
Realizability of
Concurrent Recursive Programs

Benedikt Bollig, Manuela-Lidia Grindei,

and Peter Habermehl

Research Report LSV-08-29

October 2008

Realizability of Concurrent Recursive Programs⋆

Benedikt Bollig1, Manuela-Lidia Grindei1, and Peter Habermehl1,2

1 LSV, ENS Cachan, CNRS, INRIA, France
email: {bollig,grindei}@lsv.ens-cachan.fr

2 LIAFA, CNRS and University Paris Diderot, France
email: haberm@liafa.jussieu.fr

Abstract. We define and study an automata model of concurrent re-
cursive programs. An automaton consists of a finite number of pushdown
systems running in parallel and communicating via shared actions. Actu-
ally, we combine multi-stack visibly pushdown automata and Zielonka’s
asynchronous automata towards a model with an undecidable emptiness
problem. However, a reasonable restriction allows us to lift Zielonka’s
Theorem to this recursive setting and permits a logical characterization
in terms of a suitable monadic second-order logic. Building on results
from Mazurkiewicz trace theory and recent work by La Torre, Madhusu-
dan, and Parlato, we thus develop a framework for the specification,
synthesis, and verification of concurrent recursive processes.

1 Introduction

The analysis of a concurrent recursive program where several recursive threads
access a shared memory is a difficult task due to the typically high complexity of
interaction between its components. One general approach is to run a verification
algorithm on a finite-state abstract model of the program. As the model usually
preserves recursion, this amounts to verifying multi-stack pushdown automata.
Unfortunately, even if we deal with a boolean abstraction of data, the control-
state reachability problem in this case is undecidable [24]. However, as proved
in [23], it becomes decidable if only those states are taken into consideration
that can be reached within a bounded number of context switches. A context
switch consists in a transfer of control from one process to another. This result
allows for the discovery of many errors, since they typically manifest themselves
after a few context switches [8, 18, 23]. Other approaches to analyzing multi-
threaded programs restrict the kind of communication between processes [18, 26],
or compute over-approximations of the set of reachable states [5].

All these works have in common that they restrict to the analysis of an
already existing system. A fundamentally different approach would be to syn-
thesize a concurrent recursive program from a requirements specification, prefer-
ably automatically, so that that the inferred system can be considered “correct
by construction”. The general idea of synthesizing programs from specifications

⋆ Partially supported by ARCUS, DOTS (ANR-06-SETIN-003), and P2R MODISTE-
COVER/RNP Timed-DISCOVERI.

goes back to [12]. The particular case of non-recursive distributed systems is,
e.g., dealt with in [7, 9, 19].

In this paper, we address the synthesis problem for finite-state concurrent
recursive programs that communicate via shared variables. More precisely, we
are interested in transforming a given global specification in terms of a context-
sensitive language into a design model of a distributed implementation thereof.
The first step is to provide an automata model that captures both asynchronous
procedure calls and shared-variable communication. To this aim, we combine
visibly pushdown automata [2] and asynchronous automata [29], which, seen
individually, constitute robust automata classes with desirable closure properties
and decidable verification problems.

Visibly pushdown automata were introduced in [2] by Alur and Madhusudan.
One such automaton reads words over an alphabet partitioned in three sets: the
call alphabet, the return alphabet and the internal alphabet. The automaton is
supposed to push exactly one symbol onto its stack if it reads a call letter, to pop
exactly one symbol from its stack if it reads a return letter, and to leave the stack
unchanged if it reads an internal letter. The good news about this class is that it
is closed under boolean operations and has decidable basic decision problems (in
particular, one can decide if the intersection of two visibly pushdown languages
is empty, which is an undecidable problem for ordinary pushdown automata).

Asynchronous automata can be traced back to Zielonka, who defined this
model in the framework of the partial-order model of Mazurkiewicz traces [29].
Herein, local processes synchronize by executing certain actions (e.g., writing a
variable) simultaneously, whereas others may be taken autonomously. Roughly
speaking, asynchronous automata have the same nice language-theoretical prop-
erties as finite automata.

Merging visibly pushdown automata and asynchronous automata, we obtain
concurrent visibly pushdown automata (Cvpa). They serve as our model of an
implementation and are actually a special case of multi-stack visibly pushdown
automata (Mvpa), which were introduced in [17]. For Mvpa, the reachability
problem is again undecidable. To counteract this drawback, a reasonable restric-
tion has been considered in [17]: The domain of input words is restricted to
k-phase words, which can be decomposed into k subwords where k is a natural
number. One such subword is supposed to contain return symbols for the same
stack, if any. This model leads to a decidable emptiness problem and to a class
of languages closed under boolean operations. A particularly nice feature in our
context is that one can decide whether an error state can be reached within k
phases, having all processes able to evolve in each phase but only one process
can return from a procedure, which is less restrictive than the notion of bounded
context switches that we discussed above.

Let us turn to the main contributions of our paper. In the context of k-phase
words, we will provide a decidable sufficient criteria when an Mvpa, which repre-
sents a context-sensitive specification, can be transformed into a Cvpa. In doing
so, we lift Zielonka’s well-known theorem to a recursive setting. Recall that it
was argued in [23] that system errors typically manifest themselves within few

2

context switches. This suggests that the global state space of a concurrent re-
cursive program is often the closure of a set of k-phase words under permutation
rewriting of independent events. We will actually show that the closure of an
Mvpa language that is represented (in a sense that will be made clear) by its
k-phase executions can be realized as a Cvpa. The problem with Mvpa as spec-
ifications is, however, that they do not necessarily possess a closure property
that Cvpa naturally have. We therefore propose, in another section of this pa-
per, to use monadic-second order (MSO) logic as a specification language. In
fact, we can show that, under the assumption of a k-phase restriction, any for-
mula from this logic can be effectively transformed into a Cvpa. It should be
noted that this constitutes an extension of the classical connection between finite
(asynchronous) automata and MSO logic [6, 27, 28].

Organization Section 2 provides basic definitions and introduces Mvpa and
Cvpa. Section 3 considers the task of synthesizing a distributed system in terms
of a Cvpa from an Mvpa specification. In doing so, we give two extensions of
Zielonka’s Theorem to concurrent recursive programs. In Section 4, we provide
a logical characterization of Cvpa in terms of MSO logic. We conclude with
Section 5, in which we suggest several directions for future work.

2 Definitions

The set {0, 1, 2, . . .} of natural numbers is denoted by N. We call any finite set an
alphabet. Its elements are called letters or actions. For an alphabet Σ, Σ∗ is the
set of finite words over Σ; the empty word is denoted by ε. The concatenation
uv of words u, v ∈ Σ∗ is denoted by u · v. For a set X, we let |X| denote its size
and 2X its powerset.

2.1 Concurrent Pushdown Alphabets

The architecture of a system is constituted by a concurrent (visibly) pushdown
alphabet. To define it formally, we fix a nonempty finite set Proc of process names
or, simply, processes. Now consider a collection Σ̃ = ((Σc

p , Σ
r
p , Σ

int
p))p∈Proc of

alphabets. The triple (Σc
p , Σ

r
p , Σ

int
p) associated with process p contains the sup-

plies of actions that can be executed by process p. More precisely, the alphabets
contain its call, return, and internal actions, respectively. We call Σ̃ a concurrent
pushdown alphabet (over Proc) if

– for every p ∈ Proc, the sets Σc
p , Σr

p , and Σint
p are pairwise disjoint, and

– for every p, q ∈ Proc with p 6= q, (Σc
p ∪Σr

p) ∩ (Σc
q ∪Σr

q) = ∅.

For p ∈ Proc, let Σp refer to Σc
p ∪Σ

r
p ∪Σ

int
p , the set of actions that are available

to p. Thus, Σ =
⋃

p∈Proc Σp is the set of all actions. Furthermore, for a ∈ Σ,
let proc(a) = {p ∈ Proc | a ∈ Σp}. The intuition behind a concurrent pushdown
alphabet is as follows: An action a ∈ Σ is executed simultaneously by every
process from proc(a). In doing so, a process p ∈ proc(a) can access the current

3

state of any other process from proc(a). The only restriction is that p can access
and modify only its own stack, provided a ∈ Σc

p ∪ Σr
p . However, in that case,

the stack operation can be “observed” by some other process q if a ∈ Σint
q .

We introduce further useful abbreviations and let Σc =
⋃

p∈Proc Σ
c
p , Σr =⋃

p∈Proc Σ
r
p , and Σint = (

⋃
p∈Proc Σ

int
p) \ (Σc ∪Σr).

Example 1. Let Proc = {p, q} and let Σ̃ = (({a}, {a}, {b}), ({b}, {b}, ∅)) be a
concurrent pushdown alphabet where the triple ({a}, {a}, {b}) refers to process
p and ({b}, {b}, ∅) belongs to process q. Thus, Σ = {a, a, b, b}, Σc = {a, b},
Σr = {b, b}, and Σint = ∅. Note also that proc(a) = {p} and proc(b) = {p, q}.

If not stated otherwise, Σ̃ will henceforth be any concurrent pushdown alphabet.

2.2 Multi-Stack Visibly Pushdown Automata

Before we introduce our new automata model, we recall multi-stack visibly push-
down automata, as recently introduced by La Torre, Madhusudan, and Parlato
[17]. Though this model will be parameterized by Σ̃, it is not distributed yet.
The concurrent pushdown alphabet only determines the number of stacks (which
equals |Proc|) and the actions operating on them. In the next subsection, an el-
ement p ∈ Proc will then actually play the role of a process.

Definition 2. A multi-stack visibly pushdown automaton (Mvpa) over Σ̃ is a
tuple A = (S, Γ, δ, ι, F) where

– S is its finite set of states,
– ι ∈ S is the initial state,
– F ⊆ S is the set of final states,
– Γ is the finite stack alphabet containing a special symbol ⊥, and
– δ ⊆ S ×Σ × Γ × S is the set of transitions.

Consider a transition (s, a, A, s′) ∈ δ. If a ∈ Σc
p , then we deal with a push-

transition meaning that, being in state s, the automaton can read a, push the
symbol A ∈ Γ \ {⊥} onto the p-stack, and go over to state s′. Transitions
(s, a, A, s′) ∈ δ with a ∈ Σc and A = ⊥ are discarded. If a ∈ Σr

p , then the
transition allows us to pop A 6= ⊥ from the p-stack when reading a, while the
control changes from state s to state s′; if, however, A = ⊥, then the a can
be executed provided the stack of p is empty, i.e., ⊥ is never popped. Finally,
if a ∈ Σint , then an internal action is applied, which does not involve a stack
operation. In that case, the symbol A is simply ignored.

Let us formalize the behavior of the Mvpa A. A stack contents is a nonempty
finite sequence from Cont = (Γ \ {⊥})∗ · {⊥}. The leftmost symbol is thus
the top symbol of the stack contents. A configuration of A consists of a state
and a stack contents for each process. Hence, it is an element of S × ContProc .
Consider a word w = a1 . . . an ∈ Σ∗. A run of A on w is a sequence ρ =
(s0, (σ

0
p)p∈Proc) . . . (sn, (σ

n
p)p∈Proc) ∈ (S × ContProc)∗ such that s0 = ι, σ0

p = ⊥
for all p ∈ Proc, and, for all i ∈ {1, . . . , n}, the following hold:

4

[Push] If ai ∈ Σc
p for p ∈ Proc, then there is a stack symbol A ∈ Γ \ {⊥} such

that (si−1, ai, A, si) ∈ δ, σi
p = A · σi−1

p , and σi
q = σi−1

q for all q ∈ Proc \ {p}.
[Pop] If ai ∈ Σr

p for p ∈ Proc, then there is a stack symbol A ∈ Γ such that

(si−1, ai, A, si) ∈ δ, σi
q = σi−1

q for all q ∈ Proc \ {p}, and either A 6= ⊥ and

σi−1
p = A · σi

p, or A = ⊥ and σi
p = σi−1

p = ⊥.

[Internal] If ai ∈ Σint , then there is A ∈ Γ such that (si−1, ai, A, si) ∈ δ and
σi

p = σi−1
p for every p ∈ Proc.

The run ρ is accepting if sn ∈ F . A word w ∈ Σ∗ is accepted by A if there is an
accepting run of A on w. The set of accepted words forms the language of A,
which is denoted by L(A).

It is easy to see that the emptiness problem for Mvpa is undecidable. More-
over, it has been shown that Mvpa can in general not be complemented [4]. We
can remedy this situation by restricting our domain to k-phase words [17]. Let

k ∈ N. A word w ∈ Σ∗ is called a k-phase word over Σ̃ if it can be written as
w1 · . . . · wk where, for all i ∈ {1, . . . , k}, we have wi ∈ (Σc ∪ Σint ∪ Σr

p)∗ for

some p ∈ Proc. The set of k-phase words over Σ̃ is denoted by Wk(Σ̃). Note

that Wk(Σ̃) is regular. The language of A relative to k-phase words, denoted by

Lk(A), is defined to be the set L(A) ∩ Wk(Σ̃). Even if we restrict to k-phase
words, a deterministic variant of Mvpa is strictly weaker, unless we deal with
simple concurrent pushdown alphabets where Σ = Σint [17, 29].

In this paper, we will exploit the following two theorems concerning Mvpa.
The first states that emptiness of Mvpa is decidable wrt. k-phase words. The
second establishes that an Mvpa recognizing a set of k-phase words can be
complemented.

Theorem 3 (La Torre-Madhusudan-Parlato [17]). The following problem
is decidable:

Input: Concurrent pushdown alphabet Σ̃; k ∈ N; Mvpa A over Σ̃.
Question: Does Lk(A) 6= ∅ hold?

The problem is decidable in doubly exponential time wrt. |S|, |Proc|, and k, where
S is the set of states of A.

Theorem 4 (La Torre-Madhusudan-Parlato [17]). Let k ∈ N and let A be

an Mvpa over Σ̃. One can effectively construct an Mvpa A′ over Σ̃ such that
L(A′) = Lk(A), where Lk(A) is defined to be Σ∗ \ Lk(A).

2.3 Concurrent Visibly Pushdown Automata

We let I eΣ
= {(a, b) ∈ Σ×Σ | proc(a) ∩ proc(b) = ∅} contain the pairs of actions

that are considered independent. Moreover, ∼ eΣ
⊆ Σ∗ × Σ∗ shall be the least

congruence that satisfies ab ∼ eΣ
ba for all (a, b) ∈ I eΣ

. The equivalence class of
a representative w ∈ Σ∗ wrt. ∼ eΣ

is denoted by [w]∼ eΣ
. We canonically extend

[.]∼ eΣ
to sets L ⊆ Σ∗ and let [L]∼ eΣ

= {w ∈ Σ∗ | w ∼ eΣ
w′ for some w′ ∈ L}.

Based on Definition 2, we now introduce our model of a concurrent recursive
program, which will indeed produce languages that are closed under ∼ eΣ

.

5

s0 s1 s2 s3 s4

r0 r2

a, A
b

a, A
b

a, A b a, A

a, A

a, A

t0 t1 t2 t3
b, B

b, B b, B

b, B

b, B

b, B

Fig. 1. A concurrent visibly pushdown automaton

Definition 5. A concurrent visibly pushdown automaton (Cvpa) over Σ̃ is an

Mvpa (S, Γ, δ, ι, F) over Σ̃ such that there exist

– a family (Sp)p∈Proc of sets of local states and
– relations δa ⊆

(∏
p∈proc(a) Sp

)
× Γ ×

(∏
p∈proc(a) Sp

)
for a ∈ Σ

satisfying the following properties:

– S =
∏

p∈Proc Sp and
– for every s, s′ ∈ S, a ∈ Σ, and A ∈ Γ , we have (s, a, A, s′) ∈ δ iff

• ((sp)p∈proc(a), A, (sp
′)p∈proc(a)) ∈ δa and

• sq = sq
′ for every q ∈ Proc \ proc(a)

where sp denotes the p-component of state s.

To make local states and their transition relations explicit, we may consider a
Cvpa to be a structure ((Sp)p∈Proc , Γ, (δa)a∈Σ , ι, F).

Note that, if Σ = Σint (i.e., Σ̃ = ((∅, ∅, Σp))p∈Proc), then a Cvpa can be seen
as a simple asynchronous automaton [9, 29]. It is straightforward to show that the
language L(C) of a Cvpa C is closed under ∼ eΣ

meaning that L(C) = [L(C)]∼ eΣ
.

Lemma 6. Let C be a Cvpa over Σ̃. For every u, v ∈ Σ∗ with u ∼ eΣ
v, we have

u ∈ L(C) iff v ∈ L(C).

Example 7. Consider the concurrent pushdown alphabet Σ̃ from Example 1.
Assume C = (S, Γ, δ, ι, F) to be the Cvpa depicted in Figure 1 where S is the
cartesian product of Sp = {s0, . . . , s4, r0, r2} and Sq = {t0, . . . , t3}. Actions
from {a, a, b} are exclusive to a single process so that corresponding transitions
are local. For example, the relation δa, as required in Definition 5, is given
by {(s0, A, r0), (s0, A, s1), (s2, A, r2)}. Thus, ((s0, ti), a, A, (r0, ti)) ∈ δ for all
i ∈ {0, . . . , 3}. In contrast, executing b involves both processes, which is indicated
by the dashed lines depicting δb. For example, ((s1, t0), B, (s2, t1)) ∈ δb. Further-
more, ((r0, t0), b, B, (s0, t0)), ((s1, t0), b, B, (s2, t1)), and ((r2, t1), b, B, (s2, t1)) are
the global b-transitions contained in δ. Note that L1(C) = ∅, since at least two
phases are needed to reach the final state (s4, t3). Moreover,

6

– L2(C) = {(ab)nw | n ≥ 2, w ∈ {amb
m
, b

m
am} for some m ∈ {2, . . . , n}} and

– L(C) = {(ab)nw | n ≥ 2, w ∈ {a, b}∗, |w|a = |w|b ∈ {2, . . . , n}} = [L2(C)]∼ eΣ
.

As L(C) = [L2(C)]∼ eΣ
, the language L2(C) can be viewed as an incomplete de-

scription of L(C). The next section deals with how to derive Cvpa from both
incomplete specifications and those that are closed under ∼ eΣ

.

3 Realizability of Concurrent Recursive Programs

From now on, we consider an Mvpa A to be a specification of a system, and
we are looking for a realization or implementation of A, which is provided by a
Cvpa C such that L(C) = L(A). Actually, specifications often have a “global”
view of the system, and the difficult task is to distribute the state space onto the
processes, which henceforth communicate in a restricted manner that conforms
to the predefined system architecture Σ̃. If, on the other hand, A is not closed
under ∼ eΣ

, it might yet be considered as an incomplete specification so that we
ask for a Cvpa C such that L(C) = [L(A)]∼ eΣ

.
In this section, we make use of two well-known theorems from Mazurkiewicz

trace theory, which we recall in the following. The first one, Zielonka’s celebrated
theorem, applies to simple concurrent pushdown alphabets, and it will later be
lifted to general concurrent pushdown alphabets.

Theorem 8 (Zielonka [29]). Suppose Σ = Σint . For every regular language

L ⊆ Σ∗ that is ∼ eΣ
-closed, there is a Cvpa C over Σ̃ such that L(C) = L.

In other words, a global specification in terms of a regular language can be
realized as a distributed implementation if it is closed under ∼ eΣ

.

Given an arbitrary concurrent pushdown alphabet Σ̃, let us in the following
assume an implicit lexicographic (i.e., strict total) ordering <lex on Σ. We say
that a word w ∈ Σ∗ is in lexicographic normal form wrt. <lex if it is minimal
wrt. <lex among all equivalent words. For a set L ⊆ Σ∗, we write Min<lex

(L) to
denote the set of words from L that are in normal form wrt. <lex. In particular,
a word w ∈ Σ∗ is in normal form iff w ∈ Min<lex

([w]∼ eΣ
).

Theorem 9 (Ochmański [21]). If L ⊆ Σ∗ is a regular set of words in lexico-
graphic normal form wrt. <lex, then [L]∼ eΣ

is regular.

It will turn out to be useful to consider an Mvpa A = (S, Γ, δ, ι, F) over Σ̃
as a finite automaton reading letters over the alphabet Σ×Γ . Recall that δ is a
subset of S×Σ×Γ×S. We will now simply interpret a transition (s, a, A, s′) ∈ δ
as the transition (s, (a,A), s′) of a finite automaton with state space S, reading
the single letter (a,A) ∈ Σ × Γ . In this manner, we obtain from A a finite
automaton, denoted by FA, which recognizes a regular word language L(FA)
over Σ × Γ . Though L(A) is in general not even context-free, we can provide a
link between L(A) and L(FA). Indeed, L(A) contains the projections of words
from L(FA) onto their first component if we restrict to well-formed words.

7

In a well-formed word, we take into account that the stack symbols from
Γ must obey a pushdown-stack policy. Towards the definition of a well-formed
word, we first call a word from Σ∗ p-well-matched (wrt. Σ̃), for some process
p ∈ Proc, if it is generated by the grammar

N ::= aN b | NN | ε | c

where a ∈ Σc
p , b ∈ Σr

p , and c ∈ Σ \ (Σc
p ∪ Σr

p). Intuitively, we require that the
restriction to symbols from Σc

p ∪Σ
r
p is parenthesized correctly when interpreting

pushs as opening and pops as closing brackets. Now suppose w = a1 . . . an ∈ Σ∗.
For i, j ∈ {1, . . . , n}, we call (i, j) a matching pair in w if i < j and there is p ∈
Proc such that ai ∈ Σc

p , aj ∈ Σr
p , and ai+1 . . . aj−1 is p-well-matched. A position

i ∈ {1, . . . , n} is called unmatched in w if, for every j ∈ {1, . . . , n}, neither (i, j)
nor (j, i) is a matching pair. We call a word (a1, A1) . . . (an, An) ∈ (Σ × Γ)∗

well-formed if

– for each matching pair (i, j) in a1 . . . an, we have Ai = Aj ,

– for all i ∈ {1, . . . , n} such that ai ∈ Σc, we have Ai 6= ⊥, and

– for all i ∈ {1, . . . , n} such that ai ∈ Σr and i is unmatched in a1 . . . an, we
have Ai = ⊥.

The notion of a well-formed word will always refer to the concurrent pushdown
alphabet Σ̃. We provide a projection mapping π : 2(Σ×Γ)∗ → 2Σ∗

, which filters
from an argument L ⊆ (Σ × Γ)∗ all the well-formed words and then abstracts
away the symbols from Γ . Formally, π(L) = {w | (w,W) ∈ L is well-formed}
(here and in the following, we may write a word (a1, A1) . . . (an, An) ∈ (Σ×Γ)∗

as the pair (a1 . . . an, A1 . . . An)).

One can easily establish the following link between Mvpa and the associated
finite automaton.

Proposition 10. For every Mvpa A over Σ̃, we have L(A) = π(L(FA)).

Proof. Let A be an Mvpa over Σ̃. For w = a1 . . . an ∈ L(A), there is an accepting
run of A on w. Thus, every position i ∈ {1, . . . , n} has to conform to a transition
(si−1, ai, Ai, si) such that the requirements [Push], [Pop], and [Internal] of
the definition of an accepting run are met: If ai ∈ Σc, then Ai 6= ⊥; if i is an
unmatched position such that ai ∈ Σr , then Ai = ⊥; if (i, j) is a matching pair
in w, then Ai = Aj 6= ⊥, as j is necessarily the position where the symbol Ai,
which has been pushed at position i, is popped. Thus, (a1, A1) . . . (an, An) fits
in with the definition of a well-formed word. Moreover, (a1, A1) . . . (an, An) is
contained in L(FA).

If, conversely, (a1, A1) . . . (an, An) ∈ L(FA) is well-formed, then this gives
rise to a run of A on w visiting the same states as FA does in its accepting run
on (a1, A1) . . . (an, An). In particular, as Ai = Aj 6= ⊥ for all matching pairs
(i, j) in w, the transition taken at j provides the stack symbol that is on top of
the stack of the unique process p such that aj ∈ Σr

p . ⊓⊔

8

Recall that the intersection of a regular and a context-free language is context-
free. As emptiness of Mvpa is undecidable, we obtain as a corollary that the
set of well-formed words is not context-free. We note without giving the proof
that it is, however, context-sensitive. Indeed, it is decidable if a given word over
Σ × Γ is well-formed.

The following lemma is crucial for the task of translating Mvpa into Cvpa.
It constitutes an extension of Theorem 9 to our recursive setting.

Lemma 11. Let A be an Mvpa over Σ̃ (say with set of states S) satisfying
Min<lex

([L(A)]∼ eΣ
) ⊆ L(A). There is a Cvpa C = ((Sp)p∈Proc , Γ, (δa)a∈Σ , ι, F)

over Σ̃ such that L(C) = [L(A)] eΣ
. Moreover, for all p ∈ Proc, the size of Sp is

exponential in |Proc|, doubly exponential in |S|, and triply exponential in |Σ|.

In other words: If L(A) contains, for every word w ∈ L(A), the normal form of
w wrt. <lex, then there is some Cvpa recognizing the closure of L(A).

Proof. In the proof, we will basically interpret a given Mvpa over Σ̃ as an Mvpa

over a simplified concurrent pushdown alphabet so that Theorems 8 and 9 can
be applied. In turn, the resulting automaton will be considered as a Cvpa over
Σ̃ and will indeed have the desired property.

So let A = (S, Γ, δ, ι, F) be an Mvpa over Σ̃ such that Min<lex
([L(A)]∼ eΣ

) ⊆

L(A). We define a concurrent pushdown alphabet Ω̃ = ((∅, ∅, Σp × Γ))p∈Proc .
In particular, we have Ω = Σ × Γ . Note that, for every (a,A), (b, B) ∈ Ω,
(a,A) ∼ eΩ

(b, B) iff a ∼ eΣ
b. Recall that we had fixed a lexicographic ordering

<lex on Σ. Now consider any lexicographic ordering <′
lex ⊆ Ω×Ω such that, for

every (a,A), (b, B) ∈ Ω, a <lex b implies (a,A) <′
lex (b, B). Let LexNF denote

the set of all words x ∈ Ω∗ that are in lexicographic normal form wrt. <′
lex, i.e.,

such that x ∈ Min<′

lex
([x]∼ eΩ

). This set forms a regular word language [11, 16] so
that the intersection L(FA) ∩ LexNF is regular, too.

According to Theorem 9, [L(FA) ∩ LexNF]∼ eΩ
is regular, and Theorem 8

tells us that there is a Cvpa C over the concurrent pushdown alphabet Ω̃ such
that L(C) = [L(FA) ∩ LexNF]∼ eΩ

. From C, we obtain an Mvpa C′ over Σ̃ with
stack alphabet Γ by transforming a transition (s, (a,A),B, s′) into a transition
(s, a, A, s′) (recall that (a,A) is necessarily contained in Ωint so that B can indeed
be neglected). Observe that C′ is actually a Cvpa. As L(FC′) = L(C) and, by
Proposition 10, π(L(FC′)) = L(C′), we deduce L(C′) = π(L(C)). So it remains to
show that [L(A)]∼ eΣ

= π(L(C)).
Suppose w ∈ [L(A)]∼ eΣ

. We chose the word w′ ∈ [w]∼ eΣ
that is in lexico-

graphic normal form wrt. <lex. As Min<lex
([L(A)]∼ eΣ

) ⊆ L(A), we have w′ ∈
L(A). Thus, there must be W ′ ∈ Γ ∗ such that (w′,W ′) is well-formed and con-
tained in L(FA) (Proposition 10). As w′ is in lexicographic normal form wrt.
<lex and as <′

lex is kind of an extension of <lex, (w′,W ′) is in lexicographic
normal form wrt. <′

lex so that (w′,W ′) ∈ LexNF . We can now reorder (w′,W ′)
in such a way that its first component becomes w. Formally, there is W ∈ Γ ∗

such that (w,W) ∼ eΩ
(w′,W ′). As every word from [(w′,W ′)]∼ eΩ

is well-formed,
so is (w,W), and we conclude w ∈ π([L(FA) ∩ LexNF]∼ eΩ

).

9

Now suppose w ∈ π([L(FA) ∩ LexNF]∼ eΩ
). We can find an extension W ∈ Γ ∗

of w such that (w,W) is well-formed and contained in [L(FA) ∩ LexNF]∼ eΩ
.

Thus, there is (w′,W ′) ∈ L(FA) ∩ LexNF such that (w′,W ′) ∼ eΩ
(w,W), which

implies w′ ∼ eΣ
w. Note that (w′,W ′) is well-formed, too, so that, with Proposi-

tion 10, w′ ∈ L(A). We conclude w ∈ [L(A)]∼ eΣ
.

Let us analyze the size of C′. For this, we need to introduce two notions
concerning finite automata over Ω. A finite automaton is called loop-connected
if, for every nonempty word a1 . . . an ∈ Ω∗ labeling a path from a state s back
to state s, the graph (V,E) is connected, where V = {ai | i ∈ {1, . . . , n}} and
E = (V × V) \ I∼ eΩ

. It is said to be I-diamond if, for all (α, β) ∈ I∼ eΩ
and

transitions r
α
→ s

β
→ t, we have transitions r

β
→ s′

α
→ t for some state s′. From

[16], we know that there is a deterministic loop connected finite automaton B1

over Ω with (|Σ| + 1)! many states that recognizes the set LexNF . The set of
states of FA is the same as that of A so that we obtain, as the product of FA

and B1, a finite automaton B2 of size

n := |S| · (|Σ| + 1)!

recognizing L(FA) ∩ LexNF . As B1 is loop-connected, so is B2. According to
[16, 20], there is an I-diamond finite automaton B3 over Ω with

N := (n2 · 2|Σ|)(n−1)(|Σ|+1)+1

many states that recognizes [L(B2)]∼ eΩ
. In the next step, we constructed, from

B3, a Cvpa C = ((S′
p)p∈Proc , Γ

′, (δ′a)a∈Σ , ι
′, F ′) such that L(C) = L(B3). From

[14], we know that the sum
∑

p∈Proc |S
′
p| can be bounded by

2N2·(|Proc|2+|Proc|)+2|Proc|4

As C′ and C have the same local states, we conclude that the number of local
states of C′ is exponential in |Proc|, doubly exponential in |S|, and triply expo-
nential in |Σ|. ⊓⊔

Since L(A) = [L(A)]∼ eΣ
implies Min<lex

([L(A)]∼ eΣ
) ⊆ L(A), we obtain, by

Lemma 11, the following extension of Zielonka’s Theorem.

Theorem 12. Let A be an Mvpa over Σ̃ (say with set of states S) such that

L(A) is ∼ eΣ
-closed. There is a Cvpa C = ((Sp)p∈Proc , Γ, (δa)a∈Σ , ι, F) over Σ̃

satisfying L(C) = L(A). For all p ∈ Proc, the size of Sp is exponential in |Proc|,
doubly exponential in |S|, and triply exponential in |Σ|.

This result demonstrates that Mvpa recognizing a ∼ eΣ
-closed language are

suitable specifications for Cvpa. Unfortunately, it is in general undecidable if
an Mvpa has this property. However, a restriction to k-phase words will allow
us to define a decidable sufficient criterion for the transformation of an Mvpa

into a Cvpa. Next, we state a Zielonka-like theorem that is tailored to this
restriction. There, we require that an Mvpa represents the k-phase words of
a system, while the final implementation can produce non-k-phase executions.
The following definition will clarify what we mean by a representation.

10

Definition 13. For k ∈ N, we call a language L ⊆ Wk(Σ̃) a k-phase represen-

tation if, for all u, v ∈ Σ∗ and (a, b) ∈ I eΣ
with {uabv, ubav} ⊆ Wk(Σ̃), we have

uabv ∈ L iff ubav ∈ L.

Next, we show that the closure of a k-phase representation that is given by
an Mvpa can be realized as a Cvpa.

Theorem 14. Let k ∈ N and let A be an Mvpa over Σ̃ (say with set of
states S) such that Lk(A) is a k-phase representation. There is a Cvpa C =

((Sp)p∈Proc , Γ, (δa)a∈Σ , ι, F) over Σ̃ such that L(C) = [Lk(A)]∼ eΣ
. Moreover, for

all p ∈ Proc, the size of Sp is doubly exponential in |Proc|, |S|, and k, and triply
exponential in |Σ|.

Proof. Again, we exploit Lemma 11. Unlike in Theorem 12, we cannot apply
it directly, as there is no way to define the lexicographic ordering <lex in such
a way that Min<lex

([Lk(A)]∼ eΣ
) ⊆ Lk(A) if Lk(A) is a k-phase representation.

Our trick is to extend Σ̃ by a component that indicates the current phase of a
letter. An appropriate definition of a normal form over this extended alphabet
will then allow us to apply Lemma 11.

So let k ∈ N and let A = (S, Γ, δ, ι, F) be an Mvpa over Σ̃ such that Lk(A) is
a k-phase representation. Without loss of generality, we assume Lk(A) = L(A).

Based on Σ̃, we define a new concurrent pushdown alphabet Ω̃ by Ωc
p =

Σc
p × {1, . . . , k}, Ωr

p = Σr
p × {1, . . . , k}, and Ωint

p = Σint
p × {1, . . . , k} for all

p ∈ Proc. From A, one can construct an Mvpa B over Ω̃ accepting the words
(a1, ph1) . . . (an, phn) such that both a1 . . . an ∈ L(A) and, for all i ∈ {1, . . . , n},
phi = min{j ∈ {1, . . . , k} | a1 . . . ai is a j-phase word}. Intuitively, the additional
components phi give rise to a unique tight factorization of a1 . . . an into phases
(cf. [17]). Now consider any lexicographic ordering <′

lex ⊆ Ω × Ω such that
i < j implies (a, i) <′

lex (b, j) and, moreover, a <lex b implies (a, i) <′
lex (b, i).

We claim that L(B) contains, for every word x ∈ L(B), the normal form of x
wrt. <′

lex. Indeed x ∈ L(B) can be written as a concatenation x1 · . . . · xk with
xi ∈ (Σ × {i})∗ for all i ∈ {1, . . . , k}. I.e., for two letters α and β occurring
in xi and, respectively, xj with i < j, we have α <′

lex β. In particular, the
normal form of x can be obtained by reordering letters within the factors xi, i.e.,
Min<′

lex
([x]∼ eΩ

) ⊆ Min<′

lex
([x1]∼ eΩ

) · . . . ·Min<′

lex
([xk]∼ eΩ

). Note that the reordering
does not increase the number of phases. As Lk(A) is a k-phase representation,
the reordering also preserves containment in L(B) and we have Min<′

lex
([x]∼ eΩ

) ⊆

L(B). By Lemma 11, there is a Cvpa C over Ω̃ with L(C) = [L(B)]∼ eΩ
. It is easy

to see that the class of languages of Cvpa over Ω̃ is closed under the projection
from Ω̃ to Σ̃ that is induced by the function f : Ω → Σ given by f((a, i)) = a

(this was shown for Mvpa in [17]). Thus, there is a Cvpa C′ over Σ̃ such that
L(C′) = f([L(B)]∼ eΩ

) (where f is canonically extended to words and, then, to
languages). As f([L(B)]∼ eΩ

) = [f(L(B))]∼ eΣ
= [L(A)]∼ eΣ

, we are done.
To establish the upper bound of the number of local states, observe that the

size of B can be bounded by |S| · |Proc| · (k + 1). The rest of the construction
follows that from the proof of Lemma 11. ⊓⊔

11

Remark 15. The transformations in the proofs of Lemma 11 and Theorems 12
and 14 are effective. In particular, one can explicitly give a decomposition of
states and transitions of the Cvpa, as required in Definition 5.

When we restrict to k-phase words, it is actually decidable whether the pre-
vious theorems are applicable to a given Mvpa:

Theorem 16. The following problems are decidable in elementary time:

Input: Concurrent pushdown alphabet Σ̃; k ∈ N; Mvpa A over Σ̃.

Question 1: Is Lk(A) ∼ eΣ
-closed?

Question 2: Is Lk(A) a k-phase representation?

Proof. Our proof is inspired by [22] where similar problems are addressed in
the word setting. Nevertheless, the main difficulty in our proof arises from the
presence of stacks.

We first show decidability of Question 1. Let k ∈ N and let furthermore
A1 = (S1, Γ1, δ1, ι1, F1) be the Mvpa over Σ̃ in question. By Theorem 4, one

can obtain from A1 a further Mvpa A2 = (S2, Γ2, δ2, ι2, F2) over Σ̃ such that

L(A2) = Lk(A1). We will now construct an Mvpa A over Σ̃ recognizing words
of the form uabv with u, v ∈ Σ∗, (a, b) ∈ I eΣ

, and both uabv ∈ L(A1) and ubav ∈
L(A2). Thus, if L(A) contains a k-phase word uabv, then uabv is contained in
Lk(A1) and ubav (which is a (k+ 2)-phase word) is equivalent to uabv, but not
contained in Lk(A1). Indeed, Lk(A1) 6= [Lk(A1)]∼ eΣ

iff Lk(A) 6= ∅. The latter
question is decidable (Theorem 3).

The set of states of A is S = S1 × S2 × ({0, 1} ∪ (I eΣ
× Γ1 × Γ2)). Basically,

the first component of a state from S is used to simulate A1, while the sec-
ond component simulates A2. The third component starts in 0. While being in
states of the form (s1, s2, 0), both automata proceed synchronously: Reading an
action a, the global automaton A applies a-transitions (s1, a, A1, s

′
1) ∈ δ1 and

(s2, a, A2, s
′
2) ∈ δ2 to the first and the second component, respectively, resulting

in a global step ((s1, s2, 0), a, (A1, A2), (s
′
1, s

′
2, 0)). Note that the stack alphabet

is extended to Γ1 × Γ2 to take into account that the local transitions may come
along with different stack symbols A1 and A2.

When reading an input word, the first component should eventually perform
an action sequence ab with (a, b) ∈ I eΣ

, while the second component executes the
permutation ba. Thus, we are faced with the problem that the automaton A has
to read simultaneously an a (namely, in the first component) and a b (in the sec-
ond component). Hereby, a might be a push operation, while b is a pop, and even
if both a and b are contained in Σc , it can happen that their corresponding pop
operations are far away from each other so that the corresponding pops cannot
be performed synchronously. We propose the following solution: Suppose A is
about to simulate transitions (s1, a, A1, s

′
1) followed by (s′1, b, B1, s

′′
1) in the first

component (i.e., in A1) and (s2, b, B2, s
′
2) followed by (s′2, a, A2, s

′′
2) in the second

component (i.e., in A2). The global automaton A will produce this transition
sequence “crosswise”. It will first read the a and apply the transition involving
the stack symbol A1 ∈ Γ1 to the first component. At the same time, the second

12

component only changes its local state into s′2. As the stack symbol B2 cannot
be applied directly, it is stored in the third component of the subsequent global
state of A, which is of the form (s′1, s

′
2, ((a, b), B2, A2)). Observe that the stack

symbol A2, which is associated to executing a in the second component, must
be applied together with reading a so that (A1, A2) acts as the stack symbol.
Since a corresponding local transition (s′2, a, A2, s

′′
2) has to follow in the second

component, the A2 needs to be stored as well. The formal description of this step
can be found below (1). Now, being in the global state (s′1, s

′
2, ((a, b), B2, A2)),

A will, according to the local transition (s′1, b, B1, s
′′
1), perform a b and apply

(B1, B2) to the designated stack. Again, the second component will only change
its local state into s′′2 . However, the local transition has to conform to the symbol
A2 that had been stored (recall that the A2 had already been applied during the
execution of a in A1). This step corresponds to rule (2) below. We are now in
a global state of the form (s′′1 , s

′′
2 , 1). In states with 1 in the third position, A1

and A2 again act simultaneously.
Formally, A = (S, Γ, δ, ι, F) is given by S = S1×S2×({0, 1} ∪ (I eΣ

×Γ1×Γ2)),
Γ = Γ1×Γ2, ι = (ι1, ι2, 0), and F = F1×F2×{1}. Let (s1, s2, σ), (s′1, s

′
2, σ

′) ∈ S,
a ∈ Σ, and (A1, A2) ∈ Γ . Then, ((s1, s2, σ), a, (A1, A2), (s

′
1, s

′
2, σ

′)) ∈ δ if there
are (B1, B2) ∈ Γ and b ∈ Σ such that one of the following holds:

(1) (σ = σ′ = 0 or σ = σ′ = 1), (s1, a, A1, s
′
1) ∈ δ1, and (s2, a, A2, s

′
2) ∈ δ2, or

(2) σ = 0, σ′ = ((a, b), B2, A2), (s1, a, A1, s
′
1) ∈ δ1, and (s2, b, B2, s

′
2) ∈ δ2, or

(3) σ′ = 1, σ = ((b, a), A2, B2), (s1, a, A1, s
′
1) ∈ δ1, and (s2, b, B2, s

′
2) ∈ δ2.

The only difference in the decision procedure for Question 2 is that A2 is such
that L(A2) = Lk(A2) = Lk(A1) ∩ Wk(Σ̃).

An inspection of the constructions from [17] tells us that the size of A2 is in
both cases triply exponential in |Proc|, |S1|, and k. As emptiness of Mvpa wrt.
k-phase words is decidable in doubly exponential time, we obtain elementary
decision procedures for Question 1 and Question 2. ⊓⊔

4 Specifying Programs in MSO Logic

In Section 3, we considered the language L of an Mvpa to be a specification,
and our aim was to find a Cvpa C such that L(C) = [L]∼ eΣ

. Unfortunately, one
cannot always find such a Cvpa (consider, e.g., L = (ab)∗ with (a, b) ∈ I eΣ

). We
now present a specification language that operates directly on equivalence classes
of ∼ eΣ

so that, provided that we restrict to k-phase words, any specification can
be realized as a Cvpa. In doing so, we extend the classical connection between
monadic second-order (MSO) logic and finite automata [6, 28]. This study of
relations between logical formalisms that may serve as a specification language
and automata has had many generalizations, including Mvpa [17].

Actually, we present an MSO logic that is interpreted over partial orders,
which arise naturally from words in the presence of a concurrent pushdown
alphabet and the induced independence relation. Any such partial order repre-
sents one equivalence class of words so that a formula defines a set of equivalence
classes or, in other words, a set of words that is ∼ eΣ

-closed.

13

a a

a a

b b

b b ba

Fig. 2. A visibly pushdown trace

Let w = a1 . . . an ∈ Σ∗. With w, we associate the labeled structure T eΣ
(w) =

(E,�, µ, λ), where E = {1, . . . , n} is the set of events, λ : E → Σ assigns to any
event i ∈ E the action λ(i) = ai it executes, and µ ⊆ E×E contains the matching
pairs in w (i.e., (i, j) ∈ µ iff (i, j) is a matching pair). Finally, � ⊆ E × E is a
partial-order relation (i.e., it is reflexive, transitive, and antisymmetric), which
is defined to be the transitive closure of {(i, j) ∈ E×E | i ≤ j and (ai, aj) 6∈ I eΣ

}.
We call the structure T eΣ

(w) that arises from a word w ∈ Σ∗ a (visibly pushdown)

trace over Σ̃. The set of traces over Σ̃ is denoted by Tr(Σ̃). It is standard to
prove that T eΣ

(w) = T eΣ
(w′) iff w ∼ eΣ

w′ where we consider equality of traces up
to isomorphism. In other words, there is a one-to-one correspondence between
traces and equivalence classes of ∼ eΣ

. We remark that visibly pushdown traces
are a merge of Mazurkiewicz traces [11] and nested words [3], which, in turn,
generalize themselves the notion of a word.

Example 17. Figure 2 depicts T = T eΣ
(a b a b a b aa b b) = T eΣ

(a b a b a b b b a a)

where Σ̃ is taken from Example 1. Hereby, the straight edges form the cover
relation � \ �2 of the underlying partial-order relation �, and the curved edges
represent µ, i.e., the matching pairs. There are two unmatched events in T .

Fixing supplies of first-order variables x, y, . . . and second-order variables
X,Y, . . ., the syntax of our MSO logic complies with the signature of a trace.
Formally, formulas from MSO(Σ̃) are given by the grammar

ϕ ::= x � y | (x, y) ∈ µ | λ(x) = a | x ∈ X | ¬ϕ | ϕ1 ∨ ϕ2 | ∃xϕ | ∃Xϕ

where x and y are first-order variables, X is a second-order variable, and a ∈ Σ.
Moreover, we will make use of the usual abbreviations such as ϕ1 ∧ ϕ2, ϕ1 → ϕ2,
and ∀xϕ. To determine the semantics, let T = (E,�, µ, λ) be a trace over Σ̃ and
I be an interpretation function, which assigns to a first-order variable an element
from E and to a second-order variable a subset of E. Let us define when T, I |= ϕ

for ϕ ∈ MSO(Σ̃). Namely, T, I |= x � y if I(x) � I(y), T, I |= (x, y) ∈ µ if
(I(x), I(y)) ∈ µ, and T, I |= λ(x) = a if λ(I(x)) = a. The rest of the semantics is
classical for MSO logics. If ϕ is a sentence, i.e., a formula without free variables,
we can write T |= ϕ if T, I |= ϕ for some interpretation function I. Now, given

a sentence ϕ ∈ MSO(Σ̃), we set L (ϕ) = {T ∈ Tr(Σ̃) | T |= ϕ} to be the set of
traces that satisfy ϕ.

As the language of a Cvpa C is closed under ∼ eΣ
, it is legitimate to assign to

C a set of traces, too, letting L (C) = {T eΣ
(w) | w ∈ L(C)}.

14

Example 18. Suppose T to be the trace given in Figure 2 and consider the sen-
tences ϕ1 = ∀x ((λ(x) = a ∨ λ(x) = b) → ∃y (x, y) ∈ µ) expressing that there
is no pending call, and ϕ2 = ∀x ((λ(x) = a ∨ λ(x) = b) → ∃y (y, x) ∈ µ), which
expresses that there is no pending return. We have T 6∈ L (ϕ1) but T ∈ L (ϕ2).
Note also that T ∈ L (C) for the Cvpa C from Example 7 (Figure 1).

Before we look at a logical characterization of general Cvpa, let us recall a
result that has already been found in the context of asynchronous automata,
i.e., of Cvpa over simple concurrent pushdown alphabets.

Theorem 19 (Thomas [27]). Suppose Σ = Σint and let L ⊆ Tr(Σ̃). Then,

L = L (C) for some Cvpa C over Σ̃ iff L = L (ϕ) for some ϕ ∈ MSO(Σ̃).

Now let us turn towards Cvpa over general concurrent pushdown alphabets.
It has been shown in [4] that MSO logic is in general strictly more expressive than
Cvpa. We will therefore extend the notion of k-phase words to traces. For k ∈ N,
a trace T ∈ Tr(Σ̃) is called a k-phase trace if there is w ∈ Wk(Σ̃) such that

T eΣ
(w) = T . The set of k-phase traces over Σ̃ is denoted by Trk(Σ̃). For example,

the trace T from Figure 2 is a 2-phase trace, even though we have T = T (w)

for w = a b a b a b a b a b 6∈ W2(Σ̃). The domain of k-phase traces is particularly

interesting, because it is decidable whether L (C) ∩ Trk(Σ̃) 6= ∅ holds for a

Cvpa C. To see this, observe that the latter holds iff L(C) ∩ Wk(Σ̃) 6= ∅, which
is decidable according to Theorem 3.

For a logical characterization of Cvpa, we will need the following lemma.

Lemma 20. Let k ∈ N and let C be a Cvpa over Σ̃ such that L (C) ⊆ Trk(Σ̃).

There is a Cvpa C′ over Σ̃ such that L (C′) = L (C) ∩ Trk(Σ̃), where L (C) =

Tr(Σ̃) \ L (C).

Proof. Let k ∈ N and let C be a Cvpa over Σ̃ satisfying L (C) ⊆ Trk(Σ̃). Due

to Theorem 4, there is an Mvpa A over Σ̃ such that Lk(A) = Lk(C) ∩ Wk(Σ̃).
Observe that Lk(A) is a k-phase representation. Thus, by Theorem 14, there

is a Cvpa C′ over Σ̃ such that L(C′) = [Lk(A)]∼ eΣ
. One easily verifies that we

actually have L (C′) = L (C) ∩ Trk(Σ̃). ⊓⊔

As a corollary, we obtain that, for every k ∈ N, there is a Cvpa C with
L (C) = Trk(Σ̃). This is an important fact in the proof of Theorem 22. In-
deed, the following two theorems constitute a logical characterization of Cvpa

(restricted to k-phase words).

Theorem 21. For every Cvpa C over Σ̃, there is a sentence ϕ ∈ MSO(Σ̃) such
that L (ϕ) = L (C).

Proof. The main idea is standard. By means of second-order variables, one
guesses an assignment of states to events, whereupon a first-order formula tests
if we actually deal with a run (see [27]). In our extended setting, however, further
second-variables represent an assignment of stack symbols to events, which has
to conform to the transitions, too. This can also be checked in the first-order
part of the formula. The whole construction is given in the appendix. ⊓⊔

15

Theorem 22. Let k ∈ N. For every sentence ϕ ∈ MSO(Σ̃), there is a Cvpa C

over Σ̃ such that L (C) = L (ϕ) ∩ Trk(Σ̃).

Proof. As usual, we proceed by induction on the structure of an MSO formula.
We will perform this induction in some more detail, as treating negation is less
obvious than in classical settings such as words and trees. To begin with, however,
we follow the classical approach and consider a logic that has only second-order
variables in its repertoire but is equivalent to MSO(Σ̃). Formulas from the logic

MSO0(Σ̃) are derived by the grammar ϕ ::= X � Y | (X,Y) ∈ µ | λ(X) ⊆
{a} | X ⊆ Y | Sing(X) | ¬ϕ | ϕ1 ∨ ϕ2 | ∃Xϕ where X and Y are
second-order variables and a ∈ Σ. The formula Sing(X) is valid in a trace if X
is interpreted as a singleton. Formula X � Y holds if X and Y are singletons
{i} and {j}, respectively, such that i � j. The semantics of (X,Y) ∈ µ is

defined similarly, and all the other operators correspond to those from MSO(Σ̃).

It is easy to show that MSO(Σ̃) and MSO0(Σ̃) are expressively equivalent so
that we can proceed by an inductive translation of a formula ϕ(Y1, . . . , Yn) =

(∃/¬∃)Xm . . . (∃/¬∃)X1ψ(Y1, . . . , Yn, Xm, . . . , X1) ∈ MSO0(Σ̃) with quantifier-
free ψ into a Cvpa. Without loss of generality, we assume n ≥ 1. Then, the
formula ϕ naturally defines a set of traces over the concurrent pushdown alphabet

nΩ̃ where nΩ
c
p = Σc

p×{0, 1}n, nΩ
r
p = Σr

p×{0, 1}n, and nΩ
int
p = Σint

p ×{0, 1}n for

each p ∈ Proc. Namely, we consider a trace over nΩ̃ to be a trace over Σ̃ plus an
interpretation of the variables Y1, . . . , Yn where 1 in the i-th component indicates
containment in Yi. The crucial point is now that ϕ is translated into a Cvpa C
over nΩ̃ such that L (C) = L (ϕ) ∩ Trk(nΩ̃). This restriction to k-phase traces
is an invariant that ensures that complementation of the current automaton
is always possible. Transforming atomic formulas is easy, though technically
tedious. At this point, it is also important to note that Cvpa are closed under
intersection and that, by Lemma 20, there is a Cvpa recognizing Trk(nΩ̃). To
get a Cvpa for ¬ϕ, let k ∈ N and suppose that we already have a Cvpa C over

nΩ̃ such that L (C) = L (ϕ) ∩ Trk(nΩ̃). By Lemma 20, there is a Cvpa C′ such

that L (C′) = L (C) ∩ Trk(nΩ̃). The latter equals L (¬ϕ) ∩ Trk(nΩ̃) so that we
are done. Like atomic formulas, disjunction and existential quantification follow
standard methods, which use the fact that Cvpa are closed under union and
projection (cf. [28]). ⊓⊔

Remark 23. The transformations from the proofs of Theorems 21 and 22 are
effective. Note that the size of a Cvpa that arises from a formula cannot be
bounded by an elementary function. This is, however, already the case in the
setting of finite automata over words, even if we restrict to first-order formulas
(with the transitive closure predicate x ≤ y) [28].

5 Future Directions

Though the results in this paper are of rather theoretical nature, due to the high
complexity of our constructions, we believe that Cvpa and the related notion

16

of a visibly pushdown trace may open a new branch in concurrency theory. We
mention here some future directions:

We excluded an important question from our study, which has a well-known
solution in the theory of Mazurkiewicz traces. In our setting, the problem reads
as follows: For k ∈ N and an Mvpa A, when can we decide whether [Lk(A)]∼ eΣ

is the language of some Mvpa and, hence, of some Cvpa? If Σ = Σint , we know
that this is the case iff I eΣ

∪ idΣ is transitive [25]. In the general setting, the
question remains open.

Given an Mvpa A, one may ask if A is indeed already a Cvpa such that
its local state spaces and transition relations can be computed effectively. Those
questions are addressed and answered positively in [9, 19] for asynchronous au-
tomata.

In Cvpa, processes communicate via shared memory. It will be interesting
to study extensions of communicating finite-state machines (CFMs), where pro-
cesses can send and receive messages through first-in first-out channels, by visibly
pushdown stacks. While Cvpa recognize sets of visibly pushdown traces, a visi-
bly pushdown CFM would give rise to the notion of a visibly pushdown message
sequence chart. Interestingly, there are theorems for CFMs that constitute coun-
terparts of Zielonka’s Theorem [13, 15]. We are therefore confident that the study
of visibly pushdown CFMs will be fruitful.

For both Mazurkiewicz traces [10] and nested words [1], temporal logics have
been studied. We raise the question if these logics can be combined towards ex-
pressive specification formalisms with decidable satisfiability and model-checking
problems.

In a distributed setting, deadlock-free systems are particularly important.
The paper [9] addresses the problem of synthesizing deadlock-free asynchronous
automata from regular specifications. It remains to define a notion of deadlock-
freeness for our setting and to study if the ideas from [9] can be adopted.

References

1. R. Alur, M. Arenas, P. Barceló, K. Etessami, N. Immerman, and L. Libkin. First-
order and temporal logics for nested words. In LICS’07, pages 151–160. IEEE
Computer Society Press, 2007.

2. R. Alur and P. Madhusudan. Visibly pushdown languages. In STOC’04, pages
202–211. ACM Press, 2004.

3. R. Alur and P. Madhusudan. Adding nesting structure to words. In DLT’06,
volume 4036 of LNCS, pages 1–13. Springer, 2006.

4. B. Bollig. On the expressive power of 2-stack visibly pushdown automata. Research
Report LSV-07-27, LSV, ENS Cachan, France, 2007.

5. A. Bouajjani, J. Esparza, and T. Touili. A generic approach to the static analysis
of concurrent programs with procedures. International Journal on Foundations of
Computer Science, 14(4):551–582, 2003.

6. J. Büchi. Weak second order logic and finite automata. Z. Math. Logik, Grundlag.
Math., 5:66–62, 1960.

17

7. I. Castellani, M. Mukund, and P.S. Thiagarajan. Synthesizing distributed tran-
sition systems from global specifications. In FSTTCS’99, volume 1739 of LNCS,
pages 219–231. Springer, 1999.

8. S. Chaki, E.M. Clarke, N. Kidd, T.W. Reps, and T. Touili. Verifying concurrent
message-passing C programs with recursive calls. In TACAS’06, volume 3920,
pages 334–349, 2006.

9. A. Ştefănescu, J. Esparza, and A. Muscholl. Synthesis of distributed algorithms
using asynchronous automata. In CONCUR’03, volume 2761 of LNCS, pages 27–
41. Springer, 2003.

10. V. Diekert and P. Gastin. LTL is expressively complete for Mazurkiewicz traces.
In ICALP’00, volume 1853 of LNCS, pages 211–222. Springer, 2000.

11. V. Diekert and Y. Métivier. Partial commutation and traces. In A. Salomaa and
G. Rozenberg, editors, Handbook of Formal Languages, volume 3, pages 457–534.
Springer, 1997.

12. E.A. Emerson and E.M. Clarke. Using branching time temporal logic to synthesize
synchronization skeletons. Science of Computer Programming, 2:241–266, 1982.

13. B. Genest, D. Kuske, and A. Muscholl. A Kleene theorem and model checking
algorithms for existentially bounded communicating automata. Information and
Computation, 204(6):920–956, 2006.

14. B. Genest and A. Muscholl. Constructing exponential-size deterministic Zielonka
automata. In ICALP’06, Part II, volume 4052 of LNCS, pages 565–576. Springer,
2006.

15. J. G. Henriksen, M. Mukund, K. Narayan Kumar, M. Sohoni, and P. S. Thia-
garajan. A theory of regular MSC languages. Information and Computation,
202(1):1–38, 2005.

16. D. Kuske. Weighted asynchronous cellular automata. Theoretical Computer Sci-
ence, 374(1-3):127–148, 2007.

17. S. La Torre, P. Madhusudan, and G. Parlato. A robust class of context-sensitive
languages. In LICS’07, pages 161–170. IEEE Computer Society Press, 2007.

18. S. La Torre, P. Madhusudan, and G. Parlato. Context-bounded analysis of concur-
rent queue systems. In TACAS’08, volume 4963 of LNCS, pages 299–314. Springer,
2008.

19. R. Morin. Decompositions of asynchronous systems. In CONCUR’98, volume 1466
of LNCS, pages 549–564. Springer, 1998.

20. A. Muscholl and D. Peled. Message sequence graphs and decision problems on
Mazurkiewicz traces. In MFCS’99, volume 1672 of LNCS, pages 81–91. Springer,
1999.

21. E. Ochmański. Recognizable Trace Languages. In The Book of Traces, chapter 6,
pages 167–204. World Scientific, 1995.

22. D. Peled, Th. Wilke, and P. Wolper. An algorithmic approach for checking closure
properties of temporal logic specifications and omega-regular languages. Theoret-
ical Computer Science, 195(2):183–203, 1998.

23. S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software.
In TACAS’05, volume 3440 of LNCS, pages 93–107. Springer, 2005.

24. G. Ramalingam. Context-sensitive synchronization-sensitive analysis is undecid-
able. ACM Transactions on Programming Languages and Systems, 22(2):416 –
430, 2000.

25. J. Sakarovitch. The ”last” decision problem for rational trace languages. In
LATIN’92, volume 583 of LNCS, pages 460–473. Springer, 1992.

26. K. Sen and M. Viswanathan. Model checking multithreaded programs with asyn-
chronous atomic methods. In CAV’06, volume 4144 of LNCS. Springer, 2006.

18

27. W. Thomas. On logical definability of trace languages. In Proceedings of Algebraic
and Syntactic Methods in Computer Science (ASMICS), Report TUM-I9002, Tech-
nical University of Munich, pages 172–182, 1990.

28. W. Thomas. Languages, automata and logic. In A. Salomaa and G. Rozenberg,
editors, Handbook of Formal Languages, volume 3, pages 389–455. Springer, 1997.

29. W. Zielonka. Notes on finite asynchronous automata. R.A.I.R.O. — Informatique
Théorique et Applications, 21:99–135, 1987.

Appendix (proof details for Theorem 21)

Theorem 21 For every Cvpa C over Σ̃, there is a sentence ϕ ∈ MSO(Σ̃) such
that L (ϕ) = L (C).

Proof. Let C = ((Sp)p∈Proc , Γ, (δa)a∈Σ , ι, F) be a Cvpa over Σ̃. Moreover, let
S =

⋃
p∈Proc Sp. We suppose S and Γ to be disjoint. The sentence we are

looking for is of the form

ϕ = ∃(Xs)s∈S ∃(XA)A∈Γ

[
consistent((Xs)s∈S , (XA)A∈Γ)

∧ trans((Xs)s∈S , (XA)A∈Γ)

∧ final((Xs)s∈S)
]

Suppose T = (E,�, µ, λ) is a trace. Observe that a run of Cvpa on T can be
represented as a pair of mappings states and symbol where states assigns to every
event i ∈ E an element from

∏
p∈proc(λ(i)) Sp (intuitively, the tuple is the collec-

tion of local states that are reached after executing i, whereas all processes not
in proc(λ(i)) remain in their source local states), and symbol assigns to i a stack
symbol from Γ . Actually, for every event i ∈ E, the formula consistent checks
whether (Xs)s∈S and (XA)A∈Γ induce valid values for states(i) and symbol(i):

consistent((Xs)s∈S , (XA)A∈Γ) =

∀x
[∧

p∈Proc
a∈Σp

(
λ(x) = a →

∨

s∈Sp

x ∈ Xs

)

∧
∧

p∈Proc
s∈Sp

(
x ∈ Xs →

∨

a∈Σp

λ(x) = a
)

∧
∧

p∈Proc

s,s′∈Sp

s 6=s′

¬
(
x ∈ Xs ∧ x ∈ Xs′

)

∧ partition((XA)A∈Γ)

∧ λ(x) ∈ Σc → ¬(x ∈ X⊥)

∧ unmatched pop(x) → x ∈ X⊥

∧ ∀y
(
(x, y) ∈ µ →

∨

A∈Γ\{⊥}

(x ∈ XA ∧ y ∈ XA)
)]

19

where the first-order formula partition((XA)A∈Γ) shall guarantee that (XA)A∈Γ

is a partition of the set of events (where XA might be the empty set) and
unmatched pop(x) = λ(x) ∈ Σr ∧ ¬∃y (y, x) ∈ µ. Moreover,

trans((Xs)s∈S , (XA)A∈Γ) =

∀x
∨

a∈Σ
(s,A,s′)∈δa

[
λ(x) = a ∧ x ∈ XA ∧

∧

p∈proc(a)

x ∈ Xs′

p
∧

∨

P⊆proc(a)
s.t. sp=ιp ∀p∈P

(∧

p∈P

firstp(x) ∧
∧

p∈proc(a)\P

∃y
(
prevp(y, x) ∧ y ∈ Xsp

))]

where sp, sp
′, and ιp refer to the p-components of s, s′, ι ∈ S, respectively. This

formula ensures that, for every x, there is a transition that corresponds to the
state and stack-symbol assignment. The set P will hereby contain all those pro-
cesses p that have not moved yet and therefore are in the initial state ιp. The
subformula firstp(x) holds true if x is the very first event that is executed by
process p, i.e., firstp(x) = λ(x) ∈ Σp ∧ ∀y (y ≺ x → λ(x) 6∈ Σp). Similarly,
prevp(y, x) = λ(y) ∈ Σp ∧ λ(x) ∈ Σp ∧ y ≺ x ∧ ∀z ((λ(z) ∈ Σp ∧ y ≺ z � x) →
z = x) expresses that y is the last p-event that is executed before the p-event x.
Then, y is actually the event where the source p-state of the transition taken at
x is located. Finally,

final((Xs)s∈S) =

∨

s∈F
P⊆Proc

s.t. sp=ιp ∀p∈P

(∧

p∈P
a∈Σp

(
¬∃x (λ(x) = a)

)
∧

∧

p∈Proc\P

∃x
(
lastp(x) ∧ x ∈ Xsp

))

ensures that the global state that is reached after the execution of a trace is a
final one. Hereby, we use lastp(x) = λ(x) ∈ Σp ∧ ∀y (x ≺ y → λ(y) 6∈ Σp) to
identify the event that has to provide the final p-state.

Indeed, we have L (ϕ) = L (C). ⊓⊔

20

