt(a,k,m),a k= app(f,m)
Decrypt — Invert
m m

The ruleinvert applies only if the ternf has a type of the form"Umber o ysnumber

(notthnumber o thsnumber) ‘Hence, the intruder is assumed to be able to invert every
non-hash functions.

Extensions. Hence, the EVA project is restricted to the model of Dolev and Yao but
we may consider in the future some inference systems which entends the one above to
new capacities of the intruder.

4.5.3 Transitions

A transition from a statéS, I) of the protocol to a statés’, I') is possible iff there

is a processi,r,pc,0) € S, and we are in one of the following cases concerning the
instruction (nstr in Section3.2) at indexpc in the program of the principal in the
abstract specification:

skip: I' =1, §' is obtained froms by incrementingpc in the processi,r, pc, o) (see
below the procedure)

msg(l,r,x,m) (r sends a message)’ is defined as7 (¥)\ X' where X’ is ob-
tained from% := (T(F) \ I8¢ U {mo} by saturation with the rules of Sec-
tion4.5.2 §' is obtained froms by incrementingpcin the processi,r, pc,o).
The translator ensures that if the abstract specification is obtained by a successful
compilation of a protocol in LAEVA syntax, themo is ground.

msg(l,x,x,m) (r receives a message) if there exists a ground tegrf (F) \ 75€C"et
and a ground matching’ of mo by t (moo’ =t): S’ is obtained fromS by
replacing(i,r, pc,a) by (i,r, pc,awa’) and incrementingpcin this process]’ =
1.

assign(r,x,m): I’ = I, §’ is obtained froms by replacing(i,r, pc,o) by (i,r, pc,ow
{x— mo}) and incrementingcin this process.
The translator ensures that if the abstract specification is obtained by a successful
compilation of a protocol in LAEVA syntax, themo is ground anc ¢ dom(o).

31



comp(r,x,m): I’ = I, if xa = mo thens’ is obtained froms by incrementing theoc
in the processi,r, pc,0). Otherwise, the process is deleted fréngiving 5.

block(¢): I' =1, S is obtained fron® by incrementing th@cin the proceséi,r, pc, 0)
to the index of the first instruction of the lit

switch(t, ((t1,41), ..., (t,n))): I' = I, S is obtained froms as follows. Leti be the
smallest integex n such thato =t;jo. If suchi exists, thermpcis incremented
in the procesgi,r, pc,0) to the first instruction of the list;. Otherwise,pcis
changed to the first instruction following tkeitch, if any, otherwise, the process
(i,r, pc,0) is simply deleted frong.

Incrementation of the program counter: In a processi,r, pc,a), incrementing the
countermeans:

« if the instruction at inde)pc is the last instruction of the program pfthen the
process is deleted (frofito obtains’).

« if the instruction at indexpc in the program ofr is the last instruction of an
instruction list in ablock, thenpcis changed to the index of the first instruction
following the block, if any. If there is no such instruction (thock is the last
instruction of the program), then the process is deleted.

« if the instruction at indepcin the program of is the last instruction of a case
of aswitch, thenpcis changed to the first instruction following theitch, if any.
If there is no such instruction (thevitch is the last instruction of the program),
then the process is deleted.

* in any other case, thgcis incremented to the index of the next instruction in the
containing list (which can be an instruction list oblack or an instruction list in
a case of awitch, or the program itself).

Note that in these transitions, we do not care whether it is possible for a principal to
compose a message to send or to read a received message, according to the knowledge
he has gain in former steps and to the “one-way” or “secret” characteristics of functions
etc. All these issues are treated by the translator and at compile time and incorporated
in the programs of the abstract specification of the protocol @ge [

Extensions. In the EVA semantics, every transitidi, I) — (S', I') only affects the
interpretation of the predicatecret (complement of intruder’s knowledge) ih In

the future, we may wish to define semantics in which other predicates are modified
in transition. In particular, changes @onest may be usefull for the verification of
tripartite electronic protocols.

4.6 Correctness of claim formulas

We define first the satisfaction of a formula of tygeim by a processi,r, pc,a) and
an interpretatiory.
According to Sectior.5, the leaves of terms in literal ofaim formulas can be pro-
tocol identifiers declared as constants, or declared values (hence in both cases constant
function symbols of the protocol interpretation domain, according to Sedtid), or
located variablesldcated(x,r) in Section3.2). The idea to define satisfiability w.r.t.

32



procesq(i,r, pc,0) and interpretation. is to instanciate first the located variables in
the terms in the literal of the formula usilag and, if the terms obained are all ground,
to check the satisfaction of the formula obtained irBut, as defined in Sectioh3.6
the located variables have the forr@r’ and do not belong to the domain of any pro-
cess substitution. Hence, given a procggs pc, o), we define a subtitutioo, whose
domain is the set of located variables of Secdah 3 for each located variable@p’
such thatp = r andx € dom(g), o, (x@p) = o(X).

We say that a process, r, pc,0) is compatible with alaim formula iff for every
literal A of the formula, of the fornatom_eq(t1,t2), oratom_neq(ts,t2), or pred(t;) for
some other unary predicate symipoéd

* every located variable@p in f; or t; belongs tadom(oy ),
 and both;o, andf,o, are ground.

The satisfaction of the literals by a compatible proggsspc,o) and an interpre-
tationt I is defined as follows:

(i,r,pc,0), I |=atom_eq(ty, tp) iff f10; = B0y
(i,r,pc,0), I |= atom_neq(ty,to) iff f10, # G0,
(i,r, pc,0), I |= predty) iff o, € rPred

We say that an abstract specification of a protocol is correct iff foclaih for-
mula @ of the specification, for all statgs, I) reachable (by transitions defined in
Sectiond.5.3 from the initial state (defined in Sectiodst.6and4.4.5, for all process
(i,r,pc,0) € S compatible withg, we have(i,r, pc,0), I = @.

5 Output syntaxes
5.1 Extended LAEVA syntax

This syntax reuses the syntax defined in SecBpwith an additional syntax for the
multi-process presentations of protocols.

5.2 CPL

The new version of CPLJ] proposed here can be seen as a concrete syntax for the
abstract syntax of Sectid) restricted to multi-process presentation of protocols (list
of repeat-process in CPL syntax).

We give below the grammar for this new version.

Une spécification CPL, d'abord, est la donnée de déclarations d’identificateurs
(Types), d'alias globaux Yalues), d’axiomes Axioms), d’hypothéses sur les connais-
sances initiales de l'intrus\ésumptions), de formules a prouvec{aims), et d’'un en-
semble de processuSystem).

Spec = protocole EVA, syntaxe CPL
compiled-spec(Types, Values, Axioms, System, Assumptions, Claims)

Types =

33



types(Type-declaration™)

Type-declaration

type(id, Scope, Type)

déclarations d'identificateurs

déclaration d’identificateur

type(id, Scope, Type, "fresh")

déclaration d’'identificateur frais

| type-shared(id, Scope, Type)

| value-type(id, Type)

Scope =
"constant”
| "parameter"

| "private”

| "quantified"

Values =

values(Alias*)

Alias =

alias(id, Term)

Axioms =

axioms(Axiom™)

Axiom =

déclaration d’identificateur partagé (not used)
déclaration de valeur pour instances de sessions

déclarations d’alias

déclaration d’alias

listes d’axiomes

axiom(Term, Term, Type, Type-declaration*)

System =

system(Process™*)

Assumptions =

assume(Formula™®)

Claims =

claim(Formula*®)

Type =
"principal”

| "number"

| "asym_algo"

| "sym_algo"

| "*algo*"

|id

| function(id, id*)

axiome, (lhs, rhs, type, variables quantifiées)

Le systeme (composition paralléle de processus)

Hypotheses

Formules a prouver

type d’ordre 1

type d’'ordre 1

type d’'ordre 1

type d’'ordre 1

type d’'ordre 1

user type or basetype d’ordre 1

type de fonction (inversible, non secrete)

34



| one-way-function(id, id*)  type de fonction one-way
type de fonction secréte
| secret-one-way-function(id, id*)
type de fonction secrete et one-way

| secret-function(id, id*)

Note: there is no type for the keypairs declared. Instead, as descril@avire[declare
a unique identifier associated to both keys of the pair, and we refer to aliases using
functionslambda-pubk andlambda-privk for the application of the keys.

Un processus PEVA peut étre soit un processus simple, décrit par un graphe de
transitions, soit un processus en multi-session paralléle, qui est un nombre non borné
de processus simples décrits par le méme graphe de transitiorglies, mis en
paralléle. Les transitions sont données comme une liste de triplets (source, cible, ac-
tion). Les actions sont décrites plus bas. Dans le cas de processus en multi-session
paralléle, Privates contient la liste des identificateurs qui contiennent des valeurs possi-
blement différentes d’une copie a l'autre; les autres identificateurs sont partagés entre
les copies. Finalement, chaque processus vient avec une liste de connaissances (Know),
qui sert a faire le lien entre expressions LAEVA et identificateurs correspondants a ces
expressions dans les processus PEVA.

Process =
process(id, state, Know, Transition™)
processus simple (nom, label de départ, connaissances,
transitions)
| repeat-process(Privates, id, state, Know, Transition™)
processus en multi-session paralléle (vars privées, role,
départ, connaissances, transitions)

Transition =

trans(state, state, Action) transition (source, cible, action)

state =

label état visible
| ‘%’ label état interne
Know =

knows(As™*) connaissances
As =

as(Term, Term)

terme connu sous la forme: terme

Privates =
private(id*) liste de variables privées
Action =
new(Pattern) création de nonce (unused in this version)

| let(Pattern, Term)
| recv(Pattern)

| send(Term)

pattern-matching (unused in this version)
réception de message
émission de message

35



| comp()
| assign()

| skip()

Term =
id
| crypt(Term, Term, Term)
| tuple(Term*)
| p(Term)
| a(Term)
| sa(Term)
| aa(Term)
| vanilla()
| apply(id, Term*)
| hash-apply(id, Term*)
| secret-apply(id, Term*)

| hash-secret-apply(id, Term*)

| apply-pubk(Term, id, Term*)

action nulle

variable

chiffrement (algo, texte, clé)
n-uplet

coercion principal~ number
coercion *algo*— number
coercion sym_alge-~ *algo*
coercion asym_alge- *algo*
algorithme symétrique par défaut
application de fonction définie
application de fonction one-way
application de fonction secrete

application de fonction secréte one-way

appl. de constructeur de clé publique (algo, constructeur,
arguments) (not used, all key functions are assumed one-
way)

| hash-apply-pubk(Term, id, Term*)

| apply-privk(Term, id, Term*)

appl. de constructeur de clé publique one-way (algo, con-
structeur, arguments)

appl. de constructeur de clé privée (algo, constructeur,
arguments) (not used, all key functions are assumed one-
way)

| hash-apply-privk(Term, id, Term*)

| lambda-pubk(Term, id)
| lambda-privk(Term, id)

| located(label, id, Term)

Pattern =
id

| exact(Term)

| crypt(Term, Pattern, Term)

| apply(id, Pattern*)

appl. de constructeur de clé privée one-way (algo, con-
structeur, arguments)

partie publique de clé (algo, clé)
partie privée de clé (algo, clé)

terme vu par session/principadbifel not significant in
this version)

variable

constante littérale
déchiffrement (algo, texte, clé)
application de constructeur

36



| secret-apply(id, Pattern*)  application de constructeur secret

| tuple(Pattern*) n-uplet

| p(Pattern) extraction number- principal

| a(Pattern) extraction number- *algo*

| sa(Pattern) extraction *algo*— sym_algo

| aa(Pattern) extraction *algo*— asym_algo

| vanilla() algorithme symétrique par défaut

| apply-pubk(Term, id, Pattern*)
appl. de constructeur de clé publique (algo, constructeur,
arguments)

| apply-privk(Term, id, Pattern*)
appl. de constructeur de clé privée (algo, constructeur,

arguments)
Formula =
clause(Atom*, Atom) Horn clause
| negative(Atom™) negative Horn clause
Atom =
secret(Term)
| honest(Term)

| eq(Term, Term)

| neq(Term, Term)

References

[1] Michael Burrows, Martin Abadi, and Roger Needham. A logic of authentication.
Technical Report 39, Digital Systems Research Center, february 1989.

[2] Florent Jacquemard, Michael Rusinowitch, and Laurent Vigneron. Compiling
and verifying security protocols. I#th International Conference on Logic for
Programming and Automated Reasonihgcture Notes in Artificial Intelligence.
Springer Verlag, november 2000.

[3] Jean Goubault-Larrecq. Les syntaxes et la sémantique du langage de spécification
EVA. Rapport Technique EVA Nor®ovembre 2001.

[4] Florent Jacquemard and Daniel Le Métayer. Langage de spécification de proto-
coles de EVA: syntaxe concréete. Technical Report EVA-1, Trusted Logic S.A.,
July 2001. Version 3.14.

[5] Jean Goubault-Larrecq. Langage de spécification de protocoles de EVA: syntaxe
abstraite et sémantique. Technical Report EVA-2, LSV/CNRS UMR 8643 & ENS
Cachan, July 2001.

[6] Liana Bozga, Yassine Lakhnech and Michael Périn. L'outil de vérification HER-
MES. Technical Report EVA-6, laboratoire VERIMAG, mai 2002.

37



[7] Liana Bozga, Yassine Lakhnech and Michael Périn. Hermes,a tool verifying
secrecy properties of unbounded security protocols15ith international con-
ference on Computer-Aided Verificatig8 AV'03), Lecture Notes in Computer
Science, Springer Verlag, july 2003.

38



