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Abstract. Hybrid systems combine continuous and discrete behavior.
Hybrid Automata are a powerful formalism for the modeling and verifi-
cation of such systems. A common problem in hybrid system verification
is the good parameters problem, which consists in identifying a subset
of parameters which guarantee a certain behavior of a system. Recently,
a method has been presented for attacking this problem for Timed Au-
tomata. In this report, we show the extension of this methodology for
hybrid automata with linear and affine dynamics. The method is demon-
strated with a distributed temperature control system and several other
hybrid system benchmarks from the literature.

1 Introduction

Hybrid systems combine continuous and discrete behavior. They are especially
useful for the verification of embedded systems, as they allow the unified mod-
eling and the interaction of discrete control and the continuous environment or
system state such as position, temperature or pressure.

There are several classes of formal models for hybrid systems. In general,
there is a trade-off between the expressivity of the model and the complexity of
the algorithmic apparatus that is needed for its formal analysis. Linear Hybrid
Automata (LHA) provide a good compromise. In contrast to more general hy-
brid automata models, which allow arbitrary dynamics of the continuous state
variables, LHA are restricted to linear dynamics. This allows the use of efficient
algorithms based on convex polyhedra. Furthermore, more complex dynamics
– like hybrid automata with affine dynamics (AHA) – can easily be approxi-
mated conservatively by LHA. Although reachability is undecidable for LHA
[13], practically relevant results have been obtained using this formalism [18,
10].

For the modeling of embedded systems it is handy to use parameters either
to describe uncertainties or to introduce tuning parameters that are subject to
optimization. Instead of setting these parameters manually and then verifying
the resulting concrete system, parameterized models are used to perform auto-
matic parameter synthesis. A common assumption is the existence of a set of
bad states that should never be reached. Then the parameter synthesis can be
solved by treating the parameters as additional state variables and computing



the reachable states of the parameterized system in a standard manner[12]. How-
ever, this standard approach is not feasible except for very simple cases. It is
therefore essential to dynamically prune the search space. The method presented
in [9] is based on the CEGAR approach, iteratively refining a constraint over
the parameters by discarding states that violate a given property.

While these traditional approaches to parameter synthesis are based on the
analysis of bad states or failure traces, a complementary – or inverse – method
has been proposed in [3]. It uses a parameter instantiation that is known to
guarantee a good behavior in order to derive a constraint on the parameters
that leads to the same behavior. While the algorithm in [3] is restricted to
Timed Automata (TA), we present its extension to LHA in this report.

There are different scenarios for the application of the presented approach. If
a given parameter instantiation is known to guarantee certain properties, the in-
verse method can be used to derive an enlarged area of the parameter space that
preserves these properties, while possibly allowing for enhanced performance of
the system. In the same time, the robustness of the parameter choice can be
proven. Since real world systems are often subject to uncertainties wrt. to envi-
ronment conditions, it is not advisable to choose a parameter instantiation that
lies on the very edge to malfunction. Finally, it can be used if the parameterized
verification of a safety property is not feasible. In this case, a pointwise verifica-
tion for a set of parameter instantiations is performed. The inverse method can
then be used to obtain a measure of coverage of the parameter space by comput-
ing the zones of equivalent behavior for each point. This approach is also known
as behavioral cartography [4] and will be discussed in this report. While the nat-
ural extension of these algorithms works well for simple LHA, it does not scale
well to LHA models that approximate more complex dynamics. Therefore, we
present an enhanced algorithm that can be applied on affine hybrid automata.

The presented algorithms are implemented in a tool called IMITATOR (In-
verse Method for Inferring Time AbstracT behaviOR) [2]. The tool has originally
been developed for the analysis of TA. The new version IMITATOR 3 imple-
ments the semantics of LHA as presented in Section 3. The manipulation of
symbolic states is based on the polyhedral operations of the Parma Polyhedra
Library [5].

The report is structured as follows. First, we will discuss related work in
Section 2. In Section 3, the formal basis for the rest of the report is given. The
algorithms are introduced in Section 4. Experimental results are discussed in the
course of the presentation, using as a running example a distributed temperature
control system. More benchmarks from the literature are treated in Section 5.
The results are discussed in Section 6 and the report is concluded in Section 7.

2 Related Work

The presented approach exhibits the same general differences with the CEGAR-
based approach of [9] at the LHA level as formerly at the TA level. First, the
input of CEGAR-based methods is a bad location to be avoided while the input
of our inverse method is a good reference valuation for the parameters; second,
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the constraint in CEGAR-based methods guarantees the avoidance of bad loca-
tions while the constraint generated by the inverse method guarantees the same
behavior (in terms of discrete moves) as under the reference valuation.

Additionally, our inverse method based approach for LHA is comparable to
the symbolic analysis presented in [1] for improving the simulation coverage of
hybrid systems. In their work, Alur et al. start from an initial state x and a
discrete-time simulation trajectory, and compute a constraint describing those
initial states that are guaranteed to be equivalent to x, where two initial states
are considered to be equivalent if the resulting trajectories contain the same lo-
cations at each discrete step of execution. The same kind of constraint can be
generated by our inverse method when initial values of the continuous variables
are defined using parameters. The two methods are however methodologically
different. On the one hand, the generalization process done by the inverse method
works, using forward analysis, by refining the current constraint over the param-
eters that repeatedly discards the generated states that are incompatible with
the initial valuation of x; on the other hand, the method of Alur et al. generalizes
the initial value of x by performing a backward propagation of sets of equiva-
lent states. This latter approach can be practically done because the system is
supposed to be deterministic, thus making easy the identification of transitions
between discrete states during the execution. Our inverse method, in contrast,
can also treat nondeterministic systems.

The approach presented in [16] shares a similar goal, namely identifying for
single test cases a robust environment that leads to the same qualitative behav-
ior. Instead of using symbolic reachability techniques, their approach is based
on the stability of the continuous dynamics. By using a bisimulation function
(or contraction map), a robust neighborhood can be constructed for each test
point. As traditional numeric simulation can be used, this makes the technique
computationally effective. But, for weakly stable systems, a lot of test points
have to be considered in order to achieve a reasonable coverage. For some of the
examples in [16], we achieve better or comparable results (see Section 5.3).

Note that both [1] and [16] only consider the coverage of the initial states,
while our approach can be applied in the more general context of parameter
synthesis.

3 Hybrid Automata with Parameters

3.1 Basic Definitions

In the sequel, we will refer to a set of continuous variables X = x1, . . . , xN and a
set of parameters P = p1, . . . , pM . Continuous variables can take any real value.
We define a valuation as a function w : X → ℝ, and the set of valuations over
variables X is denoted by V(X). A valuation w will often be identified with the
point (w(x1), . . . , w(xN )) ∈ ℝN . A parameter valuation is a function � : P → ℝ
mapping the parameters to the real numbers.
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Given a set of variables X, a linear inequality has the form

N∑

i=1

�ixi ⊳⊲ �, (1)

where xi ∈ X, �i, � ∈ ℤ and ⊳⊲ ∈ {<,≤,=}. A convex linear constraint is a finite
conjunction of linear inequalities. The set of convex linear constraints over X is
denoted by ℒ(X). For a constraint C ∈ ℒ(X) satisfied by a valuation w ∈ V(X),
we write w ∣= C. For a constraint over continuous variables and parameters
C ∈ ℒ(X ∪ P ) satisfied by a valuation w and a parameter valuation �, we write
⟨w, �⟩ ∣= C. By convention, we also write w ∣= C for partial valuations. For
example, a valuation w ∈ V(X) is said to satisfy a constraint C ∈ ℒ(X ∪P ) iff it
can be extended with at least one parameter valuation � such that ⟨w, �⟩ ∣= C.

Sometimes we will refer to a variable domain X ′, which is obtained by re-
naming the variables in X. Explicit renaming of variables is denoted by the
substitution operation. Here, (C)[X/Y ] denotes the constraint obtained by re-
placing in C the variables of X by the variables of Y .

A convex linear constraint can also be interpreted as a set of points in the
space ℝN , more precisely as a convex polyhedron. We will use these notions
synonymously. In this geometric context, a valuation satisfying a constraint is
equivalent to the polyhedron containing the corresponding point, written as
w ∈ C. Also here, for a partial valuation w (i.e. a point of a subspace of C), we
write w ∈ C iff w is contained in the projection of C on the variables of w.

Definition 1. Given a set of continuous variables X and a set of parameters
P , a (parameterized) hybrid automaton with parameter constraint K ∈ ℒ(P ) is
a tuple A(K) = (�,Q, q0, I,D,→), consisting of the following

– a finite set of actions �
– a finite set of locations Q
– an initial location q0 ∈ Q
– a convex linear invariant Iq ∈ ℒ(X ∪ P ) for each location q
– an activity Dq : ℝn → ℝn for each location q

– discrete transitions q
g,a,�−−−→ q′, with guard condition g ∈ ℒ(X ∪ P ), action

a ∈ � and a jump relation � ∈ ℒ(X ∪ P ∪X ′)

Without loss of generality, it is assumed here that all continuous variables x
are initialized with x = 0. Arbitrary initial values can be modeled by adding a
transition with appropriate variable updates. Parameters can be seen as addi-
tional state variables which do not evolve in time (null activity).

The activities Dq describe how the continuous variables evolve within each
location q. In order to obtain automata models which can be symbolically ana-
lyzed, restrictions have to be made to these activities. This leads to the following
classes of hybrid automata.

Definition 2. We define the following subclasses of hybrid automata.
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(1) A rectangular automaton (RA) is a hybrid automaton, where in each location
q, the time derivative ẋi for variable xi is contained in an interval ẋi ∈
[ℓqi , u

q
i ], where ℓqi , u

q
i ∈ ℝ.

(2) A linear hybrid automaton (LHA) is a hybrid automaton, where in each
location q, the activity is given by a convex linear constraint Dq ∈ ℒ(Ẋ)
over the time derivatives of the variables.

(3) An affine hybrid automaton (AHA) is a hybrid automaton, where in each
location q, the activity is given by a convex linear constraint Dq ∈ ℒ(X ∪ Ẋ)
over the variables and the time derivatives.

Rectangular automata are a superset of timed automata (TA). The class of
timed automata can be obtained by restricting the derivatives to ẋ = 1 and
limiting the jump relations to either x′ = x or x′ = 0 (clock reset) for all
variables x ∈ X. In total, the automata models defined above form a hierarchy
TA ⊂ RA ⊂ LHA ⊂ AHA.

The reachable states of LHA can be efficiently represented by convex poly-
hedra. Due to the more complex dynamics, this is not true for AHA. In the fol-
lowing, we consider linear hybrid automata with parameters. But, AHA can be
approximated by LHA with arbitrary precision by partitioning the state space,
as e.g. described in [8]. In Section 4.4 it is discussed, how these techniques can
be adapted to suit our methods. In the following, we give an example of a hybrid
system, that will later on be used to illustrate the approaches proposed in this
report.

Example 1. The room heating benchmark (RHB) has been described in [7]. It
models a distributed temperature control system. There are m movable heaters
for n > m rooms. The temperature xi in each room i is a continuous variable
that depends on the (constant) outside temperature u, the temperature of the
adjacent rooms, and whether there is an activated heater in the room.

Depending on the relations between the temperatures measured, the heaters
will be moved. If there is no heater in room i, a heater will be moved there
from an adjacent room j, if the temperature has reached a threshold xi ≤ geti
and there is a minimum difference of the temperatures xj − xi ≥ difi. Note
that in contrast with the RHB modeled in [1], the heater move from a room to
another one is nondeterministic, since multiple guard conditions can be enabled
simultaneously (in [1], the nondeterminism is resolved by moving only the heater
with the smallest index).

The dynamics of the system is given by equations of the form:

ẋi = ciℎi + bi(u− xi) +
∑

i ∕=j
ai,j(xj − xi) (2)

where ai,j are constant components of a symmetric adjacency matrix, constants
bi and ci define the influence of the outside temperature and the effectiveness of
the heater for each room i, and ℎi = 1 if there is a heater in room i and ℎi = 0
otherwise.

Here, we will study an instantiation of RHB as given in [1] with n = 3,m = 2,
outside temperature u = 4, the constants b = (0.4, 0.3, 0.4), c = (6, 7, 8). The
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Q011

t ≤ ℎ ∧ ṫ = 1∧
Ẋ =

“−0.9 0.5 0
0.5 −1.3 0.5
0 0.5 −0.9

”
X +

“
1.6
8.2
9.6

”

Q101

t ≤ ℎ ∧ ṫ = 1∧
Ẋ =

“−0.9 0.5 0
0.5 −1.3 0.5
0 0.5 −0.9

”
X +

“
7.6
1.2
9.6

”

Q110

t ≤ ℎ ∧ ṫ = 1∧
Ẋ =

“−0.9 0.5 0
0.5 −1.3 0.5
0 0.5 −0.9

”
X +

“
7.6
8.2
1.6

”

t = ℎ ∧ (x1 ≥ 18 ∨ x2 − x1 < 1) / t′ = 0 t = ℎ ∧ (x3 ≥ 18 ∨ x2 − x3 < 1) / t′ = 0

t = ℎ ∧ (x2 ≥ 18 ∨ (x1 − x2 < 1 ∧ x3 − x2 < 1)) / t′ = 0

t = ℎ ∧ x1 < 18∧
x2 − x1 ≥ 1/t′ = 0t = ℎ ∧ x2 < 18∧

x1 − x2 ≥ 1/t′ = 0

t = ℎ ∧ x3 < 18∧
x2 − x3 ≥ 1/t′ = 0 t = ℎ ∧ x2 < 18∧

x3 − x2 ≥ 1/t′ = 0

Fig. 1. Automaton model for room heating benchmark

adjacency matrix ai,j is given as
(

0.0 0.5 0.0
0.5 0.0 0.5
0.0 0.5 0.0

)
and the thresholds are set to

get = 18 and dif = 1 for all rooms.
The system can be modeled as an AHA, as shown in Fig. 1. There are three

control modes, corresponding to the positions of the two heaters. The automaton
has four variables, the temperatures X = {x1, x2, x3} and a variable t acting as
clock. In this example, the temperatures are sampled at a constant rate 1

ℎ , where
ℎ is a parameter of the automaton. This sampling scheme is used in the models
of sampled-data hybrid systems of [17] and simulink/stateflow models [1].

3.2 Concrete semantics

In order to obtain a concrete run of a LHA A(K), all parameters need to be
instantiated by a parameter valuation � ∣= K. The instantiated model is then
denoted as A[�]. The concrete semantics (or simulation semantics) is given by a
labeled transition system (LTS).

Definition 3. A labeled transition system over a set of symbols � is a triple
L = (S, S0,⇒) with a set of states S, a set of initial states S0 ⊆ S and a

transition relation ⇒ ⊆ S × � × S. We write s
a⇒ s′ for (s, a, s′) ∈⇒. A run

of length m is a finite alternating sequence of states and symbols of the form

s0
a0⇒ s1

a1⇒ . . .
am−1⇒ sm, where s0 ∈ S0. A state sm is reachable if it is the last

state of some run R.

Definition 4. The concrete semantics of an LHA A[�] is given by the LTS
LH = (S, S0,⇒) with
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– states S = {(q, w) ∈ Q× V(X) ∣ ⟨w, �⟩ ∣= Iq}
– initial states S0 = {(q0, w) ∣ ⟨w, �⟩ ∣= Iq0 ∧ ∃v, t : w = t ⋅ v, t ∈ ℝ+, v ∈ Dq0}
– discrete transitions (q, w)

a→ (q′, w′) if

∃g, � : q
g,a,�−−−→ q′ and ⟨w, �⟩ ∣= g and ⟨w,w′, �⟩ ∣= �

– delay transitions (q, w)
t→ (q, w′) if

∃v ∈ Dq : w′ = w + t ⋅ v
– transitions (q, w)

a⇒ (q′, w′) if

∃t, w′′ : (q, w)
a→ (q′, w′′)

t→ (q′, w′)

The valuations of the initial states are obtained by letting time elapse from
the initial valuation

⋀N
i=1 xi = 0, while still satisfying the invariant of q0. Finally,

we define the notion of traces and their equivalence. A trace is obtained by
projecting a run on the locations:

Definition 5. For a LHA A, the trace associated to a concrete run (q0, w0)
a0⇒

. . .
am−1⇒ (qm, wm) of A[�] is the alternating sequence of locations and actions

q0
a0⇒ . . .

am−1⇒ qm.

Definition 6. Given a LHA A and two parameter instantiations �1 and �2, if
the set of traces corresponding to the semantics of A[�1] is equal to to the set of
traces corresponding to the semantics of A[�2], then A[�1] and A[�2] are said to
be trace equivalent.

3.3 Symbolic semantics

The symbolic semantics of a LHA A(K) are defined at the level of constraints, a
symbolic state is a pair (q, C) of a location q and a constraint C over variables and
parameters. The corresponding operations are therefore performed on convex
polyhedra rather than on concrete valuations. One necessary operation is the
progress of time within a symbolic state, modeled by the time-elapse operation.

Definition 7. Given a symbolic state (q, C), the states reached by letting t time
units elapse, while respecting the invariant of q, are characterized as follows

w′ ∈ C ↑tq iff ∃w ∈ C, v ∈ Dq : w′ = w + t ⋅ v ∧ w′ ∈ Iq

Note that due to the convexity of the invariants, if C ⊆ Iq and C ↑tq⊆ Iq, then

also ∀t′ ∈ [0, t] : C ↑t′q ⊆ Iq. To obtain any state respecting the invariant that is
reached by letting some time elapse, we use the closure of the above operation.

Definition 8. Given a symbolic state (q, C), the closure of the time-elapse op-
eration is defined as follows

w′ ∈ C ↑q iff ∃t ∈ ℝ+ : w′ ∈ C ↑tq
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Note that this operator preserves the convexity of C. Furthermore, the op-
erator C ↓X denotes the projection of the constraint C on the variables in
X, which is performed by existential quantification (e.g. using Fourier-Motzkin
elimination) of the variables not contained in X. Based on these definitions, the
symbolic semantics of a LHA A(K) is given by a labeled transition system (LTS)
as follows.

Definition 9. The symbolic semantics of LHA A(K) is a LTS with

– states S = {(q, C) ∈ Q× ℒ(X ∪ P ) ∣ C ⊆ Iq}
– initial state s0 = (q0, C0) with C0 = K ∧ [

⋀N
i=1 xi = 0] ↑q0

– discrete transitions (q, C)
a→ (q′, C ′) if exists q

a,g,�→ q′ and
C ′ =

(
[C(X) ∧ g(X) ∧ �(X,X ′)] ↓X′ ∧Iq′(X ′)

)
[X′/X]

– delay transitions (q, C)
t→ (q, C ′) with

C ′ = C ↑tq
– transitions (q, C)

a⇒ (q′, C ′) if

∃t, C ′′ : (q, C)
a→ (q′, C ′′)

t→ (q′, C ′), or as a closed formula:
C ′ =

(
[[C(X) ∧ g(X) ∧ �(X,X ′)] ↓X′ ∧Iq′(X ′)] ↑q′

)
[X′/X]

Analogously to the concrete semantics, the trace of a symbolic run (q0, C0)
a0⇒

. . .
am−1⇒ (qm, Cm) is obtained by projecting the symbolic states to the locations,

which gives: q0
a0⇒ . . .

am−1⇒ qm. Two runs (concrete or symbolic) are said to be
equivalent, if their corresponding traces are equal.

The set of states reachable from any state in a set S in exactly i steps is de-

noted as PostiA(K)(S). More formally, PostiA(k) = {s′ ∣ ∃s ∈ S : s
a0⇒ . . .

ai−1⇒ s′}.
Likewise, the set of all reachable states from S is defined as Post∗A(K)(S) =∪
i≥0 Post

i
A(K). The reachable states of A(K) are defined as ReacℎA(K) =

Post∗A(K)({s0}), where s0 is the initial state of A(K).

3.4 Relation between concrete and symbolic semantics

The concrete semantics captures every single run that is admissible in an au-
tomaton. While it is easy to see its relation to the automaton, it cannot be used
for the formal verification of systems modeled as LHA, since the number of con-
crete runs is almost always infinite. Instead, the symbolic semantics allows for
a more abstract view on the system by capturing sets of runs. It is based on
linear constraints which can be interpreted as convex sets of valuations. For the
manipulation of such constraints, there exist geometric algorithms operating on
convex polyhedra [6, 11, 5].

More precisely, it can be shown that every concrete run can be simulated by
a symbolic run and vice versa. The following statements are motivated by [15].
Their proofs can easily be adapted to the LHA model. First, we state again the
preservation of convexity by the time-elapse operation.

Lemma 1. For a symbolic state (q, C), the time-elapse operation C ↑q can be
effectively computed and it preserves the linear convexity of C.
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A proof based on operations on polyhedra can be found in [11].

Lemma 2. For the initial state (q0, C0) of the symbolic semantics of a LHA
A(K), there is an initial state (q0, w0) in the concrete semantics of A[�] for
each parameter valuation � and each valuation w0 with ⟨w0, �⟩ ∣= C0.

Proof. According to Definition 9, we show that each valuation w with ⟨w, �⟩ ∣=
K∧[

⋀N
i=1 xi = 0] ↑q0 corresponds to an initial state (q, w) according to Definition

4. By definition of the time-elapse operation, we have w ∈ [
⋀N
i=1 x = 0] ↑q0⇒

∃t ∈ ℝ+, v ∈ Dq0 : w = t ⋅ v. As also ⟨w, �⟩ ∣= Iq0 , this completes the proof. ⊓⊔

Lemma 3. For each step (q, C)
a⇒ (q′, C ′) in the symbolic semantics of A(K)

and each valuation w′ and � with ⟨w′, �⟩ ∣= C ′, there is a step (q, w)
a⇒ (q′, w′)

in the concrete semantics of A[�] for some valuation w with ⟨w, �⟩ ∣= C.

Proof. We decompose the proof for the transition (q, C)
a⇒ (q′, C ′) into the steps

(q, C)
a→ (q′, C ′′)

t→ (q′, C ′).

For the delay transition (q′, C ′′)
t→ (q′, C ′), we have C ′ = C ′′ ↑q′ . Since

(q′, C ′′) and (q′, C ′) are states in the symbolic semantics, we have C ′′ ⊆ Iq′ and
C ′ ⊆ Iq′ . Following Lemma 1, C ′′ ↑q′ is convex and also C ′′ ⊆ C ′′ ↑q′ . Thus, if
⟨w′, �⟩ ∣= C ′, this implies ⟨w′, �⟩ ∣= Iq′ and there exist w′′ ∈ C ′′, v ∈ Dq′ , t ∈ ℝ+

such that w′ can be reached by letting time elapse to w′ = w′′ + t ⋅ v. It follows
that ⟨w′′, �⟩ ∣= Iq′ . Thus, (q′, w′′) is a state in the concrete semantics with

(q′, w′′)
t→ (q′, w′) and ⟨w′′, �⟩ ∣= C ′′.

According to Definition 9, for step (q, C)
a⇒ (q′, C ′) there exists a discrete

transition in the automaton A with q
g,a,�−−−→ q′. We have (q, C)

a→ (q′, C ′′) and
thus C ′′(X ′) = [C(X) ∧ g(X) ∧ �(X,X ′)] ↓X′ ∧Iq′(X ′). As shown above, there
exists a valuation w′′ with ⟨w′′, �⟩ ∣= C ′′. Since C ′′ ∕= false, we can conclude
that ∃w : ⟨w, �⟩ ∣= C ∧ ⟨w, �⟩ ∣= g ∧ ⟨w,w′′, �⟩ ∣= �. Since C ⊆ Iq, the state
(q, w) is a state in the concrete semantics. This gives us the concrete discrete

transition (q, w)
a→ (q′, w′′) according to Definition 4. Together with the delay

transition, we have (q, w)
a→ (q′, w′′)

t→ (q′, w′) and thus (q, w)
a⇒ (q′, w′). ⊓⊔

This allows us now to state the correspondence of symbolic and concrete
runs:

Proposition 1. For each symbolic run of A(K) reaching (q, C), for each param-
eter valuation � and clock valuation w with ⟨w, �⟩ ∣= C, there is an equivalent
concrete run of A[�] reaching (q, w).

Proof. By induction over the length of the run. The base case – a run with 0
transitions – directly follows from Lemma 2.

By induction hypothesis, we have a symbolic run ending in (q, C) and a
corresponding concrete run ending in (q, w) with w ∣= C. For the induction step,
we assume that we have an extended symbolic run ending with a transition
(q, C)

a⇒ (q′, C ′) and ⟨w′, �⟩ ∣= C ′. Following Lemma 3, there exists a concrete

step (q, w)
a⇒ (q′, w′). The concrete run can be therefore be extended by the

step (q, w)
a⇒ (q′, w′), resulting in the required concrete run. ⊓⊔
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Similarly, the converse direction can be shown.

Lemma 4. Given an initial state (q0, w) of the concrete semantics of A[�],
there exists an initial state (q0, C) of the symbolic semantics of A(K) for some
parameter constraint K such that ⟨w, �⟩ ∣= C.

Proof. For the concrete initial state (q0, w), we have ⟨w, �⟩ ∣= Iq0 and ∃v, t :
w = t ⋅ v, t ∈ ℝ+, v ∈ Dq0 . According to Definition 8, this implies that ⟨w, �⟩ ∣=
[
⋀N
i=1 xi = 0] ↑q0 . Furthermore, choosing any K with � ∣= K, we also have

⟨w, �⟩ ∣= K. Finally, as ⟨w, �⟩ ∣= Iq0 , this proves that (q0, C) with C = K ∧
[
⋀N
i=1 xi = 0] ↑q0 is an initial state in the symbolic semantics of A(K).

Proposition 2. For each parameter valuation � ∣= K and valuation w, if there
is a concrete run of A[�], reaching (q, w), then there is an equivalent symbolic
run of A(K), reaching state (q, C) for some C such that ⟨w, �⟩ ∣= C.

Proof. By induction over the length of the run. The base case – again a run with
0 transitions – follows from Lemma 4.

By induction hypothesis, there exists a concrete run of A[�] ending in (q, w)
and a corresponding symbolic run for some A(K) with � ∣= K ending in a state
(q, C) with ⟨w, �⟩ ∣= C. For the induction step, we assume an extended concrete

run of A[�], ending with the step (q, w)
a⇒ (q′, w′).

The considered concrete step (q, w)
a⇒ (q′, w′) consists of the two steps

(q, w)
a→ (q′, w′′)

t→ (q′, w′). By Definition 4, there exists a transition q
g,a,�−−−→ q′

in the automaton A such that ⟨w, �⟩ ∣= g and ⟨w,w′′, �⟩ ∣= �. Since also
⟨w, �⟩ ∣= Iq and ⟨w′, �⟩ ∣= Iq′ , it follows that there exist C,C ′′ with ⟨w, �⟩ ∣= C
and ⟨w′′, �⟩ ∣= C ′′ such that C ′′(X ′) = [C(X) ∧ g(X) ∧ �(X,X ′)] ↓X′ ∧Iq′ and
C ⊆ Iq. Thus, (q, C) and (q′, C ′′) are states in the symbolic semantics and

(q, C)
a→ (q′, C ′′).

For the concrete state (q′, w′′) with the delay transition (q′, w′′)
t→ (q′, w′),

following Definition 4 there exist v ∈ Dq′ , t ∈ ℝ+ such that w′ = w′′ + t ⋅ v. And
thus, since ⟨w′′, �⟩ ∣= C ′′ and ⟨w′, �⟩ ∣= Iq′ , it follows that ⟨w′, �⟩ ∣= C ′′ ↑q′ .
Following Definition 9, we have a symbolic delay transition (q′, C ′′)

t→ (q′, C ′).
Together with the discrete transition, we can finally extend the assumed path
with the step (q, C)

a⇒ (q′, C ′), ending in symbolic state (q′, C ′) with ⟨w′, �⟩ ∣=
C ′. ⊓⊔

Note that the symbolic semantics of A(K) can contain more traces than
any single concrete semantics of A[�] for some � ∣= K. In general, if there is a
parameter valuation � and a parameter constraint K, such that for all reachable
states (q, C) of A(K), it holds that � ∣= C, then A(K) and A[�] are trace
equivalent.

Furthermore, note that during a run of A(K), the parameter constraints
associated to the reachable states can only get stronger, since the parameters do
not evolve under the time elapse operation, and can only be further constrained
by invariants or guard conditions. This gives rise to the following observation.
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Algorithm 1: IM (A, �)

input : Parametric linear hybrid automaton A
input : Valuation � of the parameters
output: Constraint K0 on the parameters

i← 0 ; K ← true ; S ← {s0}1

while true do2

while there are �-incompatible states in S do3

Select a �-incompatible state (q, C) of S (i.e., s.t. � ∕∣= C) ;4

Select a �-incompatible inequality J in (∃X : C) (i.e., s.t. � ∕∣= J) ;5

K ← K ∧ ¬J ;6

S ← Si
j=0 Post

j
A(K)({s0}) ;7

if PostA(K)(S) ⊑ S then return K0 ←
T

(q,C)∈S(∃X : C)8

i← i+ 1 ;9

S ← S ∪ PostA(K)(S)10

Lemma 5. For any reachable state (q, C) ∈ ReacℎA(K), it holds that (∃X :
C) ⊆ K. This implies that for each parameter valuation � ∣= C, also � ∣= K.

The lemma follows directly from the definition of the symbolic semantics.
We say that a state (q, C) is compatible with a parameter valuation �, or just
�-compatible, if � ∣= C. Conversely, it is �-incompatible if � ∕∣= C.

These observations are the basis for the Inverse Method, which is described
in the following section.

4 Algorithm

4.1 Inverse Method

The Inverse Method for LHA attacks the good parameters problem by gener-
alizing a parameter valuation � that is known to guarantee a good behavior.
Thereby, the valuation � is relaxed to a constraint K such that the discrete be-
havior – i.e. the set of traces – of A[�] and A(K) is identical. The algorithm has
first been described for parametric timed automata in [3], and has been applied
for the synthesis of timing constraints for memory circuits [2].

Algorithm 1 describes the Inverse Method for LHA. The overall structure is
similar to a reachability analysis. In the main loop, the reachable states with
increasing depth i are computed. In parallel, the constraint K is derived. It is
initialized with true. Each time a �-incompatible state (q, C) is reached, K
is refined such that the incompatible state is unreachable for A(K). If C is �-
incompatible, then there must be at least one inequality J in its projection on the
parameters (∃X : C), which is incompatible with �. The algorithm selects one
such inequality and adds its negation ¬J to the constraint K. Before continuing
with the search, the reachable states found so far are updated to comply with
the new constraint K (line 7). If there are no more �-incompatible states, then
i is increased and the loop continues.

11



The algorithm stops as soon as no new states are found (line 8). The output
of the algorithm is then a parameter constraint K0, obtained as the intersection
of the constraints associated with the reachable states. The resulting constraint
can be characterized as follows.

Proposition 3. Suppose that the algorithm IM (A, �0, k) terminates with the
output K0. Then the following holds:

– �0 ∣= K0

– For all � ∣= K0, A[�0] and A[�] are trace equivalent, i.e. the sets of traces
are identical

Proof. Based on Lemma 5 and Propositions 1 and 2, the proof in [3] can be
extended for LHA in a straightforward manner. ⊓⊔

In other words, we obtain a (convex) constraint including the initial point
�0, that describes a set of parameter valuations for which the same set of traces
is observable. In particular, if A[�0] is known to avoid a set of (bad) locations
for �0, so will A[�] for any � ∣= K0.

Note that the intersection in line 8 is necessary – rather than just returning
K – in order to guarantee the equivalence of the traces. Without this operation,
it is possible that the symbolic semantics of A(K) contains additional traces
caused by deadlocks that do not occur in A[�0]. For more details, refer to [3].

The algorithm IM is not guaranteed to terminate 1. Note also that the pre-
sented algorithm involves nondeterminism. In Algorithm 1 in lines 4 and 5, one
can possibly choose among several incompatible states and inequalities. This
may lead to different – nevertheless correct – results. This implies in particular
that the resulting constraint K0 is not maximal in general. In order to further
explore a hybrid system, the behavioral cartography can be applied, which is
described in the next section. Before, we give a case study of the application of
the inverse method.

Example 2. In order to enable the application of the inverse method as described
above to the RHB from example 1, the AHA automaton is converted to a LHA.
This is done using the phase-portrait approximation described in [14]. The space
is partitioned into regions, and within each region, the activity field is overap-
proximated using linear sets of activity vectors. For each region R delimiting a
portion of the partitioned state space, the activities are statically overapproxi-
mated as

ẋi ∈ [min{fi(x) ∣ x ∈ R},max{fi(x) ∣ x ∈ R}] (3)

where fi(x) corresponds to the right-hand side in (2). The approximation can be
made arbitrarily accurate by approximating over suitably small regions of the
state space. Here, each region R corresponds to a unit cube (of size 1 degree
Celsius) in the dimensions x1, x2, x3.

1 Termination of such a general reachability-based procedure cannot be guaranteed
due to undecidability of reachability for TA with parameters and LHA [13]
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(a) Starting from a single point

(b) Starting from a tile synthesized by the Inverse Method

Fig. 2. Reachable states for room heating benchmark

The inverse method considers only the discrete behavior of a system. It is
thus well suited for qualitative properties that address the switching of discrete
states. Such properties have been considered in [7], e.g.:

– All rooms eventually get a heater
– In all rooms there will eventually be no heater

In our model, we will use the inverse method to show a slightly weaker property,
a bounded liveness property that is expressible as a safety condition as follows.

Prop1: At least one of the heaters will be moved within a given time interval
[0, tmax] with tmax = 1

2 and a sampling time ℎ = 1
10 .

The upper bound tmax plays here the role of the maximal number of discrete
transitions that are used in the method of [1]. In the automaton model, a vi-
olation of the property is modeled by a transition to a location qbad. To check
the property for varying initial conditions, we add the parameters a1, a2, a3 and
constrain the initial state with x1 = a1 ∧ x2 = a2 ∧ x3 = a3.

The property can be checked by standard reachability analysis starting from a
single point2 (a1, a2, a3). Starting from the initial point (a1, a2, a3) = (18, 17, 18),
the reachable states for the variables x1, x2 and x3 are shown in Fig. 2(a).
The bad location is not reached from this point. Using the Inverse Method

2 In a first attempt, we checked this property using standard parametric reachability
analysis. We considered the initial state wrt. the temperatures (x1, x2, x3) to be
within the rectangular region [16, 18]3. But, no result could be obtained in this way
due to the large state space.
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Algorithm 2: BC

input : Parametric linear hybrid automaton A
input : Parameter bounds min1 . . .minM and max1 . . .maxM
input : Step sizes �1 . . . �M
output: Set of constraints Z on the parameters

Z ← ∅1

V ← {� ∣ �i = mini + ℓi ⋅ �i, �i ≤ maxi, ℓ1, . . . , ℓM ∈ ℕ}2

while true do3

Select point � ∈ V with ∀K ∈ Z : � ∕∣= K4

K ← IM (A, �)5

Z ← Z ∪ {K}6

if ∀� ∈ V : ∃K ∈ Z : � ∣= K then7

return Z8

(Algorithm 1), the initial point can be generalized to a larger region around the
starting point (18, 17, 18), resulting in the constraint

a1 ≥ a2 + 181
200 ∧ a1 < a3

2 + 37
4 ∧ a2 > 3381

200 ∧ a2 < 35
2 ∧ a3 > 35

2 ∧ a3 < 456
25 .

The symbolic runs starting from this enlarged initial region are depicted
in Fig. 2(b). The sets of traces of the two figures coincide, i.e. the sequence
of discrete transitions of every run represented in Fig. 2(b) is identical to the
sequence of discrete transitions of some run in Fig. 2(a).

4.2 Behavioral Cartography

The inverse method works efficiently in many cases, since large parts of the state
space can effectively be pruned by refining the parameter constraint K. In this
way, many bad states never have to be computed, in contrast to the traditional
approach to parameter synthesis. A drawback of the inverse method is that the
notion of equivalence of the traces may be too strict for some cases. If e.g. one
is interested in the non-reachability of a certain bad state, then there may exist
several admissible regions in the parameter space that differ in terms of the
discrete behavior or trace-sets. In order to discover these regions, the inverse
method needs to be applied iteratively with different starting points.

The systematic exploration of the parameter space using the inverse method
is called behavioral cartography [4]. It works as shown in Algorithm 2. For each
parameter pi, the interval [mini,maxi], possibly containing a single point, speci-
fies the region of interest. This results in a rectangular zone v0 = [min1,max1]×
⋅ ⋅ ⋅ × [minM ,maxM ]. Furthermore, step sizes �i ∈ ℝ are given. The algorithm
selects (yet uncovered) points defined by the region v0 and the step sizes and
calls the inverse method on them. The set Z contains the tiles (i.e. parameter
constraints) computed so far. The algorithm proceeds until all starting points
are covered by some tile K ∈ Z.

By testing the inclusion in some computed tile, repeated computations are
avoided for already covered points. The result of the cartography is a set of tiles
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Fig. 3. Cartography of the initial states of RHB

of the parameter space, each representing a distinct behavior of the LHA A.
Note that the computed tiles do not necessarily cover the complete region v0.
On the other hand, it is possible that v0 be covered by very few calls to the
inverse method.

As such, the behavioral cartography only partitions the parameter space into
tiles of distinct behavior, while it does not classify the tiles as good or bad ones.
However, this classification is straightforward if a simple safety property is given
as a set of bad states. Since the reachable locations under �0 are computed
during the application of the inverse method, we can easily classify each tile.
Note that there may exist many tiles that differ only slightly, which may result
in a large number of calls to the inverse method. However, this can be seen as
a trade-off, since we may be able to classify large areas of the parameter space,
while a standard parametric reachability analysis may fail.

Example 3. The cartography is illustrated by a further experiment on the RHB
model from example 2. Again, we check the bounded liveness condition Prop1.
The initial point is varied for the initial values a1 and a2, while fixing a3 = 18.
Therefore, the cartography procedure is used, iterating the initial point within
the rectangle [16, 18]2 (i.e, min1 = min2 = 16 and max1 = max2 = 18) with
a step size of �1 = �2 = 1

3 . This leads to a total of 32 tiles, shown in Fig. 3.
By analyzing the cartography, we can even obtain a quantitative measure of the
coverage of the considered region, which is shown as a dashed rectangle in the
figure. In this case, the computed tiles cover 56% of the rectangle. All tiles in
the figure have been classified as good tiles.

Note that compared to the algorithm in [1], this is a stronger result, as
each tile corresponds to a set of traces that exploits all possible behavior for
the covered parameter valuations, including nondeterminism. As reported in [1],
their measure of coverage decreases when considering longer simulation traces
(which correspond here to a bigger upper bound tmax). A similar effect can be
observed for our method. The longer the traces, the more distinct behaviors are
observed, resulting in smaller tiles and thus a smaller coverage of the parameter
space. Further experimental results on LHA are reported in the appendix.
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4.3 Limitations

It can be observed that for some systens there are border areas in the parameter
space, where slight variations of the initial conditions lead to many different
traces. In this case, a good coverage based the cartography approach will be
very costly, since many points have to be considered. This is e.g. the case if we
repeat the above experiment fixing a3 = 17 instead of a3 = 18. In general, the
inverse method and the behavioral cartography is quite limited when applied to
LHA models that were obtained from AHA by static partitioning.

As described in [8], AHA can be approximated by LHA with arbitrary pre-
cision. This is done by partitioning the invariant of a location, usually into a set
of small rectangular regions. For each region R, the affine dynamics are over-
approximated by linear dynamics. In this way, the locations are split up until
the desired precision is obtained.

Due to this partitioning, the resulting LHA will have more locations than the
original AHA, leading also to potentially more different traces for each parameter
instantiation. This renders the inverse method ineffective for AHA, as the region
around a parameter valuation � that corresponds to the same trace set, will
generally be very small. This is due to the fact that the traces contain a lot of
information on the transitions between partitions that are more or less irrelevant
wrt. the behavior of the modeled system.

4.4 Enhancement of the method for AHA

These limitations can be overcome by grouping reachable states that only repre-
sent different partitions of the same invariant of a location q. In our algorithm,
this is done as an extension of the time-elapse operator. Each time that the
time-elapse C ↑ q needs to be computed for a location with affine dynamics Dq,
the following steps are performed:

1. Build local partitions P of the invariant Iq
2. Compute a linear over-approximation D̂P of Dq for each partition P

3. Compute the locally reachable states S wrt. partitions P and dynamics D̂P

4. Compute the convex hull of the states S

Here, the number of partitions � per dimension is chosen by the user. Note
that cost and precision of the overall analysis may strongly depend on the chosen
value for �. It is later discussed how one can use the methods presented in
this report to perform an iterative verification, thereby refining the analysis by
increasing �.

Given this variant of the time-elapse for affine dynamics, the computed reach-
able states are an over-approximation due to the piece-wise linearization of the
dynamics and the convex hull operation. Thus, the equality of concrete and
symbolic runs as given by Propositions 1 and 2 are no longer valid. But, as we
compute an over-approximation of the possible runs, non-reachability (i.e. safety)
properties are preserved.
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Fig. 4. Enhanced cartography for room heating benchmark

Proposition 4. Given an AHA A, suppose that the algorithm IM (A, �0, k) ter-
minates with the output K0. Then the following holds:

– �0 ∣= K0

– If for A[�0], a location qbad is unreachable, then it is also unreachable for all
A[�] with � ∣= K0

Example 4. The adapted algorithm is applied to the RHB. With the discussed
techniques, we can apply the inverse method and thus the cartography directly
on the AHA model, without statically partitioning the state space in order to
obtain a LHA.

As in the previous experiment, by repeating the inverse method, a large part
of the system’s initial state space is decomposed into tiles of distinct discrete
behavior. The reachability analysis for the AHA model is quite costly. Therefore,
we will try to cover large parts of the parameter space using a very coarse
linearization, given by a small number � of partitions. This is illustrated in the
following.

As reported in Section 4.3, applying the cartography on the statically lin-
earized RHB model does not deliver a good coverage when fixing a3 = 17.
Instead, we apply the enhanced method directly on the AHA model, again re-
garding property Prop1. Here, the initial values a1 and a2 are varied within the
rectangle [15.5, 18.5]2 (i.e, min1 = min2 = 15.5 and max1 = max2 = 18.5) with
a step size of �1 = �2 = 1

2 . In the first step, the invariants will be uniformly
linearized, i.e. we set � = 1.

The resulting cartography is shown in Fig. 4, consisting of 12 tiles, where the
good ones are shown in green, while the tiles corresponding to a bad behavior
are shown in red (and outlined in bold). Note that the whole rectangular region
is covered. Furthermore, already with this very coarse linearization, most of the
tiles could be proved good. Thus, in a next step, one could concentrate a more
costly analysis on the bad region.

17



Q1
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Fig. 5. Fischer mutual exclusion protocol

5 Further results

5.1 Fischer Protocol

In this section, we will examine the Fischer mutual exclusion protocol. The pro-
tocol provides mutual exclusion for a distributed system with skewed clocks. The
processes communicate via a shared variable k. Before entering a critical section,
each process reads the variable k. If k, then the process sets k to its own unique
ID, which takes at most a time units. If, after waiting for b time units, k is still
set to its own ID, the process is allowed to enter the critical section. Otherwise,
the access cycle starts again. After leaving the critical section, k is reset to zero.
The correct functionality of the protocol (there can be at most one process in
a critical section) depends on the choice of the timing parameter b wrt. to the
clock skew of the processes and the maximum write delay a.

Fig. 5 shows an instantiation of the Fischer protocol for two processes, where
P1 has a relative clock speed between 4

5 and 1, and P2 has a relative clock speed
between 1 and 11

10 . In general, a high value for b will guarantee that all concurrent
writes will be finished before a process checks variable k and eventually enters
the critical section. For the given instantiation, it can be verified that for a
maximum write delay set to the unit value a = 1, the choice of b = 2 is sufficient
to guarantee a correct behavior.

For performance reasons, a value as small as possible should be chosen. Start-
ing the Inverse Method with the above instantiation �0 = (1, 2), the following
constraint is derived:

a ≥ 0 ∧ b >
11

8
a (4)
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ṫ = 1
t ≤ delay

error

true

t = 0 ∧
m ≤ w ≤M

w = M/
stop, t′ = 0

t = delay/
off

w = m/
start, t′ = 0

t = delay/
on

w > max/
overflow

w < min/
underflow

Fig. 6. LHA of a controlled water reservoir

This means that for any parameter instantiation satisfying (4), the system
will show the same discrete behavior. Since the correctness of the protocol has
been shown for �0, we can conclude that (4) is sufficient for the mutual exclusion.
Furthermore, the generated constraint is maximal. The same result is obtained
by performing a complete parametric reachability analysis – e.g. with HyTech
[12] – and projecting the reachable states on the parameters.

5.2 Water Tank Benchmark

The Model As another benchmark with a total number of five parameters,
consider a monitored water reservoir [11], modeled by the LHA in Fig. 6. The
state variables are the water level w and a global clock t. There is a pump
attached to the reservoir, providing it with fresh water. When the pump is on,
the water level increases with a constant rate of ẇ = 1. When it is off, the
reservoir is drained at a rate of ẇ = −2. As parameters, max and min give
the bounds on w that should be respected by the system. M and m give limits
on the water level for which the pump is (de-) activated. But, there is a delay
needed to actually change the activity of the pump. While waiting for the pump
to react, an overflow (w > max) or underflow (w < min) can happen, leading
the system to an error state.

Inverse Method The inverse method can be used to derive appropriate con-
straints on the parameters min,max,M,m and delay such that no overflow or
underflow can happen. A reference valuation �0 can easily be found for a short
delay and by allowing for sufficiently large margins between min and m (M and
max), respectively. As starting point, �0 = (min 7→ 0,m 7→ 10,M 7→ 20,max 7→
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30, delay 7→ 1) is used. As a result, the following constraint is generated using
forward reachability3:

M + delay ≥ m ∧
m ≥ min+ 2 ⋅ delay ∧

max ≥M + delay
(5)

Behavioral Cartography In order to fully explore the possible behaviors of
the system, the cartography algorithm is applied, with varying parameters m
and M . The remaining parameters are fixed to the values min = 2,max = 12
and delay = 1. The zone to explore is given by the interval m,M ∈ [min,max].

The cartography results in five different tiles, shown in Fig. 7. In the figure
also the starting points �1 to �5 can be found, that were used to call the Inverse
Method. As it turns out, the whole (real-valued) rectangle [2, 12]2 is covered by
the generated constraints. Furthermore, the trace set associated with constraint
K3 is the only one that corresponds to a good behavior of the system. Thus, the
constraint in (5) is maximal.

5.3 Navigation Benchmark

The Model The navigation benchmark has been described in [7]. It describes
an object moving in a plane. The plane is divided into square fields, where each
field is associated with one of eight directions, to which the movement of the
object converges. Furthermore, there are bad fields (marked B) that need to be
avoided and good fields (marked A) that should eventually be reached by the
object.

3 Additionally to the shown inequalities, only non-negative parameters are considered.
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Fig. 8. Navigation benchmark

More formally, the object has the current position (x, y)T . The horizontal
and vertical velocity are described by the vector v = (vx, vy)T . For each field in
the matrix F , the desired velocity is given as vd = (sin(i ⋅ �/4), cos(i ⋅ �/4))T ,
with a given i ∈ {0, . . . , 7}. The convergence of the current velocities to the
desired ones is determined by the differential equation v̇ = A(v− vd), where the
matrix A ∈ ℝ2×2 is given by the benchmark instance. For example, Fig. 8(a)
shows a 3× 3 benchmark instance given by

F =

⎛
⎝
B 2 4
2 2 4
1 1 A

⎞
⎠ , A =

(
−1.2 0.1
0.1 −1.2

)
, (6)

with the initial states defined as x ∈ [0, 1], y ∈ [0, 1], vx ∈ [0.1, 0.5] and vy ∈
[0.05, 0.25].

The system can be modeled by an AHA in a straightforward way, where
each field corresponds to a control location. In order to compute the reachable
states, the system needs to be linearized wrt. variables vx, vy. The initial states
are represented by parameters x0, y0, vx0, vy0.

Behavioral Cartography While a full parametric reachability analysis is
costly, the system can be analyzed point-wise. This means that the parame-
ters defining the initial state are fixed to a single value, while the behavioral
cartography is used to obtain a measure of coverage of the verified behavior. As
an example, the blue regions in Fig. 8(a) represent the reachable states from the
initial point (0.5, 0.5)T .

In an experiment, we explore the parameter space for the two parameters
x0, y0 within the interval [0, 1] with a step size � = 0.1. In this way, we obtain
eight different tiles, that almost completely cover the considered rectangle, see
Fig. 8(b). Only a small triangular region on the right hand side of the figure
remains uncovered. All the covered tiles are classified as good tiles, since the
bad state is not reached.
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Coverage Another instance of the navigation benchmark is considered in [16],
given by the map

F =

⎛
⎝
B 2 4
4 3 4
2 2 A

⎞
⎠ (7)

and the matrix A as in (6). There, the coverage of the initial states in the
rectangle [1, 2] × [1, 2] with vx0 = −0.2 and vy0 = 0 is computed, starting with
25 equally distributed test points. The computed coverage is reported with 48%.
In contrast, using the behavioral cartography, only a coverage of more that 97%
is achieved with only 9 different tiles4, as depicted in Fig. 9.

For the same map, the initial states (x, y)T ∈ [2.2, 2.8]×[1.2, 1.8] were consid-
ered. Starting with 9 test points, an estimated coverage of 72% was computed. In
constrast, choosing any single point in the given initial region, a single constraint
is generated by the inverse method, which covers 100% of the rectangle.

6 Discussion

As shown in the previous sections, the inverse method – having been introduced
for the analysis of timed automata – can be applied as well for hybrid systems.
The extension to automata with rectangular and linear dynamics is straightfor-
ward, using the relation between concrete and symbolic semantics which extends
nicely to these classes of hybrid automata. However, almost all non-trivial ex-
amples of hybrid systems from the literature have affine dynamics. The naive
approach – approximating affine models statically by LHA – shows limited re-
sults, as the partitioning of locations leads to a great number of distinct trace
sets.

Instead, the partitioning can be applied locally, incorporating it into the time-
elapse operator and thereby grouping states that belong to the same location of
the original affine model. In this way, more general constraints and thus a better
coverage can be achieved. The additional convex hull operation can however

4 Two of the tiles degenerate to a point or a line and can thus not be seen in the figure
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be quite costly and strongly depends on the chosen number of partitions per
dimension. This can be seen as a trade-off between precision and performance
of the analysis. In practice, the method can be applied in an iterative manner,
starting with a very coarse linearization, and then concentrating on small parts
of the parameter space with a finer approximation.

The presented methods rely only on trace sets, abstracting from the val-
uations of the continuous variables. For this reason they are best suited for
the verification of qualitative properties, like the (non-)reachability of a set of
locations. Since many interesting properties – like safety conditions – can be
expressed as reachability, this is not a serious limitation. There are also quanti-
tative properties that can be coded as reachability, e.g. by adding a transition
to a bad state when a certain deadline or threshold value is violated. Also for
this class of properties, our methods can be applied.

7 Conclusions

In this report, we present a method to derive parameter constraints for LHA,
that guarantee the same behavior as for a reference valuation of the parameters.
This inverse method has been recently introduced for deriving timing constraints
for timed automata. Here, we provide the extension of the method to LHA.
Furthermore, it is shown how the reachability procedure can be adapted to
enable the analysis of systems with affine dynamics.

The method can be used to attack the parameter synthesis problem for LHA,
by generalizing a reference valuation that is known to guarantee a good behav-
ior. By early pruning of invalid states, the method is more efficient than the
parameter synthesis based on standard reachability analysis. Repeated analysis
for different starting points yields a “behavioral cartography”. This allows to
cover large parts of the initial state space of nondeterministic hybrid systems,
thus providing an alternative tool to the symbolic simulation method of [1].

The extended algorithms have been implemented in the tool IMITATOR.
The tool has been demonstrated on a hybrid system benchmark, a distributed
temperature control system. A good coverage of the parameter space can be
achieved with our method, while standard parameterized reachability analysis
fails.
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A Notational Conventions

a action
g guard
i, j index
m,n natural number
p parameter
q location
s state
t real number
u, v, w valuation (point)
x, y continuous variable
C constraint
D flow constraint (convex set of time derivatives)
I invariant
K parameter constraint
M total number of parameters
N total number of clocks
P set of parameters
Q set of locations
R run
S set of states
T trace
X set of continuous variables
Z set of parameter constraints
�, � integers
� step size for behavioral cartography
� jump relation
� parameter valuation (point)
� alphabet
A parametric linear hybrid automaton
ℒ set of convex linear constraints
V set of valuations
ℕ the natural numbers
ℤ the integers
ℝ the real numbers
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