
Laboratoire Spécification & Vérification

École Normale Supérieure de Cachan
61, avenue du Président Wilson
94235 Cachan Cedex France

Distributed Synthesis with
Incomparable Information

Béatrice Bérard, Serge Haddad,
Mathieu Sassolas, and Marc Zeitoun

Research Report LSV-10-17

Distributed Synthesis with Incomparable Information

B. Bérard1? ??, S. Haddad2? ??, M. Sassolas1??, M. Zeitoun2,3?

1 Université Pierre & Marie Curie, LIP6/MoVe, CNRS UMR 7606, Paris, France.
E-mail: {Beatrice.Berard,Mathieu.Sassolas}@lip6.fr

2 ENS Cachan, LSV, CNRS UMR 8643 & INRIA, Cachan, France.
E-mail: {Serge.Haddad,mz}@lsv.ens-cachan.fr

3 Univ. Bordeaux, LaBRI, CNRS UMR 5800, Bordeaux, France.

Abstract. Given (1) an architecture defined by processes and communication channels between them
or with the environment, and (2) a specification on the messages transmitted over the channels, dis-
tributed synthesis aims at deciding existence of local programs, one for each process, that together meet
the specification, whatever the environment does. Recent work shows that this problem can be solved
when a linear preorder sorts the agents w.r.t. the information received from the environment.
In this paper we show a new decidability result in the case where this preorder is broken by the
addition of noisy agents embedded in a pipeline architecture. This case cannot be captured by the
classical framework. Besides, this architecture makes it possible to model particular security threats,
known as covert channels, where two users (the sender and the receiver) manage to communicate via a
noisy protocol, and despite incomparable views over the environment.
Keywords: distributed synthesis, games, tree automata, covert channels

1 Introduction

Distributed synthesis. Synthesis aims at automatically implementing a specification, often expressed
in some high-level logical language, into a program that fulfills this specification. This problem was
first raised by Church [5] for open systems, that is, systems communicating with their environment.
In Church’s problem, the specification is a monadic second order property constraining the sequence
of input/output pairs of the system, and the program is searched as a function whose output at each
time may depend on all preceding inputs. Church’s problem can be reduced to the nonemptiness
problem for tree automata [16], yielding a finite state implementation, if there is one.

The synthesis problem can be parametrized by the type of systems considered, the specification
language and the requirements on the programs synthesized. Here, we consider open, distributed,
and synchronous systems. As explained, open means that the system communicates with its envi-
ronment. Distributed means that the system is split over several components called processes, each
of which receives part of the input provided by the environment. A communication architecture
describes how processes may communicate with each other. Finally, synchronous means that there
is a global clock: at each clock tick, the environment provides inputs to the processes, computa-
tions and communications between the processes are performed, and outputs to the environment
are produced. For simplicity, we assume that communications are instantaneous (no delays), and
we only work with acyclic architectures. For specifications, we consider branching time properties
(e.g. CTL∗). Since the system is synchronous, its configuration at any time is the value of all in-
put/output/communication channels, and the specifications express properties of the computation
trees of such configurations, produced by the system and the environment.
? Partly supported by project DOTS (ANR-06-SETI-003).
?? Partly supported by Région Île-de-France: project CoChaT DIGITEO-2009-27HD.

{Beatrice.Berard,Mathieu.Sassolas}@lip6.fr
{Serge.Haddad,mz}@lsv.ens-cachan.fr

Related work. In the centralized case, the synthesis problem can be seen as a two-player infinite
game between the system and the environment [20], and is 2EXPTIME-complete [12], or as a control
problem in a reactive environment [11]. In the distributed case, synthesis is more difficult due to
incomplete information. It remains decidable (but non-elementary) for CTL∗ properties over pipeline
architectures [17,13], shown on Fig. 1, where arrows depict communications or outputs. The decision
procedure consists in (1) solving the game for the centralized case, viewing the architecture as a
single process, and (2) distributing iteratively the centralized program obtained at stage (1): at each
iteration step, one only considers two processes. The first step is illustrated in Fig. 1: it considers
process P1 and an abstract process encapsulating all other processes (shown dashed). Once correct
implementations for the abstract process have been characterized (by an automaton), one iterates
the procedure for this abstract process, split into P2, and an abstract process encapsulating P3 to
Pn.

Environment P1 P2 P3 Pn−1 Pn· · ·

Fig. 1. Pipeline architecture.

The core of the decidability result of [13] relies on constructing, from a specification ϕ given by
a tree automaton Aϕ, another automaton A′ϕ accepting strategies TR of the abstract process such
that there exists a strategy TS for process P1 whose composition, TS .TR, fulfills the specification ϕ:

TR is accepted by A′ϕ ⇐⇒ ∃TS , TS . TR is accepted by Aϕ (†)

Results from [17,13] were generalized in [6], which establishes a simple syntactical criterion on
the architecture for synthesis to be decidable: decidable architectures are exactly those where the
set of processes can be linearly (pre)ordered according to the information from the environment
known by each process. Thus, the pipeline is indeed the typical decidable architecture.

Several attempts have been made to extend this decidability result. At a generic level, the game
approach in [3] gives a behavioral characterization of distributed games for safety properties that
admit finite memory winning strategies. Another line of work consists in restricting the specifications
to enlarge the class of decidable architectures. Local specifications, for instance, only constrain for
each process its own output depending on its own input. For LTL local specifications, synthesis
is decidable for a slightly larger class of architectures, called doubly flanked pipelines [14]. On the
other hand, if specifications are not allowed to restrict internal communications, then the distributed
synthesis problem always admits a positive answer for linearly ordered architectures whose channels
have enough bandwidth [7]. Embedding adversaries, modeled as nondeterministic whiteboxes (which
are processes that cannot be constrained) has been considered in [19]. In general, this model yields
undecidability, and one possible solution is to partly perform the distribution by hand. Our work
can be seen as a specialization of this framework to obtain decidability results.

Contributions.
(1) We introduce in Section 3 the noisy pipeline (Fig. 2), an architecture extending the pipeline

from [17]. It is made of n processes P1, P2, . . . , Pn, cooperating to fulfill a specification, communi-
cating synchronously through a noisy environment modeled by opposing agents N2, . . . , Nn. At
each round, information flows from P1 to Pn. Process Pi gets a message from Ni (with N1 = Env,

the “external” environment) and transmits a message to Ni+1, which then adds noise to its in-
put, and transmits the resulting message to Pi+1, and so on. There is no communication delay.
The architecture is fixed, but two parameters come into play:
– the goal of processes P1, . . . , Pn, specified by a property linking the input from the environ-

ment and the messages transmitted by P1, . . . , Pn;
– the computation power of each agent Ni, i.e., its ability to add noise.

Env = N1 P1 N2 P2 Nn Pn· · ·

Fig. 2. The noisy pipeline

If each Ni is constrained to forward to Pi the very same input it receives from Pi−1, then there
is actually no noise and we recover the usual pipeline. On the other hand, if this is not the case,
the noisy agents may create incomparable information. For this reason, we need to introduce in
Section 2 new constructions on trees, completing those of [13].

(2) We show in Section 4.1 that allowing the specification to talk about all channels makes synthesis
undecidable for n ≥ 2, by simulating the basic undecidable architecture from [17].

(3) Our main result (Section 4.2) states that distributed synthesis for noisy pipelines is decidable if
we disallow the specification to constrain the agents Ni. Instead, we require Ni to behave like
a nondeterministic finite state input/output machine.

Due to the noise produced by the intermediate adversaries Ni, processes P1, . . . , Pn have
incomparable knowledge w.r.t the environment, so that the aforementioned results do not apply.
Our decidability result may even seem surprising, since incomparable information (called fork
in [6]) leads to undecidability. This is not the case here, because the undecidability result of [6]
relies on the ability to specify on each and every channel.

Here, the adversaries Ni, i > 1, are themselves distributed, embedded between processes Pi.
Each Ni only has a local knowledge, namely the output of Pi−1. As in [13], the decidability result
relies on an iterative procedure, but the core equation (∗), to be explained later, involves an
additional quantifier alternation, over the strategy TN of the noisy adversary (compare to (†)):

TR accepted by A′ϕ ⇐⇒ ∃TS ∀TN , TS . (TN I Eλ(TR)) accepted by Aϕ (∗)

(4) Finally, we apply this result to covert channel analysis (Section 5), an important issue in security.
We show how detecting unforeseen information leaks that can be exploited by malicious agents
reduces to solving distributed synthesis for a noisy architecture.

2 Constructions on trees

2.1 Words and trees

For an alphabet X, let X∗ be the set of finite words on X. In the sequel, X, Y , Z, U are finite
alphabets, with X = {x1, . . . , xn}, Y = {y1, . . . , yp}, Z = {z1, . . . , z`} and U = {u1, . . . , um}.

A tree branching on X and labeled by Y , called a X-Y -tree, is a (total) function T : X∗ → Y ,
also called a labeling function. We extend the labeling function into a mapping T̂ : X∗ → Y ∗

collecting all labels (except the first one) encountered when reading a word: for a1a2 · · · ak ∈ X∗
with ai ∈ X, we define:

T̂ (ε) = ε and T̂ (a1a2 · · · ak) = T (a1)T (a1a2) · · ·T (a1a2 · · · ak).

A tree is also called a strategy for a process reading on alphabet X and writing on alphabet Y . The
intuition is that on a path starting from the root, the directions are moves of the first player, while
the labels encountered on nodes are the moves of the second player prescribed by the strategy. The
play according to an X-Y -tree T on input w ∈ X∗ is T (ε)T̂ (w).

Two-layer trees. We introduce two-layer trees, a technical tool used to formalize our synthesis
problem. Nodes in such a tree are words where letters from X and Y alternate. When the last
letter is from X, the node is not labeled (indicated by a ⊥ symbol). Such a tree is depicted in the
middle of Fig. 4. They could be seen as trees branching on X × Y , but the operations (contraction,
expansion) are defined more naturally with two-layer trees.

Definition 1. Let ⊥ /∈ Z. A two-layer tree branching on X and Y , labeled by Z, also called an
(X;Y)-Z-tree, is a (total) function T : (XY)∗ ∪ (XY)∗X → Z ∪ {⊥}, such that T

(
(XY)∗

)
⊆ Z

and T
(
(XY)∗X

)
= {⊥}.

Operations on trees. The composition of two trees is standard. For T1, an X-Y -tree, and T2, a Y -Z-
tree, the composition T1.T2 is theX-(Y ×Z)-tree T given by T (w)=

(
T1(w), T2(T̂1(w))

)
for w ∈ X∗.

The construction at one level is pictured in Fig. 3 (where the label of the topmost node has been
omitted for simplicity). The transformation proceeds inductively top-down: the subtree attached
under the node labeled (yα(k), zβ(α(k))) is the composition of the tree under the node labeled yα(k)
in T1 with the tree under the node labeled zβ(α(k)) in T2. Note that it differs from the composition
in [13] which introduces a delay.

yα(1)

x1

· · · yα(n)

xn

zβ(1)

y1

· · · zβ(p)

yp

(yα(1), zβ(α(1)))

x1

· · · (yα(n), zβ(α(n)))

xn. =

Fig. 3. Composition.

The next technical operations we introduce, pictured in Fig. 4–5, are new. They involve two-
layer trees. The first one, called contraction, consists in selecting a direction at every node of an
even level of a two-layer tree T2 according to the labels of an ordinary tree T1.

Definition 2. Let T1 be an X-Y -tree and let T2 be an (X;Y)-Z-tree. Define the contraction T =
T1 I T2 of T2 with respect to T1 as the following X-Z-tree: for w = a1 · · · ak ∈ X∗, let T̂1(w) =
b1 · · · bk ∈ Y ∗. Then T (w) = T2(a1b1 · · · akbk).

yα(1)

x1

. . . yα(n)

xn

⊥

z1,1

y1

. . . z1,p

yp

x1

. . . ⊥

zn,1

y1

. . . zn,p

yp

xn

z1,α(1)

x1

. . . zn,α(n)

xn

I =

Fig. 4. Contraction.

Again, this operation is an inductive application of a local rewriting, as shown in Fig. 4. The
construction proceeds under the node labeled zk,α(k) by combining the subtree of T1 under the node
labeled yα(k) and the subtree of T2 under the node labeled zk,α(k).

zα(1)

u1

. . . zα(m)

um
⊥

z1,1

y1

. . . z1,p

yp

x1

. . . ⊥

zn,1

y1

. . . zn,p

yp

xn


Eλ =

where zi,j = zα(h) with h given by λ(xi, yj) = uh.

Fig. 5. Expansion w.r.t. function λ.

An expansion w.r.t. to a function λ, produces a two-layer tree from an ordinary tree. In the
resulting two-layer tree, the label after following successively directions x and y is as the one after
following direction λ(x, y) in the original (ordinary) tree.

Definition 3. Let λ : (X×Y)→ U , and define λ̄ : (XY)∗ → U∗ as follows: for w = a1b1a2b2 . . . akbk ∈
(XY)∗, let λ̄(w) = λ(a1, b1)λ(a2, b2) . . . λ(ak, bk). The expansion of a U -Z-tree T according to λ is
the (X;Y)-Z-tree T ′ = Eλ(T) defined by T ′(w) = T (λ̄(w)).

2.2 Tree automata (TA)

For any finite set Z, let B+(Z) be the set of positive propositional formulas on Z, defined by the
following grammar (where t and f denote true and false, respectively):

ϕ ::= t | f | z ∈ Z | ϕ ∧ ϕ | ϕ ∨ ϕ.
A subset Y of Z satisfies ϕ ∈ B+(Z), noted Y � ϕ, if the truth assignment mapping elements
of Y to t and elements of Z \ Y to f satisfies ϕ. Any formula of B+(Z) can be put in equivalent
disjunctive normal form

∨
i

∧
j zi,j .

A parity alternating tree automaton (ATA) on X-Y -trees is given by a tuple 〈Q,Qi, δ, P, α〉
where Q is a set of states, Qi ⊆ Q is the set of initial states, δ : Q × Y → B+(Q × X) is the
transition function, and α : Q → P is the acceptance condition, with P = {0, . . . , pmax} a set of
priorities.

A run ρ of an ATA 〈Q,Qi, δ, P, α〉 on an X-Y -tree T is an unranked tree labeled by Q × X∗
(unranked means here that the number of successors of a node is not constant) such that:
– the root node is labeled by (q, ε) for some state q ∈ Qi,
– for any node u of ρ labeled by (q, w), there is a subset S = {(q1, a1), . . . , (qk, ak)} of Q×X such

that S � δ(q, T (w)) and u has k successors in ρ labeled by (q1, wa1), . . . , (qk, wak).
A run is accepting if on all infinite branches, the smallest priority visited infinitely often is even. A
tree T is accepted by A if there exists an accepting run on T . We write L(A) for the set of trees
accepted by ATA A. An ATA whose transition relation yields only formulas that can be put in the
form

∨
i

∧|X|
j=1(qi,j , xj) is called nondeterministic (NDTA).

In the case of two-layer trees, the notion of ATA can be adapted by defining the transition
function in two parts, one for each layer. Thus w.l.o.g. we assume in the sequel that the states of such
an automaton are partionned into two subsets, corresponding to even and odd levels. Furthermore
the acceptance condition is specified only on the states of the even levels (the original condition can
be recovered with additional finite memory).

Classical results on TA. The class of ATA is closed under complement [15], which is achieved
by negating the acceptance condition and syntactically transforming, in transitions,

∨
i

∧
j zi,j into

∧
i

∨
j zi,j , and exchanging t and f . The acceptance condition is negated by taking P = {0, . . . , pmax+

1} and α(q) = α(q) + 1 for q ∈ Q as a new acceptance condition. Alternating tree automata can be
transformed into nondeterministic TA [15]. The resulting NDTA has a size exponential in the number
of priorities of the acceptance condition and in the number of states of the original automaton. It
has a number of priorities polynomial in the number of states and in the number of priorities of the
original ATA.

3 Architectures with noisy nondeterministic adversaries

We present in this section the new setting of noisy pipelines, an architecture depicted in Fig. 6. It
includes noisy agents Ni, who together with the environment, are the adversaries of the processes
P1, . . . , Pn. Given a CTL∗ specification over the channels contents, the problem is to decide if there
are strategies for processes Pi, so that, whatever the behavior of the environment and of the noisy
adversaries, the system meets the specification.

Env P1 N2

A2

P2 Nn

An

Pn. . .Y0 X1 Y1 X2 Xn−1 Yn−1 Xn

ϕ ∈ CTL∗(Y0 ×X1 ×X2 · · · ×Xn)

Fig. 6. Noisy architecture with (adversary) noisy agents.

Our main result (Theorem 8 below) states that if the specification does not specify the output
channels of the noisy agents, synthesis is still decidable, despite incomparable information. The
behavior of noisy agents Ni is specified by nondeterministic input/output finite-state machines Ai,
the noisy automata defined below: upon receiving an input x ∈ X, Ai nondeterministically changes
its state, and then outputs y ∈ Y according to its new state and input x.

Definition 4. A Noisy Automaton (NA) is a tuple A = 〈X,Y,Q, q0, δ, λ, F 〉 where
– X is the input alphabet, Y is the output alphabet,
– Q the finite set of states, q0 is the initial state,
– δ : Q×X → 2Q is the transition function,
– λ : X ×Q→ Y is the output function,
– F ⊆ Q is a Büchi acceptance condition.

Noisy Automata can be seen as a special case of alphabetical transducers [2] where for any state,
all incoming transitions on the same letter produce the same output. The Büchi condition allows
to restrict the behavior of an adversary more finely, for example by being able to express fairness
conditions.

Example. In the NA of Fig. 7, all channels are binary (that is X = Y = {0, 1}). The noise is
specified by two modes q= and q 6=, one of which is non-deterministically chosen at the beginning
of the execution and never changed afterwards. The first mode forwards exactly the received bit,
while the second mode sends the opposite of the bit.

qi
q=

0 7→ 0
1 7→ 1

q6=
0 7→ 1
1 7→ 0

0, 1 0, 1
0, 1 0, 1

Fig. 7. NA that either always toggles or always copies the input bit.

Definition 5. Let A = 〈X,Y,Q, q0, δ, λ, F 〉 be an NA. A noise strategy for A is an X-Q-tree T
such that:
– T (ε) = q0,
– for any word u ∈ X∗, and any letter x ∈ X, T (ux) ∈ δ(T (u), x),
– all branches satisfy the Büchi acceptance condition F of A: some state of F is visited infinitely

often.

While there are only two strategies in the above example, there may be an infinite number of
them in general.

In the pipeline architecture (Fig. 6), a strategy of process Pi is a Yi−1-Xi tree Ti. We are looking
for the existence of a tuple of strategies (T1, . . . , Tn), called a distributed strategy, which, combined
with any tuple (TN2 , . . . , TNn) of strategies for noisy agents, yields a behavior satisfying ϕ. The
problem is formally stated with tree operations in the next definition.

Definition 6. Let (T1, . . . , Tn) be a tuple of strategies for the processes and (TN2 , . . . , TNn) be a
tuple of noise strategies for the agents. The outcome is the Y0-(X1 × · · · ×Xn)-tree T ∗1 defined with
a backward induction below:

T ∗n = Tn and for i = n− 1, . . . , 1, T ∗i = Ti . (TNi+1 I Eλi+1
(T ∗i+1))

where λi : Xi−1 ×Qi → Yi is the output function of Ai.

We now explain the inductive equation. Assume that the Yi-(Xi+1 × · · · ×Xn)-tree T ∗i+1 is the
strategy obtained by combining the strategies of processes Pi+1, . . . , Pn and noisy agentsNi+2, . . . , Nn.
Then the (Xi;Qi+1)-(Xi+1×· · ·×Xn)-tree Eλi+1

(T ∗i+1) represents the same strategy but taking into
account every possible input over Xi noised by any possible choice of noise specified by the output
function λi+1 of Ai+1. Consequently, the Xi-(Xi+1×. . .×Xn)-tree T ′i+1 I Eλi+1

(T ∗i+1) represents the
combination of the strategies of processes Pi+1, . . . , Pn and agents Ni+1, . . . , Nn. The last operation
corresponds to the composition of trees already used by [13] in order to combine the strategies of
two processes.

The construction is illustrated in Fig. 9 for a single noisy agent N between two processes S and
R, with the architecture of Fig. 8. The expansion of TR according to λ is an (X;Q)-O-tree that gives
for any pair consisting of a letter from X and a state of AN the output that would be produced by
R. Contracting this strategy with respect to TN is an X-O-tree that gives for any input on X the
output of the subcomponent N,RX O . Composing with TS gives a I-(X ×O)-tree.

In order to take into account both the input (i.e., the direction) and the label in a tree, [12]
associates with a tree T a new tree xray(T), defined by xray(T)(wa) = (a, T (wa)) (choosing a
dummy direction at the root).

Definition 7. A distributed strategy (T1, . . . , Tn) is called a winning strategy for specification ϕ if
for any tuple of strategies (TN2 , . . . TNn) the tree xray(T ∗1) satisfies ϕ.

Env S N

AN

R
I X Y O

Aϕ

o1

y1

. . . op

ypTR =

qk1

x1

. . . qkn

xnTN =

Fig. 8. Noisy architecture for a pair of processes, and strategies TN , TR.

⊥

o1,1

q1

. . . o1,`

q`

x1

. . . ⊥

on,1

q1

. . . on,`

q`

xn

Eλ(TR) =

where oi,j = oh when λ(xi, qj) = yh
o1,k1

x1

. . . on,kn

xnTN I Eλ(TR) =

Fig. 9. Composition of strategies.

4 The synthesis problem

The synthesis problem for n processes aims at deciding, given a specification ϕ and n noisy automata,
whether there exist winning strategies for the processes.

Example (contd.). Consider the architecture of Fig. 8 where the NA is given in Fig. 7. The goal
specification states that the output O exactly matches the input I, that is, in CTL: AG (I = O).
Intuitively, it should be clear that the processes S/R cannot have winning strategies, because the
input received by R is meaningless due to the power of the noisy agent N .

4.1 Specifying all channels of a noisy pipeline

One could argue that noisy pipelines could be specified by giving a formula constraining the values
of all channels, adapting the definition of an outcome to keep in the new T ∗1

′ the value of Yi.
However, even in the particular case where n = 2, ϕ is an LTL formula, and N is unconstrained,
as Ω in Fig. 10(a), such specification would allow a simulation of the architecture of two processes
in parallel, as Θ in Fig. 10(b). The synthesis problem for Θ was proved undecidable by Pnueli
& Rosner [17]. The simulation, stated in Theorem 14 (Appendix A), relies on the fact that the
information N gets by observing X cannot help the adversaries winning if the processes already
have winning strategies.

Env S N R
I X Y O

ϕ ∈ LTL(I ×X × Y ×O)

(a) Noisy architecture Ω specified on all channels.

Env
P0

P1

I X

Y O

ϕ ∈ LTL(I ×X × Y ×O)

(b) Architecture Θ, from [17].

Fig. 10. Equivalent undecidable architectures.

4.2 The decidability result for noisy pipelines

We now show the main result of this paper:

Theorem 8. Given a noisy pipeline with n processes and a CTL∗ specification, the synthesis problem
can be decided in k-EXPTIME where k ∼ 2n.

Preliminary stage. Before describing the decision procedure, we recall a standard preliminary
stage [13] that transforms a CTL∗ formula ϕ on Y0 × X1 × X2 · · · × Xn into an NDTA Aϕ on
Y0-(X1 ×X2 · · · ×Xn) trees. The first step is to build an ATA A1 on Y0-(Y0 ×X1 ×X2 · · · ×Xn)
trees such that L(A1) is exactly the set of trees satisfying ϕ. In a second step, A1 can be translated
into an ATA A2 on Y0-(X1 ×X2 · · · ×Xn) trees such that a tree T is accepted by A2 iff xray(T)
is accepted by A1. Finally, the classical construction [15] yields an equivalent NDTA Aϕ, with a
number of states doubly exponential and a number of priorities exponential in the size of ϕ.

Principle of the decision procedure. The technique used here is based on iterative encapsulation
and decomposition. The first problem solved is the case of process P1, noisy agent N1 and an
abstract process K1 encapsulating the remaining processes and noisy agents, with a technique
described below. Then the resulting automaton which specifies winning strategies for K1 becomes
the new specification to be satisfied on the architecture {P2, N2, . . . , Nn, Pn}. The last step yields
an automaton that specifies the winning strategies for Pn, for which it remains to test the emptiness
of its tree language. Thus, the problem reduces to the case where n = 2, illustrated in Fig. 8.

Decision procedure for one pair of processes. Given an NDTA Aϕ and NA AN , the goal is to decide
whether there exists a winning pair of strategies (TS , TR), where strategy TS of S is an I-X-tree,
and strategy TR for R is a Y -O-tree. More precisely, by a sequence of transformations illustrated in
Fig. 11, we build an automaton A′ϕ accepting strategies TR for R such that there exists a strategy
TS for S winning against all strategies TN of N , as formalized in (∗) (page 3).

Aϕ A A K B

CDA′ϕ

NDTA ATA ATA NDTA ATA

ATAATANDTA

Prop. 9

polynomial

by comple-
mentation

linear

[15]

exponential

Prop. 10

polynomial

by comple-
mentationlinear

Prop. 11

polynomial

[15]

exponential

AN

λN

Fig. 11. Sequence of transformations from Aϕ to D or A′ϕ.

By a construction à la Kupferman & Vardi [13], an ATA on X-O-trees A can be built from Aϕ
accepting strategies for the abstract process (N,R) such that there exist a strategy for S whose
composition satisfies ϕ. More formally:

Proposition 9. Let Aϕ be a NDTA accepting I-(X × O) trees. An ATA A of size polynomial in
|Aϕ| can be built that verifies: an X-O tree T is accepted by A if and only if there exists an I-X-tree
T ′ such that the composition T ′ . T is accepted by Aϕ.

Although this construction, detailed in Appendix B.1, was inspired by the one in [13, Theorem 4.1],
it differs slightly since our semantics for composition does not involve a delay. The construction of
Proposition 9 corresponds to extracting a tree automaton accepting strategies T to be implemented
by the architecture (N,R), i.e. such that there exists a strategy TS for S and TS . T is accepted by
Aϕ. Moreover, A is an ATA with a polynomial number of states (resp. priorities) in the one of Aϕ.
Therefore an alternating automaton A accepting trees rejected by A, of the same size, can also be
built. In order to proceed with the chain (N,R) we transform A into a non deterministic automaton
K at an exponential cost.

In order to obtain an automaton for the strategies of the receiver R, observe that the combination
of the strategies TN (for N) and TR (for R) is described by the expression TN I EλN (TR). Hence:

(1) Given K, we build (in Proposition 10) an alternating automaton B that accepts trees T ′ such
that there exists a strategy TN accepted by AN and TN I T ′ is accepted by K (otherwise stated,
the combined strategy looses).

(2) Complementing B, we obtain an ATA C accepting trees T ′ such that for every strategy TN ac-
cepted by AN , the tree TN I T ′ is rejected by K (otherwise stated, the combined strategy wins).

(3) We build (in Proposition 11) an alternating automaton D that accepts trees TR such that
EλN (TR) is accepted by C, i.e. such that for every strategy TN accepted by AN , TN I EλN (TR)
is rejected by K. Otherwise stated the combined strategy TN I EλN (TR) wins.

Iteration and final step. The automaton D can then be transformed into an NDTA A′ϕ so that
the sequence above can be reiterated in the general case of n processes (Fig. 6). In the final step,
emptiness is tested on the last automaton D of the iterated sequences.

Proposition 10. Given an NDTA K on X-O-trees and an NA AN with state set Q and input
alphabet X, one can effectively construct an ATA B such that an (X;Q)-O-tree T is accepted by B
if and only if there exists an X-Q-tree TN which is a strategy for AN , such that TN I T is accepted
by K.

The size of B is polynomial in that of K and AN , and its number of priorities is polynomial in
that of K.

The proof can be found in Appendix B.2. Now let ATA C be the complement of B: it accepts
(X;Q)-O-trees T such that for any strategy TN the composition TN I T is rejected by K, that is,
accepted by A. In order to obtain a Y -O-tree for the strategy of process R, the next step, proved
in Appendix B.3, is to transform C into an ATA D accepting these trees that, expanded according
to the noise function λ = λN of AN , would be accepted by C.

Proposition 11. Given an alternating tree automaton C on two-layer (X;Q)-O-trees and a func-
tion λ : X ×Q → Y , there exists an ATA D accepting Y -O-trees T such that Eλ(T) is accepted by
C. ATA D has a size and number of priorities polynomial in the ones of C.

The last step of deciding the emptiness of the language of D is done in time doubly exponential
w.r.t. the size of D [15,9]. Remark that in the course of the encapsulation procedure described
above, R (in this case the encapsulated chain) must be specified by an NDTA A′ϕ. Hence, ATA

D is transformed, at exponential cost, into an NDTA A′ϕ. The complete step of an encapsulation
iteration has a doubly exponential blowup: |A′ϕ| = 22

O(|Aϕ|) . Therefore the procedure for n processes
is in k-EXPTIME with k ∼ 2n, hence it is non-elementary.

Example (end). Again for the architecture of Fig. 8 where the NA is given in Fig. 7, applying the
sequence of transformations of Fig. 11 (see Appendix C), we obtain an automaton that does not
accept any tree, consistently with intuition.

5 Application to covert channel analysis

Covert channels are unforeseen information leakages in systems, exploited by agents who can ille-
gally transfer messages, bypassing the system’s security policy. Well-known examples are described
in [18,21] for TCP/IP, in which reserved fields of IP packets were used to transmit information.

Covert channel are threats both for security and performance, and several attempts have been
made to formalize their existence and detection. The first line of studies, proposed in [1], focused on
security policies. Yet, access control does not provide complete solutions for protecting information.
Another direction, initiated by [8], consists in representing protocols or systems by models, on which
qualitative properties like non-interference [10] or opacity [4] describe the power of observation
to discover secret information. However, enforcing these properties overconstrains the system by
blocking most communications. Detection and control of covert channels is a weaker requirement,
hence a more realistic approach. In previous works, the relationship between input and output in
the covert channel is equality, possibly with a bounded delay.

The framework depicted in Fig. 8 (Section 3) represents a typical architecture for a covert
channel: processes S and R want to establish a unidirectional communication, from sender S to
receiver R, over some protocol that should not allow them to do so. The protocol itself is modeled
by the noisy automaton AN for agent N , which can be seen as non-deterministically adding noise
to the input X from S. More precisely:

– Information I has to be transmitted by sender S over the covert channel and O corresponds to
the interpretation of information Y received by R.

– The noisy agent N represents the operating system or the legal communication protocol and
non-determinism is necessary to model the behavior of the other users or internal states of the
system unknown to the processes participating in the covert communication.

– Formula ϕ allows us to express more than simple equality between inputs and outputs. Further-
more, integrating output X of S in the specification ϕ enables to express requirements about the
way the transmission is hidden to the system. The behavior of output Y is not specified in ϕ
since it is already defined by the input/output machine.

In this distributed game, there is a covert channel if and only if there is a winning strategy for S and
R satisfying the global specification ϕ, for any strategy of N following the specification AN . The
synthesis result thus solves a general covert channel detection problem: if the answer is positive,
there is a distributed program satisfying ϕ, making it possible for S and R to communicate despite
N . A negative answer (as in the example of Section 4) shows that no perfect communication can
arise. Expressing the specification ϕ in CTL∗ enriches former results where only equality between
input and output was considered.

6 Summary and perspectives

We have extended distributed synthesis to a framework in which processes are incomparable with
respect to the information they get from the environment, by introducing intermediate adversaries
in a pipeline. While specifying on the value of all channels makes the synthesis problem undecid-
able, describing the adversary power by a nondeterministic finite-state machine makes the synthesis
problem decidable, albeit with nonelementary complexity. We showed that this new framework is
well suited to model covert channels.

Using the main construction of [13], the decidability proof may be extended to the case where
nodes participating to the covert channel also output messages to the environment, that the spec-
ification can also constrain. It can also be adapted to the case where we add some fixed delays in
the pipeline, to model for instance latency in the network.

However, our decision procedure does not yield winning strategies (when they exist). Computing
the strategies in the case of (†) could correspond to building an automaton ATRϕ such that

TS is accepted by ATRϕ ⇐⇒ TS . TR is accepted by Aϕ (‡)

In our case, a similar approach would be to build ATRϕ such that

TS accepted by ATRϕ ⇐⇒ ∀TN , TS . (TN I Eλ(TR)) accepted by Aϕ (∗∗)

which amounts to solving a “dual” synthesis problem: building ATRϕ such that TS is rejected by ATRϕ
iff there exists TN,R such that TS . TN,R is rejected by Aϕ. This can also be seen as a reverse form
of (†), quantifying on the right component instead of the left. Unfortunately the set of such wining
strategies is not necessarily regular and the existence of automaton ATRϕ is not ensured. So other
techniques should be developed.

Besides, we could add a back arc from the noise Ni to the process Pi−1, to model the fact that
the latter partially observes a posteriori the strategy of the former. It would also be interesting to
identify larger classes of architectures where the synthesis problem remains decidable, starting e.g.,
from uniformly well-connected architectures [7].

References

1. Bell, D.E., Lapadula, L.J.: Secure computer systems: mathematical foundations. Technical Report 2547, MITRE
(1973).

2. Berstel, J.: Transductions and Context-Free Languages. BG Teubner (1979).
3. Berwanger, D., Kaiser, Ł.: Information tracking in games on graphs. Journal of Logic, Language and Information

(2010).
4. Bryans, J.W., Koutny, M., Mazaré, L., Ryan, P.Y.A.: Opacity generalised to transition systems. International

Journal of Information Security 7(6) (2008) 421–435.
5. Church, A.: Logic, arithmetics, and automata. In: Proc. Int. Congr. Math. (1962) 23–35.
6. Finkbeiner, B., Schewe, S.: Uniform distributed synthesis. In: Proc. of LICS’05. (2005) 321–330.
7. Gastin, P., Sznajder, N., Zeitoun, M.: Distributed synthesis for well-connected architectures. In Garg, N.,

Arun-Kumar, S., eds.: Proc. of FSTTCS’06. Volume 4337 of LNCS, Springer (2006) 321–332.
8. Goguen, J., Meseguer, J.: Security policy and security models. In: Proc.of ieee symposium on security and

privacy, IEEE Computer Society Press (1982) 11–20.
9. Grädel, E., Thomas, W., Wilke, Th., eds.: Automata, Logics, and Infinite Games. Number 2500 in LNCS.

Springer (October 2002).
10. Hadj-Alouane, N.B., Lafrance, S., Lin, F., Mullins, J., Yeddes, M.: Characterizing intransitive non-interference

in security policies with observability. IEEE Trans. on Automatic Control (2004) 920–925.

11. Kupferman, O., Madhusudan, P., Thiagarajan, P., Vardi, M.Y.: Open systems in reactive environments: Control
and synthesis. In: Proc. 11th Int. Conf. on Concurrency Theory. Volume 1877 of LNCS, Springer-Verlag (2000)
92–107.

12. Kupferman, O., Vardi, M.Y.: Church’s problem revisited. The Bulletin of Symbolic Logic 5(2) (June 1999)
245–263.

13. Kupferman, O., Vardi, M.Y.: Synthesizing distributed systems. In Halpern, J.Y., ed.: Proc. of LICS’01, Wash-
ington, DC, USA, IEEE Computer Society (2001) 389.

14. Madhusudan, P., Thiagarajan, P.S.: Distributed controller synthesis for local specifications. In Orejas, F.,
Spirakis, P.G., van Leeuwen, J., eds.: Proc. of ICALP’01. Volume 2076 of LNCS, Springer (2001) 396–407.

15. Muller, D.E., Schupp, P.E.: Simulating alternating tree automata by nondeterministic automata: new results and
new proofs of the theorems of Rabin, McNaughton and Safra. Theor. Comput. Sci. 141(1-2) (1995) 69–107.

16. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc. of POPL’89, ACM (1989) 179–190.
17. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In: Proc. of FOCS’90. Volume II,

IEEE Computer Society Press (1990) 746–757.
18. Rowland, C.: Covert Channels in the TCP/IP Protocol Suite. First Monday, Peer reviewed Journal on the

Internet (July 1997).
19. Schewe, S., Finkbeiner, B.: Semi-automatic distributed synthesis. International Journal of Foundations Computer

Science 18(1) (2007) 113–138.
20. Thomas, W.: Church’s problem and a tour through automata theory. In: Pillars of Computer Science. Volume

4800 of LNCS, Springer (2008) 635–655.
21. Trabelsi, Z., El Sayed, H., Frikha, L., Rabie, T.: A novel covert channel based on the IP header record route

option. Int. J. Adv. Media Commun. 1(4) (2007) 328–350.

A Equivalence of architectures Ω and Θ from Fig. 10

In this section we formalize and prove the claim of Section 4.1.
First the notions of outcome and winning strategy need to be formally defined in this new setting

for both games. In the case of Ω, the composition of strategies only involves classical operations on
trees, while for Θ, some simple constructions are introduced. We then state and prove the equivalence
of the models.

Let πZ denote the projection of a word on the alphabet Z (seen either as the tuple projection or
as the letter-erasure morphism). The set of infinite words over an alphabet Z is denoted by Zω. For
a (finite or infinite) word w = z1z2 . . . and 0 ≤ n ≤ |w| (the length of w), the word w≤n = z1 . . . zn
is the prefix of length n of w.

The superposition of the I-X-tree TIX and the Y -O-tree TY O is the (I × Y)-(X × O)-tree
TIX ⊕ TY O, depicted in Fig. 12 and defined for w ∈ (I × Y)∗ by:

(TIX ⊕ TY O)(w) = (TIX(πI(w)), TY O(πY (w))).

x1

i1

· · · xn

in

T1 Tn

o1

y1

· · · op

yp

T ′1 T ′p

(x1, o1)

(i1, y1)

· · · (xn, op)

(in, yp)

T1 ⊕ T ′1 Tn ⊕ T ′p

⊕ =

Fig. 12. Superposition of strategies.

We consider in this section an LTL formula ϕ. Note that although more complicated (e.g. CTL∗)
formulas could be used in the same setting, LTL is sufficient in [17] to prove undecidability of the
synthesis problem.

Definition 12. The semantics of Ω is defined as follows:
– Let (TS , TR) be a pair of strategies for S and R, respectively, and TN a strategy for N . The

outcome of Ω is
TΩ = xray(TS . xray(TN . xray(TR))).

– A pair of strategies (TS , TR) is winning for specification ϕ if for any strategy TN , and any word
w ∈ Iω, TΩ(w) � ϕ.

Definition 13. The semantics of Θ is defined as follows:
– Let (T0, T1) be a pair of strategies for P0 and P1, respectively. The outcome of Θ is

TΘ = xray(T0 ⊕ T1).

– A pair of strategies (T0, T1) is winning for ϕ if for any word w ∈ (I × Y)ω, TΘ(w) � ϕ.

Note that in the above definitions tuples of tuples are assumed to be flattened. In Ω, for a
given TN , the validation of ϕ for any input from the environment is equivalent to the verification
of TΩ � Aϕ. In Θ, the validation of ϕ for any input from the environment is equivalent to the
verification of TΘ � Aϕ.

Theorem 14. Let ϕ be an LTL specification. Processes S and R of architecture Ω have a winning
strategy for ϕ if and only if processes P0 and P1 of architecture Θ have a winning strategy for ϕ.

Proof. If Ω has winning strategies. Suppose (TS , TR) is a pair of winning strategies for ϕ. We
shall show that these strategies can be used as strategies for P0 and P1, respectively.

Let w be a word of (I × Y)ω. Let u = πI(w) (the “I component of w”) and v = πY (w) (the “Y
component of w”). Let TN be the X-Y -tree such that TN (t) = v|t|, i.e. the tree whose labels are vn
at depth n. Now consider TΩ as in Definition 12. Since (TS , TR) are winning strategies, TΩ(v) � ϕ.
On the other hand, consider TΘ as in Definition 13 (with T0 = TS and T1 = TR). For n ≥ 0, if
wn = (un, vn),

TΩ(u≤n) =
(
un, TS(u≤n), TN (T̂S(u≤n)), TR(T̂N (T̂S(u≤n)))

)
= (un, TS(u≤n), vn, TR(v≤n))

TΩ(u≤n) = (un, T0(u≤n), vn, T1(v≤n))
while TΘ(w≤n) = (un, vn, T0(u≤n), T1(v≤n))

Therefore TΘ(w) = TΩ(u) (up to a reordering of the 4-uple components), hence TΘ(w) � ϕ, so
(T0, T1) is a pair of winning strategies.

If Θ has winning strategies. Suppose (T0, T1) is a pair of winning strategies for ϕ. We shall show
that these strategies can be used as strategies for PS and PR, respectively.

Let u ∈ Iω be an infinite word and TN an X-Y -tree (a strategy for N). Let v = T̂N (T̂S(u)) be the
(infinite) word produced by N upon receiving the word produced by S on input u. Let w = (u, v)
(that is, for n ≥ 0, wn = (un, vn)). Now consider TΘ as in Definition 13. Since (T0, T1) are winning
strategies, TΘ(w) � ϕ. On the other hand, consider TΩ as in Definition 12 (with TS = T0 and
TR = T1). For n ≥ 0,

TΘ(w≤n) = (un, vn, T0(u≤n), T1(v≤n))

TΘ(w≤n) = (un, TN (T̂S(u≤n)), TS(u≤n), TR(T̂N (T̂S(u≤n))))

while TΩ(u≤n) =
(
un, TS(u≤n), TN (T̂S(u≤n)), TR(T̂N (T̂S(u≤n)))

)
Therefore TΩ(u) = TΘ(w) (up to a reordering of the 4-uple components), hence TΩ(u) � ϕ, so
(TS , TR) is a pair of winning strategies. ut

Corollary 15. The synthesis problem on architecture Ω is undecidable.

B Proofs for the synthesis decision procedure

B.1 Proof of Proposition 9

Contrary to the composition of [13], there is no initial direction inducing a delay between the action
of T ′ and the ones of T when composing T ′ . T . Hence, the direction over X has to be remembered
in the state of A. More formally, if Aϕ = 〈Qϕ, Qiϕ, δϕ, Pϕ, αϕ〉, then A = 〈QA, QiA, δA, PA, αA〉 is
defined by:

– QA = Q×X
– QiA = Qiϕ ×X;
– for r ∈ Qϕ,

δA((r, x), o) =
∨

(rη)η∈ I∈ δϕ(r,(x,o))

∨
f :I→X

∧
η∈ I

((rη, f(η)), f(η));

– PA = Pϕ
– αA(r, x) = αϕ(r).
This automaton guesses both a strategy T ′ on the fly (through a function f) and a choice in the
original automaton Aϕ. If all guesses were correct one a tree T , as enforced by Aϕ, then the strategy
T ′ that implements the choices for f , when composed with T ′ is accepted by Aϕ.

B.2 Proof of Proposition 10

Construction. First, we build K the NDTA accepting the complement of L(A). Suppose K =
〈K,Ki, κ, PK, αK〉 and AN = 〈X,Y,Q, q0, δN , λ, F 〉, with PK = {0, . . . , p} and, for k ∈ K and
o ∈ O,

κ(k, o) =
∨

c∈C(k,o)

|X|∧
i=1

(kc,i, xi)

where C(k, o) represents the non-deterministic choice of κ. If p is even, then let P = {0, . . . , p,
p+ 1}; otherwise let P = {0, . . . , p, p+ 1, p+ 2}. In the sequel of the proof, pmax denotes the highest
element of P , in this case the odd integer p+ 1 or p+ 2.

Alternating tree automaton B on (X;Q)-O-trees is the tuple

B = 〈(K ×Q× P) ∪ (K ×Q× P ×X), (Ki × {q0} × {pmax}), δ, P, α〉

where δ is defined by the following equations:

δ((k, q, `), o) =
∨

c∈C(k,o)

|X|∧
i=1

((kc,i, q, `
′, xi), xi) where `′ = min(`, αK(kc,i)) (1)

δ((k, q, `, x),⊥) =
∨

q′∈δN (q,x)

((k, q′, `′), q′) where `′ =
{
pmax if q ∈ F
` otherwise (2)

Intuitively, on the X-layer, B acts like K, while on the Q-layer, the choice of the adversary N is
simulated. The value ` indicates for each state the lowest priority encountered since visiting a state
of F . The labeling of the acceptance condition is

α(k, q, `) = pmax and α(k, q, `, x) =

{
` if q ∈ F
pmax otherwise

(3)

Correctness. First remark that acceptance condition α is the conjunction of αK and F . More
precisely, for any infinite sequence ρ of states of B, ρ is accepted with respect to α if and only if
the projection of the states onto K is accepted with respect to αK and in the projection of states
onto Q, states of F appear infinitely often. In the following, we will abusively write that states are
“in F ” if their Q component is, and denote the priority of the K component of a state s simply
by “the priority of s with respect to αK”. Note that only states of K × Q × P × X matter in the
accepting condition. That amounts to considering the acceptance condition only at odd levels of the
tree, since (1) ensures that any node at even level will be labeled by a state of priority higher than
its children.

Suppose ρ is accepted with respect to α. Then the lowest priority appearing infinitely often, p0,
which is even, cannot be pmax, which is odd, hence by (3) F appears infinitely often in ρ. In addition,
with infinite occurrences of F , the lowest priority p0 appearing infinitely often with respect to α is
the same as the one with respect to αK . Indeed, if p0 appears infinitely often for α, then it appears
infinitely often as the lowest priority with respect to αK between two occurrences of F , therefore
appears infinitely often. Any other lower priority p1 < p0 appearing infinitely often with respect
to αK would also appear as the lowest between two occurrences of F infinitely many times, hence
contradicting the minimality of p0. The converse case follows trivially from the previous observation.

Let T be a tree accepted by B and ρ be the corresponding run. Let TN be the X-Q-tree such
defined inductively by TN (ε) = q0 and for w = a1 · · · am ∈ X∗, with T̂N (w) = q1 · · · qm−1, and for
am ∈ X, T (wam) = qm where qm is the only state of Q such that a1q1 · · · amqm is a branch in ρ.
This strategy TN contains exactly the sequence of choices made by ρ on the transitions of B defined
by (2). An illustration of how this construction works locally is depicted on Fig. 13. By definition of
these transitions, the states chosen by TN always respect the transition relation of AN . In addition,
since every branch of ρ is accepting with respect to α, so is it also on its Q components, which
coincide with labels of TN , with respect to F .

Now consider the contraction T ′ = TN I T of T with respect to N . A run ρ′ of T ′ in K, following
the structure of ρ and keeping only the K component of states, can easily be built by (1). A branch
in ρ′ matches a branch in ρ; since ρ is accepted with respect to α, ρ′ is accepted with respect to αK.

Note that if K had been alternating, different choices could have been made on transitions
defined by (2) on different copies. Hence the collection of these choices would not have defined a
strategy TN , where the choice of the next state in AN depends only on the history of inputs on X.

Conversely, let T be a tree such that there exists a strategy TN for AN and K accepts T ′ =
TN I T . Let ρ′ be an accepting run of T ′ in K. Let ρ be the run of T in B whose non-deterministic
choices are the ones of ρ′ on the X level, and the choice of TN on the Q level. Such a run exists by
the definition of δ. Since each branch is accepted by both αK and F , it is also accepted by α.

B.3 Proof of Proposition 11

Suppose C = 〈B,Bi, β, PB, αB〉 The states of B are separated into BX and BQ, and the relation
transition κ is separated in two layers:

βX(b, o) =
∨

c∈C(b,o)

∧
c′∈C′(b,o)

(bc,c′ , xc,c′) (b ∈ BX , bc,c′ ∈ BQ)

and βQ(b,⊥) =
∨

c∈C(b)

∧
c′∈C′(b)

(bc,c′ , qc,c′) (b ∈ BQ, bc,c′ ∈ BX)

o

⊥

o1,1

q1

. . . o1,p

qp

x1

. . . ⊥

on,1

q1

. . . on,p

qp

xn

(k, q)

(kc,1, q)

(kc,1, q
′
c,1)

q′c,1

x1

. . . (kc,n, q)

(kc,n, q
′
c,n)

q′c,n

xn

q

q′c,1

x1

. . . q′c,n

xn

T ρ TN

B

Fig. 13. Obtaining a noise strategy from a run of B. For the sake of readability, irrelevant information (` and x) in
states of ρ has been removed.

Moreover, the parity condition is irrelevant on states of BQ and Bi ⊆ BX , since (X;Q)-O-trees
start by branching on X. Let D = 〈D,Di, δ, PD, αD〉 where D = BX , Di = Bi, PD = PB, αD = αB
and δ is defined by:

δ(d, o) =
∨

c∈C(b,o)

∧
c′∈C′(b,o)

∨
γ∈C(bc,c′)

∧
γ′∈C′(bc,c′)

(bγ,γ′ , λ(xc,c′ , qγ,γ′)) (4)

One step of transition relation δ takes two steps of ATA C. Two layers of branching are collapsed
into one, labeled according to λ. Hence it is straightforward to see that if T is accepted by D, then
Eλ(T) is accepted by C.

Conversely, suppose T is such that T ′ = Eλ(T) is accepted by C. Although T ′ may contain
identical subtrees on which the sub-runs of C differ, this is captured by the nondeterminism in δ
(see equation (4)). The acceptance condition also transfers from a run in C to a run in D.

C Example for the decision procedure

Consider the architecture of Fig. 8 (with I = X = Y = O = {0, 1}) with goal specification
AG (I = O) and NA AN depicted in Fig. 7. More formally, AN has states Q = {qi, q=, q6=} and the
transition relation δN is δN (qi, x) = {q=, q6=}, δN (q=, x) = {q=}, and δ(q 6=, x) = {q 6=}, for x ∈ {0, 1}.
The output function is λ(x, q=) = x and λ(x, q6=) = x, where x is the complement of the bit x. The
output in qi is irrelevant in this case.

An NDTA Aϕ accepting the I-(X × O)-trees where I = O on all branches can be defined as
follows: the state remembers the direction of the branch (hence the input from I) and goes into an
error state if the next symbol read does not match the last direction of the branch on its second
component. More formally, Aϕ has state set K = {ki, k0, k1}, where ki is initial (ki will remain the
only initial state throughout this example). The transition relation δϕ is defined by

δϕ(ki, (x, θ)) = δϕ(kθ, (x, θ)) = (k0, 0) ∧ (k1, 1), and δϕ(kθ, (x, θ)) = f

for x ∈ X and θ ∈ O. Accepted trees are the ones with only infinite branches (formally, states k0
and k1 have priority 0).

First we apply the transformation of Proposition 9 to Aϕ in order to obtain a specification for the
abstract process (N,R). Automaton A has states K ×X and transition relation δA((kθ, x), θ) = f

and
δA((ki, x), θ) = δA((kθ, x), θ) = (((k0, 0), 0) ∧ ((k1, 1), 1))

∨ (((k0, 1), 1) ∧ ((k1, 0), 0))
∨ (((k0, 0), 0) ∧ ((k1, 0), 0))
∨ (((k0, 1), 1) ∧ ((k1, 1), 1))

for x ∈ X and θ ∈ O. Again, all states have priority 0. Note that the second component x in
the states is actually useless, i.e., replacing the state set K × X by K and each state (k, x) by
k does not change the language accepted by A. (This comes from the fact that X is not used in
the specification.) Also remark that the last two conjuncts in the expression of δA((kθ, x), θ) never
yield an accepting run. Indeed, using one of them in a transition would require the target node
to be labeled by both 0 and 1, in order not to reject the run at one of the children of that node.
Therefore, the language accepted by A is the set of trees such that every node has both children
labeled differently.

From this observation, an NDTA K which accepts the complement of A can be directly derived,
without using the algorithm of [15]: it simply proceeds by guessing a node having both its children
labeled by the same bit, as well as this common bit value. The transitions of K are δK(kθ, θ) = t,
δK(kθ, θ) = f , and

δK(ki, θ) = (ki, 0) ∨ (ki, 1) ∨ ((k0, 0) ∧ (k0, 1)) ∨ ((k1, 0) ∧ (k1, 1)) for θ ∈ O.

State ki is assigned priority 1, hence if it appears infinitely often on a branch, the run is not accepted.
Since k0 and k1 appear at most once in each branch, their priority is irrelevant and one can let it
be also 1. Note that this automaton is already nondeterministic, hence no further transformation
step is required.

Now, we shall build automaton B according to the procedure detailed in the proof of Proposi-
tion 10. The set of states of B is (K×Q)∪ (K×Q×X) (since all states of K have the same priority
1, it is useless to remember it in the states of B). The transition relation is, for θ ∈ O, x ∈ X, q ∈ Q,
k ∈ K, and t ∈ {=, 6=}:

δB((ki, q), θ) = ((ki, q, 0), 0) ∨ ((ki, q, 1), 1)

∨ (((k0, q, 0), 0) ∧ ((k0, q, 1), 1))

∨ (((k1, q, 0), 0) ∧ ((k1, q, 1), 1))

δB((kθ, q), θ) = t

δB((kθ, q), θ) = f

δB((k, qi, x),⊥) = ((k, q=), q=) ∨ ((k, q 6=), q6=)

δB((k, qt, x),⊥) = ((k, qt), qt).

All states4 have priority 1, hence infinite branches are rejected.

4 Formally states paired with qi should have priority 3, but since all used priorities are odd, choosing 1 instead does
not change the accepted language.

Finally, the procedure of the proof of Proposition 11 can be applied to the (syntactic) complement
of B, in order to obtain an ATA D accepting Y -O-trees. The transition relation is

δD((ki, qi), θ) = ((ki, q=), 1) ∧ ((ki, q6=), 1) ∧ ((ki, q=), 0) ∧ ((ki, q6=), 0)

∧ ((((k0, q=), 1) ∧ ((k0, q6=), 0)) ∨ (((k0, q=), 0) ∧ ((k0, q6=), 1)))

∧ ((((k1, q=), 1) ∧ ((k1, q6=), 0)) ∨ (((k1, q=), 0) ∧ ((k1, q6=), 1)))

δD((kθ, q), θ) = f

δD((kθ, q), θ) = t

for θ ∈ O and q ∈ Q. Now ki has priority 2, so any infinite branch is accepting.
To show that D does not accept any tree, consider only the two bottom lines of δD((ki, qi), θ),

which is the first transition taken. By distributivity, this yields:

(((k0, q=), 1) ∧ ((k0, q6=), 0) ∧ ((k1, q=), 1) ∧ ((k1, q6=), 0))

∨ (((k0, q=), 1) ∧ ((k0, q6=), 0) ∧ ((k1, q=), 0) ∧ ((k1, q6=), 1))

∨ (((k0, q=), 0) ∧ ((k0, q6=), 1) ∧ ((k1, q=), 1) ∧ ((k1, q6=), 0))

∨ (((k0, q=), 0) ∧ ((k0, q6=), 1) ∧ ((k1, q=), 0) ∧ ((k1, q6=), 1))

In any run, each conjunct yields a labeling of each child of the root by both a state corresponding
to k0 and one corresponding to k1. Hence, whichever symbol will be read then, one of the branches
from the root must be non-accepting, due to the transition δD((kθ, q), θ) = f , thus resulting in a
non-accepting run. Therefore automaton D does not accept any tree.

As a result, there are no strategies for S/R to successfully transmit an arbitrary message through
the noise adversary of Fig. 7, which indeed conforms to the intuition.

	Distributed Synthesis with Incomparable Information
	Introduction
	Distributed synthesis.
	Related work.
	Contributions.

	Constructions on trees
	Words and trees
	Two-layer trees.
	Operations on trees.

	Tree automata (TA)
	Classical results on TA.

	Architectures with noisy nondeterministic adversaries
	Example.

	The synthesis problem
	Example (contd.).
	Specifying all channels of a noisy pipeline
	The decidability result for noisy pipelines
	Preliminary stage.
	Principle of the decision procedure.
	Decision procedure for one pair of processes.
	Iteration and final step.
	Example (end).

	Application to covert channel analysis
	Summary and perspectives
	Equivalence of architectures and from Fig. 10
	Proofs for the synthesis decision procedure
	Proof of Proposition 9
	Proof of Proposition 10
	Construction.
	Correctness.

	Proof of Proposition 11

	Example for the decision procedure

