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Abstract

The verification of final termination for counter systems is undecidable. For non flattable counter systems,
the verification of this type of property is generally based on the exhibition of a ranking function. Proving
the existence of a ranking function for general counter systems is also undecidable. We provide a framework
in which the verification whether a given function is a ranking function is decidable. This framework is
applicable to convex counter systems which admit a Presburger or a LPDS ranking function. This extends
the results of [6]. From this framework, we derive a model-checking algorithm to verify whether a final
termination property is satisfied or not. This approach has been successfully applied to the verification of
a parametric version of the ZCSP protocol.

Keywords: Final Termination Property, Ranking function, Convex Counter Systems, Automatic
Verification, Parametric Protocol ZCSP.

1 Introduction

While verifying a parametric protocol (ZCSP) with FAST [2], we came across an
interesting problem. We had to verify a final termination property, expressing that
the system will end in a given set of states in an unavoidable manner. Unfortunately,
the class of counter systems modelling the protocol did not fit with the hypothesis
under which FAST may automatically solve it: our model for ZSCP is neither flat
nor trace-flattable.

Indeed, the final termination property is undecidable in the general case, and
one has to consider some strong hypotheses to automate its verification. This ter-
mination problem is classically solved by exhibiting a ranking function; it has been
actively studied in the last three years in the context of code analysis for imperative
programs containing loops with integer variables. In this context, [15] presents a
complete method for the synthesis of linear ranking functions on the restricted class
of single path loops. This result has been recently extended in [7] to (single path)
nested loops and is implemented in the tool TERMINATOR [8], devoted to the anal-
ysis of C code for hardware device drivers. A complementary approach is presented
in [14]. A semi-algorithm based on region graphs is proposed; it applies to exclusive
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multiple-path loops and is implemented in the PONES tool, devoted to the verifi-
cation of Java programs. [6] synthesizes linear ranking functions for a larger class
of systems: Integer-variable loops with multiple paths with non-exclusive guards.
The synthesis is based on an enumeration of all linear functions (represented as
Presburger formulas). The method is complete (if such a linear function exists, the
procedure will eventually exhibit it), however, this work does not consider parame-
ters.

Our contributions. We revisit the ranking function synthesis problem in the
context of (possibly non deterministic) counter systems . We distinguish between
the problem of the Existence of a ranking function and the problem of Verification
whether a function in a given class is a ranking function. We first recall that the
existence of a recursive ranking function is undecidable, but it becomes decidable
when considering trace-flattable counter systems. Similarly, verifying whether a re-
cursive function is a ranking function is undecidable although verifying a Presburger
definable ranking function is decidable. Unfortunately, ZCSP does not admit any
Presburger definable ranking function, but it admits a ranking function definable
in a Presburger extension allowing multiplication with a unique parameter.

M. Bozga, R. Iosif and Y. Lakhnech showed in [5] that Linear Parametric Dio-
phantine Systems (LPDS) are effectively solvable. LPDS strictly extend the existen-
tial fragment of Presburger arithmetic in allowing the multiplication of a variable
with a unique parameter p. We prove that verifying if a counter system (using
Presb∃-definable linear functions and having a Presb∃-definable reachability set)
satifies a LPDS definable ranking function is decidable.

From this result, we derive a procedure to automatically synthesize either Presburger-
definable ranking functions or LPDS-definable ranking functions. The procedure
will enumerate potential ranking functions and check them. The procedure termi-
nates if and only if a Presburger-definable or a LPDS-definable ranking function
exists. The proposed approach is used to verify a final termination property of the
protocol ZCSP. The method extends the aforementionned works since our hypothe-
sis are as general as [6] (which are larger than [14] and [7]), and the class of ranking
functions we synthesize is larger than [6].

The exhibited ranking function could not have been found with the cited meth-
ods or tools, since it required the most relaxed hypothesis (multiple-path loop with
non-exclusive guards), and did not admit any Presburger linear ranking function.
In particular, when analyzing multi-threaded programs, TERMINATOR focuses on
the “thread termination” property, which is not the property we want to verify.

Organisation of the paper. A preliminary section collects some useful notions
about flat and flattable counter systems. Sections 3 and 4 present an abstraction
of the ZCSP protocol as a counter system and the verification of safety properties
that have been achieved with FAST. Section 5 defines a method to prove the final
termination of a counter system with the automatic synthesis of a ranking function.
In Section 6, this method is illustrated on the model of ZCSP. The appendix gives
details about the ZCSP protocol and presents the derived counter system. The
description of the ZCSP protocol and complete proofs of propositions in Sections 4,
5 and 6 are given in the appendix of the long version of the paper on the web pages
of the authors.
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2 Preliminaries

2.1 Counter systems

We recall that Presburger arithmetic is the first order theory of the structure
〈N, +, =〉. Given a Presburger formula φ with free variables belonging to the set
C of counters and a ∈ NC , we write a |= φ if φ is true for the valuation a. A set
X ⊆ Nn is said to be Presburger definable iff there is a Presburger formula ψ(x)
with free variables x = 〈x1, . . . , xn〉 such that X = {a ∈ Nn : a |= ψ(x)}. This can
be extended without problems to ZZ

n. Presburger arithmetic is known to be decid-
able and therefore, all the problems in the forthcoming sections that can be reduced
to Presburger arithmetic are decidable. We recall that the set of polyhedral convex
sets is exactly equal to the set of Presb∃ definable sets, where Presb∃ is the Pres-
burger existential fragment (without modulo). Abusing notation: we will denote
by φ the set defined by the formula φ. A Presburger function is a partial function
definable by a Presburger formula. A Presburger-linear function f is a Presburger
function which can be represented by a tuple (A,b,φ) where A is a square matrix
in NC×C , b ∈ ZC and φ is a Presburger formula such that f(a) = A.a+b for every
a |= φ (φ is a formula representing the domain of f , also denoted by dom(f)). We
denote by ΣC the set of such functions.

Definition 2.1 A counter system is a graph whose edges are labeled with Pres-
burger linear functions, that is a tuple CS = 〈Q, E〉 where E ⊆ Q × ΣC × Q.

With a counter system CS = 〈Q, E〉, we associate the transition system TS(CS) =

〈Q × NC ,→〉 defined by (q, a) → (q′,a′) if there is a transition q
f
−→ q′ in E such

that a
′ = f(a). A simple cycle in a graph G = 〈Q, E〉 is a closed path (where

the initial and final vertices coincide) with no repeated edge. G is said to be flat
if every q ∈ Q belongs to at most one simple cycle. A counter system CS is said
to have the finite monoid property if the multiplicative monoid generated by the
matrices used in its labels is finite. Note that for a counter system CS = 〈Q, E〉,
the control states can be encoded as positive integers (ie Q ⊆ N) and then the set
of configurations is represented by N|C|+1.

Theorem 2.2 [11] Let CS be a flat counter system 〈Q, E〉 with the finite monoid
property and TS(CS) = 〈N|C|+1,→〉 its associated transition system. Then the re-
flexive and transitive closure →∗ of the reachability relation is effectively Presburger
definable.

In the following, we will assume that the set of states is in Nn. In [9], a
temporal logic for counter systems –FOPCTL!(Pr)– is introduced. The model-
checking of a flat counter system with the finite monoid property and a formula in
FOPCTL!(Pr)is decidable.

2.2 Model-checking for flattable systems

Flat counter systems have numerous desirable properties, however, realistic sys-
tems are rarely flat. It is interesting to consider larger classes of systems – called
flattable counter systems – that are reducible to flat counter systems via graph
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t1 t4

t2

t3

1

t1 = [TRUE] → {x′ := p1, y′ := p2}

t2 = [x > 0] → {x′ := x − 1, y′ := y}

t3 = [x = 0 ∧ y = 0] → {x′ := p1, y′ := y − 1}

t4 = [x = 0 ∧ y = 0] → {x′ := x, y′ := y}

Fig. 1. A post*-flattable but not trace-flattable system

homomorphism [9].

Definition 2.3 Let CS = 〈Q, E〉 and CS′ = 〈Q′, E′〉 be two counter systems,
having the finite monoid property, of the same dimension, h be a function h : Q′ →
Q, q ∈ Q and q′ ∈ Q′. 〈CS′, q′〉 is a h-flattening of 〈CS, q〉 iff h(q′) = q, CS′ is
flat, and whenever 〈s, f, s′〉 ∈ E′, we have 〈h(s), f, h(s′)〉 ∈ E.

When 〈CS′, q′〉 is a h-flattening of 〈CS, q〉, CS can be viewed as an abstraction
of CS′. The tool FAST [2] generates flattenings via an exhaustive search algorithm.
Several flattenings are defined and for each of them, the preserved sub-classes of
FOPCTL!(Pr)formulas are established. The most common relationship between
CS and CS′ is the equality of reachability sets (leading to the notion of post∗-
flattening).

Let CS = 〈Q, E〉 be a counter system. The reachability sets from a configuration
and from a set of Presburger definable configurations are defined as follows:

• post∗TS(CS)(〈q, a〉)
def

= {〈q′,a′〉 ∈ Q × NC : 〈q, a〉 →∗ 〈q′,a′〉}.

• post∗TS(CS)(q,ψ(x))
def

=
⋃

a|=ψ(x) post∗TS(CS)(〈q, a〉).

Definition 2.4 (from [9]) 〈CS, q′〉 is a h-post∗-flattening (post∗-flattening for
short) of 〈CS, q〉 with respect to ψ) iff post∗TS(CS)(q,ψ) = h(post∗TS(CS′)(q

′,ψ)) and

CS′ is a h-flattening of CS (h is naturally extended to states of TS(CS)); we say
that 〈CS, q〉 is post∗-flattable.

Post∗-flattening preserves reachability properties [9]. Intuitively, a system CS′

is a trace-flattening (cf. Appendix A) of a system CS if CS′ is a h-flattening of CS

and if the set of traces of CS is equal to the image by h of the set of traces of CS′.
Trace-flattening preserves the LTL fragment of FOPCTL!(Pr)which is decidable for
trace-flattable counter systems. As a consequence, the final termination problem
can be expressed as a LTL formula hence it is decidable for trace-flattable counter
systems.

Example 2.5 The system CS1 described in Fig. 1 is not flat, but it is post∗-
flattable from the initial configuration Init0 = N4. The reachability set from Init0
is obtained by the flat trace t1.t

∗
2.t

∗
3.t4 which can be computed by acceleration [11].

Moreover, CS1 is not trace-flattable [9]. The system produces a non-finite union
of flat traces (the size of the union depends on parameter p2, which is unbounded).

In practice, the post∗flattable framework works quite well for verifying safety
properties (see e.g. [11],[3],[2]). But, realistic systems are rarely trace-flattable.
Hence, the proof of final termination must, in general, rely on another approach.
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3 A counting abstraction of protocol ZCSP

3.1 Presentation of the protocol ZCSP

Protocol ZCSP (for Zero-Copy Secure Protocol) is a communication protocol imple-
mented in the MPC parallel computer [10]. In essence, ZCSP protocol is a variant
of BRP protocol that has been extensively studied (for instance, see [1]). In ZCSP
several messages may be emitted before the respective acknowledgments are re-
ceived; the acknowledgements may be received out of order; emitted messages have
to be stored up to the reception of their own acknowledgment and those of their
predecessors. This storage induces a greater complexity than BRP.

3.2 Desirable properties

P1. The number of table entry is constant (and equal to TMAX).
P2. At a given time, there is never more than one message under re-emission.
P3. If there is no re-emission, the counter of re-emission is set to 0.
P4. Each lost message will be re-emitted.
P5. Some message re-emission will reach the maximal retransmission bound.
P6. No re-emitted message oversteps the maximal retransmission bound.
P7. If the table contains any number of message to be emitted, and no new message
is eventually inserted, then the table and channels will unavoidably become empty.

3.3 A counting abstraction of ZCSP

We present a counter system abstraction of ZCSP. The system has been abstracted
in two directions : messages are atomic, and their identity is not not represented.

The counter system contain 14 counters. With this abstraction, messages in the
table are not identified by their entry-index, but rather by their state. The content
of the storage table is modeled as a set of five counters c1, c2, c3, c4, c5 indicating the
number of messages in each corresponding category. The channel StoR, transmitting
messages from the sender to the receiver, is modelled as two counters c6 and c7,
distinguishing the first emission of a message from a re-emission. In the same way,
the channel RtoS, transmitting acknowledgments from the receiver to the emitter is
modelled by two counters c8 and c9. The timeout occurrences are modelled as two
counters c10 and c11. The current number of re-emission is modeled as a counter
c12. Counters c13 and c14 contain resp. the maximal retransmission number and
the number of entry in the storage table.

We denote Z the counter system which is composed of a unique local state and
16 self-looping transitions. Every state s of Z is a tuple (s1, s2, ...s14) ∈ N14;

Proposition 3.1 Forall 1 ≤ i ≤ 7, if < Z |= Pi > then < ZCSP |= Pi >

Proof. (sketch) The abstraction represents an overapproximation of the set of be-
haviours of ZCSP: files are represented as counters and bounds on files are relaxed.
Moreover, messages are now atomic. This coarser representation does not miss any
interleavings since in ZCSP, packets of a given message are sent atomically. !
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4 Verification of safety properties with FAST

The counter system Z is not flat. Init is the initial state, defined as follows:
Init = {s ∈ N14 | s1 + s2 + s3 + s4 + s6 + s7 + s8 + s9 + s10 + s11 + s12 = 0 ∧ s5 =
s13 ∧ s13 > 0 ∧ s14 > 0}. Init represents the set of configurations when the
pending message table is empty (all entries are free), the channels StoR and RtoS

are empty, there is no pending timeout, and the re-emission counter is set to 0.

Proposition 4.1 (Z, Init) is post∗-flattable.

Hence reachability properties can be automatically checked. Properties P1 to
P3, P4’ which is a relaxation of P4, and P5 to P6 were automatically verified
with FAST.

We now concentrate on the property P7: “If the table contains any number of
message to be emitted, and no new message is eventually inserted, then the table
and channels will unavoidably become empty”. This property expresses a final
termination, it is not reducible to a reachability property but is expressible in LTL
or CTL. Unfortunately, the language of (Z, Init) contains a sequence of the form
(abpc)n, hence:

Proposition 4.2 (Z, Init) is not trace-flattable.

Hence final termination properties cannot be checked by an automatic trace-
flattening of (Z, Init). The automatic synthesis of a ranking function is an alterna-
tive.

5 Proving final termination with automatic synthesis
of ranking functions

5.1 Ranking function for termination

Let us note CSpresb the class of counter systems CS such that the relation →∗
TS(CS)

is effectively Presburger definable. We denote CSpost∗ (resp. CStrace) the set of
counter systems CS, with an initial Presburger set Init, such that it is post∗-
flattable (resp. trace-flattable). Let us remark that: CStrace ⊆ CSpost∗ ⊆ CSpresb.

Definition 5.1 Let TS be a transition system and Init and Final two sets.
< TS, Init, F inal > is deadlock-free if ∀s ∈ post∗TS(Init) \ Final, postTS(s) += ∅.

Proposition 5.2 Given a counter system CS ∈ Cpresb and two Presburger sets
Init and Final, the deadlockfree property of < TS(CS), Init, F inal > is decidable.

When CS is flat with a finite monoid, then the set post∗TS(CS)(Init) is an effective
Presburger-definable set, hence:

Corollary 5.3 Given a flat CS with a finite monoid and two Presburger sets Init

and Final, the deadlockfree property of < TS(CS), Init, F inal > is decidable.

Ranking functions are often used for proving termination. A general ranking
function f is a function from the set S of states into an ordered set (N,≺) such that
there do not exist infinite strictly decreasing sequence in N . For counter systems
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CS of dimension n, we will study recursive functions from Nn+1 into N. This is
not a restriction because to every ranking function f : Nn+1 → Nk, k ≥ 1 one may
associate another ranking function f ′ : Nn+1 → N such that f ′(x) = y1 +y2 + ...+yk

with f(x) = (y1, y2, ..., yk).

Definition 5.4 Let us consider a transition system TS(CS) =< S,→> with two
sets of configurations Init, F inal ⊆ S and a function f : S → N. We say that a
recursive function f is a ranking function of (TS(CS), Init, F inal) if
∀x, x′ ∈ post∗TS(CS)(Init) \ Final, x→x′ implies f(x′) < f(x).

Proposition 5.5 For any transition system TS(CS) =< S,→> equipped with
two sets Init, F inal, such that (TS(CS), Init, F inal) is deadlockfree, we have <

TS(CS), Init >|= AF Final iff there exists a ranking function for < TS(CS), Init, F inal >.

5.2 Decidability of the ranking function property

Given a class C of transition systems (with S as set of states), a class X of recursive
sets and a class F of recursive functions from S to N, we distinguish two problems
associated with each triple (C, X, F ):

(i) The Existence Ranking Problem ERP(C,X,F).
Input: Given a transition system TS =< S,→> in C, two sets of configura-
tions Init, F inal ∈ X.
Output: To decide whether there exists a ranking function f ∈ F for <

TS, Init, F inal > ?

(ii) The Verification Ranking Problem VRP(C,X,F).
Input: Given a transition system TS =< S,→> in C, two sets of configura-
tions Init, F inal ∈ X and a function f ∈ F .
Output: Is f a ranking function of < TS, Init, F inal > ?

We denote Xpresb (resp. Xconv) the set of Presburger-definable sets (resp. the set
of Presburger polyhedral convex sets) and Frec (resp. Fpresb and Fpresblin) the set
of recursive functions (resp. Presburger functions and Presburger-linear functions).

From the fact that liveness properties are undecidable for post∗-flattable CS

with finite monoid, we deduce that:

Proposition 5.6 The Existence Ranking Problem ERP(CSpost∗ , Xpresb, Frec) is un-
decidable.

From the fact that the LTL model-checking of trace-flattable CS with a finite
monoid is decidable [9], we may deduce:

Proposition 5.7 The Existence Ranking Problem ERP(CStrace, Xpresb, Frec) is de-
cidable.

There exists a reduction of the problem of testing whether a recursive function is
decreasing to the VRP(CSpost∗ , Xpresb, Frec). We build a CS of dimension n, with
Init = 0 as the initial state; CS has an unique local state and for every counter
ci, there exists a transition ti : ci := ci + 1. This counter system is not flat but
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it is post∗-flattable and its reachability set is equal to post∗TS(CS) = NC . Now the

condition for a recursive function f from NC into N to be a ranking function of
< TS(CS), Init = 0, F inal = NC >, remains to say that f is strictly decreasing.
And this last problem is undecidable [12]. Hence we obtain:

Proposition 5.8 The Verification Ranking Problem VRP(CSpost∗ , Xpresb, Frec) is
undecidable.

Although this last problem was undecidable, there exists a decidable sufficient
condition for any counter system CS and any Presburger function f ; as a matter of
fact, one may always decide the satisfiability of the following Presburger formula:
(∀x, x′ ∈ NC+1, x→x′ implies f(x′) < f(x)). f is called a absolute ranking function.

The VRP becomes decidable if one restricts the class of functions to be Presburger-
definable. The condition to be a ranking function can be coded into a Presburger
formula φ and we obtain that the VRP is true iff φ is satisfiable then it becomes
decidable.

Proposition 5.9 The Verification Ranking Problem VRP(CSpresb, Xpresb, Fpresb)
is decidable.

This last result may suggest to enumerate (fairly and efficiently) all Presburger
functions and to test whether every Presburger function is a ranking function. This
strategy will find a ranking function if there exists one Presburger ranking function.
In the other case, the computation will not terminate. In particular, it may exist a
non-Presburger ranking function.

For instance, let us suppose that there only exists a ranking function which uses
some kind of multiplication between variables, typically between a parameter (i.e. a
variable which is never modified) and a variable. In the general case, the VRP would
be undecidable for this sort of functions. Let us first recall that Linear Diophantine
Systems can be written as a boolean combination of linear equations of the form:
Σn

i=1ei.xi + e0 = 0 where all ei ∈ ZZ. Their set of solutions are a Presburger set,
and more precisely, a polyhedral convex Presburger set. It is possible to extend
this sort of systems to Linear Parametric Diophantine Systems in allowing some
multiplications between one variable and the unique parameter.

Let us denote ZZk[p] the set of polynoms of maximum degree k, whose unique
variable is p. A Linear Parametric Diophantine System (LPDS) [5] is a Linear
Diophantine System that can be written as a boolean combination of equations of
the form: Σn

i=1ei.xi + e0 = 0 where all ei ∈ ZZk[p]. From [5] (Theorem 2) one knows
that the satisfiability problem for LPDS is decidable.

Let us note that LPDS strictly extends the existential fragment of Presburger
arithmetic. On the other hand, no universally quantified Presburger formula is al-
lowed in LPDS. A formula which is both in Presburger and in LDS is in Presb∃.
We now define LPDS functions allowing a kind of multiplication between any vari-
able and the unique parameter p.

Definition 5.10 A LPDS function is a function definable by a LPDS.

We denote by FLPDS the set of LPDS functions. For example, f(x) = ci.x +
dj with ci in ZZk[p]C and dj in ZZk[p] is a LPDS function. Let us remark that

8



every (integer) linear function with a polyhedral convex domain is a LPDS function
without parameter. The converse is obviously false.

Definition 5.11 A counter system (CS, Init) is said convex if the domain of each
Presburger-linear function of CS is polyhedral convex and if post∗TS(CS)(Init) is
polyhedral convex.

Let us denote by CSconv the set of convex counter systems. From the fact that
given a Presburger formula, one may decide if it is equivalent to a formula in Presb∃,
we deduce :

Proposition 5.12 The convex property is decidable for counter systems with a
effective Presburger reachability set.

Proposition 5.13 The VRP(CSconv, Xconv, FLPDS) is decidable.

5.3 Model-checking procedure for counter systems

The model-checking procedure consists in enumerating functions, and for each fonc-
tion, check if it satisfies the ranking function condition.

First we have to find the parameters. We first try to find among the variables
those which are in fact parameters, (i.e. parameters are variables that are never
modified by all the functions of the counter system). If there are no parameters,
enumerate Presburger functions and test. Else, one computes the set of parameters.
We may test if a variable x is a parameter by the help of the Presburger formula
associated with each transition of the counter system (or in computing post∗) and
in verifying that the variable x never changes its value. Then for every parameter ,
enumerate the LPDS functions and test whether it is a ranking function.

Procedure Model-Check(CS:counter system; Init, F inal: two polyhedral

convex sets)

1. Compute with FAST Post∗TS(CS)(Init);

2. Compute Deadlock =
⋂

t∈E ¬dom(t);

3. if Post∗TS(CS)(Init) ∩ Deadlock += ∅ return FALSE;

4. Compute the set P of parameters of CS;

5. If P = ∅ then

(a) Enumerate all Presburger functions f

(b) If f is a ranking function for < TS(CS), Init, F inal > then return

TRUE else goto 5(a)

6. Else for every parameter p ∈ P enumerate all LPDS functions f

(a) If CS is a convex counter system then

a.1. If f is a ranking function for < TS(CS), Init, F inal > then

return TRUE

a.2. else goto 6.

(b) Else If f is a absolute ranking function then return TRUE else

goto 6.

Proposition 5.14 If procedure Model-Check terminates then CS, Init |= AF Final.
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The converse is not true : a system may have a ranking function not being in
FLPDS neither in Fpresb. In this last case, the procedure Model-check will not find
it and will not terminate.

6 Proving final termination in finding a ranking func-
tion

Let us return back to the verification of property P7 of system Z. In Z, the emission
of new messages is modeled by transition t1. We consider Z ′ being the system Z

without transition t1. We denote Init′ the set of states representing the non empty
table.

Init′ = post∗t1(Init) = {s1 ≤ s13 ∧ s2+s3+s4+s5+s7+s8+s9+s10+s11+s12 =
0 ∧ s6 = s1 ∧ s13 > 0 ∧ s14 > 0}.

We denote Final′ the unavoidable set of states in Z ′ from Init′. Final′ repre-
sents a table with all entries being free and channels being empty. It corresponds
to the set of states Init.

Property P7 may be now expressed as : ∀s ∈ Post∗t1(Init), s |= AF Final′.
This can be rephrased in Z ′ : < Z ′, Init′ |= AF Final′ >.

To prove this property, we apply the algorithm defined in Sec. 5.3.

Remark : We can see that Init′, Final′ and the domain of each each transition
of Z ′ are convex. Even if we can theoretically decide whether Z ′ is convex or not,
we were not able to automatically test it; it will be done once the implementation
of the result of [13] will be achieved.

Here are the successive steps of the Model-Check(Z ′,Init′,Final′):

step 1. Compute Post∗Z′(Init′)

step 2. Compute Deadlock = ∩2≤i≤16¬dom(ti)

step 3. post∗Z′(Init′) \ Final′
⋂

Deadlock = ∅

step 4. P = {c13, c14}.
step 5. As P += ∅, we directly jump to step 6.

step 6. Consider parameter c14 in P and enumerate the LPDS function f with
respect to parameter c14.

step 6.a. We don’t know whether Z ′ is convex.

step 6.b. For each f , decide whether f is a absolute ranking function.

Let f be the following LPDS function from N14 to N:

f(s)= (3.s14 +5)(3.s6 +2.s8 +s10) + (3.s14 +4).s4 + (3.s7 +2.s9 +s11 +3.s12)
+ 2.s2 + (s13 − s5)

Proposition 6.1 f is a LPDS absolute ranking function for < Z ′, Init′, F inal′ >.

We also prove that

Proposition 6.2 < Z ′, Init′, F inal′ > does not admit a linear ranking function.
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7 Conclusion and perspectives

We characterize the classes of systems for which the proposed analysis is feasable.
We propose a model-checking algorithm to analyse the final termination property
of counter systems. Our procedure is complete: the procedure terminates iff a
ranking function of a given class exists. Our results extend the class of Bradley’s
ranking functions and are similar to those obtained with TERMINATOR. It is not
clear whether the last version of TERMINATOR (announced in June 2007 and not
available) analyzing multi-threaded programs would terminate on ZCSP.

In order to automate the model-checking procedure, several points have to be
solved.

- to have an efficient procedure for solving LPDS. To the best of our knowledge,
no such dedicated tool exists.

- to have an efficient enumeration scheme of potential ranking functions (either
Presburger or LPDS definable). One could follow Bradley’s approach to prune the
enumeration space.

- to determine whether Post∗(Init) is a polyhedral convex set. A way to proceed
consists in translating the symbolic representation of Post∗(Init) into a Presburger
formula, and then to check whether this formula is convex or not.
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Appendix A – Definition of trace-flattening

Let CS = 〈Q, E〉 be a counter system. A trace for 〈q, a〉 is a (possibly infinite)
sequence of the form 〈q0,a0〉 〈q1,a1〉 〈q2,a2〉 . . . such that 〈q0,a0〉 = 〈q, a〉, and for
every i, 〈qi,ai〉 → 〈qi+1,ai+1〉 in Q×NC . The set of traces for 〈q, a〉 in C is denoted

by tracesCS(〈q, a〉). By extension, tracesCS(q,ψ)
def

=
⋃

〈q,a〉|=ψ tracesCS(〈q, a〉).

Definition 7.1 〈CS′, q′〉 is a h-trace-flattening (trace-flattening for short) of
〈CS, q〉 with respect to ψ iff tracesCS(q,ψ) = h(tracesCS′(q′,ψ)) and CS′ is a h-
flattening of CS; we say that 〈CS, q〉 is trace-flattenable.

Appendix B – Details about ZCSP protocol

7.1 Presentation of the protocol ZCSP

Protocol ZCSP (for Zero-Copy Secure Protocol) is a communication protocol im-
plemented in the MPC parallel computer [10]. It is a securized version of the basic
protocol DDSLRP (for Direct Deposit Stateless Receiver Protocol [?]), which pro-
vides a direct inter-process communication without using the standard system’s
communication primitives, hence avoiding the multiple copies of the data to be
transfered from the emitter process to the system’s internal data structures, and
then from the system’s internal data structures to the receiver process. However,
some data transiting from an emitter node to a receiver node may be lost or may
arrive out of order. Protocol ZCSP detects such loss or un-ordered reception, and
forces the emitter to re-send the entire message.

Data to be transmitted from emitter to receiver is structured in messages. A
correctly received message is acknowledged by the receiver. If the emitter does not
receive the acknowledgment from the emitter before a timeout delay, the message
(or its acknowledgment) is supposed to be lost, and the emitter has to send the
message again. The number of re-emission is bounded.

Before having received the acknowledgment (or timeout) of a given message mi,
the emitter may send another message mi+1, and receive the corresponding acknowl-
edgment ai+1 (before knowing some packet of the ith message or its acknowledgment
was lost). Once the emitter has detected a message’s loss, it re-emits this message

12



Fig. 2. A scenario of ZCSP.

until it gets the corresponding acknowledgment or until the maximal number of
re-emission has been reached. Then it re-emits subsequent timeout messages before
sending fresh messages. A message is a sequence of packets. The packet is the
atomic unit of data transfer. For a given message, packets are sent in increasing
order, and must be received in the same order by the receiver.

In essence, ZCSP protocol is a variant of BRP protocol that has been extensively
studied (for instance, see [1]). In ZCSP several messages may be emitted before an
acknowledgment is received; emitted messages have to be stored up to the reception
of their own acknowledgment and those of their predecessors. This storage induces
a greater complexity than BRP.

7.2 A possible scenario

Fig. 2 presents a possible scenario. A message A is transmitted and its acknowledg-
ment is lost. Meanwhile, a message B is transmitted correctly. Then the message
A is entirely re-emitted. The order of acknowledgments does not follow the order
of (first) emission of messages.

7.3 Overall architecture of the protocol

A first model has been developed and verification of a finite instance has been
achieved with model checker SPIN ([4]). This model is very close to the real imple-
mentation of the protocol, in particular, the management of the pending messages
is faithfully represented. The overal architecture of the protocol is presented in Fig.
3. It is composed of one emitter and one receiver connected through two unidirec-
tional bounded channels storing and retrieving data in FIFO order. Details of the
processes are given in [4].

The emitter is composed of a pending message table (detailled in Appendix), and
two asynchronous processes sender and update modifying its content. The receiver
is composed of a unique process receiver. It checks that the received packet is the
awaited one, and sends an acknowledgment if the received packet was the last one
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Fig. 3. Architecture of ZCSP.

of the message. Channel StoR stores the message packets from the emitter to the
receiver and channel RtoS stores acknowledgment packets from the receiver to the
emitter.

7.4 Structure of the table

The pending message table is an array of TMAX slots, which contains information
about the messages

• already sent, but not acknowledged yet,

• already acknowledged, but preceded by a non-acknowledged message (under re-
emission).

One slot may either be free or contain the information concerning a pending
message. This concerns : the first sequence number of the message, the number of
packets of the message, the acknowledgment bit, the retransmission bit.

Accesses to the table are performed in a circular manner. Entries in the table
are pointed out by three pointers : FF (indicates the “first free”entry, where the
next pending message will be placed), FT (for “first timeout” indicates the pending
message that will be altered by the next timeout’s occurrence), and EldP (indicates
the “eldest” pending message altered by a timeout and not acknowledged yet (under
re-emission)).

Processes sender and update read and modify the content of the pending entry
table. When a new message has to be sent, process sender places the message
identifier in the first free entry table (modifying FF pointer), and sends the message
into the StoR channel. When an acknowledgment or a timeout is received, process
update modifies the table entry pointers, either FT in case of timeout, or eldP and
FT in case of an acknowledgment.

14



Eld_P FT FF

sent, timeout (to be re−emitted)
sent, acknowledged
sent, timeout, currently re−emitted
sent, not acknowleded nor timeout
free

Fig. 4. A configuration of the table.

7.5 The counting abstraction of the table

Entries in the message pending table are classified into five sets.

• Set 1 : message sent, no timeout occurred, no acknowledgment received (message
entry in ]FT, FF [ and ack = 0 ∧ retransmit = 0)

• Set 2 : message sent, ack received but a previous message received a timeout
(hence, cannot leave the table yet) (message entry in ]FT, FF [ and ack = 1)

• Set 3 : message currently under re-emission (message entry in ]eldP , FT ] and
ack = 0 ∧ retransmit = 1 and eldP = FT − 1)

• Set 4 : message to be re-emitted (message entry in ]eldP , FT ] and ack = 0 ∧
retransmit = 1 and eldP < FT − 1)

• Set 5 : free (message entry in [FF, eldP [ )

Fig. 4 presents a configuration of the pending message table, and classify the
message entries.

Appendix C – Parametric counter program of the ab-
straction of ZCSP

Appendix D – Safety properties of ZCSP.

P1 : The number of table entry is equal to T .
Let I1 = {s ∈ N14 | s13 = s1+s2+s3+s4+s5} then P1 = Post∗(Init)

⋂
N14\I1 = ∅

P2 : There is never more than one message under re-emission.
Let I2 = {s ∈ N14 | s3 ≤ 1} then P2 = Post∗(Init)

⋂
N14 \ I2 = ∅

P3 : If there is no re-emission, the counter of re-emission is set to 0.
Let I3 = {s ∈ N14 | s3 = 0&s12 > 0} then P3 = Post∗(Init)

⋂
I3 = ∅

P4 : Each lost message will be re-emitted. This property is relaxed into P4’:
”There exists some message being re-emitted”.
Let I4 = {s ∈ N14 | s3 = 1&s12 > 0} then P4’ = Post∗(Init)

⋂
I4 += ∅

P5 : There exists some message whose retransmission number reaches the maximal
bound.
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transition guard action comment
message emission

t1 c5 > 0 c′1 = c1 + 1 emission of a new message
c3 + c4 = 0 c′5 = c5 − 1

c′6 = c6 + 1
timeout reception

t2 c10 > 0 c′10 = c10 − 1 of a new message
c1 > 0 c′1 = c1 − 1 (this is the first

c3 + c4 = 0 c′3 = c3 + 1 message subject to
c′7 = c7 + 1 a timeout)
c′12 = s14

t3 c10 > 0 c′10 = c10 − 1 of a new message
c1 > 0 c′1 = c1 − 1 (this is not the first

c3 + c4 > 0 c′4 = c4 + 1 message subject to a timeout)
t4 c11 > 0 c′11 = c11 − 1 timeout reception on a re-sent message

c3 > 0 c′7 = c7 + 1 the re-emission bound is not reached
c12 > 0 c′12 = c12 − 1

t5 c11 > 0 c′11 = c11 − 1 of a re-sent message
c3 > 0 c′3 = c3 − 1 the re-emission bound is reached
c4 = 0 c′12 = 0 and no other message to be re-sent
c12 = 0 c′2 = 0

c′5 = c5 + c2 + 1
t6 c11 > 0 c′11 = c11 − 1 of a re-sent message

c3 > 0 c′4 = c4 − 1 the re-emission bound is reached
c4 > 0 c′12 = s14 there are other messages
c12 = 0 c′7 = c7 + 1 to be re-sent

c′5 = c5 + 1
acknowledgment reception

t7 c8 > 0 c′8 = c8 − 1 of a new message
c1 > 0 c1 = c1 − 1 there are previous messages

c3 + c4 > 0 c′2 = c2 + 1 which received a timeout
t8 c8 > 0 c′8 = c8 − 1 of a new message

c1 > 0 c1 = c1 − 1 no message to be re-sent
c3 + c4 = 0 c′5 = c5 + 1

t9 c9 > 0 c′9 = c9 − 1 of a re-emitted message
c3 > 0 c′4 = c4 − 1 other messages have to
c4 > 0 c′5 = c5 + 1 be re-sent

c′7 = c7 + 1
c′12 = s14

t10 c9 > 0 c′9 = c9 − 1 of a new message
c3 > 0 c3 = c3 − 1 no other message
c4 = 0 c′5 = c5 + c2 + 1 has to be re-sent

c′2 = 0
c′12 = 0

message losses
t11 c6 > 0 c′6 = c6 − 1 of a first-emitted message

c′10 = c10 + 1
t12 c7 > 0 c′7 = c7 − 1 of a re-sent message

c′11 = c11 + 1
acknowledgment losses

t13 c8 > 0 c′8 = c8 − 1 of a first-emitted message
c′10 = c10 + 1

t14 c9 > 0 c′9 = c9 − 1 of a re-sent message
c′11 = c11 + 1

reception
t15 c6 > 0 c′6 = c6 − 1 of a new message

c′8 = c8 + 1
t16 c7 > 0 c′7 = c7 − 1 of a re-sent message

c′9 = c9 + 1
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Let I5 = {s ∈ N14 | s3 = 1&s12 = s14} then P5 = Post∗(Init)
⋂

I5 += ∅
P6 : No re-emitted message oversteps the maximal retransmission bound.
Let I6 = {s ∈ N14 | s3 = 1&s12 > s14} then P6 = Post∗(Init)

⋂
N14 \ I6 = ∅

Appendix E – Proofs of propositions about ZCSP

Proposition 4.1

(Z, Init) is post∗-flattable.

Proof. We introduce an invariant to guide the space-search and help FAST to
terminate. The set I = {s ∈ N14 | s7 + s9 + s11 = s3} is an invariant of (Z, Init) :
it is true in Init, and the firing of any transition ti for 1 ≤ i ≤ 16 preserves I. As I

is an invariant from Init, post∗(Init) = post∗(Init ∩ I). Using the tool FAST, the
computation of Post∗S(Init ∩ I) terminates thanks to the acceleration of sequences
of length 2. !

Let f be a LPDS function from N14 to N:

f(s)= (3.s14 +5)(3.s6 +2.s8 +s10) + (3.s14 +4).s4 + (3.s7 +2.s9 +s11 +3.s12)
+ 2.s2 + (s13 − s5)

Proposition 6.1

f is a LPDS absolute ranking function for < Z ′, Init′, F inal′ >.

Proof.

We prove that ∀s, s′ ∈ Post∗Z′(Init′) such that s
ti→ s′ : f(s′) < f(s) by a case

splitting analysis (forall ti with 2 ≤ i ≤ 16). Each case is proven with the help of
tool Maple. Hence f is a ranking function for < Z ′, Init′, F inal′ > and property
P7 is satisfied. !

Proposition 6.2

< Z ′, Init′, F inal′ > does not admit any ranking linear function.

Proof. Let f be a linear function from N14 → N. f is of the form : f(s) = a.s + b

with s ∈ N14, a ∈ ZZ
14, and b ∈ N.

To prove that Z ′ does not admit any linear ranking function, one has to prove
that there exists some states s and s′ in Post∗Z′(Init′) \ Final′ such that s → s′,
and the expression f(s′) − f(s) < 0 does not admit a solution.

For each transition ti with 2 ≤ i ≤ 16, and state s′ such that s
ti→ s′ we build the

expression : ∀s, s′ ∈ Post∗(Init′), (s
ti→ s′∧f(s′)−f(s) < 0). Considering transition

t2, this leads to : for every s14 ∈ N : a12.s14 < a1+a10−(a7+a3). Assuming a12 > 0
(this is inferred by solving the inequality for other transitions), this last expression
is not solvable with ai terms being naturals : the difference of two natural terms
must be greater than an unbounded term, this leads to a contradiction. !

Appendix F – Proofs of propositions about ranking func-
tions

Proposition 5.2

Given a counter system CS ∈ Cpresb and two Presburger sets Init and Final, the
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deadlockfree property of < TS(CS), Init, F inal > is decidable.

Proof. From the hypothesis, post∗TS(CS)(Init) is Presburger-definable then

post∗TS(CS)(Init)\Final is also a Presburger-definable set because Presburger logics

is closed by difference. Hence the condition that for every state s ∈ post∗TS(CS)(Init)\

Final, postTS(CS)(s) += ∅ may be encoded by another Presburger formula whose
satisfiability is decidable. !

Proposition 5.5

For any transition system TS =< S,→> equipped with two sets Init, F inal, such
that (TS, Init, F inal) is deadlockfree, we have < TS, Init >|= AF Final iff there
exists a ranking function for < TS, Init, F inal >.

Proof. ⇒. Assuming ∀s ∈ Init, s |= AF Final, let us build a ranking function of
< TS, Init, F inal >. Let s ∈ Post∗(Init) \ Final. We first state that there exists
some infinite sequence starting in s : post∗(s) represents an infinite state-space,
but as the number of transitions of TS is bounded, the output-arity of each state
is bounded. By applying König’s Lemma, one concludes that there exists some
infinite sequence from s. As TS is deadlock-free, all sequences are unbounded. We
then define f(s) as the length of the longest sequence from s avoiding Final. We
now prove that f(s) += ω : if f(s) were infinite, then s would not verify AF Final,
contradiction. Consider now s′ such that s → s′. As s ∈ Post∗(Init) \ Final and
s |= AF Final, s′ |= AF Final and f(s′) ≤ f(s) − 1. We have f(s′) < f(s).
Moreover, f is recursive than f is a ranking function for < TS, Init, F inal >.

Let us consider a deadlock-free post∗-flattable system, two Presburger sets Init

and Final, and a ranking function f . Let s ∈ post∗(Init) \ Final and f(s) = n.
Two cases have to be considered :

n = 0. We prove that s ranked at 0 has all its successors in Final: TS is deadlock-
free, hence s has at least one successor s′; assume s′ not being in Final, then s′ is
associated with a rank given by f(s′), and by definition of the ranking function,
f(s′) < f(s); as the co-domain of f is N, this is a contradiction. It follows that
every successor of s is in Final, and s |= AF Final.

n += 0. Then each sequence σ starting in s has at most n successor states not being
in Final. We conclude that s |= AF Final.

!

Proposition 5.13

The VRP(CSconv, Xconv, FLPDS) is decidable.

Proof. Let CS be a polyhedral convex counter system in CSconv, Init, F inal two
convex sets in Xconv and f ∈ FLPDS a LPDS function. The negation of the VRP
of f for < TS(CS), Init, F inal > can be translated into the satisfaction problem
of a LPDS formula.

We build the formula : Φ = ∃x, x′ : φ1(x, x′)∧φ2(x, x′)∧φ3(x, x′) representing a
counter-example to the fact that f is a ranking function for < TS(CS), Init, F inal >

where:

• φ1(x, x′) = x ∈ post∗TS(CS)(Init) \ Final ∧ x′ ∈ post∗TS(CS)(Init) \ Final ,
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• φ2(x, x′) = f(x) ≥ 0 ∧ f(x′) ≥ 0,

• φ3(x, x′) =
⋃

g ∈ ΣC , (x ∈ dom(g) ∧ x ∈ dom(f) ∧ x′ ∈ dom(f) ∧ x′ = g(x) ∧
f(x′) ≥ f(x)).

The formula φ1 is in Presb∃ from the hypothesis. The formulas φ2 and φ3 are
both LPDS formulas. Hence the formula φ1(x, x′) ∧ φ2(x, x′) ∧ φ3(x, x′) is still a
LPDS formula; moreover, LPDS systems are closed by existential quantifiers hence
Φ is a decidable LPDS formula. !
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