
Laboratoire
Spécification
Vérification

et

Laboratoire
Spécification
Vérification

et

École Normale Supérieure de Cachan
61, avenue du Président Wilson
94235 Cachan Cedex France

Measuring Permissivity in
Finite Games

Patricia Bouyer, Marie Duflot,

Nicolas Markey and Gabriel Renault

Research report LSV-09-12

June 2009

Measuring Permissivity in Finite Games

Patricia Bouyer1?, Marie Duflot2, Nicolas Markey1?, and Gabriel Renault3

1 LSV, CNRS & ENS Cachan, France
{bouyer,markey}@lsv.ens-cachan.fr
2 LACL, Université Paris 12, France

duflot@univ-paris12.fr
3 Département Informatique, ENS Lyon, France

gabriel.renault@ens-lyon.fr

Abstract. In this paper, we extend the classical notion of strategies
in turn-based finite games by allowing several moves to be selected.
We define and study a quantitative measure for permissivity of such
strategies by assigning penalties when blocking transitions. We prove
that for reachability objectives, most permissive strategies exist, can be
chosen memoryless, and can be computed in polynomial time, while it is
in NP ∩ coNP for discounted and mean penalties.

1 Introduction

Finite games. Finite games have found numerous applications in computer sci-
ence [Tho02]. They extend finite automata with several players interacting on the
sequence of transitions being fired. This provides a convenient way for reasoning
about open systems (subject to uncontrollable actions of their environment), and
for verifying their correctness. In that setting, correctness generally means the
existence of a controller under which the system always behaves according to a
given specification. A controller, in that terminology, is nothing but a strategy
in the corresponding game, played on the automaton of the system, against the
environment.
Our framework. In this paper, we propose a new framework for computing
permissive controllers in finite-state systems. We assume the framework of two-
player turn-based games (where the players are Player 3 and Player 2, with
the controller corresponding to Player 3). The classical notion of (deterministic)
strategy in finite (turn-based) games is extended into the notion of multi-strategy,
which allows several edges to be enabled. The permissivity of such a multi-strategy
is then measured by associating penalties to blocking edges (each edge may have
a different penalty). A strategy is more permissive than an other one if its penalty
is weaker, i.e., if it blocks fewer (or less expensive) edges.

We focus on reachability objectives for the controller, that is, the first aim
of Player 3 will be to reach a designated set of winning states (whatever
? These authors were partly supported by the French project DOTS (ANR-06-SETI-

003), by the European project QUASIMODO (FP7-ICT-STREP- 214755), and by
the ESF project GASICS.

Player 2 does). The second aim of Player 3 will be to minimize the penalty
assigned to the set of outcomes generated by the multi-strategy.

Formally we consider weighted (finite) games, which are turn-based finite
games with non-negative weights on edges. In each state, the penalty assigned to a
multi-strategy is the sum of the weights of the edges blocked by the multi-strategy.
Several ways of measuring the penalty of a strategy can then be considered:
in this paper, we consider three ways of counting penalties along outcomes (sum,
discounted sum, and mean value) and then set the penalty of a multi-strategy as
the maximal penalty of its outcomes.

We will be interested in several problems: (i) does Player 3 have a win-
ning multi-strategy for which the penalty is no more than a given threshold?
(ii) compute the infimal penalty that Player 3 can ensure while reaching her
goal; (iii) synthesize (almost-)optimal winning multi-strategies, and characterize
them (in terms of memory and regularity).

Our results. We first prove that our games with penalties can be transformed
into classical weighted games [ZP96,LMO06] with an exponential blowup, and
that the converse reduction is polynomial.

Then, we prove that we can compute optimal and memoryless multi-strategies
for optimal reachability in PTIME. The proof is in three steps: first, using
our transformation to weighted games and results of [LMO06], we obtain the
existence of optimal memoryless multi-strategies; we then propose a polynomial-
time algorithm for computing an optimal winning multi-strategy with memory;
finally, we show how we can get rid of the memory in such a multi-strategy, which
yields the expected result.

We then focus on two other ways of computing penalties, namely the dis-
counted sum and the mean value, and we prove that optimal multi-strategies
may not exist, or may require memory. We further prove that we can compute
the optimal discounted penalty in NP∩ coNP, and that we can search for almost-
optimal winning multi-strategies as a pair (σ1, σ2) of memoryless multi-strategies
and that we need to play σ1 for some time before following σ2 in order to reach
the goal. The longer we play σ1, the closer we end up to the optimal discounted
penalty. The same holds for the mean penalty before reaching the goal.

As side-results, we obtain the complexity of computing strategies in weighted
games with a combined objective of reaching a goal state and optimizing the
accumulated cost. This can be seen as the game version of the shortest path
problem in weighted automata. Regarding accumulated costs, this was already a
by-product of [LMO06]; we show here that for discounted and mean costs, optimal
or memoryless optimal strategies do not necessarily exist, but almost-optimal
strategies can be obtained as a “pair” of memoryless strategies.

Related work. This quantitative approach to permissivity is rather original, and
does not compare to either of the approaches found in the literature [BJW02,PR05].
Indeed classical notions of permissivity imply the largest sets of generated plays.
This is not the case here, where an early cut of a branch/edge of the game may
avoid a large penalty later on for blocking many edges. However our notion

of multi-strategy coincides with the non-deterministic strategies of [BJW02]
and [Lut08].

Our work also meets the problem proposed in [CHJ05] of considering mixed
winning objectives, one which is qualitative (parity in their special case), and
one which is quantitative (mean-payoff in their special case). The same kind
of mixed objectives is considered when extending ATL with quantitative con-
straints [LMO06,HP06].

The rest of this paper is organized as follows. In the next section, we introduce
our formalism of multi-strategies and penalties. We also explain the link with the
classical framework of games with costs. Section 3 is devoted to our polynomial-
time algorithm for computing most permissive strategies. Section 4 deals with
the case of discounted and mean penalty. By lack of space, several proofs have
been postponed to the technical appendix.

2 Weighted Games with Reachability Objectives

2.1 Basic definitions

Weighted games. A (finite) weighted game is a tuple G = (V2, V3, E,weight)
where V2 and V3 are finite sets of states (said to belong to Player 2 and Player 3,
resp.); writing V = V2∪V3∪{,,/} where , and / are two distinguished states
not belonging to V2∪V3, E ⊆ V ×V is a finite set of edges; and weight : E → N is
a function assigning a weight to every edge. We assume (w.l.o.g.) that the states ,
and / have no outgoing edges (they are respectively the winning and losing
states). If v ∈ V , we write vE (resp. Ev) for E ∩ ({v} × V) (resp. E ∩ (V × {v}))
for the set of edges originating from (resp. targetting to) v.

A run % in G is a finite or infinite sequence of states (vi)0≤i≤p (for some
p ∈ N∪{∞}) such that ei = (vi−1, vi) ∈ E when 0 < i ≤ p. We may also write for
such a run % = (v0 → v1 → v2 · · ·), or % = (ei)i≥1

4, or the word % = v0 v1 v2 . . .
The length of %, denoted by |%|, is p+ 1. For finite-length runs, we write last(%)
for the last state vp. Given r < |%|, the r-th prefix of % = (vi)0≤i≤p is the run
%≤r = (vi)0≤i≤r. Given a finite run % = (vi)0≤i≤p and a transition e = (v, v′)
with v = vp, we write % e−→, or %→ v′, for the run % = (vi)0≤i≤p+1 with vp+1 = v′.

We write Runs<ωG (resp. RunsωG) for the set of finite (resp. infinite) runs in G,
and RunsG = Runs<ωG ∪ RunsωG. In the sequel, we omit the subscript G when no
ambiguity may arise.

Multi-strategies. A multi-strategy for Player 3 is a function

σ :
{
% ∈ Runs<ω | last(%) ∈ V3

}
→ 2E

such that, for all % ∈ Runs<ω, we have σ(%) ⊆ vE with v = last(%). A multi-
strategy is memoryless if σ(%) = σ(%′) as soon as last(%) = last(%′). A memoryless

4 These notations are equivalent since we assume that there can only be one edge
between two states.

multi-strategy σ can be equivalently represented as a mapping σ′ : V3 → 2E ,
with σ(%) = σ′(last(%)).

Multi-strategies extend the usual notion of strategies by selecting several
possible moves (classically, a strategy is a multi-strategy σ such that for every
% ∈ Runs<ω with last(%) ∈ V3, the set σ(%) is a singleton). The aim of this paper
is to compare multi-strategies and to define and study a quantitative notion of
permissivity of a multi-strategy.

Given a multi-strategy σ for Player 3, the set of outcomes of σ, denoted
Out(σ) ⊆ Runs, is defined as follows:

– for every state v ∈ V , the run v is in Out<ω(σ);
– if % ∈ Out<ω(σ) and σ(%) is defined and non-empty, then for every e ∈ σ(%),

the run %
e−→ is in Out<ω(σ);

– if % ∈ Out<ω(σ) and last(%) = v ∈ V2, then for every edge e ∈ vE, the run
%
e−→ is in Out<ω(σ);

– if % ∈ Runsω and if all finite prefixes %′ of % are in Out<ω(σ), then % ∈ Outω(σ).

We write Out(σ) = Out<ω(σ)∪Outω(σ). A run % in Out(σ) is maximal whenever
it is infinite, or it is finite and either σ(%) = ∅, or last(%) has no outgoing edge
(i.e., the set vE, with v = last(%), is empty). If %0 is a finite outcome of σ,
we write Out(σ, %0) (resp. Outmax(σ, %0)) for the set of outcomes (resp. maximal
outcomes) of σ having %0 as a prefix. A multi-strategy σ is winning after %0

if every run % ∈ Outmax(σ, %0) is finite and has last(%) = ,. A finite run %0 is
winning if it admits a winning multi-strategy after %0. Last, a strategy is winning
if it is winning from any winning state (seen as a finite run).

Penalties for multi-strategies. We define a notion of permissivity of a multi-
strategy by counting the weight of transitions that the multi-strategy blocks along
its outcomes. If σ is a multi-strategy and %0 is a finite run, the penalty of σ after %0,
denoted penalty(σ, %0), is defined as sup{penaltyσ,%0(%) | % ∈ Outmax(σ, %0)} where
penaltyσ,%0(%) is defined inductively, for every finite run % ∈ Out(σ, %0), by:

– penaltyσ,%0(%0) = 0;
– if last(%) /∈ V3 and (last(%), v) ∈ E, then penaltyσ,%0(%→ v) = penaltyσ,%0(%);
– if last(%) ∈ V3 and (last(%), v) ∈ σ(%), then

penaltyσ,%0(%→ v) = penaltyσ,%0(%) +
∑

(last(%),v′)∈(Erσ(%))

weight(last(%), v′);

– if % ∈ Out(σ, %0) ∩ Runsω, then penaltyσ,%0(%) = lim
n→+∞

penaltyσ,%0(%≤n).

The first objective of Player 3 is to win the game (i.e., reach ,), and her
second objective is to minimize the penalty. In our formulation of the problem,
Player 2 has no formal objective, but her aim is to play against Player 3 (this is
a zero-sum game), which implicitly means that Player 2 tries to avoid reaching ,,
and if this is not possible, she tries to maximize the penalty before reaching ,.

We write opt penalty(%0) for the optimal penalty Player 3 can ensure after %0

while reaching ,:

opt penalty(%0) = inf{penalty(σ′, %0) | σ′ winning multi-strategy after %0}.

It is equal to +∞ if and only if Player 3 has no winning multi-strategy after %0.
The following lemma is rather obvious, and shows that we only need to deal

with the optimal penalty from a state.

Lemma 1. Let G be a weighted game, let % and %′ be two runs in G such that
last(%) = last(%′). Then opt penalty(%) = opt penalty(%′).

Given ε ≥ 0, a winning multi-strategy σ is ε-optimal after %0 if penalty(σ, %0) ≤
opt penalty(%0) + ε. It is optimal after %0 when it is 0-optimal after %0. If σ is
ε-optimal from any winning state, then we say that σ is ε-optimal.

Classical weighted games. This way of associating values to runs and (multi-)
strategies is rather non-standard, and usually it is rather a notion of accumulated
cost along the runs which is considered. It is defined inductively as follows:

– cost(v) = 0 for single-state runs;
– cost(% e−→) = cost(%) + weight(e) otherwise.

Then again, if σ is a multi-strategy and %0 is a finite outcome, cost(σ, %0) =
sup{cost(%)− cost(%0) | % ∈ Outmax(σ, %0)}, and notions of (ε-)optimal strategies
are defined in the expected way.

Example 1. A weighted game is depicted on Fig. 1. For this example, it can be
easily seen that the optimal strategy w.r.t. costs from state a consists in going
through b, resulting in a weight of 6.

Regarding penalties and multi-strate-

a

b

c

d
,

/
5

1

0

8

0

1

6

1

2

Fig. 1. A weighted game

gies, the situation is more difficult. From
state b, there is only one way of win-
ning, with penalty 6 (because the strat-
egy must block the transition to the los-
ing state). From d, we have two possi-
ble winning multi-strategies: either block
the transition to b, with penalty 2, or
keep it; in the latter case, we will then
have penalty 6 in state d, as explained
above. In d, the best multi-strategy thus
amounts to blocking the transition to b, so that we can win with penalty 2. Now,
from a, it seems natural to try to go winning via d. This requires blocking both
transitions to b and c, and results in a global penalty of 8(= 5+1+2) for winning.
However, allowing both transitions to b and d is better, as the global (worst case)
penalty in this case is 7(= 1 + 6). Note that in that case, it is also possible to
allow transition to c for some time, since the loop between a and c will add no
extra penalty. But if we allow it forever, it will not be winning, this transition
to c has thus to be blocked at some point in order to win.

Computation and decision problems. We let G = (V2, V3, E,weight) be
a weighted game. Given v ∈ V , we will be interested in computing the value
opt penalty(v), and if an optimal winning multi-strategy exists, in computing it.
We will also be interested in computing for every ε > 0, an ε-optimal winning
multi-strategy.

Formally, the optimal reachability problem with penalty we consider is the
following: given a weighted game G, a rational number c and a state v ∈ V , does
there exist a multi-strategy σ for Player 3 such that penalty(σ, v) ≤ c.

2.2 From penalties to costs, and back

Penalties and costs assume very different points of view: in particular, cost-
optimality can obviously be achieved with “deterministic” strategies (adding
extra outcomes can only increase the overall cost of the strategy), while penalty-
optimality generally requires multi-strategies. Still, there exists a tight link
between both approaches, which we explain on two examples (Figs. 2 and 3).

Lemma 2. For every weighted game G = (V2, V3, E,weight), we can construct
an exponential-size weighted game G′ = (V ′2, V

′
3, E

′,weight′) such that V2 ⊆ V ′2,
V3 ⊆ V ′3 and, for any state v ∈ V2∪V3 and any bound c, Player 3 has a winning
multi-strategy with penalty c from v in G iff she has a winning strategy with cost c
from v in G′.

a b

,

/

2

1

1

6

G G′

a b

,

/

0

1
0

2

0

0

0

6

0

1

0

0

0

0

3 7

(a, {a, b})

(a, {b})
(a,∅)

(b, {,})

(b, {/})
(b,∅)

Fig. 2. From penalties (and multi-strategies) to costs (and strategies)

Lemma 3. For every weighted game G′ = (V ′2, V
′
3, E

′,weight′), we can construct
a polynomial-size weighted game G = (V2, V3, E,weight) such that V ′2 ⊆ V2,
V ′3 ⊆ V3, and for any state v ∈ V ′2∪V ′3 and any value c, Player 3 has a winning
strategy with cost c from v in G′ iff she has a winning multi-strategy with penalty c
from v in G.

3 Optimal Reachability in Penalty Games

Classical weighted games are known to admit memoryless optimal strategies
(see e.g. [LMO06]). Hence, applying Lemma 2 we know that we can solve the
optimal reachability problem with penalty in NP: memoryless multi-strategies are

a

b

c

,
3

2
2

2

0

G′ G

a

b

c

,/ /
0

0

0

3

0

2 0

0

0

2
0

0
0

0

2

v(a,b) v(b,,)

v(a,c) v(c,,)

Fig. 3. From costs (and strategies) to penalties (and multi-strategies)

sufficient to win optimally, and we can thus guess a memoryless multi-strategy
and check, in polynomial time, that it is winning and has penalty less than the
given threshold. This section is devoted to the two-step proof of the following
(stronger) result:

Theorem 4. The optimal reachability problem with penalty can be solved in
PTIME.

In the sequel, we let G = (V2, V3, E,weight) be a weighted game.

3.1 Construction of an optimal winning multi-strategy

In this section, we give a polynomial-time algorithm for computing an optimal
winning multi-strategy (which requires memory). The idea is to inductively
compute the penalty for winning in j steps, for each j less than the number of
states. This will be sufficient as we know that there exists a memoryless optimal
multi-strategy, which wins in |V | from the winning states.

Due to the transformation presented in Lemma 2, there is a priori an expo-
nential blowup for computing the best move in one step (because Player 3 can
select any subset of the outgoing edges of the current state, and will choose ‘the
best’ subset), but we will show that choices satisfy some monotonicity property
that will help making the best choice in polynomial time.

For any integer k, we say that a multi-strategy σ is k-step if, for every run % of
length (strictly) larger than k with last(%) ∈ V3, we have σ(%) = ∅. For instance,
a memoryless winning multi-strategy σ′ naturally induces winning multi-strategy
(all outcomes of σ′ have length no more than |V | and for all the other (useless)
runs we can set σ(%) = ∅). We say that a state v is winning in k steps if there is
a k-step multi-strategy which is winning from v.

The algorithm will proceed as follows: for every 0 ≤ j ≤ |V |, we build a j-step
multi-strategy σj which will be winning from all states that are winning in j steps,
and optimal among all those winning j-step multi-strategies. We also compute,
for each state v ∈ V , a value cv,j which is either the penalty of strategy σj from v
(i.e. penalty(σj , v)), or +∞ in case σj is not winning from v.

Since we know that memoryless multi-strategies suffice to win optimally, we
conclude that there exists a |V |-step multi-strategy, which is winning and optimal,
and the multi-strategy σ|V | which we build will then be optimal and winning.
It follows that cv,|V | will be equal to opt penalty(v).

When j = 0, we let σ0(%) = ∅ for any % ending in a V3-state. It is the
only 0-step multi-strategy, so that it clearly is optimal among these. Clearly,
cv,0 = +∞ for all v 6= ,, c,,0 = 0, and , is the only state from which we can
win with a 0-step multi-strategy.

We assume we have built σj (0 ≤ j < |V |), and we now define σj+1. Let % =
v0 → v1 → v2 . . . → vk be a run ending in V3. If k ≥ j + 1, we let σj+1(%) = ∅.
Otherwise, if k ≥ 1, we let σj+1(v0 → v1 → v2 . . . → vk) = σj(v1 → v2 . . . →
vk). Finally, when k = 0 and % = v, we let {u1, . . . , up} be the set of successors
of v, assuming that they are ordered in such a way that cur,j ≤ cus,j if r ≤ s.
Now, let

fv,j+1 : I ⊆ J1, pK 7→
∑
s/∈I

weight(v, us) + max
s∈I

cus,j ,

and let I 6= ∅ be a subset of J1, pK realizing the minimum of fv,j+1 over the
non-empty subsets of J1, pK. Assume that there exist two integers l < m in J1, pK
such that l /∈ I and m ∈ I. Since ul ≤ um, we have

fv,j+1(I ∪ {l})− fv,j+1(I) = −weight(v, ul).

This entails that I∪{l} is also optimal. By repeating the process, we can prove that
there exists an interval J1, qK realizing the minimum of fv,j+1. As a consequence,
finding the minimum of fv,j+1 can be done in polynomial time (by checking all
intervals of the form J1, qK). We write Tv,j+1 for a corresponding set of states,
whose indices realize the minimum of fv,j+1. We then define σj+1(v) = {(v, v′) |
v′ ∈ Tv,j+1}, and cv,j+1 = fv,j+1(Tv,j+1) for all v ∈ V3. It is easy to check that
cv,j+1 = penalty(σj+1, v) if σj+1 is winning from v, and cv,j+1 = +∞ otherwise.

We now prove that for every 0 ≤ j ≤ |V |, σj is optimal among all j-step
winning multi-strategies. Assume that, for some 0 ≤ j ≤ |V |, there is a j-step
multi-strategy σ′ that is winning and strictly better than σj from some winning
state v. We pick the smallest such index j. We must have j > 0 since σ0 is optimal
among the 0-step multi-strategies. Consider the set of successors {u1, . . . , up} of v
ordered as above, and let T be the set of indices such that σ′(v) = {(v, ut) | t ∈ T}.
Then after one step, the multi-strategy σ′ is (j − 1)-step and winning from any
ut satisfying (v, ut) ∈ σ′(v), and its penalty is thus not smaller than that of the
multi-strategy σj−1 (by minimality of j, we have penalty(σ′, v → ut) ≥ cut,j−1).
Hence:

penalty(σ′, v) ≥
∑
s/∈T

weight(v, us) + max
t∈T

cut,j−1 = fv,j(T)

On the other hand, as σ′ is strictly better than σj we must have

penalty(σ′, v) < cv,j = fv,j(Tv,j) ≤ fv,j(T)

because Tv,j achieves the minimum of fv,j . This is a contradiction, and from
every state v from which there is a j-step winning multi-strategy, σj is winning
optimally (in j steps).

As stated earlier, due to the existence of memoryless optimal winning multi-
strategies, |V |-step multi-strategies are sufficient and σ|V | is optimal winning.

y

3.2 Deriving a memoryless winning multi-strategy

In this section we compute, from any winning multi-strategy σ, a memoryless
winning multi-strategy σ′ which has lower penalty for Player 3. The idea is
to represent σ as a (finite) forest (it is finite because σ is winning) where a
node corresponds to a finite outcome, and to select a state v for which σ is not
memoryless yet. This state should be chosen carefully5 so that we will be able to
“plug” the subtree (i.e., play the multi-strategy) rooted at some node ending in v
at all nodes ending in v while keeping all states winning and while decreasing (or
at least leaving unchanged) the penalty of all states. This transformation will be
repeated until the multi-strategy is memoryless from all states. That way, if σ
was originally optimal, then so will σ′ be.

Let Σ be a finite alphabet. A Σ-forest is a tuple T = (T,R) where T ⊆ Σ+

is a set of non-empty finite words on Σ (called nodes) such that, for each t ·a ∈ T
with a ∈ Σ and t ∈ Σ+, it holds t ∈ T (T is closed by non-empty prefix) ;
R ⊆ Σ ∩ T is the set of roots. Given a ∈ Σ, a node t such that t = u · a is called
an occurrence of a. Given a node t ∈ T , the depth of t is |t| − 1 (where |t| is the
length of t seen as a word on Σ), and its height, denoted heightT (t), is

sup{|u| | u ∈ Σ∗ and t · u ∈ T}.

In particular, heightT (t) = +∞ when t is the prefix of an infinite branch in T .
A Σ-tree is a Σ-forest with one single root. Given a forest T = (T,R) and a

node t ∈ T , the subtree of T rooted at t is the tree S = (S, {n}) where n = last(t)
and s ∈ S iff t · s ∈ T .

Let G = (V2, V3, E,weight) be a weighted game. A winning multi-strategy σ
for Player 3 in G and a winning state v ∈ V naturally define a finite V -tree Tσ,v
with root v: given a state s, a word t = u ·s is in Tσ,v iff u ∈ Tσ,v and, seeing u as a
finite run, we have either last(u) = v′ ∈ V3 and (v′, s) ∈ σ(u), or last(u) = v′ ∈ V2
and (v′, s) ∈ E. In this tree, the height of the root coincides with the length of a
longest run generated by the multi-strategy σ from v. Since the multi-strategy σ
is winning from v, all branches are finite, and all leaves of Tσ,v are occurrences
of ,. The union of all trees Tσ,v (for v a winning state) defines a forest Tσ.

Conversely, every V -forest T = (T,W) with W ⊆ V satisfying the following
conditions naturally defines a winning multi-strategy σT (viewing each node t ∈ T
as a run of G):

– if last(t) = v′ ∈ V2, t · s ∈ T iff (v′, s) ∈ E;
– if last(t) = v′ ∈ V3 and t · s ∈ T , then (v′, s) ∈ E. In that case we set
σT (t) = {(v′, s) ∈ E | t · s ∈ T};

– if t is maximal, then last(t) = ,.

Lemma 5. Assume that we are given an optimal winning multi-strategy σ.
We can effectively construct in polynomial time a memoryless multi-strategy σ′,
which is winning and optimal.

5 An appropriate measure will be assigned to every node of the forest.

Proof. Assume that W is the set of winning states. Let T be the forest repre-
senting the multi-strategy σ (its set of roots is W). Since σ is winning from every
state in W , all branches of the forest are finite. For every node t of T , we define
γT (t) as the residual penalty of σ after prefix t. Formally, γT (t) = penalty(σ, t).
Obviously, for all v ∈ V , we have penalty(σ, v) = γT (v).

We will consider a measure µT on the set of nodes of the forest T as follows:
if t is a node of T , we let µT (t) = (γT (t), heightT (t)).

We say that no memory is required for state v in T if, for every two nodes t
and t′ that are occurrences of v, the subtree of T rooted at t and the subtree
of T rooted at t′ are identical. Note that in that case, µT (t) = µT (t′).

For every 0 ≤ i ≤ |W |, we inductively build in polynomial time a forest T i
and a set Mi ⊆W containing i elements, such that:

(a) T i represents an optimal winning multi-strategy from all the states of W ;
(b) for every v ∈Mi, no memory is required for v in T i, and for every node t′

which is a descendant of some node that is an occurrence of v, letting v′ =
last(t′), it holds v′ ∈Mi.

Intuitively, each T i will be the forest of a winning optimal multi-strategy σi, and
each Mi will be a set of states from which σi is memoryless (i.e., σi is memoryless
from the states in Mi, and from the states that occur in the outcomes from
these states). In the end, the forest T |W | represents a multi-strategy σ′ which is
memoryless, optimal and winning from every state of the game. y

4 Discounted and Mean Penalty Games

4.1 Discounted and mean penalties of multi-strategies

We have proposed a way to measure the permissivity of winning strategies in
games, by summing penalties for blocking edges in the graph. It can be interesting
to consider that blocking an edge early in a run is more restrictive than blocking
an edge later. A classical way to represent this is to consider a discounted version
of the penalty of a multi-strategy, which we now define.

Discounted penalties of multi-strategies. Let G = (V2, V3, E,weight) be a
weighted game, σ be a winning (w.r.t. the reachability objective) multi-strategy,
and %0 be a finite outcome of σ. Given a discount factor λ ∈ (0, 1), the dis-
counted penalty of σ after %0 (w.r.t. λ), denoted penaltyλ(σ, %0), is defined as
sup{penaltyλσ,%0(%) | % ∈ Outmax

G (σ, %0)}, where penaltyλσ,%0(%) is inductively de-
fined for all % ∈ OutG(σ, %0) as follows:

– penaltyλσ,%0(%0) = 0;
– if last(%) /∈ V3 and (last(%), v) ∈ E, then penaltyλσ,%0(%→ v) = penaltyλσ,%0(%);
– if last(%) ∈ V3 and (last(%), v) ∈ σ(%), then penaltyλσ,%0(%→ v) is defined as

penaltyλσ,%0(%) + λ|%|−|%0| ·
∑

(last(%),v′)∈(Erσ(%))

weight(last(%), v′).

We also define the discounted penalty along infinite runs, as being the limit
(which necessarily exists as λ < 1) of the penalties along the finite prefixes.

We write opt penaltyλ(%0) for the optimal discounted penalty (w.r.t. λ)
Player 3 can ensure after %0 while reaching ,:

opt penaltyλ(%0) = inf{penaltyλ(σ, %0) | σ winning multi-strategy after %0}.

Given ε ≥ 0 and λ ∈ (0, 1), a multi-strategy σ is said ε-optimal for discount
factor λ after %0 if it is winning after %0 and

penaltyλ(σ, %0) ≤ opt penaltyλ(%0) + ε.

Again, optimality is a shorthand for 0-optimality. Finally, a multi-strategy is
ε-optimal for discount factor λ if it is ε-optimal for λ from any winning state.

Discounted cost in weighted games. As in Section 2.1, we recall the usual
notion costλ of discounted cost of runs in a weighted game [ZP96]6:

– costλ(v) = 0;
– costλ(% e−→) = costλ(%) + λ|%|−1 · weight(e);

Then we define costλ(σ, %0) = sup{costλ(%) | % ∈ Outmax
G (σ, %0)}. Those games

are symmetric, and later we will sometimes take the point-of-view of Player 2
whose objective will be to maximize the discounted cost: given a strategy σ for
Player 2, we then define costλ(σ, %0) = inf{costλ(%) | % ∈ Outmax

G (σ, %0)}.
Computation and decision problems. As in the previous section, our aim is
to compute (almost-)optimal multi-strategies. The optimal reachability problem
with discounted penalty is the following: given a weighted game G, a rational
number c, a discount factor λ ∈ (0, 1), and a state v ∈ V , does there exist a
multi-strategy σ for Player 3 such that penaltyλ(σ, v) ≤ c. The transformations
between penalties and costs depicted in Section 2.2 are still possible in the
discounted setting. The only point is that in both cases, each single transition
gives rise to two consecutive transitions, so that we must consider

√
λ as the new

discounting factor7.

4.2 Some examples

As far as the existence of an optimal multi-strategy is concerned, the discounted
case is more challenging as the results of the previous section do not hold.
In particular, we exemplify on Figures 4 and 5 the fact that optimal multi-
strategies do not always exist, and when they exist, they cannot always be made
memoryless.

Lemma 6. There exists weighted games for which there is no optimal winning
multi-strategy under discounted penalties.

6 Note that we have dropped the normalization factor (1− λ), which is only important
to relate λ-discounted values to mean values (by making λ tend to 1) [ZP96].

7 For the reduction of Lemma 3, the penalty is also multiplied by
√
λ

a ,

1

1

Fig. 4. No optimal discounted
multi-strategy

a

b

,

/

0

0

1

1

2

3

Fig. 5. No memoryless optimal discounted
multi-strategy

Lemma 7. There are weighted games under discounted penalties for which there
exist a memoryful optimal winning multi-strategy but no memoryless one.

4.3 A pair of memoryless strategies is sufficient

We prove here that there always exist ε-optimal multi-strategies that are made
of two memoryless multi-strategies. Roughly, the first multi-strategy aims at
lengthening the path (so that the coefficient λ|%| will be small) without increasing
the penalty, and the second multi-strategy aims at reaching the final state.

To this aim, we need to first study the multi-strategy problem in the setting
where there is no reachability objective. Let G be a finite weighted game, λ ∈ (0, 1),
and c ∈ Q. The optimal discounted-penalty problem consists in deciding whether
there is a multi-strategy for Player 3 for which the λ-discounted penalty along
any maximal (finite or infinite) outcome is less than or equal to c.

Theorem 8. The optimal discounted-penalty problem is in NP ∩ coNP, and is
PTIME-hard.

The proof of this theorem relies on known results in classical discounted
games [ZP96,Jur98], uses the transformation of Lemma 2 and monotonicity
properties already used in the proof given in section 3.1.

Proof. We let G = (V2, V3, E,weight) be a finite weighted game with no incoming
transitions to /, and let c ∈ Q. Applying the transformation of Lemma 2 to
the discounted case, we get an exponential-size weighted game G′ = (V ′2, V

′
3,

E′,weight′) with V2 ⊆ V ′2 and V3 = V ′3 such that for every v ∈ V2∪V3, Player 3
has a winning multi-strategy from v in G with discounted penalty no more than c
(for discount λ) iff Player 3 has a winning strategy from v in G′ with discounted
cost no more than c (for discount

√
λ).

From [ZP96], Player 3 has a memoryless optimal strategy in G′. The NP
algorithm is then as follows: guess such a memoryless strategy σ3 for Player 3,
i.e. for every v ∈ V3 guess a subset F ⊆ vE and set σ3(v) = (v, F). Removing
from G′ transitions that have not been chosen by σ3 yields a polynomial-size
graph G′′, in which we can compute in polynomial time the maximal discounted
cost, which corresponds to cost

√
λ(σ3, v). The graph G′′ can be computed from G

without explicitly building G′, so that our procedure runs in polynomial time.
Membership in coNP is harder, and we only give a sketch of proof here.

The game G′ is memoryless determined [ZP96], which means that for every

c ∈ Q, for every state v ∈ V ′2 ∪ V ′3, either Player 3 has a memoryless strat-
egy σ3 with cost

√
λ(σ3, v) ≤ c, or Player 2 has a memoryless strategy σ2

with cost
√
λ(σ2, v) > c. Our coNP algorithm consists in guessing a memoryless

strategy for Player 2 that achieves cost larger than c. However, Player 2 controls
exponentially many states in G′, so that we will guess a succinct encoding of
her strategy, based on the following observation: there is a (preference) order on
the states in V2 ∪ V3

8 so that, in states of the form (v, F), the optimal strategy
for Player 2 consists in playing the “preferred” state of F (w.r.t. the order). In
other words, the strategy in those states can be defined in terms of an order on
the states, which can be guessed in polynomial time.

Once such a strategy has been chosen non-deterministically, it then suffices to
build a polynomial-size graph G′′ in which the cost of the strategy σ2 corresponds
to the minimal discounted cost of Player 2 in G′.

Hardness in PTIME directly follows from Lemma 3. y

Remark 1. This problem could be extended with safety condition: the aim is
then to minimize the discounted penalty while avoiding some bad states. An easy
adaptation of the previous proof yields the very same results for this problem.

Definition 9. Let σ1 and σ2 be two memoryless multi-strategies, and k ∈ N.
The multi-strategy σ = σk1 · σ∗2 is defined, for each % such that last(%) ∈ V3, as:

– if |%| < k, then σ(%) = σ1(%);
– if |%| ≥ k, then σ(%) = σ2(%).

Theorem 10. Let G = (V2, V3, E,weight) be a finite weighted game with a
reachability objective, and λ ∈ (0, 1). Then there exist two memoryless multi-
strategies σ1 and σ2 such that, for any ε > 0, there is an integer k such that the
multi-strategy σk

′

1 · σ∗2 is ε-optimal (w.r.t. λ-discounted penalties) for any k′ ≥ k.

Proof. This is proved together with the following lemma:

Lemma 11. Let G = (V2, V3, E,weight) be a finite weighted game with a reach-
ability objective, λ ∈ (0, 1), and c ∈ Q. Then (G, λ, c) is a positive instance of
the optimal discounted-penalty problem iff for any ε > 0, (G, λ, c+ ε) is a positive
instance of the optimal reachability problem with discounted penalty

Proof. From the remark following the proof of Theorem 8, there is a memoryless
optimal multi-strategy σ1 all of whose maximal outcomes have λ-discounted
penalty less than or equal to c, and never visit losing states. Let σ2 be a memoryless
winning multi-strategy for the reachability objective, and let c2 be the maximal
penalty accumulated along an outcome of σ2. Let ε > 0, and k ∈ N such that
λk · c2 ≤ ε. Then for any k′ > k, the multi-strategy σk

′

1 · σ∗2 is winning, and the
λ-discounted penalty of any outcome is at most c+ λk

′ · c2 ≤ c+ ε.

8 Which will be given by ordering the values given by the classical optimality equa-
tions [Jur98] in G′.

Conversely, let ε > 0, and σ be a winning multi-strategy achieving discounted
penalty no more than c+ ε. Then in particular, σ achieves discounted penalty
less than or equal to c + ε along all of its outcomes, so that (G,λ, c + ε) is a
positive instance of the optimal discounted-penalty problem (for any ε > 0). From
Theorem 8, this problem admits a (truly) optimal memoryless multi-strategy, so
that there must exist a multi-strategy achieving discounted penalty less than or
equal to c along all of its outcomes. y y

Theorem 12. The optimal reachability problem with discounted penalty is in
NP ∩ coNP, and is PTIME-hard.

Remark 2. It can be observed that the results of this section extend to discounted-
cost games with reachability objectives (without the exponential gap due to the
first transformation of weighted games with penalties). In particular, those games
admit almost-optimal strategies made of two memoryless strategies, and the
corresponding decision problem is equivalent to classical discounted-payoff games.

4.4 Extension to the mean penalty of multi-strategies

We also define the mean penalty of a multi-strategy σ from state v, denoted
mean penalty(σ, v), as sup{mean penaltyσ(%) | % ∈ OutG(σ, v), % maximal}, where

mean penaltyσ(%) =

penaltyσ(%)
|%| if |%| <∞

lim sup
n→+∞

mean penaltyσ(%|≤n) otherwise

where %|≤n is the prefix of length n of %. The notion of ε-optimality, for ε ≥ 0, is
defined as previously. Using the same lines of arguments as earlier, we get:

Theorem 13. Let G = (V2, V3, E,weight) be a finite weighted game with reach-
ability objectives, in which all states in V2 ∪ V3 are winning. There exist two
memoryless multi-strategies σ1 and σ2 such that, for any ε > 0, there exists k so
that the multi-strategy σk

′

1 ·σ∗2 is ε-optimal (w.r.t. mean penalties) for any k′ ≥ k.

Theorem 14. The optimal reachability problem with mean-penalty is in NP∩coNP
and is PTIME-hard.

Remark 3. Again, this result extends to mean-cost games with reachability
objectives, which thus admit almost-optimal strategies made of two memoryless
strategies. Surprisingly, the same phenomenon has been shown to occur in mean-
payoff parity games [CHJ05], but the corresponding strategy can be made fully
optimal thanks to the infiniteness of the outcomes.

5 Conclusion and future work

We have proposed an original quantitative approach to the permissivity of (multi-)-
strategies in two-player games with reachability objectives, through a natural
notion of penalty given to the player for blocking edges. We have proven that

most permissive strategies exist and can be chosen memoryless in the case where
penalties are added up along the outcomes, and proposed a PTIME algorithm for
computing such an optimal strategy. When considering discounted sum or mean
penalty, we have proved that we must settle for almost-optimal strategies, which
are built from two memoryless strategies. The resulting algorithm is in NP∩coNP.
This is rather surprising as the natural way of encoding multi-strategies in classical
weighted games entails an exponential blowup.

Besides the naturalness of multi-strategies, our initial motivation underly-
ing this work (and the aim of our future works) is in the domain of timed
games [AMPS98,BCD+07]: in that setting, strategies are often defined as func-
tions from executions to pairs (t, a) where t is a real number and a an action. This
way of defining strategies goes against the paradigm of implementability [DDR04],
as it requires infinite precision. We plan to extend the work reported here to the
timed setting, where penalties would depend on the precision needed to apply the
strategy. Also, as stated in [CHJ05], we believe that games with mixed objectives
are interesting on their own, which gives another direction of research for future
work. This catches up with related works on quantitative extensions of ATL.

References

[AMPS98] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for timed
automata. In Proc. IFAC Symposium on System Structure and Control,
p. 469–474. Elsevier Science, 1998.

[BCD+07] G. Behrmann, A. Cougnard, A. David, E. Fleury, K. G. Larsen, and D. Lime.
UPPAAL-Tiga: Time for playing games! In Proc. 19th Intl Conf. on Computer
Aided Verification (CAV’07), LNCS 4590, p. 121–125. Springer, 2007.

[BJW02] J. Bernet, D. Janin, and I. Walukiewicz. Permissive strategies: From parity
games to safety games. Inf. Théor. et Applications, 36(3):261–275, 2002.

[CHJ05] K. Chatterjee, Th. A. Henzinger, and M. Jurdziński. Mean-payoff parity
games. In Proc. 20th Annual Symposium on Logic in Computer Science
(LICS’05). IEEE Computer Society Press, 2005.

[DDR04] M. De Wulf, L. Doyen, and J.-F. Raskin. Almost ASAP semantics: From
timed models to timed implementations. In Proc. 7th Intl Workshop on
Hybrid Systems: Computation and Control (HSCC’04), LNCS 2993, p. 296–
310. Springer, 2004.

[HP06] T. A. Henzinger and V. S. Prabhu. Timed alternating-time temporal logic.
In Proc. 4th Intl Conf. on Formal Modeling and Analysis of Timed Systems
(FORMATS’06), LNCS 4202, p. 1–17. Springer, 2006.

[Jur98] M. Jurdziński. Deciding the winner in parity games is in UP ∩ coUP. Infor-
mation Processing Letters, 68(3):119–124, 1998.

[LMO06] F. Laroussinie, N. Markey, and G. Oreiby. Model checking timed ATL for
durational concurrent game structures. In Proc. 4th Intl Conf. on Formal
Modeling and Analysis of Timed Systems (FORMATS’06), LNCS 4202,
p. 245–259. Springer, 2006.

[Lut08] M. Luttenberger. Strategy iteration using non-deterministic strategies for
solving parity games. Research Report cs.GT/0806.2923, arXiv, 2008.

[PR05] S. Pinchinat and S. Riedweg. You can always compute maximally permissive
controllers under partial observation when they exist. In Proc. 24th American
Control Conf. (ACC’05), p. 2287–2292, 2005.

[Tho02] W. Thomas. Infinite games and verification. In Proc. 14th Intl Conf. on
Computer Aided Verification (CAV’02), LNCS 2404, p. 58–64. Springer, 2002.

[ZP96] U. Zwick and M. Paterson. The complexity of mean payoff games on graphs.
Theoretical Computer Science, 158(1–2):343–359, 1996.

A Proof of Lemmas 2 and 3

Lemma 2. For every weighted game G = (V2, V3, E,weight), we can construct
an exponential-size weighted game G′ = (V ′2, V

′
3, E

′,weight′) such that V2 ⊆ V ′2,
V3 ⊆ V ′3 and, for any state v ∈ V2∪V3 and any bound c, Player 3 has a winning
multi-strategy with penalty c from v in G iff she has a winning strategy with cost c
from v in G′.

Proof. The weighted game G′ = (V ′2, V
′
3, E

′,weight′) is defined as follows (see Fig. 2
for an example):

– the set of states of Player 3 is unchanged, while the set of states of Player 2
is augmented with {(v, F) | v ∈ V3, F ⊆ vE};

– E′ is the (disjoint) union of three kinds of transitions:
(1) transitions in E ∩ (V2 × V),
(2) transitions of the form ((v, F), v′) for each (v, v′) ∈ F ,
(3) transitions of the form (v, (v, F)) for each v ∈ V3 and F ⊆ vE;

– the weight function weight′ is defined as follows:
• each edge e of type (1) has weight weight(e);
• transitions of type (2) have weight 0;
• each transition (v, (v, F)) of type (3) has weight

∑
e∈vE\F weight(e).

We now prove the correctness of this construction. Let σ be a winning multi-
strategy for Player 3 in G. Given a run %′ in G′ such that last(%′) ∈ V ′3, we consider
the run % obtained from %′ by removing every second state. This is a finite run
of G, ending in V3. We let σ′(%′) = (last(%′), σ(%)). By construction, the cost of
this transition corresponds to the penalty of playing σ from %. Then Player 2
in G′ can choose one of the edges in σ(%), and switch to the corresponding state.
In the end, any outcome %′ of σ′ in G′ with cost d corresponds to an outcome
of σ in G with penalty d, and conversely. This entails that σ′ is winning and has
cost the penalty of σ.

For the other direction, we define σ inductively (on the length of the history)
from σ′, enforcing that the outcomes of σ in G of length n correspond (one-to-
one) to the outcomes of σ′ in G′ of length 2n− 1, and that this correspondence
preserves the quantity (cost vs. penalty) of the outcomes:

– for v ∈ V3, letting σ′(v) = (v, F), we define σ(v) = F (which is a set of edges
leaving v). By construction, the penalty assigned to σ in v is the weight of
the transition (v, F). The correspondence between outcomes is thus satisfied;

– given an outcome % of σ of length n, we define σ(%) as the set of edges
indicated by σ′(%′), where %′ is the outcome of σ′ corresponding to %. Again,
the correspondence between outcomes holds with this definition.

The definition of σ on histories that are not outcomes of σ is irrelevant and can
be set arbitrarily. Thanks to the correspondence between outcomes, σ is winning
(assuming that σ′ is) and its penalty is the cost of σ′. y

Lemma 3. For every weighted game G′ = (V ′2, V
′
3, E

′,weight′), we can construct
a polynomial-size weighted game G = (V2, V3, E,weight) such that V ′2 ⊆ V2,
V ′3 ⊆ V3, and for any state v ∈ V ′2∪V ′3 and any value c, Player 3 has a winning
strategy with cost c from v in G′ iff she has a winning multi-strategy with penalty c
from v in G.

Proof. The penalty game G = (V2, V3, E,weight) is defined as follows:

– the set of states of Player 2 is unchanged, while V3 = V ′3 ∪ VE′ where
VE′ = {ve | e ∈ E′} is a set disjoint from V ′3. In other words we add one
state for each edge of G′;

– E is the (disjoint) union of three kinds of edges:
(1) edges of the form (v, ve) for each v ∈ V and each e ∈ vE′,
(2) edges of the form (ve, v) for each v ∈ V and each e ∈ E′v,
(3) edges of the form (ve,/) for each e ∈ E′;

– the weight function weight is defined as follows:
• each edge (v, ve) or (ve, v) of type (1) or (2) has weight 0,
• each edge (ve,/) of type (3) has weight weight′(e).

Now, a winning strategy σ′ for Player 3 in the original game G′ can be
transformed into a winning multi-strategy σ (which is actually a deterministic
strategy) in G such that cost(σ′, v) = penalty(σ, v) for all v ∈ V ′2 ∪ V ′3. The
transformation is defined inductively (on the length of the history) as follows:

– if v ∈ V ′3, the state corresponds to a state in G′ and we set σ(v) = (v, ve)
where e = σ′(v);

– if v = ve ∈ VE′ and e = (v′, v”) then σ(v) = (ve, v”);
– if % ∈ OutG(σ, v) with last(%) = ve ∈ VE′ and e = (v′, v”) then σ(%) = (ve, v”);
– if % ∈ OutG(σ, v) with last(%) = v′ ∈ V ′3, then by removing every second state

from % we have a run %′ ∈ OutG′(σ′, v), and we can thus define σ(%) = (v′, ve)
with e = σ′(%′). Furthermore, it is easy to see that the cost of %′ is precisely
the penalty of % in G;

– if ∀v, % /∈ OutG(σ, v) then σ(%) doesn’t matter (we can take σ(%) = ∅).

The strategy σ′ is winning in G′ iff σ is winning in G, and the cost/penalty of
both strategies coincide.

Conversely, a winning multi-strategy σ for Player 3 in G can be transformed
into a winning strategy σ′ in G′ such that cost(σ′, v) = penalty(σ, v) for all v ∈
V ′2 ∪ V ′3.

Since we want to build a strategy from a multi-strategy we first need to fix
the non-deterministic choices allowed in σ. We thus define a deterministic9 multi-
strategy σ1 in G such that for every v ∈ V2 ∪ V3, penalty(σ1, v) = penalty(σ, v).
By definition of penalties, and given that σ is winning, for every v ∈ V ′2 ∪ V ′3
the penalty penalty(σ, v) is the maximum over all (finite) paths in Outmax

G (σ, v)
of the penalty along a path. Let %v be a path achieving such a maximum for v.
We now give the multi-strategy σ1:

– if % ∈ OutG(σ, v) with last(%) = v′ ∈ VE′ then σ(%) contains just one edge
(the one not leading to the bad state) and is ‘deterministic’. In that case we
set σ1(%) = σ(%);

– if % ∈ OutG(σ, v) with last(%) = v′ ∈ V ′3 and % is a prefix of %v (i.e. %v = %ve%
′),

we choose for σ1(%) the following edge along %v, i.e. σ1(%) = {(v′, ve)};
– if % ∈ OutG(σ, v) with last(%) = v′ ∈ V ′3 and % is not a prefix of %v, then we

choose arbitrarily an edge e in σ(%) and set σ1(%) = e;
– if for every v ∈ V , % /∈ OutG(σ, v), since OutG(σ1, v) ⊆ OutG(σ, v) the defini-

tion of σ1(%) doesn’t matter and we set σ1(%) = ∅.

We clearly have a deterministic multi-strategy, but need to prove that the
penalties have been preserved. First Outmax

G (σ1, v) ⊆ Outmax
G (σ, v), and since

we have only removed edges of weight 0, the penalties of the remaining runs
have not changed. Taking the maximum of penalties over a smaller set we get
penalty(σ1, v) ≤ penalty(σ, v). On the other hand the path %v that achieved the
maximal penalty is in Outmax

G (σ1, v). Since its penalty has been preserved, we
have penalty(σ1, v) ≥ penalty(σ, v) and thus the equality.

The last step is to define a winning strategy σ′ in G′ based on σ1 and preserving
the cost/penalty. By construction, for every edge e = (v, v′) ∈ E′ there exist two
edges (v, ve) and (ve, v′) in E, thus we can associate to every run %′ = v0v1...vk
in RunsG′ a unique run ι(%′) = v0ve0v1ve1 ...vek−1vk in RunsG with ei = (vi, vi+1)
for every 0 ≤ i < k. We now inductively define the strategy σ:

– if v ∈ V ′3, we set σ′(v) = e where σ1(v) = {(v, ve)};
– if %′ ∈ OutG′(σ′, v) with last(%′) = v′ ∈ V ′3 we set σ′(%′) = e, where σ1(ι(%)) =
{(v′, ve)}.

By construction of G, from a state v in V ′3 ⊆ V3, the choice of an outgoing edge
(v, ve) corresponds to the choice of the edge e in G′, and the cost of this edge in
G′ is precisely the weight of the losing transition from ve in G. Furthermore in G,
all choices made from V3 r V ′3 induce no extra penalties (because the weight of
all edges leaving those states is always 0). This implies that the cost of strategy
σ′ coincides with the penalty of multi-strategy σ1. y

9 In the sense that each finite run is associated at most one edge.

B Proof of Lemma 5

Lemma 5. Assume that we are given an optimal winning multi-strategy σ.
We can effectively construct in polynomial time a memoryless multi-strategy σ′,
which is winning and optimal.

Proof. Assume that W is the set of winning states. Let T be the forest repre-
senting the multi-strategy σ (its set of roots is W). Since σ is winning from every
state in W , all branches of the forest are finite. For every node t of T , we define
γT (t) as the residual penalty of σ after prefix t. Formally, γT (t) = penalty(σ, t).
Obviously, for all v ∈ V , we have penalty(σ, v) = γT (v).

We will consider a measure µT on the set of nodes of the forest T as follows:
if t is a node of T , we let µT (t) = (γT (t), heightT (t)).

We say that no memory is required for state v in T if, for every two nodes t
and t′ that are occurrences of v, the subtree of T rooted at t and the subtree
of T rooted at t′ are identical. Note that in that case, µT (t) = µT (t′).

For every 0 ≤ i ≤ |V |, we (inductively) build in polynomial time a forest T i
and a set Mi ⊆ V containing i elements, such that:

(a) T i represents an optimal winning multi-strategy from all the states of V ;
(b) for every v ∈Mi, no memory is required for v in T i, and for every node t′

which is a descendant of some node that is an occurrence of v, letting v′ =
last(t′), it holds v′ ∈Mi.

Intuitively, each T i will be the forest of a winning optimal multi-strategy σi, and
each Mi will be a set of states from which σi is memoryless (i.e., σi is memoryless
from the states in Mi, and from the states that occur in the outcomes from these
states).

For i = 0, it suffices to define T 0 as the forest T , and M0 = ∅. We assume
we have already constructed the forest T i = (T i, V), and a corresponding set Mi.
We pick a state vi ∈ V \Mi such that there is an occurrence ti ∈ T i of vi with

µT i(ti) = min{µT i(t) | t is an occurrence of some v ∈ V \Mi in T i}.

Notice that each node t in the subtree rooted at ti (in the forest T i) is an
occurrence of a state of Mi. Indeed, if this were not the case, there would be
a node t′i, which is a descendant of ti, and which would then be such that
γT i(t′i) ≤ γT i(ti) and heightT i(t′i) < heightT i(ti), contradicting the choice of ti.
In particular, there is no occurrence of vi in the subtree of T i rooted at ti.

The forest T i+1 is defined from the forest T i by replacing every subtree
rooted at an occurrence of vi with the subtree of T i rooted at ti. We define
Mi+1 = Mi ∪ {vi} (which then has i+ 1 elements). It remains to check that all
required conditions are satisfied. Clearly enough, since (by induction hypothesis)
T i represents a multi-strategy from all the states of V , this is also the case of T i+1.
Pick an occurrence t ∈ T i of vi such that vi does not occur in any prefix of t. Then

t ∈ T i+1. By definition of ti, we obviously have that γT i(t) ≥ γT i(ti). On the
other hand, we also have that γT i+1(t) = γT i(ti) ≤ γT i(t). These constraints
propagate to all prefixes of t in T i+1, hence the multi-strategy represented by T i+1

is optimal (from every state of V). This concludes the proof of condition (a).
By construction, no memory is required for state vi in T i+1. Assume that for
some v ∈Mi, there are two different subtrees of T i+1 rooted at an occurrence of v.
It means that at least one of the subtrees has been changed by the substitution,
hence that an occurrence of vi was in the subtree rooted at t. This contradicts
condition (b) satisfied by T i since vi /∈Mi. Hence, the condition (b) is satisfied
by T i+1.

The forest T |V | represents a multi-strategy σ′ which is memoryless, optimal
and winning from every state of the game. y

C Proof of Lemmas 6 and 7

a ,

1

1

Fig. 6. No optimal discounted
multi-strategy

a

b

,

/

0

0

1

1

2

3

Fig. 7. No memoryless optimal discounted
multi-strategy

Lemma 6. There exists weighted games for which there is no optimal winning
multi-strategy under discounted penalties.

Proof. Figure 6 shows such a game. There is only one non terminal state and a
multi-strategy for this game consists in choosing at each step whether to block the
loop, the transition to the terminal state or none, with respective cost one, one
and zero. In this game there is no multi-strategy with cost zero, since blocking
nothing allows an infinite run staying in state a forever. On the other hand a
multi-strategy that blocks nothing the n first steps and then blocks the loop
has cost λn. Hence, for every ε > 0, it is easy to design a ε-optimal discounted
multi-strategy. y

Lemma 7. There are weighted games under discounted penalties for which there
exist a memoryful optimal winning multi-strategy but no memoryless one.

Proof. Figure 7 shows such a game. The only memoryless winning multi-strategy
for this game blocks the losing transition and the loop and has penalty 3λ. Any
winning multi-strategy has a penalty of at least 2λ (the penalty of blocking the
losing transition), and if we take a multi-strategy that blocks the loop only after
n steps with 3λn ≤ 2λ (such a finite n exists since λ < 1) we get an optimal
winning multi-strategy (which is obviously not memoryless). y

D Proof of Theorem 8

Theorem 8. The optimal discounted-penalty problem is in NP ∩ coNP, and is
PTIME-hard.

Proof. We let G = (V2, V3, E,weight) be a finite weighted game, and let c ∈ Q.
Applying the transformation of Lemma 2 to the discounted case, we get an
exponential-size weighted game G′ = (V ′2, V

′
3, E

′,weight′) with V2 ⊆ V ′2 and
V3 = V ′3 such that for every v ∈ V2 ∪ V3, Player 3 has a winning multi-strategy
from v in G with discounted penalty no more than c (for discount λ) iff Player 3
has a winning strategy from v in G′ with discounted cost no more than c (for
discount

√
λ). The game G′ is memoryless determined [ZP96], which means that

for every c ∈ Q, for every state v ∈ V ′2 ∪ V ′3, either Player 3 has a memoryless
strategy σ3 with cost

√
λ(σ3, v) ≤ c, or Player 2 has a memoryless strategy σ2

with cost
√
λ(σ2, v) > c.

The NP algorithm is then as follows: guess a memoryless strategy σ3 for
Player 3, i.e. for every v ∈ V3 guess a subset F ⊆ vE and set σ3(v) = (v, F).
The game G′ where we have removed parts not allowed by σ3 has polynomial
size and can be constructed from G without first constructing G′. In the resulting
graph, from v, it is easy to compute in polynomial time the maximal discounted
cost, which corresponds to cost

√
λ(σ3, v). Thus we can decide in polynomial time

whether cost
√
λ(σ3, v) ≤ c.

Conversely, the coNP algorithm consists in guessing a strategy for Player 2
with cost larger than c. However, Player 2 controls exponentially many states
in G′, and her strategy cannot be guessed in polynomial time. We have to first
define a succinct encoding of memoryless optimal strategies of Player 2.

Applying [Jur98], we know that an optimal memoryless strategy σ2 can be
computed, that is is characterized by values val

√
λ(v) = cost

√
λ(σ2, v) (for v ∈ V ′)

satisfying the following optimality equations:

val
√
λ(v) = min

(v,F)∈V ′2

(
weight′(v, (v, F)) +

√
λ · val

√
λ(v, F)

)
if v ∈ V3

val
√
λ(v) = weight′(v, (v, vE)) +

√
λ · val

√
λ(v, vE) if v ∈ V2

val
√
λ(,) = 0

val
√
λ(v, F) = max

e=(v,v′)∈F

(
weight′((v, F), v′) +

√
λ · val

√
λ(v′)

)
if (v, F) ∈ V ′2 r V2

By construction of G′, we can rewrite these equations as follows:

val
√
λ(v) = min

F⊆vE

(∑
e∈vErF

weight(e) +
√
λ · val

√
λ(v, F)

)
if v ∈ V3

val
√
λ(v) =

√
λ · val

√
λ(v, vE) if v ∈ V2

val
√
λ(,) = 0

val
√
λ(v, F) = max

e=(v,v′)∈F

√
λ · val

√
λ(v′) if (v, F) ∈ V ′2 r V2

Furthermore the strategy σ2 can be defined by:

σ2(v) = (v, vE) if v ∈ V2
σ2((v, F)) = ((v, F), v′) if (v, F) ∈ V ′2 r V2 and

val
√
λ(v′) = max

e=(v,v′′)∈F
val
√
λ(v′′)

In particular, we can define a total order ≺ (which we call a preference order) on
states such that v ≺ v′ if val

√
λ(v) ≥ val

√
λ(v′). For any F ⊆ vE, we define vF≺

as the smallest element w.r.t. order ≺ such that (v, vF≺) ∈ F . We can then fix the
strategy σ≺2 as follows:

{
σ≺2 (v) = (v, vE) if v ∈ V2
σ≺2 ((v, F)) = ((v, F), vF≺) if v ∈ V ′2 r V2

The strategy σ≺2 is memoryless optimal for Player 2 and follows the pref-
erence order ≺, which means that if vF≺ = vF

′

≺ , then target(σ≺((v, F))) =
target(σ≺((v, F ′))). And this proves that we can restrict strategies for Player 2
in G′ to memoryless strategies with a preference order on states. The main
advantage of these strategies is that they have polynomial size.

The coNP algorithm proceeds as follows: guess a preference order ≺ on states
of G. We want to compute costλ(σ≺2 , v) in G′ in polynomial time (thus without
explicitely constructing G′). To that aim, we construct a weighted game G′′ whose
discounted cost coincides with costλ(σ≺2 , v). The game G′′ = (V ′′2 , V

′′
3 , E

′′,weight′′)
is defined as:

– V ′′2 = V2 ∪ {(v, vF≺) | F ⊆ vE and (v, F) ∈ V ′2} and V ′′3 = V3; notice that,
from the definition of vF≺, there are only polynomially many states.

– the set E′′ is made of:

• (v, (v, vF≺)) ∈ E′′ if (v, (v, F)) ∈ E′;
• ((v, vF≺), vF≺) ∈ E′′.

– the weight function is defined as:

• weight′′(v, (v, vF≺)) = min
F ′⊆vE s.t. vF

′
≺ =vF≺

weight′(v, (v, F))

• weight′′((v, vF≺), vF≺) = 0

Then it is not difficult to realise that

weight′′(v, (v, vF≺)) =
∑

v′≺vF≺ s.t. (v,v′)∈vE

weight(v, v′)

Indeed, we restrict the order ≺ to {v′ | (v, v′) ∈ vE} = {v1, · · · , vp}, assuming
v1 ≺ v2 · · · ≺ vp. Now, we can write:

weight′′(v, (v, vi)) = min
F⊆vE s.t. vF≺=vi

weight′(v, (v, F))

= min
F⊆vE s.t. v1,··· ,vi−1 6∈F and vi∈F

weight′(v, (v, F))

= min
F⊆vE s.t. v1,··· ,vi−1 6∈F and vi∈F

(∑
e∈vErF

weight(e)

)

=
i−1∑
j=1

weight(v, vj) (taking F = vE r {(v, vj) | 1 ≤ j < i})

Thus the game G′′ can be computed in polynomial time. Furthermore all states
in V ′′2 have at most one successor, this is thus not a game, but a graph in
which we can easily compute in polynomial time the discounted cost. It remains
to prove that the discounted cost in G′′ from v (denoted cost

√
λ

G′′ (v)) coincides
with cost

√
λ

G′ (σ≺2 , v). We first notice that any run in G′′ can be seen as a run
in G′ under strategy σ≺2 , and the (discounted) costs coincide. Thus, cost

√
λ

G′′ (v) ≥
cost

√
λ

G′ (σ≺2 , v).
Let % be a run generated by σ≺2 from v in G′: we have % = v0(v0, F0)v1(v1, F1) · · ·

with (vi, Fi) = σ≺2 (vi) if vi ∈ V2 and vi+1 = vi
≺
Fi

in any case. The run %̃ defined
as v0(v0, F̃0)v1(v1, F̃1) · · · where F̃i = Fi if vi ∈ V2, and F̃i is the largest subset
of viE so that vi

fFi
≺ = vi

Fi
≺ . The run %̃ is also generated by σ≺2 , and its discounted

is no more than that of %. Furthermore this run can be played in G′′, hence we
get the converse inequality: cost

√
λ

G′′ (v) ≤ cost
√
λ

G′ (σ≺2 , v), hence equality holds.
Thus, cost

√
λ

G′ (σ≺2 , v) can be computed in polynomial time, and we can decide
whether cost

√
λ

G′ (σ≺2 , v) > c in polynomial time. y

