
Steve Kremer, Antoine Mercier,
Ralf Treinen

Proving Group Protocols Secure

Against Eavesdroppers

Research Report LSV-08-24

July 2008

Proving Group Protocols

Secure Against Eavesdroppers

Steve Kremer1, Antoine Mercier1, and Ralf Treinen2

1 LSV, ENS Cachan, CNRS, INRIA, France
2 PPS, Université Paris Diderot, CNRS, France

Abstract. Security protocols are small programs designed to ensure
properties such as secrecy of messages or authentication of parties in a
hostile environment. In this paper we investigate automated verification
of a particular type of security protocols, called group protocols, in the
presence of an eavesdropper, i.e., a passive attacker. The specificity of
group protocols is that the number of participants is not bounded.
Our approach consists in representing an infinite set of messages ex-
changed during an unbounded number of sessions, one session for each
possible number of participants, as well as the infinite set of associated
secrets. We use so-called visibly tree automata with memory and struc-
tural constraints (introduced recently by Comon-Lundh et al.) to repre-
sent over-approximations of these two sets. We identify restrictions on
the specification of protocols which allow us to reduce the attacker ca-
pabilities guaranteeing that the above mentioned class of automata is
closed under the application of the remaining attacker rules. The class
of protocols respecting these restrictions is large enough to cover several
existing protocols, such as the GDH family, GKE, and others.

1 Introduction

Many modern computing environments, on wired or wireless networks, involve
groups of users of variable size, and hence raise the need for secure communi-
cation protocols designed for an unbounded number of participants. This sit-
uation can be encountered in multi-user games, conferencing applications, or
when securing an ad-hoc wireless network. In this paper we investigate the for-
mal analysis of such protocols whose specification is parameterized by the num-
ber of participants. Proving protocols by hand is cumbersome and error-prone.
Therefore we aim at automated proof methods. The variable number of protocol
participants makes this task particularly difficult.

Related works. Several works already attempted to analyze these protocols. Steel
developed the CORAL tool [14] which aims at searching for attacks. Pereira and
Quisquater [13, 12] analyzed specific types of protocols and proved the impossibil-
ity of building secure protocols using only some kinds of cryptographic primitives
such as modular exponentiation in the presence of an active adversary. Küsters
and Truderung [11, 16] studied the automatic analysis of group protocols in case

of a bounded number of sessions for an active intruder. They showed that the
secrecy property is decidable for a given number of participants (without bound
on this number) and for a group protocol that may be encoded in their model.
As far as we know there is no complete and generic method to automatically
prove the security of protocols for an unbounded number of participants. We
aim to establish such a method.

Contribution of this paper. We consider a passive intruder, that is an intruder
who only eavesdrops all the messages emitted during any sessions. This setting
is of course restrictive in comparison to an active adversary. However, Katz and
Yung [10] have shown that any group key agreement protocol which is secure
against a passive adversary can be transformed into a protocol which resists
against an active adversary. The security property that we are interested in here
is the secrecy of some set of messages. In a group key exchange protocol, for
example, the set of messages we hope remain secret is the set of session keys
established during several sessions of the protocol.

Vulnerability of protocols designed for a fixed number of participants to eaves-
dropping attacks is quite straightforward to analyze in the symbolic model of
Dolev and Yao. This is due to the fact that the set of messages exchanged during
one session is a finite set, and that one can construct easily [9] a tree automaton
describing precisely the set of messages an attacker can deduce from these using
the deduction capabilities of the Dolev/Yao model. This is much more difficult in
case of group protocols: not only does the number of messages exchanged during
a protocol session grow with the number of participants, one also has to take
into consideration parameters like the total number of participants of a session,
and the position of a participant among the other protocol participants.

We specify a protocol as a function that assigns to any number of participants
two sets of terms. The first set represents the set of messages emitted by the
participants of the protocol, and the second set represents the set of terms that
we want to remain secret. We suppose that the attacker has access to the set of
messages exchanged by the legitimate protocol participants of the sessions for all
possible numbers of participants combined, and that he attempts to deduce from
this a supposed secret of one of the sessions. In other words, we are interested
in the situation where an attacker could listen to several protocol sessions, say
for 3, 4, and 5 participants, and then use this combined knowledge in order to
deduce a supposed secret for one of these sessions.

As a first step we give sufficient restrictions on protocol specifications which
allow us to reduce the intruder capabilities: we show that operations typically
used in group protocols such as modular exponentiation and exclusive or are
not necessary for the intruder to discover a secret term. As a consequence, the
deduction capabilities of an intruder can be reduced to the classical so-called
passive Dolev-Yao intruder. These restrictions are met by the protocols we have
studied ([15, 2, 1], . . .). In contrast to classical protocols between a fixed number
of participants, however, we now have to deal with infinite sets of terms that are
in general inductively defined.

2

The second step is to represent an over-approximation of the set of emitted
messages and the set of supposed secrets in a formalism that has the following
features:

– The set of messages that the intruder can deduce from the set of emitted
messages can again be described by the same formalism.

– Disjointness of sets described in this formalism is decidable.

The formalism of classical tree automata enjoys these two properties; unfor-
tunately it is not expressive enough to specify the inductively defined sets of
messages that occur in group protocols. For this reason we employ here the
recently [3] proposed class of so-called visibly tree automata with memory, visi-
bility and structural constraints. Additionally, this constitutes a new unexpected
application of this class of automata.

A further difficulty is that the messages may still use associative and com-
mutative (AC) operators. The class of automata used here does not take into
account AC operators. We will explain how to cope with this difficulty by work-
ing with certain representatives of equivalence classes modulo AC.

Structure of the paper. Section 2 presents the running example used throughout
the paper. In Section 3 we introduce our attacker model. In Section 4 we explain
the result on the reduction of intruder capabilities and its proof. The details of
the proof are in the appendix. In Section 5 we exhibit how to represent our sets
of terms using the formalism of [3]. We illustrate our technique with the repre-
sentation of the running example in this formalism in Section 6. We conclude
in Section 7.

2 Running Example

Our running example is the group Diffie-Hellman key agreement protocol (GDH-
2) [15]. Every participant in a session between n participants generates a nonce
Ni (a secret fresh value). The first participant sends out [α,αN1] where α is a pub-
licly known constant. The i-th participant (for 1 < i < n) expects from its prede-
cessor a list of messages [αx1 , . . . ,αxi], and he sends out [αxi ,αx1·Ni , . . . ,αxi·Ni].
The last participant, on reception of [αx1 , . . . ,αxn], sends to all other partici-
pants [αx1·Nn , . . . ,αxn−1·Nn]. For instance in case of 4 participants the following
sequence of messages is sent (we use here a list notation that will later be for-
malised by a binary pairing operator) :

Sender Message
1 [α,αN1]
2 [αN1 ,αN2 ,αN1·N2]
3 [αN1·N2 ,αN1·N3 ,αN2·N3 ,αN1·N2·N3]
4 [αN1·N2·N4 ,αN1·N3·N4 ,αN2·N3·N4]

The common key is αN1·N2·N3·N4 . Note that each of the participants i for i < n
can calculate that key from the message sent out by the last participant since

3

x ⊕ 0 → x

x ⊕ x → 0

((x)y)z → xy·z

〈x, y〉z → 〈xz, yz〉

Fig. 1. Rewrite System R

he knows the missing part Ni, and that the participant n can calculate that key
using the last element of the sequence he received form the participant n − 1.

3 Model

We present here an extension of the model of a passive Dolev-Yao intruder [8].
This intruder is represented by a deduction system which defines his capabilities
to obtain new terms from terms he already knows.

Messages. Messages exchanged during executions of the protocol are represented
by terms over the following signature Σ:

Σ = {pair/2, enc/2, exp/2, mult/2, xor/2, H/1} "Σ0

A pair pair(u, v) is usually written 〈u, v〉, the encryption of a message u by the
key v, enc(u, v), is written {u}v, and the exponentiation of u by v, exp(u, v),
is written uv. Multiplication mult and exclusive or xor are denoted by the infix
operators · and ⊕. The symbol H denotes a unary hash function. Σ0 is an infinite
set of constant symbols, including nonces and encryption keys, and possibly
elements of an algebraic structure such as the generator of some group. T (Σ)
denotes the set of all terms build over Σ. We write St(t) for the set of subterms of
the term t, defined as usual, and extend this notation to sets of terms. We say that
a function symbol f , where f/n ∈ Σ, occurs in a term t if f(t1, . . . , tn) ∈ St(t)
for some t1, . . . , tn.

Equational theory. We extend this model by an equational theory represented
by the rewrite system R, which is given in Figure 1, modulo AC. The associative
and commutative operators are exclusive or ⊕ and multiplication ·. Normaliza-
tion by R modulo AC is denoted ↓R/AC . The first two rules express the neutral
element and the nilpotency law of exclusive or. The third rewrite rule allows
for a normalization of nested exponentiations. Note that we do not consider a
neutral element for multiplication, and that we do not have laws for multiplica-
tive inverse, or for distribution of multiplication over other operations such as
addition. The last rule allows one to normalize a list of terms exponentiated
with the same term. It will be useful in order to model some protocols such as
GKE [2]. Confluence and termination of this rewrite system have been proven

4

axiom if t ∈ S
S & t

S & t1 S & t2 pair
S & 〈t1, t2〉

S & 〈t1, t2〉
proj1

S & t1

S & 〈t1, t2〉
proj2

S & t2

S & t1 S & t2 enc
S & {t1}t2

S & {t1}t2 S & t2
dec

S & t1

S & t
hash

S & H(t)

Fig. 2. The Dolev-Yao Deduction System DY

S & t1 S & t2 and t2 ∈ Σ0 exp
S & tt2

1
↓R/AC

S & t1 · · · S & tn
Gxor

S & t1 ⊕ · · ·⊕ tn ↓R/AC

Fig. 3. Extension of the Dolev-Yao Deduction System

using the tool CiME [6]. In the rest of this paper we will only consider terms
in normal form modulo R/AC. Any operation on terms, such as the intruder
deduction system presented below, has to yield normal forms modulo R/AC.

The Intruder. The deduction capabilities of the intruder are described as the
union of the deduction system DY of Figure 2 and the system of Figure 3. The
complete system is called I. A sequent S (t, where S is a finite set of terms
and t a term, expresses the fact that the intruder can deduce t from S.

The system DY represents the classical Dolev-Yao intruder capacities to en-
crypt (enc) or decrypt (dec) a message with keys he knows, to build pairs (pair)
of two messages, to extract one of the messages from a pair (proj1, proj2), and
finally to apply the hash function (hash). Note that the term in the conclusion
is in normal form w.r.t. R/AC when its hypotheses are, we hence do not have
to normalize the term in the conclusion.

The system I extends the capabilities of DY by additional rules that allow
the intruder to apply functions that are subject to the equational theory. We
have to normalize the terms in the conclusions in these rules since applications
of exponentiation or ⊕ may create new redexes.

As usually pair, enc, hash, exp and Gxor will be called construction rules,
and proj1, proj2, and dec, will be called deconstruction rules. Note that the Gxor
rule may also be used to deduce a subterm of a term thanks to the nilpotency
of ⊕. For instance, let a and b be two constants of Σ0. Applying a Gxor rule
to sequents S (a ⊕ b and S (b allows to deduce a, a subterm of a ⊕ b. We
implicitly assume that the constants 0 and α are always included in S.

5

For a set of ground terms S and a ground term t we write S (D t if there
exists a deduction of the term t from the set S in the deduction system D.

Definition 1 (Deduction). A deduction of t from S in a system D is a tree
where every node is labelled with a sequent. A node labelled with S (D u has n
sons S (D v1, . . . , S (D vn such that S!Dv1,...,S!Dvn

S!Du is an instance of one of
the rules of D. The root is labelled by S (D t. The size of the deduction is the
number of nodes of the tree.

When the deduction system D is clear from the context we may sometimes omit
the subscript D and just write S (t. In the following we consider deductions in
the systems DY and I. The deductive closure by a system D of a set of terms E
is the set of all the terms the intruder can deduce from E using D.

Definition 2 (Deductive closure). Let D be a deduction system and T a set
of ground terms. The deductive closure by D of T is

D(T) = {t | T (D t}

Protocol Specification and Secrecy Property. We suppose that a protocol is de-
scribed by two functions e : N → 2T (Σ) and k : N → 2T (Σ). Given a number of
participants n, e(n) yields the set of terms that are emitted during a protocol
execution with n participants and k(n) is the set of secrets of this execution,
typically the singleton set consisting of the constructed key.

Example 1. Consider our running example introduced Section 2. We have that

eGDH(n) =

{

∅ if n < 2
{tn1 , . . . , tnn} else

and kGDH(n) =

{

∅ if n < 2
{αNn

1 ·...·Nn
n } else

where

tn1 = 〈α,αNn
1 〉

tni = 〈αNn
1 ·...·Nn

i−1 , t
Nn

i

i−1〉 (1 < i < n)
tnn = 〈αNn

2 ·...·Nn
n , 〈. . . , 〈αNn

1 ·...·Nn
j−1·N

n
j+1·...·N

n
n , 〈. . . ,αNn

1 ·...·Nn
n−2·N

n
n 〉〉〉〉

In the following we call a protocol specification the pair of (infinite) sets
of terms (E, K) where E =

⋃

n∈N
e(n) and K =

⋃

n∈N
k(n). Given a protocol

specification (E, K) we are interested in the question whether a supposed secret
in K is deducible from the set of messages emitted in any of the sessions, i.e.,

I(E) ∩ K
?
= ∅. It is understood that e(n) and k(n), and hence E and K, are

closed under associativity and commutativity of exclusive or and multiplication.

4 Reducing I to DY

In this section we show that, under carefully chosen restrictions on the sets E
and K, we can consider an intruder who is weaker than expected. We will define
well-formed protocols that will allow us to reduce a strong intruder (using the

6

system I) to a weaker intruder (using only the system DY). This class is general
enough to cover existing group protocols.

We first define a slightly stronger deduction system which will be more con-
venient for the proofs. Let R′ be the rewrite system R \ {〈x, y〉z → 〈xz, yz〉},
and I ′ the deduction system I where the rewrite system used in the rules exp
and Gxor is R′. We show that any term which can be deduced in I can also be
deduced in I ′. This allows us to use the system I ′ which is more convenient for
our proofs.

Lemma 1. Let E be a set of terms. If E (I t then E (I′ t, and if E (I\Gxor t
then E (I′\Gxor t.

To prove this result it is sufficient to note that each time an exponent is applied
to a pair, one can obtain both elements of the pair by projection and apply the
exponent to each of the elements before recomposing the pair.

We may however note that in general it is not the case that E (I′ t implies
E (I t as it is possible in I ′ to deduce a term of the form 〈u, v〉c (which would
not be in normal form with respect to R).

Well formation. To state our well-formation condition, we define a closure func-
tion C on terms that computes an over-approximation of the constants that are
deducible in a given term.

Definition 3 (closure). Let C : T (Σ) → 2Σ0 be the function defined induc-
tively as follows

C(c) = {c} if c ∈ Σ0

C(〈u, v〉) = C(u) ∪ C(v)
C({u}v) = C(u)

C(u1 ⊕ · · ·⊕ un) =
⋃

i=1 C(ui)
C(f(u1, . . . , un)) = ∅ if f -= 〈., .〉, {.}.

We extend this definition to sets of terms in the natural way, i.e., c ∈ C(S)
if there exists u ∈ S such that c ∈ C(u).

The following lemma states that if a constant c is in the closure of a term t
which can be deduced from a set E, then c is also in the closure of E. A direct
consequence is that if a constant c can be deduced from E then c is in the closure
of E.

Lemma 2. Let c ∈ Σ0 and t be a term such that c ∈ C(t). If E (I′ t then
c ∈ C(E).

Corollary 1. If c ∈ Σ0 and E (I′ c then c ∈ C(E).

We impose restrictions on the protocols. These restrictions concern the us-
age of modular exponentiation and the usage of ⊕ during the execution of the
protocol. We will also restrict the set of supposed secrets.

7

Definition 4 (Well formation). A protocol specification (E, K) is said to be
well-formed if it satisfies the following constraints.

1. If t ∈ E and if ⊕ occurs in t, then t = u ⊕ v for some u and v and
– ⊕ does not occur neither in u nor in v
– u, v -∈ DY (E).

2. Let t = uc1·····cn and ci ∈ Σ0 for all 1 ≤ i ≤ n. If t ∈ St(E ∪ K) then
c1, . . . , cn -∈ C(E)

3. For any t ∈ K, we have that ⊕ does not occur in t.

Constraint 1 implies that ⊕ only occurs at the root position in terms of E and
moreover ⊕ is of arity 2. Note that this constraint does not prevent the intruder
from constructing terms where ⊕ has an arity greater than 2. Constraint 1 ad-
ditionally requires that u and v cannot be deduced by a Dolev-Yao adversary.
Constraint 2 requires that any constant occuring as an exponent in some term
of E ∪ S cannot be accessed “easily”, i.e. is not in the closure C, representing
an over-approximation of accessible terms. Adding this constraint seems quite
natural, since modular exponentiation is generally used to hide the exponent.
This is for instance the case in the Diffie-Hellman protocol which serves as our
running example: each participant of the protocol generates a nonce N , expo-
nentiates some of the received values with N which are then send out. If the
access to such a nonce would be “easy” then the computation of the established
key would also be possible. Finally, constraint 3 requires that the secrets do not
contain any xored terms.

These constraints allow us to derive the main theorem of this section and
will be useful for automating the analysis of group protocols. While these con-
straints are obviously restrictive, they are nevertheless verified for several pro-
tocols, including GDH and GKE. In particular, the last constraint imposes that
the specification of sets of keys must not involve any ⊕. This may seem rather
arbitrary but the protocols we looked at fulfill this requirement.

The main theorem of this section states that, for well-formed protocols, if
there is an attack for the attacker I then there is an attack for the attacker DY .

Theorem 1. For all well-formed (E, K) we have I(E) ∩ K = DY (E) ∩ K.

The proof of this result relies on several additional lemmas and is postponed
to the end of this section. We only present some of the key lemmas. Remaining
details and full proofs are given in Appendix A .

The following lemma is similar to Lemma 1 of [5], but adapted to our setting.

Lemma 3. Let E be a set of terms. If π is a minimal deduction in I ′ of one of
the following forms :

...
E (〈u, v〉

proj1E (u

...
E (〈u, v〉

proj2E (v

...
E ({u}v

...
E (v

dec
E (u

Then 〈u, v〉 ∈ St(E) (resp. 〈u, v〉 ∈ St(E), resp. {u}v ∈ St(E)).

8

We now show that in the case of well-formed protocol specifications, if a
deduction does not apply the Gxor rule, then it does not need to apply the exp
rule neither.

Lemma 4. Let E be a set of terms and t a term. If for every uc1·····cn ∈ St(E, t)
such that ci ∈ Σ0 one has ci /∈ C(E) and if E (I′\Gxor t then E (DY t.

The proof is done by induction on the length of the deduction tree showing that
E (I′\Gxor t. The delicate case occurs when the last rule application is either
projection or decryption. In these cases we rely on Lemma 3.

The next lemma states that whenever a Gxor rule is applied then a ⊕ occurs
in the conclusion of the deduction. A direct corollary allows us to get rid of any
application of the Gxor rule in well-formed protocol specifications.

Lemma 5. Let E be a set of terms satisfying constraints 1 and 2 of Definition 4.
Let π be a minimal deduction of E (I′ t. If π involves an application of the Gxor
rule, then ⊕ occurs in t.

Corollary 2. Let (E, K) be a well-formed protocol. Every minimal deduction of
E (I′ t such that t ∈ K does not involve an application of the Gxor rule.

Proof. By contradiction. Let π be a minimal deduction of E (I′ t that involves
a Gxor rule. As (E, K) is a well-formed protocol, by Lemma 5 ⊕ occurs in t.
However, as t ∈ K (E, K) is a well-formed protocol, by constraint 3, ⊕ does not
occur in t.

We are now ready to prove the main theorem of this section.

Proof (of Theorem 1). We obviously have that DY (E) ∩ K ⊆ I(E) ∩ K since
DY is a subsystem of I. To prove the other direction, let t be a term of K and
suppose that E (I t. By Lemma 1, there is a deduction of E (I′ t. As (E, K) is
well-formed and t ∈ K, by Corollary 2, there exists a deduction of E (I′\Gxor t.
Hence by Lemma 4, we have a deduction of E (DY t.

5 Representing Group Protocols by Automata

5.1 The Automaton Model

We first recall the definition of Visibly Tree Automata with Memory and Struc-
tural Constraints introduced first in [3] and later refined in [4]. Let X be an
infinite set of variables. The set of terms built over Σ and X is denoted T (Σ,X).

Definition 5 ([3]). A bottom-up tree automaton with memory on a finite input
signature Σ is a tuple (Γ, Q, Qf ,∆) where Γ is a memory signature, Q is a finite
set of unary state symbols, disjoint from Σ ∪ Γ , Qf ⊆ Q is the subset of final
states and ∆ is a set of rewrite rules of the form f(q1(m1), . . . , qn(mn)) → q(m)
where f ∈ Σ of arity n, q1, . . . , qn, q ∈ Q and m1, . . .mn, m ∈ T (Σ,X).

9

For the next definition we will have to consider a partition of the signature, and
we will also (as in [3]) require that all symbols of Σ and Γ have either arity 0
or 2. We also assume that Γ contains the constant ⊥.

Σ = ΣPush "ΣPop11 "ΣPop12 "ΣPop21 "ΣPop22

"ΣInt0 "ΣInt1 "ΣInt2 "Σ≡
Int1

"Σ≡
Int2

Two terms t1 and t2 are equivalent, written t1 ≡ t2, if they are equal when
identifying all symbols of the same arity, that is ≡ is the smallest equivalence
on ground terms satisfying

– a ≡ b for all a, b of arity 0,
– f(s1, s2) ≡ g(t1, t2) if s1 ≡ t1 and s2 ≡ t2, for all f and g of arity 2.

Definition 6 ([4]). A visibly tree automaton with memory and constraints
(short Vtam

≡
&≡) on a finite input signature Σ is a tuple (Γ,≡, Q, Qf ,∆) where

Γ ,Q,Qf are as in Definition 5, ≡ is the relation on T (Γ) defined above and ∆
is the set of rewrite rules of one of the following forms:

Push a → q(c) a ∈ ΣPush

Push f(q1(y1), q2(y2)) → q(h(y1, y2)) f ∈ ΣPush

Pop1i f(q1(h(y11, y12), q2(y2))) → q(y1i) f ∈ ΣPop1i
, 1 ≤ i ≤ 2

Pop1i f(q1(⊥), q2(y2)) → q(⊥) f ∈ ΣPop1i
, 1 ≤ i ≤ 2

Pop2i f(q1(y1), q2(h(y21, y22))) → q(y2i) f ∈ ΣPop2i
, 1 ≤ i ≤ 2

Pop2i f(q1(y1), q2(⊥)) → q(⊥) f ∈ ΣPop2i
, 1 ≤ i ≤ 2

Int0 a → q(⊥) a ∈ ΣInt0

Inti f(q1(y1), q2(y2)) → q(yi) f ∈ ΣInti
, 1 ≤ i ≤ 2

Int
≡
i f(q1(y1), q2(y2))

y1≡y2→ q(yi) f ∈ ΣInt≡

i
, 1 ≤ i ≤ 2

Int
&≡
i f(q1(y1), q2(y2))

y1 &≡y2→ q(yi) f ∈ ΣInt≡

i
, 1 ≤ i ≤ 2

where q1, q2, q ∈ Q, y1, y2 are distinct variables of X , c, h ∈ Γ .

A Vtam
≡
&≡ can apply a transition of type Int

≡
i (resp. Int

&≡
i) to a term

f(q1(m1), q2(m2)) only when m1 ≡ m2 (resp. m1 -≡ m2). A term t is accepted
by a Vtam

≡
&≡ A in state q ∈ Q and with memory m ∈ T (Γ) iff t →∗ q(m). The

language L(A, q) and memory language M(A, q) of A in state q are respectively
defined by:

L(A, q) = {t|∃m ∈ T (Γ), t →∗ q(m)} M(A, q) = {m|∃t ∈ T (Σ), t →∗ q(m)}

Theorem 2 ([3],[4]). The class of languages recognizable by Vtam
≡
&≡ is closed

under Boolean operations, and emptiness of Vtam
≡
&≡ is decidable.

Note that the closure under ∪, ∩ supposes the same partition of the input sig-
nature Σ into ΣPush,ΣPop11 etc.

10

5.2 Encoding Infinite Signatures

The signature Σ used in the specification of the protocol may be infinite, in
particular due to constants that are indexed by the number of a participants of
a session. In order to be able to define Vtam

≡
&≡ that recognize E and K we have to

find an appropriate finite signature Σ′ that contains only constants and binary
symbols, and an appropriate function ρ : T (Σ) → T (Σ′). The function ρ extends
in a natural way to sets of terms. We will then use Vtam

≡
&≡ constructions in order

to show that ρ(DY (E)) ∩ ρ(K) = ∅. Note that this implies DY (E) ∩ K = ∅
independent of the choice of ρ, though in practice we will define ρ as an injective
homomorphism. If ρ is injective then we have that disjointness of DY (E) and
K is equivalent to disjointness of ρ(DY (E)) and ρ(K).

Example 2. The signature of our running example contains constants N j
i , denot-

ing the nonce of participant i in session j (where i ≤ j). To make this example
more interesting we could also consider constants Kj

i for symmetric keys be-
tween participants i and j (where i < j), and K−

i (resp. K+
i) for asymmetric

decryption (resp. encryption) keys of the participant i.
We choose the finite signature Σ′ consisting of the set of constants Σ′

0 =
{0,α}, and the set of binary function symbols

Σ′
2 = {pair, enc, exp, mult, xor, t, H, N, K, K+, K−, s, s′}

The function ρ : T (Σ) → T (Σ′) for the running example is defined as follows
(using auxiliary functions ρ1 : N → T (Σ′) and ρ2 : {(i, j) | i ≤ j} → T (Σ′)):

α → α pair(u, v) → pair(ρ(u), ρ(v))
0 → 0 enc(u, v) → enc(ρ(u), ρ(v))

K+
i → K+(0, ρ1(i)) exp(u, v) → exp(ρ(u), ρ(v))

K−
i → K−(0, ρ1(i)) mult(u, v) → mult(ρ(u), t(0, ρ(v)))

Kj
i → K(0, ρ2(i, j)) xor(u, v) → xor(ρ(u), ρ(v))

N j
i → N(0, ρ2(i, j)) H(u) → H(0, ρ(u))

where we define

ρ1(i) = s′(0, ρ1(i − 1)) if i > 0 ρ2(i, j) = s′(0, ρ2(i − 1, j − 1)) if i > 0
ρ1(0) = 0 ρ2(0, j) = s(0, ρ2(0, j − 1)) if j > 0

ρ2(0, 0) = 0

For instance, ρ1(2) = s′(0, s′(0, 0)), and ρ2(1, 3) = s′(0, s(0, s(0, 0))). This encod-
ing of pairs has been choosen in order to facilitate the automaton construction
in Section 6.

Finally, we have to adapt the deduction system DY to the translation of
the signature, yielding a modified deduction system DY ′ such that ρ(DY (S)) =
DY ′(ρ(S)) for any S ⊆ T (Σ).

Example 3. (continued) In our running example we just have to adapt the rule
hash and replace it by the following variant:

11

S (t
hash′

S (H(0, t)

The other rules remain unchanged.

Lemma 6. ρ(DY (S)) = DY ′(ρ(S)) for ρ defined as in Example 2.

The proof of this lemma can be found in Appendix B .

5.3 Coping with Associativity and Commutativity of xor and mult.

As for classical tree automata, the languages recognized by Vtam
≡
&≡ are in general

not closed under associativity and commutativity. In order to cope with this
difficulty we define a witness function W on T (Σ′) which associates to any term
t the minimal element of the equivalence class [t]AC w.r.t. the order ≺Σ′ , the
lexicographic path order [7] for the following precedence <Σ′ on Σ′:

0 <Σ′ α <Σ′ s <Σ′ s′ <Σ′ N <Σ′ K <Σ′ K+ <Σ′

K− <Σ′ H <Σ′ t <Σ′ xor <Σ′ mult <Σ′ exp <Σ′ enc <Σ′ pair

One verifies easily that ρ(N j
i) ≺Σ′ ρ(N j′

i′) if and only if either i <N i′, or i = i′

and j <N j′. We can now easily define the witness function:

Definition 7. The function W : T (Σ′) 4→ T (Σ′) assigns to any t′ ∈ T (Σ′) such
that t′ = ρ(t) the minimal element of ρ([t]AC).

This function extends in a natural way to sets of terms. Now, the disjointness
of two sets of terms S1 and S2 that are closed under congruence modulo AC is
equivalent to the disjointness of W (S1) and W (S2).

Theorem 3. If S is closed under AC then W (DY ′(S)) = DY ′(W (S)).

5.4 Closure under DY and Compatibility with the Closure under
AC

Theorem 4. For every Vtam
≡
&≡ A, such that pair, enc -∈ {Σ′

Int≡

1
∪Σ′

Int≡

2
} and the

only constant symbol of Γ is ⊥, there exists a Vtam
≡
&≡ ADY such that L(ADY) =

DY ′(L(A)).

The proof is based on the classical technique of completion of the automaton (see
[9]), with special care taken to the extension to memory and constraints. The
complete construction is given in Appendix B and depends on the partition of
the input signature, we illustrate it here for the case where pair, enc, H ∈ ΣPush.
The automaton extends A by new final states qpair, qenc, and qH . We also add
some new transitions and promote some states to final states:

q1, q2 ∈ Qf
Pair

pair(q1(x), q2(y)) → qpair(h(x, y))

12

pair(q1(x), q2(y)) → q(h(x, y)) q ∈ Qf L(A, q3−i) (= ∅
Proji, 1 ≤ i ≤ 2

qi ∈ Qf

q1, q2 ∈ Qf
Enc

enc(q1(x), q2(y)) → qenc(h(x, y))

enc(q1(x), q2(y)) → q(h(x, y)) q ∈ Qf L(A, q2) ∩ L(A) (= ∅
Dec

q1 ∈ Qf

q1 ∈ Qf
Hash

H(q0(x), q1(y)) → qH(h(x, y))

6 Example

Here we propose an over-approximation of the set of computed keys during an
unbounded number of sessions of the protocol (one session for each number
of participants). An over-approximation of the set of emitted messages and its
representation by automata is given in Appendix C .

The approximation we propose to represent is the following:

K = {αN
j1
j1

·N
j2
(j1−1)

...·N
jj1
1 }

Here we only give the construction of the automaton AK recognizing the set K.
K is the set of symbols of the form αp where p is a product of nonces N j

i :

– i = j for the maximal nonce N j
i in p,

– the number of nonces is j, where N j
i is the maximal nonce,

– for every i such that 1 ≤ i ≤ j, Nk
i belongs to p for some k.

We use the following partition of the signature Σ′ in the automata:

ΣPUSH = {s′, exp, 0,α} ΣPOP22 = {t}
ΣINT≡

2
= {mult} ΣINT2 = {s, N}

The other symbols can be put into any part of the signature. We define Γ =
{S, S′, h,⊥}. The automaton AK is defined as follows (qacc is the final state):

0 → qd(⊥) α → qα(⊥)

The following transitions check that if a term t →∗ qnent(m) then t is of the
form N(0, s′(0, . . . s′(0, 0) . . .)) and m = S′(0, . . . S′(0, 0) . . .) and the number of
S′ equals the number of s′. Hence t represents a nonce such that i = j.

s′(qd(m), qd(m′)) → qs′ent(S′(m, m′))
s′(qd(m), qs′ent(m′)) → qs′ent(S′(m, m′))
N(qd(m), qs′ent(m′)) → qnent(m′)

13

The following transitions are similar but also allow several S between the S′ and
the constant 0. We count in the memory only the number of S′. We also check
that terms leading to qnonly1s′ involve at most one occurrence of the symbol s′.

s(qd(m), qd(m′)) → qd(m′)
s′(qd(m), qd(m′)) → qonly1s′(S′(m, m′))

s′(qd(m), qonly1s′(m′)) → qs′(S′(m, m′))
s′(qd(m), qs′(m′)) → qs′(S′(m, m′))
N(qd(m), qs′(m′)) → qn(m′)

N(qd(m), qonly1s′(m′)) → qnonly1s′(m′)

The following transitions remove an S′ symbol from the memory.

t(qd(m), qnent(S′(m′, m′′)) → qnt(m′′)
t(qd(m), qnarg(S′(m′, m′′)) → qnt(m′′)

The following transition can be applied between a term that represents a nonce
and a term that represents either a product or a nonce njj on which we have
applied one af the above transitions.

mult(qn(m), qnt(m
′))

m≡m′

→ qnarg(m)

The following transition applies (by the memory language of qnonly1s′) only if
m′ is S′(⊥,⊥). In this case the term is considered a possible product of K.

mult(qnonly1s′(m), qnt(m
′))

m≡m′

→ qexp(m)

In this case it is possible to apply this last transition.

exp(qα(m), qexp(m
′)) → qacc(h(m, m′))

The following lemma states that our automaton recognizes in fact a slight over-
appoximation of W (ρ(K)) as it recognizes also some terms that are not witnesses
(but that are still in ρ(K)).

Lemma 7. W (ρ(K)) ⊆ L(AK) ⊆ ρ(K).

Lemma 8. (L(AE1) ∪ L(AE2), L(AK)) is well-formed.

Proof. As no transitions has a left hand side headed by an xor, constraints (1)
and (3) of Definition 4 are satisfied. We can check on the construction of the
automata AE1 and AE2 (given in Appendix C) that every term t accepted by
these automata is of the form exp(u, v) for some u and v. By Definition 3, this
implies that C(L(AE1) ∪ L(AE2)) = ∅.

14

7 Conclusion

We have shown that for a class of well-formed protocols, a general model of
intruder capabilities including applications of modular exponentiation and ex-
clusive or is equivalent to a weaker model which can be seen as the classical
Dolev-Yao model modulo associativity and commutativity of some operators.
We have then shown, by a series of reductions and over-approximations, that
the secrecy problem for group protocols in presence of a passive attacker can
be shown by using advanced tree automata techniques. We have shown how to
check (over-approximations of) conditions on the indexes of constants appearing
in a term by a Vtam

≡
&≡ automaton, how to cope with congruence classes modulo

associativity and commutativity in this automata model, and finally that recog-
nizability by this class of automata is preserved by construction of the Dolev-Yao
closure.

While our approach applies to several examples of group protocols there is
still room for improvements. The first possible generalization concerns our defi-
nition of well-formation of a group protocol. Some of the clauses of our definition
seem to be rather natural, whereas some others are more arbitrary. A possible
continuation of this work is to relax or to modify some of these restrictions,
keeping in mind that it must still be possible to prove a reduction result to the
classical Dolev-Yao intruder model.

Another restriction of our approach consists in the hypothesis that the only
possible exponents are products of constants. This is not the case in general.
Group protocols involving exponents different from a simple product exist. An
exponent could be represented by a sum, or by an exponentiation itself. The
theory of modular exponentiation seems to remain hard to manage in its full
generality.

An important avenue of future research is the automatisation of the construc-
tion of the automaton recognizing the set of emitted messages, resp. of supposed
secrets. This includes the definition of a specification language proper to group
protocols.

References

1. Collin Boyd and Juan-Manuel González Nieto. Round-optimal ciontributory con-
ference key agreement. In Proceedings of the 6th International Workshop on Theory
and Practice in Public Key Cryptography (PKC’03), volume 2567 of LNCS, pages
161–174. Springer, 2003.

2. Emmanuel Bresson, Olivier Chevassut, Abdelilah Essiari, and David Pointcheval.
Mutual authentication and group key agreement for low-power mobile devices.
Computer Communications, 27(17):1730–1737, 2004.

3. Hubert Comon-Lundh, Florent Jacquemard, and Nicolas Perrin. Tree automata
with memory, visibility and structural constraints. In Proceedings of the 10th
International Conference on Foundations of Software Science and Computation
Structures (FoSSaCS’07), volume 4423 of LNCS, pages 168–182. Springer, 2007.

15

4. Hubert Comon-Lundh, Florent Jacquemard, and Nicolas Perrin. Visibly tree au-
tomata with memory and constraints. Research Report LSV-07-30, Laboratoire
Spécification et Vérification, ENS Cachan, France, September 2007. To appear in
Logical Methods in Computer Science.

5. Hubert Comon-Lundh and Vitaly Shmatikov. Intruder deductions, constraint solv-
ing and insecurity decision in presence of exclusive or. In Proceedings of the 18th
IEEE Symposium on Logic in Computer Science (LICS’03), volume 171, pages
271–280. IEEE Computer Society Press, 2003.

6. Evelyne Contejean, Claude Marché, Benjamin Monate, and Xavier Urbain. The
CiME Rewrite Tool, 2000. http://cime.lri.fr.

7. Nachum Dershowitz. Termination of rewriting. J. Symb. Comput., 3(1-2):69–116,
1987.

8. Danny Dolev and Andrew C. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, 29(2):198–208, 1983.

9. Jean Goubault-Larrecq. A method for automatic cryptographic protocol verifi-
cation (extended abstract). In Parallel and Distributed Processing Symposium
(IPDPS ’00), volume 1800 of LNCS, pages 977–984. Springer, 2000.

10. Jonathan Katz and Moti Yung. Scalable protocols for authenticated group key
exchange. In Advances in Cryptology – CRYPTO’03, volume 2729 of LNCS, pages
110–125. Springer, 2003.

11. Ralf Küsters and Tomasz Truderung. On the Automatic Analysis of Recursive
Security Protocols with XOR. In Proceedings of the 24th Symposium on Theoretical
Aspects of Computer Science (STACS 2007), volume 4393 of LNCS. Springer, 2007.

12. Olivier Pereira and Jean-Jacques Quisquater. Some attacks upon authenticated
group key agreement protocols. Journal of Computer Security, 11(4):555–580, 2003.

13. Olivier Pereira and Jean-Jacques Quisquater. On the impossibility of building
secure cliques-type authenticated group key agreement protocols. Journal of Com-
puter Security, 14(2):197–246, 2006.

14. Graham Steel and Alan Bundy. Attacking group protocols by refuting incorrect
inductive conjectures. Journal of Automated Reasoning, 36(1-2):149–176, 2006.

15. Michael Steiner, Gene Tsudik, and Michael Waidner. Diffie-Hellman key distri-
bution extended to group communication. In ACM Conference on Computer and
Communications Security, pages 31–37, 1996.

16. Tomasz Truderung. Selecting theories and recursive protocols. In Proceedings of
the 16th International Conference on Concurrency Theory (CONCUR’05), volume
3653 of LNCS, pages 217–232. Springer, 2005.

16

A Proofs of Section 4

Lemma 1. Let E be a set of terms. If E (I t then E (I′ t, and if E (I\Gxor t
then E (I′\Gxor t.

Proof. The proof is the same for both deduction systems so we only present the
proof for the system I. Let π be a deduction of E (I t.

We iteratively replace any part of π of the form

S (〈u, v〉 S (c

S (〈u′, v′〉
exp

by

E (〈u, v〉
proj1

E (u E (c exp
E (uc

E (〈u, v〉
proj2

E (v E (c exp
E (vc

pair
E (〈uc, vc〉 ↓R/AC

It is easy to see that this transformation terminates and yields a deduction of
〈u′, v′〉. Moreover, the obtained deduction of 〈uc, vc〉 ↓R/AC is such that u and
v are not headed by the pair symbol. Otherwise the transformation would have
been applied again. Hence, the normalization step in R/AC coincides with the
normalization step in R′/AC and we have a deduction in I ′.

Lemma 2. Let c ∈ Σ0 and t be a term such that c ∈ C(t). If E (I′ t then
c ∈ C(E).

Proof. Let π be a deduction of E (I′ t. We prove the result by induction on the
size of the deduction. Let r be the last rule of π.

Base case. |π| = 1. Hence, r = axiom. As t ∈ E and c ∈ C(t) we have that
c ∈ C(E).

Inductive case. We consider all possibilities for r.

– r = proj1. It must be that the root of π has a unique successor, labelled by
E (〈t, u〉 for some u. As c ∈ C(t), by Definition 3, c ∈ C(〈t, u〉). We apply
the induction hypothesis on the deduction π′ of E (〈t, u〉 and conclude that
c ∈ C(E).

– r = proj2 or r = dec. These cases are similar to the case where r = proj1.
– r = pair. It must be that t = 〈u, v〉 for some u and v. By Definition 3

C(〈u, v〉) = C(u)∪C(v). As c ∈ C(〈u, v〉) we have that c ∈ C(u) or c ∈ C(v).
Let π1 and π2 be the deductions of E (u and E (v. By induction hypothesis
on either π1 or π2 we conclude that c ∈ C(E).

17

– r = enc. This case is similar to the case where r = pair.
– r = hash. It must be that t = H(u) . By Definition 3, C(t) = ∅ which

contradicts that c ∈ C(t). So r -= hash.
– r = exp. t = uv for some u and v. By definition 3, C(t) = ∅. We get a

contradiction with the hypothesis that c ∈ C(t). So r -= exp.
– r = Gxor. By Lemma 10, one of the premises of r is either E (I t or

E (I′ t ⊕ u1′ ⊕ · · · ⊕ un, for some ui. In the first case we immediately
conclude by induction hypothesis. Let us consider the case where E (I′

t⊕ u1 ⊕ · · ·⊕ un. By definition 3, C(t⊕ u1 ⊕ · · ·⊕ un) = C(t)∪
⋃

i=1 C(ui).
So C(t) ⊆ C(t ⊕ u1 ⊕ · · · ⊕ un) and c ∈ C(t ⊕ u1 ⊕ · · ·⊕ un). By induction
hypothesis we have that c ∈ C(E).

Lemma 9. Let t = u1⊕ · · ·⊕un be a term in normal form such that for every i
we have that ui is not headed by ⊕. For every v1, . . . , vm in which ⊕ does not
occur, if v1 ⊕ . . . ⊕ vm →∗ t then for all i there exists j such that vj →∗ ui.

Proof. By induction on the number l of rewriting steps.

Base case. l = 0. u1 ⊕ · · ·⊕ un = v1 ⊕ · · ·⊕ vm. So we trivially have that for all
i there exists j such that vj →∗ ui.

Inductive case. l = i. Let v′1, . . . , v
′
n′ be terms not headed by ⊕, such that

v′1 ⊕ · · · ⊕ v′n′ →∗ t in i steps. By induction hypothesis for all i there exists j
such that v′j → ui. Let us show that for any term v1, . . . , vm such that v1 ⊕ . . .⊕
vm → v′1 ⊕ . . . ⊕ v′n′ , for all i there exists j such that v′j → ui. The result is
straightforward by considering the different possibilities of application of rewrite
rules.

Lemma 10. For every instance S!v1···S!vn

S!u1⊕...⊕um
of the Gxor rule such that ui is

not headed with ⊕ and ui -= 0, there is a j such that vj = ui or vj = ui ⊕ u′ for
some term u′.

Proof. The result follows directly from Lemma 9.

Lemma 3. Let E be a set of terms. If π is a minimal deduction in I ′ of one of
the following forms :

...
E (〈u, v〉

proj1E (u

...
E (〈u, v〉

proj2E (v

...
E ({u}v

...
E (v

dec
E (u

Then 〈u, v〉 ∈ St(E) (resp. 〈u, v〉 ∈ St(E), resp. {u}v ∈ St(E)).

Proof. Assume that the last rule is proj1. The other cases are similar. We claim
that for every n ∈ N∗,

18

– either in π there exists a branch, i.e., a sequence of nodes of length n, starting
from E (〈u, v〉 such that for every node E (t on this branch we have,
〈u, v〉 ∈ St(t).

– or there exists such a branch of length l ≤ n which is maximal, i.e. whose
last node is obtained by the rule axiom.

As π is finite there exists always an integer m such that if the claim is true, we
are in the second case, and so we conclude that 〈u, v〉 ∈ St(E).

Let us prove the claim by induction on n.

Base case. If n = 1, we immediate conclude because 〈u, v〉 ∈ St(〈u, v〉).

Inductive case. We suppose that the claim is true for n and show that it also
holds for n + 1. By induction, either there is a maximal branch of length l ≤ n
such that for every node E (t on this branch we have that 〈u, v〉 ∈ St(t). Then
this is also the case for n + 1. Or we have that there is a sequence of rules of
length n such that for every node E (t we have that 〈u, v〉 ∈ St(t). Let E (tf
be the last node of this sequence. We consider all the possible rules r′ introducing
E (tf . If r′ is an axiom, the sequence of length n (≤ n + 1) was a maximal
branch. Else we have to show that there is a premise E (t′f of r′ such that
〈u, v〉 ∈ St(t′f). If r′ is a deconstruction rule, as by induction 〈u, v〉 ∈ St(tf),
〈u, v〉 is trivially a subterm of one of the premises. Else we are in one of the two
following cases.

– tf = 〈u, v〉. r′ cannot be a pair by minimality of π. r′ cannot be an exp, an
enc or a hash because of the form of tf . So it is a deconstruction rule.

– tf -= 〈u, v〉. By induction hypothesis we have that 〈u, v〉 ∈ St(tf).
• If r′ is a pair then tf = 〈u′, v′〉, and either 〈u, v〉 ∈ St(u′) or 〈u, v〉 ∈

St(v′). As E (u′ and E (v′ are the premises of r′ we can conclude. We
do a similar reasoning if r′ = enc or r′ = hash.

• If r′ is a Gxor, if tf = u1 ⊕ · · ·⊕ un then there is an i such that 〈u, v〉 ∈
St(ui). By Lemma 10, there is a premise E (t′f of r′ such that 〈u, v〉 ∈
St(t′f). If tf -= u1⊕ · · ·⊕un we straightforwardly conclude by Lemma 10.

• If r′ is an exp, as the deduction belongs to the system I ′ tf = u′c1·····cn

for some u′. If 〈u, v〉 ∈ St(tf), then 〈u, v〉 ∈ St(u′).

Lemma 4. Let E be a set of terms and t a term. If for every uc1·····cn ∈ St(E, t)
such that ci ∈ Σ0 one has ci /∈ C(E) and if E (I′\Gxor t then E (DY t.

Proof. Let π be a deduction of E (I′\Gxor t. By induction on the size |π| of π.
Let r be the last rule of π.

Base case. |π| = 1. We must have that r = axiom and hence π is a deduction
in DY .

19

Inductive case. |π| = n. We consider the different possibilities for the rule r.

– r = pair. We have that t = 〈u, v〉 for some u and v. There exist two de-
ductions π1 of E (I′ u and π2 of E (I′ v such that |π1|, |π2| ≤ n. As
u, v ∈ St(t), we have that for every wc1·····cn ∈ St(E, u), ci /∈ C(E), and
for every wc1·····cn ∈ St(E, v), ci /∈ C(E). So we can apply the induction
hypothesis and we obtain that E (DY u and E (DY v. Hence we can build
a deduction π′ of E (t in DY .

– r = hash or r = enc. These cases are similar to r = pair.
– r = proj1. Let E (〈t, u〉 be the premise of r. By hypothesis we have that

for every uc1·····cn ∈ St(E, t), ci /∈ C(E). By Lemma 3 〈t, u〉 ∈ St(E). It
follows that for every uc1·····cn ∈ St(E, 〈t, u〉), ci /∈ C(E). We also have a
deduction of E (〈t, u〉 in I ′. Hence we can apply our induction hypothesis
and conclude that we have a deduction of E (〈t, u〉 in DY . We conclude
that we have a deduction of E (t, in DY .

– r = proj2 or r = dec. These cases are analogous to r = proj1.
– r = exp. We have that t = vc1·····cn . Moreover, one of the premises of exp is

c ∈ {c1, · · · , cn}. On the one hand, by hypothesis, c /∈ C(E). On the other
hand, we have a deduction π1 of E (I′ c. By Corollary 1, we have that
c ∈ C(E). So we get a contradiction, and we conclude that r -= exp.

Lemma 11. Let E be a set of terms satisfying constraint 1 of Definition 4 and
π be a minimal deduction of E (I′ u ⊕ v. π is of one of the following forms :

axiom
E (u ⊕ v

π1

...
E (t1 . . .

πn

...
E (tn

Gxor
E (u ⊕ v

Proof. Let r be the last rule of π. We consider all possibilities for the rule r

– r is a construction rule (pair, enc, hash, exp). This is excluded because of
the form of u ⊕ v.

– r is a deconstruction rule (proj1, proj2, dec). Assume the last rule is proj1.
The other cases are similar. As π is minimal and ends by proj1, by Lemma 3,
for some t, 〈u⊕v, t〉 ∈ St(E). Moreover E satisfies constraint 1 of Definition 4.
It follows that for every term t′ ∈ E such that ⊕ occurs in t′, t′ = u′ ⊕ v′ for
some u′ and v′ and ⊕ does not occur neither in u′ nor in v′. Hence we have
a contradiction with 〈u ⊕ v, t〉 ∈ St(E). So r is not a deconstruction rule.

The only remaining possibilities for r are axiom and Gxor.

Lemma 12. Let E be a set of terms satisfying constraint 1 of Definition 4, and
let π be a minimal deduction in I ′ of the following form :

π1

... r1
E (t1 . . .

πn

... rn
E (tn

Gxor
E (t1 ⊕ . . . ⊕ tn ↓R/AC

20

such that πi is a deduction of E (I′\Gxor ti. Then for every ti either ti = u ⊕ v
or ti = u for some u and v not headed by ⊕.

Proof. By minimality of π, for every i, ri -= Gxor. By Lemma 11, if ti = u ⊕ v,
E (ti is introduced by an axiom. Hence, ti ∈ E. As E satisfies constraint 1 of
Definition 4, if ti = u ⊕ v, ⊕ does not occur in u nor in v.

Lemma 13. Let u1, . . . , un and t be terms in normal form such that t -= 0 and
ui, t -= u ⊕ v. If u1 ⊕ . . . ⊕ un →∗ t in R′, then there exists an odd m ≤ n such
that there are exactly m ui such that ui -= 0.

Proof. By induction on the number l of rewriting steps.

Base case. l = 0. u1 ⊕ . . . ⊕ un = t, as t -= u ⊕ v, n = 1 so n is odd and
u1 = t -= 0.

Inductive case. l = i + 1. We have that u1 ⊕ . . .⊕ un →i+1 t. Let v1, . . . , vn′ be
such that u1⊕. . .⊕un → v1⊕. . .⊕vn′ →i t. We have to consider the two following
possibilitites of applications of a rewrtiting rule for u1⊕ . . .⊕un → v1⊕ . . .⊕vn′ .

– Either the used rewrite rule is x ⊕ 0 → x. Then, each of the vi is in normal
form and not headed by ⊕. By induction hypothesis there exists an odd
m′ ≤ n′ such that there are exactly m′ vi such that vi -= 0. Let m = m′. We
have that m is odd, m ≤ n and there are exactly m ≤ n ui such that ui -= 0,
which correspond to the m′ vj .

– Or the used rewrite rule is x⊕x → 0 and x -= 0 (if x = 0 we suppose that we
are in the first case). Again, each of the vi is in normal form and not headed
by ⊕. By induction hypothesis there exists an odd m′ ≤ n′ such that there
are exactly m′ vi such that vi -= 0. Let m = m′ + 2. As, at least one of the
vi is 0, we have that m′ < n′. As moreover, n = n′ + 1 we have that m ≤ n,
m is odd and there are exactly m ui such that ui -= 0, which correspond to
the m′ vj plus two ui which are equal to the value of x in the application of
the rewrite rule.

Lemma 14. Let E be a set of terms satisfying constraints 1 and 2 of Defini-
tion 4, and let π be a minimal deduction in I ′ of the following form :

π1

...
E (t1 . . .

πn

...
E (tn

Gxor
E (t1 ⊕ . . . ⊕ tn ↓R/AC

such that every πi is a deduction of E (ti in I ′ \Gxor, then t1 ⊕ . . .⊕ tn ↓R/AC

= u1 ⊕ . . . ⊕ um for some terms ui, with m ≥ 2.

Proof. By contradiction. Suppose that t = t1 ⊕ . . . ⊕ tn ↓R/AC is not headed by
⊕. As π is minimal and 0 ∈ E, t -= 0. By Lemma 10 there is an i such that either

21

ti = t or ti = t⊕ u for some term u. By minimality of π, there is no ti such that
ti = t. Hence, there is a ti such that ti = t ⊕ u.

Let t1⊕ . . .⊕ tn be equal to v1⊕ . . .⊕vm such that vi -= u⊕v. By minimality
of π, every ti -= 0. As the ti are in normal form by definition of I ′, ti -= u⊕ 0. It
follows that every vi -= 0. As t -= 0 and t -= u1 ⊕ . . .⊕um for any m ≥ 2 and any
ui, and as t1 ⊕ . . . ⊕ tn →∗ t, by Lemma 13, m is odd.

By Lemma 12, this implies that there is an i such that ti is not headed by ⊕.
By minimality it also implies that there exists j such that tj = ti ⊕ v for some
v.

By Lemma 11, ti ⊕ v ∈ E, and so ti ∈ St(E). As E satisfies constraint 2, we
have that for every uc1·····cn ∈ St(E, ti) such that ci ∈ Σ0, ci /∈ C(E). As πi is
a deduction of E (I′\Gxor ti, by Lemma 4, E (DY u. As ti ⊕ v ∈ E we have a
contradiction with the fact that E satisfies constraint 1 of Definition 4.

Lemma 15. Let E be a set satisfying constraints 1 and 2 of Definition 4. Let
π be a minimal deduction of E (I′ t. Let π′ be the subtree of π constructed as
follows: starting from the root E (I′ t follow each branch until reaching either
a leaf or a node obtained by the application of a Gxor rule. In the second case,
cut the branch such that the leaf of this branch is the node corresponding to the
conclusion of the Gxor rule. Then if there exists a leaf of π′, which is labeled
E (I′ u ⊕ v, u ⊕ v ∈ St(t)

Proof. By induction on the size |π′| of π′.

Base case. If |π′| = 1, the only leaf is E (I′ t. So if t = u ⊕ v, trivially
u ⊕ v ∈ St(t).

Inductive case. |π′| = n. Let r be the last rule of π′. We consider the different
possibilities for the last rule r.

– r = pair. t = 〈t1, t2〉 for some t1 and t2 and E (I′ t1 and E (I′ t2 are
the premises of r. Let π′

1 and π′
2 be the sub-trees identically defined as π′

but whose roots are E (I′ t1 and E (I′ t2. If there is a leaf of π′, which is
labelled E (I′ u ⊕ v, then it is also the case for π′

1 or π′
2. As |π′

1| < n and
|π′

2| < n, we can apply the induction hypothesis. We have that u⊕v ∈ St(t1)
or u ⊕ v ∈ St(t2). As t = 〈t1, t2〉, u ⊕ v ∈ St(t).

– r = enc, r = exp, r = hash. These cases are similar to the case r = pair.
– r = proj1. We show that it would imply a contradiction with the fact that E

is a set satisfying constraints 1 and 2 of Definition 4. Let E (I′ 〈t, u〉 be the
premise of r for some u. Let π′− be the sub-tree identically defined as π′ but
whose root is E (I′ 〈t, u〉. If there is a leaf of π′, which is labeled E (I′ u⊕v,
then it is also the case for π′−. As |π′−| < n, we can apply the induction
hypothesis. We have that u ⊕ v ∈ St(〈t, u〉). Moreover, as π is a minimal
deduction of E (I′ t, by Lemma 3 〈t, u〉 ∈ St(E). As u ⊕ v ∈ St(〈t, u〉) and
u⊕v -= 〈t, u〉, this is a contradiction with constraint 1 of Definition 4. Hence
r -= proj1.

– r = proj2, r = dec. These cases are similar to r = proj1.

22

– r -= Gxor by the construction of π′.

Lemma 5. Let E be a set of terms satisfying constraints 1 and 2 of Definition 4.
Let π be a minimal deduction of E (I′ t. If π involves an application of the Gxor
rule, then ⊕ occurs in t.

Proof. By induction on the number |π|Gxor of applications of the Gxor rule in
π.

Base case. |π|Gxor = 0. π does not involve any instance of Gxor rule. Hence
the result trivially holds.

Inductive case. |π|Gxor = n We distinguish two cases.

– Every instance of a Gxor rule appears on a different branch of π. Let π′

be the maximal sub-tree of π not containing any instance of the Gxor rule
whose root is E (I′ t, defined as in Lemma15. Let E (I′ tf be a leaf of π′

introduced in π by an application of the Gxor rule r. As the deductions of
the premises of r do not involve any application of Gxor and as π is minimal,
by Lemma 14, tf = u ⊕ v for some u and v. By Lemma 15, u ⊕ v ∈ St(t).

– There exists a branch involving at least 2 Gxor rules. Let us consider such
a branch. Let r be the lowest, i.e., closest to the root, instance of the Gxor
rule on this branch. Let E (I′ tf be the node introduced by r.
• If tf = u ⊕ v for some u and v, we do a similar reasoning as in the case

where every instance of the Gxor rule is on a different branch of π.
• If tf -= u ⊕ v for any u and v then we show a contradiction with con-

straint 1 of Definition 4. Suppose that tf -= u⊕ v for any u and v. r has
the following form :

π1

...
E (t1 . . .

πn

...
E (tn

Gxor
E (tf

As π is minimal and 0 ∈ E, t -= 0. By Lemma 10 there exists i such that
either ti = tf or ti = tf ⊕ u for some term u. By minimality of π, there
is no ti such that ti = tf . Hence, there is a ti such that ti = tf ⊕ u.
Let t1 ⊕ . . . ⊕ tn be equal to v1 ⊕ . . . ⊕ vm such that vi -= u ⊕ v. By
minimality of π, every ti -= 0. As the ti are in normal form by definition of
I ′, ti -= u⊕0. It follows that every vi -= 0. As tf -= 0 and tf -= u1⊕. . .⊕um

for some m ≥ 2 and some ui, and as t1 ⊕ . . . ⊕ tn →∗ tf , by Lemma 13,
m is odd.
By Lemma 12, this implies that there exists i such that ti is not headed
by ⊕. By minimality it also implies that there exists j such that tj = ti⊕v
for some v. For any i if ti = u⊕v for some u and v then no application of
the Gxor occurs in πi as by Lemma 11 and minimality of π, πi = E!ti

.

23

So the application of the Gxor rule appears in a deduction πi of E (I′ ti
such that ti is not headed by ⊕. As |πi|Gxor < n, by induction hypothesis,
⊕ occurs in ti. As tj = ti ⊕ v has been introduced by an axiom, we have
a contradiction with the constraint 1 of the Definition 4.

24

B Proofs of Section 5

Lemma 16. ρ(DY (S)) = DY ′(ρ(S)) for ρ defined as in Example 2.

Proof. Let us first prove that ρ(DY (S)) ⊆ DY ′(ρ(S)). Let t′ be in ρ(DY (S)). By
definition there exists t ∈ DY (S)) such that t′ = ρ(t). By Definition 2 S (DY t.
We claim that if S (DY t, then ρ(S) (DY ′ ρ(t), so ρ(S) (DY ′ t′, and finally
t′ ∈ DY ′(ρ(S)).

Let us show that if there exists a deduction π of S (DY t, then there also
exists a deduction π′ of ρ(S) (DY ′ ρ(t). By induction on the size of π.

Base case. |π| = 0. Then the deduction just consists of one aplication of axioms,
and hence t ∈ S and ρ(t) ∈ ρ(S) and straightforwardly ρ(S) (DY ′ ρ(t).

Inductive case. |π| = n. We consider the different cases for the last rule r.

– r = pair. It must be that t = pair(u, v) for some u and v. As π is a deduction
of S (DY pair(u, v), there exists two deductions π1 of S (DY u and π2 of
S (DY v such that |π1|, |π2| ≤ n. By induction there exists π′

1 a deduction
of ρ(S) (DY ′ ρ(u) and π′

2 a deduction of ρ(S) (DY ′ ρ(v). By an application
of the pair rule we obtain a deduction π′ of ρ(S) (DY ′ pair(ρ(u), ρ(v)). By
Definition, ρ(pair(u, v)) = pair(ρ(u), ρ(v)), and so ρ(S) (DY ′ ρ(pair(u, v)).

– r = proj1, r = proj2, r = dec, r = enc. These cases are similar to r = pair.
– r = hash. It must be that t = H(u) for some u. As π is a deduction of

S (DY H(u), there exists a deduction π− of S (DY u such that |π−| ≤ n. By
induction there exists π−′

a deduction of ρ(S) (DY ′ ρ(u). By an application
of the hash′ rule we obtain a deduction π′ of ρ(S) (DY ′ H(0, ρ(u)). By
Definition, ρ(H(u)) = H(0, ρ(u)), and so ρ(S) (DY ′ ρ(H(u)).

Let us now prove that DY ′(ρ(S)) ⊆ ρ(DY (S)). Let t′ be a term in DY ′(ρ(S)).
By Definition, there exists a deduction π′ of ρ(S) (DY ′ t′. We claim that if
ρ(S) (DY ′ t′ then there exists a t ∈ DY (S) such that t′ = ρ(t). Hence t′ ∈
ρ(DY (S)).

Let us show that if there exists a deduction π′ of ρ(S) (DY ′ t′ then there
exists a t ∈ DY (S) such that t′ = ρ(t). By induction on the size of π. Let r be
the last rule of π′.

Base case. |π| = 0. We must have that r = axiom and hence t′ ∈ ρ(S). So there
exists t ∈ S such that t′ = ρ(t) and trivially t ∈ DY (S).

Inductive case. |π| = n. We consider the different cases for the last rule r.

– r = pair. It must be that t′ = pair(u′, v′) for some u′ and v′. As π′ is a deduc-
tion of ρ(S) (DY ′ pair(u′, v′), there exists two deductions π′

1 of ρ(S) (DY ′ u′

and π′
2 of ρ(S) (DY ′ v′ such that |π′

1|, |π
′
2| ≤ n. By induction hypothesis there

exists u ∈ DY (S) such that u′ = ρ(u) and v ∈ DY (S) such that v′ = ρ(v).
By an application of pair we have a deduction π of S (DY pair(u, v) , so
pair(u, v) ∈ DY (S). By Definition, ρ(pair(u, v)) = pair(ρ(u), ρ(v)) and hence
ρ(pair(u, v)) = pair(u′, v′).

25

– r = proj1, r = proj2, r = dec, r = enc. These cases are similar to r = pair,
r = hash.

Lemma 17. Let S1 and S2 be sets of terms closed under associativity and com-
mutativity of xor and mult. If for every t, t ∈ S1 ∩ S2 if and only if W (t) ∈
W (S1) ∩ W (S2).

Proof. Let us show that if t ∈ S1 ∩ S2 then W (t) ∈ W (S1) ∩ W (S2). Let t be
a term of S1 ∩ S2, then t ∈ S1 and t ∈ S2. By the extension of Definition 7,
W (t) ∈ W (S1) and W (t) ∈ W (S2), so W (t) ∈ W (S1) ∩ W (S2).

Let us show that if W (t) ∈ W (S1) ∩ W (S2) then t ∈ S1 ∩ S2. Let W (t) ∈
W (S1) ∩ W (S2), we hence have W (t) ∈ W (S1), that is there is an t1 ∈ S1 with
W (t) = W (t1). By definition of W this implies that t ≡AC t1, and hence that
t ∈ S1 since S1 is closed under AC. The argument for t ∈ S2 is analogous.

Lemma 18. For any symbol f of {pair, enc, H} and for any term u and v, we
have W (f(u, v)) = f(W (u), W (v)).

Proof. First, as f is neither xor nor mult, W (f(u, v)) = f(u′, v′) for some u′ and
v′, and u ≡AC u′ and v ≡AC v′. By minimality of W (f(u, v)) in the congruence
class of f(u, v), u′ is minimal in the congruence class of u and v′ is minimal in
the congruence class of v. It follows that u′ = W (u) and v′ = W (v).

Theorem 5. If S is closed under AC then W (DY ′(S)) = DY ′(W (S)).

Proof. Let t′ be a term such that t′ ∈ W (DY ′(S)). There exists t inDY ′(S)
such that t′ = W (t). We claim that if S (DY ′ t, then W (S) (DY ′ W (t). Hence
W (S) (DY ′ W (t), and so t′ ∈ DY ′(W (S)).

Let us show by induction on |π| that if there S (DY ′ t, then there exists a
deduction π′ of W (S) (DY ′ W (t).

Base case. |π| = 0. Then the deduction π consists just of one application of the
rule axiom. Hence, t ∈ S, and by consequence W (t) ∈ W (S) and W (S) (DY ′

W (t).

Inductive case. |π| = n. We consider the different possibilities for the last rule r
of the deduction π.

– r = pair. It must be that t = pair(u, v) for some u and v. As π is a deduction
of S (DY ′ pair(u, v), there exists two deductions π1 of S (DY ′ u and π2 of
S (DY ′ v such that |π1|, |π2| ≤ n. By induction hypothesis there exists a
deduction π′

1 of W (S) (DY ′ W (u) and a deduction π′
2 of W (S) (DY ′ W (v).

By an application of the pair rule we obtain a deduction π′ of W (S) (DY ′

pair(W (u), W (v)). By Lemma 18 W (pair(u, v)) = pair(W (u), W (v)), and so
W (S) (DY ′ W (pair(u, v)).

– r = proj1, r = proj2, r = exp, r = enc, r = dec, r = hash′. These cases are
analogous to r = pair.

26

Let t′ be a term t′ ∈ DY ′(W (S)). We claim that if W (S) (DY ′ t′ then there
exists a term t such that t′ = W (t) and a deduction π of S (DY ′ t. So t ∈ DY ′(S)
and t′ ∈ W (DY ′(S)).

Let us now show by induction on |π′| that if there exists a deduction π′ of
W (S) (DY ′ t′ then there exists a term t such that t′ = W (t) and a deduction π
of S (DY ′ t.

Base case. |π′| = 0. Then the deduction π′ consists just of one application of the
rule axiom and t′ ∈ W (S), that is t′ = W (t) for some t ∈ S. Hence, S (DY ′ t.

Inductive case. |π′| = n. We consider the different possibilities for the last rule r
of the deduction π′.

– r = pair. It must be that t′ = pair(u′, v′) for some u′ and v′. As π′ is
a deduction of W (S) (DY ′ pair(u′, v′), there exists two deductions π′

1 of
W (S) (DY ′ u′ and π′

2 of W (S) (DY ′ v′ such that |π′
1|, |π

′
2| ≤ n. By induction

hypothesis there exists a term u such that u′ = W (u) and a deduction
π1 of S (DY ′ u, and a term v such that v′ = W (v) and a deduction π
of S (DY ′ v. By an application of the pair rule we get a deduction π2

of S (DY ′ pair(u, v). By Lemma 18 W (pair(u, v)) = pair(W (u), W (v)), so
W (pair(u, v)) = pair(u′, v′), and S (DY ′ pair(u, v).

– r = proj1, r = proj2, r = exp, r = enc, r = dec, r = hash′. These cases are
analogous to r = pair.

Theorem 6. For every Vtam
≡
&≡ A, such that pair, enc -∈ {Σ′

Int≡

1
∪Σ′

Int≡

2
} and the

only constant symbol of Γ is ⊥, there exists a Vtam
≡
&≡ ADY such that L(ADY) =

DY ′(L(A)).

Proof. Let A be a Vtam
≡
&≡. Let p be the partition of A. By Lemma 19 DYp(A) =

DY ′(L(A)).

The restriction on the specification of automata in Theorem 6 do not exclude
specifications of the protocols we have represented.

Let us show how to extend the known method of completion of [9] of a
classical tree automaton under the DY rules to Vtam

≡
&≡.

To every possible partition p of Σ′ except the partition where pair, enc ∈
{Σ′

Int≡

1
∪ Σ′

Int≡

2
}, we associate a completion system DYp. DYp(A) is the fixed

point of the application of the rules of DYp.

Definition 8. Let p be the partition of Σ′ and A = (Γ, Q, Qf ,∆) a Vtam
≡
&≡ on

p. The completion system DYp is the set of rules

{Proj1, P roj2, Dec, Pair, Enc, Hash}

defined as follows:

– Proj1.

27

• If pair ∈ Σ′
Push

, for every state q ∈ Qf , if pair(q1(x), q2(y)) → q(h(x, y)) ∈
∆ for some symbol h, we add q1 to Qf if L(A, q2) -= ∅. This last verifi-
cation is possible by Corollary 5 of [4].

• If pair ∈ Σ′
Int1

or pair ∈ Σ′
Int2

. These cases are analogous to pair ∈
Σ′

Push
.

• If pair ∈ Σ′
Pop22

, for every state q ∈ Qf , if pair(q1(x), q2(h(x, y))) →
q(y) ∈ ∆ for some symbol h, let Ah be the tree automaton recogniz-
ing the set of terms on T (Γ) headed by h, and let M(Aq2) be the tree
automaton recognizing the memory language of q2 (this automaton can
be constructed by Lemma 2 of [4]). If If M(A, q2) ∩ Ah -= ∅ we add q1

to Qf .
Similarly, if pair(q1(x), q2(⊥)) → q(⊥) ∈ ∆, we add q to Qf in case
that M(A, q2) ∩A⊥ -= ∅.

• pair ∈ Σ′
Pop11

, pair ∈ Σ′
Pop12

, pair ∈ Σ′
Pop21

. These cases are similar to
pair ∈ Σ′

Pop22
.

• pair -∈ Σ′
Int≡

1
and pair -∈ Σ′

Int≡

2
.

– Proj2 is similarily defined as Proj1. We add q2 to Qf instead of q1.
– Dec.

• If enc ∈ Σ′
Push

, for every state q ∈ Qf , if enc(q1(x), q2(y)) → q(h(x, y)) ∈
∆ for some symbol h, we add q1 to Qf if L(A, q2)∩L(A) -= ∅. This last
verification is possible by Corollary 5 and Theorem 11 of [4].

• enc ∈ Σ′
Int1

or enc ∈ Σ′
Int2

. These cases are analogous to enc ∈ Σ′
Push

.
• If enc ∈ Σ′

Pop22
, for every state q ∈ Qf , if pair(q1(x), q2(h(x, y))) →

q(y) ∈ ∆ for some symbol h, we construct the Vtam
≡
&≡ A∩ = L(A, q2)∩A.

If A∩ = ∅ we do not add any state to Qf . Otherwise we verify that
M(A∩) ∩ Ah -= ∅, Ah being defined as for pair ∈ Σ′

Pop22
. If it is not

empty, we add q1 to Qf .
The case for pair(q1(x), q2(⊥)) → q(⊥) ∈ ∆ is analogous.

• enc ∈ Σ′
Pop11

, enc ∈ Σ′
Pop12

, enc ∈ Σ′
Pop21

. These cases are similar to
enc ∈ Σ′

Pop22
.

• enc -∈ Σ′
Int≡

1
and enc -∈ Σ′

Int≡

2
.

– Pair. Let qpair be a new state in Qf .
• pair ∈ Σ′

Push
. For every q1, q2 ∈ Qf , we add pair(q1(x), q2(y)) → qpair(h(x, y))

to ∆ for some symbol h ∈ Γ .
• pair ∈ Σ′

Int1
For every q1, q2 ∈ Qf , we add pair(q1(x), q2(y)) → qpair(x)

to ∆.
• pair ∈ Σ′

Int2
. For every q1, q2 ∈ Qf , we add pair(q1(x), q2(y)) → qpair(y)

to ∆.
• pair ∈ Σ′

Pop22
. For every q1, q2 ∈ Qf and for every symbol h in Γ , we add

pair(q1(x), q2(h(y, z))) → qpair(z) to ∆. We also add pair(q1(x), q2(⊥)) →
qpair(⊥) to ∆.

• pair ∈ Σ′
Pop11

, pair ∈ Σ′
Pop12

, pair ∈ Σ′
Pop21

. These cases are similar to
pair ∈ Σ′

Pop22
.

• pair -∈ Σ′
Int≡

1
and pair -∈ Σ′

Int≡

2
.

– Enc. Let qenc be a new state in Qf . The case is similar to pair, except that
the state we consider in the transitions is not qpair but qenc.

28

– Hash. Let q0 and qH be new states in Q and in Qf . Let 0 → q0(⊥) be a new
transition in ∆.
• H ∈ Σ′

Push
. For every q1 ∈ Qf , we add H(q0(x), q1(y)) → qH(h(x, y)) to

∆ for some symbol h ∈ Γ .
• H ∈ Σ′

Int1
. For every q1 ∈ Qf , we add H(q0(x), q1(y)) → qH(x).

• H ∈ Σ′
Int2

. For every q1 ∈ Qf , we add H(q0(x), q1(y)) → qH(y).
• H ∈ Σ′

Pop22
. For every q1 ∈ Qf and for every symbol h in Γ , H(q0(x), q1(h(y, z))) →

qH(z) to ∆. We also add H(q0(x), q1(⊥) → qH(⊥) to ∆.
• H ∈ Σ′

Pop11
, H ∈ Σ′

Pop12
, H ∈ Σ′

Pop21
. These cases are similar to H ∈

Σ′
Pop22

.
• H -∈ Σ′

Int≡

1
and H -∈ Σ′

Int≡

2
.

Lemma 19. For any partition p, DY ′(L(A)) = L(DYp(A)).

Proof. Let us first prove that DY ′(L(A)) ⊆ L(DYp(A)).
Let p be a partition. Let t be a term in DY ′(L(A)). Then there exists a

deduction π of L(A) (DY ′ t. We claim that if L(A) (DY ′ t then t ∈ L(DYp(A)).
Hence t ∈ L(DYp(A)) and DY ′(L(A)) ⊆ L(DYp(A)).

Let us show by induction on the size of π, that if L(A) (DY ′ t then t ∈
L(DYp(A)).

Let A be {QA, QfA,∆A} and DYp(A) be {QDYp(A), QfDYp(A),∆DYp(A)}.

Base case. |π| = 0. In this case t ∈ L(A). Since QA ⊆ QDYp(A), QfA ⊆
QfDYp(A) and ∆A ⊆ ∆DYp(A) we have that t ∈ L(DYp(A)).

Inductive case. Let r be the last rule of π. We consider all possibilities for the
rule r.

– r = pair. We have that t = pair(u, v). Hence there exists two deductions π1

of L(A) (DY ′ u and π2 of L(A) (DY ′ v. As |π1| < n and |π2| < n, we have
that u ∈ L(DYp(A)) and v ∈ L(DYp(A)). Hence there exists m1, m2 ∈ T (Γ)
such that u →∗ q1(m1) and v →∗ q2(m2) for some q1, q2 ∈ QfDYp(A).
• pair ∈ ΣPush. By Definition 8, as q1, q2 ∈ QfDYp(A) there is a transition

pair(q1(x), q2(y)) → qpair(h(x, y)) for some h in ∆DYp(A). pair(u, v) →
qpair(h(m1, m2)). As by Definition 8 qpair ∈ Qf , pair(u, v) ∈ L(DYp(A)).

• pair ∈ ΣInt1 ∪ΣInt2 . This case is similar to pair ∈ ΣPush.
• pair ∈ ΣPop22 . By Definition 8, as q1, q2 ∈ QfDYp(A) there are transitions

pair(q1(x), q2(h(y, z))) → qpair(z) for any h ∈ Γ and pair(q1(x), q2(⊥)) →
qpair(⊥). As the only symbol of arity 0 in Γ is ⊥, whatever be the form
of m2, pair(q1(m2), q2(m2)) → qpair(t), for some t, and so pair(u, v) →
qpair(t). As by Definition 8 qpair ∈ Qf , pair(u, v) ∈ L(DYp(A)).

• pair ∈ ΣPop11 ∪ΣPop12 ∪ΣPop21 . These cases are similar to pair ∈ ΣPop22 .
– r = enc and r = hash. These cases are similar to r = pair.
– r = proj1. We have that there exists a deduction π− of L(A) (DY ′ pair(u, v)

for some term u such that |π−| < |π|. By induction we have that pair(u, v) ∈
L(DYp(A)). Hence there exists m1, m2, m ∈ T (Γ), q1, q2 ∈ Q and q ∈ Qf

such that pair(q1(m1), q2(m2)) → q(m).

29

• pair ∈ ΣPush. As t →∗ q1(m1) and u →∗ q2(m2), L(A, q1), L(A, q2) -= ∅.
Hence q1 ∈ Qf by Definition 8 and t ∈ L(DYp(A)).

• pair ∈ ΣInt1 ∪ΣInt2 . This case is similar to pair ∈ ΣPush.
• pair ∈ ΣPop22 . As pair(q1(m1), q2(m2)) → q(m) and u →∗ q2(m2), by

Definition 8 we have that q1 ∈ Qf , and so t ∈ L(DYp(A)).
• pair ∈ ΣPop11 ∪ΣPop12 ∪ΣPop21 . These cases are similar to pair ∈ ΣPop22 .

– r = proj2. This case is similar to r = proj1.
– r = dec. We have that there exists two deductions π1 of L(A) (DY ′ enc(u, v)

and π2 of L(A) (DY ′ v. As |π1| < n and |π2| < n, we have that enc(u, v) ∈
L(DYp(A)) and v ∈ L(DYp(A)). Hence there exists m1, m2 ∈ T (Γ) such
that u →∗ q1(m1) and v →∗ q2(m2) for some q1, q2 ∈ QDYp(A). As v ∈
L(DYp(A)), L(DYp(A), q2) ∩ L(DYp(A)) -= ∅.
• enc ∈ ΣPush. q1 ∈ Qf by Definition 8 and t ∈ L(DYp(A)).
• enc ∈ ΣInt1 ∪ΣInt2 . This case is similar to enc ∈ ΣPush.
• enc ∈ ΣPop22 . As enc(q1(m1), q2(m2)) → q(m) and v →∗ q2(m2), by

Definition 8 we have that q1 ∈ Qf , and so t ∈ L(DYp(A)).
• enc ∈ ΣPop11 ∪ΣPop12 ∪ΣPop21 . These cases are similar to enc ∈ ΣPop22 .

Let us now prove that L(DYp(A)) ⊆ DY ′(L(A)).
By induction on the number |DYp| of steps of completion of A we show that

L(DYp(A)) ⊆ DY ′(L(A)).

Base case. |DYp| = 0. In this case DYp(A) = A. Hence trivially L(A) ⊆
DY ′(L(A)).

Inductive case. We call DY i
p (A) the automaton obtained after i applications of

rules of DYp for some rules. By induction hypothesis for every DY i
p (A), we have

that L(DY i
p (A)) ⊆ DY ′(L(A)). Let us show that for any r rules of DYp applied

to DY i
p (A) we still have that L(r(DY i

p (A))) ⊆ DY ′(L(A)).
Let us consider all possibilities for r:

– r = Pair. By Lemma 21, we have that L(Pair(DY i
p (A))) ⊆ DY ′(L(A)).

– r = Enc. r = Hash. These cases are similar to r = Pair.
– r = Proj1. Let t be a term of L(Proj1(DY i

p (A)))\DY i
p (A)). Hence t →∗ q1(m1)

for some m1, such that there exists a transition pair(q1(t1), q2(t2)) → q(t) in
DY i

p (A), and q ∈ QfDY i
p (A), and a term u such that u →∗ q2(m2) for some

m2. So pair(t, u) ∈ L(DY i
p (A)). As L(DY i

p (A)) ⊆ DY ′(L(A)), pair(t, u) ∈
DY ′(L(A)). By an application of proj1 we have that t ∈ DY ′(L(A)).

– r = Proj2 or r = Dec. This case is similar to r = Proj1.

Lemma 20. Let A be a Vtam
≡
&≡ and DY i

p (A) the obtained Vtam
≡
&≡ by i appli-

cation of rules of DYp. Let v be a term such that v →∗ qpair(m) for some m.
Then for every term t such that v ∈ St(t) if t →∗ q′(m′) for some m′, q′ = qpair

or q′ = qenc or q′ = qH .

Proof. By induction on the structure of t.

30

Base case. t = v. The result is straightforward.

Inductive case. t = h(t1, t2) for some symbol h ∈ Σ and t →∗ q′(m′) for
some m′, let us show that q′ = qpair, q′ = qenc or q′ = qH . As v ∈ St(t), either
v ∈ St(t1) or v ∈ St(t2). Without loss of generality we supose that v ∈ St(t1). As
t →∗ q′(m′), there are states q1, q2 and m1, m2 ∈ T (Γ) such that t1 →∗ q1(m1)
and t2 →∗ q2(m2).

As t1 is a subterm of t, v ∈ St(t1) and there exists q1 and m1 such that
t1 →∗ q1(m1), by induction we have that q1 = qpair, q1 = qenc or q1 = qH . Let
us suppose that q1 = qpair, if h(qpair(m1), q2(m2)) → q′(m′) then the tansition
h(qpair(t1), q2(t2)) → q(t) ∈ DY i

p (A) \ A We can verify that for every transition
of this kind q = qpair, q == qenc or q1 = qH . We do the same reasoning if
q1 = qenc or if q1 = qH .

Lemma 21. Let A be a Vtam
≡
&≡ and DY i

p (A) a Vtam
≡
&≡ obtained by i applica-

tions of rules of DYp. If DY i
p (A) ⊆ DY ′(L(A)), then L(DY i

p (A)∪{pair(q1(t1), q2(t2)) →
qpair(t)}) ⊆ DY ′(L(A)), for some accepting states q1 and q2.

Proof. Let u be a term in L(DY i
p (A) ∪ {pair(q1(t1), q2(t2)) → qpair(t)}). If u ∈

L(DY i
p (A)) the result follows directly. Else u ∈ L(DY i

p (A)∪{pair(q1(t1), q2(t2)) →
qpair(t)}) \ L(DY i

p (A)).
In this case there exists a term v such that v ∈ St(u) and v → qpair(m) for

some m. By Lemma 20 we can conclude that u = pair(u1, u2), u = enc(u1, u2)
or u = H(u1, u2). Without loss of generality we suppose that u = pair(u1, u2).

Let d be a integer such that d = |u| − |v| where |u| (resp. |v|) is the size
of a term u (resp. v), and v is the smallest subterm of u such that v →
qpair(m) for some m. By induction on d we show that if u ∈ L(DY i

p (A) ∪
{pair(q1(t1), q2(t2)) → qpair(t)}) \ L(DY i

p (A)) then u ∈ DY ′(L(A)).

Base case. d = 0. Hence u = v. In this case u = pair(u1, u2) and there exists
m1 and m2 in T (Γ) such that u1 →∗ q1(m1) and u2 →∗ q2(m2) in DY i

p (A).
As q1, q2 ∈ Qf , u1, u2 ∈ L(DY i

p (A)) and as L(DY i
p (A)) ⊆ DY ′(L(A)), u1, u2 ∈

DY ′(L(A)). It follows that pair(u1, u2) ∈ DY ′(L(A)).

Inductive case. u = pair(u1, u2). If there are strict subterms v1 of u1 and v2 of
u2 such that v1, v2 ∈ L(DY i

p (A)∪{pair(q1(t1), q2(t2)) → qpair(t)})\L(DY i
p (A)).

In this case by induction u1, u2 ∈ DY ′(L(A)). It follows that pair(u1, u2) ∈
DY ′(L(A)). Or for u1 or u2 there are no subterm v such that of v → qpair(m)
for some m. It implies that u1 →∗ q1(m1) or u2 →∗ q2(m2) in DY i

p (A) for some
term m1, m2 ∈ T (Γ). Hence we have that u1 ∈ DY ′(L(A)). We can conclude in
a similar way as before.

31

C The Complete Example

E = E1 ∪ E2

E1 = {αN
j1
i1

·...·N
jk
ik |k < i1}

E2 = {αN
j1
i1

·N
j2
(i1−1)

...·N
ji1
1 |i1 < j1}

K = {αN
j1
j1

·N
j2
(j1−1)

...·N
jj1
1 }

C.1 E1 and E2 definitions

Representation of AE1 :

QAE1
= {qd, q1s′ , qs, qnt, qnarg, qα, qacc}

QfAE1
= {qacc}

0 → qd(⊥)
α → qα(⊥)

s(qd(m), qd(m′)) → qd(m′)
s′(qd(m), qd(m′)) → q1s′(S(m, m′))

s′(qd(m), q1s′(m′)) → qs′(S′(m, m′))
s′(qd(m), qs′(m′)) → qs′(S′(m, m′))
s(qd(m), qs′(m′)) → qs′(S′(m, m′))

N(qd(m), qs′(m′)) → qn(m′)

t(qd(m), qn(S′(m′, m′′)) → qnt(m′′)
t(qd(m), qnarg(S′(m′, m′′)) → qnt(m′′)

mult(qn(m), qnt(m′))
m≡m′

→ qnarg(m)

mult(qn(m), qnt(m′))
m &≡m′

→ qnarg(m)

exp(qα(m), qnt(m′)) → qacc(h(m, m′))
exp(qα(m), qn(m′)) → qacc(h(m, m′))

Representation of AE2 :

QAE2
= {qd, qs, qnt, qnarg, qα, qacc}

QfAE2
= {qacc}

32

0 → qd(⊥)
α → qα(⊥)

s(qd(m), qd(m′)) → qs(m′)
s′(qd(m), qs(m′)) → qs′(S′(m, m′))
s′(qd(m), qs′(m′)) → qs′(S′(m, m′))
N(qd(m), qs′(m′)) → qn(m′)

t(qd(m), qn(S′(m′, m′′)) → qnt(m′′)
t(qd(m), qnarg(S′(m′, m′′)) → qnt(m′′)

mult(qn(m), qnt(m′))
m≡m′

→ qnarg(m)

exp(qα(m), qnt(m′)) → qacc(h(m, m′))
exp(qα(m), qn(m′)) → qacc(h(m, m′))

C.2 Execution of AK

We consider the term t = αN3
3 ·N

3
2 ·N

3
1 .

ρ(t) = exp(α, mult(N(0, s′(0, s′(0, s′(0, 0)))),
t(mult(N(0, s′(0, s′(0, s(0, 0)))), t(N(0, s′(0, s(0, s(0, 0))))))))

We can verify that :
W (ρ(t)) = exp(α, mult(N(0, s′(0, s(0, s(0, 0)))),

t(mult(N(0, s′(0, s′(0, s(0, 0)))), t(N(0, s′(0, s′(0, s′(0, 0))))))))).
Let us first show that by the transition 0 → qd(⊥) we have trivially that

0 → qd(⊥).
By the transition s′(qd(m), qd(m′)) → qs′ent(S(m, m′)) :
s′(0, 0) →∗ qs′ent(S′(⊥,⊥)).
By the transition s′(qd(m), qs′ent(m′)) → qs′ent(S(m, m′)) :
s′(0, s′(0, s′(0, 0))) →∗ qs′ent(S′(⊥, S′(⊥, S′(⊥,⊥)))).
By the transition N(qd(m), qs′ent(m′)) → qnent(m′) :
N(0, s′(0, s′(0, s′(0, 0)))) →∗ qnent(S′(⊥, S′(⊥, S′(⊥,⊥))))
By the same kind of analysis we can check that :
N(0, s′(0, s′(0, s(0, 0)))) →∗ qn(S′(⊥, S′(⊥,⊥)))
and that
N(0, s′(0, s(0, s(0, 0)))) →∗ qnonly1s′(S′(⊥,⊥)).
By the transition t(qd(m), qnent(S′(m′, m′′))) → qnt(m′′) :
t(N(0, s′(0, s′(0, s′(0, 0))))) →∗ qnt(S′(⊥, S′(⊥,⊥))).

By the transition mult(qn(m), qnt(m′))
m≡m′

→ qnarg(m) :
mult(N(0, s′(0, s′(0, s(0, 0)))),

t(N(0, s′(0, s′(0, s′(0, 0)))))) →∗ qarg(S′(⊥, S′(⊥,⊥))).
By the transition t(qd(m), qnarg(S′(m′, m′′))) → qnt(m′′) :
t(mult(N(0, s′(0, s′(0, s(0, 0)))), t(N(0, s′(0, s′(0, s′(0, 0))))))) →∗ qnt(S′(⊥,⊥)).

By the transition mult(qnonly1s′(m), qnt(m′))
m≡m′

→ qexp(m) :

33

mult(N(0, s′(0, s(0, s(0, 0)))), t(mult(N(0, s′(0, s′(0, s(0, 0)))), t(N(0, s′(0, s′(0, s′(0, 0)))))))) →∗

qexp(S′(⊥,⊥)).
Finally as α → qα(⊥) by the transition α → qα(⊥), ρ(t) →∗ qacc(⊥, S′(⊥,⊥)).

34

