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Abstract

Call a topology well if and only if every open is com-
pact. The starting point of this note is that this notion
generalizes that of well-quasi order, in the sense that an
Alexandroff topology is well if and only if its specialisation
quasi-ordering is well. For more general topologies, this
opens the way to verifying infinite transition systems based
on non-well quasi ordered sets, but where the Pre operator
satisfies an additional continuity assumption. The techni-
cal development rests heavily on techniques arising from
topology and domain theory, including sobriety and the de
Groot dual of a stably compact space. We show that the cat-
egory Well of well topological spaces is finitely complete
and finitely cocomplete. Finally, we note that if X is well
topologized, then the set of all (even infinite) subsets of X
is again well topologized, a result that fails for well-quasi
orders.

1. Introduction

Consider the following short, funny-looking definition:
a topologyO on aX is well if and only if every open subset
of X is compact. Our purpose here is to explain how this
(new) notion generalizes the theory of well quasi-orderings.
Recall that a well quasi-ordering is a quasi-ordering (a

reflexive and transitive relation) that has no infinite an-
tichain (a set of incomparable elements). One use of well
quasi-orderings is in verifying well-structured transition
systems [2, 4, 9, 11]. These are transition systems, usually
infinite-state, with two ingredients.
First, a well quasi-ordering ≤ on the
set X of states. Second, the transition
relation δ commutes with the quasi-
ordering, in the sense that if x δ y and
x ≤ x′, then there is a state y′ such
that x′ δ y′ and y ≤ y′:

x ≤ !!

δ

""

x′

δ

""
y ≤ !! y′

(1)

∗Partially supported by the INRIA ARC ProNoBis.

Examples include Petri nets, VASS [12], lossy channel sys-
tems [3], timed Petri nets [6] to cite a few.
For any subset A of X , let Pre∃δ(A) = δ−1(A) be

the preimage {x ∈ X|∃y ∈ A · x δ y}. The com-
mutation property ensures that the preimage Pre∃δ(V ) of
any upward-closed subset V is again upward-closed (V is
upward-closed iff whenever x ∈ V and x ≤ x′, then
x′ ∈ V ). Standard arguments then show that one may
compute Pre∃∗ δ(V ), the set of states in X from which we
can reach some state in V in finitely many steps: Compute
the set Vi of states from which we can reach some state
in V in at most i steps, backwards, by letting V0 = V ,
Vi+1 = Vi ∪ Pre∃ δ(Vi): this stabilizes at some stage i,
where Vi = Pre∃∗ δ(V ).
This provides an algorithm for coverability: given two

states x, x′ ∈ X , is there a trace x = x0 δ x1 δ . . . δ xk

such that x′ ≤ xk? Just check x ∈ Pre∃∗(↑ x′), where ↑ x′

is the upward-closed set {y ∈ X|x′ ≤ y}.

Outline. We generalize this by replacing quasi-orderings
by topologies. We shall definitely rest on the rich relation-
ship between theories of order and topology. We recapitu-
late what we need in two sections, Section 2 for basic no-
tions, and Section 5 for more advanced concepts such as
Stone duality, sobriety, and stable compactness which we
don’t need in earlier sections. Our contribution occupies
the other sections. We first show the tight relationship be-
tween well-quasi orders and well topologies in Section 3,
and show a few easy constructions of new well topologies
from given well topologies in Section 4. This culminates in
showing that the category Well of well topological spaces
is finitely cocomplete. Section 6 is technically more chal-
lenging, and characterizes those well topological spaces that
are also sober. This is the cornerstone of the theory. E.g.,
this is instrumental to show that Well is finitely complete,
and that the Hoare space of a well topological space is again
well. We show the latter in Section 7. We then prove the un-
expected result that the set of all subsets of a well topologi-
cal spaceX (even infinite ones) has a topology that makes it
well. This would be wrong in a pure theory of orders; topol-



ogy makes the difference. Our theory of well sober spaces
also suggests an alternative algorithm for coverability based
on computing downward-closed sets, which we describe in
Section 8. We conclude in Section 9.
We stress that this paper is not specifically geared to-

wards applications. Its aim is rather to lay the theoretical
basis for well topologies; we hope to have done it. . . well.

Related Work. If ≤ is a quasi-ordering on X then let
Pfin(X) be the set of finite subsets ofX , and order it by≤",
where A ≤" B iff for every y ∈ B there is an x ∈ A such
that x ≤ y. It is well-known that ≤" needs not be well even
when ≤ is well. This is a shortcoming, among others, of
the theory of well quasi-orderings. Such shortcomings led
Nash-Williams [20] to invent better quasi-orderings (bqos).
Bqos have a rather unintuitive definition but a wonderful
theory, see [18]. The only application of bqos we know of
to verification problems is by Abdulla and Nylén [5], where
it is used to show the termination of the backward reacha-
bility iteration, using disjunctive constraints.
This paper is not on bqos, and in fact not specifically on

well quasi-orderings. While bqos are restrictions of well
quasi-orderings, well topologies generalize the latter. We
hope that well topologies will be valuable in verification in
the future. The fact that the powerset Pfin(X), with the up-
per topology of≤" (see above), and that P(X), with another
topology, are well topologized wheneverX is (Section 7) is
a promising result.
One may legitimately say that our work is more con-

nected to topology, and in particular to topology as it is
practiced in domain theory. As we shall see later, the no-
tions of specialisation quasi-ordering of a topological space,
of upper, Scott and Alexandroff topologies, of sober space,
of sobrification of a space, and of stably compact spaces are
central to our work. Topology and domain theory form an-
other wonderful piece of mathematics, and one may consult
[10, 7, 15, 19]. This being said, we believe well topologies
have never been defined or studied before. In particular,
there is no connection whatsoever with the Ellentuck topol-
ogy on X(ω) (X an infinite subset of N), a topology that is
instrumental in the study of bqos [17].

2. Preliminaries I: Order and Topology

A topology O on a set X is a collection of subsets of X
that is closed under arbitrary unions and finite intersections.
We say that X itself is a topological space, leaving O im-
plicit. The elements of O are the opens, their complements
are closed. The largest open contained in A is its interior,
the smallest closed subset cl(A) containing it is its closure.
Every topology comes with a specialisation quasi-

ordering ≤, defined as x ≤ y if and only if every open
that contains x also contains y. Equivalently, x ∈ cl{y}. It

is easy to see that every open is upward-closed with respect
to ≤. The converse need not hold. A subset A ofX is satu-
rated if and only if A equals the intersection of all opens U
containing A. A set is saturated if and only if it is upward-
closed with respect to the specialisation quasi-ordering ≤.
A subset K of X is compact if and only if every open

cover (Ui)i∈I (a family of opens Ui whose union contains
K) contains a finite subcover. It is equivalent to say that K
is compact if and only if, for every directed family (Ui)i∈I

of opens such that K ⊆
⋃

i∈I Ui, then K ⊆ Ui for some
i ∈ I already. Such a family is directed if and only if it is not
empty, and whatever i, j ∈ I , then Ui ∪ Uj ⊆ Uk for some
k ∈ I . (A family (xi)i∈I of elements of a set quasi-ordered
by≤ is a non-empty family such that for every i, j ∈ I there
is k ∈ I such that xi ≤ xk and xj ≤ xk.)
Write ↑ E = {x ∈ X|∃y ∈ E · y ≤ x}, ↓ E = {x ∈

X|∃y ∈ E · x ≤ y}. The set ↑ E is also the smallest
saturated set containing E. If K is compact, then ↑ K is,
too, and is also saturated. We shall usually reserve the letter
Q and variants for saturated compacts.
When E is finite, then ↑ E is compact saturated: call

these the finitary compacts. Similarly, ↓ E is always closed;
call such closed subsets the finitary closed subsets.
We have gone one direction, from topology to quasi-

orderings. There are in general many return paths: there
are in general several topologies having a given speciali-
sation quasi-ordering ≤. The finest, i.e., the one that has
the most opens, is the Alexandroff topology of ≤. Its opens
are exactly the upward-closed subsets of X with respect to
≤. The coarsest (the one with the least opens) is the upper
topology. It is generated by the complements of sets of the
form ↓ {x}, x ∈ X . That is, it is the coarsest topology mak-
ing the sets ↓ {x} closed. Another way of describing it is
to say that the closed sets in the upper topology are exactly
the unions of subsets of the form ↓ E, E finite. An interme-
diate topology is the Scott topology, whose opens are those
upward-closed subsets U such that for every directed fam-
ily (xi)i∈I that has a least upper bound in U , then there is
i ∈ I such that xi ∈ U . The latter crops up in domain
theory, where a cpo is a partially ordered set where every
directed family has a least upper bound.
A topological space is Alexandroff-discrete iff every in-

tersection of opens is again open. Equivalently, iff its topol-
ogy be the Alexandroff topology of its specialisation quasi-
ordering. While every finitary compact is compact satu-
rated, the converse holds in Alexandroff-discrete spaces.
A map f from X to Y is continuous iff f−1(V ) is

open in X for every open V of Y . Any continuous func-
tion is monotonic with respect to the specialisation quasi-
orderings of X and Y : writing them both ≤, x ≤ y implies
f(x) ≤ f(y). Not all monotonic functions are continuous
in general. When both X and Y are Alexandroff-discrete,
then every monotonic function is continuous. While we
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usually think of continuity as being a stronger requirement
than monotonicity, we must be aware that continuity also
generalizes monotonicity, in the sense that monotonicity is
just continuity with respect to Alexandroff topologies.
For any continuous map f : X → Y , the image f(K) of

any compactK of X by f is compact in Y .
When X and Y are equipped with Scott topologies, f :

X → Y is continuous if and only if f is Scott-continuous,
i.e., f is monotonic and, for every directed family (xi)i∈I

in X having a least upper bound x, the family (f(xi))i∈I
(which is directed in Y ) admits f(x) as least upper bound.
Continuity notions extend to binary relations. A relation

R from X to Y is a subset of X × Y . It is lower semi-
continuous if and only if Pre∃R(V ) = {x ∈ X|∃y ∈ V ·
x R y} is open whenever V is. It is upper semi-continuous
if and only if Pre∀R(V ) = {x ∈ X|∀y · x R y ⇒ y ∈ V }
is open whenever V is.

3. Well-Quasi Orderings and Well Topologies

We first show the precise relationship between well-
quasi orderings and well topologies.

Proposition 3.1 Consider the following properties of a
topological spaceX , with specialisation quasi-ordering≤:
1. X is well;
2. X is a space where every open is finitary compact;
3. ≤ is a well quasi-ordering.
Then 3 implies 2, 2 implies 1, and if X is Alexandroff-
discrete then 1 implies 3.

Proof. 3 ⇒ 2: Every open is upward-closed, and ev-
ery upward-closed subset is finitary compact by assump-
tion. 2 ⇒ 1 is obvious. Let us show 1 ⇒ 3, assuming X
Alexandroff-discrete. Each upward-closed subset is open,
hence compact saturated by 1, hence finitary compact since
X is Alexandroff-discrete. ,-

I.e., in the subcategory of Alexandroff-discrete spaces, well
topologies are exactly the topological counterpart of the
order-theoretic notion of well quasi-ordering. In particu-
lar, there are many well topological spaces: equip any well
quasi-ordered set X with its Alexandroff topology. As we
shall see later, there are other well topologies.
The following characterization of well topologies will be

useful. Let Ω(X) be the complete lattice of all opens of X ,
ordered by inclusion. A set Y with a quasi-ordering . has
the ascending chain condition iff every infinite ascending
chain y0 . y1 . . . . . yk . . . . stabilizes, i.e., there is an
integer N such that yk . yN for every k ≥ N .

Proposition 3.2 Let X be a topological space. Then X is
well if and only if Ω(X) has the ascending chain condition.

Proof. Assume X well, and let U0 ⊆ U1 ⊆ . . . ⊆ Uk ⊆
. . . be an infinite ascending chain. U =

⋃
n∈N

Un is open,
hence compact. Notice that the family (Un)n∈N

is directed,
so U ⊆ UN for some N ∈ N. For every k ≥ N , then,
Uk ⊆

⋃
n∈N

Un ⊆ UN ⊆ Uk, so Uk = UN .
Conversely, assume X is not well, and construct an in-

finite non-stabilizing ascending chain. Let U be a non-
compact open subset of X . There is an open cover (Vi)i∈I

of U that has no finite subcover. By induction on k ∈ N,
build an infinite sequence of opensWk, as follows. At each
step Wk will be a finite union of opens of the form Vi,
i ∈ I . Moreover, the sequence W1, W2, . . . , Wk, . . . , will
be strictly increasing. Assume W1, W2, . . . , Wk−1 have
been built. By assumption, Wk−1 does not contain U , oth-
erwiseWk−1 would induce a finite subcover of U . So there
is an element xk of U outside Wk−1. This xk must belong
to some Vik

, ik ∈ I . LetWk = Wk−1∪Vik
. Since xk ∈ Wk

but xk 0∈ Wk−1,Wk−1 is strictly contained inWk. ,-

One may extend the backward computation of Pre∃∗ de-
scribed in the introduction easily, as follows.

Definition 3.3 A topological well-structured transition sys-
tem is a pair (X, δ), where X , the state space, is a well
topological space, and δ, the transition relation, is lower
semi-continuous.

Indeed, the sequence of backward iterates Vi terminates,
by Proposition 3.2:

Proposition 3.4 Let (X, δ) be a topological well-
structured transition system. For any open subset V , let
V0 = V , Vi+1 = Vi ∪ Pre∃ δ(Vi). The sequence (Vi)i∈N

is
an ascending chain, which stabilizes on Pre∃∗(V ).

We retrieve that backwards iterations terminate on well-
structured transition systems (a well-known fact), because:

Proposition 3.5 Each well-structured transition system
(X, δ) is a topological well-structured transition system
and conversely, where X is seen with its Alexandroff topol-
ogy.

Write A the complement of A, as a subset of X . Ob-
serve that Pre∀δ(A) = Pre∃δ(A), that complements of
upward-closed sets are downward-closed, and complements
of downward-closed sets are upward-closed.

It follows that (again when X
is Alexandroff-discrete) δ is upper
semi-continuous if and only if the
dual of Diagram (1) holds:

x ≤ !!

δ

""

x′

δ

""
y ≤ !! y′

(2)

One may then go a bit further than just reachability. De-
fine the following negation-free fragment of the modal µ-
calculus. Let L = Lmust∪Lmay be a finite set of transition
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labels, taken as the (not necessarily disjoint) union of two
subsets of must labels and may labels respectively. Let A
be a recursive set of so-called atomic formulae.

F ::= A atomic formula (A ∈ A)
| X variable
| 1 true
| F ∧ F conjunction
| ⊥ false
| F ∨ F disjonction
| ["]F box modality (" ∈ Lmust)
| 〈"〉F diamond modality (" ∈ Lmay)
| µX · F least fixed point

Formulae are interpreted in a Kripke structure I =
(X, (δ$)$∈L, (UA)A∈A), whereX is a topological space, δ$
is a binary relation on X , which is lower semi-continuous
when " ∈ Lmay and upper semi-continuous when " ∈
Lmust, and UA is an open of X for every atomic formula
A. An environment ρ maps variablesX to opens ofX . De-
fine the satisfaction relation x |=I

ρ F (“F holds at state x”)
classically: x |=I

ρ A iff x ∈ UA; x |=I
ρ X iff x ∈ ρ(X);

x |=I
ρ 1 always; x |=I

ρ ⊥ never; x |=I
ρ F1 ∧ F2 iff x |=I

ρ F1

and x |=I
ρ F2; x |=I

ρ F1 ∨ F2 iff x |=I
ρ F1 or x |=I

ρ F2;
x |=I

ρ ["]F iff for every state y such that x δ$ y, y |=I
ρ F ;

x |=I
ρ 〈"〉F iff for some state y such that x δ$ y, y |=I

ρ F ;
and x |=I

ρ µX · F iff x ∈
⋃+∞

i=0 Ui, where U0 = ∅,
Ui+1 = {z ∈ X|z |=I

ρ[X:=Ui]
F}; ρ[X := U ] is the en-

vironment mapping X to U , and every Y 0= X to ρ(Y ).
It is easy to see that the semantics of formulae is mono-

tonic in ρ, because our formulae are negation-free. In other
words, if x |=I

ρ F and ρ(X) ⊆ ρ′(X) for every vari-
able X , then x |=I

ρ′ F . One may also show that it is
(Scott-)continuous, in the sense that for every directed fam-
ily (Ui)i∈I of opens, x |=I

ρ[X:=
S

i∈I Ui]
F if and only if

x |=I
ρ[X:=Ui]

F for some i ∈ I . This last statement in par-
ticular implies that the set of states x such that x |=I

ρ µX ·F
is indeed a fixed point, and therefore the least fixed point of
the Scott-continuous function mapping every open set U to
{z ∈ X|z |=I

ρ[X:=U ] F}.
Let lfp be the least fixed point operator of Scott-

continuous functions f : lfp(f) =
⋃+∞

i=0 f i(∅), and write
I !F "δ ρ for the set of elements z ∈ Z such that z |=I

ρ F .
The semantics of formulae is characterized by the clauses:

I !A"δ ρ = UA I !X"δ ρ = ρ(X)
I !1"δ ρ = X I !F1 ∧ F2"δ ρ = I !F1"δ ρ ∩ I !F2"δ ρ
I !⊥"δ ρ = ∅ I !F1 ∨ F2"δ ρ = I !F1"δ ρ ∪ I !F2"δ ρ

I !["]F "δ ρ = Pre∀δ$(I !F "δ ρ)
I !〈"〉F "δ ρ = Pre∃δ$(I !F "δ ρ)

I !µX · F "δ ρ = lfp(λU ∈ Ω(X) · I !F "δ (ρ[X := U ]))

An easy structural induction on F then shows that I !F "δ ρ
is always open.

When X is well, the above formulae describe an ob-
vious algorithm for computing I !F "δ ρ. The only non-
trivial case is for formulae of the form µX · F . However,
we may compute lfp(f) for any Scott-continuous function
f : Ω(X) → Ω(X) (in fact for any monotonic f : when
X is well, every monotonic f : Ω(X) → Ω(X) is Scott-
continuous) by: U0 = ∅, Ui+1 = f(Ui); this defines an as-
cending chain, which stabilizes by Proposition 3.2. We need
to detect when this stabilizes, and so we require the inclu-
sion relation to be decidable. Note that by Proposition 3.1,
every open U can be represented as a finitary compact ↑ E,
that is, as a finite list of elements. Clearly, ↑ E ⊆ ↑ E′ if
and only if E′ ≤" E, i.e., for every x ∈ E, there is a y ∈ E′

such that y ∈ x. The quasi-ordering≤" is usually called the
Smyth quasi-ordering, and is decidable as soon as≤ is. As-
sume thatUA and ρ(X) are specified by given finite setsEA

and E′
X , i.e., UA = ↑ EA and ρ(X) = ↑ E′

X . We obtain:

Theorem 3.6 Let X be a well topological space, and as-
sume that its specialisation quasi-ordering ≤ is recursive.
Assume that δ$ is recursive, in the sense that for any fi-
nite subset E of X , we can compute a finite subset E′

of X such that Pre∃δ(↑ E) = ↑ E′ (" ∈ Lmay) and
Pre∀δ(↑ E) = ↑ E′ (" ∈ Lmust). Let UA, ρ(X) be speci-
fied by given finite sets.
Then there is an algorithm which, given a formula F ,

computes a finite set E of elements such that I !F "δ ρ =
↑ E. In particular, checking whether x |=I

ρ F is decidable.

When " ∈ Lmay , computing Pre∃∗δ$(V ) is a spe-
cial case of the above evaluation scheme for formulae:
Pre∃∗δ$(V ) = I !µX · A ∨ 〈"〉X"δ ρ, where ρ is arbitrary
and UA = V . One may also evaluate some forms of
monotonic games [1, 8]: reading δ$1 as the transition re-
lation for player 1, and δ$2 as that for player 2, the formula
µX · A ∨ 〈"1〉(B ∧ ["2]X) is true exactly at those states
x0 such that either x0 ∈ UA (“player 1 wins”), or player 1
may move to some state x1 such that x1 ∈ UB (“prevent-
ing player 2 from winning”, where player 2 would win by
reaching some state outside UB) such that, whatever state
x2 player 2 moves to, either player 1 wins or player 1 may
move to . . . More succinctly, µX ·A∨〈"1〉(B∧["2]X) holds
at those states where player 1 has a strategy to win (reach
the open UA while preventing player 2 from reaching UB),
whatever player 2’s strategy.

4. Easy Constructions of Well Topologies

We know that every well quasi-ordering yields a well
topological space, through its Alexandroff topology. For ex-
ample, N, Nk with the componentwise ordering (Dickson’s
Lemma), the set of finite words over a well-quasi-ordered
alphabet, ordered by embedding (Higman’s Lemma), the set
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of finite labelled trees over a well-quasi-ordered signature,
ordered by embedding (Kruskal’s Theorem). However we
need to know more constructions of new well topologies
from old. (The easy proofs are relegated to the appendix.)
In this section, we start with some easy ones. We shall turn
to finite products in Section 6.2; this will turn out to be sur-
prisingly challenging.
The first observation is similar to the fact that, for every

well quasi-ordering ≤, any quasi-ordering≤′ such that x ≤
y implies x ≤′ y is also a well quasi-ordering.

Lemma 4.1 Every topology coarser than a well topology is
well.

So for example, if ≤ is a well quasi-ordering, then its Scott
topology and its upper topology are well topologies. Every
topological space with finitely many opens is also trivially
well. This includes the case of finite spaces.
Recall that a subspace Y of a topological space X is a

subset ofX whose topology is given by the intersections of
opens of X with Y—the induced topology.

Lemma 4.2 Every subspace of a well topological space is
well.

Proof. Let U1 ∩ Y ⊆ U2 ∩ Y ⊆ . . . ⊆ Uk ∩ Y ⊆ . . .
be an ascending chain of opens in Y . The open subset U =⋃+∞

i=1 Ui of X is compact, since X is well. So for someK,
U ⊆

⋃K
i=1 Ui. It follows that U ∩ Y ⊆

⋃K
i=1 Ui ∩ Y =

UK ∩ Y , hence Uk ∩ Y ⊆ UK ∩ Y for every k ≥ 1. We
conclude by Proposition 3.2. ,-

A retract Z of a space X is by definition such that there
are two continuous maps s : Z → X (the section) and
r : X → Z (the retraction) such that r ◦ s = idX .

Corollary 4.3 Any retract of a well topological space is
well.

The coproductX1+ . . .+Xk of k spaces is their disjoint
union. Its opens are all disjoint unions of opens, one from
eachXi, 1 ≤ i ≤ k.

Lemma 4.4 Let X1, . . . , Xk be k well topological spaces.
Their coproduct X1 + . . . + Xk is well.

Being well is also preserved under images of surjective
continuous maps:

Lemma 4.5 Let q : X → Z be a surjective continuous
map. If X is well then so is Z.

Given an equivalence relation ≡ on a topological space
X , the quotient spaceX/≡ is the set of equivalence classes
of ≡, topologized by taking the finest topology that makes
the quotient map q≡ : X → X/≡ continuous, where q≡
maps x ∈ X to its equivalence class.

Lemma 4.6 LetX be a well topological space,≡ an equiv-
alence relation on X . Then X/≡ is well.

LetWell be the category of well topological spaces and
continuous maps. In other words,Well is the full subcate-
gory ofTop (the category of topological spaces) consisting
of well topological spaces.

Corollary 4.7 Well is finitely cocomplete.

Proof. It is enough to show that it has all finite coproducts
(Lemma 4.4), and all coequalizers of parallel pairs f, f ′ :
X → Y . Such a coequalizer exists in Top, and is given by
Y/≡, where≡ is the smallest equivalence relation such that
f(x) ≡ f ′(x) for every x ∈ X . Then apply Lemma 4.6. ,-

5. Preliminaries II: Sober Spaces

The material we shall now need is more involved, and
can be found in [10, 7, 19] and in [15].

Stone Duality. For every topological space X , Ω(X) is a
complete lattice. Every continuous map f : X → Y defines
a function Ω(f) : Ω(Y ) → Ω(X), which maps every open
subset V of Y to Ω(f)(V ) = f−1(V ). The map Ω(f) pre-
serves all least upper bounds (unions) and all finite greatest
lower bounds (finite intersections), i.e. it is a frame homo-
morphism. Letting CLat be the category of complete lat-
tices and frame homomorphisms, Ω defines a functor from
Top toCLatop, the opposite category of CLat.
A frame is any complete lattice that obeys the infinite

distributivity law x ∧
∨

i∈I xi =
∨

i∈I(x ∧ xi). Let Frm

be the category of frames. Its opposite category Loc =
Frmop is the category of locales.
Going the other way around is known as Stone dual-

ity. A filter F on a complete lattice L is a non-empty
upward-closed family of elements of L, such that whenever
x, y ∈ F , the greatest lower bound x ∧ y is also in F . A
filter F is completely prime if and only if for every family
M ⊆ L whose least upper bound

∨
M is in F , then some

element of M is already in F . A point of L is by defini-
tion a completely prime filter of L. Let pt(L) be the set of
points of L. Topologize it by defining the opens of pt(L)
as the sets Ox = {F ∈ pt(L)|x ∈ F}, x ∈ L. One may
check that this is indeed a topology [7, Proposition 7.1.13].
Moreover, pt defines a functor from CLatop to Top, and
by restriction, from Loc to Top.
Then Ω is left adjoint to pt, in notation Ω ; pt. This

means that there are natural transformations ηX : X →
pt(Ω(X)) (the unit of the adjunction) and εL : Ω(pt(L)) →
L (the counit of the adjunction) such that εΩ(X) ◦Ω(ηX) =
idΩ(X) and pt(εL) ◦ ηpt(L) = idpt(L). Explicitly, ηX(x) is
the completely prime filter of all open neighborhoods of x
inX , and εL maps z ∈ L to the open set Oz .
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Sober Spaces. The space pt(Ω(X)) is called the sobrifi-
cation of X . One may understand this as noticing that (at
least if X is a T0 space, i.e., when its specialisation quasi-
ordering is a partial ordering) ηX is an embedding ofX into
pt(Ω(X)), so that pt(Ω(X)) is obtained from X by adding
elements, viz. those points of Ω(X) that are not of the form
ηX(x), x ∈ X . The space pt(Ω(X)) is then sober: a sober
space is a T0 space in which every irreducible closed set is
the closure of a unique point. A closed set C is irreducible
iff it is not empty, and if there are two closed sets C1 and
C2 such that C ⊆ C1 ∪ C2 then C ⊆ C1 or C ⊆ C2.
One shows that ηX is injective iff X is T0, and sur-

jective iff X is sober. Equivalently, X is sober iff X is
homeomorphic to pt(L), for some complete lattice L, iff
X ∼= pt(Ω(X)), iff ηX is bijective (in which case it is auto-
matically a homeomorphism).
The explicit description of pt(Ω(X)) of X is relatively

uninteresting. We have already said that pt(Ω(X)) was a
form of completion of X , where we add elements. A cru-
cial point is that this completion adds elements but no new
opens: then opens of pt(Ω(X)) are of the form OU , one
for each open subset U of X . Alternatively, the specialisa-
tion quasi-ordering ≤ of a sober space turns it into a cpo.
I.e., the pt ◦ Ω construction formally adds all missing least
upper bounds. One may for example check that the sobri-
fication of N (with the Alexandroff topology if its natural
ordering) is, up to homeomorphism, N ∪ {+∞} with non-
empty open subsets ↑ n, n ∈ N. (This is the Scott topology
on N ∪ {+∞}, minus the Scott-open {+∞}. Check that
this is the upper topology of ≤ on N ∪ {+∞}.)
Up to homeomorphism, there is a simpler way of de-

scribing the sobrification of X [10, Chapter V, Exer-
cise 4.9], as the space S(X) of all irreducible closed sub-
sets ofX , with open subsets given by!U = {F irreducible
closed |F ∩ U 0= ∅}, for each open subset U of X . Its spe-
cialisation quasi-ordering is just inclusion. Up to this home-
omorphism, the unit ηX can be seen as a function from X
to S(X) that maps x ∈ X to the irreducible closed set ↓ x.

Stably Compact Spaces. Sober spaces are well-filtered
[15, Definition 2.7]: for every open subset U , for ev-
ery filtered family (Qi)i∈I of saturated compacts such that⋂

i∈I Qi ⊆ U , there is an i ∈ I such that Qi ⊆ U . (A fam-
ily is filtered provided it is directed in the converse ordering
⊇.) This is by the celebrated Hofmann-Mislove Theorem
[7, Theorem 7.2.9].
Notice the parallel between well-filteredness and the

property that every directed family of opens whose union
contains a compactK already has an element containingK.
Formally, we obtain the former from the latter by reversing
the ordering of inclusion, replacing unions by intersection,
and exchanging the roles of compacts and opens. Stably
compact spaces are the class of spaces where this parallel

can be made fully formal.
Say that a topological space X is coherent iff the inter-

section of two saturated compacts is compact. X is locally
compact if and only if every element has a basis of saturated
compact neighborhoods. That is, whenever x ∈ U with U
open, there is a saturated compact Q such that x is in the
interior of Q, and Q ⊆ U . A stably compact space is a
sober, coherent, locally compact and compact space. This
is a much stronger property than just being sober.
Let X be a stably compact space. One may show that

the complements of saturated compacts of X form a new
topology, the so-called cocompact topology. Write Xd for
X under its cocompact topology: this is the de Groot dual
of X . Then Xd is again stably compact, and Xdd = X
[15, Corollary 2.13]. Moreover, the specialisation quasi-
ordering of Xd is the converse ≥ of ≤.

6. Hard Constructions of Well Topologies

Let CCCLat be the full subcategory of CLatop con-
sisting of complete lattices (resp., Loccc the full subcate-
gory of Loc consisting of frames) that satisfy the ascend-
ing chain condition. Proposition 3.2 states that Ω induces a
functor fromWell toCCCLat, and to Loccc.

Lemma 6.1 The functor pt induces a functor from
CCCLat (resp., Loccc) to Well, right adjoint to Ω.

Proof. Let us show that pt is a functor from CCCLat,
resp. Loccc, toWell. This boilds down to the fact that for
every complete latticeLwith the ascending chain condition,
pt(L) is well. By Proposition 3.2, it suffices to show that
every ascending chain Ox1

⊆ Ox2
⊆ . . . ⊆ Oxk

⊆ . . .
stabilizes. Notice that Ox ⊆ Oy if and only if x ≤ y: the
if direction is clear; conversely, if Ox ⊆ Oy , then the filter
↑ x is completely prime, belongs toOx, so it belongs toOy ,
i.e., y ∈ ↑ x, that is, x ≤ y. It follows that x1 ≤ x2 ≤ . . . ≤
xk ≤ . . . is an ascending chain in L. So it stabilizes. ,-

Sobrification preserves the property of being well. In
fact, we can say slightly more:

Proposition 6.2 A space X is well if and only if its sobrifi-
cation pt(Ω(X)) ∼= S(X) is well.

Proof. If X is well, then so is pt(Ω(X)), because Ω is a
functor fromWell to Loccc, and pt is one from Loccc to
Well (Lemma 6.1). It follows that S(X) ∼= pt(Ω(X)) is
well, too. Conversely, assume S(X) is well, and let U1 ⊆
U2 ⊆ . . . ⊆ Uk ⊆ . . . be an infinite ascending chain in
X . Then !U1 ⊆ !U2 ⊆ . . . ⊆ !Uk ⊆ . . . is an infinite
ascending chain in S(X), so it stabilizes: for some N ∈ N,
for every k ≥ N , !Uk ⊆ !UN . For every x ∈ Uk, ↓ x is
in !Uk, so it is in !UN , therefore x ∈ UN . So Uk ⊆ UN ,
showing that the ascending chain U1 ⊆ U2 ⊆ . . . ⊆ Uk ⊆
. . . also stabilizes. So X is well. ,-
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6.1. Well Sober Spaces

Proposition 6.2 is crucial to our study. For the moment,
it at least motivates a deeper study of those spaces that are
both well and sober.

Proposition 6.3 Every well sober space X is stably com-
pact. Its upward-closed subsets coincide with its saturated
compacts.

Proof. First, X is trivially locally compact. Since X itself
is open and well, X is compact. X is sober by assump-
tion. It remains to show that X is coherent. This will be
a trivial consequence of the second part of the proposition,
since every intersection of upward-closed subsets is again
upward-closed. Let therefore A be upward-closed inX . So
A is saturated, i.e., A is the filtered intersection of the fam-
ily (Ui)i∈I of all opens containing A. Since X is well, this
is a family of saturated compacts. Since X is well-filtered,
its intersection A is again saturated compact. ,-

Corollary 6.4 Let X be sober and well. Then the cocom-
pact topology on X is the Alexandroff topology of ≥.

In particular, the topology ofX is entirely determined by
its specialisation quasi-ordering.

Corollary 6.5 Let X be sober and well. The topology of
X is exactly the upper topology of its specialisation quasi-
ordering ≤. Every closed subset of X is finitary.

Proof. The closed subsets of X , that is of Xdd, are the
saturated compacts of Xd. By Corollary 6.4, the topology
of Xd is the Alexandroff topology of ≥, so its saturated
compacts are its finitary compacts. These are exactly the
sets of the form ↓ E, E finite. In other words, the closed
subsets of X are exactly its finitary closed subsets.
Since all finitary closed subsets are closed in the upper

topology, the topology ofX is coarser than the upper topol-
ogy. But the latter is the coarsest having ≤ as specialisation
quasi-ordering. So the two topologies coincide. ,-

Recall that the sobrification of N is N ∪ {+∞}, with opens
↑ n, n ∈ N. We have already noticed that this was the upper
topology. Corollary 6.5 shows that this is no accident.
That X is both well and sober is essential. Note also

that X is closed in its topology. Corollary 6.5 then implies
that X can be written ↓ E for some finite E; that is, X has
finitely many maximal elements and every element of X is
below one of these. This is not the case of N, which is well
but not sober. But this is the case of its sobrification N ∪
{+∞}. Again, Corollary 6.5 shows that this is no accident.

Definition 6.6 The quasi-ordered set X has property T iff
there is a finite subset E of X such that every element of X
is less than or equal to some element of E.

When X is well and sober, Corollary 6.5 also implies
that for every x, y ∈ X , ↓ x ∩ ↓ y, which is closed, is of
the form ↓ E, E finite. This is equivalent to the following
property, a dual of Jung’s property M [14, Definition, p.38]:

Definition 6.7 The quasi-ordered setX has property W iff,
for every x, y ∈ X , there is a finite subset E of maximal
lower bounds of x and y, such that every lower bound of x
and y is less than or equal to some element of E.

Lemma 6.8 Let X be a well topological space, ≤ its spe-
cialisation quasi-ordering,≥ its converse, and≡= (≤ ∩ ≥
). Then ≤ is well-founded: every infinite descending chain
. . . ≤ xk ≤ . . . ≤ x2 ≤ x1 stabilizes up to ≡, meaning that
there is an integer N such that xk ≡ xN for every k ≥ N .

We establish the converse in Proposition 6.9 below. To
this end, we need to define the Hoare quasi-ordering ≤& on
the subsets of a set X quasi-ordered by ≤: E ≤& E′ iff
for every x ∈ E, there is an x′ ∈ E′ such that x ≤ x′.
Equivalently, E ≤& E′ iff ↓ E ⊆ ↓ E′. Define also the
multiset extension of a quasi-ordering ≤. Let {|x1, . . . , xn|}
be the multiset containing exactly the elements x1, . . . , xn,
and write ? for multiset union. Let again ≡ be ≤ ∩ ≥, and
let <= (≤ \ ≡) be the strict part of ≤. For any two finite
multisetsM andM ′ of elements ofX , defineM ≤mul M ′

iff one may write M = M1 ? {|x1, . . . , xn|}, M ′ = M ′
1 ?

{|x′
1, . . . , x

′
n|} so that x1 ≡ x′

1, . . . , xn ≡ x′
n, and for every

x ∈ M1, there is an x′ ∈ M ′
1 such that x ≤ x′. It is well-

known that if (the strict part of) ≤ is well-founded then so
is (the strict part of) ≤mul. Equating every finite subset
E = {x1, . . . , xn} with the finite multiset {|x1, . . . , xn|},
where each xi occurs exactly once, moreover, we have that
E ≤& E′ iff E ≤mul E′.

Proposition 6.9 Let ≤ be a quasi-ordering on X . If ≤ is
well-founded and has property W, thenX is well in its upper
topology. Its closed subsets, except possibly X , are finitary.

Proof. First, we show that: (∗) for every descending family
(↓ En)n∈N

, where each En is a finite subset of X , there is
k ∈ N such that

⋂
n∈N ↓ En = ↓ Ek. Note that, since

↓ En+1 ⊆ ↓ En, for every x ∈ En+1, there is a y ∈ En

such that x ≤ y, that is, En+1 ≤& En. Then (∗) follows
since ≤&=≤mul is well-founded.
We obtain: (∗∗) for every filtered family (↓ Ei)i∈I ,

where each Ei is finite, there is a finite subset E ⊆ X such
that

⋂
i∈I ↓ Ei = ↓ E. Indeed, assume the contrary. We

then build a descending sequence ↓ E′
n, n ∈ N, where each

E′
n is some Ei, by induction on n ∈ N. Let E′

0 be any
Ei. Assuming E′

n has been built, for some i ∈ I we must
have ↓ E′

n 0⊆ ↓ Ei, otherwise
⋂

i∈I ↓ Ei = ↓ E′
n. Since

(↓ Ei)i∈I is filtered, for some j ∈ I , ↓ Ej is contained in
↓ E′

n and in ↓ Ei: let E′
n+1 = Ej . By construction, the

chain (↓ E′
n)n∈N

is strictly decreasing, contradicting (∗).

7



The closed subsets in the upper topology are the (ar-
bitrary) intersections of subsets of the form ↓ Ei, i ∈
I , Ei finite. The empty intersection is X . Each non-
empty intersection

⋂
i∈I Ai can be written as a filtered in-

tersection of non-empty finite intersections:
⋂

i∈I Ai =⋂
J⊆I,J +=∅ finite

⋂
i∈J Ai. By property W, every non-empty

finite intersection
⋂

i∈J ↓ Ei is of the form ↓ EJ for some
finite subset EJ . By (∗∗), every filtered intersection of sub-
sets of the form ↓ EJ is again of the form ↓ E, E finite.
The closed subsets of the upper topology ofX are there-

fore exactly those of the form ↓ E, E finite, plus the whole
of X . Taking complements in (∗), every infinite ascending
chain of opens stabilizes: by Proposition 3.2,X is well. ,-

Lemma 6.10 Let≤ be a quasi-ordering onX . If≤ is well-
founded and has property W, then the irreducible closed
subsets F of X are of the form ↓ x, x ∈ X , plus possi-
bly X itself. If X additionally has property T, then the only
irreducible closed sets are of the first kind.

All this finally allows us to characterize exactly the well
sober spaces in terms of their specialisation quasi-ordering:

Theorem 6.11 The well sober spaces are exactly the
spaces whose topology is the upper topology of a well-
founded partial order that has properties W and T.

6.2. Cartesian Products

We now have enough background to show that Well is
finitely complete. We start with Cartesian products. Re-
member that X1 × X2 is equipped with the product topol-
ogy, which is generated by all open rectangles U1 × U2,
where U1 is open in X1 and U2 is open in X2. Alterna-
tively, the product topology is the coarsest that makes the
projections πi : X1 × X2 → Xi (i = 1, 2) continuous.
Theorem 6.11 makes the following almost immediate.

Lemma 6.12 The product X1 × X2 of two well sober
spaces is well and sober.

Theorem 6.13 LetX1, . . . ,Xn be well topological spaces.
Their product

∏n
i=1 Xi is well. Its opens are all finite

unions of open rectangles
∏n

i=1 Ui, Ui ∈ Ω(Xi).

Proof. By induction on n. The essential case is n = 2.
First, note that for every open U of a spaceX , ηX(x) ∈ OU

iff x ∈ U . In particular: (∗) η−1
X (OU ) = U .

Consider the continuous map i = ηX1
× ηX2

: X1 ×
X2 → pt(Ω(X1))× pt(Ω(X2)). Let U any open subset of
X1×X2. By definition, U can be written as

⋃
i∈I U1

i ×U2
i ,

where the U1
i ’s are open in X1 and the U2

i ’s are open
in X2. By (∗), U =

⋃
i∈I η

−1
X1

(OU1

i
) × η−1

X2
(UU2

i
) =

i−1(
⋃

i∈I OU1

i
× UU2

i
). Note that

⋃
i∈I OU1

i
× OU2

i
is

open in pt(Ω(X1)) × pt(Ω(X2)). By Proposition 6.2,

pt(Ω(X1)) and pt(Ω(X2)) are well. They are sober by con-
struction. So by Lemma 6.12, pt(Ω(X1)) × pt(Ω(X2))
is well (and sober), hence

⋃
i∈I OU1

i
× OU2

i
is compact

in pt(Ω(X1)) × pt(Ω(X2)). The family (OU1

i
×OU2

i
)
i∈I

is an open cover of it. So there is a finite subset I0 of I
such that

⋃
i∈I OU1

i
× OU2

i
=

⋃
i∈I0

OU1

i
× OU2

i
. Then

U = i−1(
⋃

i∈I0
OU1

i
× OU2

i
) =

⋃
i∈I0

U1
i × U2

i is a finite
union of open rectangles.
Since X1 is well, U1

i is compact, and similarly for U2
i ,

so U1
i × U2

i is compact in X1 ×X2 by Tychonoff’s Theo-
rem. It follows that U , qua finite union of compacts, is also
compact. So X1 ×X2 is well. ,-

Corollary 6.14 Well is finitely complete.

Proof. By Theorem 6.13, it has all finite products. We
need only verify that it has all equalizers of parallel pairs
f, f ′ : X → Y . Such an equalizer exists in Top, and is
given by Z = {x ∈ X|f(x) = f ′(x)}, with the topology
induced by X . Then Z is well by Lemma 4.2, and clearly
forms an equalizer inWell. ,-

7. A Well Topology on P(X)

Let us deal with the so-called Hoare powerdomain con-
struction. For each topological space X , let its Hoare pow-
erdomain H(X) (resp., H∅(X)) be the space of all non-
empty closed subsets (resp., all closed subsets) of X with
the upper topology of the ⊆ ordering. It has subbasic open
sets !U = {F ∈ H(X)|F ∩ U 0= ∅}, U open inX .

H(X) is used in denotational semantics to model angelic
non-determinism. Note that the closure of an element F ∈
H(X) is "F = H(X) \ !(F ) = {F ′ ∈ H(X)|F ′ ⊆ F},
and similarly in H∅(X). On finitary closed sets, ↓ E ⊆
↓ E′ iff E ≤& E′. The following is then immediate.

Proposition 7.1 Let X be a well sober space. Then H(X)
andH∅(X) are well and sober.

Theorem 7.2 Let X be a well topological space. Then
H(X) andH∅(X) are well.

Proof. Call basic open set any finite intersection of subba-
sic opens !U . Every open U of H(X) is the union of the
basic opens V contained in U . Fix a way of writing each
basic open Vi, say Vi =

⋂
j∈Ji

!Vij , where Ji is finite. Let
V̂i =

⋂
j∈Ji

!OVij
, and finally Û be the union of all V̂i,

Vi basic open contained in U . By construction, if U ⊆ U ′,
then Û ⊆ Û ′. For every ascending chain U1 ⊆ U2 ⊆ . . . ⊆
Uk ⊆ . . . in H(X), Û1 ⊆ Û2 ⊆ . . . ⊆ Ûk ⊆ . . . is an
ascending chain in H(pt(Ω(X))). So it stabilizes, using
Proposition 6.2, Proposition 7.1, and Proposition 3.2.
Recall that η−1

X (OU ) = U for every open U of X .
So !Vij = {F ∈ H(X)|F ∩ η−1

X (OVij
) 0= ∅} =
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H(ηX)−1(!OVij
), where H(ηX) maps F ∈ H(X)

to cl(ηX(F )). Indeed, H(ηX)−1(!OVij
) = {F ∈

H(X)|cl(ηX(F )) ∩ OVij
0= ∅} = {F ∈ H(X)|ηX(F ) ∩

OVij
0= ∅} = {F ∈ H(X)|F ∩ η−1

X (OVij
) 0= ∅}. So

U = H(ηX)−1(Û) for every open subset U of H(X). In
particular, the map U A→ Û is injective.
Since Û1 ⊆ Û2 ⊆ . . . ⊆ Ûk ⊆ . . . stabilizes, U1 ⊆

U2 ⊆ . . . ⊆ Uk ⊆ . . . stabilizes, too. We conclude by
Theorem 3.2. The argument is similar forH∅(X). ,-

This has the following surprising consequence:

Proposition 7.3 Let X be a topological space, with spe-
cialisation quasi-ordering ≤. Let P(X) be the set of all
subsets (resp. P∗(X) of all non-empty subsets) ofX , quasi-
ordered by the topological Hoare quasi-ordering ≤&∗, de-
fined as: A ≤&∗ B iff cl(A) ⊆ cl(B). Equip P(X), resp.
P∗(X), with the corresponding upper topology.
If X is well, then so are P(X) and P∗(X).

Proof. Let ≡&∗ be the equivalence relation related to ≤&∗,
and q the quotient map. Up to homeomorphism, P(X)/ ≡&∗

is exactly H(X), and q maps each subset A to cl(A). Note
that q is continuous: the inverse image q−1(!U) is the set
of all subsets A such that cl(A) ∩ U 0= ∅, equivalently
cl(A) ⊆ U , equivalently A ≤&∗ U , since U is closed. So
q−1(!O) is open in the upper topology.
We have actually just shown that Ω(q) : Ω(H(X)) →

Ω(P(X)) maps !O to ↓&∗ O. Recall that Ω(q) is a frame
homomorphism, and is therefore entirely determined by this
property. This is clearly a bijection, whose inverse is the
unique frame homomorphism mapping ↓&∗ F to !F , for
each closed subset F ofX .
Every ascending chain of opens O1 ⊆ O2 ⊆ . . . ⊆

Ok ⊆ . . . of P(X) then induces an ascending chain of opens
of H(X) through Ω(q)−1. By Theorem 7.2 and Proposi-
tion 3.2, the latter stabilizes. So the former, too. Hence
P(X) is well. ,-

Corollary 7.4 Let ≤ be a well quasi-ordering on X . Then
P(X), resp. P∗(X), with the upper topology of ≤&, is well.

This is remarkable, as in general ≤& is not a well quasi-
ordering on P(X). The standard counterexample is Rado’s
example [21]. LetXRado be the set {(m, n) ∈ N2|m < n},
ordered by ≤Rado: (m, n) ≤Rado (m′, n′) iff m = m′

and n ≤ n′, or n < m′. It is well-known that ≤Rado is a
well quasi-ordering. However, H(XRado) ∼= P(XRado) is
not well quasi-ordered by ≤&

Rado. (We follow here [5, Ex-
ample 3.2].) Indeed, let C1 be the set of sets of the form
φi,j = {(m, n) ∈ XRado|m ≤ j ∧ (i = m ⇒ n < j)}.
It is easy to see that they are downward-closed, hence
closed in the Alexandroff topology. Let ψj =

⋂j−1
i=0 φi,j ;

this is again closed, and non-empty since every (j, k) with
j < k is in it. But there is no ascending subsequence of

ψ0,ψ1, . . . ,ψk, . . .. Indeed, if j < k then (j, k) ∈ ψj ,
but (j, k) 0∈ ψk, else (j, k) would be in φj,k, which would
imply k < j.
A trivial consequence of this is that H(X) and H∅(X)

are in general not Alexandroff-discrete, even when X is. A
more important observation is that choosing the right topol-
ogy (here, the upper topology) matters.
The Smyth space Q(X) usually models demonic non-

determinism, and is defined as the set of non-empty com-
pact saturated subsets ofX , ordered by reverse inclusion⊇,
and equipped with the corresponding Scott topology. The
latter is generated by basic opens "U = {Q ∈ Q(X)|Q ⊆
U}, U open in X , as soon as X is well-filtered and locally
compact. Contrarily toH(X),Q(X) is in general not well.
However, consider the smaller set O(X) of opens (re-

member that every open is compact), equipped with the
upper topology of ⊇. Clearly, O(X) ∼= H∅(X), by the
homeomorphism sending an open set to its complement.
By Corollary 7.4, O(X) is therefore well. Now note that
if X is Alexandroff-discrete, then opens coincide with fini-
tary compacts ↑ E. Let Pfin(X) the set of finite subsets of
X , which we equip with the upper topology of the Smyth
quasi-ordering ≤".

Lemma 7.5 LetX be Alexandroff-discrete, with a well spe-
cialisation quasi-ordering. The map ↑ that sends E ∈
Pfin(X) to ↑ E ∈ O(X) is a homeomorphism.

Using this, the fact that O(X) ∼= H∅(X), and Theo-
rem 7.2, we get:

Corollary 7.6 Let ≤ be a well quasi-ordering on X , and
equip X with its Alexandroff topology. Then Pfin(X), with
the upper topology of ≤", is well.

Again, this contrasts with the theory of well-quasi or-
derings. Rado’s example (see above) shows that ≤" is in
general not a well quasi-ordering on Pfin(X). It would be
if ≤ were ω2-wqo [13].

8. A New Data Structure for Coverability?

Consider the following argument. Start from a well topo-
logical spaceX , e.g.,Nk with its Alexandroff topology (this
is the space of markings of a Petri net). By Proposition 6.2,
S(X) is well. By Corollary 6.5, its opens are exactly the
finitary closed subsets ↓ E, E ⊆ S(X). We equate X
with a subspace of S(X), i.e., we equate x ∈ X with
ηX(x) ∈ S(X). For instance, S(Nk) = (N ∪ {+∞})k, as
we have seen. Now the topology of X is exactly the topol-
ogy induced onX by that of S(X), so we have a way of rep-
resenting all opens ofX using a finite set E, of elements of
S(X), as the complement inX ofX ∩ ↓ E. This is clear on
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Nk: for example, with k = 3, we may represent the upward-
closed set (open in N3) ↑ {(2, 3, 5)} as the complement of
X ∩ ↓ {(1, +∞, +∞), (+∞, 2, +∞), (+∞, +∞, 4)}.
This is completely general: we can always represent

opens of well topological spaces X as complements of sets
of the formX ∩ ↓ E, E a finite subset of S(X). This is im-
portant for those well topological spaces, e.g., P(X), that
do not arise from well quasi-orderings, and where opens
cannot be represented as ↑ E (E finite ⊆ X). Even on
well quasi-ordered spaces such as Nk, this may provide an
alternate representation of sets of the form Pre∃∗δ(V ) or
I !F "δ ρ. E.g., on Nk, when δ is the transition relation of
a Petri net (taken as a finite set of rewrite rules +mi → +ni,
1 ≤ i ≤ ", of vectors in Nk, where +mi,+ni ∈ Nk), we
may compute Pre∃δ(X ∩ ↓ E) = Pre∀δ(X∩ ↓ E) and
Pre∀δ(X ∩ ↓ E) = Pre∃δ(X∩ ↓ E) by the formulae:

Pre∃δ(X ∩ ↓ E) = X ∩ ↓ {+p + +mi − +ni

| +p ∈ E, 1 ≤ i ≤ " · +p ≥ +ni}

Pre∀δ(X ∩ ↓ E) = X ∩
$⋂

i=1

(
!↑ +mi ∪ ↓ {+p + +mi − +ni

| +p ∈ E · +p ≥ +ni}
)

(We leave the computation of finite unions and intersections
of sets of the form ↓ E, and of the complement !↑ +mi of
↑ +mi in S(X), as an exercise to the reader.)

9. Conclusion

We have laid down the first steps towards a theory of well
topological spaces, generalizing well quasi-orderings. Well
topological spaces enjoy many nice properties. Every finite
product, equalizer, subspace, finite coproduct, coequalizer,
quotient, retract of well topological spaces is again well.
We have also characterized those well topological spaces
that are sober, as being exactly those upper topologies of
well-founded quasi-orderings satisfying properties W and
T. And we have shown that a space is well iff its sobrifi-
cation is well. Finally, the Hoare powerdomain of a well
space is well, which implies the surprising property that
the set P(X) of all subsets of a well space X , even in-
finite ones, under the upper topology of the Hoare quasi-
ordering ≤&, is well, although ≤& is not in general a well
quasi-ordering. Similarly, the set Pfin(X) of finite subsets
of X is well under the Smyth quasi-ordering ≤". An in-
triguing question stems from the fact that the sobrification
of Nk is (N ∪ {+∞})k, and that this is exactly the space of
objects labelling Karp-Miller trees [16]. Is there a connec-
tion between sobrification and the Karp-Miller construction
for Petri nets and VASS?

Acknowledgement. Thanks to A. Finkel, who asked the
latter question, and to Ph. Schnoebelen.
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A. Proofs of Theorems

Proposition 3.5 Every well-structured transition system
(X, δ) is a topological well-structured transition system
and conversely, where X is seen with its Alexandroff topol-
ogy.
Proof. By Proposition 3.1,X is well. Whenever V is open,
i.e., upward-closed, we claim that Pre∃δ(V ) is upward-
closed, therefore δ is lower semi-continuous. Indeed, for
every x ∈ Pre∃δ(V ), by definition there is an y ∈ V such
that x δ y. Whenever x ≤ x′, there is a y′ such that
x′ δ y′ and y ≤ y′. Since V is upward-closed, y′ ∈ V ,
so x′ ∈ Pre∃δ(V ).
Conversely, assume δ to be lower semi-continuous, and

let V be the Alexandroff open ↑ y: since Pre∃δ(V ) is
Alexandroff-open, i.e., upward-closed, whenever x δ y and
x ≤ x′, it must be that x′ ∈ Pre∃δ(V ), whence there is
an element y′ such that x′ δ y′ such that y′ ∈ V , that is,
y ≤ y′. ,-

Lemma 4.1 Every topology coarser than a well topology
is well.
Proof. Every open U in the coarser topology is open in
the well topology, hence compact in the well topology. Ev-
ery cover of U by opens in the coarser topology is a cover
by opens in the well topology, hence we can extract a finite
subcover (“a finer topology has more opens and less com-
pacts”). So U is compact in the coarser topology. ,-

Corollary 4.3 Any retract of a well topological space is
well.
Proof. Z is homeomorphic to the subspace s(Z). Ap-
ply Lemma 4.2, observing that being well is invariant under
homeomorphisms. ,-

Lemma 4.4 LetX1, . . . ,Xk be k well topological spaces.
Their coproduct X1 + . . . + Xk is well.
Proof. Because Ω(X) ∼= Ω(X1) × . . . × Ω(Xk) has the
ascending chain condition. Then use Proposition 3.2. ,-

Lemma 4.5 Let q : X → Z be a surjective continuous
map. If X is well then so is Z.
Proof. For every open U of Z, q−1(U) is open inX , hence
compact. Since q is surjective, U = q(q−1(U)), so U is
compact. ,-

Lemma 4.6 Let X be a well topological space, ≡ an
equivalence relation on X . Then X/≡ is well.
Proof. By Lemma 4.5, since q≡ is continuous and surjec-
tive. ,-

Lemma 6.8 Let X be a well topological space, ≤ its spe-
cialisation quasi-ordering,≥ its converse, and≡= (≤ ∩ ≥
). Then ≤ is well-founded: every infinite descending chain
. . . ≤ xk ≤ . . . ≤ x2 ≤ x1 stabilizes up to ≡, meaning that
there is an integer N such that xk ≡ xN for every k ≥ N .
Proof. For every i, the complement Ui = ↓ xi is open,
since it is open in the upper topology of≤, which is coarser
than the topology ofX . Moreover, U1 ⊆ U2 ⊆ . . . ⊆ Uk ⊆
. . .. By Proposition 3.2, the latter stabilizes. So the chain
(xk)k∈N

stabilizes up to ≡. ,-

Lemma 6.10 Let ≤ be a quasi-ordering on X . If ≤
is well-founded and has property W, then the irreducible
closed subsets F of X are of the form ↓ x, x ∈ X , plus
possibly X itself. If X additionally has property T, then the
only irreducible closed sets are of the first kind.
Proof. By Proposition 6.9, F = ↓ E for some finite E
or F = X . In the first case, since F is irreducible, F ,
hence E is not empty. Without loss of generality, we may
assume that E is an antichain. Write E = {x1, . . . , xn}. If
n ≥ 2, then F = ↓ E is the union of the two closed subsets
↓ x1 and ↓ {x2, . . . , xn}, contradicting the fact that F is
irreducible. So n = 1.
If X has property T, then X itself is of the form ↓ E, so

cannot be irreducible unless it is of the form ↓ x again. ,-

Lemma 6.12 The product X1 × X2 of two well sober
spaces is well and sober.
Proof. Let ≤1 and ≤2 the specialisation orderings of
X1 and X2 respectively. By Lemma 6.8, ≤1 and ≤2 are
well-founded and have properties W and T. It follows that
the same holds for ≤1 × ≤2, where (x1, x2) (≤1 × ≤2

) (x′
1, x

′
2) iff x1 ≤1 x′

1 and x2 ≤2 x′
2.

Remember that a function is continuous iff the inverse
image of every closed set is closed. It follows that the
closed sets of X1 ×X2 are generated by the subsets of the
form ↓ x1 × X2 and X1 × ↓ x2, x1 ∈ X1, x2 ∈ X2. By
Corollary 6.5, the closed set X1 can be written ↓ E1, E1

finite. SimilarlyX2 = ↓ E2, E2 finite. So the closed sets of
X1×X2 are generated by those of the form ↓ x1×↓ E2 =↓
({x1}× E2) and ↓ E1 × ↓ x2 =↓ (E1 × {x2}), which are
closed in the upper topology of ≤1 × ≤2. So the prod-
uct topology is coarser than the upper topology. Since they
have the same specialisation quasi-ordering, they are equal.
We conclude by Theorem 6.11. ,-

Proposition 7.1 LetX be a well sober space. ThenH(X)
andH∅(X) are well and sober.
Proof. By Lemma 6.8, the specialisation ordering ≤
is well-founded and has properties W and T. The quasi-
ordering ≤& coincides with ≤mul, and is therefore also
well-founded. Since all closed subsets of X are finitary by
Corollary 6.5, ⊆ is well-founded on H(X). Property W is
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trivial inH(X), since every two closed subsets F1, F2 have
a greatest lower bound F1 ∩ F2 if non-empty, none other-
wise. Property T is also trivial, since X is the top element
of H(X). We reason similarly on H∅(X). We conclude by
Theorem 6.11. ,-

Corollary 7.4 Let≤ be a well quasi-ordering onX . Then
P(X), resp. P∗(X), with the upper topology of ≤&, is well.
Proof. LetX be equipped with the Alexandroff topology of
≤. By Proposition 3.1,X is well. For every subsetA, cl(A)
equals ↓ A, since every downward-closed set is closed. So
≤& coincides with≤&∗, and we conclude by Proposition 7.3.
,-

Lemma 7.5 Let X be Alexandroff-discrete, with a well
specialisation quasi-ordering. The map ↑ that sends E ∈
Pfin(X) to ↑ E ∈ O(X) is a homeomorphism.
Proof. The topology ofO(X) is generated by sets {V |V 0⊇
U}, when U = ↑ E′ ranges over opens of X . The inverse
image of the latter by ↑ is {E|∃x ∈ E′ ·∀y ∈ E ·y 0≤ x}, the
set of finite subsetsE such thatE 0≤" E′, so ↑ is continuous.
Conversely, the direct image of {E|∃x ∈ E′ · ∀y ∈ E · y 0≤
x} by ↑ is {V |V 0⊇ ↑ E′}. ,-
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