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Abstract. Reasoning about the knowledge of an attacker is a necessary
step in many formal analyses of security protocols. In the framework of
the applied pi calculus, as in similar languages based on equational logics,
knowledge is typically expressed by two relations: deducibility and static
equivalence. Several decision procedures have been proposed for these
relations under a variety of equational theories. However, each theory
has its particular algorithm, and none has been implemented so far.

We provide a generic procedure for deducibility and static equivalence
that takes as input any convergent rewrite system. We show that our
algorithm covers all the existing decision procedures for convergent the-
ories. We also provide an efficient implementation, and compare it briefly
with the more general tool ProVerif.

1 Introduction

Understanding security protocols often requires reasoning about the information
accessible to an online attacker. Accordingly, many formal approaches to secu-
rity rely on a notion of deducibility [17, 18] that models whether a piece of data,
typically a secret, is retrievable from a finite set of messages. Deducibility, how-
ever, does not always suffice to reflect the knowledge of an attacker. Consider
for instance a protocol sending an encrypted Boolean value, say, a vote in an
electronic voting protocol. Rather than deducibility, the key idea to express con-
fidentiality of the plaintext is that an attacker should not be able to distinguish
between the sequences of messages corresponding to each possible value.

In the framework of the applied pi-calculus [3], as in similar languages based
on equational logics [9], indistinguishability corresponds to a relation called static
equivalence: roughly, two sequences of messages are statically equivalent when
they satisfy the same algebraic relations from the attacker’s point of view. Static
equivalence plays an important role in the study of guessing attacks (e.g. [12, 5,
1]), as well as for anonymity properties and electronic voting protocols (e.g. [16]).
In several cases, this notion has also been shown to imply the more complex and
precise notion of cryptographic indistinguishability [7, 1], related to probabilistic
polynomial-time Turing machines.

⋆ This work has been partly supported by the ANR SeSur AVOTÉ.



We emphasize that both deducibility and static equivalence apply to ob-
servations on finite sets of messages, and do not take into account the dynamic
behavior of protocols. Nevertheless, deducibility is used as a subroutine by many
general decision procedures [11, 10]. Besides, it has been shown that observational
equivalence in the applied pi-calculus coincides with labeled bisimulation [3], that
is, corresponds to checking a number of static equivalences and some standard
bisimulation conditions.

Deducibility and static equivalence rely on an underlying equational theory
for axiomatizing the properties of cryptographic functions. Many decision pro-
cedures [2, 13] have been proposed to compute these relations under a variety
of equational theories, including symmetric and asymmetric encryptions, signa-
tures, exclusive OR, and homomorphic operators. However, except for the class
of subterm convergent theories [2], which covers the standard flavors of encryp-
tion and signature, each of these decision results introduces a new procedure,
devoted to a particular theory. Even in the case of the general decidability cri-
terion given in [2], we note that the algorithm underlying the proof has to be
adapted for each theory, depending on how the criterion is fulfilled.

Perhaps as a consequence of this fact, none of these decision procedures has
been implemented so far. Up to our knowledge the only tool able to verify static
equivalence is ProVerif [8, 9]. This general tool can handle various equational
theories and analyze security protocols under active adversaries. However termi-
nation of the verifier is not guaranteed in general, and protocols are subject to
(safe) approximations.

The present work aims to fill this gap between theory and implementation
and propose an efficient tool for deciding deducibility and static equivalence in
a uniform way. It is initially inspired from a procedure for solving more gen-
eral constraint systems related to active adversaries and equivalence of finite
processes, presented in [5], with corrected extended version in [6] (in French).
However, due to the complexity of the constraint systems, this decision proce-
dure was only studied for subterm convergent theories, and remains too complex
to allow for an efficient implementation.

Our first contribution is to provide and study a generic procedure for check-
ing deducibility and static equivalence, taking as input any convergent theory
(that is, any equational theory described by a finite convergent rewrite system).
We prove the algorithm sound and complete, up to explicit failure cases. Note
that (unfailing) termination cannot be guaranteed in general since the problem
of checking deducibility and static equivalence is undecidable, even for conver-
gent theories [2]. To address this issue and turn our algorithm into a decision
procedure for a given theory, we provide two criteria. First, we define a syntactic
criterion on the rewrite rules that ensures that the algorithm never fails. This
criterion is enjoyed in particular by any convergent subterm theory, as well as
the theories of blind signature and homomorphic encryption. Termination often
follows from a simple analysis of the rules of the algorithm: as a proof of con-
cept, we obtain a new decidability result for deducibility and static equivalence
for the prefix theory, representing encryption in CBC mode. Second, we provide
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a termination criterion based on deducibility: provided that failure cannot oc-
cur, termination on a given input is equivalent to the existence of some natural
finite representation of deducible terms. As a consequence, we obtain that our
algorithm can decide deducibility and static equivalence for all the convergent
theories previously known to be decidable [2].

Our second contribution is an efficient implementation of this generic proce-
dure, called YAPA. After describing the main features of the implementation, we
report several experiments suggesting that our tool computes static equivalence
faster and for more convergent theories than the general tool ProVerif [8, 9].

2 Preliminaries

2.1 Term algebra

We start by introducing the necessary notions to describe cryptographic mes-
sages in a symbolical way. For modeling cryptographic primitives, we assume
a given set of function symbols F together with an arity function ar : F → N.
Symbols in F of arity 0 are called constants. We consider a set of variables X
and a set of additional constants W called parameters. The (usual, first-order)
term algebra generated by F over W and X is written F [W ∪X ] with elements
denoted by T, U, T1 . . . More generally, we write F ′[A] for the least set of terms
containing a set A and stable by application of symbols in F ′ ⊆ F .

We write var(T ) (resp. par(T )) for the set of variables (resp. parameters)
that occur in a term T . These notations are extended to tuples and sets of terms
in the usual way. The set of positions of a term T is written pos(T ) ⊆ N

∗.
The subterm of T at position p ∈ pos(T ) is written T |p. The term obtained by
replacing T |p with a term U in T is denoted T [U ]p.

A (finite, partial) substitution σ is a mapping from a finite subset of variables,
called its domain and written dom(σ), to terms. The image of a substitution is its
image as a mapping im(σ) = {σ(x) | x ∈ dom(σ)}. Substitutions are extended
to endomorphisms of F [X ∪ W ] as usual. We use a postfix notation for their
application. A term T (resp. a substitution σ) is ground iff var(T ) = ∅ (resp.
var(im(σ)) = ∅).

For our cryptographic purposes, it is useful to distinguish a subset Fpub of F ,
made of public function symbols, that is, intuitively, the symbols made avail-
able to the attacker. A recipe (or second-order term) M , N , M1. . . is a term in
Fpub[W∪X ], that is, a term containing no private (non-public) function symbols.
A plain term (or first-order term) t, r, s, t1. . . is a term in F [X ], that is, contain-
ing no parameters. A (public, ground, non-necessarily linear) n-ary context C
is a recipe in Fpub[w1, . . . ,wn], where we assume a fixed countable subset of pa-
rameters {w1, . . . ,wn, . . .} ⊆ W . If C is a n-ary context, C[T1, . . . , Tn] denotes
the term obtained by replacing each occurrence of wi with Ti in C.

2.2 Rewriting

A rewrite system R is a finite set of rewrite rules l → r where l, r ∈ F [X ]
and var(r) ⊆ var(l). A term S rewrites to T by R, denoted S →R T , if there exist
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l → r in R, p ∈ pos(S) and a substitution σ such that S|p = lσ and T = S[rσ]p.
We write →+

R for the transitive closure of →R, →∗
R for its reflexive and transitive

closure, and =R for its reflexive, symmetric and transitive closure.
A rewrite system R is convergent if is terminating, i.e. there is no infinite

chains T1 →R T2 →R . . ., and confluent, i.e. for every terms S, T such that
S =R T , there exists U such that S →∗

R U and T →∗
R U .

A term T is R-reduced if there is no term S such that T →R S. If T →∗
R S

and S is R-reduced then S is a R-reduced form of T . When this reduced form
is unique (in particular if R is convergent), we write S = T↓R.

2.3 Equational theories

We equip the signature F with an equational theory represented by a set of equa-
tions E of the form s = t with s, t ∈ F [X ]. The equational theory E generated
by E is the least set of equations containing E that is stable under the axioms of
congruence (reflexivity, symmetry, transitivity, application of function symbols)
and under application of substitutions. We write =E for the corresponding rela-
tion on terms. Equational theories have proved very useful for modeling algebraic
properties of cryptographic primitives [14, 2].

We are particularly interested in theories E that can be represented by a
convergent rewrite system R, i.e. theories for which there exists a convergent
rewrite system R such that the two relations =R and =E coincide. The rewrite
system R —and by extension the equational theory E— is subterm convergent if,
in addition, we have that for every rule l → r ∈ R, r is either a subterm of l or a
ground R-reduced term. This class encompasses the one of the same name used
in [2], the class of dwindling theories used in [4], and the class of public-collapsing
theories introduced in [15].

Example 1. Consider the signature Fenc = {dec, enc, 〈 , 〉, π1, π2}. The sym-
bols dec, enc and 〈 , 〉 are functional symbols of arity 2 that represent respectively
the decryption, encryption and pairing functions, whereas π1 and π2 are func-
tional symbols of arity 1 that represent the projection function on the first and
the second component of a pair, respectively. The equational theory of pairing
and symmetric (deterministic) encryption, denoted by Eenc, is generated by the
equations Eenc = {dec(enc(x, y), y) = x, π1(〈x, y〉) = x, π2(〈x, y〉) = y}.

Motivated by the modeling of the ECB mode of encryption, we may also
consider an encryption symbol that is homomorphic with respect to pairing:

Ehom = Eenc ∪

{

enc(〈x, y〉, z) = 〈enc(x, z), enc(y, z)〉
dec(〈x, y〉, z) = 〈dec(x, z), dec(y, z)〉

}

.

If we orient the equations from left to right, we obtain two rewrite systems Renc

and Rhom. Both rewrite systems are convergent, only Renc is subterm convergent.

From now on, we assume a given equational theory E represented by a con-
vergent rewrite system R. A symbol f is free if f does not occur in R. In order
to model (an unbounded number of) random values possibly generated by the
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attacker, we assume that Fpub contains infinitely many free public constants. We
will use free private constants to model secrets, for instance the secret keys used
to encrypt a message. Private (resp. public) free constants are closely related to
bound (resp. free) names in the framework of the applied pi calculus [3]. Our
formalism also allows one to consider non-constant private symbols.

3 Deducibility and static equivalence

In order to describe the cryptographic messages observed or inferred by an at-
tacker, we introduce the following notions of deduction facts and frames.

A deduction fact is a pair, written M ⊲ t, made of a recipe M ∈ Fpub[W∪X ]
and a plain term t ∈ F [X ]. Such a deduction fact is ground if var(M, t) = ∅. A
frame, denoted by letters ϕ, Φ, Φ0. . . , is a finite set of ground deduction facts.
The image of a frame is defined by im(Φ) = {t | M ⊲ t ∈ Φ}. A frame Φ is
one-to-one if M1 ⊲ t, M2 ⊲ t ∈ Φ implies M1 = M2.

A frame ϕ is initial if it is of the form ϕ = {w1 ⊲ t1, . . . , wℓ ⊲ tℓ} for some
distinct parameters w1, . . . , wℓ ∈ W . Initial frames are closely related to the
notion of frames in the applied pi-calculus [3]. The parameters wi can be seen
as labels that refer to the messages observed by an attacker. Given such an
initial frame ϕ, we denote by dom(ϕ) its domain dom(ϕ) = {w1, . . . , wℓ}. If
par(M) ⊆ dom(ϕ), we write Mϕ for the term obtained by replacing each wi

by ti in M . We note that if in addition M is ground then t = Mϕ is a ground
plain term.

3.1 Deducibility, recipes

Classically (see e.g. [2]), a ground term t is deducible modulo E from an initial
frame ϕ if there exists M ∈ Fpub[dom(ϕ)] such that Mϕ =E t. This corresponds
to the intuition that the attacker may compute (infer) t from ϕ. For the purpose
of our study, we generalize this notion to arbitrary frames, and even sets of (non-
necessarily ground) deductions facts φ, using the notations ⊲φ and ⊲

E
φ defined

as follows.

Definition 1 (deducibility). Let φ be finite set of deductions facts, for in-
stance a frame. We say that M is a recipe of t in φ, written M ⊲φ t, iff there
exist a (public, ground, non-necessarily linear) n-ary context C and some de-
duction facts M1 ⊲ t1, . . . , Mn ⊲ tn in φ such that M = C[M1, . . . ,Mn] and
t = C[t1, . . . , tn]. In that case, we say that t is syntactically deducible from φ,
also written φ ⊢ t.

We say that M is a recipe of t in φ modulo E, written M ⊲
E
φ t, iff there exists

a term t′ such that M ⊲φ t
′ and t′ =E t. In that case, we say that t is deducible

from φ modulo E, written φ ⊢E t.

We note that M ⊲ϕ t is equivalent to Mϕ = t when ϕ is an initial frame and
when t (or equivalently M) is ground.
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Example 2. Consider the equational theory Eenc given in Example 1. Let ϕ =
{w1 ⊲ 〈enc(s1, k), enc(s2, k)〉,w2 ⊲ k} where s1, s2 and k are private constant
symbols. We have that 〈w2,w2〉 ⊲ϕ 〈k, k〉, and dec(proj1(w1),w2) ⊲Eenc

ϕ s1.

3.2 Static equivalence, visible equations

Deducibility does not always suffice for expressing the knowledge of an attacker.
In particular, it does not account for the partial information that an attacker
may obtain about secrets. This issue motivates the study of visible equations
and static equivalence [3], defined as follows.

Definition 2 (static equivalence). Let ϕ be an initial frame. The set of vis-
ible equations of ϕ modulo E is defined as

eqE(ϕ) = {M ⊲⊳ N |M,N ∈ Fpub[dom(ϕ)], Mϕ =E Nϕ}

where ⊲⊳ is a dedicated commutative symbol. Two initial frames ϕ1 and ϕ2 with
the same domain are statically equivalent modulo E, written ϕ1 ≈E ϕ2, if their
sets of visible equations are equal, i.e. eqE(ϕ1) = eqE(ϕ2).

This definition is in line with static equivalence in the applied pi calculus [3].
For the purpose of finitely describing the set of visible equations eqE(ϕ) of an
initial frame, we introduce quantified equations of the form ∀z1, . . . , zq.M ⊲⊳ N

where z1, . . . , zq ∈ X , q ≥ 0 and var(M,N) ⊆ {z1, . . . , zq}. In the following,
finite sets of quantified equations are denoted Ψ , Ψ0,. . . We write Ψ |= M ⊲⊳ N

when the ground equation M ⊲⊳ N is a consequence of Ψ in the usual, first-order
logics with equality axioms for the relation ⊲⊳ (that is, reflexivity, symmetry,
transitivity and compatibility with symbols in Fpub). When no confusion arises,
we may refer to quantified equations simply as equations. As usual, quantified
equations are considered up to renaming of bound variables.

Example 3. Consider again the equational theory Eenc given in Example 1. Let
ϕ1 = {w1 ⊲ enc(c0, k), w2 ⊲ k} and ϕ2 = {w1 ⊲ enc(c1, k), w2 ⊲ k} where c0,
c1 are public constants and k is a private constant. Let Ψ1 = {enc(c0,w2) ⊲⊳
w1} and Ψ2 = {enc(c1,w2) ⊲⊳ w1}. We have that Ψi |= eqEenc

(ϕi) for i = 1, 2.
Hence, eqEenc

(ϕ1) 6= eqEenc
(ϕ2) and the two frames ϕ1 and ϕ2 are not statically

equivalent. However, it can be shown that {w1⊲enc(c0, k)} ≈Eenc
{w1⊲enc(c1, k)}.

4 Main procedure

In this section, we describe our algorithms for checking deducibility and static
equivalence on convergent rewrite systems. After some additional notations, we
present the core of the procedure, which consists of a set of transformation rules
used to saturate a frame and a finite set of quantified equations. We then show
how to use this procedure to decide deducibility and static equivalence, provided
that saturation succeeds.

Soundness and completeness of the saturation procedure are detailed in Sec-
tion 5. We provide sufficient conditions on the rewrite systems to ensure success
of saturation in Section 6.
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4.1 Decompositions of rewrite rules

Before stating the procedure, we introduce the following notion of decomposition
to account for the possible superpositions of an attacker’s context with a left-
hand side of rewrite rule.

Definition 3 (decomposition). Let n, p, q be non-negative integers. A (n, p, q)-
decomposition of a term l (and by an extension of any rewrite rule l → r)
is a (public, ground, non-necessarily linear) context D ∈ Fpub[W ] such that
par(D) = {w1, . . . ,wn+p+q} and l = D[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq] where

– l1, . . . , ln are mutually-distinct non-variable terms,
– y1, . . . , yp and z1, . . . , zq are mutually-distinct variables, and
– y1, . . . , yp ∈ var(l1, . . . , ln) whereas z1, . . . , zq 6∈ var(l1, . . . , ln).

A decomposition D is proper if it is not a parameter (i.e. D 6= w1).

Example 4. Consider the rewrite rule dec(enc(x, y), y) → x. This rule admits
two proper decompositions up to permutation of parameters:

– D1 = dec(enc(w1,w2),w2) where n = 0, p = 0, q = 2, z1 = x, z2 = y;
– D2 = dec(w1,w2) where n = 1, p = 1, q = 0, l1 = enc(x, y) and y1 = y.

4.2 Transformation rules

To check deducibility and static equivalence, we proceed by saturating an initial
frame, adding some deduction facts and equations satisfied by the frame. We
consider states that are either the failure state ⊥ or a couple (Φ, Ψ) formed by a
one-to-one frame Φ in R-reduced form and a finite set of quantified equations Ψ .

Given an initial frame ϕ, our procedure starts from an initial state associated
to ϕ, denoted by Init(ϕ), obtained by reducing ϕ and replacing duplicated terms
by equations. Formally, Init(ϕ) is the result of a procedure recursively defined
as follows: Init(∅) = (∅, ∅), and assuming Init(ϕ) = (Φ, Ψ), we have

Init(ϕ ⊎ {w ⊲ t}) =

{

(Φ, Ψ ∪ {w ⊲⊳ w′}) if there exists some w′ ⊲ t↓R ∈ Φ

(Φ ∪ {w ⊲ t↓R}, Ψ) otherwise.

The main part of our procedure consists in saturating a state (Φ, Ψ) by means
of the transformation rules described in Figure 1. The A rules are designed
for applying a rewrite step on top of existing deduction facts. If the resulting
term is already syntactically deducible then a corresponding equation is added
(rule A.1); or else if it is ground, the corresponding deduction fact is added to the
state (rule A.2); otherwise, the procedure may fail (rule A.3). The B rules are
meant to add syntactically deducible subterms (rule B.2) or related equations
(rule B.1). For technical reasons, rule A.1 is parametrized by a function Ctx
with values of the form M or ⊥, and satisfying the following properties:

(a) if φ ⊢ t↓R, then for any Ψ and α, Ctx(φ ⊢?
R t, Ψ, α) 6= ⊥;
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A. Inferring deduction facts and equations by context reduction

Assume that

l = D[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq ] is a proper decomposition of (l → r) ∈ R
M1 ⊲ t1, . . . , Mn+p ⊲ tn+p ∈ Φ

(l1, . . . , ln, y1, . . . , yp) σ = (t1, . . . , tn+p)

1. If there exists M = Ctx(Φ ∪ {z1 ⊲ z1, . . . , zq ⊲ zq} ⊢?
R rσ, Ψ, (l, r, D, σ)), then

(Φ, Ψ) =⇒ (Φ, Ψ ∪ {∀z1, . . . , zq.D[M1, . . . , Mn+p, z1 . . . , zq] ⊲⊳ M}) (A.1)

2. Else, if (rσ)↓
R

is ground, then

(Φ, Ψ) =⇒ (Φ ∪ {M0 ⊲ (rσ)↓
R
},

Ψ ∪ {∀z1, . . . , zq.D[M1, . . . , Mn+p, z1 . . . , zq] ⊲⊳ M0})
(A.2)

where M0 = D[M1, . . . , Mn+p, a, . . . , a] for some fixed public constant a.

3. Otherwise, (Φ, Ψ) =⇒ ⊥ (A.3)

B. Inferring deduction facts and equations syntactically

Assume that M0 ⊲ t0, . . . , Mn ⊲ tn ∈ Φ t = f(t1, . . . , tn) ∈ st(t0) f ∈ Fpub

1. If there exists M such that (M ⊲ t) ∈ Φ,

(Φ, Ψ) =⇒ (Φ, Ψ ∪ {f(M1, . . . , Mn) ⊲⊳ M}) (B.1)

2. Otherwise, (Φ, Ψ) =⇒ (Φ ∪ {f(M1, . . . , Mn) ⊲ t}, Ψ) (B.2)

Fig. 1. Transformation rules

(b) ifM = Ctx(φ ⊢?
R t, Ψ, α) then there existsM ′ and s such that Ψ |= M ⊲⊳ M ′,

M ′ ⊲φ s and t →∗
R s. (This justifies the notation φ ⊢?

R t used to denote a
specific deducibility problem.)

Note that a simple choice for Ctx(φ ⊢?
R t, Ψ, α) is to solve the deducibility

problem φ ⊢? t↓R in the empty equational theory, and then return a corre-
sponding recipe M , if any. (This problem is easily solved by induction on t↓R.)
Yet, optimizing the function Ctx is a nontrivial task: on the one hand, letting
Ctx(φ ⊢?

R t, Ψ, α) 6= ⊥ for more values φ, t, Ψ , α makes the procedure more
likely to succeed; on the other hand, it is computationally more demanding. We
explain in Section 6.2 the choice of Ctx made in our implementation.

We write =⇒∗ for the transitive and reflexive closure of =⇒. The definitions
of Ctx and of the transformation rules ensure that whenever S =⇒∗ S′ and S is
a state, then S′ is also a state, with the same parameters unless S′ = ⊥.

Example 5. Consider the frame ϕ1 previously described in Example 3. We can
apply rule A.1 as follows. Consider the rewrite rule dec(enc(x, y), y) → x, the
decomposition D2 given in Example 4 and t1 = enc(c0, k). We have Init(ϕ1) =
(ϕ1, ∅) =⇒ (ϕ1, {dec(w1,w2) ⊲⊳ c0}). In other words, since we know the key k

through w2, we can check that the decryption of w1 by w2 leads to the public
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constant c0. Next we apply rule B.1 as follows: (ϕ1, {dec(w1,w2) ⊲⊳ c0}) =⇒
(ϕ1, {dec(w1,w2) ⊲⊳ c0, enc(c0,w2) ⊲⊳ w1}). No more rules can then modify the
state.

Main theorem. We now state the soundness and the completeness of the trans-
formation rules provided that a saturated state is reached, that is, a state S 6= ⊥
such that S =⇒ S′ implies S′ = S. The technical lemmas involved in the proof
are detailed in Section 5.

Theorem 1 (soundness and completeness). Let E be an equational theory
generated by a convergent rewrite system R. Let ϕ be an initial frame and (Φ, Ψ)
be a saturated state such that Init(ϕ) =⇒∗ (Φ, Ψ).

1. For all M ∈ Fpub[par(ϕ)] and t ∈ F [∅], we have

Mϕ =E t ⇔ ∃N, Ψ |= M ⊲⊳ N and N ⊲Φ t↓R
2. For all M , N ∈ Fpub[par(ϕ)∪X ], we have that Mϕ =E Nϕ ⇔ Ψ |= M ⊲⊳ N .

While the saturation procedure is sound and complete, it may not terminate,
or fail if rule A.3 becomes the only applicable rule at some point of computation.
In Section 6, we explore several sufficient conditions to prevent failure and ensure
termination.

4.3 Application to deduction and static equivalence

Decision procedures for deduction and static equivalence follow from Theorem 1.

Algorithm for deduction. Let ϕ be an initial frame and t be a ground term. The
procedure for checking ϕ ⊢E t runs as follows:

1. Apply the transformation rules to obtain (if any) a saturated state (Φ, Ψ)
such that Init(ϕ) =⇒∗ (Φ, Ψ);

2. Return yes if there exists N such that N ⊲Φ t↓R (that is, the R-reduced
form of t is syntactically deducible from Φ); otherwise return no.

Algorithm for static equivalence. Let ϕ1 and ϕ2 be two initial frames. The pro-
cedure for checking ϕ1 ≈E ϕ2 runs as follows:

1. Apply the transformation rules to obtain (if possible) two saturated states
(Φ1, Ψ1) and (Φ2, Ψ2) such that Init(ϕi) =⇒∗ (Φi, Ψi), i = 1, 2;

2. For {i, j} = {1, 2}, for every equation (∀z1, . . . , zℓ.M ⊲⊳ N) in Ψi, check that
Mϕj =E Nϕj — that is, in other words, (Mϕj)↓R = (Nϕj)↓R;

3. If so return yes ; otherwise return no.

5 Soundness and completeness of the saturation

The proof of Theorem 1 is based on three main lemmas. First, the transformation
rules are sound in the sense that, along the saturation process, we add only
deducible terms and valid equations with respect to the initial frame.
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Lemma 1 (soundness). Let ϕ be an initial frame and (Φ, Ψ) be a state such
that Init(ϕ) =⇒∗ (Φ, Ψ). Then, we have that

1. M ⊲Φ t ⇒ Mϕ =E t for all M ∈ Fpub[dom(ϕ)] and t ∈ F [∅];
2. Ψ |= M ⊲⊳ N ⇒ Mϕ =E Nϕ for all M,N ∈ Fpub[dom(ϕ) ∪ X ].

The next two lemmas are dedicated to the completeness of B and A rules,
respectively. Lemma 2 ensures that saturated states account for all the syntactic
equations possibly visible. Lemma 3 deals with the reduction of a deducible term
along the rewrite system R. Using that R is convergent, this allows for proving
that every deducible term from a saturated frame is syntactically deducible.

Lemma 2 (completeness, syntactic equations). Let (Φ, Ψ) be a state, and
M , N be two terms such that M ⊲Φ t and N ⊲Φ t for some term t. Then there
exists (Φ′, Ψ ′) such that (Φ, Ψ) =⇒∗ (Φ′, Ψ ′) using B rules and Ψ ′ |= M ⊲⊳ N .

Lemma 3 (completeness, context reduction). Let (Φ, Ψ) be a state and M ,
t, t′ be three terms such that M ⊲Φ t and t →R t′. Then, either (Φ, Ψ) =⇒∗ ⊥
or there exist (Φ′, Ψ ′), M ′ and t′′ such that (Φ, Ψ) =⇒∗ (Φ′, Ψ ′), M ′ ⊲Φ′ t′′ with
t′ →∗

R t′′, and Ψ ′ |= M ⊲⊳ M ′.
Besides, in both cases, the corresponding derivation from (Φ, Ψ) can be chosen

to consist of a number of B rules, possibly followed by one instance of A rule
involving the same rewrite rule l → r as the rewrite step t→R t′.

6 Termination and non-failure

In the previous section, we proved that saturated frames yield sound and com-
plete characterizations of deducible terms and visible equations of their initial
frames. Yet, the saturation procedure may still not terminate, or fail due to
rule A.3. In this section, we study different conditions on the rewrite system R
so that failure never happens and/or termination is ensured.

6.1 A syntactic criterion to prevent failure

Our first criterion is syntactic and ensures that the algorithm never fails. It is
enjoyed by a large class of equational theories, called layered convergent.

Definition 4 (layered rewrite system). A rewrite system R, and by exten-
sion its equational theory E, are layered if there exists an ascending chain of
subsets ∅ = R0 ⊆ R1 ⊆ . . . ⊆ RN+1 = R (N ≥ 0), such that for every
0 ≤ i ≤ N , for every rule l → r in Ri+1 −Ri, for every (n, p, q)-decomposition
l = D[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq], one of the following two conditions holds:

(i) var(r) ⊆ var(l1, . . . , ln);
(ii) there exists C0, C1, . . . , Ck and s1, . . . , sk such that
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– r = C0[s1, . . . , sk];
– for each 1 ≤ i ≤ k, Ci[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq] rewrites to si in

zero or one step of rewrite rule in head position along Ri.

In the latter case, we say that the context C = C0[C1, . . . , Ck] is associated to the
decomposition D of l → r. Note that C[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq] →

∗
Ri

r.

Proposition 1. Assume that the function Ctx in use is maximal: for every
φ and t, if there exists s such that φ ⊢ s and t →∗

R s, then for any Ψ , α,
Ctx(φ ⊢?

R t, Ψ, α) 6= ⊥. Then, provided that R is layered convergent, there exists
no state (Φ, Ψ) from which (Φ, Ψ) =⇒ ⊥ is the only applicable derivation.

Practical considerations. Unfortunately, such a maximal Ctx is too inefficient
in practice as one has to consider the syntactic deducibility problem φ ⊢? s for
every t→∗

R s. This is why we rather use the following lighter implementation:

– for every index 0 ≤ i ≤ N , and every rule l → r in Ri+1 − Ri, if l =
D[l1, . . . , ln, y1, . . . , yp+q] is a (n, p, q)-decomposition satisfying condition (ii)
above for some (arbitrarily chosen) associated context C, then, for every φ
and σ such that φ ⊢ lσ, we let

Ctx(φ ⊢?
R rσ, Ψ, (l, r,D, σ)) = C[M1, . . . ,Mn+p+q]

where the Mk are fixed recipes such that (Mi ⊲ liσ) ∈ φ for 1 ≤ i ≤ n and
(Mn+j ⊲ yjσ) ∈ φ for 1 ≤ j ≤ p+ q;

– otherwise, if φ ⊢ t↓R, we let Ctx(φ ⊢?
R t, Ψ, α) be some fixed M such that

M ⊲φ t↓R;
– in any other case, we let Ctx(φ ⊢?

R t, Ψ, α) = ⊥.

Using Lemma 3 in a similar way as for proving Proposition 1, we can show
that, for any convergent rewrite system R, this choice of Ctx is compatible with
property (b) of subsection 4.2 as long as, during saturation, the transformation
rules A involve the rewrite rules of Ri with greater priority than those of Rj ,
i < j. Moreover, when R is additionally layered, this definition ensures that the
procedure never fails. Indeed, using the notations of Figure 1, Ctx(Φ ∪ {z1 ⊲

z1, . . . , zq ⊲ zq} ⊢?
R rσ, Ψ, (l, r,D, σ)) = ⊥ implies that (ii) is false on D, thus

(i) var(r) ⊆ var(l1, . . . , ln) holds and (rσ)↓R is ground.

Example 6. Any convergent subterm rewrite system R is layered convergent.
Indeed, let N = 0 and R1 = R. For any l → r in R and for every decomposition
l = D[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq], the term r is a subterm of l, thus either
r = C[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq] for some context C, or r is a subterm of
some li thus var(r) ⊆ var(l1, . . . , ln).

Example 7. Other examples are provided by the theory of homomorphism Ehom

defined in Section 2.3 as well as the convergent theories of blind signatures Eblind

and prefix encryption Epref defined by the following sets of equations.

Eblind = Eenc ∪

{

unblind(blind(x, y), y) = x

unblind(sign(blind(x, y), z), y) = sign(x, z)

}

11



Epref = Eenc ∪
{

pref(enc(〈x, y〉, z)) = enc(x, z)
}

The theory Eblind models primitives used in e-voting protocols [16]. The prefix
theory represents the property of many chained modes of encryption (e.g. CBC)
where an attacker can retrieve any encrypted prefix out of a ciphertext.

Let us check for instance that the prefix theory Epref is layered. Let N = 1,
R1 be the rewrite system obtained from Eenc by orienting the equations from left
to right, and R2 = R1 ∪ {pref(enc(〈x, y〉, z)) → enc(x, z)}. The rewrite rules of
R1 satisfy the assumptions since R1 forms a convergent subterm rewrite system.
The additional rule pref(enc(〈x, y〉, z)) → enc(x, z) admits three decompositions
up to permutation of parameters:

– l = pref(l1), in which case var(r) ⊆ var(l1);

– l = pref(enc(l1, z)), in which case enc(π1(l1), z) →R0
r;

– l = pref(enc(〈x, y〉, z)), in which case r = enc(x, z).

Verifying that the convergent theories Ehom and Eblind are layered is similar.

6.2 Termination

In the previous subsection, we described a sufficient criterion for non-failure. To
obtain decidability for a given layered convergent theory, there remains only to
provide a termination argument. Such an argument is generally easy to develop
by hand as we illustrate on the example of the prefix theory. For the case of
existing decidability results from [2], such as the theories of blind signature and
homomorphic encryption, we also provide a semantic criterion that allows us to
directly conclude termination of the procedure.

Proving termination by hand. To begin with, we note that B rules always ter-
minate after a polynomial number of steps. Let us write

�
=⇒n for the relation

made of exactly n strict applications of rules (S
�

=⇒ S′ iff S =⇒ S′ and S 6= S′).

Proposition 2. For every states S = (Φ, Ψ) and S′ such that S
�

=⇒n S′ using
only B rules, n is polynomially bounded in the size of im(Φ).

This is due to the fact that frames are one-to-one and that the rule B.2 only adds
deduction facts M ⊲ t such that t is a subterm of an existing term in Φ. Hence,
for proving termination, we observe that it is sufficient to provide a function s

mapping each frame Φ to a finite set of terms s(Φ) including the subterms of
im(Φ) and such that rule A.2 only adds deduction factsM⊲t satisfying t ∈ s(Φ).

For subterm theories, we obtain polynomial termination by choosing s(Φ) to
be the subterms of im(Φ) together with the ground right-hand sides of R.

Proposition 3. Let E be a convergent subterm theory. For every S = (Φ, Ψ) and
S′ such that S

�
=⇒n S′, n is polynomially bounded in the size of im(Φ).
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To conclude that deduction and static equivalence are decidable in polyno-
mial time [2], we need to show that the deduction facts and the equations are of
polynomial size. This requires a DAG representation for terms and visible equa-
tions. For our implementation, we have chosen not to use DAGs for the sake
of simplicity (and perhaps efficiency) since DAGs require much heavier data
structures. However, similar techniques as those described in [2] would apply to
implement our procedure using DAGs.

For proving termination of the prefix theory, we let s(Φ) be the minimal
set containing Φ, closed by subterm and such that enc(t1, k) ∈ s(Φ) whenever
enc(〈t1, t2〉, k) ∈ s(Φ). We then deduce that deduction and static equivalence are
decidable for the equational theory Epref , which is a new decidability result.

A criterion to ensure termination. We now provide a semantic criterion that
more generally explains why our procedure succeeds on theories previously known
to be decidable [2]. This criterion intuitively states that the set of deducible terms
from any initial frame ϕ should be equivalent to a set of syntactically deducible
terms. Provided that failures are prevented and assuming a fair strategy for rule
application, we prove that this criterion is a necessary and sufficient condition
for our procedure to terminate.

Definition 5 (fair derivation). An infinite derivation (Φ0, Ψ0) =⇒ . . . =⇒
(Φn, Ψn) =⇒ . . . is fair iff along this derivation,

(a) B rules are applied with greatest priority, and
(b) whenever a A rule is applicable for some instance (l → r,D, t1, . . . , tn, . . .),

eventually the same instance of rule is applied during the derivation.

Fairness implies that any deducible term is eventually syntactically deducible.

Lemma 4. Let S0 = (Φ0, Ψ0) =⇒ . . . =⇒ (Φn, Ψn) =⇒ . . . be an infinite fair
derivation from a state S0. For every ground term t such that Φ0 ⊢E t, either
(Φ0, Ψ0) =⇒∗ ⊥ or there exists i such that Φi ⊢ t↓R.

Proposition 4 (criterion for saturation). Let ϕ be an initial frame such that
Init(ϕ) 6=⇒∗ ⊥. The following conditions are equivalent:

(i) There exists a saturated couple (Φ, Ψ) such that Init(ϕ) =⇒∗ (Φ, Ψ).
(ii) There exists a (finite) initial frame ϕs such that for every term t, t is

deducible from ϕ modulo E iff t↓R is syntactically deducible from ϕs.
(iii) There exists no fair infinite derivation starting from Init(ϕ).

Together with the syntactic criterion described in Section 6.1, this criterion
(Property (ii)) allows us to prove that deduction and static equivalence are de-
cidable for layered convergent theories that are locally stable, as defined in [2].
As a consequence, our procedure always saturates for the theories of blind sig-
natures and homomorphic encryption since those theories are layered and have
been proved locally stable [2]. Other examples of layered convergent theories
enjoying this criterion can be found in [2] (e.g. a theory of addition).
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7 Implementation: the YAPA tool

YAPA is an Ocaml implementation4 of the saturation procedure presented in
Section 4, using by default the optimized function Ctx defined in Section 6, and
a fair strategy of rule application (see Definition 5).

The tool takes as input an equational theory described by a finite convergent
rewrite system, as well as frame definitions and queries. A few optimizations
may be activated for subterm theories, e.g. to accelerate normalization. The
procedure starts by computing the decompositions of the rewrite system. Given
an appropriate ordering of the rewrite rules, it is able to recognize (fully or
partially) layered theories and to pre-compute the associated contexts C related
to condition (ii) of Definition 4, and exploited by the function Ctx in use.

We have conducted several experiments on a PC Intel Core 2 Duo at 2.4 GHz
with 2 Go RAM for various equational theories (see below) and found that YAPA
provides an efficient way to check static equivalence and deducibility.

Equational
theory

Eenc

n = 10
Eenc

n = 14
Eenc

n = 16
Eenc

n = 18
Eenc

n = 20
Eblind Epref Ehom Eadd

Execution time < 1s 1,7s 8s 30s < 3min < 1s < 1s < 1s < 1s

For the case of Eenc, we have run YAPA on the frames ϕn = {w1 ⊲ t0n,w2 ⊲

c0,w3 ⊲ c1} and ϕ′
n = {w1 ⊲ t1n,w2 ⊲ c0,w3 ⊲ c1}, where ti0 = ci and tin+1 =

〈enc(tin, k
i
n), ki

n〉, i ∈ {0, 1}. These examples allow us to increase the (tree, non-
DAG) size of the distinguishing tests exponentially, while the sizes of the frames
grow linearly. Despite the size of the output, we have observed satisfactory per-
formances for the tool. We have also experimented YAPA on several convergent
theories, e.g. Eblind, Ehom, Epref and the theory of addition Eadd defined in [2].

In comparison with the tool ProVerif [8, 9], here instrumented to check static
equivalences, our test samples suggest a running time between one and two or-
ders of magnitude faster for YAPA. Also we did not succeed in making ProVerif
terminate on the two theories Ehom and Eadd. Of course, these results are not
entirely surprising given that ProVerif is tailored for the more general (and dif-
ficult) problem of protocol (in)security under active adversaries. In particular
ProVerif’s initial preprocessing of the rewrite system appears more substantial
than ours and is not guaranteed to terminate, even for subterm convergent the-
ories (e.g. in the case of the theory generated by f(g(f(x))) = x).

Altogether, these results suggest that YAPA significantly improves the state
of the art for checking deducibility and static equivalence under convergent the-
ories, both from practical and theoretical perspectives.
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A Soundness and completeness

Before going through the proofs, we note the following fact that justifies the
expression “saturation procedure” used throughout this paper.

Lemma 5 (monotony). Let (Φ, Ψ) and (Φ′, Ψ ′) be such that (Φ, Ψ) =⇒∗ (Φ′, Ψ ′).
We have that Φ ⊆ Φ′ and Ψ ⊆ Ψ ′. In particular, we note that

– M ⊲Φ t implies M ⊲Φ′ t;
– Ψ |= M ⊲⊳ N implies Ψ ′ |= M ⊲⊳ N .

A.1 Soundness of the saturation procedure

Lemma 1 (soundness). Let ϕ be an initial frame and (Φ, Ψ) be a state such
that Init(ϕ) =⇒∗ (Φ, Ψ). Then, we have that

1. M ⊲Φ t ⇒ Mϕ =E t for all M ∈ Fpub[dom(ϕ)] and t ∈ F [∅];
2. Ψ |= M ⊲⊳ N ⇒ Mϕ =E Nϕ for all M,N ∈ Fpub[dom(ϕ) ∪ X ].

Proof. We prove this result by induction on the derivation Init(ϕ) =⇒∗ (Φ, Ψ).

Base case: We have that (Φ, Ψ) = Init(ϕ) and we easily conclude.
Induction case: In such a case, we have Init(ϕ) =⇒∗ (Φ′, Ψ ′) =⇒ (Φ, Ψ).

Let us first notice two facts.

1. Let M and t be such that M ⊲Φ t. By definition of ⊲Φ, there exist a public
context C and some deduction facts M ′

1 ⊲ t′1, . . . ,M
′
n ⊲ t′n ∈ Φ such that

M = C[M ′
1, . . .M

′
n] and t = C[t′1, . . . , t

′
n]. In order to prove 1., it is sufficient

to show that M ′ ⊲E
ϕ t

′ for every M ′ ⊲ t′ ∈ Φ. By induction hypothesis, this

holds for the deduction facts in Φ′, thus it remains to show that M ′
⊲

E
ϕ t

′ for
every fact M ′ ⊲ t′ ∈ Φ− Φ′.

2. Let M,N be two terms such that Ψ |= M ⊲⊳ N . To establish 2., it is suffi-
cient to prove that M ′ϕ =E N

′ϕ for every (∀z1, . . . , zq.M
′ ⊲⊳ N ′) in Ψ . By

induction hypothesis, this holds for the equations in Ψ ′, thus it remains to
show that M ′ϕ =E N

′ϕ for every equation (∀z1, . . . , zq.M
′ ⊲⊳ N ′) in Ψ −Ψ ′.

Next we perform a case analysis on the inference rule used in (Φ′, Ψ ′) =⇒ (Φ, Ψ).
First, consider the case of rule A. Let l → r ∈ R be the rewrite rule, D the
decomposition, and M1 ⊲ t1, . . . ,Mn+p ⊲ tn+p the facts involved in this step.

Rule A.2 : We need to show that

– D[M1, . . . ,Mn+p, a, . . . , a]ϕ =E (rσ)↓R, and
– D[M1, . . . ,Mn+p, z1, . . . , zq]ϕ =E D[M1, . . . ,Mn+p, a, . . . , a]ϕ.

We note that D[t1, . . . , tn+p, z1, . . . , zq] = lσ → rσ →∗ (rσ)↓R. Besides, by in-
duction hypothesis we have that Miϕ =E ti for 1 ≤ i ≤ n+p. Given that (rσ)↓R
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is ground, and applying the substitution {z1 7→ a, . . . , zq 7→ a} to the equation
D[t1, . . . , tn+p, z1, . . . , zq] =E (rσ)↓R, we obtain:

D[M1, . . . ,Mn+p, z1, . . . , zq]ϕ =E D[t1, . . . , tn+p, z1, . . . , zq]

=E (rσ)↓R
=E D[t1, . . . , tn+p, a, . . . , a]

=E D[M1, . . . ,Mn+p, a, . . . , a]ϕ

Rule A.1 : We need to show D[M1, . . . ,Mn+p, z1, . . . , zq]ϕ =E Mϕ. As before,
we have D[M1, . . . ,Mn+p, z1, . . . , zq]ϕ =E (rσ)↓R. We also know that there exist
M ′ and s such that Ψ |= M ⊲⊳ M ′, M ′

⊲Φ+ s and rσ →∗
R s where Φ+ =

Φ ∪ {z1 ⊲ z1, . . . , zq ⊲ zq}. Let θ be the substitution {z1 7→ a, . . . , zq 7→ a}. We
have Ψ |= Mθ ⊲⊳ M ′θ and M ′θ ⊲Φ s. Hence, using the induction hypothesis, we
have that Mθϕ =E M ′θϕ and M ′θϕ =E s thus Mϕ =E M ′ϕ and M ′ϕ =E s.
Thus, we have that Mϕ =E (rσ)↓R. This allows us to conclude.

Rule A.3 : In such a case, the result trivially holds.

Second, we consider the case of B rules. Let t = f(t1, . . . , tn) ∈ st(t0), f ∈ Fpub

and M0 ⊲ t0, . . . ,Mn ⊲ tn ∈ Φ be involved in the step (Φ′, Ψ ′) =⇒ (Φ, Ψ).

Rule B.1 : By induction hypothesis, Miϕ =E ti for every 1 ≤ i ≤ n, hence
f(M1, . . . ,Mn)ϕ =E f(t1, . . . , tn) = t.

Rule B.2 : By induction hypothesis,Miϕ =E ti for every 1 ≤ i ≤ n andMϕ =E t,
hence f(M1, . . . ,Mn)ϕ =E f(t1, . . . , tn) = t =E Mϕ. ⊓⊔

A.2 Completeness of the saturation procedure

Lemma 6 (completeness, syntactic deduction). Let (Φ, Ψ) be a state, M0⊲

t0 ∈ Φ. Let N , t be two terms such that t ∈ st(t0) and N ⊲Φ t. Then there exists
(Φ′, Ψ ′) and N ′ such that

– (Φ, Ψ) =⇒∗ (Φ′, Ψ ′) using B rules, and
– N ′ ⊲ t ∈ Φ′ and Ψ ′ |= N ⊲⊳ N ′.

Proof. By hypothesis, we have that N⊲Φ t. This means that there exists a public
context C and some factsM1⊲t1, . . . ,Mn⊲tn ∈ Φ such thatN = C[M1, . . . ,Mn]
and t = C[t1, . . . , tn]. Let C be such a context whose size is minimal. We show
the result by structural induction on C.

Base case: C is reduced to an hole. Let (Φ′, Ψ ′) = (Φ, Ψ) and N ′ = N . The result
trivially holds.

Induction step: C = f(C1, . . . , Cr) with f ∈ Fpub of arity r. In such a case,
we have t = f(u1, . . . , ur) and Ci[M1, . . . ,Mn] ⊲Φ ui with ui ∈ st(t0) for each
1 ≤ i ≤ r. Thus, we can apply our induction hypothesis. We deduce that there
exists (Φ1, Ψ1) and terms N ′

1, . . .N
′
r such that:
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– (Φ, Ψ) =⇒∗ (Φ1, Ψ1) using B rules,
– N ′

i ⊲ ui ∈ Φ1 and Ψ1 |= Ci[M1, . . . ,Mn] ⊲⊳ N ′
i for each 1 ≤ i ≤ r.

From this we easily deduce that Ψ1 |= N ⊲⊳ f(N ′
1, . . . , N

′
r). We apply one B rule.

We have that M0 ⊲ t0, N
′
1 ⊲ u1, . . . , N

′
r ⊲ ur ∈ Φ1, t = f(u1, . . . , ur) ∈ st(t0) and

f ∈ Fpub. We distinguish two cases:

Rule B.1 : Assume that for all Mt we have that (Mt ⊲ t) 6∈ Φ1.
Let Φ′ = Φ1∪{f(N ′

1, . . . , N
′
r)⊲t}, Ψ ′ = Ψ1 and N ′ = f(N ′

1, . . . , N
′
r). In order

to conclude it remains to show that Ψ ′ |= N ⊲⊳ N ′. This is an easy consequence
of the fact that Ψ1 |= N ⊲⊳ f(N ′

1, . . . , N
′
r).

Rule B.2. Assume that there exists Mt such that Mt ⊲ t ∈ Φ1.
Let Φ′ = Φ1, Ψ

′ = Ψ1∪{f(N ′
1, . . . , N

′
r) ⊲⊳ Mt} and N ′ = Mt. In order to con-

clude it remains to show that Ψ ′ |= N ⊲⊳ N ′. We have Ψ ′ |= f(N ′
1, . . . , N

′
r) ⊲⊳ N

′

and Ψ ′ |= N ⊲⊳ f(N ′
1, . . . , N

′
r). This allows us to conclude. ⊓⊔

Lemma 2 (completeness, syntactic equations). Let (Φ, Ψ) be a state, and
M , N be two terms such that M ⊲Φ t and N ⊲Φ t for some term t. Then there
exists (Φ′, Ψ ′) such that (Φ, Ψ) =⇒∗ (Φ′, Ψ ′) using B rules and Ψ ′ |= M ⊲⊳ N .

Proof. By hypothesis, we have that M ⊲Φ t and N ⊲Φ t for some term t. By
definition of ⊲Φ, we have that

– M = C[M1, . . . ,Mk], N = C ′[N1, . . . , Nℓ] for some contexts C,C ′,
– the facts M1 ⊲ t1, . . . ,Mk ⊲ tk and N1 ⊲ u1, . . . , Nℓ ⊲ uℓ are in Φ,
– C[t1, . . . , tk] = C ′[u1, . . . , uℓ].

We prove the result by structural induction on C and C ′. We assume w.l.o.g.
that C is smaller than C ′ (in terms of number of symbols).

Base case: C is reduced to an hole. We have that C[M1, . . . ,Mk] = M1. By hy-
pothesis, we have that N⊲Φt = t1 and thus t ∈ st(t1). Thanks to Lemma 6, there
exists (Φ′, Ψ ′) and N ′ such that (Φ, Ψ) =⇒∗ (Φ′, Ψ ′) using a B rule, N ′

⊲ t1 ∈ Φ′

and Ψ ′ |= N ⊲⊳ N ′. Since M1 ⊲ t1 and N ′ ⊲ t1 are both in Φ′, we deduce that
N ′ = M1. Hence we have that N ′ = M and thus we easily conclude.

Induction step: C = f(C1, . . . , Cr) and C ′ = f(C ′
1, . . . , C

′
r) where f ∈ Fpub is

a symbol of arity r and C1, . . . , Cr, C
′
1, . . . , C

′
r are contexts. Moreover, we have

that Ci[t1, . . . , tk] = C ′
i[u1, . . . , uℓ] for every 1 ≤ i ≤ r, By applying the induction

hypothesis, we deduce that there exists (Φ′, Ψ ′) such that

– (Φ, Ψ) =⇒∗ (Φ′, Ψ ′), and
– Ψ ′ |= Ci[M1, . . . ,Mk] ⊲⊳ C ′

i[N1, . . . , Nℓ] for every 1 ≤ i ≤ r.

Hence, we have that Ψ ′ |= M ⊲⊳ N . This allows us to conclude. ⊓⊔

The following lemma justifies the notion of decomposition (Definition 3) as
far as completeness is concerned.
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Lemma 7 (decomposition of a context reduction). Let Φ be a frame,
l a (plain) term, σ a substitution, and M a term such that M ⊲Φ lσ. Then
there exist

– a (n, p, q)-decomposition D of l, written l = D[l1, . . . , ln, y1, . . . yp+q],
– n deduction facts M1 ⊲ t1, . . . , Mn ⊲ tn in Φ,
– p+ q recipes N1, . . . , Np+q

such that

– for every 1 ≤ i ≤ n, ti = liσ and
– for every 1 ≤ j ≤ p+ q, Nj ⊲Φ yjσ.

In particular, D[M1, . . . ,Mn, N1, . . .Np+q ] ⊲Φ lσ.
Besides, if l is a left-hand side of rule in R and Φ is R-reduced, D is a proper

decomposition (i.e. D 6= w1).

Proof. Since M ⊲Φ lσ, by definition there exists C and M0
1 ⊲ t01, . . . , M0

m ⊲ t0m
in Φ such that M = C[M0

1 , . . . ,M
0
m] and lσ = C[t01, . . . , t

0
m].

Let x1, . . . , xm be fresh variables. Given that C[x1, . . . , xm] and l unify and
have distinct variables, there exists a largest common context D0 such that l =
D0[l

0
1, . . . , l

0
a, y

0
1 , . . . , y

0
b ] and C = D0[wj1 , . . . ,wja

, D1, . . . , Db] where the terms l0i
are not variables and D0 uses all his parameters: in particular lσ = C[t01, . . . , t

0
m]

means that

– for every 1 ≤ k ≤ a, l0kσ = t0jk
, and

– for every 1 ≤ k ≤ b, y0
kσ = Dk[t01, . . . , t

0
m]

Let n be the cardinal of {l01, . . . , l
0
a}. For each distinct li in {l01, . . . , l

0
a} (1 ≤

i ≤ n), we choose k in {1, . . . , a} such that li = l0k and define Mi = M0
k and

ti = l0kσ = liσ. Besides, for every k′ such that l0k′ = l0k, we define wk′ = wi.
Let p be the cardinal of {y0

1 , . . . , y
0
b} ∩ var(l1, . . . , ln). For each distinct yj

in {y0
1 , . . . , y

0
b} (1 ≤ j ≤ p), we choose k in {1, . . . , b} such that yj = y0

k and
define Nj = Dk[M0

1 , . . . ,M
0
m]. Besides, for every k′ such that y0

k′ = y0
k, we define

wa+k′ = wp+j .
Let q = b−p. We repeat the same operation for each distinct yj in {y0

1 , . . . , y
0
b}−

var(l1, . . . , ln) (p+ 1 ≤ j ≤ p+ q).
Finally, we let D = D0[w1, . . . , wa+b]. By construction, we have that

– l = D[l1, . . . , ln, y1, . . . yp+q],
– the li are mutually distinct non-variable terms and the yi are mutually dis-

tinct variables.
– yi ∈ var(l1, . . . , ln) iff i ≤ p.
– Mi ⊲ ti is in Φ,
– for every 1 ≤ i ≤ n, ti = liσ, and
– for every 1 ≤ j ≤ p+ q, Nj ⊲Φ yjσ.

As for the last sentence, if D is a parameter, so is D0. As l = y0
k is impossible

for a convergent system R, we have D0 = wk with k ≤ a. Hence C = wjk
and

t0k = C[t01, . . . , t
0
k] = lσ is not R-reduced. ⊓⊔

19



Lemma 3 (completeness, context reduction). Let (Φ, Ψ) be a state and M ,
t, t′ be three terms such that M ⊲Φ t and t →R t′. Then, either (Φ, Ψ) =⇒∗ ⊥
or there exist (Φ′, Ψ ′), M ′ and t′′ such that (Φ, Ψ) =⇒∗ (Φ′, Ψ ′), M ′ ⊲Φ′ t′′ with
t′ →∗

R t′′, and Ψ ′ |= M ⊲⊳ M ′.
Besides, in both cases, the corresponding derivation from (Φ, Ψ) can be chosen

to consist of a number of B rules, possibly followed by one instance of A rule
involving the same rewrite rule l → r as the rewrite step t→R t′.

Proof. By hypothesis, there exist a (public) context C and some deduction
facts M0

1 ⊲ t01, . . . , M0
m0

⊲ t0m0
∈ Φ such that M = C[M0

1 , . . . ,M
0
m0

] and
t = C[t01, . . . , t

0
m0

].
Moreover, there exist a position α, a substitution σ and a rewrite rule l → r ∈ R

such that t|α = lσ and t′ = t[rσ]α.
We note that α must be a (symbol) position of C since the t0i are R-reduced.

Hence we may write C|α[t01, . . . , t
0
m0

] = lσ.
By Lemma 7, we deduce that there exist

– a proper (n, p, q)-decomposition D of l : l = D[l1, . . . , ln, y1, . . . yp, z1, . . . zq],
– M1 ⊲ t1, . . . , Mn ⊲ tn in Φ,
– N1, . . . , Np+q

such that

– for every 1 ≤ i ≤ n, ti = liσ,
– for every 1 ≤ j ≤ p, Nj ⊲Φ yjσ, and
– for every 1 ≤ k ≤ q, Np+k ⊲Φ zkσ.

In particular, we obtain that

M |α = C|α[M0
1 , . . . ,M

0
m0

] ⊲Φ C|α[t01, . . . , t
0
m0

] = lσ

D[M1, . . . ,Mn, N1, . . . , Np+q] ⊲Φ D[t1, . . . , tn, y1σ, . . . , ypσ, z1σ, . . . , zqσ] = lσ

Thus, by Lemma 2, there exists a derivation (Φ, Ψ) =⇒∗ (Φ1, Ψ1) using B rules
such that Ψ1 |= M |α ⊲⊳ D[M1, . . . ,Mn, N1, . . . , Np+q].

Besides, since yj belongs to var(l1, . . . , ln) by definition of decompositions,
yjσ is a subterm of some liσ = ti. Since Nj ⊲Φyjσ, by applying Lemma 6 repeat-
edly, we deduce that there exist some term Mn+1, . . . , Mn+p and a derivation
(Φ1, Ψ1) =⇒∗ (Φ2, Ψ2) using B rules such that for all j,

– Mn+j ⊲ yjσ is in Φ2, and
– Ψ2 |= Mn+j ⊲⊳ Nj .

Let N = D[M1, . . . ,Mn+p, Np+1, . . . , Np+q]. We deduce that N ⊲Φ2
lσ, and

Ψ2 |= M |α ⊲⊳ D[M1, . . . ,Mn, N1, . . . , Np+q] ⊲⊳ N

We now consider the application to (Φ2, Ψ2) of a A rule that involves the
rewrite rule l → r, the decomposition D, the plain terms (t1, . . . , tn+p) =
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(l1, . . . , ln, y1, . . . , yp)σ and the substitution σ′ = σ|V obtained by restricted
the σ to the domain V = var(l1, . . . , ln) = var(l1, . . . , ln, y1, . . . , yp).

Case A.3. If (rσ′)↓R is not ground and Ctx(Φ+
2 ⊢?

R rσ′, Ψ2, (l, r,D, σ′)) = ⊥
where Φ+

2 = Φ2∪{z1⊲z1, . . . , zq⊲zq}, then we may conclude that (Φ2, Ψ2) =⇒ ⊥
by an instance of rule A.3 involving l → r, the decomposition D and the facts
M1 ⊲ t1,. . . ,Mn+p ⊲ tn+p.

Case A.1. If there existsN0 = Ctx(Φ+
2 ⊢?

R rσ′, Ψ2, (l, r,D, σ′)) where Φ+
2 = Φ2∪

{z1⊲z1, . . . , zq⊲zq}. LetN ′
0 and s0 be such that Ψ2 |= N0 ⊲⊳ N

′
0,N

′
0⊲Φ2∪{z1,...,zq}

s0 and rσ′ →∗
R s0, and define

– Φ′ = Φ2,

– Ψ ′ = Ψ2 ∪ {∀z1, . . . , zq.D[M1, . . . ,Mn+p, z1, . . . , zq] ⊲⊳ N0},
– M ′ = M [M0]α where M0 = N ′

0 {zi 7→ Np+i}1≤i≤q,

– t′′ = t[t0]α = t′[t0]α where t0 = s0 {zi 7→ ziσ}1≤i≤q.

By construction, we have (Φ2, Ψ2) =⇒ (Φ′, Ψ ′) by an instance of rule A.1.

Besides, rσ′ →∗
R s0 implies t′|α = rσ →∗

R t0 and t′ →∗
R t′′.

Given that α ∈ pos(C) (where C is the previously context related to M⊲Φ t)
and M0 ⊲Φ′ t0, we have that M ′ = M [M0]α ⊲Φ′ t[t0]α = t′′.

It remains to show that Ψ ′ |= M ⊲⊳ M ′. Indeed, we have seen that Ψ2 |=
M |α ⊲⊳ N where N = D[M1, . . . ,Mn+p, z1, . . . , zq]{zi 7→ Np+i}1≤i≤q. Besides,
we have Ψ2 |= N0 ⊲⊳ N ′

0, and by definition of Ψ ′, it holds that Ψ ′ ⊇ Ψ2 and
Ψ ′ |= D[M1, . . . ,Mn+p, z1, . . . , zq] ⊲⊳ N0. Therefore, Ψ ′ |= M |α ⊲⊳ M0 and Ψ ′ |=
M ⊲⊳ M [M0]α = M ′.

Case A.2: if (rσ′)↓R is ground and Ctx(Φ+
2 ⊢?

R rσ′, Ψ2, (l, r,D, σ′)) = ⊥ where
Φ+

2 = Φ2 ∪ {z1 ⊲ z1, . . . , zq ⊲ zq}, define

– M0 = D[M1, . . . ,Mn+p, a, . . . , a] and t0 = (rσ′)↓R,

– Φ′ = Φ2 ∪ {M0 ⊲ t0},
– Ψ ′ = Ψ2 ∪ {∀z1, . . . , zq.D[M1, . . . ,Mn+p, z1, . . . , zq] ⊲⊳ M0},
– M ′ = M [M0]α, and

– t′′ = t[t0]α.

where a is the fixed public constant of rule A.2.

By construction, (Φ, Ψ) =⇒ (Φ′, Ψ ′) by an instance of the A.2 rule.

Since t0 is ground and σ = σ′σ, we have t0 = (rσ)↓R. Therefore t′ =
t[rσ]α →∗

R t[ (rσ)↓R ]α = t′′.

Given that α ∈ pos(C) and by construction M0 ⊲Φ′ t0, we have M ′ ⊲Φ′ t′′.

It remains to show that Ψ ′ |= M ⊲⊳ M ′. Indeed, we have seen that Ψ2 |=
M |α ⊲⊳ N where N = D[M1, . . . ,Mn+p, z1, . . . , zq]{zi 7→ Np+i}1≤i≤q. By defini-
tion of Ψ ′, it holds that Ψ ′ |= N ⊲⊳ M0 hence Ψ ′ |= M ⊲⊳ M [N ]α ⊲⊳ M [M0]α =
M ′.

The additional properties claimed on the derivation are clear from the construc-
tion above. �
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A.3 Proof of Theorem 1

Theorem 1 (soundness and completeness). Let E be an equational theory
generated by a convergent rewrite system R. Let ϕ be an initial frame and (Φ, Ψ)
be a saturated state such that Init(ϕ) =⇒∗ (Φ, Ψ).

1. For all M ∈ Fpub[par(ϕ)] and t ∈ F [∅], we have

Mϕ =E t ⇔ ∃N, Ψ |= M ⊲⊳ N and N ⊲Φ t↓R
2. For all M , N ∈ Fpub[par(ϕ)∪X ], we have that Mϕ =E Nϕ ⇔ Ψ |= M ⊲⊳ N .

Proof. Let ϕ be an initial frame and (Φ, Ψ) be a saturated state such that
Init(ϕ) ⇒∗ (Φ, Ψ).

1.(⇐) Let M , N and t be such that Ψ |= M ⊲⊳ N and N ⊲Φ t↓R (thus in
particular N ⊲E

Φ t). Thanks to Lemma 1, we have that Mϕ =E Nϕ =E t.

(⇒) Let M and t be such that Mϕ =E t. We have that M ⊲Φ t0 →∗ t↓R for
some term t0. We show the result by induction on t0 equipped with the order <
induced by the rewriting relation (t < t′ if and only if t′ →+ t).

Base case: M ⊲Φ t0 = t↓R. Let N = M , we have Ψ |= M ⊲⊳ N and N ⊲Φ t↓R.

Induction case: M ⊲Φ t0 →+ t↓R. Let t′ be such that M ⊲Φ t0 → t′ →∗ t↓R.
Thanks to Lemma 3 and since (Φ, Ψ) is already saturated,5 we deduce that there
exist N ′ and t′′ such that N ′ ⊲Φ t

′′, t′ →∗ t′′, and Ψ |= M ⊲⊳ N ′. We have that
N ′

⊲Φ t
′′ →∗ t↓R and t′′ ≤ t′ < t0. Thus, we can apply our induction hypothesis

and we obtain that there exists N such that Ψ |= N ′ ⊲⊳ N and N ⊲Φ t↓R.

2.(⇐) By Lemma 1, Ψ |= M ⊲⊳ N implies Mϕ =E Nϕ.

(⇒) Let M and N such that Mϕ =E Nϕ. This means that there exists t
such that Mϕ =E t and Nϕ =E t. By applying 1, we deduce that there exists
M ′, N ′ such that: ψ |= M ⊲⊳ M ′, M ′ ⊲Φ t↓R, ψ |= N ⊲⊳ N ′ and N ′ ⊲Φ t↓R.
Thanks to Lemma 2 and since (Φ, Ψ) is already saturated, we easily deduce that
Ψ |= M ′ ⊲⊳ N ′, and thus Ψ |= M ⊲⊳ N . ⊓⊔

A.4 Application to deduction and static equivalence

Algorithm for deduction. Let ϕ be an initial frame and t be a ground term. The
procedure for checking ϕ ⊢E t runs as follows:

1. Apply the transformation rules to obtain (if any) a saturated state (Φ, Ψ)
such that Init(ϕ) =⇒∗ (Φ, Ψ);

2. Return yes if there exists N such that N ⊲Φ t↓R (that is, the R-reduced
form of t is syntactically deducible from Φ); otherwise return no.

5 Note that rule A.3 is never applicable on a saturated state.
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Proof. If the algorithm returns yes, this means that there exists N such that
N ⊲Φ t↓R. Thanks to Theorem 1, we have that Nϕ =E t, i.e. N ⊲E

ϕ t.
Conversely, if t is deducible from ϕ, then there exists M such that Mϕ =E t.

By Theorem 1, there exists N such that N ⊲Φ t↓R. The algorithm returns yes.
⊓⊔

Algorithm for static equivalence. Let ϕ1 and ϕ2 be two initial frames. The pro-
cedure for checking ϕ1 ≈E ϕ2 runs as follows:

1. Apply the transformation rules to obtain (if possible) two saturated states
(Φ1, Ψ1) and (Φ2, Ψ2) such that Init(ϕi) =⇒∗ (Φi, Ψi), i = 1, 2;

2. For {i, j} = {1, 2}, for every equation (∀z1, . . . , zℓ.M ⊲⊳ N) in Ψi, check that
Mϕj =E Nϕj — that is, in other words, (Mϕj)↓R = (Nϕj)↓R;

3. If so return yes ; otherwise return no.

Proof. If the algorithm returns yes, this means that:

For every equation (∀z1, . . . , zℓ.M ⊲⊳ N) in Ψ1, we have that Mϕ2 =E Nϕ2.

Let M ⊲⊳ N ∈ eqE(ϕ1). By definition of eqE(ϕ1), we have that Mϕ1 =E Nϕ1.
Thanks to Theorem 1, we have that Ψ1 |= M ⊲⊳ N . As all the equations in Ψ1 are
satisfied by ϕ2 modulo E, we deduce that Mϕ2 =E Nϕ2, i.e. M ⊲⊳ N ∈ eq(ϕ2).
The other inclusion, eqE(ϕ2) ⊆ eqE(ϕ1), is proved in the same way.

Conversely, assume now that ϕ1 ≈E ϕ2, i.e. eqE(ϕ1) = eqE(ϕ2). Consider a
quantified equation ∀z1, . . . , zℓ.M ⊲⊳ N in Ψ1 and let us show that Mϕ2 =E Nϕ2.
(The other case is done in a similar way, and we will conclude that the algorithm
returns yes.)

Let c1, . . . , cℓ be free public constants not occurring in M and N , and let
(M ′, N ′) = (M,N){z1 7→ c1, . . . , zℓ 7→ cℓ}. Since Ψ1 |= M ′ ⊲⊳ N ′, by Theorem 1,
we have that M ′ϕ1 =E N

′ϕ1. Besides, M ′ and N ′ are ground and par(M ′, N ′) ⊆
par(Ψ1) ⊆ par(ϕ1). Thus, (M ′ ⊲⊳ N ′) ∈ eqE(ϕ1) ⊆ eqE(ϕ2) and M ′ϕ2 =E N

′ϕ2.
As the constants c1, . . . , cℓ are free in E and do not occur in M and N , by
replacement, we obtain that Mϕ2 =E Nϕ2. ⊓⊔

B Termination and non-Failure

B.1 Syntactic criterion

Proposition 1. Assume that the function Ctx in use is maximal: for every
φ and t, if there exists s such that φ ⊢ s and t →∗

R s, then for any Ψ , α,
Ctx(φ ⊢?

R t, Ψ, α) 6= ⊥. Then, provided that R is layered convergent, there exists
no state (Φ, Ψ) from which (Φ, Ψ) =⇒ ⊥ is the only applicable derivation.

Proof. By contradiction, let (Φ, Ψ) be a state from which (Φ, Ψ) =⇒ ⊥ is the
only applicable derivation, and let l → r be the rewrite rule involved in the
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corresponding instance of rule A.3. We prove the property by induction on the
index i ∈ {0 . . .N} such that l → r ∈ Ri+1−Ri. Using the notations of Figure 1
for the instance of A.3 under consideration and the assumption on Ctx, we have
that

(a) for every rσ →∗
R s, Φ ∪ {z1 ⊲ z1, . . . , zq ⊲ zq} 6⊢ s, and

(b) (rσ)↓R is not ground.

In particular, (b) implies that var(r) is not included in var(l1, . . . , ln), other-
wise we would have

var((rσ)↓R) ⊆ var(rσ) ⊆ var(var(r)σ)

⊆ var(var(l1, . . . , ln)σ) ⊆ var(t1, . . . , tn) = ∅

By assumption on the decomposition l = D[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq]
of l → r ∈ Ri+1 −Ri, we deduce that there exists some contexts C0, . . . , Ck and
some terms s1, . . . , sk such that

– r = C0[s1, . . . , sk];
– for each 1 ≤ i ≤ k, Ci[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq] rewrites to si in zero

or one step of rewrite rule in head position along Ri.

Let C = C0[C1, . . . , Ck] and t0 = C[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq]. Note that
t0 →∗

Ri
r.

If t0 = r, we obtain that rσ = C[t1, . . . , tn+p, z1, . . . , zq] is syntactically
deducible from Φ∪{z1 ⊲z1, . . . , zq ⊲zq}, which contradicts (a). Hence t0 →+

Ri
r,

and in particular i > 0.
Let µ be a substitution mapping the variable zj to distinct fresh public

constants aj . For each 1 ≤ i ≤ k, let ui = Ci[l1, . . . , ln, y1, . . . , yp, z1, . . . , zq]σµ .
The term ui = Ci[t1, . . . , tn+p, a1, . . . , aq] is syntactically deducible from Φ, and
reduces to u′i = siσµ in zero or one step (in head position) along Ri.

By induction hypothesis on i − 1, no applicable rule A.3 from (Φ, Ψ) may
involve a rule in Ri. Besides, by assumption, (Φ, Ψ) is saturated for the rules
B.1, B.2, A.1 and A.2.

Therefore, Lemma 3 applied to Φ ⊢ ui and ui →Ri
u′i implies that there

exists u′′i such that u′i →
∗
R u′′i and Φ ⊢ u′′i . The same conclusion trivially holds

if u′i = ui. Let s = C0[u
′′
1 , . . . , u

′′
k ]µ−1 be the term obtained by replacing each

ai by zi in C[u′′1 , . . . , u
′′
k]. Since the ai do not occur in R nor in Φ, we de-

duce that s satisfies rσ = C0[s1σ, . . . , skσ] = C0[u
′
1, . . . , u

′
k]µ−1 →∗

R s and
Φ ∪ {z1 ⊲ z1, . . . , zq ⊲ zq} ⊢ s, in contradiction with the condition (a) stated
at the beginning of the proof. ⊓⊔

B.2 Termination

Proving termination of the prefix theory Epref . For proving termination for
the prefix theory Epref , it suffices to consider s(φ) = stext(Φ), where the notion
of extended subterm is recursively defined as follows:
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– stext(a) = {a} if a is a constant or a variable

– stext(f(t1, . . . , tn)) = {f(t1, . . . , tn)}∪
⋃n

i=1
stext(ti) f ∈ {dec, 〈, 〉, π1, π2, pref}

– stext(enc(t, u)) = {enc(t, u), enc(t1, u)} ∪ stext(t) ∪ stext(u) if t = 〈t1, t2〉

– stext(enc(t, u)) = {enc(t, u)} ∪ stext(t) ∪ stext(u) otherwise.

Lemma 4. Let S0 = (Φ0, Ψ0) =⇒ . . . =⇒ (Φn, Ψn) =⇒ . . . be an infinite fair
derivation from a state S0. For every ground term t such that Φ0 ⊢E t, either
(Φ0, Ψ0) =⇒∗ ⊥ or there exists i such that Φi ⊢ t↓R.

Proof. Let t be a ground term in normal form deducible from Φ0. There exist
M1 ⊲ t1, . . . ,Mn ⊲ tn ∈ Φ0, there exists a context C such that C[t1, . . . , tn] →∗ t.
We show that either (Φ0, Ψ0) =⇒∗ ⊥ or there exists i such that t is syntactically
deducible from Φi, by induction on C[t1, . . . , tn] equipped with the order <
induced by the rewriting relation (that is t1 < t2 if and only if t2 →+ t1).

The base case t = C[t1, . . . , tn] is obvious. Let now v = C[t1, . . . , tn] and
assume v → v′ →∗ t. Since B rules are applied in priority, we choose the small-
est i1 such that no more B rules can be applied from (Φi1 , Ψi1). Note indeed
that there is no infinite derivation with only B rules (Proposition 2). We have
C[M1, . . . ,Mn] ⊲Φi1

v → v′. Applying Lemma 3 and observing that no B rule
can be applied from (Φi1 , Ψi1), we deduce either (Φi1 , Ψi1) =⇒∗ ⊥ or there exist
(Φ′, Ψ ′), M ′ and v′′ such that

– (Φi1 , Ψi1) =⇒ (Φ′, Ψ ′) using a A rule

– M ′ ⊲Φ′ v′′ with v′ →+ v′′.

Since (Φi1 , Ψi1) =⇒ (Φ′, Ψ ′) using a A rule, there exist a rewrite rule l → r, a
decomposition D and terms u1, . . . , un ∈ im(Φi1) such that u ∈ im(Φ′) where
u = (D[u1, . . . , un, z1, . . . , zp]) ↓. Moreover, sinceM ′

⊲Φ′v′′, there exists a context
C such that v′′ = C[v1, . . . , vk], vi ∈ im(Φ′). Note that we have

{t |M ⊲ t ∈ Φ′} = {t |M ⊲ t ∈ Φi1} ∪ {u}

By fairness, we know that a A rule will be applied for the same rewrite rule
l → r, decomposition D and terms u1, . . . , un along the derivation. We deduce
that there exists i2 such that u ∈ im(Φi2). Since no deduction facts are removed,
we have

{t |M ⊲ t ∈ Φi1} ⊆ {t |M ⊲ t ∈ Φi2}

thus we deduce

{t |M ⊲ t ∈ Φ′} ⊆ {t |M ⊲ t ∈ Φi2}

and thus v′′ = C[v1, . . . , vk], vi ∈ im(Φi2). Since v′′ →∗ t and v′′ < v, we
deduce by induction that either (Φ0, Ψ0) =⇒∗ ⊥ or there exists i such that t is
syntactically deducible from Φi. ⊓⊔
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Proposition 4 (criterion for saturation). Let ϕ be an initial frame such that
Init(ϕ) 6=⇒∗ ⊥. The following conditions are equivalent:

(i) There exists a saturated couple (Φ, Ψ) such that Init(ϕ) =⇒∗ (Φ, Ψ).
(ii) There exists a (finite) initial frame ϕs such that for every term t, t is

deducible from ϕ modulo E iff t↓R is syntactically deducible from ϕs.
(iii) There exists no fair infinite derivation starting from Init(ϕ).

Proof. (iii) ⇒ (i): trivial. Indeed by using a fair derivation we will eventually
reach a weakly saturated state. (i) ⇒ (ii): Let Φ = {M1 ⊲ s1, . . . ,Mℓ ⊲ sℓ} and
ϕs = {w1 ⊲ s1, . . . ,wℓ ⊲ sℓ}. Let t be a ground term. By Theorem 1, we have
that ∃M .M ⊲E

ϕ t iff ∃M .M ⊲Φ t↓R, i.e. ∃M .M ⊲ϕs
t↓R. (ii) ⇒ (iii): we need

to prove that there exists no fair infinite derivation starting from Init(ϕ).
Let ϕs = {w1 ⊲ s1, . . . ,wℓ ⊲ sℓ} an initial frame such that for every t,

∃M .M ⊲E
ϕ t is equivalent to ∃M .M ⊲ϕs

t↓R. Assume by contradiction that
there is an infinite fair derivation (Φ0, Ψ0) =⇒ . . . =⇒ (Φn, Ψn) =⇒ . . . with
(Φ0, Ψ0) = Init(ϕ).

By Lemma 4 and since Init(ϕ) 6=⇒∗ ⊥, we deduce that there exists i0 such
that each si, 1 ≤ i ≤ ℓ is syntactically deducible from Φi0 . Since there is no
infinite derivation with only B rules (Proposition 2), we can also assume that no
B rule can be applied from Φi0 . We have that ∃M .M ⊲E

ϕ t is now equivalent to
∃M .M ⊲Φi0

t↓R thus the A.2 rule cannot be applied either. We deduce that no
deduction facts are added to Φi0 along the derivation, that is Φj = Φi0 for every
j ≥ i0. Since no deduction fact are added, only a finite number of A.1 rules can
be applied, which contradicts the existence of an infinite chain. ⊓⊔
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