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Jǐŕı Srba

Research report LSV-08-23





Infinite Runs in Weighted Timed Automata
with Energy Constraints

Patricia Bouyer1?, Uli Fahrenberg2, Kim G. Larsen2,
Nicolas Markey1?, and Jǐŕı Srba2??
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Abstract. We study the problems of existence and construction of
infinite schedules for finite weighted automata and one-clock weighted
timed automata, subject to boundary constraints on the accumulated
weight. More specifically, we consider automata equipped with positive
and negative weights on transitions and locations, corresponding to the
production and consumption of some resource (e.g. energy). We ask the
question whether there exists an infinite path for which the accumulated
weight for any finite prefix satisfies certain constraints (e.g. remains
between 0 and some given upper-bound). We also consider a game version
of the above, where certain transitions may be uncontrollable.

1 Introduction

The overall motivation of the research underlying this paper is the quest of
developing weighted (or priced) timed automata and games [BFH+01,ALTP01]
into a universal formalism useful for formulating and solving a broad range
of resource scheduling problems of importance in application areas such as,
e.g., embedded systems. In this paper we introduce and study a new resource
scheduling problem, namely that of constructing infinite schedules or strategies
subject to boundary constraints on the accumulation of resources.

More specifically, we propose finite and timed automata and games equipped
with positive as well as negative weights, respectively weight-rates. With this
extension, we may model systems where resources are not only consumed but also
occasionally produced or regained, e.g. useful in modelling autonomous robots
equipped with solar-cells for energy-harvesting or with the ability to search for
docking-stations when energy-level gets critically low. Main challenges are now to
synthesize schedules or strategies that will ensure indefinite safe operation with
the additional guarantee that energy will always be available, yet never exceeds
a possible maximum storage capacity.

? This author is partially supported by project DOTS (ANR-06-SETI-003).
?? This author is partially supported by grant no. MSM-0021622419.
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Fig. 1. a) Weighted Timed Automaton (global invariant x ≤ 1).
b) U = +∞ and U = 3. c) U = 2. d) U = 1 and W = 1.

As a basic example, consider the weighted timed automaton in Fig. 1a) with
infinite behaviours repeatedly delaying in `0, `1 and `2 for a total of precisely
one time-unit. The negative weights (−3 and −6) in `0 and `2 indicate the rates
by which energy will be consumed, and the positive rate (+6) in `1 indicates
the rate by which energy will be gained. Thus, for a given iteration the effect on
the amount of energy remaining will depend highly on the distribution of the
one time-unit over the three locations. Let us observe the effect of lower and
upper constraints on the energy-level on so-called bang-bang strategies, where
the behaviour remains in a given location as long as permitted by the given
bounds. Fig. 1b) shows the bang-bang strategy given an initial energy-level of 1
with no upper bound (dashed line) or 3 as upper bound (solid line). In both
cases, it may be seen that the bang-bang strategy yields an infinite behaviour.

In Fig. 1c) and d), we consider the upper bounds 2 and 1, respectively. For an
upper bound of 2, we see that the bang-bang strategy reduces an initial energy-
level of 1 1

2 to 1 (solid line), and yet another iteration will reduce the remaining
energy-level to 0. In fact, the bang-bang strategy—and it may be argued, any
other strategy—fails to maintain an infinite behaviour for any initial energy-level
except for 2 (dashed line). With upper-bound 1, the bang-bang strategy—and
any other strategy—fails to complete even one iteration (solid line).

We also propose an alternative weak notion of upper bounds, which does
not prevent energy-increasing behaviour from proceeding once the upper bound
is reached but merely maintains the energy-level at the upper bound. In this
case, as also illustrated in Fig. 1d) (dashed line), the bang-bang strategy is quite
adequate for yielding an infinite behaviour.

In this paper, we ask the question whether some, or all, of the infinite paths
obey the property that the weight accumulated in any finite prefix satisfies certain
constraints. The lower-bound problem requires the accumulated weight never
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drop below zero, the interval-bound problem requires the accumulated weight
to stay within a given interval, and in the lower-weak-upper-bound problem the
accumulated weights may not drop below zero, with the additional feature that
the weights never accumulate to more than a given upper bound; any increases
above this bound are simply truncated. We also consider a game version of the
above setting, where certain transitions may be uncontrollable.

For finite weighted automata, we show that the lower- and lower-weak-upper-
bound problems are decidable in polynomial time. In the game setting we prove
these problems to be P-hard but decidable in NP ∩ coNP. The interval-bound
problem is on the other hand NP-hard but decidable in PSPACE and in the game
setting it is EXPTIME-complete. For one-clock weighted timed automata, the
lower- and lower-weak-upper-bound problems remain in P, but the interval-bound
problem in the game setting is already undecidable.

Related Work. Recently, extensions of timed automata with costs (or prices) to
measure quantities like energy, bandwidth, etc. have been introduced and subject
to significant research. In these models—so-called priced or weighted timed au-
tomata—the cost can be used to measure the performance of a system allowing var-
ious optimization problems to be considered. Examples include cost-optimal reach-
ability problem in a single-cost setting [ALTP01,BFH+01], as well as in a multi-
cost setting [LR05], or the computation of (mean-cost or discounted) cost-optimal
infinite schedules [BBL04,FL08]. Also games where players try to optimize the
cost have been considered [ABM04,BCFL04,BBR05,BBM06,BLMR06], and sev-
eral model-checking problems have been studied [BBR04,BBM06,BLM07,BM07].
It is worth noticing that in these last frameworks (model-checking and games),
most of the problems are undecidable, and they can be solved algorithmically
only for the (restricted) class of one-clock automata.

However, in the priced extensions considered so far, only non-negative costs
are allowed restricting the types of quantities one can measure. The only exception
concerns the optimal-cost reachability problem, which has been solved even when
negative costs are allowed [BBBR07], but the proof is basically not much more
involved than with only non-negative costs. In the current work, we pursue this
line of research, and focus on non-trivial problems that can be posed on timed
automata with arbitrary costs, which allow to model interesting problems on
timed systems with (bounded) resources.

2 Models and Problems

2.1 Weighted Automata and Games

A weighted automaton is a tuple A = (S, s0, T ) consisting of a set of locations (or
states) S, an initial location (state) s0 ∈ S, and a set of transitions T ⊆ S×R×S.
A transition (s, p, s′) is customarily denoted s

p−→ s′, where p ∈ R is the weight
of that transition. We implicitly consider only non-blocking automata where
every location has at least one outgoing transition. If S and T are finite sets and
T ⊆ S × Z× S then A is called a finite weighted automaton.
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A run in A starting from s ∈ S is a finite or infinite sequence s = s1
p1−→ s2

p2−→
s3

p3−→ · · · . We write Runs(A, s) for the set of all runs in A starting from s. Given a
finite run γ = s1

p1−→ · · · pn−1−−−→ sn, we write last(γ) to denote its final location sn.

Definition 1. Let A = (S, s0, T ) be a weighted automaton, c ∈ R, b ∈ R∪ {∞},
and let γ = s1

p1−→ · · · pn−1−−−→ sn ∈ Runs(A, s1). The accumulated weight with
initial credit c under weak upper bound b is pc↓b(γ) = rn, where r1, . . . , rn ∈ R
are defined inductively by r1 = min(c, b), ri+1 = min(ri + pi, b).

So for computing pc↓b(γ), costs are accumulated along the transitions of γ,
but only up to a maximum accumulated cost b; possible increases above b are
simply discarded. The case b =∞ is special; we will denote pc(γ) = pc↓∞(γ) =
c+

∑n−1
i=1 pi. Also, we will write p(γ) = p0(γ).

A weighted game is a tuple G = (S1, S2, s0, T ) where S1 and S2 are two
disjoint sets of locations, and AG = (S1 ∪ S2, s0, T ) is a weighted automaton.
Note that we only introduce turn-based weighted games here.

A run of G is a run of AG, and we write Runs(G) for Runs(AG). A strategy σ
for Player i, where i = 1 or i = 2, maps each finite run γ ending in Si to a
transition departing from last(γ). Given a location s in G and a strategy σ for
Player i, an outcome of σ from s is any run s1

p1−→ s2
p2−→ · · · pn−1−−−→ sn starting in s

such that for any k, if sk ∈ Si then sk
pk−→ sk+1 = σ(s1

p1−→ s2
p2−→ · · · pk−1−−−→ sk).

We are now able to formulate the problems which we shall be concerned with.

The lower-bound problem: Given a weighted game G and an initial credit c, does
there exist a strategy for Player 1 such that any infinite outcome γ from the
initial state of G has pc(γ′) ≥ 0 for all finite prefixes γ′ of γ?

The lower-weak-upper-bound problem: Given a weighted game G, a weak upper
bound b and an initial credit c ≤ b, does there exist a strategy for Player 1
such that any infinite outcome γ from the initial state of G has pc↓b(γ′) ≥ 0
for all finite prefixes γ′ of γ?

The interval-bound problem: Given a weighted game G, an upper bound b, and
an initial credit c ≤ b, does there exist a strategy for Player 1 such that any
infinite outcome γ from the initial state of G has 0 ≤ pc(γ′) ≤ b for all finite
prefixes γ′ of γ?

Note that by Martin’s determinacy theorem [Mar75], our games are deter-
mined : Player 1 has a strategy for winning one of the above games if, and only
if, Player 2 does not have a strategy for making Player 1 lose.

Special variants of the above problems are obtained when one of the sets S1

and S2 is empty. In case S2 = ∅, they amount to asking for the existence of an
infinite path adhering to the given bounds; in case S1 = ∅, one asks whether all
infinite paths stay within the bounds. The former problems will be referred to as
existential problems, the latter as universal ones.

2.2 The Timed Setting

A weighted timed automaton is a tuple A = (Q, q0, C, I, E, rate), with Q a finite
set of locations, q0 ∈ Q the initial location, C a finite set of clocks, I : Q→ Φ(C)
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location invariants, E ⊆ Q × Φ(C) × 2C × Q a finite set of transitions, and
rate : Q → Z location weight-rates. Here the set Φ(C) of clock constraints ϕ
is defined by the grammar ϕ ::= x ./ k | ϕ1 ∧ ϕ2 with x ∈ C, k ∈ Z and
./ ∈ {≤, <,≥, >,=}. The semantics of a weighted timed automaton A is given
by a weighted automaton JAK with states (q, v), where q ∈ Q and v : C → R≥0,
and transitions of two types:

– Delay transitions (q, v)
p−→t (q, v + t) for some t ∈ R≥0. Such a transition

exists whenever v+ t′ |= I(q) for all t′ ∈ [0, t], and its weight is p = t · rate(q).
– Switch transitions (q, v) 0−→e (q′, v′), where e = (q, g, r, q′) is a transition of A.

Such a switch transition exists whenever v |= g ∧ I(q), v′ = v[r ← 0], and
v′ |= I(q′). Switch transition have always the weight 0.

A run of A is a sequence (q1, v1)
p1−→t1 (q1, v′1) 0−→e1 (q2, v2)

p2−→t2 (q2, v′2) · · · of
alternating delay and switch transitions in JAK. We write Runs(A) for the set
of all runs of A. The accumulated weight (with initial credit c and weak upper
bound b) for runs of a weighted timed automaton are given by Definition 1.

A weighted timed game is a tuple G = (Q, q0, C, I, E1, E2, rate) such that
AG = (Q, q0, C, I, E1 ∪E2, rate) is a weighted timed automaton. States and runs
of a weighted timed game are those of the underlying weighted timed automaton,
and we again write Runs(G) for Runs(AG).

Given a weighted timed game G, a strategy for Player i (i ∈ {1, 2}) is a partial
function σ mapping each finite run of Runs(AG) to Ei∪{λ}, where λ /∈ E1∪E2 is
the “wait” action. For a finite run γ ending in (q, v), it is required that if σ(γ) = λ

then (q, v)
p−→t (q, v + t) for some t > 0, and if σ(γ) = e then (q, v) 0−→e (q′, v′).

Given a state s = (q, v) of a weighted timed game G and a strategy σ
for Player i, the set Out(σ, s) of outcomes of σ from s is the smallest subset
of Runs(G, s) such that

– (q, v) is in Out(σ, s);
– if γ ∈ Out(σ, s) is a finite run ending in (qn, vn), then a run of the form
γ → (qn+1, vn+1) is in Out(σ, s) if either
• (qn, vn) −→e (qn+1, vn+1) with e ∈ E3−i,
• (qn, vn) −→e (qn+1, vn+1) with e = σ(γ) ∈ Ei, or
• (qn, vn) −→t (qn+1, vn+1) with t ∈ R≥0, and σ(γ −→t′ (qn, vn + t′)) = λ for

all t′ ∈ [0, t);
– an infinite run is in Out(σ, s) if all its finite prefixes belong to Out(σ, s).

A weighted timed game G = (Q, q0, C, I, E1, E2, r) is said to be turn-based if
the set of edges leaving any q ∈ Q is a subset of either E1 or E2. In that case,
the semantics of G is a (turn-based, infinite) weighted game as introduced in
the previous section. However, weighted timed games introduced above are more
general than turn-based ones, and we shall later use the more general notion.

For weighted timed games, we will be interested in the same three problems
as in the previous section; the existence of a strategy whose outcomes are infinite
runs remaining within given bounds. As in the previous section, we have the
special cases of existential and universal problems.
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3 Fixed-Point Characterization

Let us introduce some terminology. For the lower-bound problem, we say that an
infinite path γ is c-feasible for some initial credit c < +∞, if pc(γ′) ≥ 0 for all
finite prefixes γ′ of γ, and that γ is feasible if it is c-feasible for some c.

Given a weighted game (S1, S2, s0, T ) and b ∈ R≥0, we define three predicates
L,Wb, Ub : S ×R≥0 → {tt ,ff } to be the respective maximal fixed points to the
following equations:

L(s, c) = 0 ≤ c ∧

{
s ∈ S1 =⇒ ∃s p−→ s′ ∈ T : L(s′, c+ p)

s ∈ S2 =⇒ ∀s p−→ s′ ∈ T : L(s′, c+ p)

Wb(s, c) = 0 ≤ c ≤ b ∧

{
s ∈ S1 =⇒ ∃s p−→ s′ ∈ T : Wb(s′,max(b, c+ p))

s ∈ S2 =⇒ ∀s p−→ s′ ∈ T : Wb(s′,max(b, c+ p))

Ub(s, c) = 0 ≤ c ≤ b ∧

{
s ∈ S1 =⇒ ∃s p−→ s′ ∈ T : Ub(s′, c+ p)

s ∈ S2 =⇒ ∀s p−→ s′ ∈ T : Ub(s′, c+ p) .

The right-hand side of each of these equations defines a monotone functional
on the power set lattice of S ×R≥0, hence indeed the maximal fixed points exist.
Also, if the weighted game under investigation is image finite, i.e. if the sets
{(p, s′) | s p−→ s′ ∈ T} are finite for all states s, then it can be shown that these
respective functionals are continuous, implying that the maximal fixed points can
be obtained as the limits of the iterated application of the respective functionals
to the maximal element S×R≥0 of the power set lattice. The proof of the lemma
below is immediate from the definition of the predicates.

Lemma 2. Let (S1, S2, s0, T ) be a weighted game and s ∈ S1 ∪ S2, b, c ∈ R≥0.
Then (s, c) ∈ L (or (s, c) ∈Wb, or (s, c) ∈ Ub) if and only if there exists a strategy
for Player 1 such that any infinite path γ from s consistent with the strategy is
c-feasible for the lower-bound problem (or lower-weak-upper-bound problem, or
interval-bound problem, respectively).

For the lower-bound problems, the above fixed-point characterization can be
stated in a different way by defining recursively the infimum credits sufficient for
feasibility—note that such a notion does not make sense for the interval-bound
problem, as here the set of sufficient credits is not necessarily upward-closed. For a
given weighted game (S1, S2, s0, T ) and b ∈ R≥0, let L,Wb : S → R∪{∞} be the
functions defined as respective minimal fixed points to the following equations:

L(s) =

{
min{L(s′)− p | s p−→ s′} if s ∈ S1

max{L(s′)− p | s p−→ s′} if s ∈ S2

Wb(s) =

{
min

(
b,min{W (s′)− p | s p−→ s′}

)
if s ∈ S1

min
(
b,max{W (s′)− p | s p−→ s′}

)
if s ∈ S2 .
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Proposition 3. We have L(s, c) if and only if c ≥ L(s), and Wb(s, c) if and
only if Wb(s) ≤ c ≤ b.

The following lemma shows that for finite weighted games, there is a pre-
described upper limit for the values of L and Wb. This implies that the fixed-point
computations can be terminated after a finite number of iterations. For timed
games, the second part of the next example below shows that this is not necessarily
the case.

Lemma 4. Let (S1, S2, s0, T ) be a finite weighted game and b ∈ R≥0. Let M =∑
{−p | s p−→ s′ ∈ T, p < 0}. Then for any state s, L(s) < ∞ if and only if

L(s) ≤M , and Wb(s) <∞ if and only if Wb(s) ≤M .

Proof. We prove the lemma for the lower-bound case; the proof for the case with
weak upper bound is similar. Suppose that L(s) <∞, but L(s) > M . Let σ be a
strategy for Player 1 which realizes L(s) from s, and let γ be an outcome of σ
under an optimal strategy for Player 2.

There must be a state for which the remaining credit is 0 in γ, otherwise the
strategy of Player 2 would not be optimal. Let s2 be the first such state, and let
s1

p1−→ s2 be the transition in γ leading to that occurrence of s2. Then p1 < 0.
On the finite prefix of γ leading from s with initial credit L(s) to s2 with

remaining credit 0, weight has dropped by more than M , hence at least one
transition with negative weight has been taken twice. Let s3

p3−→ s4 be one such
transition, and let c3 be the remaining credit at the first occurrence of s3 as part
of this transition, c′3 the remaining credit at the second occurrence.

If c′3 ≤ c3, we can discard the cycle we just found: In case s4 ∈ S1, we can
delete the cycle beginning and ending at s3

p−→ s4 from the strategy σ and arrive
at a strategy which succeeds from s with initial credit not greater than L(s). If
s4 ∈ S2 instead, Player 2 can add another occurrence of the cycle to her strategy
without losing optimality. Hence for c′3 = c3, we arrive at a setting which is
equally good for both players, and for c′3 < c3 we are in contradiction to L(s)
being the minimum credit necessary from s.

The above argument specialises to the transition s1
p1−→ s2 leading to a

remaining credit of 0: if this edge also occurs in γ before, we have a cycle like
the one above. Hence we can conclude that there must be a cycle in the finite
prefix of γ leading to s1 with remaining credit −p1, i.e., before the remaining
credit drops to 0.

We are left with considering the case c′3 > c3. However as the remaining credit
does not drop to 0 during the cycle, we can use an argument as above and either
repeat the cycle (in case s4 ∈ S1) or delete it (in case s4 ∈ S2), arriving at a
contradiction in both cases. ut

Example 5. Consider the weighted automata in Fig. 2a) and 2b). Let us attempt
to compute L using iterative application of the recursive definition. For a) we find
the following fixed points after two iterations: L(s0) = 0 and L(s1) = 1. For b) we
get the following sequence of decreasing approximations: L2n(s0) = L2n+1(s0) =
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Fig. 2. a), b) Weighted automata with and without feasible paths. c) One fixed-point
iteration on the weighted timed automaton of Fig. 1.

2n and L2n(s1) = L2n−1(s1) = 2n+ 1. Hence clearly L(s0) = L(s1) =∞, though
this fixed point is not reached within a finite number of iteration.

In Fig. 2c) we reconsider the weighted timed automaton from Fig. 1 under the
interval-bound problem with upper bound 2. If we assume that after n iterations
of the fixed-point computation, Un

2 ((`2, 1), c) = tt if and only if c ∈ [2− ε, 2] for
some ε, then Un+1

2 ((`0, 0), c) = tt if and only if c ∈ [2− 1
2ε, 2]. The largest fixed

point—U2((`2, 1), c) = tt if and only if c = 2—is only reached as the limit of this
infinite sequence of approximations. ut

4 Lower-Bound Problems

In this section we treat the lower-bound and lower-weak-upper-bound problems
for finite automata, one-clock timed automata, and for finite games. For one-clock
timed games, these problems are open.

4.1 Finite Weighted Automata

For a given finite weighted automaton A = (S, s0, T ), we denote by MinCr(γ),
for a path γ in A, the minimum c ≥ 0 for which γ is c-feasible, and by MinCr(s),
for a state s ∈ S, the minimum of MinCr(γ) over all feasible paths γ emerging
from s.

A cycle γ = s0 → s1 → · · · → s0 in A is non-losing if p(γ) ≥ 0 (or equivalently,
pc(γ) ≥ c for any initial credit c). A lasso λ from a given state s0 is an infinite path
of the form γ1(γ2)ω, where γ1 = s0 → s1 → · · · → si−1, γ2 = si → · · · → sk → si,
and si−1 → si are paths in A, and with si 6= sj whenever i 6= j ≤ k. It is clear
that if a lasso γ1(γ2)ω constitutes a feasible path then the cycle γ2 must be
non-losing.

Lemma 6. Let A = (S, s0, T ) be a finite weighted automaton and s ∈ S. For
any feasible path γ from s, there exists a feasible lasso λ also from s such that
MinCr(λ) ≤ MinCr(γ).

Proof. Let c = MinCr(γ), and assume first that there is a cycle π in γ such
that p(π) ≥ 0. Write γ = γ1πγ2, then λ = γ1π

ω is a feasible lasso from s, and
MinCr(λ) ≤ MinCr(γ).
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Assume now that there is no cycle π in γ with p(π) ≥ 0. We can write
γ = γ1γ2, where γ2 only takes transitions that appear infinitely often along γ.
As there is no cycle with non-negative weight in γ, the weights of prefixes of γ2

decrease to −∞. Hence there is a prefix γ′2 of γ2 such that p(γ′2) < −p(γ1). But
then the accumulated weight of γ1γ

′
2, which is a prefix of γ, is negative, which

contradicts the feasibility of γ. ut

Thus, determining L(s, c) corresponds to determining whether there is a
feasible lasso λ out of s with MinCr(λ) ≤ c. This may be done in polynomial time
in the size of the weighted automaton using a slightly modified Bellman-Ford
algorithm.

Theorem 7. For finite weighted automata, the existential and universal lower-
bound and lower-weak-upper-bound problems are decidable in P. Also, MinCr(s0)
is computable in polynomial time.

Proof. We first focus on the existential problems.
We shall use Algorithm 1 where C and C ′ are global hashes that for every

location store an integer value (possibly also −∞ or ∞) and b is a global boolean
variable.

The procedure INIT initializes the current weights in the hash C to −∞ for
all locations except for s0 which is initialized to the initial credit c0. The bit b,
specifying that the initial location got updated during the relaxation of edges, is
set to FALSE.

Procedure ROUND performs (|S| − 1) times the inner loop where every edge
is relaxed. Possible improvement, which however does not go below zero (the
condition on line 10), is performed, and if the initial node s0 was improved, the
bit b is set to TRUE. This means that the procedure ROUND computes for each
location s the maximal remaining credit C(s) with which this location can be
reached without the accumulated cost dropping below zero, provided that the
location s is not on any positive loop.

Detecting all nodes that are on a positive loop is performed in the function
MAXRMCR, which calls the procedure ROUND twice and all locations that
were improved by the second call get the value +∞.

The main code first runs MAXRMCR for the initial location s0 and the
initial credit c0 and remembers the computed hash C in C0. Should any node
be marked by +∞ then we terminate because there is surely a feasible lasso in
the automaton. Otherwise we consider every node s with the computed maximal
achievable credit C0(s) ≥ 0 as a candidate for the first node forming the infinite
loop in the lasso. This is verified on line 33 by calling MAXRMCR with the
argument s and the initial credit C0(s) and checking whether by doing at least
one step (the bit bs being TRUE) the location s can reach itself without losing
the credit it has. If this is the case for some s then a feasible lasso is found and
we return TRUE, otherwise we return FALSE.

So for given a s0 and an initial credit c0 we can in polynomial time answer
the existence of a feasible lasso and this proves the first part of the theorem.
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Algorithm 1 Modified Bellman-Ford Algorithm for Detecting Feasible Lassoes
Input: A finite weighted automaton (S, s0, T ) and initial credit c0.
Output: TRUE if a feasible lasso from s0 with the credit c0 exists, FALSE otherwise.
1: procedure INIT(s0, c0);
2: for all s ∈ S do
3: C(s) := −∞
4: end for
5: C(s0) := c0; b :=FALSE;
6:
7: procedure ROUND(s0);
8: for i := 1 to |S| − 1 do

9: for each edge s
p−→ s′ in T do

10: if C(s′) ≤ C(s) + p and C(s) + p ≥ 0 then
11: C(s′) := C(s) + p
12: if s′ = s0 then
13: b :=TRUE
14: end if
15: end if
16: end for
17: end for
18:
19: function MAXRMCR(s0, c0)
20: INIT(s0, c0); ROUND(s0); C′ := C; ROUND(s0);
21: for all s ∈ S do
22: if C(s) > C′(s) then
23: C(s) := +∞
24: end if
25: end for
26: return (C, b)
27:
28: (C0, b0) :=MAXRMCR(s0, c0)
29: if C0(s) =∞ for some s ∈ S then
30: return TRUE
31: else
32: for all s ∈ S such that C0(s) 6= −∞ do
33: (Cs, bs) :=MAXRMCR(s, C0(s))
34: if Cs(s) ≥ C0(s) and bs =TRUE then
35: return TRUE
36: end if
37: end for
38: return FALSE
39: end if
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To find the smallest initial credit c0 for which there is a feasible lasso, we use
Lemma 4 which gives us the upper bound M on c0. Now by using binary search,
we have to make at most O(logM) queries, i.e., polynomially many times run
the algorithm described above.

For the lower-weak-upper-bound problem, we have to make sure that the
weights in the hash C never get above a given weak upper bound. This means
a simple modification on line 11 of the algorithm where in the assignment we
assign the minimum of C(s) + p and the given weak upper bound.

We now turn to the universal problems. The dual problem to the lower-
bound problem (i.e., exhibiting a finite path with negative accumulated cost)
can be solved in deterministic polynomial time by applying the Bellman-Ford
shortest path algorithm. Hence the polynomial time algorithm for the lower-bound
problem.

Similarly, the (dual problem to the) lower-weak-upper-bound problem is
solved in deterministic polynomial time by adapting the Bellman-Ford algorithm
as follows: whenever the weight of some node should be updated to a larger value
than is the given weak upper bound b, we update it only to b. ut

4.2 One-Clock Weighted Timed Automata

Let A be a one-clock weighted timed automaton. Without loss of generality we
shall assume that for any location, the value of the (single) clock x is bounded
by some constant M (see [BFH+01]). Let 0 ≤ a1 < a2 < . . . < an < an+1 = M
where {a1, . . . , an} are the constants occurring in A. Then the one-dimensional
regions of A are all elementary open intervals (ai, ai+1) and singletons {ai}
(see [LMS04]). In particular, two states (q, v) and (q, v′) of A are time-abstract
bisimilar whenever v and v′ belong to the same region.

A corner-point region is a pair 〈ρ, e〉, where ρ is a region and e an end-point
of ρ. We say that 〈ρ′, e′〉 is the successor of 〈ρ, e〉 if either ρ′ is the successor
region of ρ and e = e′ or ρ = ρ′ = (a, b), e = a, and e′ = b. Now the corner-point
abstraction [BFH+01,BBL04], cpa(A), of A is the finite weighted automaton
with states (q, 〈ρ, e〉) and with transitions (q, 〈ρ, e〉) → (q′, 〈ρ′, e′〉) if ρ |= I(q),
q′ |= I(q′) and one of the following applies:

– q = q′ and 〈ρ′, e′〉 is the successor of 〈ρ, e〉, or
– (q, ϕ, ∅, q′) ∈ E with ρ |= ϕ and 〈ρ′, e′〉 = 〈ρ, e〉, or
– (q, ϕ, {x}, q′) ∈ E with ρ |= ϕ, ρ′ = {0} and e′ = 0.

The weight of the first (delay) transition is rate(q) · (e′− e), the weights of the
two last (discrete) transitions are 0. The above corner-point abstraction is sound
and complete with respect to the lower-bound problem in the following sense:

Proposition 8. Let A be a one-clock weighted timed automaton.

Completeness: Let γ be an infinite run in A from (q0, 0) which is c-feasible for
some c < +∞. Then there exists a c-feasible infinite run γ′ from (q0, 〈{0}, 0〉)
in cpa(A).
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Soundness: Let γ′ be an infinite run in cpa(A) from (q0, 〈{0}, 0〉) which is c-
feasible for some c < +∞. Then, for any ε > 0, there exists a (c+ ε)-feasible
infinite run γ from (q0, 0) in A.

Proof. Completeness: γ′ is obtained from γ by essentially pushing delay transi-
tions within the same region ρ = (a, b) towards the most profitable end-point.
Consider some maximal sub-sequence of γ of alternating delay and switch transi-
tions within ρ:

γ : · · · → (q1, v1) −→d1 (q1, v2) −→e1 (q2, v2) −→d2 (q2, v3) −→e2 · · ·
−→dn

(qn, vn+1)→ · · ·

where ei are non-resetting switch transitions, and a < v1 < v2 < · · ·< vn+1 < b.
Now with j ∈ {1, . . . , n} maximizing the rate rate(qj), we construct the following
sub-sequence of γ′:

γ′ : · · · → (q1, 〈ρ, a〉)→ (q2, 〈ρ, a〉)→ · · · →
(qj , 〈ρ, a〉)→ (qj , 〈ρ, b〉)→ (qj+1, 〈ρ, b〉)→ · · · → (qn, 〈ρ, b〉)→ · · ·

Given an initial credit, it is easy to see that the remaining credit at a state in γ′

is always greater than or equal to the remaining credits at the corresponding
states in γ.
Soundness: Let K be the maximum of the absolute values of weight-rates of A.
If (q, 〈{a}, a〉) → (q, 〈(a, b), a〉) is the n-th transition in γ′, the corresponding
n-th transition of γ is taken to be (q, a) → (q, a + ε(2n+1K)−1). Similarly, if
(q, 〈(a, b), a〉)→ (q, 〈(a, b), b〉) is the n-th transition of γ′, the corresponding n-th
transition of γ′ is taken to be (q, a+ ε(2n+1K)−1)→ (q, b− ε(2n+1K)−1). ut

Let us introduce the lower-bound (and lower-weak-upper-bound) infimum
problem to be the problem as to whether for a given initial credit c, L(s0, c+ ε)
(Wb(s0, c+ ε)) holds for any ε > 0. Based on the above propositions we have:

Theorem 9. For one-clock weighted timed automata, the existential and uni-
versal lower-bound and lower-weak-upper-bound infimum problems are decidable
in P. Also, MinCr(s0) may be computed in polynomial time.

Proof (sketch). For the existential problem, note that for a given one-clock
weighted timed automaton A, the size of cpa(A) is polynomial in the size of A,
as the regions are constructed from the constants appearing in A. Then apply
Theorem 7. For the universal problem, note that Proposition 8 can be modified
to show that for any run in A there exist a run in cpa(A) which has always less
remaining credit (within any region we simply choose to do the delay at the
location with the smallest rate rather than the largest one). ut

4.3 Finite Weighted Games

Recall that a strategy σ is said to be memoryless if σ(γ) only depends on last(γ)
for any finite path γ.
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Lemma 10. Let (S1, S2, s0, T ) be a finite weighted game. Let b ∈ N ∪ {∞} and
c ∈ N. If there exists a strategy σ for Player 1 which ensures that pc↓b(γ′) ≥ 0 for
any finite prefix γ′ of any infinite outcome γ of σ, then there is also a memoryless
strategy with the same property. Symmetrically, if Player 2 has a strategy to
ensure that for any outcome γ of σ, there is a finite prefix γ′ of γ such that
pc↓b(γ′) < 0, then she has a memoryless strategy with the same property.

Proof. Let s ∈ S1. Assuming s can be reached by applying σ, we let Cs be the
set of integers c′ s.t. there is an outcome of σ starting in s0 with credit c and
reaching s with credit c′. Since σ is winning, cs = minCs is non-negative. When
s is reachable under σ, we let γs be an outcome of σ that reaches s with credit cs,
and we define the memoryless strategy σ̃(s) = σ(γs). When s is not reachable
under σ, the value of σ̃(s) is irrelevant. It can be easily proved that along every
outcome γ′ of σ̃, the accumulated cost in a state s is larger than or equal to cs.
The proof for the second claim is similar. ut

Proposition 11. For finite weighted games, the lower-bound and lower-weak-
upper-bound problems are decidable in NP ∩ coNP.

Proof. The NP algorithm consists in nondeterministically guessing a memoryless
strategy, pruning the transitions that are not selected by that strategy in G,
and checking whether for any finite prefix γ of any infinite execution, we have
pc↓b(γ) ≥ 0, which is polynomial (Theorem 7). If Player 1 has a winning strategy,
then this algorithm will answer positively.

The coNP algorithm follows from the determinacy of the game: if Player 1
has no winning strategy, then Player 2 has one, which can be chosen memoryless.
It can then be guessed and checked in nondeterministic polynomial time. ut

For the lower-bound problem, we can do better, and prove its equivalence
with the mean-payoff problem.

Proposition 12. The mean-payoff game problem is log-space equivalent to the
lower-bound problem, and is log-space reducible to the lower-weak-upper-bound
problem.

Proof. Mean-payoff games are defined as follows [Jur98]: given a weighted
game G = (S1, S2, s0, T ) and an integer threshold m, is there a strategy for
Player 1 such that for any infinite outcome s0

p0−→ s1
p1−→ · · · , we have

lim inf
n→∞

∑
j≤n

pj/n ≥ m.

Shifting all weights by −m, we can simplify the problem by assuming m = 0.
Let (G,m) be an instance of the mean-payoff problem. Consider the lower-

bound problem played on the same weighted game G, with initial credit M =∑
{−p | s p−→ s′ ∈ T, p < 0}.
Assume Player 1 has a winning strategy σ for the mean-payoff problem (G,m).

Following [EM79], we may assume that σ is memoryless, and that the weight of
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any cycle in any outcome of σ is nonnegative. Assume that the same strategy σ
is not winning for the lower-bound (resp. lower-weak-upper bound) problem:
there is an outcome that eventually reaches a point where the accumulated
weight is negative. Consider one of the outcomes, γ, that reaches this negative
accumulated weight with the least number of transitions. Since the initial credit
is M , it must be the case that a state is visited twice before reaching the
negative weight. Along that cycle, the accumulated weight must be positive.
Since σ is memoryless, removing this cycle yields another outcome of σ, which
reaches a negative accumulated weight with fewer transitions than γ, which is a
contradiction.

Conversely, given a winning strategy for Player 1 for the lower-bound problem,
the accumulated weight along any outcome remains nonnegative. The sum of the
weights of the transitions along any prefix is then larger than or equal to −M ,
hence the mean payoff for a prefix of length n is larger than or equal to −M/n,
which converges to 0 when n goes to infinity.

We now present the converse reduction, starting from a weighted game G =
(S1, S2, s0, T ) and an initial credit c0 for the lower-bound problem. Even if it
means adding an extra initial transition of weight c0, we may assume that the
initial credit is zero. We construct a weighted game G′ from G by giving a way to
Player 2 to “reset” the game at any transition. Formally, G′ = (S1, S2∪ST , s0, T

′)
with ST = {st | t ∈ T} and T ′ = T∪{(s, p, st), (st, 0, s′), (st, 0, s0) | t = (s, p, s′) ∈
T}. We claim that Player 1 has a winning strategy in G for the lower bound
problem iff she has a winning strategy in G′ for the mean-payoff problem (with
threshold 0).

Assume first that there is a winning strategy σ in G for the lower bound
problem, which we may require to be memoryless. From σ, we define a strategy σ′

in G′ in the obvious way: if σ(s) = t for s ∈ S1, then σ′(s) = (s, p, st). Consider
an outcome γ′ of σ′. If it contains infinitely many “reset” transitions from
Player 2, then since σ is winning, the accumulated weight from s0 to the next
“reset” transition is nonnegative, and so is the mean payoff along γ′. If Player 2
plays only finitely many “reset” transitions, then there is a suffix π′ of γ′ that
corresponds to an outcome of σ in G. Hence the accumulated weight is nonnegative
along π′, and so is the mean payoff along γ′.

Now, if there is a winning strategy σ′ in G′ for the mean payoff problem,
which we require to be memoryless, then this strategy gives rise to a strategy σ
in G in the obvious way. If this strategy were not winning in G, then some
finite prefix of an outcome would have negative accumulated weight. After the
corresponding prefix played in G′, Player 2 could play its “reset” transitions back
to s0. This yields a negative cycle, entailing that σ′ is not winning in G′. ut

The exact complexity of the mean-payoff problem is not known, but it is
P-hard and in UP ∩ coUP [Jur98]. Hence we get the following theorem.

Theorem 13. For finite weighted games, the lower-bound problem is P-hard
and in UP ∩ coUP (thus in NP ∩ coNP). The lower-weak-upper-bound problem is
P-hard and in NP ∩ coNP.
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5 Interval-Bound Problems

We shall now study the interval-bound problems for the finite and timed cases.

5.1 Finite Weighted Automata and Games

We begin with games, showing that the interval-bound problem is hard already
in the untimed case:

Theorem 14. The interval-bound problem on finite weighted games is EXPTIME-
complete.

Proof. Hardness in EXPTIME is achieved by reducing the EXPTIME-complete
problem of Countdown Games [JLS07] into our interval-bound problem. An in-
stance of a countdown game is a pair (S,E) where S is a finite set of states
and E ⊆ S × (N \ {0})× S is a finite transition relation. A configuration of the
game is a pair (s, c) ∈ S × N. The game is between two players that change
the current configuration (s, c) into (s′, c′) according to the following rule: first
Player 1 chooses a number 0 < d ≤ c for which there is at least one transition
(s, d, s′′) ∈ E, then Player 2 chooses one of the states s′ for which (s, d, s′) ∈ E;
now the game continues from a new current configuration (s′, c − d). If the
game reaches a configuration (s, 0), Player 1 is the winner; if the game reaches a
configuration (s, c) with c > 0 and no possible moves, Player 2 is the winner. The
question is to decide whether Player 1 has a winning strategy in the countdown
game starting from a given configuration (s0, c0).

Given a countdown game (S,E) with initial configuration (s0, c0), we construct
a weighted game as follows: let S1 = S, S2 = {(s, d) | (s, d, s′) ∈ E}, and

T =
{
s

d−→ (s, d)
∣∣ (s, d) ∈ S2

}
∪
{

(s, d) 0−→ s′
∣∣ (s, d, s′) ∈ E

}
∪
{
s
−c0−−→ s0

∣∣ s ∈ S}
The upper bound is set to c0. Player 1 can now from a state s ∈ S choose

a particular number d and Player 2 from the temporary state (s, d) choose a
transition to a state s′ ∈ S. The number d is added to the accumulated weight
and the same repeats. As the accumulated weight is bounded by c0, Player 1 has
to eventually take some transition labeled −c0 and return to the initial state s0.
In order not to drop below zero, this is only possible if the accumulated weight is
exactly c0, hence the first player in the countdown game has a winning strategy
if and only if Player 1 has a winning strategy in the interval-bound game.

Membership in EXPTIME will be achieved by an exponential translation
to the P-complete Alternating Graph Accessibility Problem (AGAP) [CKS81].
An instance of AGAP is a directed graph G = (V,E) together with s, t ∈ V
such that E ⊆ V × V and V is partitioned into two disjoint sets V1 and V2.
The question is whether the predicate apath(s, t) is true, where apath(x, y) holds
if, and only if,

– x = y, or
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– x ∈ V1 and there is z ∈ V such that (x, z) ∈ E and apath(z, y) holds, or
– x ∈ V2 and for all z ∈ V such that (x, z) ∈ E the predicate apath(z, y) holds.

We shall provide a translation of the interval-bound problem for finite weighted
games into several AGAP questions. Let (S1, S2, s0, T ) be a finite weighted game
and let b be a given upper bound. We construct a directed graph G = (V =
V1 ∪ V2, E) such that V1 = {(s, c) | s ∈ S1, c ∈ {0, 1, . . . , b}}, V2 = {(s, c) | s ∈
S2, c ∈ {0, 1, . . . , b}} ∪ {sink} and

(s, c)→ (s′, c′) ∈ E whenever s
c′−c−−−→ s′ ∈ T

and
(s, c)→ sink ∈ E whenever s

c′−→ s′ ∈ T s.t. (c+ c′) 6∈ [0, b]

and
sink → sink ∈ E .

This means that as long as the accumulated weight stays within the given
interval [0, b], it is simply recorded in the second component of the state. Should
the accumulated weight reach beyond of the given interval, we enter a special
state sink with a self-loop.

Notice also that the reduction produces a graph of size exponential in the size
of the given weighted game, and that the blow-up depends only on the bound b.
Nevertheless, the graph G can help us to introduce the following complexity
upper-bounds.

Notice that the graph G contains exactly those paths that are between the
lower bound 0 and the upper bound b (with the only exception when the state
sink is entered). Assume a given initial location s0 with initial credit c0. We
can now for all possible pairs (s, c), where s ∈ S1 ∪ S2 and c ∈ {0, 1, . . . , b}, ask
two AGAP questions: apath((s0, c0), (s, c)) and apath((s, c), (s, c)) where in the
second question we require that at least one step was taken before the loop closes.
If the answer to both questions is positive then we know that Player 1 has a
strategy in the weighted game to stay within the given interval. If for none of
the pairs (s, c) this happens then we know that the first player does not have
such strategy. As the AGAP questions can be answered in time polynomial in
the size of G, and because these questions are asked only exponentially many
times, we conclude that the interval-bound problem for finite weighted games is
in EXPTIME.

Theorem 15. The existential interval-bound problem for finite automata is
decidable in PSPACE, and NP-hard.

Proof. Following the same idea as in the above proof, we can guess the pair (s, c)
and then nondeterministically verify whether there is a path between (s0, 0)
and (s, c) and a nontrivial path between (s, c) and (s, c). This gives a PSPACE
algorithm.

We now prove hardness in NP, by reducing the NP-complete problem SUBSET-
SUM (see e.g. [Pap94]) into our existential interval-bound problem. An instance
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of SUBSET-SUM is a pair (A, t) where A ⊆ N is a finite set and t ∈ N. The
question is whether there is a subset of A which adds exactly to t. Assume a
given instance of SUBSET-SUM (A, t) where A = {t1, t2, . . . , tn}. We construct
a weighted automaton (S, s0, T ) where S = {s0, s1, . . . , sn} and where T =

{si
ti+1−−→ si+1 | 0 ≤ i < n} ∪ {si

0−→ si+1 | 0 ≤ i < n} ∪ {sn
−t−−→ s0}. The

construction is depicted on Fig. 3.

s0 s1 s2 sn· · · · · ·

t1

0

t2

0

t3

0

tn

0

−t

Fig. 3. Reduction from SUBSET-SUM

Now consider the existential interval-bound problem with upper bound t,
and let the initial credit be 0. It is clear that there is an infinite path with the
accumulated weight staying between 0 and t if and only if the SUBSET-SUM
problem has a solution. ut

Theorem 16. The universal interval-bound problem for finite weighted automata
is decidable in P.

Proof. From a given initial location s0, we can run e.g. the Bellman-Ford shortest
path algorithm. Either a negative cycle or a location with negative shortest
path is discovered, in which case there is a path which does not adhere to the
lower bound (additionally it might violate the upper bound). If none of these are
discovered, we run the Bellman-Ford algorithm another time, this time with max
instead of min, to find the longest path to every other location. Again, if there is
a positive cycle or a location with a longest path larger then the upper bound b,
we have a path violating the upper-bound. Otherwise we know that all paths are
within the required bounds. ut

5.2 Timed Games

We prove in this section that the interval-bound problem for timed games is
undecidable, even for games involving only one clock.

Theorem 17. The interval-bound problem is undecidable for one-clock weighted
timed games.

Proof. This is achieved by simulating a two-counter machine. If c1 and c2 are
the values of the counters, the accumulated weight along runs of the simulating
weighted timed game will be

E(c1, c2) = 5− 1
2c13c2

,
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and we will work with an upper bound of 5. We start with accumulated weight 4
(encoding that the two counters are initialized to 0).

The instructions of the two-counter machine will be encoded as modules which
we describe below. All our modules have invariant “x ≤ 1”. For the purpose of
this section, a configuration is a triple (`, x,W ) where ` is a discrete location,
x is the value of the clock, and W is the accumulated weight.

Module ok. Our first module is the “accepting” (ok) module, which is depicted
on Fig. 4. Clearly enough, entering module ok with accumulated weight in [0, 5]
is winning.

0

x = 1, x := 0

Fig. 4. Module ok

−6

m

−6

m1

5

module ok

30

m2

30

m3

−5

module ok

−n
m′

x := 0

x := 0

x = 1

x = 1

x := 0

x = 1

Fig. 5. Generic module Modn

A strategy for Player 1 which is defined on a module and has the property
that any outcome either reaches a module ok or exits the module while always
satisfying the lower- and upper-bound conditions will be said to be locally safe
in that module.

Generic module Modn Consider the generic module Modn, as depicted on
Figure 5, for some given value of n (which will be fixed later among {2, 3, 12, 18}),
and assume that 0 ≤ ne ≤ 30. Consider the following strategy σn, depicted on
Fig. 6:

– from location (m, 0, 5− e), it delays during (5− e)/6 time units in m, then
leaves to m1 (thus to configuration (m1, (5− e)/6, 0));

– from m1, it directly goes to m2;
– from (m2, (5 − e)/6, 0), it waits for 1/6 time units and then leaves to m3

(hence to configuration (m3, 1− e/6, 5));
– from (m3, 1− e/6, 5), it directly goes to m′;
– in m′, it delays until x = 1, and fires the last transition to the next module.

The only memory that is needed to define strategy σn is the accumulated
weight so far.

Lemma 18. For 0 ≤ ne ≤ 30, the strategy σn is locally safe in Modn and has
the following three outcomes, all of which adhere to the lower and upper bound
conditions:
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acc. weight

x
0 1

5
5− e

stay in m
stay in m2

stay in m′

5−e
6

1
6

5− n·e
6

(if 0 ≤ ne ≤ 30)

Fig. 6. The effect of module Modn

– one where Player 2 takes her move down from location m1;
– one where Player 2 takes her move down from location m3;
– one that leaves the module to the right.

Moreover, any other strategy for Player 1 is not locally safe.

Proof. It is clear that σn satisfies the properties above. To prove the last claim,
we exhaustively list the possible other strategies:

– The maximal delay that can be waited in m before violating the lower-bound
constraint is (5 − e)/6 time units. Assume that we wait strictly less than
(5− e)/6 time units in m before leaving to m1; then the accumulated weight
when reaching m1 is positive, and the second player can immediately go down
and increase it above 5.

– If the strategy waits for (5− e)/6 time units in m before reaching m1, then
waiting any positive delay in m1 will also take the accumulated weight
above 5.

– The cases of m2 and m3 are similar to the cases of m and m1, respectively
(but instead, the lower bound will be violated).

– Last, waiting until x = 1 is the only possible move in m′. ut

We have shown the following:

Proposition 19. Starting from configuration (m, 0, 5 − e) in Modn, with 0 ≤
ne ≤ 30, Player 1 has a unique locally safe strategy. Under that strategy, the only
outcome that visits m′ exits the module with accumulated weight 5− ne/6.

In the sequel, we consider the modules Inc(c1) = Mod3, Inc(c2) = Mod2,
Dec(c1) = Mod12, and Dec(c2) = Mod18. Note that when starting with accumu-
lated weight 5− e in module Inc(c1), the accumulated weight when leaving this
module is 5 − e/2, hence Inc(c1) increments the counter c1. Similarly, Inc(c2)
increments c2, and Dec(c1) and Dec(c2) decrement the respective counters. In the
last two modules, no check is performed whether the counter to be decremented
actually has a positive value. We now describe modules that will test the values of
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the counters (to implement an instruction of the form “if c1 = 0 then goto p1

else goto p2”), and for the global reduction we will assume that a decrementing
instruction is always preceded by such an instruction.

Module for checking c1 = c2 = 0. As a first step, we construct a module
implementing the instruction “if c1 = c2 = 0 then goto p1 else goto p2”
where p1 and p2 are instructions of the two-counter machine. This module is
depicted on Fig. 7.

+1
`

−5
`5

+4
`′

x := 0 x = 1

x := 0

x = 1

x := 0

x = 1

x := 0
module p1

+1
`1

−1
`2

−1
`3

−1
`4

+1
`′′

x = 1

x := 0
module p2

−5

module ok

x := 0

x = 1

x < 1

x = 1

x := 0

x < 1

+1

x := 0

x = 1, x := 0

Fig. 7. Module Test(c1 = c2 = 0)

The following result is easily proved:

Proposition 20. Starting from configuration (`, 0, 5− e) in module Test(c1 =
c2 = 0), Player 1 has a locally safe strategy if and only if e ∈ [0, 1]. In that case,
the strategy is unique and has three outcomes, two of which end in module ok,
and

– if e = 1, the third outcome exits the module to module p1 via configura-
tion (`′, 1, 4);

– otherwise, the third outcome exits to p2 via (`′′, 1, 5− e).

Module for testing c1 = 0. In this module, Player 1 will have a winning
strategy if, and only if, the value of c1 is zero when entering the module (i.e., the
accumulated weight is 5− 1/3k for some k ∈ N). This is achieved by repeatedly
decrementing c2 until c1 = c2 = 0, as implemented in the module depicted on
Fig. 8. A similar module can be constructed for counter c2. Note that in this
module, and also in module Test(c1 > 0), we might decrement a counter which
already has value 0. We show in the proof of the next proposition that this is not
a problem.

Proposition 21. Starting from configuration (`, 0, 5−e) in module Test(c1 = 0),
Player 1 has a locally safe strategy in this module if and only if e = 1/3k for
some k ∈ N. In that case, the strategy is unique.
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` `′

`′′

Test(c1 = c2 = 0)

x := 0
module ok

mm′

Dec(c2)

x = 1

x := 0

x = 1

x := 0

Fig. 8. Module Test(c1 = 0)

m m′

Dec(c1)

x = 1, x := 0

x := 0

`

Test(c1 = 0)

x = 1

x := 0

Fig. 9. Module Test(c1 > 0)

Proof. The reverse direction of the equivalence is immediate, applying the strate-
gies from Prop. 19 and 20.

Conversely, from Prop. 20, if e > 1 then Player 1 has no winning strategy.
We now prove by induction that if 3−k < e < 31−k for some k ∈ N, then there is
no safe strategy. The base case (k = 0) has been handled above. Now, if k > 0,
then from Prop. 20 there is only one safe strategy to exit submodule Test(c1 =
c2 = 0), yielding an outcome entering module Dec(c2) in configuration (m, 0, 5−
e). Prop. 19 applies, and Player 1 has a unique strategy to safely exit that
module. One of the outcomes then re-enters module Test(c1 = c2 = 0) in
configuration (`, 0, 5 − 3e). From the induction hypothesis, there is no safe
strategy from that configuration, which concludes the proof. ut

Module for checking c1 > 0. The module Test(c1 > 0), depicted on Fig. 9,
uses the previous one: it first lets Player 1 decrement counter c1 a positive
number of times, and then checks whether c1 = 0 using the previous module.
The following proposition, whose proof is similar to the previous one, expresses
the correctness of this module:

Proposition 22. Starting from configuration (`, 0, 5−e) in module Test(c1 > 0),
Player 1 has a locally safe strategy in this module if and only if e = 1/(2k · 3k′)
for some k, k′ ∈ N with k > 0. In that case, the strategy is unique.

Modules for conditional instructions. We now implement conditional in-
structions of the form “if c1 = 0 then goto p1 else goto p2” of the two-
counter machine. The corresponding module gives the choice to Player 1 to go
either to p1 or to p2, and lets Player 2 check that the value of c1 meets the
requirement before proceeding to module p1 or p2. It is depicted on Fig. 10.

Proposition 23. Starting from configuration (t, 0, 5−e) in module Cond(c1 = 0),
Player 1 has a locally safe strategy in this module if and only if e = 1/(2k1 · 3k2)
for some k1, k2 ∈ N. In that case, the strategy is unique, and

– if k1 = 0, one of the outcomes of the strategy visits module p1, and all the
other ones eventually reach module ok;
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0 t

0
t′

0
t′′

x := 0

x = 0

x = 0

x = 0
module p1

x = 0
module p2

x = 0

Test(c1 = 0)

x = 0

Test(c1 > 0)

Fig. 10. Module Cond(c1 = 0)

– if k1 > 0, one of the outcomes of the strategy visits module p2, and all the
other ones eventually reach module ok.

Proof. Letting time elapse in t would block the game in that location. Thus,
from t, Player 1 has only two possible strategies, visiting t′ or t′′. If e is not of the
form 1/(2k13k2) with k1, k2 ∈ N, then both strategies are losing since Player 2
will be able to enter one of the Test modules with that incorrect value.

If e = 1/(2k13k2) with k1, k2 ∈ N, then if k1 = 0, the strategy visiting t′ is
locally safe, while if k1 > 0, the other strategy is locally safe. ut

Simulation of the two-counter machine. LetM be a two-counter machine.
We simulate an increment operation of the first (resp. second) counter by Inc(c1)
(resp. Inc(c2)). We simulate a decrement operation of the form “if c1 = 0
then goto pi else decrement c1; goto pj” by plugging the corresponding
modules on module Cond(c1 = 0), and similarly for counter c2. From the results
above, we have the following proposition, entailing undecidability of the 1-clock
interval-bound game problem.

Proposition 24. Let M be a two-counter machine. We can construct a one-
clock weighted timed game GM which is a positive instance of the interval-bound
problem if and only if M has an infinite computation. ut

6 Conclusion

A summary of the results proved in this paper is provided in Table 1. Note that
the results related to Theorem 9 hold for the initial credits arbitrarily close (for
any given ε > 0) to the given ones. The fields in gray remain open. Matching
the complexity lower and upper bounds for some of the problems is left open:
the lower-bound problems for finite games are strongly related to the well known
open problem of complexity of mean-payoff games; closing the gap between NP-
hardness and containment in PSPACE for the existential interval-bound problem
seems intricate and it is a part of our future work.



Infinite Runs in Weighted Timed Automata with Energy Constraints 23

games existential problem universal problem

finite 1-clock finite 1-clock finite 1-clock

L
∈ UP ∩ coUP ∈ P (Th. 7)

∈ P ∈ P ∈ P

P-h (Th. 13) (Th. 9) (Th. 7) (Th. 9)

L+W
∈ NP ∩ coNP ∈ P (Th. 7)

∈ P ∈ P ∈ P

P-h (Th. 13) (Th. 9) (Th. 7) (Th. 9)

L+U
EXPTIME-c Undec. ∈ PSPACE ∈ P

(Th. 14) (Th. 17) NP-h (Th. 15) (Th. 16)

Table 1. Summary of our results
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