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Abstract. In this paper we present an exact schedulability test for spo-
radic real-time tasks scheduled by the Global Fixed Priority Fully Pre-
emptive Scheduler on a multiprocessor system. The analysis consists in
modelling the system as a Linear Hybrid Automaton, and in performing
a reachability analysis for states representing deadline miss conditions.
To mitigate the problem of state space explosion, we propose a partial
order relationship over the symbolic states of the model and we prove
that this is a weak simulation relation. We then present an implemen-
tation of the analysis in a software tool, and we show that the use of
the proposed model permits to analyse larger systems than other exact
algorithms in the literature.

1 Introduction

A real-time system consists of a set of real-time tasks with timing constraints,
executed on a single or multiprocessor platform. A real-time task is a piece
of code that must be executed periodically or upon reception of an event. Each
instance of the task is called a job and it is characterised by a worst-case execution
time (i.e. an upper bound on the execution time of the corresponding piece of
code), an arrival time (i.e. the instant at which the job is inserted in the ready
queue of the operating system and could start executing) and a deadline (i.e.
the instant in time within which it must completed). The response time of a
job is the length of interval between its arrival and the time instant it finishes
execution.

Typically, real-time tasks can be modelled as periodic tasks, if the arrival
times of any two consecutive jobs are separated by a constant amount of time
called period ; or as sporadic tasks if this interval is unknown but we can es-
tablish a lower bound called minimum interarrival time. Real-time tasks are
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scheduled by a certain scheduling algorithm that decides which task executes at
each instant on all processors.

One important problem for real-time systems is to assess the schedulability
of a set of tasks on platform by a certain scheduling algorithm: a task set is said
to be schedulable if all jobs complete before their deadlines.

One of the most popular scheduling algorithms in the programming practice
is the Fixed Priority Fully Preemptive scheduler: each task is assigned a fixed
priority, and jobs are ordered in the ready queue by decreasing priority; if a low
priority task is executing and a higher priority task is activated, the latter can
preempt the former and execute in its place.

Analysing the schedulability of a set of periodic or sporadic tasks under fixed
priority scheduling is a fundamental problem for real-time system design and
development. Since the seminal work of Liu and Layland [12], the fixed-priority
scheduling problem has been extensively studied. The problem has been solved
exactly for single processor systems, by using a well known property: the worst-
case response time of a task happens when it is activated simultaneously with
its higher priority tasks, and all jobs are activated at their maximum frequency.
Therefore, it suffices to simulate the system starting from this critical instant
activating all subsequent jobs as soon as possible, until the first idle time.

In this paper, we consider the problem of checking the schedulability of a
set of independent real-time sporadic tasks on a multiprocessor platform when
the scheduling algorithm is the Global Fixed Priority (G-FP) Fully Preemptive
scheduler. According to this scheduling algorithm, on a m-processor platform all
jobs are ordered in one single ready queue by decreasing priority, and the first
m highest priority jobs are executed at every instant.

Unfortunately, checking the schedulability of a task set scheduled by G-FP is
extremely harder than for the single processor case. The fundamental problem is
that no single critical instant exists: the worst-case response time of a task can be
found anywhere in the schedule. Also, it is not true that the worst-case response
time happens when all jobs are activated as soon as possible. An example is
presented in Section 3.

In order to find the exact combination of arrival times that leads to the
worst-case response time of a task, it is then necessary to explore all possible
legal combinations of arrivals, and this number is so large that a brute-force
approach fails already for very small task sets.

Therefore, most of the research in the literature has been focused on find-
ing approximate upper bounds to the response times. However, to assess the
pessimism of such approximate analyses, it is necessary to solve the problem
exactly, i.e. to obtain necessary and sufficient conditions for the schedulability
of a task set.

Contributions. In this paper, we address the problem of deriving an exact anal-
ysis for the schedulability of a set of sporadic real-time tasks scheduled by G-FP
on a multiprocessor platform. We model the problem using the formalism of
Linear Hybrid Automata [2, 1] to represent the tasks and the scheduler. In par-
ticular, deadline miss conditions are modelled as error locations in the automata.



The analysis consists in performing a reachability analysis for such error states.
Since the complexity explodes for very small task sets, we propose a weak sim-
ulation relation between symbolic states and prove its correctness. The relation
allows us to eliminate those states that are not useful for our reachability anal-
ysis, thus reducing the size of the state space. We present the implementation
of our model in a software tool called FORTS, and we show that we can handle
more complex task sets with respect to state-of-the-art exact algorithms. Also,
we evaluate the pessimism of RTA-LC, the current state-of-the-art approximate
analysis.

The paper is organised as follows. In Section 2 we discuss previous work on
the same problem. In Section 3 we formally introduce the problem. In Section
4 we describe the formalism of Linear Hybrid Automata, and in Section 5 we
present our model. The core of the paper is Section 6, in which we present the
simulation relationship and prove its correctness. In Section 7 we report a set of
experiments. Finally, in Section 8 we present our conclusions.

2 Related Work

Given the complexity of the problem, most of the work for G-FP scheduling
is focused on obtaining an approximate schedulability test. Baker [3] developed
sophisticated schedulability analysis techniques consisting in selecting a problem
window, and in computing an upper bound to the maximum amount of workload
of each individual task in that window. Bertogna and Cirinei [6] later applied this
technique to perform an iterative response time analysis of global scheduling.

Guan et al [10] developed RTA-LC (Response Time Analysis with Lim-
ited Carry-in), the state-of-the-art approximate schedulability analysis for G-FP
scheduling. RTA-LC integrates Bertogna and Cirinei’s response time analysis and
Baruah’s technique [5] for Global Earliest Deadline First (G-EDF) scheduling of
limiting the number of carry-in tasks. In this paper, we also evaluate how much
pessimism lies in the RTA-LC test.

Regarding exact analysis, the first brute force approach to the problem was
proposed Baker and Cirinei [4]: the test assumes discrete time parameters, and
it consists in building a finite state machine that represents all possible combina-
tions of arrival times and execution sequences for a task set scheduled by G-EDF.
Unfortunately, the problem is so complex that the authors could analyse only
tasks whose period was in the range [3, 4, 5]; the tool went in out-of-memory for
values of T = 6.

Recently, Geeraerts et al. [9] improved over Baker and Cirinei’s method by
using an antichain technique. In particular, they proposed a simulation relation
between states of the underlying finite automaton. An informal definition of
simulation relation is the following:

Given two states s1 and s2, we say that s1 simulates s2 (denoted as
s1 � s2) if and only if: 1) for every state s′2 successor of s2, there exists
a state s′1 successor of s1 and s′1 � s′2; 2) if s2 is an error state (i.e. it
models a deadline miss), then also s1 is an error state.



Thanks to this relation, when we find two states such that s1 � s2, we
can avoid analysing all paths starting from state s2: in fact, if the error state
is not reachable from s1, then it is not reachable from s2 either. This allows
to significantly reduce the number of states to be analysed in the reachability
analysis. The simulation relation proposed in [9] is valid for any fixed job-level
scheduling algorithm, and this includes G-FP and G-EDF. However, the method
is again based on discrete time; in their experiments the authors could analyse
task sets with maximum period equal to T = 8 on 2 processors.

In this paper we take a different approach. We model the system as a Linear
Hybrid Automaton (LHA) and then we perform our analysis on the correspond-
ing symbolic state space. This allows us to analyse task set with much larger
periods. As in [9], we define a weak simulation relation over the symbolic states,
and prove its correctness for G-FP scheduling. This allowed us to considerably
reduce the analysis time, and thus to analyse more complex task sets.

3 System Model

We consider the problem of checking the schedulability of a set of n sporadic
tasks, scheduled on m identical processors, with n > m, by G-FP, so that all
timing constraints are respected.

A sporadic task τi = (Ci, Di, Ti) is characterised by a minimum interarrival
time Ti, a relative deadline Di > 0 and a worst-case execution time (WCET)
Ci, all positive integer values. The task emits jobs whose activation time is
separated by at least Ti units of time; each job executes for Ci units of time and
must complete within Di units of time from its activation. A task is said to have
constrained-deadline if Di ≤ Ti; otherwise, it is called an unconstrained-deadline
task. We assume that all jobs of the same task must be executed sequentially
and cannot be parallelised. Each task is assigned a fixed and unique priority,
and we assume lower task index correspond to higher priority.

In this paper we consider global fixed-priority (G-FP) fully-preemptive schedul-
ing: the execution of a job can be suspended at any time to execute another
higher priority job (preemption); the same job can later resume execution on a
possibly different processor (migration).

As explained in Section 1, the main problem is that there is no critical instant,
and that the worst-case response time of a task may not correspond to a situation
in which all jobs arrive as soon as possible. To better understand the problem,
consider the following example (from [5]): the system consists of 3 tasks τ1 =
(1, 1, 2), τ2 = (1, 3, 3) and τ3 = (5, 6, 6), to be scheduled by G-FP on a 2 processor
platform. Assume that task τ1 has the highest priority and task τ3 the lowest.
The schedule obtained when all tasks start at time 0 and arrive as soon as
possible is shown in Figure 1a. However, if the second job of task τ1 arrives at
time instant 3 instead of 2, task τ3 misses its deadline (Figure 1b).

Therefore, we cannot make any worst-case assumption on the arrival times
of the jobs. In principle, we need to analyse all legal combinations of arrival
instants.



(a) (b)

Fig. 1: Example of schedule of sporadic tasks (a) jobs arrive as soon as possible
(b) second job of τ1 is delayed.

4 Linear Hybrid Automata

A hybrid automaton [2][11] is a finite automaton associated with a finite set of
variables continuously varying in dense time. In this section, we introduce the
basic terminology and the definition of Linear Hybrid Automata.

Let Var = {x1, . . . , xn} be a set of variables and ˙Var = {ẋ1, . . . , ẋn} be the
set of variables’ derivatives over time. A linear constraint atom over Var is of
the form

∑n
i=1 cixi ∼ b, where ci (1 ≤ i ≤ n) and b are rational numbers and

∼∈ {<,≤,=,≥, >}. A linear constraint C is the conjunction of a finite number
of constraint atoms. A valuation ν over Var is a function that assigns a real value
to each element in Var. The set of all possible valuations over Var is denoted as
V (Var). We write ν |= C to represent that ν satisfies C. The same notations can
also be defined for ˙Var.

Definition 1. A Linear Hybrid Automaton A = (Var, Loc, Init, Lab,Trans, D, Inv)
consists of seven components: a finite set Var of variables; a finite set Loc of lo-
cations; a labeling function Init that specifies the initial linear constraint over
variables; a finite set Lab of synchronisation labels including a stutter label ε; a
finite set Trans of transitions; a labeling function D which assigns to each loca-
tion l a linear constraint over variables’ derivatives; and a labelling function Inv
which assigns each location l a constraint, called invariant, over variables.

The automaton can be in a location l as long as the current valuations of the
variables satisfy Inv(l). A transition is a tuple (l, γ, a, α, l′) consisting of a source
location l, a target location l′, a guard γ that is a linear constraint over Var, a
synchronisation label a ∈ Lab, and the transition relation α that updates values
for variables in Var. We require that on each location, there is a stutter transition
(l, true, ε, Id, l) where Id = {(ν, ν)|ν ∈ V (Var)} is the identical transition relation.

Let A1 and A2 be two LHA over a set of variables Var. Their parallel compo-
sition A1×A2 is the LHA (Var, Loc1× Loc2, Init, Lab1 ∪ Lab2,Trans, D, Inv) such
that:

– Init(l1, l2) = Init1(l1) ∧ Init2(l2).
– ((l1, l2), γ, a, α, (l′1, l

′
2)) ∈ Trans iff



1. (l1, γ1, a1, α1, l
′
1) ∈ Trans1 and (l2, γ2, a2, α2, l

′
2) ∈ Trans2;

2. γ = γ1 ∧ γ2.
3. either a1 = a2 = a, or either a1 = a 6∈ (Lab1∩Lab2) and a2 = ε or a1 = ε

and a2 = a 6∈ (Lab1 ∩ Lab2);
4. α = α1 ∧ α2.

– D(l1, l2) = D1(l1) ∧D2(l2).
– Inv(l1, l2) = Inv1(l1) ∧ Inv2(l2).

A concrete state s of the LHA is in the form of (l, ν), where l is a location
and ν ∈ V (Var). A state can change in two ways:

– A discrete step: (l, ν)
a−→ (l′, ν′) which means there exists a transition (l, γ, a, α,

l′) and
ν |= γ ∧ ν′ = α(ν) ∧ ν′ |= Inv(l′)

– A time step: (l, ν)
t−→ (l, ν′) where t is a real-value represents time elapse.

And
ν |= Inv(l) ∧ ν′ ∈ ν ↑tD(l) ∧ν

′ |= Inv(l) ∧ t ≥ 0

ν ↑tD(l) represents the set of valuations that can be reached by letting vari-
ables continuously evolve for t time units, according to derivatives con-
strained by D, and starting from the valuation ν.

We use → to represent a step, which could be either a discrete step or time

step. We also define ⇒ to denote a sequence of steps. And
t

=⇒ means that the
accumulated time during the sequence of steps is t.

A symbolic state S of the LHA is a pair (l, C), where l is a location and C is
a linear constraint over variables. We can define a step and a sequence of steps
for symbolic states by lifting the definitions of step and sequence of steps for
concrete states. When it comes to symbolic states, the corresponding operations
are performed on convex regions instead of concrete valuations on variables.

For a concrete state s and a symbolic state S, we say s ∈ S if s.l = S.l and
s.ν |= S.C. The concrete state space and symbolic state space of a LHA A are
represented by space(A) and Space(A) respectively.

5 Multiprocessor Schedulabilty in LHA

In this section we describe the automata used for modelling our scheduling prob-
lem. In particular, we use two different types of automata that synchronise each
other: the task automata and the scheduler automaton.

5.1 The task automata

We start by presenting the LHA that models one single sporadic task. A concrete
task automaton TA = (C,D, T ) is depicted in Figure 2. It has two variables, p, c,
and four locations.



Idle
ṗ = 1, ċ = 0

Waiting
ṗ = 1, ċ = 0
p + c ≤ D

Running
ṗ = 1, ċ = −1

c ≥ 0 ∧ p + c ≤ D

Deadline
Missed

arrival
p ≥ T
p := 0
c := C

dispatch

p ≥ T
p := 0

c := c + C

p + c = D

preemption
c > 0

c > 0∧
p + c = D

p ≥ T
p := 0

c := c + C

end
c = 0

Fig. 2: Task Automaton

Variable p represents the time passed since the last activation of the task,
and its rate is always 1. Every time a new job arrives, p is reset to 0. Variable
c represents the remaining computation time of a task. Its rate can be 0, when
the task does not execute, or −1 when the task executes.

The automaton works as follows. Initially, it is in state Idle. From there,
when the guard constraint p ≥ T is satisfied, it can move at any time non-
deterministically to location Waiting. Along this transition, p variable is reset to
0 and C is assigned to c variable. Also, it synchronises with the scheduler (see
next section) on the arrival label.

While in Waiting, the rate of c will remain equal to 0. The automaton moves
to location Running (where the rate of c is set to −1) after synchronising with
the scheduler on label dispatch; and it can move back to location Waiting after
synchronising with the scheduler on label preemption.

We say a task is active if it is in locations Waiting or Running. For an active
task, its slack is the difference between the time left before the task deadline,
and the remaining computation time: slack = D − p − c. When slack becomes
less than 0, a task misses its deadline. Hence the invariant p+ c ≤ D in Waiting
and Running. In location Running, the invariant c ≥ 0 forces the task to move to
location Idle when the current instance has completed its execution.

We allow unconstrained-deadline tasks, thus there could be a new job ar-
rival for an active task. This is modelled as a non-deterministic transition from
Waiting or Running to itself. Since the new instance must wait for its precedence
completes, variable c incremented by C with the transition.



In the following we will denote as TAi the automaton corresponding to the i-
th task in the system, with qi, ci, pi its location, left computation time and passed
time, respectively, and with arrivali, endi, dispatchi, preemptioni the corresponding
synchronisation labels.

5.2 Scheduling automaton

Given a set of tasks T = {TA1, . . . ,TAn}, set A is defined as the set of active
tasks that are in locations Waiting or Running. and set R denotes the set of tasks
that are in location Running.

Let Scheduler : 2T → 2T be a scheduling function that, given a set of active
tasks, returns the set of executing tasks: R = Scheduler(A). The function must
respect the following properties:

– ∀A ⊆ T Scheduler(A) ⊆ A
– ∀A ⊆ T |Scheduler(A)| = min(m, |A|)

The first property tells us that the scheduler only selects for execution tasks
that are active. The second property tells us that at most m tasks can execute
in the system, and the scheduler is not allowed to not execute an active task
if there is some free resource. A scheduling function that respects the latter
property is also called a work conserving scheduler. In this paper, we consider a
G-FP Scheduler, which chooses min(m, |A|) highest priority tasks to run.

The scheduling function can be modelled as a finite automaton synchronised
with the task automata the system is composed of. More formally, the scheduling
automaton Sched = {m, Loc, Lab} is characterised by:

– m is the number of identical processors in the system;
– Loc is the set of locations of the scheduler;
– Lab =

⋃
i Labi, Labi = {arrivali, endi, dispatchi, preemptioni} is the set of

synchronisation labels.

When set A changes to A′, the automaton computes the new set R′ accord-
ing to the scheduling function R′ = Scheduler(A′). Then, it informs every task
automaton TAi of the fact that it is executing or not; this is done by using labels
dispatchi and preemptioni. Therefore, all tasks that where in R and are not in R′

synchronise on the preemptioni labels; and all tasks that were not in R but are
now in R′ synchronise on the dispatchi labels.

An example of task automaton for n = 3 tasks on m = 2 processors in
shown in Figure 3. The automaton consists of 19 states. The responsibility of a
scheduling automaton is to synchronise with the task automata. In the figure,
nodes depict locations, and the name of the location encodes the state of the
system queue, and in some cases the event that just happened. For example,
location E1E2W3 corresponds to the execution of task τ1 and τ2 on the two
processors, and the task τ3 waiting to be executed; location E1 arr2 represents
that fact that, while task τ1 is executing on one processor, task τ2 has just arrived.
Also, please note that all locations with names containing arr are assumed to be



committed locations, where time cannot elapse. Finally, on the edges we show
the synchronisation labels in short form for graphical reasons, hence arr1 stands
for arrival1, etc.

Fig. 3: Scheduler for 3 tasks on 2 processors

The number of locations needed for representing the scheduler automaton is
exponential in the number of tasks. However, such locations can be automatically
generated by using function Scheduler() for computing which task to execute
and which task to suspend or preempt. Notice also that the location encodes
the same information that is contained in the task automata presented above;
in particular, executing tasks will be in location Running, whereas suspended
tasks will be in location Waiting. Therefore, the scheduler automaton does not
add any additional complexity to the problem; on the contrary, it restricts the



number of possible combinations of task locations: for example a lower priority
task cannot be in the Running location if there are m higher priority tasks that
are active.

Finally, a system automaton SA = (T ,Sched), is the parallel composition of
the n task automata and one scheduler automaton, where

– T = {TA1, . . . ,TAn} is a set of n task automata;
– Sched is the scheduler automaton.

Given a state s in SA, A(s) and R(s) represent the set of active and running
tasks in the system respectively. And we denote with q0 current location of the
scheduler automaton, and with qi (1 ≤ i ≤ n) the location of the i-th task
automaton. The same notions are also applied to a symbolic state S.

6 Weak Simulation Relation in SA

Analysing the schedulability of a task set is equivalent to performing a reacha-
bility analysis of DeadlineMissed locations in SA. Due to the complexity of the
multiprocessor schedule problem, the exploration of SA’s (symbolic) state space
will easily produce a “state explosion”. To reduce the number of generated states,
we propose a weak simulation relation for SA such that, given two states S1 and
S2, if S1 simulates S2 then S2 can be eliminated without interfering with the
schedulability analysis.

6.1 Weak Simulation in concrete state space

Definition 2. A weak simulation relation in the concrete state space of SA is a
pre-order �⊆ space× space such that :

1. ∀s1, s2, s4 s.t. s1 � s2, s2 → s4 there exists s3 s.t. s1 ⇒ s3 and s3 � s4.
2. ∀s1, s2 s.t. s1 � s2 : ∀i s2.qi = DeadlineMissed implies s1.qi = DeadlineMissed

If s1 � s2, we say that s1 simulates s2.

Definition 3 (Slack-time simulation). For automaton SA, the slack-time
simulation relation �st⊆ space× space is defined as follows: ∀s1, s2, s1 �st s2 if
and only if

∀τi : s1.pi ≥ s2.pi ∧ s1.ci ≥ s2.ci

Proof. To prove that �st is indeed a weak simulation relation, we must demon-
strate that it satisfies the two properties stated in Definition 2, where the second
point trivially holds for �st. Therefore, in this proof we address the first point:
i.e. given s1 �st s2 and s2 → s4, we prove that there exists s3 such that s1 ⇒ s3
and s3 �st s4.

s2 → s4 in SA can be a time step or a discrete step. The latter could be
further differentiated, depending on whether it is caused by a task arrival or by
a task completion. In the following we will analyse these cases one by one.



s2 → s4 is a time step with elapsed time t: s2
t−→ s4. Let us consider a timed step

sequence s1
t

=⇒ s3 with the same t as accumulated time; and we assume there is
no new task arrival during this time interval. For any task τi, s3.pi = s1.pi + t ≥
s2.pi + t = s4.pi. If a task τi is not in A(s2), then s2.ci = s4.ci = 0; certainly,
there will be s3.ci ≥ s4.ci. Otherwise, task τi in A(s2) also belongs to A(s1).
Suppose from s1 to s3 (s2 to s4), the time that τi stays in location Running is t1
(t2). Since the scheduler chooses tasks to run according to their fixed priority and
A(s2) ⊆ A(s1), t1 will be no larger than t2 and s3.ci = s1.ci − t1 ≥ s2.ci − t2 =
s4.ci. So, we proved that s3 �st s4.

s2 → s4 is a discrete step caused by the arrival of a task τi. For such a step,
only variables of the arriving task will change. Because that s1.pi ≥ s2.pi, there
exists also a discrete step from s1 to s3 triggered by τi’s new arrival job. We
have s3.pi = s4.pi = 0 and s3.ci = s1.ci +Ci ≥ s2.ci +Ci = s4.ci. So, we proved
s3 �st s4.

s2 → s4 is a discrete step caused by the completion of a task τi. For such a
step, only variables of the finishing task will change. And s4.pi = s2.pi ≤ s1.pi
and s4.ci = 0 ≤ s1.ci. Remember that in the definition of LHA, there is always
a stutter transition from a location to itself. So, there is s1 → s1 and s1 �st s4.

In conclusion, the pre-order �st satisfies point one in Definition 2 also. Thus
�st is a weak simulation relation in SA.

6.2 Weak Simulation in symbolic state space

In this section, we extend the weak simulation relation �st to symbolic states.
Without restricting to our specific simulation relation, for two symbolic states
S1 and S2, we say S1 simulates S2 if

∀s2 ∈ S2 , ∃s1 ∈ S1 s.t. s1 � s2
Remember that a symbolic state is a pair (l, C) with a location l and a linear

constraint C. The linear constraint C can be represented by a convex region. In
the following we use C to denote both a linear constraint and its convex region. In
the context of �st for concrete state space, there is no need to consider location
names. Clearly, given two states S1 = (l1, C1) and S2 = (l2, C2), if C1 includes C2
(denoted as C1 ⊇ C2), then S1 simulates S2.

Assume we are in a N-dimensional space. Given two valuations ν = (x1, x2, . . . ,
xN ) and ν′ = (y1, y2, . . . , yN ), we say ν dominates ν′, denoted by ν ≥ ν′, if for
all i it holds xi ≥ yi. We say a valuation ν is dominated by a convex region C if
there exists some valuation ν′ |= C and ν′ ≥ ν. Given two convex regions C1 and
C2, C1 is said to dominate C2, denoted as C1 ≥ C2 if all ν |= C2, ν is dominated
by C1. We can see that the domination relation is transitive. With the concept
of domination in mind we can define the following weak simulation relation.

Definition 4. For the SA automaton, the slack-time simulation relation �st⊆
Space×Space is defined such that ∀S1, S2, S1 �st S2 if and only if S1.C dominates
S2.C.



Proof. From the definition of domination.

We now need an efficient method for checking if two convex regions are in a
relationship of domination. To do this, we first define a widening operator ∇.

Given a convex region C, its widening ∇(C) is the convex region that can be
obtained as follows:

– Construct linear constraints C′ in 2×N dimensional space (x1, . . . , xN , y1, . . . ,
yN ) such that

(y1, . . . , yN ) |= C ∧ ∀i, xi ≤ yi
– Remove the space dimensions higher than N in C′.

x

y

x
+
y
≤

4
x ≥ 1

y ≥ 1

(a) the original convex region

x

y

x
+
y
≤

4

y ≤ 3

x ≤ 3

(b) after windening

Fig. 4: A convex region C and its windening ∇(C)

∇(C) represents the largest region that is dominated by C. ∀ν ∈ ∇(C), there
exists a ν′ ∈ C such that ν′ ≥ ν and vice versa; this means C ≥ ∇(C) and
∇(C) ≥ C. To demonstrate how this widening operator works, we show a simple
example in Figure 4.

Lemma 1. Given two convex regions C1 and C2, C1 ≥ C2 if and only if ∇(C1)
includes ∇(C2).

Proof. We first prove that C1 ≥ C2 ⇒ ∇(C1) ⊇ ∇(C2). Since C1 ≥ C2 ≥ ∇(C2)
and ∇(C1) is the largest region dominated by C1, we get ∇(C1) ⊇ ∇(C2).

Then we prove ∇(C1) ⊇ ∇(C2) ⇒ C1 ≥ C2. From ∇(C1) ⊇ ∇(C2), we have
C1 ≥ ∇(C1) ≥ ∇(C2) ≥ C2. So, C1 ≥ C2 ⇔ ∇(C1) ⊇ ∇(C2) and the lemma is
proved.

6.3 Schedulability Analysis in SA

In this section, we formulate the algorithm to explore the state space of SA
for schedulability analysis. The pseudo-code of the Schedulability Analysis algo-
rithm in SA (SA-SA) is shown in Algorithm 1. S0 is the initial state of SA, R



denotes the set of reachable states in SA and F is the set of states representing
deadline miss. The Post operation returns the set of states that can be reached
in a single transition by states in R. If some state in F is reachable, then the
task set encoded in SA is deemed not-schedulable.

Max�(R′) is defined as {S ∈ R′| 6 ∃S′ ∈ R′ s.t. S′ �st S}. At line 8 of the
algorithm, Max� operation eliminates all simulated states from R′. From the
definition of �st, if some state in R′ can reach a DeadlineMissed location, so
can some state in Max�(R′). When there is no new reachable states (line 9), the
algorithm terminates and the task set is deemed schedulable.

We can also define Max⊇(R′) = {S ∈ R′| 6 ∃S′ ∈ R′ s.t. S′.l = S.l ∧ S′.C ⊇
S.C}. This is a common strategy to eliminate redundant states. If we replace
Max�(R′) with Max⊇(R′), we obtain a version of SA-SA that does not use the
simulation relation. In Section 7.2, we will compare the efficiency of these two
versions of SA-SA, with and without simulation relation.

Different from previous exact analysis techniques in discrete time domain,
SA-SA works in continuous time domain, which makes it less sensitive to the val-
ues of task parameters. For example, given a task set T1 = {(C1, D1, T1), . . . , (Cn,
Dn, Tn)}, we enlarge every task parameter by multiplying 10 and obtain T2 =
{(C1 · 10, D1 · 10, T1 · 10), . . . , (Cn · 10, Dn · 10, Tn · 10)}. When we apply SA-SA
on T1 and T2, the the number of states generated at each step will be exactly
the same for the two cases.

We have implemented SA-SA in the software FOrmal Real-Time Scheduler
(FORTS) [15].

Algorithm 1: Schedulability Analysis in SA (SA-SA)

1: R← {S0}
2: while true do
3: P ← Post(R)
4: if P ∩ F 6= ∅ then
5: return NOT schedulable
6: end if
7: R′ ← R ∪ P
8: R′ ← Max�(R′)
9: if R′ = R then

10: return schedulable
11: else
12: R← R′

13: end if
14: end while



7 Experiments

In this section we report the results of applying the SA-SA algorithm to ran-
domly generated schedulability problems. Each task set in the experiment is
characterised by a tuple (m,n,U), where m is the number of processors, n is the
number of tasks in the task set and U is the total utilisation of the task set (i.e.
U =

∑n
i=1

Ci

Ti
). Given a tuple of (m,n,U), we randomly generated a task set

according to the Randfixedsum algorithm [8]. Task periods were selected from
the set {20, 30, 40, 50, 60, 100}.

In case of constrained-deadline tasks, we required the ratio between relative
deadline and period Di

Ti
∈ [0.8, 1]; for unconstrained-deadline tasks, Di

Ti
∈ [0.8, 2].

Priorities were assigned by the Deadline Monotonic strategy; that is, a task with
shorter deadline is assigned higher priority.

7.1 Comparison with RTA-LC

Although being state-of-the-art analytic schedulability test for G-FP scheduling
problem, RTA-LC is still pessimistic. It is interesting and meaningful to see how
much gap there is between the approximate result of RTA-LC and the exact test
SA-SA. To the best of our knowledge, this is the first comparison in literature
between RTA-LC with an exact test for G-FP scheduling.

We first set m ∈ {2, 3}, n = 5 and U was chosen from [ 12m,m]. For each
utilisation level, we randomly generated 100 constrained-deadline task sets. We
then applied RTA-LC and SA-SA on these task sets, respectively, and recorded
the number of schedulable task sets for each method.

Results are plotted in Figure 5. As can be seen, there is a considerable number
of schedulable task sets that RTA-LC failed to find. For example, when m =
2 and U = 1.5, RTA-LC found 35 schedulable task sets, whereas there were
actually 57 schedulable task sets. Similar graphs hold for the case of n = 5 and
m = 31.

7.2 Complexity of SA-SA

In this section, we are interested in evaluating algorithm SA-SA regarding the
time for performing the analysis and its state space size. All tests are performed
on a MacBook with 2.5 GHz Intel Core i5 and 8 GB memory.

First, we generated 100 constrained-deadline task sets with n = 5 tasks on
m = 2 processors, with utilisation randomly chosen in [1, 1.6]. We applied SA-
SA and SA-SA-WOS (WithOut Simulation) to each task set, and we recorded
the time spent and final state space size for the two. Results are reported in

1 Experiments with larger number of tasks take much more time to execute, and we
were not able to complete a full round of experiments for n = 6 before the submission
deadline. In case of acceptance, we will report the results of these experiments in
the final paper.
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Fig. 5: RTA-LC vs. SA-SA

Figure 6a. To avoid the danger of going out of memory, we restricted the exper-
iment to task sets such that SA-SA-WOS generated less than 20000 states for
schedulability check.

Figure 6a shows the number of states generated and the corresponding anal-
ysis time for checking the schedulability of each task set. By employing �st, the
number of generated states (and hence the execution time) for schedulability
check is reduced considerably. Similarly, we applied SA-SA on 50 randomly gen-
erated unconstrained-deadline task sets with m = 2, n = 6, and Ui ∈ [1, 2]. We
recorded the time cost and number of states produced. Results are in Figure 6b.
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Fig. 6: Complexity tests (2 processors): state space size and analysis time



8 Conclusions and future work

In this paper, we propose a weak simulation relation for reducing the complexity
of the exact analysis of Global Fixed Priority on a multi-processor platform.
Compared to previous work on exact analysis, our methodology allows more
complex task sets: we are able to analyse sets of 5 and 6 tasks on 2 and 3
processors with arbitrary values of the periods.

Unfortunately, even with our approach, the complexity remains too high for
using our method on practical problems with large task sets. We are currently
investigating other ways of reducing the complexity: first, we would like to use
a different representation for the symbolic states (e.g. Octagons [14] or Differ-
ence Bound Matrices [13]), which requires an approximate analysis similar the
ones used for Stopwatch Timed Automata and Time Petri Nets [7]. Second, we
are currently investigating the possibility to enhance and extend our simulation
relation, so to further reduce the state space.
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