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Abstract

Spatial logics have been proposed to reason locally and modularly
on algebraic models of distributed systems. In this paper we investi-
gate a spatial equational logic (AπL) whose models are processes of the
applied π-calculus, an extension of the π-calculus allowing term ma-
nipulation modulo a predefined equational theory, and wherein com-
munications are recorded as active substitutions in a frame. Our logic
allows us to reason locally either on frames or on processes, thanks
to static and dynamic spatial operators. We study the logical equiv-
alences induced by various relevant fragments of AπL, and show in
particular that the whole logic induces a coarser equivalence than
structural congruence. We give characteristic formulae for this new
equivalence as well as for static equivalence on frames. Going further
into the exploration of AπL’s expressivity, we also show that it can
eliminate standard term quantification, and that the model-checking
problem for the adjunct-free fragment of AπL can be reduced to sat-
isfiability of a purely first-order logic of a term algebra.

1 Introduction

A spatial equational logic. Spatial logics [10, 4] have been proposed to
reason locally and modularly on algebraic models of distributed systems.



They share a lot of similarities with BI and Separation Logic [19] which
both have resource sharing and local reasoning as central concepts. Two
essential connectives in these logics are parallel composition and adjunct. The
parallel composition A |B, which corresponds to the separating conjunction
A∗B, asserts that A and B hold on disjoint components, whereas the adjunct
A ! B, which corresponds to the magic wand A −−∗ B, states that when a
component verifying A is plugged in then B holds for the resulting system.
In this paper we investigate a spatial equational logic: term equality M = N
is defined by an equational theory E and a frame φ, i.e. a finite set of local
axioms, and ∗ splits the frame into smaller sets of local axioms. For instance,
(f(x) = c) ∗ (f(x) #= c) states that some subset of the local axioms implies
f(x) = c and that f(x) = c does not hold in E , whereas (f(x) #= c) −−∗ ⊥
states that f(x) = c is a consequence of E without any local axiom.

This spatial equational logic, written AπL below, naturally arises as the
spatial logic of the applied π-calculus. Applied π-calculus (Aπ) [1] is an ex-
tension of π-calculus [17] where processes may communicate terms through
channels. One peculiar aspect of Aπ is that the processes keep the history
of their past communications in active substitutions, written {M/x}, acting
as local axioms that extend the equational theory. For instance, a process
νn. ā〈f(n)〉.P may evolve into νn. P |{f(n)/x} for some fresh x. This allows
any context aware of x to use it as an alias for f(n), even if n is a restricted
name that is not directly visible to the context. In a cryptographic inter-
pretation, one might then be interested in knowing whether or not n can be
reconstructed from the public knowledge of f(n), which might be the case if
for instance ∀t.g(f(t)) = t holds in E .

Deducibility can be quite simply formalized in AπL: in the previous ex-
ample, we will say that some restricted name n is deducible in the frame
φ = νn. {f(n)/x} if ∃t.Nn. (t = n) holds in φ. In this formula, ∃ is the stan-
dard term quantifier: ∃t. A holds if there is a capture-avoiding term M such
that A[t←M ] holds, and N is the hidden name quantifier [4]: Nn. A holds
for νn. P if A holds for P .

Motivations. In AπL, the active and static aspects of Aπ are addressed
by two distinct families of connectives: ∅, ∗,−−∗ for frames, and 0, ", !,♦ for
plain processes. The static part of the logic allows one to treat the frame
as a shared knowledge on which one may reason locally. For instance, (x =
M) ∗ ((x = M ′) −−∗ Attack) expresses that a process becomes vulnerable if an
attacker picks an emitted message M and replaces it by M ′. The dynamic
part of the logic allows one to reason about the execution in isolation of some
partners of a given protocol, or in a context which abides by some policy of
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the protocol: formulae Client " Server, or Client ! Attack, would describe a
protocol with a client and a server, or a server that might be attacked by
a context acting as the specification of a honest client. The semantics of
A " B requires some attention: every part of the process is ran with its own
copy of the frame, while some nonces might be shared between one side of
the plain process and the frame, but not between the two sides of the plain
process; for instance, νn. (φ | Server(n) |Client) will satisfy Server " Client if
νn. (φ | Server(n)) satisfies Server and νn. .(φ |Client) satisfies Client.

In the context of process algebrae, spatial logics raise the question of
what spatial equivalence is defined by means of logical equivalence for sev-
eral fragments of the logic. The fragments considered are said to be static if
they do not include the (strong) time modality, and extensional if the inten-
sional connectives |,N are dropped and the logic only keeps adjuncts. Each
of these fragments defines a logical equivalence, which provides alternative
characterizations of some operational or syntactic equivalences. For instance,
in the case of π-calculus, logical equivalence is structural congruence [12, 8],
whereas extensional logical equivalence is barbed-congruence [11].

Spatial logics introduce many new connectives, which may give them
a somewhat baroque aspect. Several expressiveness results propose how
to reduce these logics, e.g. with adjuncts or quantifiers elimination proce-
dures [15, 5], but which may not be directly adaptable to any model.

Contributions. Our first contribution is the characterization of the logical
equivalences of the static, static extensional, and dynamic intensional frag-
ments. Static fragments turn out to play similar roles as in the case of the π-
calculus: static intensional equivalence is proved to coincide with structural
congruence for frames, whereas static extensional logical equivalence coin-
cides with static equivalence, the observational equivalence for frames [1]. In
both cases, characteristic formulae are derivable. However, logical equiva-
lence for the dynamic intensional fragment is proved to be coarser than ≡,
albeit finer than standard observational equivalence. We point some admis-
sible axioms for logical equivalence that show that our logic defines a strictly
coarser equivalence than ≡, and prove this axiomatization complete at least
for the equational theory of finite trees.

Our second contribution is a quantifier elimination technique which shows
that standard term quantifiers ∃t. A can be mimicked by other connectives.
The proof is based on an embedding of a valuation into the process that
is similar to the technique used to eliminate name quantification in the π-
calculus [5].

Our third contribution is a reduction of the model-checking problem of

3



the adjunct-free fragment of AπL to the satisfiability problem of a first-
order logic deprived of all spatial connectives. Indeed, the target logic is a
first-order logic of a term algebra featuring several equivalence relations; we
show that the first-order theory of this structure is decidable under some
assumptions on the equational theory.

Related work. Blanchet et al. have developed a decision procedure for a
finer notion than barbed-congruence, and have implemented it in the tool
ProVerif [2]. Several contributions were made by Kremer et al. about the
formalization of non-trivial cryptographic protocols and advanced security
properties, such as receipt freeness and coercion resistance in electronic voting
protocols [14]. In these cases, the security property is not mere resistance
to an either active or passive attacker, since the attacker is constrained and
has to follow some specification. We believe that this kind of problems is a
challenging issue for applications of spatial logics.

Spatial logics for process algebrae with explicit resources have been first
studied by Pym [18]. The idea of distributing assertions about knowledge
in space using spatial logics has been explored by Mardare [16]. Hüttel
et al. gave a logical characterization and characteristic formulae for static
equivalence [13], but had to make some assumptions on the equational theory.

Structure of the paper. In Section 2, we collect all the necessary back-
ground on Aπ, and define our process compositions ∗ and ". Section 3 in-
troduces AπL; Sections 4 and 5 present the characterizations of the logical
equivalences for the static and dynamic fragments respectively. Section 6
establishes the quantifiers elimination property, and Section 7 explains the
model-checking technique by reduction to a simple first-order logic.

Acknowledgments. We acknowledge Jean Goubault-Larrecq, Steve Kre-
mer and Stéphanie Delaune for valuable discussions.

2 Applied π-calculus

2.1 Terms

The grammar of applied π-calculus processes relies on the definition of a set
of terms along with an equational theory, thus letting the user decide which
cryptographic primitives the calculus will use. The set of terms is constructed
using disjoint infinite sets V and N of respectively variables and names, and
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a finite signature Σ, which is a set of functions, each with its arity (constants
have arity 0). Its grammar is as follows (ar(f) is the arity of f):

M, N ::= terms
x, y, z, . . . variables
a, b, c, m, n, s, . . . names
f(M1, . . . ,Mar(f)) function application

Notations 2.1 We will use the letters a, b, c, n, m, s to refer to elements
of N , x, y, z for elements of V and u, v, w for “meta-variables” which may
belong either to N or V . We will write M, N for terms.

These terms are equipped with an equivalence relation E called an equa-
tional theory on Σ, where membership of a couple (M, N) of terms is written
E - M = N , or simply M = N if E is clear from context. This relation
must be closed under substitution of terms for variables or names (M1 = M2

implies M1[u←N ] = M2[u←N ]) and context application (N1 = N2 implies
M [x←N1] = M [x←N2]). fn(M) and fv(M) are respectively the sets of free
names and free variables of M , defined as usual, and fnv(M)!fn(M)∪fv(M).
A term with no free variables is said to be ground.

2.2 Processes

Applied π-calculus extends the standard π-calculus with primitives for term
manipulation, namely active substitutions and term communications. The
grammar of processes is split into two levels: the plain processes, written
P p, Qp, . . . which account for the dynamic part, and the extended ones, also
referred to simply as “processes” and written P, Q, . . . which extend the
former with a static part. It is presented in Figure 1. Note that replication
!P p is not part of our setting.

This grammar allows communications of two kinds, that may not inter-
fere: communications of names behave as in the standard π-calculus whereas
communications of terms may interact with active substitutions and condi-
tionals. Names are thus allowed to serve both as channels through which
communications may occur and as atoms on which to build terms, without
the need to rely on a type system to ensure the validity of communications,
as it is the case in the original applied π-calculus.

From now on, we will only consider extended processes whose active sub-
stitutions are cycle-free. Furthermore, we will always assume that there is at
most one active substitution for each variable, and exactly one if the variable
is restricted. A process following these constraints will be called well-formed,
all others being ill-formed.
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Figure 1 Grammar of processes

P p, Qp ::= plain processes
0 null process
P p |Qp parallel composition
νa. P p name restriction
ach(n).P p name input
āch〈n〉.P p name output
a(x).P p term input
ā〈M〉.P p term output
if M = N then P p else Qp conditional

P, Q ::= (extended) processes
P p plain process
{M/x} active substitution
P |Q parallel composition
νa. P name restriction
νx. P variable restriction

Notations 2.2 The set of free names (resp. variables) of a process P is
defined as usual and written fn(P ) (resp. fv(P )), with fn({M/x}) ! fn(M)
(resp. fv({M/x}) ! {x}∪ fv(M)), and with both restrictions and both inputs
being binders. We write fnv(P ) for the set fn(P ) ∪ fv(P ).

Compositions of active substitutions of the form {M1/x1} | · · · |{Mn/xn} will

be written {M1...Mn/x1...xn}, or {fM/̃x}, and referred to using σ, τ . Trailing 0’s in
processes will often be omitted, as well as null else branches in conditionals.

2.3 Operational semantics

The structural congruence relation≡ identifies processes that can be obtained
one from another by mere rewriting. It is the smallest equivalence relation
on well-formed extended processes that is stable by α-conversion on both
names and variables and by application of contexts, and that satisfies the
rules described in Figure 2. Here, a context is an extended process with a
hole instead of a plain process. This hole can be filled with any extended
process provided the resulting extended process is well-formed.

According to the rules for active substitutions, two structurally congruent
processes may not have the same set of free names or variables. Thus, we
define the closures fn(P ), fv(P ), fnv(P ) of these sets up to structural congru-
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Figure 2 Rules for structural congruence

Par-0 P ≡ P |0
Par-A P |(Q |R) ≡ (P |Q) |R
Par-C P |Q ≡ Q |P

New-0 νn.0 ≡ 0
New-C νu. νv. P ≡ νv. νu. P
New-Par P | νu. Q ≡ νu. (P |Q)

if u /∈ fnv(P )

Alias νx. ({M/x} |P ) ≡ P [x←M ]
Subst {M/x} |P p ≡ {M/x} |P p[x←M ]
Rewrite {M/x} ≡ {N/x} if E - M = N

ence, as well as the corresponding sets for terms:

fn(P ) !
⋂

Q≡P

fn(Q) fv(P ) !
⋂

Q≡P

fv(Q) fnv(P ) ! fn(P ) ∪ fv(P )

fn(M) !
⋂

N=M

fn(N) fv(M) !
⋂

N=M

fv(N) fnv(M) ! fn(M) ∪ fv(M)

It is worth mentioning that rules Alias and Subst are not the ones from
the original applied π-calculus, which are:

Alias’ νx. {M/x} ≡ 0
Subst’ {M/x} |P ≡ {M/x} |P [x←M ]

This is to allow active substitutions to apply to other active substitutions
only if their domain contains only restricted variables, and only apply to
plain processes otherwise. As such, the rule Alias is still valid in our setting,
whereas Subst’ is restricted to plain processes only. This does not change
neither the reduction relation presented below, nor the fact that one can
always rewrite an extended process to get rid of its variable restrictions.
Indeed, a process P can always be rewritten into a set of restricted names ñ,
a public composition of active substitutions σ and a public plain process Q:
P ≡ νñ. (σ |Q).

Finally, the reduction rules are presented in Figure 3. Internal reduction
→ is the smallest relation that satisfies those rules and that is closed by
structural congruence and by application of evaluation contexts, that is to
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say contexts where the hole is in place of an extended process instead of a
plain one.

Figure 3 Reduction rules

Comm-T ā〈x〉.P | a(x).Q → P |Q
Comm-C āch〈m〉.P | ach(n).Q → P |Q[n←m]
Then if M = M then P else Q → P
Else if M = N then P else Q → Q

(when M and N are ground and E ! M = N)

2.4 Frames

A frame is an extended process built up from active substitutions and the
null process only. The domain dom(φ) of a frame φ is the set of variables
upon which the active substitutions of φ act. The frame φ(P ) of a process P
is P in which every plain process embedded in P is set to 0. Similarly, the
plain process (P )p associated with P is obtained by mapping every substi-
tution over non-restricted variables to 0. Frames behave consistently w.r.t.
structural congruence, as expressed by the following lemma:

Lemma 2.3 If P ≡ Q then φ(P ) ≡ φ(Q).

Proof Suppose a proof of P ≡ Q. A proof of φ(P ) ≡ φ(Q) can be obtained
by setting every plain process embedded into P or Q to 0 into the proof, and
then suppressing the portions of the proof tree that mention them (and which
are now irrelevant). "

However, it does not hold that P ≡ Q implies (P )p ≡ (Q)p: considering
P = {y/x} | ā〈x〉 and Q = {y/x} | ā〈y〉, P ≡ Q holds but not ā〈x〉 ≡ ā〈y〉.

Definition 2.4 (Closed frame) φ is closed when fv(φ) ⊆ dom(φ).

Definition 2.5 We say that two terms M and N are equal in the frame φ,
and write φ - M = N when there exists a set of names ñ and a substitution
σ (i.e. a public frame) such that φ ≡ νñ. σ, Mσ = Nσ and ñ∩fn(M, N) = ∅.

We say that two terms are equal in the process P , and write P - M = N ,
if they are equal in φ(P ).

Definition 2.6 Two closed frames φ and ψ are said to be statically equiv-
alent, written φ ≈s ψ, when dom(φ) = dom(ψ) and, for all terms M and N ,
φ - M = N if and only if ψ - M = N .

Two processes are statically equivalent, written P ≈s Q, when their
frames are.
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2.5 Additional operators

When splitting up a process P into a parallel composition of two subprocesses
P1 |P2, two very different operations are performed, as both the dynamic
and the static part of the process are split up into two extended processes.
This does not match our intuition of local reasoning for processes: consider
a protocol νn, n′.

(
{ck(n,n′)/x} |A(x, n) |B(x, n′)

)
where Abelard and Hélöıse

share a compound key ck(n, n′) generated from a nonce n of A and n′ of
B. Then a specification of the form A |B would not work since this process
is atomic. To overcome this situation we have broken down the parallel
composition into two finer-grained operators: the first one, ", keeps the same
frame while splitting up the plain process and conversely the second one, ∗,
keeps the same plain process while splitting up the frame.

Because the strict separation between the frame and the plain process of
an extended process might not be syntactically obvious, these two operations
need to be defined up to structural congruence. For this purpose, we first
define them for a restricted class of processes for which composition using “"”
or “∗” is obvious, and then extend the definitions to every couple of processes
which may be rewritten into two such processes.

Definition 2.7 Given φ a frame, P1, P2 plain processes, and ñ1, ñ2 such
that {ñ1} ∩ fn(P2) = {ñ2} ∩ fn(P1) = ∅, we let:

νñ1. ((νñ2. φ) |P1) " νñ2. ((νñ1. φ) |P2) ! νñ1ñ2. (φ |P1 |P2).

We write P ↔ P1 " P2 if there are P ′, P ′
1, P

′
2 such that P ≡ P ′, P1 ≡ P ′

1,
P2 ≡ P ′

2, and P ′ = P ′
1 " P ′

2.

Definition 2.8 Given φ1, φ2, P, ñ1, ñ2 such that {ñ1} ∩ fn(φ2) = {ñ2} ∩
fn(φ1) = ∅ and φ1 |φ2 is well-formed, we let:

νñ1. (φ1 | νñ2. P ) ∗ νñ2. (φ2 | νñ1. P ) ! νñ1ñ2. (φ1 |φ2 |P ).

We write P ↔ P1 ∗ P2 if there are P ′, P ′
1, P

′
2 such that P≡ P ′, P1 ≡ P ′

1,
P2 ≡ P ′

2, and P ′ = P ′
1 ∗ P ′

2.

Remark 2.9 Every process P is structurally congruent to one built up
using frame ( ∗ ) and plain process ( " ) compositions in lieu of the parallel
one ( | ).

Remark 2.10 Formally, P ↔ P1 ∗ P2 is a ternary relation, and for some
P1, P2, one may have P ↔ P1 ∗ P2, P ′ ↔ P1 ∗ P2 for some non congruent
P, P ′.
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Ternary relations also arise in the relational models of BI, or in context
logics. Albeit not a composition law, ∗ projects as a composition on frames:
φ(P ∗ Q) ≡ φ(P ) |φ(Q). Though not composition laws, ∗ and " still enjoy
some nice properties. First, ∗ projects as a composition on frames: φ(P ∗
Q) ≡ φ(P ) |φ(Q). Second, " is a composition law for a restricted class of
equational theories (see appendix). We say that an equational theory E is
dually symmetric if for all terms M , for all name permutations σ such that
E - Mσ = M , and for all n, E - M [n ↔ σ(n)] = M . If E is dually
symmetric, then " defines a composition law:

Proposition 2.11 Let E be a dually symmetric equational theory. If P , Q,
P ′, Q′ are extended processes such that P ≡ P ′, Q ≡ Q′, and such that P " Q,
P ′ " Q′ are defined, then P " Q ≡ P ′ " Q′.

The proof of this proposition can be found in Appendix A. The dual
symmetry property holds for instance for the free algebra theory, for the
theory of commutative monoids, but it does not hold for a theory with pairing
and an AC operator ⊕. We expect it should still be a reasonable hypothesis
for some case studies.

3 A spatial logic for the applied π-calculus

3.1 Syntax and semantics

We assume an infinite set T V of term variables, distinct from V , ranged
over by t, t′, . . . , and we write U, V for terms that possibly contain these
term variables. We call Lspat the set of formulae defined by the following
grammar:

A, B ::= U = V | ¬A |A ∧B | ∃t. A |♦A |Nu. A | c©u |0 |A " B | ∅ |A ∗B
|A !u |A ! B |A −−∗ B

U = V is the equality of terms w.r.t. the current frame; negation and
conjunction are classical; ∃t. A is term quantification and ♦A is the strong
reduction modality. Nn. A is the hidden name quantification and Nx. A the
hidden variable quantification. We use the same operator for both of these,
as well as for the c© and !operators, because our convention on naming lets
us do so unambiguously. c©u means u is free in the process; 0 is the null
plain process, A " B is plain process composition; ∅ is the empty frame; A ∗B
is frame composition; A !u is hiding. A ! B and A −−∗ B are guarantee
operators and are the adjuncts of (respectively) A " B and A ∗B.
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Notations 3.1 Fragments of the above logics will be defined using the no-
tation L\O or L∪O, where L is an already defined logical fragment and O
a set of operators. L \ O is the fragment L restricted to operators not in O
and L ∪O is L augmented with operators of O.

There are two main fragments to consider when studying spatial logics:
the extensional one, which lets one observe a process via its interactions with
some (possibly constrained) environment, and the intensional one, which lets
one explore the very structure of the process.

Here, the intensional fragment corresponds to the whole logic Lspat. To
define the extensional fragment, we make use of the fresh name and variable
quantifications written Iu. A, which can be defined using other operators
of the logic, as shown in Figure 5 at the end of this section1: Lext ! Lspat \
{N, c©,0, ", ∗} ∪ {I}.

Moreover, we define static fragments of the intensional and extensional
fragments as: Lstat

i ! Li \ {0, ", !,♦, c©} for i in {int, ext}.
The operators’ semantics, close to the one defined by Caires and Cardelli

for the π-calculus [4], is given by a satisfaction relation described in Figure 4
with judgements of the form P, v # A between a process P , a spatial formula
A and a valuation v. Valuations assign terms M̃ to all the free variables t̃
of the formula and are written {t̃→M̃} when v(ti) = Mi for all i ∈ {1 . . . n}.
We write v{t→M} for the valuation v whose domain has been extended to
t with v(t) = M . Finally, when A is closed and the valuation is empty,
judgements are written P # A.

Lemma 3.2 The satisfaction relation is stable under structural congruence:
P # A and P ≡ Q implies Q # A.

Lemma 3.3 For every formula A of Lstat, P # A iff φ(P ) # A.

Boolean operators are assumed to bind more tightly than compositions
and adjunctions, which in turn bind more tightly than every other operator.

Derived connectives ∀t, ∨, ⇒ and U #= V are defined as usual, as well as
the sets of free names and free variables of a formula A, written fn(A) and
fv(A).

3.2 Examples

Some basic formulae, which will be useful in the following sections, are shown
in Figure 5. Their meanings for a process P is that there must exist a process

1It is a known fact, which holds also for our logic, that spatial logics may be defined
equivalently using either I and $ or N and c©. We chose the latter form to make capture-
avoidance w.r.t. term quantification immediate.
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Figure 4 Satisfaction relation

P, v # U = V ⇔ P - Uv = V v
P, v #¬A ⇔ P, v " A
P, v # A1 ∧ A2 ⇔ P, v # A1 and P, v # A2

P, v # ∃t. A ⇔ ∃M. P, (v{t→M}) # A
P, v #♦A ⇔ ∃P ′. P → P ′ and P ′, v # A
P, v #Nu. A ⇔ ∃u′ /∈ fnv(P, v, A).∃P ′. P ≡ νu′. P ′ and P ′, v # A[u←u′]
P, v # c©u ⇔ u ∈ fnv(P )
P, v #0 ⇔ (P )p ≡ 0
P, v # A1 " A2 ⇔ ∃P1, P2. P ≡ P1 " P2, P1, v # A1 and P2, v # A2

P, v # ∅ ⇔ φ(P ) ≡ 0
P, v # A1 ∗ A2 ⇔ ∃P1, P2. P ≡ P1 ∗ P2, P1, v # A1 and P2, v # A2

P, v # A !n ⇔ νn. P, v # A
P, v # A !x ⇔ x ∈ dom(P ) and νx. P, v # A
P, v # A ! B ⇔ ∀Q, R. (R ↔ P " Q and Q, v # A) implies R, v # B
P, v # A −−∗ B ⇔ ∀Q, R. (R ↔ P ∗Q and Q, v # A) implies R, v # B

Figure 5 Basic formulae

;! 0 ∨ ¬0 ⊥! ¬; A[B] ! (A ∧ 0) "((B ∧ ∅) ∗ ;)

A % B ! ¬(A ! ¬B) A −−∗¬ B ! ¬(A −−∗ ¬B) 1 ! ¬0 ∧ ¬(¬0 "¬0)

I ! ¬∅ ∧ ¬(¬∅ ∗ ¬∅) public ! ¬Nn. c©n single ! 1 ∧ ∅ ∧ public

In. A ! Nn. A ∧ ¬ c©n Ix. A ! Nx. (I ∧ public) ∗ (A ∧ ¬ c©x)
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Q ≡ P such that:

• ;: nothing is required; ⊥ is always false;

• A[B]: φ(Q) verifies A and (Q)p verifies B;

• A % B (this is the dual of !): there are Q′, R such that R ↔ Q " Q′,
Q′ # A and R # B, and similarly for −−∗¬;

• 1 (resp. I): (Q)p (resp. φ(Q)) is not null and cannot be divided into
two non-null processes;

• public: Q has no bound name: ∀n, Q′. Q ≡ νn. Q′ ⇒ n /∈ fn(Q′);

• single: Q is guarded, either by a communication or by a conditional
construct.

• Iu. A: there exists u′ /∈ fnv(P, A) such that P # A[u←u′];

As already mentioned, one may formalize some standard secrecy proper-
ties in AπL. For instance, ∃t.∀t′.Nn. (t = pk(n) ∧ t′ #= sk(n)) asserts that
some public key is publicly available whereas its associated private key is
secret.

4 Logical characterization of processes

In this section we give an axiomatization of the logical equivalence induced
by the dynamic intensional fragment. We moreover prove it to be complete,
with characteristic formulae, when the equational theory E is the one of finite
trees.

We write P =L Q if P, Q cannot be discriminated by Lspat formulae. We
say that a process P is non branching if it does not contain a subprocess

if M = N then P else Q,

and we say it is in the π-calculus if moreover the only communications are
channel communications.

4.1 Channel communications

Theorem 4.1 For every π-calculus process P , there is a formula FP ∈ Lspat

such that for every extended process Q, Q |= FP if and only if Q ≡ P .
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The formula FP is defined by induction on P . The induction step for
channel communications calls on formulae comch.A such that P satisfies
comch.A if P is comch.P ′ and P ′ satisfies A. Figure 6 summarizes the con-
struction.

Figure 6 Formulae for names communications

atom(a, b)! c©a∧ c©b∧(single%♦0) testch(a, b)!atom(a, b)∧¬Nx.;[ c©x]

inch(a, b).A ! single ∧ ¬♦; ∧Ib. testch(a, b) %♦A

outch(a, b).A ! single ∧Ib′. (inch(a, c).testch(b′, c) !♦(testch(b′, b) " A))

Formula testch(a, b) characterizes the processes of the form ā〈b〉 or b̄〈a〉,
and is then used to characterize communication primitives.

4.2 Term communications and conditionals

Characterizing term communications and conditionals is much harder due to
the equational theory. For this section only, we first assume that we work
with the equational theory of finite trees, and then discuss some intuitions
on the general case.

The first widget we need is a formula c©s
=x that characterizes the processes

where x does not occur as a strict subterm of one of the terms appearing
in the plain part of the process. It is then quite simple to characterize
processes ā〈x〉. From this, we may also characterize ā〈M〉 by revealing x in
νx. ({M/x} | ā〈x〉), and from there all communications can be characterized.
Figure 7 presents the whole construction.

Theorem 4.2 Let E be the theory of finite trees. Then for every non-
branching process P , there is a formula FP ∈ Lspat such that for all extended
processes Q, Q |= FP if and only if Q ≡ P .

We can use the same technique to characterize the test of conditionals,
as any conditional is congruent to νx, y. ({M/x} |{N/y} | if x = y then P else Q).
However, we need to be slightly more careful when we reveal variables x, y,
since we do not want to let them appear in P, Q. For this, we need to char-
acterize the variables that appear inside one of the branches of a conditional,
but not inside the test itself: this is the purpose of formula c©brx. We have
that P # c©brx iff P ≡ if M = N then P1 else P2 with x ∈ fv(P ) \ fv(M, N).

14



Figure 7 Formulae for terms communications

c©s
=x !;[ c©x] ∧ ¬Nz. (z #= x ∧ c©x)[ c©z]

out(a, x) ! single ∧ c©a ∧ c©s
=x ∧ (single %♦0)

in(a, x).A ! single ∧ ¬♦; ∧Ix. out(a, x) !♦A

out(a, M).A ! Nx. (x = M)

[
Ib. in(a, y).out(b, y)!
♦

(
out(b, x) "(A ∧ ¬ c©x)

)
]

Figure 8 Formulae for conditionals

if ! single ∧ ; −−∗¬ ♦; c©brx ! if ∧Nz, z′.;[(¬ c©x)[;] −−∗¬ ;[♦ c©x]]

if(M = N, A,B) ! if ∧Ix, y. Subst(x = M, y = N) −−∗

;




c©s

=x ∧ c©s
=y ∧ ¬ c©brx ∧ ¬ c©bry

∧Subst(x = y) −−∗ ;[♦A]
∧Is, s′. Subst(x = s, y = s′) −−∗ ;[♦B]




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Let ∼ be the smallest equivalence on pairs of terms M = N such that:

Symmetry M = N ∼ N = M

Shift (f(M) = N ∼ M = (g(N)

where we use (f(M) and (g(N) to respectively abbreviate f1(f2(. . . fn(M) . . . ))
and g1(g2(. . . gm(N) . . . )) for some unary function symbols fi, gi such that
E - (f((g(x)) = (g((f(x)) = x. Note that such symbols do not exist in the
theory of finite trees. Let ≡′ be the smallest congruence extending ≡ with
the following axiom:

Test
if test
then P else Q

≡′ if test′

then P else Q

when test ∼ test′. Then the following holds:

Theorem 4.3 Let E be the theory of finite trees. Then for every process P
there is a formula FP ∈ L such that for all Aπ processes Q, Q |= FP if and
only if Q ≡′ P .

Let us drop now our hypothesis on the equational theory. Then the
following result can be established:

Theorem 4.4 ≡′ ⊆ =L.

Corollary 4.5 Let E be the theory of finite trees. Then ≡′ is the same as
=L.

We do not know if ≡′ is a complete axiomatization of =L in the general
case, but we presume it is not a congruence, as it is the case for some other
spatial logics [5].

5 Elimination of term quantification

This section is devoted to the proof of the following theorem:

Theorem 5.1 (Term quantification elimination) For every closed for-
mula A ∈ L, there is a formula "A# ∈ L \ {∃} such that A⇔"A# is valid.
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"A# is defined by structural induction on the formula A. It leaves most
of A’s structure unchanged, while replacing every subformula ∃t. A′ with a
formula of the form Nx. "A′#{t→x}. Thus, it leaves the term quantification to
N, which has to pick a term for the new active substitution on x it reveals.
Further occurrences of t in the formula will have to be replaced by the variable
used for this new substitution. Of course, to follow the semantics of ∃t. A we
also have to make sure that this substitution does not use any hidden name
of the process or any substitutions created by the traversal of previous term
quantifications. This builds up an environment frame placed alongside the
actual process that records witnesses of term quantifications, but for which
some maintenance work is needed during the translation of a formula. For
instance, we will need to copy this environment on each side of a ∗ operator,
and on the left-hand side of a −−∗.

To keep track of this environment frame, the translation will be of the
form "A#v where v is a valuation {t1→x1, . . . , tn→xn} that lets previously
encountered term variables point to their corresponding variables in the en-
vironment. The translation thus starts with an empty valuation: "A#!"A#∅,
and the valuation grows up each time a term quantification is encountered.
We write e for the environment {x1→M1, . . . , xn→Mn} corresponding to

the environment frame "e# ! {fM/̃x}. Moreover, we only consider environ-

ments e and translations "A#v where fv(A, M̃) ∩ x̃ = ∅. Finally, when the
domain of e matches the codomain of v, we write e ◦ v for the valuation
{t1→M1, . . . , tn→Mn}.

We are now ready to give the inductive lemma we want to prove on "A#v:

Lemma 5.2 (Inductive hypothesis) P # "A#v if and only if there exists
Q and e such that P ≡ Q |"e#, fv(Q) ∩ dom("e#) = ∅, and Q, e ◦ v # A.

To meet the requirements of this lemma and make sure that P actually
is the composition of a process Q and an environment frame corresponding
to e, we first define a formula Φv that will have to be verified at every step
of the translation:

Φ{t̃→x̃} !
∧

x∈x̃

(Subst(x) ∗ ¬ c©x)

Lemma 5.3 For all processes P and valuations v, P # Φv if and only if
there exists a process Q and an environment e such that P ≡ Q |"e# and
fv(Q) ∩ dom("e#) = ∅.

The translation of all the operators of the logic can be found in Ap-
pendix C. Given below are the proof sketches for the translations of ∃t. A
and A1 ∗ A2. Let us first give an immediate property of the translation:
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Lemma 5.4 fv("A#v) = fv(A, v).

The actual translation of term quantification is as follows, where xn+1 /∈
fv(A, v):

"∃t. A#v ! Φv ∧Nxn+1. "A#v{t→xn+1}

This is just a matter of creating a fresh substitution, as the inductive
hypothesis on "A#v{t→xn+1} suffices to enforce the validity of the new envi-
ronment frame.

The translation of frame composition needs the valuation frame to be
copied in order for it to be present alongside both subprocesses. It is per-
formed as follows:

"A1 ∗ A2#v ! Φv ∧Ix̃′. (Φv′ ∧
∧

x∈x̃

¬ c©x ∧ Subst(x̃′)) −−∗¬

(
∗n

i=1(Subst(xi, x′i) ∧ x′i = xi) ∗ ;
∧"A1#v ∗ "A2#v′

)

The idea is to add a new environment frame over fresh variables x̃′. The
left-hand side of −−∗¬ ensures that this is a valid environment which does not
make use of the variables of the previous environment. This is to avoid the
possibility of creating active substitutions of the form {x/x′} which would not
make sense once we separate them from the first environment. The right-
hand side makes sure that both environments are the same and distributes
them over the interpretations of sub-formulae A1 and A2.

6 Decidability of the logic without adjuncts

In this section we investigate the decidability of the model-checking problem
for frames. We do not consider the adjuncts−−∗, !, as they allow to internalize
validity, and validity of the logic with the hidden-name quantifier is undecid-
able [7]. Hence we consider the fragment Lnadj!Lstat

int \{NV ,−−∗}∪{ c©}, where
NV is the hidden variable quantifier. We first prove that the model-checking
problem for Lnadj on frames reduces to the satisfiability problem for a light
equational logic Leq, and then investigate the decidability of the satisfiability
problem for Leq.

6.1 From spatial to equational

The target logic Leq we want to compile spatial formulae into is described
below, and its semantics is given by the satisfaction relation between valua-
tions and formulae of Figure 9. As we will see later on, satisfiability of this
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logic is decidable when we restrict the form of U=σV .

F ::= U=σV | n ∈ fn(t) | x ∈ fv(t)
| F ∧ F | ¬F | ∃t. F | In. F

Figure 9 Satisfaction relation

v #eq U=σV ⇔ E , σ - Uv = V v
v #eq n ∈ fn(t) ⇔ n ∈ fn(v(t))
v #eq x ∈ fv(t) ⇔ x ∈ fv(v(t))
v #eq F1 ∧ F2 ⇔ v #eq F1 and v #eq F2

v #eq ¬F ⇔ v "F F
v #eq ∃t. F ⇔ ∃M. v{t→M} #eq F
v #eq In. F ⇔ ∃n′ /∈ fn(v, F ). v #eq F [n←n′]

We will now present our reduction, and establish the following theorem:

Theorem 6.1 For every frame φ and formula A of Lnadj there is a formula
$φ# A% of Leq such that:

φ # A if and only if $φ# A% is valid.

Notations 6.2 We write t̃ = t̃′ for
∧n

i=1 ti = t′i and codom(σ) for the
codomain of σ. Arities are implicitly supposed to match: for instance, in
∃t̃. t̃ = codom(σ), t̃’s size is implicitly chosen to match the size of codom(σ).
Finally, (∅ -U = V ) may be written U = V .

Let φ # A be a model-checking instance, with φ a frame and A a formula
of Lnadj. We first have to rewrite φ to consist of a set of restricted names ñ
and a public frame σ. The translation then starts with $φ# A% ! $ñ, σ, A%.

The translation is done by induction on the formula A. We maintain a
list h̃ of hidden names that will be updated whenever we go through a hiding
or a revelation operator. The inductive property we want to prove on the
translation, and of which Theorem 6.1 is a direct consequence is as follows:

Lemma 6.3 (Inductive hypothesis) For all v, σ, A and h̃:

v # $h̃, σ, A% if and only if (νh̃. σ), v # A.

Let us now give the translation of all operators.
The translation of c©u follows its semantics and thus is quite straightfor-

ward. It is defined as ⊥ when u ∈ h̃, ; when u ∈ dom(σ), and as shown
below otherwise, fnv being fn when u is a name and fv when u is a variable.

$h̃, σ, c©u% ! ∀t̃. t̃ = codom(σ) ⇒ u ∈ fnv(t̃)
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When hiding a variable x ∈ dom(σ), we need to apply the corresponding
substitution to the rest of the frame and then throw the substitution on x
away. Thus, if x /∈ dom(σ), then $h̃, σ, A !x% !⊥, and otherwise we let:

$h̃, σ |{M/x}, A !x% ! $h̃, σ[x←M ], A%

Hiding a name consists merely of adding h to the set of hidden names,
and term quantification is left as-is, since the semantics of ∃t for AπL and
Leq are the same. As we know all the hidden names of the frame, we can
treat name revelation as a disjunction over those names, plus one fresh extra
name to model the fact that we can reveal “fake” hidden names:

$h̃, σ, A !h% ! $(h̃, h), σ, A% $h̃, σ,∃t. A% ! ∃t. $h̃, σ, A%

$h̃, σ,Nn. A% ! Ih′.
∨

h∈h̃,h′

$(h̃ \ h′), σ[h←h′], A[n←h′]%

To translate equality judgements, one has to take care of the hidden
names of σ, as Leq only allows public frames in its grammar. To overcome
this situation, we first replace the names h̃ of σ that should be restricted
with fresh names h̃′ such that h̃′ ∩ fn(σ, U, V ) = ∅. It is easy to check that
these fresh names behave like hidden names for the equality test.

$h̃, σ, U = V % ! Ih̃′. U=σ[h̃←h̃′]V

To translate ∗, we need to be able to state that the set of hidden names
appearing in two subframes are disjoint one from another up to rewriting of
terms using the equational theory. This is achieved by defining the operator
Ũ⊥h̃Ṽ below which states that two sets of names Ũ and Ṽ may be rewritten
not to share names in h̃:

Ũ⊥h̃Ṽ ! ∃Ũ ′, Ṽ ′. Ũ Ṽ = Ũ ′Ṽ ′

∧
∧

h∈h̃(h ∈ fn(Ũ ′) ⇒ h /∈ fn(Ṽ ′))

The translation of frame composition then only needs to quantify over
all valid frame compositions. Here, {σ1, σ2} range over 2-partitions of σ
considered as the set of its active substitutions.

$h̃, σ, A1 ∗ A2% !
∨

σ1 |σ2≡σ

(
codom(σ1)⊥h̃codom(σ2)
∧$h̃, σ1, A1% ∧ $h̃, σ2, A2%

)

Finally, $h̃, σ,¬A% ! ¬$h̃, σ, A%, $h̃, σ, A1 ∧ A2% ! $h̃, σ, A1% ∧ $h̃, σ, A2%,
$h̃, σ, ∅% !; if σ = ∅ and ⊥ otherwise.
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6.2 Towards decidability: a first result

The translation of the previous subsection reduces the model checking prob-
lem for Lnadj with respect to frames to the satisfiability of Leq. We expect
this reduction may help to obtain some decidability result.

As a first step in that direction, let us mention the decidability of the
fragment of Lnadj defined by restricting judgements U=σV to the cases t=σt′

or t=σM . This fragment already allows to express the deducibility properties
mentioned along the paper.

Since the previous translation only produces equality judgements of these
forms, the model-checking problem of Lnadj reduces to the satisfiability of Leq

with the same restrictions on judgements U=σV . Note that we may also drop
off the In quantifier in the satisfiability problem for closed formulae.

The decidability of the model-checking problem in restricted Lnadj is thus
a consequence of the decidability of the satisfiability problem for a first-order
formula obtained with ∧, ∨, ¬, ∀t, ∃t and from the predicates t1=σt2 stating
that the values of t1 and t2 are equal modulo the equational theory E ∪ σ,
t = M stating that the value of t is M , and M ≤ t stating that M is a
subterm of the value of t, and where quantifiers vary over ground terms.

Decidability of this theory can be shown using standard tree automata
techniques [6] using similar techniques as Dauchet and Tison [9], provided
that the equational theory E can be represented by a term rewrite sys-
tem R that is confluent, left-linear, and whose rules are all of the form
f(g(x1, . . . , xn)) → xi. An example of such an axiom system is {π1〈t1, t2〉 =
t1, π2〈t1, t2〉 = t2}.

In particular the rewrite system is, as a consequence of the last condi-
tion, terminating. Confluence and termination assure that we can work with
normal forms modulo R, left-linearity yields that the set of normal forms
is regular, and the last condition ensures that the automaton recognizing
the relation t1=σt2 has only finitely many states. The details are given in
Appendix D.

References

[1] M. Abadi and C. Fournet. Mobile values, new names, and secure communi-
cation. In POPL’01, pages 104–115, 2001.

[2] B. Blanchet, M. Abadi, and C. Fournet. Automated Verification of Selected
Equivalences for Security Protocols. In LICS 2005, pages 331–340, June 2005.
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A Technical lemmas about applied pi-calculus

We first collect some useful results on structural congruence in section A.1,
and then give the proof of Proposition 2.11 in Section A.2.

Conventions. A process is said to be public if it does not make use of name
restriction. In this appendix, except when stated otherwise, P, P ′, Q,Q′, . . .
will always stand for public plain processes, and φ, ψ, . . . for public frames.
Extended processes will be explicitly written P e, Qp, . . . We write Pφ the
plain process in which all the active substitutions of φ have been applied. The
support of a name permutation σ is the set of names n such that σ(n) #= n.

A.1 Technical lemmas about structural congruence

Lemma A.1 If P |φ ≡ P ′ |φ′, then φ ≡ φ′.

Lemma A.2 If P |φ ≡ P ′ |φ′, then Pφ ≡ P ′φ′.

Lemma A.3 If P |φ ≡ P ′ |φ′, and Q |φ ≡ Q′ |φ′, then P |Q |φ ≡
P ′ |Q′ |φ′.

Definition A.4 An extended process P e is said to be without fake names if
fn(P e) = fn(P e).

Lemma A.5 For every extended process P , there is P ′ without fake names
such that P ≡ P ′.

Lemma A.6 For all P, φ, P ′, φ′ without fake names, for all sets of names
ñ, ñ′, the two conditions below are equivalent:

• νñ. (φ |P ) ≡ νñ′. (φ′ |P ′)

• there is a bijection σ : ñ→ñ′ such that φσ |Pσ ≡ φ′ |P ′.
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A.2 On dually symmetric theories

In this section, we prove that " is a composition law when the equational
theory is dually symmetric. Before defining this notion, let us explain why ∗
is not composition law and why dual symmetry is required for ":

• ∗ may never be a composition law for processes, although it is always
one for frames. Let φ = {a/x}, φ1 = {b/x}, φ2 = {c/x}, and P =
a.b.c | b.c.a | c.a.b. Let P1 ! νa, b, c. (φ1 |P ), P2 ! νa, b, c. (φ2 |P ), and
P ′ ! νa, b, c. P . Then P1 ≡ P2, but P1 ∗ P ′ #≡ P2 ∗ P ′.

• One could replay this counter-example with " in lieu of ∗ just by taking
π-calculus as the term algebra and π-calculus structural congruence as
the equational theory.

Definition A.7 We say that a theory is dually symmetric if

1. for all terms M , for all name permutations σ such that E - Mσ = M ,
and for all n, E - M [n ↔ σ(n)] = M

2. for all φ, M,N , if φ - M = N and φ ≡ φ[n ↔ n′], then φ - M [n←n′] =
N [n←n′].

In particular, the following facts hold:

• if φσ ≡ φ, then φ[n ↔ σ(n)] ≡ φ;

• if σ1, σ2 are name permutations with disjoint supports and φσ1σ2 ≡ φ,
then φσ1 ≡ φσ2 ≡ φ.

Lemma A.8 Assume φ - M = M ′, φ[n1 ↔ n2] ≡ φ, and n1 ∈ fn(M) \
fn(M ′), n2 #∈ fn(M). Then φ - M = M [n1 ↔ n2].

Proof φ - M = N and φ ≡ φ[n ↔ n′] implies φ - M [n←n′] = N [n←n′]
since E is dually symmetric. "

Lemma A.9 Assume φ |P ≡ φ |P ′, φ[n1 ↔ n2] ≡ φ, and n1 ∈ fn(P ) \
fn(P ′), n2 #∈ fn(P ). Then P |φ ≡ P [n1 ↔ n2]φ.

Proof This is a direct consequence of Lemma A.8. "
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Let P1, P ′
1, P2, P ′

2, φ,φ′ be some fixed processes and frames without fake
names, and ñ1, ñ2, ñ′1, ñ

′
2 be sets of names such that:

ñ1 ∩ ñ2 = ñ′1 ∩ ñ′2 = ∅; (1)

fn(Pi) ⊆ ñi, fn(P ′
i ) ⊆ ñ′i, i = 1, 2. (2)

Definition A.10 We call solver a pair of name permutations (σ, τ) such
that σ, τ : (ñ1 ∪ ñ2)→(ñ′1 ∪ ñ′2), and:

Pσ |φσ ≡ P ′ |φ′ (3)

Qτ |φτ ≡ Q′ |φ′ (4)

Lemma A.11 If there is a solver (σ, τ), then there is a solver (σ1σ2, τ1τ2)
such that σi, τi : ñi→ñ′i.

Proof We note conflict(σ, τ) the set of names σ(ñ1) ∩ τ(ñ2). We need
to show that we may take σ, τ such that conflict(σ, τ) = ∅. We reason by
induction. Assume n′ ∈ conflict(σ, τ). We want to define a solver σ′, τ ′

such that conflict(σ′, τ ′) # conflict(σ, τ). Let n1, n2 be such that σ(n1) =
τ(n2) = n′. Pick m1 ∈ ñ1, m2 ∈ ñ2 such that the orbit under στ−1 of n1 is
n1, n2, ..,m2, m1, .., and let m′ = σ(m2) = τ(m1). Note that n′ #= m′ since σ
is injective. Note also that both ([n1 ↔ m2]; σ), τ and σ, ([n2 ↔ m1]; τ) have
a conflict set equal to conflict(σ, τ) \ {n}. In the remaining, our aim is to
show that one of these two possibilities gives a solver.

We first observe some symmetries between these names. By (3), (4) and
Lemma A.1, φσ ≡ φ′ ≡ φτ , so φστ−1 ≡ φ. By dual symmetry, we deduce
that:

(a) φ ≡ φ[n1 ↔ m2] ≡ φ[n2 ↔ m1]
(b) φ′ ≡ φ′[n′ ↔ m′]

We then reason by case analysis:

• Assume n1 #∈ fn(P ). We then set σ′ = [n1 ↔ m2]; σ and τ ′ = τ . Then
conflict(σ′, τ ′) = conflict(σ, τ)\{n′}. Moreover, P [n1 ↔ m2] = P since
n1 #∈ fn(P ), that is Pσ′ = Pσ. Then by (a), (3) holds for σ′, so σ′, τ ′

is a solver.

• Assume n2 #∈ fn(Q). By a symmetric argument, we show that σ, [m1 ↔
n2]τ is a solver.

• Assume n1 ∈ fn(P1) and n2 ∈ fn(P2). By (1) and (2), either n′ #∈ fn(P )
or n′ #∈ fn(Q). By symmetry, we may assume that n′ #∈ fn(P ′). Then
P |φ ≡ P ′σ−1 |φ by (3), φ ≡ φ[n1 ↔ m2] by (a), n1 ∈ fn(P )\fn(P ′σ−1)
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by previous hypothesis, and m2 #∈ fn(P ) by (1, 2), so we may apply
Lemma A.9, which gives P |φ ≡ P [n1 ↔ m2] |φ. We conclude the
proof with the same argument used for the case n1 #∈ fn(P ).

"

Proof of Proposition 2.11 Assume P, Q, P ′, Q satisfy the hypothesis.
Let P1, P ′

1, P2, P ′
2, φ,φ′ be some fixed processes and frames, and ñ1, ñ2, ñ′1, ñ

′
2

be sets of names such that (1) and (2) hold, and P = νñ1. (P1 | νñ2. φ),
Q = νñ2. (P2 | νñ1. φ), P = νñ′1. (P

′
1 | νñ′2. φ

′), Q = νñ′2. (P
′
2 | νñ′1. φ

′). We
want to show that:

νñ1, ñ2. (P1 |P2 |φ) ≡ νñ′1, ñ
′
2. (P

′
1 |P ′

2 |φ′).

First, by Lemma A.5, we may assume without loss of generality that all
processes are without fake names. Then, by Lemma A.6, we have some
solver (σ, τ). By Lemma A.11, we may assume that σ = σ1σ2 and τ = τ1τ2.
(3) and (4) then boil down to:

(3′) Pσ1 |φσ1σ2 ≡ P ′ |φ′
(4′) Qτ2 |φτ1τ2 ≡ Q′ |φ′.

By Lemma A.1, we get φσ1σ2 ≡ φ′ ≡ φτ1τ2, so φσ1τ
−1
1 σ2τ

−1
2 ≡ φ, and by

dual symmetry φσ1τ
−1
1 ≡ φσ2τ

−1
2 ≡ φ. Let υ = σ1τ2. Then φυ ≡ φσ ≡ φτ ,

and:
(3′′) Pυ |φυ ≡ P ′ |φ′
(4′′) Qυ |φυ ≡ Q′ |φ′.

Now, by Lemma A.3, Pυ |Qυ |φυ ≡ P ′ |Q′ |φ′, which ends the proof. "

B Characterization of logical equivalence

In this section, we prove the characterization of logical equivalence on the
dynamic intensional fragment.

B.1 Characterizing channel communications

Lemma B.1 P # atom(a, b) (i.e. c©a ∧ c©b ∧ (single % ♦0)) iff one of the
condition below is satisfied:

1. P ≡ āch〈b〉;

2. P ≡ b̄ch〈a〉;
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3. P ≡ ā〈M〉 and b ∈ fn(M);

4. P ≡ b̄〈M〉 and a ∈ fn(M);

Proof Straightforward. "

Lemma B.2 P # testch(a, b) (i.e. atom(a, b) ∧ ¬Nx.;[ c©x]) iff P satisfies
conditions 1 or 2 of Lemma B.1

Proof P satisfies 3 or 4, iff it is congruent to (νx)({M/x} | c̄〈x〉) for some
c ∈ {a, b}. "

Lemma B.3 P # inch(a, b).A (i.e. single∧¬♦;∧Ib. testch(a, b) %♦A) iff
there is P ′ such that P ≡ ach(b′)P ′, and P ′ # A[b←b′] for some b′ #∈ fn(A).

Proof Assume P # inch(a, b).A. Then P is single and deadlock, but
P | c̄ch〈d〉 reduces. So P must be an input. Moreover, {c, d} = {a, b′} with
b′ #∈ fnP , so a = c and b′ = d. The other implication is straightforward. "

Lemma B.4 P # outch(a, b).A (i.e.

single ∧Ib′. (inch(a, c).testch(b′, c) !♦(testch(b′, b) " A))

) iff there is P ′ such that P ≡ āch〈b〉.P ′, and P ′ # A for some b′ #∈ fn(A).

Proof We have:
P # outch(a, b).A

⇔ P is single
and P | ach(c).d̄ch〈e〉→ # testch(b′, b) " A
for some {d, e} = {c, b′} and c, b′ #∈ fnP

⇔ P ≡ āch〈f〉.P ′ for some f, P ′

and P ′ |(d̄ch〈e〉)[c←f ] # testch(b′, b) " A
for some {d, e} = {c, b′} and c, b′ #∈ fnP

⇔ P ≡ āch〈b〉.P ′ and P ′ # A.
"

B.2 Characterizing term communications in the the-
ory of finite trees

In this section and the following, we assume that E is the equational theory
of finite trees.

Lemma B.5 P # c©s
=x (i.e. ;[ c©x]∧¬Nz. (z #= x∧ c©x)[ c©z]) iff x ∈ fn(P )

and for all terms M appearing in P , either x #∈ fv(M), or M = x.

27



Proof We have:
P # c©s

=x
⇔ x ∈ fn(P ) and there is no M, z, P ′ such that

P ≡ (νz){M/z} |P ′, M #= x,
x ∈ fv(M), and z ∈ fv(P ′)

⇔ x ∈ fn(P ) and there is no M appearing in P
such that M #= x and x ∈ fv(M).

"

Lemma B.6 P # out(a, x) (i.e. single ∧ c©a ∧ c©s
=x ∧ (single % ♦0)) iff

P ≡ ā〈x〉
Proof We have:

P # out(a, x)
⇔ P is single, there is Q single such that P |Q→0,

a ∈ fn(P ), x ∈ fv(P ),
and x is not a strict subterm

⇔ P ≡ com.0 for some communication primitive,
a ∈ fn(P ), x ∈ fv(P ),
and x is not a strict subterm

⇔ P ≡ ā〈x〉

"

Lemma B.7 P # in(a, x).A (i.e. single ∧ ¬♦; ∧ Ix. out(a, x) ! ♦A) iff
there is P ′, x′ such that P ≡ a(x′).P ′, x′ #∈ fv(A), and P ′ # A[x←x′].

Lemma B.8 P # out(a, M).A,

i.e. Nx. .(x = M)

[
Ib. in(a, y).out(b, y)!
♦

(
out(b, x) "(A ∧ ¬ c©x)

)
]

iff there is P ′ such that P ≡ ā〈M〉.P ′ and P ′ # A.

B.3 Characterizing conditionals

Lemma B.9 P # if (i.e. single ∧ ; −−∗¬ ♦;) iff there is M, N,P1, P2 such
that P ≡ if M = N then P1 else P2.

Lemma B.10 P # c©brx (i.e. if∧Nz, z′.;[(¬ c©x)[;] −−∗¬ ;[♦ c©x]]) iff there
is M, N,P1, P2 such that P ≡ if M = N then P1 else P2 and x #∈ fv(M, N).

Proof Let P, N, N ′, P1, P2 be such that P ≡ if N = N ′ then P1 else P2, and
z, z′ some fresh variables. We have:

P # c©brx
⇔ (1) there is M, M ′, P ′, φ s.t.

P ≡ (νz, z′)
(
{M/z} |{M ′

/z′} |P ′),
x #∈ fv(φ), and P ′ |φ→P ′′ with x ∈ fv(P ′′)

Assume (1). Then

there is N1, N ′
1, P

′
1, P

′
2, φ s.t.
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• x #∈ fv(M, M ′),

• P1 ≡ P ′
1[z, z′←M, M ′], P2 ≡ P ′

2[z, z′←M, M ′],

• N = N1[z, z′←M, M ′], N ′ = N ′
1[z, z′←M, M ′],

• and either φ - N1 = N ′
1 with x ∈ fv(P ′

1φ), or x ∈ fv(P ′
1φ) with

N1φ, N ′
1φ ground and non equal.

Then clearly x ∈ fv(P1, P2). Conversely, if x ∈ fv(P1, P2), then (1) holds for
M = M ′, N = N ′, P ′ ≡ if z = z′ then P1 else P2, and either φ = {z′

/z} if
x ∈ fv(P1), or φ = {n/z} |{n′

/z′} if x ∈ fv(P2). "

Lemma B.11 P # if(M = N, A,B), i.e.

if ∧Ix, y. Subst(x = M, y = N) −−∗

;




c©s

=x ∧ c©s
=y ∧ ¬ c©brx ∧ ¬ c©bry

∧Subst(x = y) −−∗ ;[♦A]
∧Is, s′. Subst(x = s, y = s′) −−∗ ;[♦B]





iff there is M, N,P1, P2 such that P ≡ if test then P1 else P2, with test ∈
{ M = N , N = M }, and P1 # A, P2 # B.

B.4 Soundness of ≡′

We note P ∼ P ′ for the smallest congruence that satisfies the axiom Test
only. So ≡′ is (≡ ∪ ∼)∗.

Definition B.12 A relation R is an intensional bisimulation if R is sym-
metric and for all (P, Q) ∈ R:

1. φ(P ) ≡ φ(Q)

2. if P p ≡ 0, then Qp ≡ 0;

3. if u ∈ fnv(P ), then u ∈ fnv(Q);

4. if there is P ′ s.t. P ≡ (νu)P ′, then there is Q′ s.t. Q ≡ (νu)Q′ and
P ′RQ′;

5. if P ≡ P1 |P2, then there are Q1, Q2 such that Q ≡ Q1 |Q2 and PiRQi;

6. if there is P ′ s.t. P→P ′, then there is Q′ s.t. Q→Q′ and P ′RQ′.
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Lemma B.13 If R is both an intensional bisimulation and a congruence,
then R ⊆=L

Proof Let A be some formula. We prove by induction on A that for all
P, Q, v, if P, v # A and Q, v " A, then (P, Q) #∈ R:

• A = A1 ∧ A2: then either A1 or A2 discriminates P and Q

• A = ¬A′: then by induction (Q, P ) #∈ R, and by symmetry (P, Q) #∈ R

• A = ∅ or A = U = V : then (P, Q) #∈ R by condition 1.

• A = 0: then (P, Q) #∈ R by condition 2.

• A = c©u: then (P, Q) #∈ R by condition 3.

• A = ∃t.A: then there is v′ such that P, v′ # A and Q, v′ " A, and the
induction applies for A.

• A = ♦A′: then (P, Q) #∈ R by condition 6 and induction.

• A = Nu. A′: then (P, Q) #∈ R by condition 4 and induction.

• A = A′ !u: then by induction (νu.P, νu.Q) #∈ R, and since R is
supposed to be a congruence (P, Q) #∈ R.

• A = A1 " A2: let P1, P2, φ, ñ1, ñ2 be such that P ≡ (νñ1, ñ2
(
P1 |φ |P2)),

and (νñ1, ñ2)(Pi |φ) # Ai. Assume by absurd (P, Q) ∈ R. Then by
conditions 4 and 5, there are Q′, Q1, Q2 such that φRQ′, P1RQ1, and
P2RQ2. By condition 1 and 2, Q′ is a frame, and by condition 3 Q
splits as:

(νñ1, ñ2)(Q
′ |Q1) "(νñ1, ñ2)(Q

′ |Q2).

Then by congruence of R, (νñ1, ñ2)(Pi |φ) R (νñ1, ñ2)(Qi |Q′), which
contradicts the induction.

• A = A1 ∗ A2: similar.

• A = A1 ! A2: let R be some extended process such that Q " R ↓.
Then there are Q′, R′, φ, ñ1, ñ2 s.t. Q ≡ (νñ1)(Q′ | νñ2.φ) and R ≡
(νñ2)(R′ | νñ1.φ). Assume by absurd (P, Q). Then by conditions 4
and 5 there are P ′, PP such that P ≡ (νñ1, ñ2)(PP |P ′), P ′RQ′ and
PPRφ. By condition 1 and 2 PP ≡ φ, and then by condition 3 P " R
is defined. Moreover, by congruence of R, we get P " R R Q " R, which
contradicts the induction hypothesis.

• A = A1 −−∗ A2: similar.
"
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Lemma B.14 ≡ is an intensional bisimulation.

Proof Straightforward. "

Lemma B.15 If P ∼ Q, then Pσ ∼ Qσ for all public frames σ (resp for
all name substitutions).

Lemma B.16 If P [x←M ] ∼ Q, then there is Q′ such that Q ≡ Q′[x←M ]
and P ∼ Q′.

Proof We reason by case analysis on the rule of test replacement that is
used in P ∼ Q:

• Symmetry: straightforward.

• Shift: then there P [x←M ] contains a test (f(N1) = N2 that is replaced
by N1 =(g(N2) in Q. If M is a subterm (f1(N1) of (f(N1), one may
possibly have the test (f2(x) = N2 in P , with (f = (f2

(f1 (for simplicity,
we omit to consider that M may also be a subterm of N2). Then
Q is congruent to the process Q0 identical to Q except for the test
N1 =(g(N2) of Q that is replaced by (g((f2((f1(N1))) = g(N2). Then Q0 =
Q′[x←M ] where Q′ contains the test (g((f2(x)) =(g(N2), so P ∼ Q′.

"

Lemma B.17 P ≡∼ Q if and only if P ∼≡ Q.

Proof Test replacement commutes with all congruence rewriting. It is
straightforward for most of the cases, but the cases of Subst and Rewrite.
For these two cases, Lemmas B.15 and B.15 are used. "

Lemma B.18 ∼ is an intensional bisimulation up to ≡.

Proof It is straightforward that ∼ satisfies conditions 1,2 and 3. It also
is straightforward that it satisfies 4 for when u is a name. Thanks to
Lemma B.15, it also satisfies 6. Let us detail the last cases: condition 4
for variables, and condition 5.

• Assume P ∼ Q and P ≡ (νx)P ′. Then P ′ ≡ {M/x} |P ′′ with
P ′′[x←M ] ≡∼ Q. By Lemma B.16, there is Q′′ such that Q ≡
(νx)({M/x} |Q′′ and P ′′ ∼ Q′′. Then P ′ ∼ Q′ for Q′ = {M/x} |Q′′,
which shows condition 4.

• Assume P ∼ Q and P ≡ P1 |P2. Then by Lemma B.17, there is Q′

such that Q ≡ Q′ and Q′ ∼ P1 |P2. By definition of ∼, there is then
Q1, Q2 such that Q′ = Q1 |Q2 and Pi ∼ Qi, which shows condition 5.

"
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C Elimination of term quantifiers

Let us first enunciate two lemmas:

Lemma C.1 For every extended processes Q, Q′ such that fv(Q, Q′)∩{x̃} =

∅, if Q |{M1...Mn/x1...xn} ≡ Q′ |{M ′
1...M ′

n/x1...xn} for some terms M̃, M̃ ′, then

M̃ = M̃ ′ and Q ≡ Q′.

Proof Q ≡ Q′ is immediate since the processes do not mention variables
in x̃.

According to structural congruence rules for public frames, M̃ and M̃ ′

have to be equal term by term. "

Lemma C.2 If P ≡ σ |P ′ for some public frame σ and extended process P ′

such that fv(P ′) ∩ dom(σ) = ∅, and there exists Q, R such that R ↔ P " Q,
then Q ≡ σ |Q′ and R ≡ σ |R′ for some Q′ and R′, and R′ ↔ P ′ " Q′.

Proof As R ↔ P " Q and P ≡ σ |P ′, there exists ñ1, ñ2, φ, P1 and P2 such
that ñ1 ∩ fn(P2) = ñ2 ∩ fn(P1) = ∅, ñ1ñ2 ∩ fn(σ) = ∅ and:

P ≡ νñ1. (νñ2. (σ |φ) |P1)

Q ≡ νñ2. (νñ1. (σ |φ) |P2)

R ≡ νñ1ñ2. (σ |φ |P1 |P2)

By Lemma 2.3, we deduce that there are Q′ and R′ such that Q ≡ σ |Q′

and R ≡ σ |R′. We may chose Q′ and R′ such that fv(Q′, R′) ∩ dom(σ)∅,
and thanks to the fact that σ is public and that ñ1ñ2 ∩ dom(σ) = ∅, we can
assume fv(P1, P2) ∩ dom(σ) = ∅ too and deduce that:

P ′ ≡ νñ1. (νñ2. φ |P1)

Q′ ≡ νñ2. (νñ1. φ |P2)

R′ ≡ νñ1ñ2. (φ |P1 |P2)

This shows that R′ ↔ P ′ " Q′. "

Lemma C.3 For every public frame φ and processes P, Q, R, R ↔ P " Q if
and only if (φ |R) ↔ (φ |P ) "(φ |Q).

Proof This is straightforward. "
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Definition C.4 We write e ≡ e′ when e = {x̃→M̃}, e′ = {x̃→M̃ ′} and for
i ∈ {1 . . . n}, Mi = M ′

i .

We now prove Lemma 5.2 by induction on the formula A. We give the
translation "A#v along with the proof, and replace operators ! and −−∗ with
their respective dual counterparts, as it is equivalent, albeit easier to do so.

• "M = N#v ! Φv ∧Mv = Nv:

P # "M = N#v

⇔ P ≡ Q |"e#, fv(Q) ∩ dom("e#) = ∅
and P # Mv = Nv

⇔ P ≡ Q |"e#, fv(Q) ∩ dom("e#) = ∅
and Q # Mve = Nve

⇔ P ≡ Q |"e#, fv(Q) ∩ dom("e#) = ∅
and Q, (e ◦ v) # M = N

Indeed, fv(Q, M,N) ∩ dom("e#) = ∅.

• "0#v ! Φv ∧ 0, "∅#v ! Φv ∧ Subst(x̃): Trivial.

• "A1 ∧A2#v ! Φv ∧ "A1#v ∧ "A2#v: If P # "A#v, then by induction there
exist Q1 |"e1# ≡ P and Q2 |"e2# ≡ P such that fv(Qi) ∩ dom("ei#) = ∅
and Qi, (ei ◦ v) # Ai (i ∈ {1, 2}). By Lemmas C.1 and 3.2, A2 also
holds for Q1 and the desired result follows (the converse is immediate).

• "¬A#v!Φv∧¬"A#v: If P # "¬A#v it then holds not that P # "A#v so, by
induction hypothesis, for all Q, e such that P ≡ Q |"e#, Q, (e ◦ v) " A.
As P # Φv, there exists such Q and e and Q, (e ◦ v) # ¬A, hence the
result. The converse follows immediately from Lemma C.1.

• "♦A#v ! Φv ∧ ♦"A#v: Straightforward.

• "A1 " A2#v ! Φv ∧ ("A1#v " "A2#v): Straightforward.

• "A%B#!Φv ∧ "A#v % "B#v: If P # "A%B#v then P ≡ P ′ |"e# for some
P ′ and e such that fv(P ′)∩dom(e) = ∅, and there exists Q, R such that
R ↔ P " Q, Q # "A#v and R # "B#v. By Lemma C.2 there are processes
Q′, R′ such that Q ≡ Q′ |"e#, R′ ↔ P ′ " Q′ and R ≡ R′ |"e#. By induction
hypothesis, Q′, (e ◦ v) # A and R′, (e ◦ v) # B, so P ′, (e ◦ v) # A % B.

The converse is similar; it uses Lemma C.3 as a converse of Lemma C.2.
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• "Nx. A#v ! Φv ∧ Nx′. "A[x←x′]#v (x′ /∈ fv(v)): If P # "Nx. A#v then
P ≡ Q |"e#, fv(Q) ∩ dom("e#) = ∅ and P # Nx′. "A[x←x′]#v. By def-
inition of N, there exists y /∈ fv(Q, e, "A[x←x′]#v) and P ′ such that
P ≡ νy. P ′ and P ′ # "A[x←x′]#v[x′←y], so P ′ # "A[x←y]#v. By
induction hypothesis, there exists Q′, e′ such that P ′ ≡ Q′ |"e′# and
Q′, (e′ ◦ v) # A[x←y]. As P ≡ νy. P ′, e ≡ e′ and Q ≡ νy. Q′, so
Q′, (e ◦ v) # Ny. A[x←y], and by α-conversion, Q, (e ◦ v) # Nx. A.

Reciprocally, with the same notations:

Q, (e ◦ v) # Nx. A⇒Q′, (e ◦ v) # A[x←y]
⇒P ′ # "A[x←y]#v ⇒P ′ # "A[x←x′]#v[x′←y]
⇒ P # Nx′. "A[x←x′]#v

• "Nn. A#v ! Φv ∧Nn. "A#v: Same as above, albeit easier.

• " c©u#v!Φv∧Subst(x̃)∗((
∧

x∈{x̃} ¬ c©x)∧ c©u): Let us prove the inductive
case for " c©y#v for some variable y, the case where u is a name being
similar. P # " c©y#v if and only if P ≡ Q |"e#, fv(Q) ∩ dom("e#) = ∅
and P # Subst(x̃) ∗ ((

∧
x∈x̃ ¬ c©x)∧ c©y). This is true if and only if Q #

c©y, the condition fv(Q) ∩ dom("e#) = ∅ and the formula
∧

x∈x̃ ¬ c©x
ensuring that active substitutions of the environment frame have not
been applied, nor unapplied.

• "∃t. A#v ! Φv ∧ Nxn+1. "A#v{t→xn+1}: If P # "∃t. A#v then one the one
hand, by Lemma 5.3, there exist Q and e such that fv(Q)∩dom("e#) =
∅ and P ≡ Q |"e#, and on the other hand, by definition of N and
Lemma 5.4, for some x /∈ fv(P, A, v) there is P ′ such that P ≡ νx. P ′

and P ′ # "A#v{t→x}. By induction hypothesis, P ′ ≡ Q |"e# |{M/x}, so
Q, (e{x→M} ◦ v{t→x} # A, so Q, (e ◦ v) # ∃t. A.

Conversely, if P ≡ Q |"e#, fv(Q) ∩ dom("e#) = ∅ and Q, (e ◦ v) #
∃t. A, then there exists M such that Q, (e ◦ v){t→M} # A. As vari-
ables in dom("e#) are all free for Q,A, we can chose M such that
fv(M) ∩ dom("e#) = ∅, and so e{x→M} is a valid environment and
the induction hypothesis applies, so Q |"e{x→M}# # "A#v∪{t→x}. This,
together with Lemma 5.4, shows that P # Nxn+1. "A#v∪{t→xn+1}, and
by Lemma 5.3 P # "∃t. A#v.

In the following, we will write w for the valuation {t1→y1, . . . , tn→yn}
and f for the environment {y1→N1, . . . , yn→Nn}.

• "A1 ∗ A2#v ! Φv ∧Ix̃′.
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(
∧

x∈x̃ ¬ c©x ∧ Subst(x̃′) ∧ Φv′)

−−∗¬
(

∗n
i=1(Subst(xi, x′i) ∧ x′i = xi) ∗ ;

∧"A1#v ∗ "A2#′v

)

It is easy to check that P # "A1 ∗ A2#v if and only if there are Q,

M̃ , ỹ fresh and Ñ such that fv(M, N,Q) ∩ x̃ỹ = ∅, for i ∈ {1, . . . , n},
{Mi/xi} |{Ni/yi} # xi = yi, and Q |"e# |"f# # "A1#v ∗ "A2#w. The former
is equivalent to Mi = Ni for all i, and we conclude from the latter and
the induction hypothesis that Q ≡ Q1 ∗ Q2 and Qi, (e ◦ v) # Ai (as
e ◦ v = f ◦ w). Thus, Q, (e ◦ v) # A1 ∗ A2.

Conversely, if Q, (e◦v) # A1∗A2, then Q ≡ Q1∗Q2 for some Qi, (e◦v) #
Ai. By induction hypothesis, Q1 |"e# # "A1#v and Q2 |"f# # "A2#w. As
Q |"e# |"f# ≡ (Q1 |"e#) ∗ (Q2 |"f#), the desired result holds.

• "A −−∗¬ B#v ! Φv ∧Ix̃′. (
∧

x∈x̃ ¬ c©x ∧ "A#v′)

−−∗¬
(
; ∗ (∗n

i=1(Subst(xi, x′i) ∧ x′i #= xi))
∧("B#v ∧

∧
x′∈x̃′ ¬ c©x′) ∗ Subst(x̃′)

)

As in the cases of ∗ and %, it should be immediate to check that
P # "A −−∗¬ B#v if and only if there are P ′,Q′,R′,M̃ ,ỹ and Ñ such that

R′ ↔ P ′∗Q′, fv(M, N,P ′, Q′, R′)∩ x̃ỹ = ∅, Ñ = M̃ , Q′ |"f# # "A#w and
R′ |"e# |"f# # ("B#v ∧

∧
y∈ỹ ¬ c©y) ∗ Subst(ỹ), so R′ |"e# # "B#v. With

two applications of the induction hypothesis, we get Q′, (e◦ v) # A and
R′, (e ◦ v) # B, yielding the result. Like for frame composition, the
converse is straightforward.

D First-Order Theory of the Termalgebra

D.1 Eliminating the fresh quantifier

We detail here why it is sufficient for us to decide validity for formulae of
Leq without the fresh quantifier. For A, B some formulae in Leq, let A A- B
denotes that A, B are satisfied the same valuations v. Then we have:

In. A A- Im. A[n←m] (m #∈ fn(A))
(In. A) ∧ B A- In. (A ∧B) (n #∈ fn(B))

¬In. A A- In.¬A
∃tIn. A A- In.∃t.n #∈ fn(t) ∧ A

We may then rewrite any formula into a formula that respects the Barendregt
convention, and then pull all fresh quantifiers in prenex position. So any
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formula is equivalent to a formula of the form Iñ. A where A is without
In. .. This is sufficient to eliminate all freshness conditions: if A is closed,
e.g every t variable in A is bound by some ∃, then Iñ. A is satisfiable if and
only if A is satisfiable.

D.2 Tree-automatic structures

We recall the definition of tree automata [6].

Definition D.1 Given a finite signature Σ, a (bottom-up) tree automaton
A is given by (Q, F, ∆) where

• Q is a finite set of states.

• F ⊆ Q is called the set of accepting states.

• ∆ is a set of rewrite rules of the form f(q1, . . . , qn) → q with f ∈ Σn,
q1, . . . , qn, q ∈ Q.

The automaton A accepts a tree t iff t →∗ q ∈ F by the transition rules ∆.
The language LA is the set of all trees accepted by A.

Example
The following tree automaton accepts the set of trees representing lists of

integers, where integers are build with 0 and s, and lists with nil and cons:

• Σ0 = {0, nil}, Σ1 = {s}, Σ2 = {cons}

• Q = {qn, ql}

• F = {ql}

• 0 → qn, s(qn) → qn, nil → ql, cons(qn, ql) → ql

Tree automata enjoy (almost) all the nice properties of word automata,
in particular closure under Boolean operation, decidability of the emptiness
problem, determinisation, minimization [6].

The convolution operation defined below allows to code n-tuples of trees
as trees over a signature of n-tuples. For this definition it is convenient to
see a tree M as a pair (DM , LM) consisting of a tree domain DM , that is
a non-empty subset of N∗ that is closed under prefix and left brother, and
a labeling function LM : DM → Σ that is consistent with the arities of the
symbols in Σ.
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Definition D.2 Let Σ be a signature with # #∈ Σ. We define the signature
Σ[]

n, for n ≥ 1, as

Σ[]
n = {(f1, . . . , fn) | fi ∈ Σ ∪ {#}, fi #= # for some i}

The arity of [f1 . . . , fn] in Σ[]
n is the maximum of the arities of those fi that

are in Σ.
The convolution M1 ⊗ . . .⊗Mn is the tree M defined by

• DM = DM1 ∪ . . . ∪DMn

• LM(π) = [f1, . . . , fn] where fi = LMi(π) if π ∈ DMi, and fi = #
otherwise.

Projection is defined by πi(M1 ⊗ . . .⊗Mn) = Mi.

Example
Let Σ = {h, f, a}, where a is a constant, f unary, and h binary. Then we

have that
f(a)⊗ h(a, f(a)) = [f, h]([a, a], [#, f ]([#, a]))

Now, one can define tree-automatic representations and tree-automatic
structures analogously to the definition given in [3] for automata over finite
words. This definition applies only to so-called relational structures, that is
structures that have only predicates in their logical language and no constants
or function symbols. This is not a restriction as constants or functions can
always be expressed by predicates.

Definition D.3 Let A be a structure over a relational signature with re-
lation symbols R1, . . . , Rn. A tree-automatic representation of A is given
by

1. a finite signature Σ,

2. a regular tree language Lδ ⊆ T (Σ),

3. an onto function ν : Lδ → A,

4. a regular tree language LR ⊆ T (Σ[]
n) for each relation symbol R of the

signature of A, such that for all x1, . . . , xn ∈ Lδ:

x1 ⊗ . . .⊗ xn ∈ LR iff (ν(x1), . . . , ν(xn)) ∈ RA

A structure is tree-automatic if it has a tree-automatic representation.

Theorem D.4 The first-order theory of any tree-automatic structure is de-
cidable.
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D.3 Decidability of the FO-theory of Aσ,G,E

The reader shouldn’t be confused by the fact that the notation used in this
section differs slightly from the one that is common in equational logic. We
abide by the notational conventions of applied π-calculus used throughout
this paper, that is ti are first-order variables, Mi are terms, and xi are con-
sidered constants here (they are variables of the applied π-calculus that are
bound by frames, which do not exist in the first order theory).

Let σ be a set of ground equations of the form

σ = {x1 = M1, . . . , xn = Mn}

with the following properties:

• xi #= xj if i #= j

• xi #∈ subterms(Mj) for all 1 ≤ i ≤ n and 1 ≤ j ≤ n

Let G ⊆ T (Σ) be a finite set of ground terms, and let E be an equational
theory that is represented by some term rewrite system R (that is: E - M1 =
M2 iff M1 ↓R= M2 ↓R) with the properties

1. confluent,

2. left-linear,

3. all rules are of the form f(g(x1, . . . , xn)) → xi

We define Dσ = {x1, . . . , xn}. We assume w.l.o.g. that no symbol of Dσ

appears in R, and that each Mi is in normal form with respect to R.

Definition D.5 the language of Aσ,G,E consists of

• a unary predicate t = M for each M ∈ G;

• a unary predicate M ≤ t for each M ∈ G;

• for any subset τ ⊆ σ a binary relation t1 =τ t2

The universe of the structure of Aσ,G,E is T (Σ) ↓R, that is the set of normal
forms of T (Σ) w.r.t. the term rewrite system R.

• Aσ,G,E , v |= t = M iff v(t) = M ;

• Aσ,G,E , v |= M ≤ t iff M ∈ subterms(v(t))

• Aσ,G,E , v |= t1=τ t2 iff E ∪ τ - v(t1) = v(t2)
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Note that this structure, in contrast to the Herbrand structure, does not
feature function symbols in the logical language. As a consequence, one can
not express a ternary relation like t1 = f(t2, t3).

We can identify any subsystem {x1 = M1, . . . , xi = Mi} with the replace-
ment [x1 D→ M1, . . . , xi D→ Mn]. Then we obtain thanks to the cycle-freeness
of σ (and hence, cycle-freeness of any of its subsystems) that

Proposition D.6 Let τ ⊆ σ. Then for all N1, N2 ∈ T (Σ) τ - N1 = N2 iff
N1τ = N2τ .

Since no symbol of Dτ appears in R, we also obtain that

Proposition D.7 Let τ ⊆ σ. Then for all N1, N2 ∈ T (Σ) E ∪ τ - N1 = N2

iff N1τ ↓R= N2τ ↓R.

Lemma D.8 The structure Aσ,G,E is tree-automatic for any σ, G, and E
with the restrictions given above.

Proof We define Lδ = T (Σ) ↓R (which is a regular language due to the
fact that R is left-linear [6]), and ν(x) = x for any x ∈ T (Σ).

It remains to define the automata for the three kinds of relations. The
automaton for t = M is as follows:

• States Q=M = {qs | s ∈ subterms(M)}

• Accepting states F=M = {qM}

• Transition rules f(qM1 , . . . , qMn) → qf(M1,...,Mn) if all Mi are proper
subterms of M

Proposition D.9 For any N ∈ Lδ, N →∗ qM iff N = M .

The automaton for M ≤ t is an extension of the automaton for t = M :

• States QM≤ = {qs | s ∈ subterms(M), s #= M} ∪{ q∗, qM≤}

• Accepting states FM≤ = {qM≤}

• Transition rules:

– f(qM1 , . . . , qMn) → qf(M1,...,Mn) if all Mi are proper subterms of M
and M #= f(M1, . . . ,Mn)

– f(qM1 , . . . , qMn) → q≤M

if M = f(M1, . . . ,Mn)

– f(q∗, . . . , q∗) → q∗ for any f ∈ Σ, n ≥ 0
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– f(q∗, . . . , q∗, qM≤, q∗, . . . , q∗) → qM≤ for any f ∈ Σ and n ≥ 1.

Proposition D.10 For any N ∈ Lδ,
N →∗ qM≤ iff M ∈ subterms(N).

The idea of the automaton for x =τ y is that it keeps in its finite memory
track of the normalization of his input under the replacement τ and the term
rewrite system R. Once one of the two input terms, after having applied τ
and R, lies outside of S the automaton checks that the normalized values are
the same and from then on verifies that he sees the same input symbols on
both components. Let

S =
i=n⋃

i=1

subterms(Mi)

The automaton is defined as follows:

• States Qτ =
{q=} ∪{ qN1,N2 | N1, N2 ∈ S ∪ {#}} \ {q!,!}

• Accepting states Fτ = {q=}

• Transition rules:

– (f, #)(qN1,!, . . . , qNn,!) → qN,!
if N = f(N1, . . . , Nn) ↓R∈ S, f #∈ Dτ .

– (#, f)(q!,N1 , . . . , q!,Nn,) → q!,N

if N = f(N1, . . . , Nn) ↓R∈ S, f #∈ Dτ .

– (f, g)(qN1,K1 , . . . , qNn,Kn) → qN,K

if N = f(N1, . . . , Nar(f)) ↓R∈ S
and K = f(K1, . . . , Kar(g)) ↓R∈ S
and f, g #∈ Dτ .

– (f, g)(qN1,K1 , . . . , qNn,Kn) → q=

if f(N1, . . . , Nar(f)) ↓R

= g(K1, . . . , Kar(g)) ↓R

and f, g #∈ Dτ .

– (f, f)(q=, . . . , q=) → q= if f #∈ Dτ .

– (x, #) → qM,! if (x = M) ∈ τ .

– (#, x) → q!,M if (x = M) ∈ τ .

– (x1, x2) → qM1,M2

if (x1 = M1), (x2 = M2) ∈ τ .
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– (f, x)(qN1,!, . . . , qNn,!) → fN,M

if N = f(N1, . . . , Nn) ↓R∈ S
and (x = M) ∈ τ , f #∈ Dτ .

– (x, f)(q!,N1 , . . . , q!,Nn) → fM,N

if N = f(N1, . . . , Nn) ↓R∈ S
and (x = M) ∈ τ , f #∈ Dτ .

Proposition D.11 For every u ∈ T (Σ!
2 ):

• If u →∗ qN,! then N = π1(u)τ ↓R.

• If u →∗ q!,N then N = π2(u)τ ↓R.

• If u →∗ qN1,N2 then N1 = π1(u)τ ↓R and N1 = (π2(u)τ) ↓R.

• If u →∗ q= then π1(u) ↓R= π2(u) ↓R

This is shown very easily by induction on the tree u.
The following proposition states that the automaton accepts only pairs

of trees that are congruent modulo E ∪ σ.

Proposition D.12 For every N1, N2 ∈ Lδ: If N1⊗N2 →∗ q= then E ∪ τ -
N1 = N2.

Proof By Proposition D.11, if N1 ⊗N2 →∗ q= then (N1τ) ↓R= (N2τ) ↓R.
This implies by Proposition D.7 that E ∪ τ - N1 = N2. "

In order to show completeness of our automaton construction we define
an auxiliary ground rewrite system:

R′ = {f(N) → f(N) ↓R| N ∈ S, f(N) ↓R∈ S}
∪ {x → M | (x = M) ∈ τ}

This rewrite system describes the rewrite steps that are “hardwired” in the
automaton.

Proposition D.13 The system R′ is confluent and terminating.

Proof Termination is a consequence of the fact that rewriting by R or τ
cannot introduce new occurrences of symbols in Dτ , and that R is terminat-
ing. Local confluence is a consequence of the fact that R is confluent, and no
left-hand side of R matches a symbol in Dτ , and local confluence together
with termination implies confluence. "
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We recall that the right-hand sides of τ are assumed to be in normal form
with respect to R.

Proposition D.14 Let N be in normal from w.r.t. R. Then

Nτ ↓R= N ↓R′

Proof Obviously if N1 →∗ N2 by R′ then N1τ →∗ N2 by R. Since R is
confluent it is hence sufficient to show that N ↓R′ is in normal form w.r.t. R.

Let us write τ = {x1 = M1, . . . , xn = Mn}. First, observe that we can
write N as N [x1, . . . , xn] when N is a context, and that Nτ = N [M1, . . . ,Mn].
One shows easily by induction on the number of rewrite steps that if N , M1,
. . ., Mn are in normal w.r.t. R, if M1, . . . ,Mn ∈ S and N [M1, . . . ,Mn] →∗

R′ u
then u can be written in the form N ′[M ′

1, . . . ,M
′
m] where N ′, M ′

1, . . . ,M
′
n are

in normal form w.r.t. R and M ′
1, . . . ,M

′
n ∈ S. Any such term that is reducible

by R is also reducible by R′. This is a consequence of the particular form of
the rewrite rules of R: Suppose that N ′, M ′

1, . . . ,M
′
n are in normal form w.r.t.

R and that N ′[M ′
1, . . . ,M

′
n] is reducible by R. The redex cannot entirely lie

in N ′ or entirely in one of the M ′
i since these terms are assumed to be in

normal form. Hence, there is are N ′′ and a M ′′
1 , . . . ,M ′′

k such that M ′
i =

g(M ′′
1 , . . . ,M ′′

k ), N ′[M ′
1, . . . ,M

′
n] = N ′′[M ′

1, . . . , f(g(M ′′
1 , . . . ,M ′′

l )), . . . ,M ′
n]

where the M ′′
1 , . . . ,M ′′

k ∈ S (since M ′
i ∈ S and S is closed under subterms).

As a consequence, the term is reducible by R′. "

Proposition D.15 For every N1, N2 ∈ Lδ: If E ∪ τ - N1 = N2 then
N1 ⊗N2 →∗ q=.

Proof This is a consequence of Proposition D.14 since the automaton per-
forms normalization with respect to the system R′: (N1⊗N2) →∗ qN1↓R′ ,N2↓R′

provided that N1 ↓R′ , N2 ↓R′∈ S. "
This completes the proof of Lemma D.8. "

Here is an example of the automaton construction for t1=τ t2. Let the
equational theory E be

l(p(t1, t2)) = t1
r(p(t1, t2)) = t2

and τ be

x1 = p(a, p(b, c))

x2 = p(c, b)

We will show how the automaton will recognize that

f(d, r(r(x1)))=τf(d, l(x2))
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The execution steps of the automaton on the convolution of these two trees
are

[f, f ]([d, d], [r, l]([r, x2]([x1, #])))

→ [f, f ](q=, [r, l]([r, x2](qp(a,p(b,c)),!)))

→ [f, f ](q=, [r, l](qp(b,c),p(c,b)))

→ [f, f ](q=, q=)

→ q=
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