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Abstract. Motivated by the verification of programs with pointer variables, we intro-
duce a temporal logic LTL™™ whose underlying assertion language is the quantifier-free
fragment of separation logic and the temporal logic on the top of it is the standard
linear-time temporal logic LTL. We analyze the complexity of various model-checking
and satisfiability problems for LTL™™, considering various fragments of separation logic
(including pointer arithmetic), various classes of models (with or without constant heap),
and the influence of fixing the initial memory state. We provide a complete picture based
on these criteria. Our main decidability result is PSPACE-completeness of the satisfiabil-
ity problems on the record fragment and on a classical fragment allowing pointer arith-
metic. X9-completeness or X1 -completeness results are established for various problems
by reducing standard problems for Minsky machines, and underline the tightness of our
decidability results.

1 Introduction

Verification of programs with pointers. Model-checking of infinite-state systems
is a very active area of formal verification [BCMS01| even though in full gener-
ality, simple reachability questions are undecidable. Nevertheless, many classes
of infinite-state systems can be analyzed, such as Petri nets, timed automata,
etc. Programs with pointer variables suffer the same drawback since reachabil-
ity problems are also undecidable, see e.g. [BEN04,BBH"06]. It is worth noting
that specific properties need to be verified for such programs, such as the ex-
istence of memory leaks, memory violation, or shape analysis. Prominent logics
for analyzing such programs are Separation Logic [Rey02], pointer assertion logic
PAL [JJKS97|, TVLA |[LAS00| and alias logic [BIL04|, to quote a few examples.

Temporal Separation Logic: what for? Since [Pnu77|, temporal logics are used as
languages for formal specification of programs. General and powerful automata-
based techniques for verification have been developed, see for example the works
[VW94, KVWO00]|. On the other hand, Separation Logic is a static logic for pro-
gram annotation [Rey02], and more recently for symbolic computation [BCOO05b].
Extending the scope of application of Separation Logic to standard temporal
logic-based verification techniques has many potential interests. First, it pro-
vides a rich underlying assertion language where properties more complex than
accessibility can be stated. Second, this probably yields a significant feedback for
the purely static Separation Logic extended with general recursion, which has
not been much studied up to now. For instance, if we write Xx to denote the
next value of x (also sometimes written x’), the formula (x — Xx)U(x < null),
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understood on a model with constant heap, characterises the existence of a sim-
ple flat list, which is usually written uL(x). x < nullV3x'.x < x' A L(x’). Third,
temporal logics allow to work in the very convenient framework of "programs-as-
formulae" and decision procedures for logical problems can be directly used for
program verification. For instance, the previous formula can be seen as a program
walking on a list, and more generally programs without destructive updates can
be expressed as formulae. Some programs with destructive updates that perform
a simple pass on the heap, have an input-output relation that may be described
by a formula. For instance, the formula (x — Xx A Xx —; x)Ux < null
roughly expresses that the list in the initial heap hy is reversed in final heap
hy. Fourth, pointer arithmetic has been poorly studied until now, whereas arith-
metical constraints in temporal logics are known to lead to undecidability, see
e.g. [CC00|. Actually, there is a growing interest in understanding the interplay
of pointer arithmetic, temporal reasoning, and non aliasing properties.

Our contribution. We introduce a linear-time temporal logic LTL™™ to spec-
ify sequences of memory states with underlying assertion language based on
quantifier-free Separation Logic [Rey02|. From a logical perspective, the logic
LTL™™ can be viewed as a many-dimensional logic |[GKWZ03| since LTL™™
contains a temporal dimension and the spatial dimension for memory states.
Other many-dimensional logics can be found in [BWZ02,BC02,GKWZ03,DD07|.
Our logic addresses a very general notion of models, including the aspects of
pointer arithmetic and recursive structures with records. We distinguish the sat-
isfiability problems from the model-checking problems, as well as distinct sub-
classes of interesting programs, like for instance the programs without destructive
update. The most promising result for future implementation is the PSPACE-
completeness of the satisfiability problems SAT(CL) and SAT(RF) where CL
is the classical fragment without separation connectives and RF is the record
fragment with no pointer arithmetic but with separation connectives. This re-
sult is very tight, as both propositional LTL and static Separation Logic are
already PSPACE-complete [SC85,CYOO01]. These results are obtained by reduc-
tion to the nonemptiness problem for Biichi automata on an alphabet made
of symbolic memory states obtained by an abstraction that we show sound
and complete, see e.g. [Loz04,CGHO5]. Such abstractions are similar to resource
graphs from [GMO05]. This is a variant of the automata-based approach intro-
duced in [VW94| for plain LTL and further developed with concrete domains of
interpretation in [DDO07|. Surprisingly, the abstraction method used to establish
these results does not scale to the whole logic, due to a subtle interplay between
separation connectives and pointer arithmetic. Moreover, we provide new unde-
cidability results for several problems, for instance SAT*(LF) (satisfiability with
constant heap on the list fragment).

Related work. Previous temporal logics designed for pointer verification include
Evolution Temporal Logic [YRSWO03], based on the three-valued logic abstrac-
tion method that made the success of TVLA [LAS00|, and Navigation temporal
logic [DKR04], based on a tableau method quite similar to our automaton-based

2



reduction. In these works, the assertion language for states is quite rich, as it
includes for instance list predicate, quantification over adresses, and a freshness
predicate. Because of this high expressive power, only incomplete abstractions
are proposed, whereas we stick to exact methods. More importantly, our work
addresses models with constant heaps and pointer arithmetic, which has not been
done so far, and leads to a quite different perspective.

Structure of the paper We define our logic LTL™" and several fragments and

problems in Section 2. Section 3 introduces the symbolic memory states (also use-
ful in Section 4) and presents the PSPACE-completeness of the satisfiability and
model-checking problems for SL with pointer arithmetic. Section 4 is dedicated to
the decidability proof of satisfiability for various fragments and its consequences
for other problems. In Section 5, we mention several seemingly optimal undecid-
ability results by encoding computations of Minsky machines. Section 6 contains
concluding remarks.

2 Memory Model and Specification Language

In this section, we introduce a separation logic dealing with pointer arithmetic
and record values, and a temporal logic LTL™“". Unlike BI’s pointer logic from
[IO01], we allow pointer arithmetic.

2.1 A separation logic with pointer arithmetic

Memory states. Let us introduce our model of memory. It captures features of
programs with pointer variables that use pointer arithmetic and records. We
assume a countably infinite set Var of variables (as usual, for a fixed formula we
need only a finite amount), and an infinite set Val of values containing the set N
of naturals, thought as address indexes, and a special value nil. For simplicity, we
assume that Val = N {nil}. In order to model field selectors, we consider some
infinite set Lab of labels. We will usually range over values with u, v, over naturals
with 7,7, over labels with [, next, prev, and over variables with x,y. In the
remainder, we will assume some fixed injection (x,7) € Var x N+ (x,4) € Var.

We use the notation £ — ¢, [ for the set of partial functions from £ to F
of finite domain; and £ — ¢, F for the set of partial functions from E to F
of finite and nonempty domain. The sets S of stores and H of heaps are then
defined as follows:

o
.
o
-

€ €

S Var — Val H

N — fin (Lab — fin+ Val)

We will range over a store with s, s’ and over a heap with h, h', hy, ho. We call
memory state a couple (s,h) € S x H.

We will refer to the domain of a heap h by dom(h) C N. Intuitively, in our

memory model, each index is thought as an entry point on some record cell
containing several fields. Cells are either not allocated, or allocated with some
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Expressions State Formulae

e:x= x | null A= 1

Atomic formulae | AxB| A=B| emp (spatial fragment)
= e=¢ | eticoe | AANB| A— B | L (classical fragment)
Satisfaction

(s,h) EsLe=¢ iff[e]ls=[¢€]s, with[x]s=s(x)and [ null ], = nil

(s,h) FEsL e+z<—>e iff [e]seNand [ e]+i € dom(h) and h(s(x) +i)(1) =[¢€ ]s
(s,h) Esi emp iff dom(h) =0

(s,h) Est A1 x Az iff 3 hi, he s.t. h = hy * ha, (s,h1) FEsu A1 and (s, h2) Esi A2
(s,h) EsL A=A iffforall ', if h L A’ and (s,h’) EsL A’ then (s,hxh') EsL A
(s,h) EsL A1 AN Az iff (s,h) EsL Ar and (s, h) FEsL A2

(s,h) Est. A” — A iff (s,h) st A’ implies (s, h) st A

(s,h) FsL L never

Table 1. The syntax and semantics of SL with pointer arithmetic and records

Jh
h

record stored in. In a memory state (s, h), the memory cell at index i is allocated
if © € dom(h); in this case the stored record is h(i) = {l1 — v, .., 1, — v, }.

Note that the size of the information held in a memory cell is not fixed,
nor bounded. Our models could be more concrete considering labels as offsets
and relying on pointer arithmetic. But for our purpose, it will be convenient to
consider pointer arithmetic independently.

Separation Logic. We now introduce the separation logic (SL) on top of which
we will define our temporal logic. The syntax of the logic is given in Table 1.

In short, Separation logic is about reasoning on disjoint heaps, and we need
to define what we mean by “disjoint heaps” in our model. Our level of granularity
implies that a record cell cannot be decomposed in disjoint parts. Let hy; and hs be
two heaps; we say that h; and hy are disjoint, noted hq Lhs, if dom(hy)Ndom(hy) =
(). The operation h * hy is defined for disjoint heaps as the disjoint union of the
two partial functions. Semantics of formulae is defined by the satisfaction relation

Es1, (see Table 1).

Formulae 7 are atomic formulae. The formula x +1 <L, ¢ states that the value
of the [ field of the record stored at the address pointed by x with offset ¢ is equal
to the value of the expression e. The formula e = ¢’ states the equality between
the values of the two expressions, and emp means that the current heap has no
memory cell allocated.

Formulae A of SL are called state formulae. The size of the state formula A,
written |A|, is the length of the string A for some reasonably succinct encoding
of variables and integers with a binary representation. We will use the map | - |
for other syntactic objects such as LTL™" formulae. A formula A * B with
the separation conjunction states that A holds on some portion of the memory
heap and B holds on a disjoint portion. A formula A—5 states that the current
heap, when extended with any disjoint heap verifying A, will verify 5. Boolean
operators are understood as usual. Derivable connectives AV B, —.A are defined as
usual. In the remainder, we focus on several specific fragments of this separation
logic. We say that a formula is in the record fragment (RF) if all subformulae
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X+1 s ¢ use i = 0. In that case, we write x L e We say that a formula is in the
classical fragment (CL) if it does not contain any of the connectives * and —x.
Finally, we say that a formula is in the list fragment (LF) if it is in the classical

fragment and all subformulae x + ¢ L eusei=0andl = nexrt, and we may
simply write x < e. Clearly, the classical and record fragments are incomparable,
while the list fragment is included in both of them.

Let us illustrate the expressive power of SL on examples. The formula —emp *
—emp means that at least two memory cells are allocated. The formula x N e,
defined as —(—emp * —emp) A x <4 e, is the local version of x Le: s, h g1, x Lo
iff dom(h) = {s(x)} and h(s(x))(l) = [ e ]s. The formula (x R null)—l is
satisfied at (so, hg) whenever there is no heap hy with hy Lhg that allocates the
variable x to nil on [ field. In other words, the variable x is allocated in the heap
hg.

As usual, A is valid iff for every memory state (s,h), we have (s,h) g1, A
(written gr, A). Satisfiability is defined dually.

2.2 Temporal extension

Memory states sequences. Models of the logic LTL™™ are w-sequences of mem-
ory states, that is elements in (S x H)¥ and they are understood as infinite
computations of programs with pointer variables. We range over p for a given
model, and its i'" state p(i) will be noted (s;, h;). In order to analyze computa-
tions from programs without destructive update, we shall also consider models
with constant heap, that is elements in S x H.

The logic LTL™™. Formulae of LTL™“™" are defined in Table 2. Atomic formulae
of LTL™“™ are state formulae from SL except that variables can be prefixed by the
symbol “X”. For instance, Xx is interpreted by the value of x at the next memory
' 7 times

state. We use the notation X'x for X...Xx (but keep in mind that encoding
X'x requires memory space in O(i)). The temporal operators are the standard
next-time operator X and until operator U present in LTL, see e.g. [SC85]. The
satisfaction relation p,t = ¢ where p is a model of LTL™™, ¢ € N and ¢ is
a formula is also defined in Table 2. We use standard abbreviations such as
Fo, Go ... We freely use propositional variables p, ¢, having in mind that the
propositional variable p should be understood as x, = xt for some fixed extra
variables x,, xg, ..., xT.

Given a fragment Frag of SL, LTL™*"(Frag) is the restriction of LTL™™
to formulae in which occur only state formulae built over Frag (with extended
variables X'x), and we write SAT (Frag) to denote the satisfiability problem for
LTL™"(Frag): given a temporal formula ¢ in LTL™"(Frag), is there a model
p such that p,0 = ¢7 The variant problem in which we require that the model
has a constant heap [resp. that the initial memory state is fixed] is denoted by
SAT“(Frag) [resp. SAT,,,,(Frag)]. The problem SATS . (Frag) is defined analo-
gously.



Enriched expressions 7 ::= x | Xn| null

Atomic formulae mu=n=n| nti < n
State formulae A= 7| emp| AxB| AxB| ANB| A—B| L
Temporal formulae ¢ = A| X¢| oUd' | ¢ A Q' | —¢
Semantics
ptEXe i pt 1k 6.
p,t | dU@" iff there is t1 >t s.t. p,t1 = ¢’ and p,t’' | ¢ for all t’' € {¢,..,t; — 1}.
ptEdNYiff pt = ¢ and pt =P,
ptE—9  iff ptlE P
ptEA iff sy, he EsL A[ka — (x,k)] where p = (s¢, ht)e>0 and

s; is defined by s;((x,k)) = siyr(x).

Table 2. The syntax and semantics of LTL™™

2.3 Programs with pointer variables

In this section, we define the model-checking problems for programs with pointer
variables over LTL™™ specifications. The set I of instructions used in the pro-
grams is defined by the grammar below:

instr m=x:=y | skip
|x:=y—l|x—l:=y|x:=cons(l; : x1,.., 1l : x) | free x,l
| x :=yli] | x[i] ==y | x :==malloc(i) | free x,i

The denotational semantics of an instruction instr is defined as a partial
function [ instr | : S x H — S x H, undefined when the instruction would
cause a memory violation. We list in Table 3 the formal denotational semantics
of our instruction set. Boolean combinations of equalities between expressions
are called guards and its set is denoted by G. A program is defined as a triple
(@, 0,qr) such that @ is a finite set of control states, ¢; is the initial state and §

is the transition relation, a subset of () X G X I x ). We use ¢ ginets ¢ to denote
a transition. We say that a program is without destructive update if transitions
are labeled only with instructions of the form x :=y, x .=y — [, and x := y][i].
We write P to denote the set of programs and P to denote the set of programs
without destructive update.

A program is a finite object whose interpretation can be viewed as an infinite-
state system. More precisely, given a program p = (@, d, ¢s), the transition system
S, = (5,—) is defined as follows: S = @ X (S x H) (set of configurations)

and (g, (s,h)) — (¢, (s, 1)) iff there is a transition ¢ 2 ¢’ € § such that
(s,h) = gand (s',h') = [ instr | (s, h). Note that S, is not necessarily linear. A
computation (or execution) of p is defined as an infinite path in S, starting with
control state q;.

Computations of p can be viewed as LT models, using propositional
variables to encode the extra information about the control states (details are
omitted herein).

Model-checking aims at checking properties expressible in LTL™™" along com-
putations of programs. To a logical fragment (SL, CL, RF, or LF), we associate a

Lmem
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[x:=y](sh) = (slx— s(y), ).

def

[x:=y—=1l] (s,hx{i—{l—wv,... }}) = (sx—v),hx{i—{l—wv,...}})
Zvifths(y):i
[x—=l=y] (s,hx{i—{l—wv,... }}) = (s,hx{i—{l—s(y),...}})
with s(x) =1
— cons(l - x Ly s def (s[xr—>i},h*{ir—>{l1r—>s(x1),
[[X.— (ll 1,...,lk. k)]] (,h) = ,lkHS(Xk)}})
with ¢ & dom(h)
[freex,i] (s,hs{irs{l—uv,...}}) = (s,hx{im{...}})
with s(x) =1
[ skip ] (s, h) jzi (s,h)
[x:=y[i]] (s,h*{i+i — {next —v}}) = (s[x > v],h*{i— {newt — v}}))
Zvifths(y):i'
[x[i] ==y ] (s,h*{i' +i {next—v}}) = (s,h*{i+i — {next — s(y)}})
with s(x) =14’

def  (s[x—i'],h* {i' — {next — nil}, ...,

[ x :=malloc(i) ](s, h) = 4 (i— 1) — {newt — nil}})
with ¢',...,4' + (i — 1) & dom(h)

[ free x,i] (s,h* {i' +i f}) L (s,h)

with s(x) =4’

Table 3. Semantics for instructions

set, of programs : all programs for SL and CL, programs with instructions having
1 = 0 for RF, and moreover with only the label next for LF. Given one of these
fragments Frag of SL, we write MC(Frag) to denote the model-checking problem
for Frag: given a temporal formula ¢ in LTL™"" with state formulae built over
Frag and a program p of the associated fragment, is there an infinite computation
p of p such that p,0 = ¢ (which we write p = ¢)? The variant problem in which
we require that the program is without destructive update [resp. that the initial
memory state is fixed, say (s, h)] is denoted by MC®(Frag) [resp. MC,, ,,(Frag)].
The problem MC{’ ,,(Frag) is defined analogously. We may write p, (s, ) | ¢ to
emphasize what is the initial memory state.

All the model-checking and satisfiability problems defined above can be placed
in X! in the analytical hierarchy. Indeed, the models and computations of pro-
grams can be viewed as functions f : N — N by encoding memory states and
configurations by natural numbers (details are tedious). Then, the satisfaction
relation between models and LTL™™" formulae and the transition relations ob-
tained from programs can be encoded by a first-order formula. This guarantees
that these problems are in X}. Additionnally, all the above problems can easily
be shown PSPACE-hard since they all generalize LTL satisfiability and model-
checking [SC85].

Using extended variables Xx, we may express some programs as formulae. This
actually holds only for programs without update, for the semantics with constant
heap. Intuitively, we express the control of the program with propositional vari-
ables, and define a formula that encode the transitions. As a consequence, the
following result can be derived.



Lemma 1. Let Frag be a fragment among SL, CL, RF, or LF. There is a
logspace reduction from MC®(Frag) to SAT®(Frag) (resp. from MC{, (Frag) to
SAT,,(Frag)).

Proof. We adapt the proof in [SC85| for reducing LTL model-checking to LTL
satisfiability. To a program p = (@, d, qr), we associate the formula ¢, below built
over the propositional variables in ):

anGNa=( N ~dr\ ¢)

q€Q 7'€Q\{q} TEST

where ¢, expresses that transition 7 is fired between current state and next state
and 0, is the set of transitions starting at state ¢. In order to define ¢,, we need
to translate instructions and guards into the logic. We translate instructions of
the form x := y into Xx =y, x :=y — [ into y <4 Xx, and x := yli] into
y + ¢ — Xx. Guards are translated accordingly. It is then standard to show that
p = ¢ iff ¢ A ¢, is satisfiable.

2.4 Discussion

We are currently investigating issues about the expressive power of this logical
formalism. Let us discuss few issues below.

First, the interest of model-checking programs with heap updates stems from
early works on automata-based verification. Decision procedures are obtained at
the cost of limitations: to define approximations as done in [YRSW03,DKR04]
or to restrict the programming language, see e.g. |[BFLS06]. However, with this
approach, compositionality principles are lost which is a pity since they made
the success of separation logic, as frame rule and composition rule.

Second, assuming that the heap is constant is subject to promising develop-
ment. Indeed, it is then possible to define spatial operators at the same syntac-
tic level as temporal operators, and write formulae as e.g. [((x — Xx)U(x —
null))] * (y +~ null). This might be a way to model modularity in model-
checking programs without destructive updates, but there are other points of
interest we will try to advocate now.

Recursion with local parameters The constant heap semantics provides an
original viewpoint for recursion with local parameters and local quantification.
The design of decision procedures in presence of recursive predicates has not yet
completely satisfactory answers. Specific axiomatizations have been proposed for
some standard recursive structures [BCOO05a| as well as incomplete methods of
inference even though they are apparently good in practice.

In order to be a bit more precise, let us consider the fragment of recursive
separation logic where all recursive formulae are of the form:

(1) pX(x1,..,2x). Az, . 2) V 32,2 Boy, . xp, 2, x0) A X (2], ., 2))
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This fragment is rich enough to express single lists, cyclic lists, and doubly-linked
lists. However, we conjecture that it is not expressive enough for trees and DAGs.

We conjecture that deciding satisfiability in the fragment of recursive sep-
aration logic mentioned above reduces to SAT(SL), and the model-checking

problem reduces to SATS .., considering that (1) can be rewritten as:

(B(xl7 oy Ty X1, ..7Xxk)) U A(xq, .., zg).

In this perspective, our results could rise interesting decidability results for
model-checking some of the recursive separation logic with local quantifiers. For
satisfiability, we expect to define decidable fragments for SAT*(SL), for instance
considering the techniques for checking temporal properties of flat programs with-
out destructive updates introduced in [FLS07]. Another interesting fragment of
recursive separation logic is probably the one where recursion is guarded by the
separation operator *, but we do not currently see how to treat it in the temporal
logic perspective.

Programs as formulae Let us speculate some more. We may take advantage of
expressing programs as formulae in order to reduce model-checking to satisfiabil-
ity, a known approach since [SC85]. For programs without destructive update, we
have Lemma 1. Moreover, we believe we can extend this result to programs with
updates, but with a slightly different perspective. The constant heap semantics
can be helpful to define the input-output relation of programs, even with destruc-
tive updates, provided some conditions on the way the program read and write
over the memory are satisfied. To do so, we consider the extension of LTL™™
with two predicates <—( and < instead of the single <, and models are cou-
ples of state sequences with constant heap, that is tuples ((s;);>0, ko, h1). Let us
define the input-output relation Rp of a program P as : for all (sq, ho), (s1, 1),
(S0, ho)Rp(s1, h1) if there is a run of P that starts with (so,ho) and ends with
(s1,h1). Then we conjecture that for an interesting class of programs, this rela-
tion is definable in LTL™" extended with <, and <. Basically, the encoding
of the control of the program will be the same as for programs without destruc-
tive updates, but the encoding of the instructions will be different. For instance,

x — | := y would be encoded by (Xx) <l—>1 y whereas x := y — [ would be

!
encoded as y —( Xx.

3 Separation Logic: Complexity and Abstraction

After defining an abstraction for the fragment RF of SL, which will be proved
to be sound, we will be able to decide the complexity of model checking and
satisfiability for the whole SL (Section 4).

3.1 Syntactic measures

The main approach to get decision procedures to verify infinite-state systems
consists in introducing a symbolic representation for infinite sets of configura-
tions. The symbolic representation defined below plays a similar role and has
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similarities with symbolic heaps for Separation Logic in Smallfoot [BCOO05b].
Let us start by some useful definitions. Following [Loz04], we introduce the set
of test formulae that are formulae from SL of the forms below:

— alloc x = (x "% null)—L (x is allocated).

k times

— size > k dEefC'emp P —emp (at least k indices are allocated).

1
—et+i—e e=¢.

Given a formula ¢ of LTL™®", we define its measure j, understood as some
pieces of information about the syntactic resources involved in ¢. Indeed, forth-
coming symbolic states are finite objects parameterized by such syntactic mea-
sures.

For a state formula A of LTL™™, the size of memory examined by A, written
w4, is inductively defined as follows: w 4 is 1 for atomic formulae, mazx{w4,, w4, }
for A; A Ay or Ay — Ay or A;—=Ay, and wy, + wy, for Ay x Ay. Observe that
wa < |A]. Other simple sets about the syntactic resources of A need to be
defined: Laby is the set of labels from Lab occurring in A, Var 4 is the set of
variables from Var occurring in A, €4 is the set of natural numbers i such that

1 . . . .
e +1i < ¢ occurs in A and m 4 is the maximal k such that X*x occurs in A for
some variable x. A measure is defined as an element of

N x P;(N) x N x Py(Lab) x Ps(Var)

where P;(X) denotes the set of finite subsets of some set X. The set of measures
has a natural lattice structure for the pointwise order, noted below u < p/. We
also write p[w < 0] to denote the measure p except that w = 0.

The measure for A, written pi4, is the tuple (m., €4, w4, Laby, Var,). The
measure of some formula ¢ of LTL™™, written s, is sup{su.a : A occurs in ¢}.

Definition 1. Given a measure pn = (m,e,w, X,Y’), we write 7, to denote the
finite set of test formulae 1 of the grammar:

e = (x,u) | null fuo=e+i
w:::f<L>e | alloc f | e=¢ | size > k

withu <m,i1€¢6,l € X, k<wandxeY.

Observe that the cardinal of 7, is polynomial in [¢|. The variable (x,u) will be
used in the subsequent developments to deal with the interpretation of the term
X“x in the formulae of the temporal logic. Given a measure p = (m, e, w, X,Y")
and a memory state (s, h), we write Abs,(s,h) = {A € T, : (s,h) s, A} to
denote the abstraction of (s, h) wrt x. Given a measure p and two memory states
(s,h) and (s', 1), we write (s, h) =, (s', 1) iff Abs,(s,h) = Abs,(s',h’), that is,
formulae in 7, cannot distinguish the two memory states.

The proof of Lemma 5 below is based on three technical lemmas. Before
stating them and proving them, in Lemmas 2-4, we assume that the measure
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has e = {0} since we are dealing with RF. Moreover, we introduce the following
definition: (m, €, w, Laby, Vary)+(m, €, w’, Labg, Vary) = (m, €, w+w’, Labg, Vary),
following the lattice structure of the set of measures.

Lemma 2 (Distributivity). If (s,h) ~, (s, h'), h = hy * hy and p = p11 + o,
then there are hi and hiy such that h' = k| x hy and (s, hy) ~,, (s',h)) for
ke {1,2}.

Proof. Consider some stores, heaps and measures such that (s, h) ~, (s',h'), h =
hq*hg and p = pq + e with g = (m, €, w, Labg, Vary), i1 = (m, €, wy, Laby, Varg)
and ps = (m, €, wq, Laby, Vary).

Each domain dom(hy) (k € {1,2}) can be divided in the disjoint parts dom(hy)N
Im(s) and dom(hy)\Im(s). Each heap h) is defined using the following sets: dom(h} )N
Im(s) = Sy, dom(hy) N Im(s) = Sy, dom(hq)\Im(s) = C; and dom(hy)\Im(s) = Cs.

Let Vi,...,V, be the equivalence classes for the binary relation ~, defined
over variables from {(y,u) : y € Var;,0 < u < m} as follows: x ~y y iff
s'(x) = §'(y). Let 1, ...,1, be the corresponding images through s and i, ...,
be the corresponding images through s'. Let wuy, ..., u,, be the indices such that
iy, € dom(hy) and vy, ...,v,, be the indices such that i,, € dom(hy). Then, we
define Sy = {i,,,...,4, } and Sy = {7, ..., 7, }. Because hyLhy, dom(h') N
Im(s') = S; W 9, (disjoint union).

Now, we shall separate the set dom(h')\Im(s") into two parts A; and As. Let
B = dom(h)\Im(s), By = dom(hy)\Im(s) and By = dom(hs)\Im(s). For k € {1, 2},
|Br| = |dom(hy)| — |Sk|. A1 and A contain respectively |A;| and |Ay| random
elements of dom(h')\Im(s") so that |Ax| = |dom(hy)| — |Sk|. In order to select the
elements of A; and Ay, we distinguish four cases according to the respective sizes
of |dom(hq)| and |dom(hs).

Case 1: |dom(h)| < w.
Consequently |dom(h')| = |dom(h)| and dom(h’)\Im(s") can be divided into two
parts Ay, Ay such that Ay W Ay = dom(h')\Im(s'), |A;| = |[dom(hy)| — |S1| and
| Az| = |dom(hs)| — [S].
Case 2: |dom(h)| > w.
Case 2.1: |dom(h;)| > w; and |dom(hs)| > ws.
Consequently |dom(h')| > w. There exist A;, Ay such that A; W A,
dom(h/)\Im(s"), |A1| = |dom(hy)| — |S1| > wy and |As| = |dom(hs)| — |S2|
Way.
Case 2.2: |dom(hy)| < w; and |dom(hy)| > ws.
There exist A, A such that A; W Ay = dom(h')\Im(s'), |A1| = |dom(hy)| —
|Sl| and |A2| = |dom(h2)| — |SQ| Z Wsy.
Case 2.3: |dom(h;)| > wy and |dom(hs)| < ws.
Analogous to the Case 2.2.

Vvl

The heap h is defined as hj,, ¢, and the heap hj is defined as hj,, g, . Since
Ay, Ay, S7 and S, are disjoint sets, we get that A; U S; and A, U S, are disjoint.
Moreover, A; U Ay U S; U Sy = dom(h'). So b/ = h)  hi,.

11



It remains to show that for & € {1,2}, (s, hy) ~,, (5, h},).

If size > &k € Abs,(s,hy), then |dom(hy)| > k. If |dom(hy)| > wy then
|dom(h’ )| = |Ak USk| = |Ak| + |Sk| Z |dom(hk)| - |Sk| + |Sk| Z Wi . If |dom(hk)| <
wy, then |dom(h},)| = |Ar U Sk| = |Ak| + |Sk| = |Bk| + |dom(hy) N Im(s)| >
|(dom(hy)\Im(s)) U (dom(hy) N Im(s))| > |dom(hy)| > k. In both cases, size >
k€ Abs,(s', h},).

fA=e+i <4 ey € Abs, (s, hi), then hy(s(e1 +1))(l) = s(e2). Consequently,
h(s(e; +1))(l) = s(e2). Hence A € Abs,(s,h), A € Abs,(s',h') and h'(s'(e; +
i))(1) = s'(eq). Since s(e;) € dom(hg), we have s'(e; + i) € dom(h}). Hence,

hi(s'(ex +14))(1) = W (s'(ex +1))(l) = s'(e2). We conclude that A € Abs, (s, hi,).
Preservation of test formulae about allocation and equality are preserved.
We have proved that Abs,(s,hy) C Abs,(s',h;). The proof for the other
inclusion is similar. ad

h!
k

Lemma 3. If (s,h) ~, (s',h') then for all hoLh, there is hyLh' such that
(8, ho) 22, (5, hp)-

Proof. Lemma 3 is actually a restriction of forthcoming Lemma 7 in which the
constraint about size is removed.

Lemma 4 (Congruence). If (s, ho) ~, (5, hy), hoLh1, hyLh} and (s, hy) ~,
(s',hY), then (s, ho* hy) =2, (s, hi * h}).

Proof. Assume (s, hg) ~, (5',h{) and (s, hy) ~, (', h}) with hoLhy, hyLh] for
some measure y = (m, €, w, Labg, Varg). We shall show that (s, hoxhy) =, (s, h*
hy).

By symmetry of ~~,,, it is sufficient to prove that Abs,(s, hoxhy) C Abs,(s', hy*
h}). Let A € Abs,(s, ho * h1). We make a case analysis according to the form of
A.

— If A = size > k, then k < |dom(hg * hy)|. We want to show that k <
|dom(hy, * hy)| which implies that A € Abs, (s, hj * h}).
e If |dom(h;)| > w or |[dom(hg)| > w, then |dom(h})| > w or |dom(hy)| > w,
respectively. So |dom(hy * h})| > w and k < |dom(h{ * h})|.
o If |dom(h;)| < w and |dom(hg)| < w then |dom(hg * hy)| = |dom(hy)| +
|dom(ho)| = |dom(R))| + |dom(h()| = |dom(h{ * h})|. So k < |dom(hy * hY)|.
—IfAise=¢ethene]s=[¢€]s So. A€ Abs,(s, h), which is equivalent to
A € Abs,(s',h}). Therefore [ e J¢ =[ € |s and A € Abs,(s', hy * h}).
~ IfA=e<5 ¢ then (hoxhi)([e]s)(l) =[ € ]s. Hence there is k € {0,1} such
that ([ e 1)) = [ ¢ Jo, Bl e 10)(D) = [ ¢ T and (8 * Kp)([ e Jo)(0) =
sl e s So A€ Abs,(s, h} * hy).
— If A=alloc e then [ e ||s € dom(hg * hy). Hence there is k € {0, 1} such that
[ e]s € dom(hy). Consequently, [ e s € dom(h},) and [ e [s € dom(h{ * h})
which entails A € Abs, (s, hj * h}). 0

Lemma 5 below states that our abstraction is correct for the fragments CL
and RF.
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Lemma 5 (Soundness of abstraction for SL). Let (s, h) and (s',h') be two
memory states such that (s,h) ~, (s',h') [resp. (s,h) ~uweq (5,1')]. For any
state formula A such that pg < p and A belongs to RF [resp. CLJ, we have
(s,h) s A dff (s 1) F=sp A

Proof. The proof of Lemma 5 for the classical fragment is rather straightforward.
Indeed any state formula is a Boolean combination of test formulae. Concerning
the record fragment, because of the presence of separation operators the proof
deserves more effort. Suppose that (s,h) ~, (s',h’) and A € RF such that
pa < p. By structural induction, we show that (s, h) s, A iff (s, 1) =51 A.

I
— The base case when A has one of the forms e = ¢/, e — ¢’ and emp is by an

easy verification.

— Similarly, in the induction step, the cases when the outermost connective is
Boolean are straightforward.

— Assume that (s, h) =g, A with A = By % By. Then there are hy and hy such
that h = hy*hy and (s, hy) st B fork =1,2. As i > pg and pa = pup, +1s,,
there are 11y and pg such that py, > g, and pg + pe = p. By the distributivity
lemma, there are h} and h} such that A’ = h} * h} and (s, hy) ~,, (5, h})
for £k = 1,2. By the induction hypothesis, for & € {1,2}, (s',h},) =sr Bx-
Semantics of the separation operator % guarantees that (s', ') =g, A.

— Finally, assume A = B;—By. Let b} Lh' be such that (s',h}) Es. Bi. By
Lemma 3, there is a heap h; such that (s,hy) ~, (s',h}) and h;_Lh, and so
(s,h1) [Est By by the induction hypothesis. Then (s, h * hy) =g, Ba, and by
the congruence lemma, (s',h' * b)) g1, B2. Hence (', h') [=g1, By —*Bs.

Note that we can extend this result to the whole SL by considering test
formulae of the form e +i =€’ + j.

3.2 Complexity of reasoning tasks for SL

In this section, we show that model-checking, satisfiability and validity, for SL,
are PSPACE-complete. We use the abbreviations mc(SL), sat(SL) and val(SL) for
the respective problems. These abbreviations are extended to any fragment of
separation logic, for instance sat(RF) is the satisfiability problem for the record
fragment.

PSPACE-hardness of mc(LF) and sat(LF) is a consequence of [CYOO01, Sect.
5.2]. As SL strictly contains LF, this entails the PSPACE-hardness for mc(SL) and
sat(SL). Since SL is closed under negation, PSPACE-completeness of val(SL) will
follow from PSPACE-completeness of sat(SL).

In order to show that mc(SL) and sat(SL) are in PSPACE, we establish the
lemmas below. The following lemma 6 establishes a reduction from mc(SL) to
mc(RF), so that we only need to consider RF in order to find the complexity
of model-checking. Then, in lemma 7, we will provide a small model property
for RF, which will allow us to prove that mc(RF) is in PSPACE (see Lemma 8).
Finally, we solve the problem of satisfiablility thanks to lemma 10, which entails
a reduction from sat(SL) to mc(SL).
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Lemma 6. There is a logspace reduction from mc(SL) to mc(RF).

Proof. Let t(A) be the formula obtained from 4 in SL by replacing each occur-

rence of x +i <o e by (x,1) <L, ¢. The formula t(A) belong to RF. Given a store
s, we write £(s) to denote the store such that ¢(s)({x,i)) = s(x) + i. One can
show that for every heap h, (s,h) =g, A iff (¢(s),h) [=st t(A). The proof is by
structural induction on A. 0

We need to establish a quite technical lemma. Below, the size of a measure
p=(m,{0},w, X,Y) is in

O(m~+w+ | X| x log(|X]|) + Y] x log(|Y])).

Lemma 7. Let p = (m,{0},w, X,Y) be a measure, and ly be a label that does
not belong to the finite set of labels X. If (s,h) ~, (s',1') and hoLh is a heap
then there is a heap h{, such that

— hy LI,

- (Saho) =p (8/7h6)7

— |dom(hy)| < mazx(w, (m+ 1) x |Y]),

— max dom(h)) UIm?(h)) < max ({s'((x,4)) : x € Y,0 <i < m}Udom(h)) +w,
where Im*(R), for a given heap h, is the set of natural numbers i such that
there are i' and 1 for which h(i')(l) = 1.

— for all n € dom(hy), {l : h(n)(l) is defined} C X W {iy}.

The heap hy, is said to be a small disjoint heap wrt yn and (s',h’) and it can be
encoded in polynomial space in |p| + |ho| + |(s', B')].

Proof. Assume that (s, h) ~, (s',h') and hgLh. We introduce two disjoint heaps
ho1 and hge such that dom(hg;) = Im(s) Ndom(hy) and dom(hgy) = dom(hg)\Im(s).
Observe that hy = hgy * hga. We define the heap by, as the disjoint union hy, * h{,
where hy,, and hy, are defined so as to satisfy dom(hy,) = Im(s") N dom(hy) and
dom(h{,) = dom(hy)\Im(s"). Let V be the set of variables {(y,7) :y € ¥,0 <i <
m}.

— In order to define h{,, let Vi, ..., V, be the equivalence classes for the relation
s(x) = s(x’) among variables x,x" in V. The classes are the same for the
equivalence relation defined by s’ since (s, h) =, (s', h’). For each class Vj, let
i, be the image of the variables of V}, through s, and ¢}, through s’. Then, for
all k < a and | € dom(ho (ix)), the heap hy, is defined as follows:

o if [ ¢ X, then hy,(i},)(lo) = nil and hg,(i})(1) is undefined,
e if [ € X and hg(ix)(l) = i, for some n, then hy,(i})(1) = il,,
o if [ € X and hg(ix)(l) # i, for all n, then hy, (i},) (1) = nil.

The domain of Ay, is included in Im(s'), since Im(sy) = {1, ..., 4 }.
— In order to define hy,, let b = max(0, min{|dom(hgs)|, w — |dom(he1)|}) and
Jis---,Jp be the b smallest indices distinct from ¢}, ..., and not in dom(h’).

Hence, when |dom(hg)| > w, there are no such indices. Otherwise, for all
k <b, we define hy,(j;.)(lo) = nil. We set dom(hgy,) = {ji,---.Jp}
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As announced, we define hy, as the heap h{,; * h(,. Let us show that the heap hj,
has all the desired properties.

— Let us check that A/ Lh{. First, h' Lhy, since h_Lhy;. Second, h' Lh{, by con-
struction.

— Let us check that (s, hg) ~, (s',h{). We proceed by a case analysis on the
form of the test formulae.

(x =y) Since (s,h) =, (s', 1), s(x) = s(y) iff s'(x) = §'(y).

(size > k) We first note: |dom(hgy)| = |dom(h(,)|. If |dom(he)| > w —
|dom(ho1)|, then |dom(h{,)| > w — |dom(hy,)|, so both |dom(hg)| > w and
|dom(h()| > w, and all of the size > k formulae are satisfied by both
models. If |dom(ho)| < w, then |dom(hg)| = |dom(hg)|, and for all k,
size > k& Abs,(s, hy) iff size > k € Abs,(s', ).

(e1 N er) If ey < ey € Abs,(s, hy), then ey € Vj for some k, e; € V, for

some n, | € X, and ho(ig)(l) = i,. Consequently, hy(i})(l) = i, and
s’ hy FEsL e 4 €s.

(alloc ey) If alloc e; € Abs,(s, ho), then e; € Vj for some k, and i) €
dom(hg). Consequently, i} € dom(hy) and (', k() L alloc e;.
Therefore (s, ho) and (s', hy) have the same abstraction.

— Let us check that |[dom(hy)| < maz(w, (m+1) x |Y]). Since a < (m+1) x |Y|,
if |dom(h{,)| > w, then h{, is the empty heap and |dom(h()| < a. Otherwise,
|dom(hf; )|+ |dom(hf,)| < w. Consequently, |[dom(hy)| < maz(w, (m+1) x|Y]).

— Let us check that maz dom(h)) U Im?*(h)) < maz {s'({x,4)) : (x,i) € V} U
dom(h')+w. We have chosen the domain and image of h{, to be included in the
image of s’ plus nil, and therefore dom(hy,) satisfies the above condition. The
image of h{, is {nil}. The domain of hgy is composed of the smallest integers
which neither belong to {s'((x,i)) : (x,4) € V}, nor to dom(h’). As this set
has less than w elements, its bigger element is less than the w'® element of
these smallest integers, which is bounded by max {s'({x,7)) :x € Y,0 <i <
w} Udom(h') 4+ w.

— Let us check that for every n € dom(hy), {l : h(n)(l) is defined} C X W {ly}.
This condition is satisfied by construction of hy, and hy,.

Lemma 8. mc(RF) is in PSPACE.

Proof. The algorithm is described in Figure 1.

First of all, the algorithm can be implemented in polynomial space since the
quantifications are over sets of exponential size in |A|+ (s, h)|, and the recursion
depth is linear in A. Hence there is only a linear amount of polynomial increases
of the size of h in the — recursive calls. It remains to show that the algorithm
is correct, that given A with ua < p, (s,h) Es. A iff MC((s, h), A, p) returns
T. The only point to check in the proof by structural induction is the case
when the outermost connective is the operator —. Whenever (s, h) {~sr, A;—*+As,
there is a heap hy L h such that (s, ho) f=s1, A1 and (s, h * hy) st As. By
Lemma 7 with (s',h') = (s, h), there is a small disjoint heap h{ wrt p and (s, h)
such that (s, h{) =, (s, ho). Since the measure of A, is lower than p, Lemma
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function MC((s, h), A, u)

(base-cases) If A is atomic, then return (s, h) si A;

(Boolean-cases) If A = A; A A, then return (MC((s, h), A1, ) and MC((s, h), A2, p));
Other Boolean operators are treated analogously.

(x case) If A= A;xAs, then return L if there are no h1, ha such that h = hy xhy (MC((s, h1), A1, )
and MC((s, h2), Az, 1));

(— case) If A= A;—As,, then return L if for some small disjoint heap h’ wrt u and (s, h) verifying
MC((s,h'), A1, i), we have not MC((s, h* h'), Aa, p);

Return T;

Fig. 1. Model-checking algorithm

5 entails (s, hf) st A;. Also, by Lemma 4, (s, h * hy) st Az. Consequently,
(s,h) st A;—xAjy iff there is a small heap h{ such that (s, h{) st A; and
(s,h* hg) sy As. 0

We need another technical lemma. Before stating this property, let us define,
given a permutation o and a heap h, the heap ceh = o - (hoo™?!), where o - h is
the partial function which maps ¢ to the partial function o o (h(7)). For instance,
given a label | and an address i, we have (o @ h)(i)(I) = o(h(c='(:))(l)). This
operation allows us to rename all the addresses according to the permutation:
the memory graph keeps the same shape, but vertices are placed on different
addresses.

Lemma 9. Let A be a state formula of SL with measure p = (0,¢e,w, X,Y)
and (s,h) be a memory state. For all permutations o of N such that for all
(x,1) € YXe, 0(s(x)+i) = o(s(x))+i, we have (s, h) =g A iff (cos,0eh) =g, A.

Proof. We will have to use two properties about e, which can easily be checked:

— for all permutations o and disjoint heaps hy and hg, o ® (hy * hy) = (0 @ hy) *
(0' ® hg)
— for all permutations o and heaps h, o~ e (c @ h) = h.

It is sufficient to show one direction of the equivalence since the other direction
is obtained by application of the first one with the store ¢ o s and the well-
defined inverse bijection o~ !. Indeed, for all (x,7) € Y x ¢, 0" ((c05)(x) +1) =
o7 ((00s)(x))+i. Let A be a formula, y be a measure greater than yi4, s be a store
and h be a heap. Assume that (s, h) =sp, A. We show that (0 05,0 eh) s A
We are going to prove this by induction on A.

If A is an atomic formula, then we proceed by a case analysis.

Ads x =i s(x) = s(y) and 7 05(x) = 0(s()) = (5(3)) = o2 5(y),
Ais x+i—y: h(s(x)+i)(l) = s(y), and ceh(cos(x)+i)(l ) h( 1(0 s(x))+
D)) = o h(o= (o(s(x) +0)))1) = o - h(s(x) + i) (1) =
a(s(y)) = o 0 s(y),
A is emp: dom(c e h) is empty iff dom(h) is empty.

If A= A;x*A,, then there are hy and hy such that h = hy *hs and (s, h;) Fsri,
A; for i € {1,2}. The measure of each py, < pa < p. Then, by induction,
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(0 os,0geh;) =g A;. Since c @ h = g e (hy x hy) = (0 e hy) x (0 ® hy), we can
conclude that (0 o s,0 e h) =g, A.

If A= A;—+As, then, let hy be a heap which is orthogonal to o @ h. Assume
that (o o s,hy) s Ai. Then by induction, (67 o (60 s),07! @ h) =g A,
that is (s,07 @ hy) st Ai. So (s,h x (071 e hy)) Esr A, and by induction
(cos,ce(h*(oc7 ehy))) EsL As, that is (cos,(ceh)*(ce (o7 ehy))) FEsL Ao,
and finally (o o s, (o e h) * hg) =g As. So, (0 o0s,0eh) =g A.

We state below a small memory state property that happens to be central to
establish the future PSPACE upper bounds.

Lemma 10 (Small memory state property). A state formula A in SL is
satisfiable iff there is a store s such that (s,0) Eg, —(A— L) and for each
variable x € Y, s(x) < (|Y|+1) x max €, where () stands for the heap with empty
domain, Y is the set of variables occuring in A, and € is the set of indices i such
that x + ¢ occurs in A for some variable x.

Proof. First, let us notice that a state formula A in SL is satisfiable iff there is a
store s such that (s,0) FEsp —(A- L), where ) is the heap with empty domain.
This is straightforward by definition of |=g1,. So, we only have to prove that, given
A a state formula of SL and a store s such that (s, () =gt A, there is a store s
such that (s',0) Esr, A and for x € Y, §'(x) < ([Y] + 1) X maz €. In order to
obtain these smaller models, we are going to decrease the value of the variables
in several steps. Each step consists in applying a permutation to the memory
graph.

Assume some given store s, such that (s,0) =g, A. Let us define one of the
permutations which decrease the value of the variables through s. Let ¢ be max e.

Let xg be a dummy variable such that s(xo) = 0, and {x1,...x,} an enumer-
ation of the variables occuring in A such that for j € [0;n — 1], s(x;) < s(xj11).
If there is no k such that s(x;41) > s(x;)+ithenforallx € Y, s(x) < (n+1) x .

Otherwise, let k& be the smallest index such that s(x;y1) > s(xx) + i. Let
a = 5(xg+1) — (s(xg) + ). Then, we define o as follows:

— If j < s(xy) + ¢ then o(j) = j;

— If s(xpr1) < j < s(xn) + 1, then 0(j) =7 — o

If j > s(x,) + i then o(j) = J;

— If s(xx) +i < j < s(xr+1) then we have to complete this function so as to
obtain a bijection, o(j) = j — (s(xx) + 1) + (s(xn) +1 — ).

This permutation satisfies the prerequisites of Lemma 9, and thus may be
applied to (s, ), which then still satisfies .A. We apply this type of permutation
until there is no k such that s(xxy1) > s(xx) + ¢. So, by a simple multiplication,
forallx € Y, s(x) < (n+1) x i, or more explicitly s(x) < (|Y|+1) x maze. O

Proposition 1. The model-checking, satisfiability and validity problems for SL
are PSPACE-complete.
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Proof. PSPACE-hardness results are consequences of [CYOO01, Sect. 5.2]. The
PSPACE upper bound for mc(SL) is a consequence of Lemmas 6 and 8. The
PSPACE upper bound for sat(SL) is obtained by enumerating the small memory
states of =(A— L) with empty heap (see Lemma 10) and then using Lemma 8.

4 Decidable Satisfiability Problems by Abstracting
Computations

In this section we establish the PSPACE-completeness of the problems SAT(CL)
and SAT(RF). To do so, we abstract memory states whose size is a priori un-
bounded by finite symbolic memory states. As usual, temporal infinity in models
is handled by Biichi automata recognizing w-sequences. We propose below an
abstraction that is correct for CL (allowing pointer arithmetic) and for RF (al-
lowing all operators from Separation Logic) taken separately but that is not exact
for the full language SL.

4.1 Symbolic models

Given a measure p, we write X, to denote the powerset of 7,; X, is thought as
an alphabet, and elements a € Y, are called letters. A symbolic model wrt 1
is defined as an infinite sequence o € X7. Symbolic models are abstractions of
models from LTL™™: given a model p : N — S x ‘H and a measure p, we write
Abs,(p) : N — X, to denote the symbolic model wrt x4 such that for every ¢,
Abs,(p)(8) 2 {A €T, : pt b Allx,u) — X"},

To a letter a, we associate the formula A, = A 4., AA A 44, 7A. For all
symbolic models ¢ and formulae ¢ such that u, < p, we define the symbolic
satisfaction relation o,t }=, ¢ as the satisfaction relation for models except for
the clause about atomic subformulae that is updated as follows: o,t =, A iff
Fst Aoy = AX"x «— (x,u)]. We write L#(¢) to denote the set of symbolic
models ¢ wrt p such that 0,0 =, ¢. As a corollary of Lemma 5, we get a
soundness result for our abstraction:

Proposition 2. Let ¢ be a formula of LTL™™(RF) [resp. of LTL™™(CL)/ and
po < . For any model p, we have that p |= ¢ iff Abs,(p) =, ¢ [resp. Abs,pw—o)(p) Eu
/.

Proof. We treat the case ¢ € LTL™™(RF) (for the case ¢ € LTL™"(CL), replace
below p by wlw < 0]). Suppose that p,t = B for an atomic formula A of
LTL™™. By definition, Abs,(p)(t) = {B € T, : p,t = B[(x,u) «— X"x]}. Let
us show that =g Aups, (@) = BX"x « (x,u)]. If for some memory state
(5,h) st Auabs, (o)), then by Lemma 5, (s,h) f=sp B[X"x < (x,u)]. Suppose
now that Abs,(p),t =, B. Hence, s Aaps, () = BX"x «— (x,u)]. Since
Pt s Aabs, (o) [(x, 1) «— X"x], then p,t = (BX"x « (x,u)])[(x,u) — X"x],
that is p,t = B. The induction step for the cases with Boolean and temporal
operators is then by an easy verification.
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Note that Abs,, is not surjective; we note L., the set of symbolic models wrt

that are abstractions of some model of LTL™*™. Consequently, ¢ in LTL™*"(RF)
is satisfiable iff L*¢(¢) N L%, is nonempty.

sat

4.2 w-regularity and PSPACE upper bound

In order to show that SAT (RF) and SAT (CL) are in PSPACE we shall explain why
testing the nonemptiness of L*¢(¢) NL.?, can be done in PSPACE. Below we treat
explicitly the case for RF. For CL, replace every occurrence of s, by pus[w < 0]
and every occurrence of i by p[w < 0]. To do so, we show that each language
can be recognized by an exponential-size Biichi automaton satisfying the good
properties to establish the PSPACE upper bound. If A is a Biichi automaton, we
note L(A) the language recognized by A. Following [VW94,DD07], let A be the

generalized Biichi automaton defined by the structure (X, Q,d, I, F) such that
(= po):

— () is the set of so-called atoms of ¢, that are sets of temporal formulae included

in the so-called closure set cl(¢) (see [VW94]),

I={XecQ:¢pec X}

- Y=23,

X L Y iff 1. for every atomic formula A of X, g1, A, = AX"x « (x,u)].
2. for every X¢' € cl(¢), X¢' € X iff ¢’ €Y.

Let {¢1Ue, ..., $,U¢! } be the set of until formulae in ¢l(¢). Let F be equal to

{Fi,...,F,} where F; ={X € Q: »;U¢. & X or ¢, € X} fori € {1,...,n}.

Let Ag be the Biichi automaton equivalent to the generalized Biichi automa-
ton A. It is easy to observe that AZ¢ has an exponential amount of states in the
size of ¢ and its transition relation can be checked in polynomial space in the
size of ¢. Moreover,

Lemma 11. Let ¢ in LTL™™(RF) [resp. LTL™™(CL)/ and pn > pg [resp. pw —
0] > pglw  0]]. Then, L(A}) = L#(6) [resp. L(AL" ") = Ltv—0l(g)).

We can also build a Biichi automaton A’ , such that L(A% AL, is

sat sat

defined as (X, Q, 0,1, F), where ¥ =X, Q=X,, F=1=(Q and a % o iff

) =1L,

sat*

1. A,, A, are satisfiable, and a = d/,
2. for every formula (x,u) = (x',u’) € 7, with v, v > 1, (x,u) = (x',v) € a iff
(x,u—1) =&, v —1) ed.
If 1 = pg, then AL, is of exponential-size in the size of ¢ and the transition
relation can be checked in polynomial space in the size of ¢. More importantly,
this automaton recognizes satisfiable symbolic models.

Lemma 12. Let ¢ in LTL™™(RF) [resp. LTL™™(CL)/ and 1 = py [resp. pu =
pglw «— 0]]. Then, L(AL,,) = L.

sat*
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Proof. Tt is immediate that the abstraction of any model belongs to L(AL,).
Therefore, the set of abstractions of memory states is included in L(AZ,,).

The other inclusion is shown by induction. Let p = (m, €, w,Laby, Vary) be
the measure (1, and o be max e+1. Let (a;);en be a sequence of symbolic memory
states in L(A%,,). We are going to prove by induction on k that, for all &, there
are Sg, ..., Sg+m and hg, ..., h; such that, for all u < k:

— forall A€ 7, (si, h,) = Aiff A€ a,, where s : (x,0) — Sy10(%);
— Im(s}) € aNU {nil}.

First, the inductive step. We are given sq, ..., Skim and hyg, ..., hy satisfying
the above condition. We want to find spy,,11 and hyyq. Since (a;);en € L(AL,),
and by definition of the transitions in this automaton, A,, , is satisfiable. Let
50, - -, 5y, and b’ be the stores and heap obtained thanks to satisfaction of A,, . ,.
By definition of AL, (x,u+1) = x,u' + 1) € a iff (x,u) = &', u') € a4, for
all 0 < u,u’ < m — 1, and therefore the equality between variables is constant.
Consequently, we have spi114(x) = Spr14w/(x) iff ) (x) = s/, (%) for all 0 <
u,u’ < m — 1. So, there is a permutation o such that o o s = sp14, for all
0 < v < m— 1. Moreover, this permutation can be chosen such that Im(cos,) C
aNU{nil} forall 0 < v < msince, for all 0 < v < m—1, In(sx4140) € aNU{nil}.
We define sg1pmy1 =008).

If we consider RF, this permutation moreover satisfies the prerequisites of
lemma 9, since € = {0}. We can define h;; = o ¢ /. Thanks to the lemma 9, we
know that both of these models satisfy the same test formulae, which are exactly
Ap41-

If we are dealing with CL, then the definition of si.,,+1 ensures that the
equalities satisfied are exactly those of a;.1. This time the prerequisites of lemma
9 are not satisfied, unless ¢ = {0}. We know that w = 0, which means that
the only test formula about size in ayy; is size > 0; therefore there is no
constraint on the size of the heap. The heap is defined by enumerating the test

formulae of the form (x,u) + j <L (x',u’) of agy1, and defining for each of them
his1(Ska140(x) + 7)) = Skr14w(x'); and then for each of the test formulae of
the form alloc (x,u) + j of axi1, we define hyy1(Sgi14u(x) + 7)(lo) = nil, for
some [y ¢ Labg. Thanks to the distance a between variables, the test formulae
about the heap (i.e. — and alloc , and size > 0) which are not in ay; are
not satisfied. Equalities, and inequalities, between variables are preserved since
the stores have only been modified by a permutation.

Now, let us study the base case of the induction. Since (a;);eny € L(A%,,), and
by definition of the transitions in this automaton, A,, is satisfiable and there

are sy, ..., s, and h) satisfying Ag. These are appropriate for the initialization

if e = {0}. If € # {0}, then we consider the fragment CL, so w = 0, and there
is no constraint on the size of the heap. We apply a permutation ¢ which maps
all the images of variables to multiples of a. The obtained stores are s; = 0 o s.
As in the inductive step, the heap is defined by enumerating the test formulae
(x,u) + 7 R (x',u) and alloc (x,u) + j of agii, and by defining the heap
accordingly. Thanks to the distance o imposed between the values of variables,
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test formulae about the heap which are not in ag are not satisfied. Equalities
between variables are preserved since the store has only been modified by a
permutation. O

This lemma is essential and it is not possible to extend it to the whole logic
LTL™™ even by allowing test formulae of the form x + ¢ = y + j since we would
need automata with counters. Now, we can state our main complexity result.

Theorem 1. SAT(RF) and SAT(CL) are PSPACE-complete.

Proof. (sketch) The lower bound is from LTL [SC85|. Let ¢ be an instance
formula of SAT(RF) (for SAT(CL) replace below fi, by pig[w < 0]). As seen
earlier, ¢ is satisfiable iff L#¢(¢) N LY, is nonempty. Hence, ¢ is satisfiable iff
L(AL") NL(AL:) # 0. The intersection automaton is of exponential size in the
size of ¢ and can be checked nonempty by a nondeterministic on-the-fly algo-
rithm. Since nonemptiness problem for Biichi automata is NLOGSPACE-complete
and the transition relation in the intersection automaton can be checked in poly-
nomial space in the size of ¢, we obtain a nondeterministic polynomial space
algorithm for testing satisfiability of ¢. As usual, by Savitch’s theorem, we get
the PSPACE upper bound. ad

4.3 Other problems in PSPACE

Let Frag be either the classical fragment or the record fragment. Lemma 1 pro-
vides a reduction from MC$ . (Frag) to SATS .. (Frag) based on a program-as-
formula encoding. As we will see now, we may also reduce SAT  (Frag) to
SAT(Frag) internalizing an approximation of the initial memory state whose
logical language cannot distinguish from the initial memory state. As a conse-
quence, the PSPACE upper bound for SAT (Frag) entails the PSPACE upper bound
for both SATS ,,(Frag) and MCS ,(Frag).

inat

Proposition 3. The problems SATS ., (RF), MCS. ., (RF), SATS..,(CL) and
MC{..(CL) are PSPACE-complete.

Proof. By Lemma 1 and since SAT¢ . (RF) is known to be PSPACE-hard, it re-

init
mains to establish the PSPACE upper bound for SAT{ ., (RF).

Given a formula ¢ and an initial memory state (s,h), we shall build in
polynomial-time a formula ¢¢, in SAT(RF) such that ¢ is satisfiable in a model
with initial memory state (s, h) and constant heap iff ¢/, is satisfiable by a gen-
eral model. Since we have shown that SAT(RF) is in PSPACE, this guarantees
that SAT ,.(RF) is in PSPACE. The idea of the proof is to internalize the initial
memory state and the fact that the heap is constant in the logic SAT(RF). Ac-
tually, one cannot exactly express that the heap is constant (see details below)
but the approximation we use will be sufficient for our purpose.

Apart from the variables of ¢, the formula gfh is built over additional vari-
ables in V' = {x; : i € dom(h) U Im(s)} U {x;; : i € dom(h),l € dom(h(i))}. The
formula ¢¢, is of the form G(v1 A1y A4bs) A9 A1), where the subformulae are
defined as follows.
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— 1)1 states that the heap is almost equal to h since we cannot forbid additional
labels in the logical language (dom(h) = {i1, ..., }):
= (/\ledom(h(il)) Xiy o Xip 1) % .. (/\ledom(h(ik)) Kig, - Xig 1)

— 1), states which variables are equal and which ones are not, depending on the
initial memory state. By way of example, for i # j € dom(h), a conjunct of
is x; # x;. Similarly, if h(7)(l) = j and j € dom(h) then x;; = x; is a conjunct
of 15. Details are omitted.

— 13 states that the auxiliary variables remain constant: A ., x = Xx.

l
— The formula v’ is obtained from ¢ by replacing each occurrence of x — e by

l
Xx—eA /\ X # X;.

i€dom(h),l¢dom(h(i))

The additional conjunct is useful because our logical language cannot state
that a label is not in the domain of some allocated address.
— 1), states constraints about the initial store s: = /\Xe 6% = Xs(x)-

It is then easy to check that ¢ is satisfiable in a model with initial memory
state (s,h) with constant heap iff ¢¢/, is satisfiable by a general model.

As far as the results for the classical fragment are concerned, by Lemma 1,
there is a logspace reduction from MC$ ., (CL) to SAT¢ .,(CL) and as done above

init init
one can reduce SAT . (CL) to SAT(CL). 0

Proposition 4. MC¢

init

(SL) is PSPACE-complete.

Proof. Since MC{ . (SL) has been already proved to be PSPACE-hard, it remains
to prove it is in PSPACE. The proof goes by designing a polynomial time reduc-
tion to the model-checking problem for propositional LTL. Let (p, so, ho, ¢) be an
instance of MC{" . (RF), with p = (Q, 9, ¢init) @ program without destructive up-
date, (so, ho) an initial memory state, and ¢ a temporal formula in LTL™"(SL).
Let X be the finite set of stores {s : Im(s) C Im(so) U Im(hg)} restricted to vari-
ables occurring in p and ¢. All the memory states in the transition system S
restricted to the configurations reachable from the initial memory state (sg, ho)
are in X x {hg}, since p is without destructive updates.

Let i be one plus the maximal natural number j such that X’x appears in
¢. We define the transition graph G = (Qg, —, Qinit) such that Q¢ = Q x X2
Qinit is the set of tuples (i, S1, S2, -+, $;) such that (s1, hg), .., (s;, ho) is a prefix
of a run of p with initial memory state (so, ho), and the transition relation — is
defined as follows:

A r o Spp1 =8y, k=1,..,i—1, and g5 €6
(@510 81) = (¢ 50,0, 87) { St (51, h) = g and (52, ho) = [ instr (51, ho)

We now define the propositional LTL model by associating to each vertex of the
transition graph a set of propositional variables that are true. We define Prop
to be the set of atomic formulae occurring in ¢, so that ¢ can be seen as a
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propositional LTL formula over Prop. Then the LTL model is the vertex-labeled
transition graph M = (G, \), with

A Qg — P(Prop), (q,$1,..,s:) — {A€ Prop : si,..,8;,ho FEs. A}

By construction, M, (¢init, S1, S2, -, $i) |E ¢ in LTL for some (qinit, S1, 2, -+, Si) €
Qinit if and only if p, (so, o) = ¢. The model M can be computed in polynomial
space in the size of (p, so, ho, @), in the sense that the (nondeterministic) tran-
sition function and the labelling function are computable in polynomial space.
M is of exponential space in the size of (p, sg, ho, @), but let us explain now why
the existence of (qinit, S1, 52, -, 8i) € Qinit such that M, (qinit, 51, 82, .-, 8i) E ¢
can be checked in polynomial space. Let Ay be the automaton recognizing the
models of ¢ over the set Prop of propositions: it is of exponential space in
the size of (p, so, ho, ¢), and so is the product with M. Now the existence of
(Ginits S15 82, -+, Si) € Qinit such that M, (ginit, 1, 2, .-, 8;) = ¢ reduces to check
the non-emptiness of Ay N M, which is decidable in space O(log(|A4 N M]) by a
nondeterministic on the fly algorithm. This can be done in polynomial space in
the size of (p, so, ho, ¢) by a non-deterministic algorithm, and by Savitch’s theo-
rem this can be turned into a deterministic, polynomial space algorithm. O

Proposition 5. SATS . (SL\ {—}) is PSPACE-complete.

init
Proof. PSPACE-hardness is a consequence of the PSPACE-hardness of SAT¢ . (CL)
since CL is a fragment of SL \ {—}.

In order to get the PSPACE upper bound, we are going to reduce the problem
SATS . (SL\{~}) to SATS . (RF). Let (o, k), ¢ be an instance of SATS" ., (SL\{—}).
We shall build an instance (s, h), ¢’ of SATS . (RF).

Let F =dom(h)U{k—1i € N,k € dom(h) and X“x+ i occurs in ¢}. We define
a new variable (k) for each k € E. We also define a variable (x,7) for x and i
occuring in ¢ in an expression of the form X“x + i (possibly u or i is equal to
zero). The initial store s is the extension of sy which maps (k) to k, and (x, )
to so(x) + i. Finally:

¢ = p[X 2 + i — X"(x,1)]
NG /\ (k) = X(k))

keE
AN N =) e (i) = (ki)

x+i€¢ (k+1i)Edom(h)

sy and ¢’ have a polynomial size in the size of the instance (sg, h), ¢.

Assume that (s, h), ¢ is accepted by SAT$ ., (SL\{—}). Then there is (s;)i>1
such that (s;, h);en = ¢. Let s, be s; extended so as to map (k) to k and (x, j) to
si(x) 4+ j. Clearly (s}, h)ien | ¢[X“x + 1 «— X“(x,i)]. Our definition of the s also
ensures that (s, h)ien = G A\yep((k) = X(k)) since the value of a variable (k)
is constantly equal to k, and that (si, h)ien = G A pies Apriycaonn)(x = (k) <
(x,1) = (k+1)) since at all positions the value of (k + ) is that of (k) plus i and
the value of (x,i) is that of x plus i. So (s, h);en = ¢, and therefore (s;, h), ¢’
is accepted by SAT¢ . (RF).

init
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Now, assume that (s, h),¢’ is accepted by SATS ,(RF). Then there is a
sequence (s;);>1 such that (s}, h)ien = ¢'. Then (s, h)ien = G Ayep((k) = X(k)),
and so, at each time state ¢, we have s;((k)) = s,((k)) = k. Also, (s}, h)ien E
G Arvico Npsiyeaonny(x = (k) < (x,1) = (k + 1)), and so, if k € dom(h) and
X“x + i occurs in ¢, we have s, (x) =k — i iff s, ((x,4)) = &k (I).

We write ' < h when there is an other heap h” for which h = b’ x h”. Let
us prove by induction on subformulae ¢ of ¢ the following property. “For all
t € N and A’ < h, we have (s,,h)ien,t |E ¢o I (5,1 )ien,t | do[X % + i «—
X"(x,17)].” This will ensure that (s, h);en, 0 = ¢, so that (s{, h), ¢ is accepted by
SATS . (SL\{—}), from which we will conclude that (sg,h), ¢ is also accepted.
Indeed the restriction of s;, to the variables occuring in ¢ is sq. Here is the proof
by induction:

— TF gy is X'x + i <> XUy, let k = ), ((x, ).

e Suppose that k£ ¢ dom(h). We are going to prove that neither (s}, h');en, t =
o[ X x4 «— X"(x,4)], nor (s}, h')ien, t = ¢o. First, clearly not (s}, h')en, t =
¢o[X"x + i «— X“(x,1)]. Second, assume there is k' € dom(h) such that
k' = s,,,(x) 4. Thanks to the property (I), from s}, (x) = k' — i, we get
St ((x,4)) = k', and so k = k' € dom(h), which leads to a contradiction.
So there is no such %/, and not (s}, h');en, t = ¢o.

e Now suppose that k € dom(h). We have s, (x) = k = s, ((x,9)) — ¢

thanks to property (I). Consequently, #'(s;,(x)+i) = s, (y) HE 2/ (s, ((x,7)))

Si+a((v,0)), and (57, h)ien, t |= ¢o HE (s}, B )ien, t = go[X x40 — X*(x,4)].
— If ¢9 = Ay x As, then there are k| and k), such that (s}, h})en,t = Ay and
(8%, hy)ien, t = As. By the induction hypothesis, since h = (k) *h})*h" = h/ *
(hhyxh"), we have (s, h))ien, t = A1 [X 2 +1 «— X"(x, )] iff (s}, h])ien, t E A
and the same equivalence is true for hj. From the two equivalences for h} and

hi,, we can conclude the same equivalence for b’ = b * hj.

— Other cases are straightforward.

O

If we allow the operator — in the above proposition, the current proof may not
be adapted, since we would have to deal with heaps which are not sub-heaps of
h in the induction step.

5 Undecidability Results

In this section, we show several undecidability results by using reduction from
problems for Minsky machines. So, first, we recall that a Minsky machine M
consists of two counters C; and Cs, and a sequence of n > 1 instructions of one
of the forms below:

I: C;:=C;+1;gotol’” [:if C; =0 then goto I’ else C; := C; — 1; goto I”

In a nondeterministic machine, after an incrementation or a decrementation a
nondeterministic choice of the form “goto [y or goto 5" is performed.
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The configurations of M are triples (I, ¢y, ¢y), where 1 <1 < mn, ¢; > 0, and
co > 0 are the current values of the location counter and the two counters C;
and C,, respectively. The consecution relation on configurations is defined in the
obvious way. A computation of M is a sequence of related configurations, starting
with the initial configuration (1,0,0).

Different encodings of counters are used here. For instance, in [BFLS06|, a
counter C with value n is represented by a list of length n pointed to by a x
dedicated to C. The same idea is used in the proof of Proposition 6 below. In order
to show undecidability of SAT(SL) we alternatively encode counters by relying
on pointer arithmetic and properties of heaps. Programs without destructive
updates can simulate finite computations of Minsky machines by guessing at the
start of the computation the maximal value of counters (encoded by a list of the
length of the maximal value). As a consequence,

Proposition 6. SAT(LF) and MC”(LF) are X?-complete.

Proof. By Proposition 3, SAT$ ., (LF) is decidable in polynomial space using a
finite abstraction argument. Hence, SAT(LF) is in £ by adding an existen-
tial quantification over the initial memory state. Similarly, by Proposition 3,
MCS . (LF) is decidable in polynomial space. Hence, MC®(LF) is also in %Y.

By Lemma 1, we only need to show that MC”(LF) is X%hard. We reduce
the X?-complete halting problem for Minsky machines to it. The halting prob-
lem consists in determining whether M can reach a configuration with location
counter n.

Let us build a formula ¢ and a program p in P such that the existence of
some memory state (sg,ho) such that p, (sg, ho) = ¢ is equivalent to the fact
that the machine M reaches a configuration with location counter n. In order
to encode the values of counters, we consider a variable z pointing to a list (as
shown below) in the initial memory state (so, ho):

next next next next .
LdJI—0O—...-00—0—=—nil

The variable z remains constant along any execution of p and the length of
the list encodes the maximal value of the counters in some finite computation
(hopefully ending at the instruction corresponding to location n). We consider
also the variable x; for ¢ = 1,2 and along any execution of p, x; points to a cell
of the above sequence: the length of the list starting at x; encodes the value of
the counter C;. Hence, in p, each x; is initialized to null.

The program p is made of the following stages:

1. Check that z points to a list;
2. Initialize the variables;
3. Simulate M.

Figure 2 shows how to perform stage 1 with a simple “while” loop. Observe
that checking whether a counter is equal to zero corresponds in p to an equality
test with null. In order to simulate M, its structure can be embedded in the
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y #null,y := y — next)
4@ g \ (y == null, Sklp)@
\_/ :

Fig. 2. Checking that z points to a list

control graph of p. For instance, a decrementation instruction is encoded in p by
the transitions shown in Figure 3. An incrementation instruction requires a bit
more care and its encoding in p is presented in Figure 4. Indeed, an auxiliary
variable y’ initialized to y visits the list until it meets x;.

(x; # null, x; := x; — next)

Fig. 3. Simulating a decrementation

@ (T,y:=2) m(T,y' =z — ne:ct)m(y' ==X, X :=Y) @
A/

(v #x,y:=y)| |(T,y :=y— next)

Fig. 4. Simulating an incrementation

In the above encoding, every instruction [ in M corresponds to a control
state of p. Hence, the formula ¢ is simply Fn (assuming that we encode the
propositional variable n by additional variables dedicated only for this purpose).

It is then easy to show that there is an initial memory state (so,ho) such
that p reaches the control n starting with (sg, ko) iff the machine M reaches the
location counter n. Observe that both p and M are deterministic. O

By constrast, programs with destructive update can work with unbounded
heaps, and by using the representation of counters as above, they can faithfully
simulate a Minsky machine even if an empty heap is the initial heap. Because
LTL can express repeated accessibility, ¥|-hardness can be obtained.

Proposition 7. The problems MC(LF) and MC,,;,(LF) are 2] -complete.

init
Proof. (sketch) It is possible to reduce the recurring problem for nondetermin-

istic Minsky machines to MC(LF) and to MC,,;,(LF). This problem is Y-
hard [AH94]. The question is whether the machine has a computation with the
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location counter n repeated infinitely often; and this can be expressed by GFn in
LTL™™.

The proof is quite similar to the proof of Proposition 6 except that there is no
maximal value of the counters, the initial heap is empty (which can be expressed
in LTL™*™) and the behavior of counters is encoded by updating the memory
states. For instance, incrementing C; amounts to execute x; := cons(next : x;)
(the length of the list pointed by x; is incremented), decrementing C; amounts
to execute x; := x; — next. Zero tests are encoded by null tests and the initial
values of the variables is null. Details are omitted since there are no technical
difficulties. 0

Let us briefly explain how to encode incrementation and decrementation with
separating connectives and pointer arithmetic. Observe that expressions of the
form x = y+ 1 are not allowed in the logical language. We repair this “defect” in
two different ways: using non-aliasing expressed by the separating conjunction,
and using the precise pointing assertion x e’ 7 stating that the heap contains
only one cell, in conjunction with the — operator.

Pry = (Xx il Ax+ 1 null) A =(Xx il x4+ 1 null)

¢i__=(Xx+1 U au1l A x null) A =(Xx +1 Y u1l kxS null)

X
next

Gery=emp A ((Xx™= null)—=x+1 gt null)
X —emp A x 15" null)—«Xx +1 et pull
Px p

The formulae based on the separating conjunction correctly express incremen-
tation and decrementation when the cells at index x,x + 1,x — 1 are allocated,
whereas formulae based on the operator — do not need the same assumption.
Let SATS(SL) be any satisfiability problem among the four variants.
Proposition 8. SAT}(SL) is X1 -complete.
Proof. We reduce the recurrence problem for nondeterministic Minsky machines
[AH94] to SATI(SL). Let ¢ be the formula G(emp A A7, (x; # null)). Incre-
mentation and decrementation are performed thanks to the formulae @:‘: 4 and
oF_, respectively. For any model p such that p,0 = ¢o, and for any ¢, we have
pt | brry iff si(xi) + 1 = s41(x;). Hence, we have a means to encode in-
crementation. Similarly, p,t = gb;f__ and s;(x;) > 0 iff s(x;) — 1 = sp41(x5).
The fact that a counter does not change is encoded by x; = Xx;. Given that
&1 = G(Xzero = XXzero A Xzero 7 null) holds, zero tests are encoded by x; = X,ero-
Given a nondeterministic Minsky machine M, we write 1; to denote the
formula encoding instruction /. For intance for the instruction “I: if C; = 0 then
goto I’ else C; := C; — 1; goto [} or goto l5” 1, is equal to the formula below:

G((I Ax1 # Kzero) = (x2 = Xxo A (X1} V XI5) A ¢>c_1*——))/\

G((I N X1 = Xzero) = (x1 = Xx1 A X2 = Xx9 A XI')).

Hence, (x1 = %2 = Xuepo) A @0 A 01 A\, U1 A GFn is satisfiable iff M has a
computation with location counter n repeated infinitely often. a
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Proposition 9. The problem SAT(SL \ {—}) is X} -complete.

The proof of Proposition 9 is similar to the proof of Theorem 8 except that
incrementation and decrementation are performed with the formulae ¢y, and
¢;__, respectively.

6 Conclusion

In the paper, we have introduced a temporal logic LTL™*" for which assertion
language is quantifier-free separation logic.

Figure 5 shows the reductions between problems. Curved lines represent re-
ductions for proving hardness in a class. Straight lines represent reductions for
showing that a problem belongs to its class.

PSPACE-complete problems X9-complete problems
SAT(LF) SATSE,, (LF) SAT(LF) rop. 6
MCSE,, (LF) (MC(LF
SAT(CL) SATSE;,(CL) SAT“*(CL)
Theo. 1 MCSE;,(CL) MC*(CL)
SAT(RF) W SAT®(RF)
MCf7;,(SL) SATT,i (SL\{~})

Fig. 5. Reductions

Figure 6 contains a summary of the complexity results about fragments of
LTL™e™,

MC [MC7[ MCZ,, [MC,.,,| SAT [SAT™| SAT,,

LF Yi-c.|XV-c.|pspacE-c.| Xi-c. |pspacE-c.| X¥-c. [PSPACE-c.

CL and RF|Xi-c.| X¥-c.|PsPACE-c.| Xi-c. |PSPACE-c.| XY-c. |PSPACE-c.

SL\{—=} [Z1-c.|Z¥-c.|PspacE-c| Xi-c. | Xi-c. |XV-c.|PspacE-c
SL Yi-c.|XV-c.|pspacE—c| Xi-c. Yic. |Xic| Zi-c.

Fig. 6. Complexity of reasoning about program with pointer variables

Finally, extending LTL™™ with a special propositional variable heap™ stating
that the current heap is equal to the next one, can lead to undecidability (look at
the problems of the form SAT (Frag)). However, it is open whether satisfiability
becomes decidable if we restrict the interplay between the “until” operator U
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and heap™~, for instance to forbid subformulae of the form G heap™ with positive

polarity.
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