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Abstract. We consider here a variation of Vector Addition Systems
where one counter can be tested for zero. We extend the reachability
proof for Vector Addition System recently published by Leroux to this
model. This provides an alternate, more conceptual proof of the reacha-
bility problem that was originally proved by Reinhardt.

1 Introduction

Context Petri Nets, Vector Addition Systems (VAS) and Vector Addi-
tion System with control states (VASS) are equivalent well known classes
of counter systems for which the reachability problem is decidable ([9],
[5], [8]). If we add to VAS the ability to test at least two counters to zero,
one obtains a model equivalent to Minsky machines, for which all non-
trivial properties are undecidable. The study of VAS with a single zero-
test transition (VAS0) began recently, and already a reasonable number
of results are known for this model. Reinhardt [11] has shown that the
reachability problem is decidable for VAS0 (as well as for hierarchical
zero-tests). Abdulla and Mayr have shown that the coverability problem
is decidable in [1] by using the backward procedure of Well Structured
Transition Systems. The boundedness problem (whether the reachabil-
ity set is �nite), the termination and the reversal-boundedness problem
(whether the counters can alternate in�nitely often between the increas-
ing and the decreasing modes) are all decidable by using a forward proce-
dure, a �nite but non-complete Karp and Miller tree provided by Finkel
and Sangnier in [4]. The decidability of the place-boundedness problem
(whether one speci�c counter is unbounded), and more generally the pos-
sibility to compute a �nite representation of the downward closure of the
reachability set have been shown by Bonnet, Finkel, Leroux and Zeitoun
in [3] using the notion of productive sequences.

The reachability problem The decidability of reachability for VAS
has been originally solved by Mayr (1981, [9]) and Kosaraju (1982, [5]).
Lambert later simpli�ed these proofs (1992, [6]) while still using the
same proof techniques. Recently, Leroux gave another way to prove of
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this problem, by using Presburger invariants and productive sequences
([7], [8]).
The history of the reachability problem for VAS0 is shorter. The only
proofs are the di�erent versions of Reinhardt proof (original unpublished
manuscript in 1995 [10], then published in 2008, [11]), which is based
on showing that any expression representing a reachability problem can
be put under a "normal form" for which satis�ability is easy to solve.
However, the de�nition of the normal form is complex, and the proof
of termination of the algorithm reducing any expression to the normal
form is di�cult to understand. Since this publication, some new results
were found by reduction to reachability in VAS0, for example decidability
of minimal cost reachability in the Priced Timed Petri Nets of Abdulla
and Mayr [1], and the decidability of reachability in a restricited class of
pushdown counter automatas by Atig and Ganty [2].

Our contribution We propose here an alternate proof of decidability of
reachability in VAS0, using the principles Leroux introduced in [8]. The
similarity between our proof with Leroux proof hopefully makes it easier
to understand.

2 Preliminaries

Sets: N, Z, Q and Q≥0 refers respectively to non-negative integers,
integers, rationnals and non-negative rationals. We de�ne addition for
X,Y ⊆ Qd by X + Y = {x + y | x ∈ X, y ∈ Y } and multiplication for
X ⊆ Qd, K ⊆ Q by K ∗X = {k ∗x | x ∈ X, k ∈ K}. We also de�ne k ?X
(k ∈ N) by 0 ?X = {0} and (k+1) ?X = X +(k ?X) and we generalize
this notation to K ⊆ N by K ? X =

S
k∈K(k ? X). A function f from

Nd (resp. Qd≥0) to Nd
′
(resp. Qd

′
≥0) is linear if f(x + y) = f(x) + f(y)

and for k ∈ N (resp. k ∈ Q≥0), f(k ∗ x) = k ∗ f(x) We will also allow
ourselves to shorten the singleton {x} as x when the risk of confusion is
low. X ⊆ Qd is a vector space if QX ⊆ X and X +X ⊆ X. Finally, we
de�ne Nd0 = {0} × Nd−1.

Relations: A relation on X is a set R ⊆ X ×X. We will write x R y to
mean (x, y) ∈ R. Composition of relations on X is de�ned by R ◦ R′ =
{(x, y) ∈ X ×X | ∃z ∈ X, (x, z) ∈ R ∧ (z, y) ∈ R′}. We shorten R ◦ R′
as RR′ when there is no ambiguousity. R∗ is the transitive closure of R.
For R a relation on X and X ′ ⊆ X, we de�ne R(X ′) = {y ∈ X | ∃x ∈
X ′, (x, y) ∈ R}. A set X ′ ⊆ X is a R-forward invariant if R(X ′) ⊆ X ′.
We de�ne R−1 by R−1 = {(x, y) ∈ X ×X | (y, x) ∈ R}. A set X ′ ⊆ X is
a R-backward invariant if it is a R−1-forward invariant. Similarly, for f
a function from X to Y , we de�ne f(X ′) = {y ∈ Y | ∃x ∈ X ′, y = f(x)}.

Words, Parikh Images: Given X a set, the set of words on X is written
X∗. A word w ∈ X∗ is written a1a2 . . . an with ai ∈ X or optionallyQ

1≤i≤n ai. A language L is a subset of X∗. The concatenation of two
words w1, w2 ∈ X∗ is written w1w2 and we extend this notation to
languages by LL′ = {uv | u ∈ L, v ∈ L′}. NX is the set of functions
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from X to N. For u ∈ X∗, the Parikh image |u| ∈ NX is de�ned by
|u| (x) = 'number of x's in u'.

Orders, Well-orders: An order � on a set X is a transitive, re�exive
and antisymmetric relation on X. The relation ≺ is de�ned by x ≺ y i�
x � y and x 6= y. An element x ∈ X is minimal if there exists no x′ ∈ X,
x′ ≺ x. The order � is a well-order on X if for all sequences (xi)i∈N with
xi ∈ X, there exists i < j with xi � xj . If X is well-ordered by �, then
all subsets of X admit a �nite number of minimal elements. Common
well-orders are ≤ on N and ≤ on X × Y when X is well-ordered by ≤X ,
Y is well-ordered by ≤Y and (x, y) ≤ (x′, y′) ⇐⇒ x ≤X x′ ∧ y ≤Y y′.

Word embedding, Higman lemma: IfX is ordered by≤, we de�ne≤emb
(the word embedding order) on X∗ is ordered by ai . . . an ≤emb b1 . . . bp if
there exists a strictly increasing function ϕ from {1, . . . , n} to {1, . . . , p}
such that ∀i ∈ {1, . . . , n}, ai ≤ bϕ(i). If ≤ is a well-order on X, then
≤emb is a well-order on X∗ (Higman's lemma)

3 Vector Addition Systems with one zero-test

3.1 Transition systems

De�nition 1. A Labelled Transition System (LTS) is a tuple 〈X,A,→〉
where X is the set of states, A is a �nite set of transition labels and
→⊆ X ×A×X is the transition relation.

We write x
a−→ x′ if (x, a, x′) ∈→, and we extend this notation to words

of A∗ by x
ε−→ x and x

uv−→ x′ if there exists x′′ ∈ X, x
u−→ x′′

v−→ x′. If

L ⊆ A∗, we de�ne x
L−→ y ⇐⇒ ∃u ∈ L, x u−→ y and we shorten x

A∗−−→ y
as x

∗−→ y. A transition sequence u ∈ A∗ is said �reable from x ∈ X if
there exists y ∈ X such that x

u−→ y.

3.2 Vector Addition Sytems

De�nition 2. A Vector Addition System (shortly: VAS) is a pair 〈A, δ〉
where A is a �nite set of transition labels and δ a function from A to Zd.
The integer d is called the dimension of the VAS.

AVector Addition System V = 〈A, δ〉 induces a transition system TS(V) =
〈Nd, A,→〉 where → is de�ned by:

x
a−→ y ⇐⇒ y = x+ δ(a)

Reachability is known to be decidable for VAS:

Theorem 1. ([9], [5], [8]) If X and Y are Presburger sets and V a VAS,

one can decide whether {(x, y) ∈ X × Y | x ∗−→V y} is empty.

De�nition 3. A Vector Addition System with one zero-test (shortly:
VAS0) is a tuple 〈Az, δ, az〉 where (Az, δ) is a VAS and az ∈ Az is the
special zero-test transition.
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AVAS0 Vz = 〈Az, δ, az〉 induces a transition system TS(Vz) = 〈Nd, Az,→
〉 where → is de�ned by:

x
a−→ y ⇐⇒ y = x+ δ(a) a 6= az

x
az−→ y ⇐⇒


y = x+ δ(az)
x(1) = 0

The function δ is extended to Parikh images and words: for v ∈ NAz ,
δ(v) =

P
a∈Az

δ(v(a)) and for u ∈ A∗z, δ(u) = δ(|u|). This means that

x
u−→ y =⇒ y = x+ δ(u).

The following statement shows a VAS0 is partially monotonic (the proof
is by an easy induction):

Proposition 1. Let Vz be a VAS0 of dimension d. Let x, y ∈ Nd with
x ≤ y and x(1) = y(1). If a transition sequence u ∈ A∗z is �reable from
x, then u is �reable from y.

4 Structure of the proof

Let us try to summarize the proof structure of [8], that we will mimic.
The main idea is that if a relation has some properties, one can �nd a
witness of non-reachability. These required properties are given by the
notion of Petri set, which itself relies on the notions of polytope sets and
Lambert sets, that generalizes linear and semilinear sets. After having
given in section 4.1 the de�nitions of polytope, Lambert and Petri sets,
we will recall in section 4.2 some tools from [8], and especially the result
that if a relation is Petri, one can �nd a witness of non-reachability which
is a Presburger forward invariant.

Now, to prove that our reachability relation is Petri, we have to show
that to each transition sequence (a run) can be associated a production
relation, such that (1) the runs ordered by inclusion of their production
relations is well-ordered and (2) these production relations are polytope.
With a few additionnal assumptions, this means that the reachability
relation can be written as a �nite sum and union of production relations
(the relations associated to the minimal elements of the previously de-
�ned well-order) and can be shown to be Petri. We will introduce our
version of these production relations in section 5 and prove the well-
ordering in section 6. Then, section 7 will show that these production
relations are polytopes and we will conclude in section 8.

Given the similarity between VAS and VAS0, we will reuse a lot of Leroux
results. The later sections will focus on the changes between the two
proofs, with non-critical proofs being moved to A. Parts that are left
mostly unchanged from Leroux paper are moved to the appendix B.

4.1 Polytope, Lambert and Petri sets

A set P ⊆ Qd is periodic if P+P ⊆ P . A setX ⊆ Nd is a �nitely generated
periodic set if there exists {x1, . . . , xn} ⊆ X, X = Nx1+Nx2+ · · ·+Nxn.
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A semilinear set (also called Presburger set) is a �nite union of sets bi+Xi
where bi ∈ N and Xi ⊆ Nd is a �nitely generated periodic set.

A set C ⊆ Qd is conic if it is periodic and Q≥0C = C. A conic set is
�nitely generated if there exists a �nite set {c1, . . . , cn} ⊆ Q such that
C = Q≥0c1 + . . .+Q≥0cn.

De�nition 4. ([8], De�nitions 4.1 and 4.6)
A periodic set P ⊆ Nd is polytope if Q≥0P is de�nable in FO(Q,+,≤
, 0, 1) (the �rst order logic on the speci�ed symbols). A set L ⊆ Nd is
Lambert if it is a �nite union of sets bi +Pi where bi ∈ Nd and Pi ⊆ Nd
is a polytope periodic set.

The stability of Lambert sets will be of importance in the sequel. We
have the following properties: (proofs of these statements are reasonably
direct, and available in the appendix A):

Proposition 2. Given L ⊆ Nd1 , L′ ⊆ Nd2 Lambert sets and k ∈ N:
1. For d1 = d2, L ∪ L′ is Lambert.
2. L× L′ is Lambert.
3. For d′1 < d1, {x ∈ Nd

′
1 | ∃y ∈ Nd1−d

′
1 , (x, y) ∈ L} is Lambert.

4. For d1 = d2, L+ L′ is Lambert.
5. k ? L is Lambert.
6. N ? L is polytope.
7. If δ is a linear function, then δ(L) is Lambert.

De�nition 5. ([8], De�nition 4.7)
A set X ⊆ Nd is Petri if for all Presburger sets S, S ∩X is Lambert.

4.2 Important results from Leroux

We recall in this section a few important results from [8].

For a set X ⊆ Qd, the adherence of X, written X is de�ned by:

X = {l | ∀τ > 0, ∃x ∈ X, maxi(x− l)(i) < τ ∧maxi(l − x)(i) < τ}

We will use the following useful characterization to show that our pro-
duction relation is polytope:

Theorem 2. ([8], Theorem 3.5)
A periodic set P ⊆ Nd is polytope if and only if the conic set (Q≥0P ) ∩ V
is �nitely generated for every vector space V ⊆ Qd

The second theorem needed is the one motivating Petri sets. A Petri
relation admits witnesses of non-reachability:

Theorem 3. ([8], Theorem 6.1)
Let R be a re�exive relation over Nd such that R∗ is Petri. Let X,Y ⊆ Nd
be two Presburger sets such that R∗ ∩ (X × Y ) is empty. There exists a
partition of Nd into a Presburger R-forward invariant that contains X
and a Presburger R-backward invariant that contains Y .
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And �nally, we will also use that the reachability relation of a VAS is
known to be Petri:

Theorem 4. ([8], Theorem 9.1)
The reachability relation of a Vector Addition System is a Petri relation.

Since we can add counters that contain how many times each transition
has been �red, we can extend this result to include the Parikh image of
transition sequences:

Corollary 1. Let V = 〈A, δ〉 be a VAS. Then, {(x, v, y) ∈ Nd×NA×Nd |
∃u, x u−→V y ∧ |u| = v} is a Petri set.

5 Production relations

For all the remaining sections, we will �x a VAS0 Vz = 〈Az, δ, az〉 of
dimension d. We consider the set A = Az\{az} and V = 〈A, δ|A〉 the
restriction of Vz to its non-az transitions. We have

∗−→ (or
A∗z−−→) the tran-

sition relation of Vz and A∗−−→ the transition relation of V.
A run µ of Vz is a sequence m0.a1.m1.a2 . . . an.mn alternating markings
mi ∈ Nd and actions ai ∈ A such that for all 1 ≤ i ≤ n, mi−1

ai−→ mi.
m0 is called the source of µ, written src(µ) and mn is called the target
of µ, written tgt(µ). A run ρ of Vz is also a run of V if az doesn't appear
in ρ.

We recall the de�nitions of the production relations for a VAS of [8],
adapted to our case by restricting the relation to runs that don't use the
zero-test.

� For a marking m ∈ Nd, −−−−→V,m ⊆ Nd × Nd is de�ned by:

x −−→
V,m

y ⇐⇒ ∃u ∈ A∗, m+ x
u−→ m+ y

� For a run ρ = m0.a1.m1 . . . an.mn of V, −−→ρ is de�ned by:

−−→
ρ =

−−−−−→
V,m0 ◦ −−−−−→V,m1 ◦ · · · −−−−−→V,mn

We also de�ne the production relation
−−−−−→
Vz,m ⊆ Nd × Nd of a marking

m ∈ Nd0 inside Vz by:

x −−−→
Vz,m

y ⇐⇒

∃u ∈ A∗z, m+ x

u−→ m+ y
x(1) = y(1) = 0

To extend the de�nition of a production relation to a run µ of Vz, we
consider the decomposition of µ = ρ0.az.ρ1 . . . az.ρp such that forall 1 ≤
i ≤ p, ρi is a run of V. In that case, we de�ne the production relation of
µ by:

−−→
µ =

−−−→
ρ0 ◦ −−−−−−−−→Vz ,tgt(ρ0) ◦ −−−→ρ1 ◦ · · · ◦ −−−−−−−−−−→Vz ,tgt(ρp−1) ◦ −−−→ρp

Proposition 3. For m ∈ Nd, m′ ∈ Nd0 and µ a run of Vz (a run V being
a special case), the relations

−−−−→
V,m ,

−−−−−→
Vz,m′ and

−−→
µ are periodic.
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Proof: The result is easy for
−−−−→
V,m and

−−−−−→
Vz,m′ . The periodicity of

−−→
µ

comes from the fact the composition of periodic relations is periodic.
�

One can prove by a simple induction on µ (available in the appendix A)
the following statement:

Proposition 4. For a run µ of Vz, we have:

(src(µ), tgt(µ)) +
−−→
µ ⊆ ∗−→

6 Well-orderings of production relations

For two runs µ, µ′, let us de�ne � by:

µ � µ′ ⇐⇒ (src(µ′), tgt(µ′)) +
−−−→
µ′ ⊆ (src(µ), tgt(µ)) +

−−→
µ

Our aim is to show that � is a well-order. To do that, we de�ne the order
E on runs of Vz in the following way:

� For ρ = m0.a1.m1 . . . ap.mp and ρ′ = m′0.a
′
1.m

′
1 . . . a

′
q.m

′
q runs of V

(ai, a
′
i ∈ A), we get the same de�nitions as in [8]:

m0.a1.m1 . . . ap.mp E m′0.a′1.m′1 . . . a′q.m′q ⇐⇒

8
<
:
m0 ≤ m′0
mp ≤ m′qQ

1≤i≤p(ai,mi) ≤emb
Q

1≤i≤q(a
′
i,m

′
i)

with (a,m) ≤ (a′,m′) ⇐⇒ a = a′ ∧m ≤ m′
� For µ = ρ0.az.ρ1 . . . az.ρp and µ

′ = ρ′0.az.ρ
′
1 . . . az.ρ

′
q runs of Vz (with

ρi, ρ
′
i runs of V), we have:

ρ0.az.ρ1 . . . az.ρp E ρ′0.az.ρ′1 . . . az.ρ′q ⇐⇒

8
<
:
ρ0 ≤ ρ′0
ρp ≤ ρ′qQ

1≤i≤p ρi Eemb
Q

1≤i≤q ρ
′
i

Two applications of Higman's lemma gives us the following result:

Proposition 5. The order E is well.

Now, we only need to prove the following:

Proposition 6. For µ, µ′ runs of Vz, we have:

µ E µ′ =⇒ µ � µ′

Proof Sketch: The full proof is available in the appendix A. [8] already
contains the result for runs without the zero-test.
The idea is that our run can be decomposed in the following way, where
ϕi,j refers to "suppressed" sequences, and ρ′′i are greater than ρi for E.

Y

1≤k≤q
ρ′k = ρ′′0

0
@ Y

1≤j≤n0

ϕ0,j

1
A ρ′′1

0
@ Y

1≤j≤n1

ϕ1,j

1
A ρ′′2 · · ·

0
@ Y

1≤j≤np−1

ϕp−1,j

1
A ρ′′p
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Now, the outline of the proof is to base ourselves on Leroux result for
runs without zero-tests, and to show that the productions of suppressed
sequences are included in

−−−−−−−−→
Vz,tgt(ρi) where ρi is the part of the run

before the suppressed sequence.

�

We can now combine propositions 5 and 6 to get:

Theorem 5. � is a well-order on runs of Vz.

7 Polytopie of the production relation

Note that the relation
−−→
µ is a �nite composition of relations

−−−−→
V,m (for

m ∈ Nd) and −−−−−→Vz,m (for m ∈ Nd0). To show that
−−→
µ is polytope, we

�rst recall two results from [8] regarding production relations:

Lemma 1. ([8], Lemma 8.2)

If R and R′ are two polytope periodic relations, then R ◦R′ is a polytope
periodic relation.

Theorem 6. ([8], Theorem 8.1)

For m ∈ Nd, −−−−→V,m is polytope.

These two results mean we only need to prove that
−−−−−→
Vz,m is a polytope

periodic relation for m ∈ Nd0.

Proposition 7. For m ∈ Nd0,
−−−−−→
Vz,m is polytope.

Proof: Theorem 2 shows that
−−−−−→
Vz,m is polytope if and only if the

following conic space is �nitely generated for every vector space V ⊆
Qd ×Qd:

(Q≥0
−−−−−→
Vz ,m ) ∩ V = Q≥0(

−−−−−→
Vz ,m ∩ V )

Let us de�ne V0 = (Nd0 × Nd0) ∩ V . We will re-use the idea of Leroux'
intraproductions, but by restricting them to Nd0. Let Qm,V = {y ∈ Nd0 |
∃(x, z) ∈ (m,m) + V0, x

∗−→ y
∗−→ z} and Im,V ⊆ {1, . . . , d} by i ∈

Im,V ⇐⇒ {q(i) | q ∈ Qm,V } is in�nite. Please note that 1 6∈ Im,V ,
as for all q ∈ Qm,V , q(1) = 0. An intraproduction for (m,V0) is a triple
(r, x, s) such that x ∈ Nd0 and (r, s) ∈ V0 with:

r −−−→
Vz,m

x −−−→
Vz,m

s

An intraproduction is total if x(i) > 0 for every i ∈ Im,V . The following
lemma can be proved exactly as Lemma 8.3 of [8] (a precise proof is
available in the appendix B):

Lemma 2. There exists a total intraproduction for (m,V0).
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Now we de�ne N∞ = N∪{∞}, ordered by x <∞ for every x ∈ N. Given
a �nite set I ⊆ {1, . . . , d} and a marking m ∈ Nd, we denote by mI the
vector of Nd∞ de�ned by mI(i) =∞ if i ∈ I and mI(i) = m(i) otherwise.
We also de�ne the order≤∞ by x ≤∞ y if for all i, y(i) =∞ or x(i) = y(i)
(equivalently there exists I ⊆ {1, . . . , d}, xI = y). For a relation →, and
(x, y) ∈ Nd∞. We de�ne x→ x′ if there exists (m,m′) ∈ Nd, m ≤∞ x and
m′ ≤∞ x′ with m→ m′.
Let Q = {qIm,V | q ∈ Qm,V } and G the complete directed graph with
nodes Q whose edges from q to q′ are labeled by (q, q′). For w ∈ (Q×Q)∗,
we de�ne TProd(w) ⊆ NAz by:

TProd(ε) = {0Az}
TProd((q, q′)) =

n
|u| | ∃(x, x′) ∈ Nd0 × Nd0, x ≤∞ q, x′ ≤∞ q′, u ∈ azA∗ ∪A∗, x u−→ x′

o

TProd(uv) = TProd(u) + TProd(v)

We de�ne the periodic relation Rm,V on V0 by r Rm,V s if:
1. r(i) = s(i) = 0 for every i 6∈ Im,V
2. there exists a cycle labelled by w in G on the state mIm,V and v ∈

TProd(w) such that r + δ(v) = s.

Lemma 3. The periodic relation Rm,V is polytope.

Proof: First, let's show that TProd((q, q′)) is Lambert for every (q, q′) ∈
Q×Q. We de�ne X1 = {(x′, y) ∈ Nd0×Nd0 | ∃x ≤∞ q, x

az−→ x′∧y ≤∞ q′}
and X2 = {(x, y) ∈ Nd0 × Nd0 | x ≤∞ q ∧ y ≤∞ q′} which are Presburger
sets. Because, Y = {(x′, v, y) ∈ Nd × NA × Nd | ∃u ∈ A∗, x′ u−→ y ∧ |u| =
v} is a Petri set (corollary 1), Y1 = Y ∩ (X1 × NA × Nd) and Y2 =
Y ∩ (X2×NA×Nd) are Lambert sets, and by projection (proposition 2),
TProd((q, q′)) =

`
|az|+ {u | ∃(x, y) ∈ Nd × Nd, (x, u, y) ∈ Y1}

´
∪ {u |

∃(x, y) ∈ Nd, (x, u, y) ∈ Y2} is Lambert.
Let P ⊆ NQ×Q be the Parikh image of the language L made of words
labelling cycles in G on the state mIm,V . L is a language recognized by
a �nite automata, hence P is a Presburger set.
Now, let's show that R′m,V = {TProd(w) | w ∈ L} is a Lambert set. We
have:

R′m,V =

(
P

a∈Q×Q
v(a) ? TProd(a) | v ∈ P

)

P is Presburger, hence there exists (di)1≤i≤p, (ei,j)1≤i≤p,1≤j≤ni with
di, ei,j ∈ NQ×Q and P =

S
i di +ΣjNei,j . This gives:

R′m,V =
S

1≤i≤p

S
v∈Np

P
1≤j≤ni

P
a∈Q×Q

(di + v(j) ∗ ei,j)(a) ? TProd(a)

=
S

1≤i≤p

P
a∈Q×Q

di(a) ? TProd(a) +
S

1≤i≤p

P
1≤j≤ni

S
k∈N

P
a∈Q×Q

(k ∗ ei,j)(a) ? TProd(a)

=
S

1≤i≤p

P
a∈Q×Q

di(a) ? TProd(a) +
S

1≤i≤p

P
1≤j≤ni

N ?

 
P

a∈Q×Q
ei,j(a) ? TProd(a)

!

For all a ∈ Q×Q, we have seen that TProd(a) is Lambert. So because
Lambert sets are stable by addition, union and N?, (proposition 2), R′m,V
is Lambert.
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We de�ne VIm,V = {x ∈ Nd | ∀i 6∈ Im,V , x(i) = 0} and R′′m,V = {(r, r +
δ(x)) | r ∈ VIm,V ∧ x ∈ R′m,V } = {(r, r) | r ∈ VIm,V }+ {0}d × δ(R′m,V ).
By proposition 2, we have R′′m,V built from R′m,V by the image through
a linear function and the sum with a Presburger set, which means R′′m,V
is Lambert. But, R′′m,V is periodic, which means R′′m,V = N ? R′′m,V is
polytope. Finally, as proposition 2, gives us that polytope sets are stable
by intersection with vector spaces, Rm,V = R′′m,V ∩ V is polytope.

�
We will now show that our graph G is an acurate representation of the
reachability relation:

Lemma 4. Let w be the label of a path in G from m
Im,V
1 to m

Im,V
2 and

v ∈ TProd(w). Then, there exists u ∈ A∗z with |u| = v and (x, y) ∈
Nd0 × Nd0, x ≤∞ m

Im,V
1 and y ≤∞ m

Im,V
2 such that x

u−→ y.

Proof: We show this by induction on the length of w. Let w = w0(q, q
′)

where w0 is a path from m
Im,V
1 to m

Im,V
3 and (q, q′) is an edge from

m
Im,V
3 to m

Im,V
2 and v ∈ TProd(w0(q, q

′)). This means there exists
v1 ∈ TProd(w0), v2 ∈ TProd(q, q′) such that v = v1 + v2. By induction

hypothesis, there exists u1 ∈ Nd0 × Nd0, x′0 ≤∞ m
Im,V
1 and y′0 ≤∞ m

Im,V
3

such that x′0
u1−→ y′0 and |u1| = v1.

By de�nition of TProd((q, q′)), as v2 ∈ TProd((q, q′)), there exists x′1 ≤
m
Im,V
3 , y′1 ≤∞ m

Im,V
2 and u2 ∈ azA∗∪A∗ such that x′1

u2−→ y′1 and |u2| =
v2. Let z = max(y′0, x

′
1). We have z(1) = y′0(1) = x′1(1) = m3(1) = 0,

which gives us:

x′0 + (z − y′0)
u1−→ z

u2−→ y′1 + (z − x′1)

As zIm,V = y′0
Im,V = x′1

Im,V = m
Im,V
3 , we have (z − y′0) ≤∞ 0Im,V and

(z−x′1) ≤∞ 0Im,V , which allows us to de�ne x = x′0+(z−y′0) ≤∞ m
Im,V
1

and y = y′1 + (z − x′1) ≤∞ m
Im,V
2 . u = u1u2 completes the result.

�
We now show a lemma for the other direction:

Lemma 5. Let (m1,m2) ∈ Qm,V ×Qm,V with u ∈ A∗z such that m1
u−→

m2. There exists w ∈ (Q × Q)∗ label of a path from m
Im,V
1 to m

Im,V
2

such that |u| ∈ TProd(w).
Proof: Let u = u1azu2 . . . azun with ui ∈ A∗. We de�ne (xi)1≤i≤n,
xi ∈ Nd0 by:

m
u1−→ x1

azu2−−−→ x2
azu3−−−→ x3 · · · azun−−−→ xn = m2

We have for all i, xi ∈ Nd0, which leads that |u1| ∈ TProd((mIm,V
1 , x

Im,V
1 ))

and for all i ∈ {1, . . . , n − 1}, |azun| ∈ TProd((xIm,Vi , x
Im,V
i+1 )). Hence,

we can de�ne w = (m
Im,V
1 , x

Im,V
1 )(x

Im,V
1 , x

Im,V
2 ) . . . (x

Im,V
n−1 ,m

Im,V
2 ) and

we have |u| ∈ TProd(w).
�

Thanks to lemmas 4 and 5, we can now prove the following lemma exactly
in the same way as Lemma 8.5 of [8] (full proof in the appendix B)
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Lemma 6. Q≥0Rm,V = Q≥0(
−−−−−→
Vz,m ∩ V0)

By lemma 3, Rm,V is polytope, hence Q≥0Rm,V is �nitely generated.
Finally, we have proven proposition 7.

�

Finally, as
−−→
µ is a �nite composition of elements of the form

−−−−→
V,m

and
−−−−−→
Vz,m , we have proven the following result:

Theorem 7. If µ is a run of Vz, then −−→µ is polytope.

8 Decidability of Reachability

We have now all the results necessary to show the following:

Theorem 8.
∗−→ is a Petri relation.

Proof Sketch: Similarly as in Theorem 9.1 of [8], one can show thanks to
proposition 4 and theorem 5 that for any (m,n) ∈ Nd × Nd and P ⊆ Nd
�nitely generated periodic set, there exists a �nite set B of runs of Vz
such that:

∗−→ ∩((m,n) + P ) =
[

µ∈B
(src(µ), tgt(µ)) + (

−−→
µ ∩ P )

Then, proposition 5 allows to conclude that
∗−→ is Petri. The full proof is

available in the appendix B.
�

Because
“
azA

∗∪A∗−−−−−−→
”∗

=
A∗z−−→, we can now apply theorem 3 and get:

Proposition 8. If X and Y are two Presburger sets such that
A∗z−−→

∩(X×Y ) = ∅, then there exists a Presburger
azA

∗∪A∗−−−−−−→-forward invariant
X ′ with X ′ ∩ Y = ∅.

Now that we have shown the existence of such an invariant, we only need
to show that we are able to test whether a given set is an invariant:

Proposition 9. Whether a Presburger set X is a
azA

∗∪A∗−−−−−−→-forward in-
variant is decidable.

Proof: X is a forward invariant for
azA

∗∪A∗−−−−−−→ if and only if
az−→ (X) ⊆

X and
A∗−−→ (X) ⊆ X. Because

az−→ (X) is a Presburger set, the �rst
condition is decidable as the inclusion of Presburger sets, and the second

reduces to deciding whether
A∗−−→ ∩ (X × Nd\X) is empty, which is a

reachability problem in a VAS (Theorem 1).
�

This allows us to conclude:

Theorem 9. Reachability in VAS0 is decidable.

11



Proof: By the propositions 8 and 9, reachability is co-semidecidable
by enumerating Presburger forward invariants, and semidecidability is
clear.

�
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A Additionnal proofs

Proof of proposition 2

Given L ⊆ Nd1 , L′ ⊆ Nd2 Lambert sets and k ∈ N, we have:

1. For d1 = d2, L ∪ L′ is Lambert.
2. L× L′ is Lambert.
3. For d′1 < d1, {x ∈ Nd

′
1 | ∃y ∈ Nd1−d

′
1 , (x, y) ∈ L} is Lambert.

4. For d1 = d2, L+ L′ is Lambert.
5. k ? L is Lambert.
6. N ? L is polytope (more generally Lambert).
7. If δ is a linear function, then δ(L) is Lambert.

Proof: We have L =
S

1≤i≤p
bi + Pi and L

′ =
S

1≤i≤q
b′i + P ′i with bi ∈ Nd1 ,

b′i ∈ Nd2 and Pi ⊆ Nd, P ′i ⊆ Nd polytope periodic sets.
(1) is by de�nition of a Lambert set.

For (2), we have:

L× L′ = S
1≤i≤p

S
1≤j≤q

(bi + Pi)× (b′i + P ′i )

=
S

1≤i≤p

S
1≤j≤q

(bi, b
′
j) + Pi × P ′j .

Because Pi and P
′
i are polytope periodic, Pi × P ′i is polytope periodic,

which makes L× L′ Lambert.
To show (3), we �rst show the property for polytope sets. Let's take P

a polytope periodic set and P ′ = {x ∈ Qd
′
1 | ∃y ∈ Qd1−d

′
1 , (x, y) ∈ P}.

Then if x ∈ P ′ and x′ ∈ P ′, we have y, y′ ∈ Qd1−d
′
1 such that (x, y) ∈ P

and (x′, y′) ∈ P , which gives (x + x′, y + y′) ∈ P and x + x′ ∈ P ′.
Moreover, we have:

Q≥0P
′ = {x ∈ Qd

′
1 | ∃y ∈ Qd1−d

′
1 , ∃k ∈ Q≥0, (kx, y) ∈ P}

= {x ∈ Qd
′
1 | ∃y ∈ Qd1−d

′
1 , (x, y) ∈ Q≥0P}

which means that from a de�nition of Q≥0P in FO(Q,+,≤, 0, 1), we
easily get the de�nition of Q≥0P

′. And if bi = (ci, c
′
i) with ci ∈ Qd

′
1 , we

have:

{x ∈ Qd
′
1 | ∃y ∈ Qd1−d

′
1 , (x, y) ∈ L} =

[

i

ci+{x ∈ Qd
′
1 | ∃y ∈ Qd1−d

′
1 , (x, y) ∈ Pi}

which gives us the result.

To show (4), we note that L + L′ =
S

1≤i≤p

S
1≤j≤q

(bi + b′j) + (Pi + P ′j).

Because the sum of periodic sets is periodic, L+L′ is periodic. Moreover,
we get easily get the de�nition of Q≥0(P + P ′) = Q≥0P + Q≥0P

′ from
the de�nition of Q≥0P and Q≥0P

′ in FO(Q,+,≤, 0, 1). Hence, L+L′ is
Lambert.

(5) is a direct consequence of (4).

13



To show (6), we notice that N ?L is periodic, and we have Q≥0(N ?L) =P
i

Q≥0bi +
P
i

Q≥0Pi. As Q≥0Pi is de�nable in FO(Q,+,≤, 0, 1), so is

Q≥0(N ? L). This makes N ? L polytope.

Let's �nally show (7). We have δ(L) =
S

1≤i≤p
δ(bi)+ δ(Pi). As δ is linear,

we have δ(Pi) periodic and Q≥0δ(Pi) = δ(Q≥0Pi), which makes Q≥0δ(Pi)
easily de�nable from the de�nition of Q≥0Pi in FO(Q,+,≤, 0, 1).

�

Proof of proposition 4

For a run µ of Vz, we have:

(src(µ), tgt(µ)) +
−−→
µ ⊆ ∗−→

Proof: We show this result by induction on µ. We have to consider three
cases:

1. µ = m is immediate by de�nition of
−−→
µ =

−−−−→
V,m given src(µ) =

tgt(µ) = m.
2. µ = m.a.µ′ with a 6= az. Let (x, z) ∈ −−→µ . Then, as

−−→
µ =

−−−−→
V,m ◦−−−→

µ′ , there exists y ∈ Nd such that x −−→
V,m

y −→
µ′

z. By de�nition of

−−−−→
V,m , there exists u1 ∈ A∗ such that m+x

u1−→ m+y. Similarly, by

induction hypothesis, there exists u2 ∈ A∗z, such that src(µ′)+y
u2−→

tgt(µ′) + z. As µ is a run, we have m
a−→ src(µ′), which gives us:

m+ x
u1−→ m+ y

a−→ src(µ′) + y
u2−→ tgt(µ′) + z

And by noticing that m = src(µ) and tgt(µ′) = tgt(µ), we have

(src(µ), tgt(µ)) + (x, z) ⊆ ∗−→
3. µ = m.az.µ

′. Let (x, z) ∈ −−→µ . Then, as
−−→
µ =

−−−−→
V,m ◦ −−−−−→Vz,m ◦−−−→

µ′ , there exists y, y′ ∈ Nd0, such that x −−→
V,m

y −−−→
Vz,m

y′ −→
µ′

z. By

de�nition of
−−−−→
V,m and

−−−−−→
Vz,m , there exists u1 ∈ A∗, u2 ∈ A∗z such

that m + x
u1−→ m + y

u2−→ m + y′. Again, by induction hypothesis,
there exists u3 ∈ A∗z such that src(µ′) + y′

u3−→ tgt(µ′) + z. As µ

is a run, we have m
az−→ src(µ′) and because y′ ∈ Nd0, we have

m+ y′
az−→ src(µ′) + y′, and combining all these statements, we get:

m+ x
u1−→ m+ y

u2−→ m+ y′
az−→ src(µ′) + y′

u3−→ tgt(µ′) + z

Finally, we have m = src(µ) and tgt(µ′) = tgt(µ), which gives

(src(µ), tgt(µ)) + (x, z) ⊆ ∗−→
�
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Proof of proposition 6

For µ, µ′ runs of Vz, we have:

µ E µ′ =⇒ µ � µ′

Proof: We �rst recall the following result (a proof is available in the
appendix B):

Lemma 7. ([8], Lemma 7.6) For ρ, ρ′ runs of V, we have:

ρ E ρ′ =⇒ ρ � ρ′

Let's take (r, s) ∈ −−−→µ′ . As µ E µ′, we have µ = ρ0.az.ρ1.az . . . az.ρp and
µ′ = ρ′0.az.ρ

′
1.az . . . az.ρ

′
q, with ρ0 E ρ′0, ρp E ρ′q and

Q
ρi Eemb

Q
ρ′i.

Let (ρ′′i )0≤i≤p and (ϕi,j)0≤i≤p−1,1≤j≤ni be sequences of runs of V such
that for all i ∈ {0, . . . , p}, ρi ≤ ρ′′i and:

Y

1≤k≤q
ρ′k = ρ′′0

0
@ Y

1≤j≤n0

ϕ0,j

1
A ρ′′1

0
@ Y

1≤j≤n1

ϕ1,j

1
A ρ′′2 · · ·

0
@ Y

1≤j≤np−1

ϕp−1,j

1
A ρ′′p

For 1 ≤ i ≤ p, we de�ne ϕi = ϕi,1.azϕi,2.az . . . az.ϕi,ni (with the possi-
bility that ϕi = ε if ni = 0).
By de�nition of

−−−→
µ′ , there exists for 0 ≤ i ≤ p, ri ∈ Nd and for

0 ≤ i ≤ p− 1, r′i, si, s
′
i ∈ Nd with r0 = r, and:

� For i ∈ {0, . . . , p− 1}, if ni 6= 0 (ϕi 6= ε):

ri −−→
ρ′′i

r′i −−−−−−−→
Vz,tgt(ρ′′i )

si −→
ϕi

s′i −−−−−−→Vz,tgt(ϕi)
ri+1

� For i ∈ {0, . . . , p− 1}, if ni = 0 (ϕi = ε):

ri −−→
ρ′′i

r′i −−−−−−−→
Vz,tgt(ρ′′i )

ri+1

� For i = p:
rp −−→

ρ′′p
s

Note that because of the de�nition of
−−−−−→
Vz,m , we have for all i ∈

{0, . . . , p−1}, r′i(1) = s(1) = s′(1) = tgt(ϕi)(1) = tgt(ρi)(1) = tgt(ρ′′i )(1) =
0. Let's show that for all i ∈ {0, . . . , p−1}, ri+src(ρ′′i )−src(ρi) −→

ρi

−−−−−−→
Vz,tgt(ρi)

r′i + src(ρ′′i+1)− src(ρi+1)
We have two cases to consider:

� ni = 0
We have ri −−→

ρ′′i
r′i, so by lemma 7, as ρi E ρ′′i , we get ri + src(ρ′′i )−

src(ρi) −→
ρi

r′i + tgt(ρ′′i )− tgt(ρi).

We have r′i −−−−−−−→
Vz,tgt(ρ′′i )

si, which gives tgt(ρ′′i ) + r′i
∗−→ tgt(ρ′′i ) + si.

As tgt(ρi)(1) = 0 and tgt(ρi) ≤ tgt(ρ′′i ), we get r′i + tgt(ρ′′i ) −
tgt(ρi) −−−−−−→

Vz,tgt(ρi)
si + tgt(ρ′′i )− tgt(ρi).
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Finally as we have tgt(ρ′′i )
az−→ src(ρ′′i+1) (because µ

′ is a run) and

tgt(ρ)
az−→ src(ρi+1) (because µ is a run), we get tgt(ρ′′i )− tgt(ρ) =

src(ρ′′i+1) − src(ρi+1), which gives by combination of the previous
results:

ri + src(ρ′′i )− src(ρi) −→
ρi

r′i + tgt(ρ′′i )− tgt(ρi)
−−−−−−→
Vz,tgt(ρi)

ri+1 + tgt(ρ′′i )− tgt(ρi)
= ri+1 + src(ρ′′i+1)− src(ρi+1)

This gives ri + src(ρ′′i ) − src(ρi) −→
ρi

−−−−−−→
Vz,tgt(ρi)

ri+1 + src(ρ′′i+1) −
src(ρi+1).

� ni 6= 0
We have ri −−→

ρ′′i
r′i, so by lemma 7, as ρi E ρ′′i , we get ri + src(ρ′′i )−

src(ρi) −→
ρi

ri+1 + tgt(ρ′′i )− tgt(ρi).

We have r′i −−−−−−−→
Vz,tgt(ρ′′i )

si, which gives tgt(ρ′′i ) + r′i
∗−→ tgt(ρ′′i ) + si.

As tgt(ρi)(1) = 0 and tgt(ρi) ≤ tgt(ρ′′i ), we get r′i + tgt(ρ′′i ) −
tgt(ρi) −−−−−−→

Vz,tgt(ρi)
si + tgt(ρ′′i )− tgt(ρi).

We have si −→
ϕi

r′i −−−−−−→Vz,tgt(ϕi)
ri+1, which by proposition 4, gives

si + src(ϕi)
∗−→ r′i + tgt(ϕi)

∗−→ ri+1 + tgt(ϕi). Moreover, because

µ′ is a run, we have tgt(ρ′′i )
az−→ src(ϕi) and tgt(ϕi)

az−→ src(ρ′′i+1).

Because si(1) ∈ Nd0, tgt(ρ′′i )
az−→ src(ϕi) implies si + tgt(ρ′′i )

az−→
si + src(ϕi). This gives si + tgt(ρ′′i )

∗−→ ri+1 + tgt(ϕi). Now, we note

that tgt(ϕi)
az−→ src(ρ′′i+1) (because µ′ is a run) and tgt(ρi)

az−→
src(ρi+1) (because µ is a run). This leads to tgt(ϕi) − tgt(ρi) =
src(ρ′′i+1) − src(ρi+1) and in particular tgt(ρi) ≤ tgt(ϕi) (because

ρi+1 E ρ′′i+1). Hence, si + tgt(ρ′′i )
az−→ ri+1 + tgt(ϕi) implies si +

tgt(ρ′′i ) − tgt(ρi) −−−−−−→
Vz,tgt(ρi)

ri+1 + tgt(ϕi) − tgt(ρi), and because

tgt(ϕi) − tgt(ρi) = src(ρ′′i+1) − src(ρi+1), we get si + tgt(ρ′′i ) −
tgt(ρi) −−−−−−→

Vz,tgt(ρi)
ri+1 + src(ρ′′i+1)− src(ρi+1).

We can now combine the previous results to get:

ri + src(ρ′′i )− src(ρi) −→
ρi

r′i + tgt(ρ′′i )− tgt(ρi)
−−−−−−→
Vz,tgt(ρi)

si + tgt(ρ′′i )− tgt(ρi)
−−−−−−→
Vz,tgt(ρi)

ri+1 + src(ρ′′i+1)− src(ρi+1)

This gives ri + src(ρ′′i ) − src(ρi) −→
ρi

−−−−−−→
Vz,tgt(ρi)

ri+1 + src(ρ′′i+1) −
src(ρi+1).

We have shown that for all i ∈ {0, . . . , p−1}, ri+src(ρ′′i )−src(ρi) −→
ρi

−−−−−−→
Vz,tgt(ρi)

ri+1+src(ρ
′′
i+1)−src(ρi+1). Moreover, by lemma 7, ρp E ρ′′p and rp −−→

ρ′′p
s

implies rp + src(ρ′′p) − src(ρp) −→
ρp

s + tgt(ρ′′p) − tgt(ρp). By combining

these results, we get:
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r+src(ρ′′0 )−src(ρ0) −→
ρ0

−−−−−−→
Vz,tgt(ρ0)

−→
ρ1

−−−−−−→
Vz,tgt(ρ1)

· · · −−−→
ρp−1

−−−−−−−−→
Vz,tgt(ρp−1)

−→
ρp

s+tgt(ρ′′p)−tgt(ρp)

And because −→
µ
=−→

ρ0

−−−−−−→
Vz,tgt(ρ0)

−→
ρ1

−−−−−−→
Vz,tgt(ρ1)

· · · −−−→
ρp−1

−−−−−−−−→
Vz,tgt(ρp−1)

−→
ρp

,

src(µ) = src(ρ0), src(µ
′) = src(ρ′′0 ), tgt(µ

′) = tgt(ρ′′p) and tgt(µ) =
tgt(ρp), we get:

r + src(µ′)− src(µ) −→
µ
s+ tgt(µ′)− tgt(µ)

We have shown that for any (r, s) ∈ −−−→µ′ , (src(µ′), tgt(µ′)) + (r, s) ⊆
(src(µ), tgt(µ)) +

−−→
µ . This implies µ � µ′.

�

B Extensions of proofs by Leroux

All proofs of this section have been taken from [8] with some minor
adaptations to work within our setup.

Proof of lemma 7

For ρ, ρ′ runs of V, we have:

ρ E ρ′ =⇒ ρ � ρ′

Proof: Let ρ = m0.a1.m1 . . . ak.mk. We �rst show that there exists a
sequence (vj)0≤j≤k+1 of vectors in Nd and a sequence of runs (ρ′j)0≤j≤k
such that ρ′ = ρ′0.a1.ρ

′
1 . . . ak.ρ

′
k with src(ρ′j) = mj + vj and tgt(ρ

′
j) =

mj + vj+1.

As we have ρ E ρ′, we deduce that there exists (ρ′j)0≤j≤k such that ρ′ =
ρ′0.a1.ρ

′
1 . . . ak.ρ

′
k and for all j ∈ {0, . . . , k},mj ≤ src(ρ′j). We de�ne v0 =

src(ρ′)− src(ρ), vk+1 = tgt(ρ′)− tgt(ρ) and vj = src(ρ′j)−mj . Observe
that vj ∈ Nd for every j ∈ {0, . . . , k + 1}. Because for j ∈ {1, . . . , k},
mj−1

aj−→ mj and tgt(ρ
′
j−1)

aj−→ src(ρ′j), we have tgt(ρj−1) = mj−1 + vj .
Our decomposition ful�lls the required conditions.

Now, by lemma 4, we have (src(ρ′j), tgt(ρ
′
j))+
−−−→
ρ′j ⊆ A∗−−→. Hence, (vj , vj+1)+−−−→

ρ′j ⊆ −−−−−→V,mj . We deduce that (v0, vk+1) +
−−→
ρ′ ⊆ −−→ρ by composi-

tion. Since (src(ρ′), tgt(ρ′)) = (src(ρ), tgt(ρ))+(v0, vk+1), we get ρ � ρ′.
�

Proof of lemma 2

There exists a total intraproduction for (m,V0).

Proof: Since �nite sums of intraproductions are intraproductions, it is
su�cient to prove that for every i ∈ Im,V , there exists an intraproduction
(r, x, s) for (m,V0) such that x(i) > 0. We �x i ∈ Im,V .
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Let us �rst prove that there q ≤ q′ ∈ Qm,V such that q(i) < q′(i). Since
i ∈ Im,V , there exists a sequence (qn)n∈N of markings qn ∈ Qm,V such
that (qn(i))n∈N is strictly increasing. Since (Nd,≤) is well ordered, we
can �nd q ≤ q′ in Qm,V such that q(i) < q′(i).

As q ∈ Qm,V then there exists (r, s) ∈ V0, such that m+r
∗−→ q

∗−→ m+s.

Symmetrically, there exists (r′, s′) ∈ V0 such that m+ r′
∗−→ q′

∗−→ m+ s′.
Let us introduce δ = q′ − q. We deduce:

� (m+ r′) + r
∗−→ q′ + r from m+ r′

∗−→ q′.

� q + (δ + r)
∗−→ (m+ s) + (δ + r) from q

∗−→ m+ s.

� (m+ r) + (δ + s)
∗−→ q + (δ + s) from m+ r

∗−→ q.

� q′ + s
∗−→ (m+ s′) + s from q′

∗−→ m+ s′.

Since q′ + r = q + δ + r and q + δ + s = q′ + s and r, r′, δ ∈ Nd0, we have
shown, for x = s+ r + δ:

r + r′ −−−→
Vz,m

x −−−→
Vz,m

s+ s′

As (r + r′, s + s′) ∈ V0, we have shown that (r + r′, x, s + s′) is an
intraproduction for (m,V0), with x(i) > 0.

�

Proof of lemma 6

We have:
Q≥0Rm,V = Q≥0(

−−−−−→
Vz ,m ∩ V0)

Proof: Let us �rst prove the inclusion ⊇. Let (r, s) ∈ V0 be such that
r −−−→
Vz,m

s. In this case, there exists a word u ∈ A∗z such that m + r
w−→

m + s. Observe that m + n ∗ r and m + n ∗ s are in Qm,V for every
n ∈ N. Hence, r(i) > 0 or s(i) > 0 implies i ∈ Im,V and we deduce that
(m+r)Im,V = (m+s)Im,V = mIm,V . By lemma 5, becausem+r

u−→ m+s,
there exists w label of a cycle on mIm,V and such that |u| ∈ TProd(w).
As r + δ(|u|) = s, we have proved that (r, s) ∈ Rm,V .
Now, let us prove the inclusion ⊆. Let (r, s) ∈ Rm,V . In this case, (r, s) ∈
V0 satis�es r(i) = s(i) = 0 for every i 6∈ Im,V and there exists a word
w = a1 . . . ak with ai ∈ Q × Q, v ∈ TProd(w) such that r + δ(v) = s.
By lemma 4, there exists u ∈ A∗z with |u| = v, r′ ≤∞ 0Im,V , and s′ ≤∞
0Im,V such that m + r′

u−→ m + s′. We consider a total intraproduction
(r′′, x, s′′) for (m,V0). Because r

′ ≤∞ 0Im,V , there exists p ∈ N such that
r′ ≤ p ∗ x. Because r′(1) = x(1) = 0, from m + r′

u−→ m + s′, we get
m+ p ∗ x u−→ m+ p ∗ x+ δ(u). And as we also have r(1) = 0, we get:

m+ p ∗ x+ r
w′−→ m+ p ∗ x+ r + δ(w′) = m+ p ∗ x+ s

This means (r, s) ∈ −−−−−→Vz,m′ where m′ = m + p ∗ x. Since a production
relation is periodic, we get for all n ∈ N, (n ∗ r, n ∗ s) ∈ −−−−−→Vz,m′ . As

(p∗r′′, p∗x, p∗s′′) is an intraproduction for (m,V0), we havem+p∗r′′ ∗−→
m′

∗−→ m+ s′′. We deduce the relation (m+ p ∗ r′′) + n ∗ r ∗−→ m′ + n ∗ r
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from (m+p∗ r′′) ∗−→ m′ and the relation m′+n∗ s ∗−→ (m+p∗ s′′)+n∗ s
from m′

∗−→ (m+ p ∗ s′′). We deduce that the following relation holds for
every n ∈ N:

m+ p ∗ r′′ + n ∗ r ∗−→ m+ p ∗ s′′ + n ∗ s

And as we have (r′′, s′′) ∈ V0 and (r, s) ∈ V0, we have p ∗ (r′, s′) +
N ∗ (r, s) ⊆ −−−−−→Vz,m ∩ V0. Thus (r, s) ∈ Q≥0(

−−−−−→
Vz,m ∩ V0). From the

inclusion Rm,V ⊆ Q≥0(
−−−−−→
Vz,m ∩ V0) we get the inclusion Q≥0Rm,V =

Q≥0(
−−−−−→
Vz,m ∩ V0).

�

Proof of theorem 8
∗−→ is a Petri relation.

Proof: We are interested in proving that
∗−→ is a Petri relation. This

problem is equivalent to prove that
∗−→ ∩((m,n)+P ) is a Lambert relation

for every (m,n) ∈ Nd × Nd and for every �nitely generated periodic
relation P ⊆ Nd×Nd. We introduce the order ≤P over P de�ned by p ≤P
p′ if p′ ∈ p+P . Because P is �nitely generated, there exists a1, . . . , aq ∈ P
such that P = Na1 + Na2 + . . .Naq. Hence, if we de�ne the surjective
function f from Nq to P de�ned by f(x) = Σix(i)ai, we have x ≤ x′ =⇒
f(x) ≤P f(x′), and because ≤ is a well-order on Nq, ≤P is a well-order
on P . We introduce the set Ωm,P,n of runs µ such that (src(µ), tgt(µ)) ∈
(m,n)+P . Thanks to theorem 5, this set is well-ordered by the relation
�P de�ned by µ � µ′ and (src(µ), tgt(µ))−(m,n) ≤P (src(µ′), tgt(µ′))−
(m,n). We deduce that B = min�P (Ωm,P,n) is �nite.
We now show the following equality:

∗−→ ∩((m,n) + P ) =
[

µ∈B
(src(µ), tgt(µ)) + (

−−→
µ ∩ P )

Let us �rst prove⊇. Let µ ∈ Ωm,P,n. Proposition 4 shows that (src(µ), tgt(µ))+−−→
ρ ∈ ∗−→. Since (src(µ), tgt(µ)) ∈ (m,n)+P and P is periodic we deduce

the inclusion ⊆.
Now, let us prove ⊆. Let (x′, y′) in the intersection

∗−→ ∩((m,n) + P ).
There exists a run µ′ ∈ Ωm,P,n such that x′ = src(µ′) and y′ = tgt(µ′).
There exists µ ∈ min�P (Ωm,P,n) such that µ �P µ′. We deduce that
(x′, y′) ∈ (src(µ), tgt(µ)) + (

−−→
ρ ∩ P ) and we have proved the inclusion

⊆.
Theorem 7 shows that

−−→
µ is a polytope periodic relation. As P is a

�nitely generated relation, it is a polytope periodic relation. Polytope
periodic relations are stable by �nite intersections ([8], Lemma 4.5) and

we deduce that
µ−→ ∩P is a polytope periodic relation. This induces that

∗−→ ∩((m,n) + P ) is a Lambert relation for every (m,n) ∈ Nd × Nd and

for every �nitely generated periodic relation P ⊆ Nd×Nd. Therefore, ∗−→
is a Petri relation.

�
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