Robust Model-Checking of Linear-Time
Properties in Timed Automata

Patricia Bouyer, Nicolas Markey, Pierre-Alain Reynier

LSV — CNRS & ENS de Cachan — France

LATIN’06 — March 24, 2006 1/19

© Context

© Robust model-checking of pure-safety properties

© Robust model-checking of LTL

O Conclusion

LATIN’06 — March 24, 2006 2/19

© Context

\TIN’06 — March 24, 2006 3/19

Context

Model-checking

Does the system satisfy the property?

Modelling = = = = = = = o] o o - -

LATIN’06 — March 24, 2006 4/19

Context

Model-checking

Does the system satisfy the property?

Modelling = = = = = = = o] o g - -

= ©

Model-checking
Algorithm

LATIN’06 — March 24, 2006 4/19

Timed automata (example)

x,y : clocks

x<5 a y:=0 y>1 b, x:=0

—~®

()
N

LATIN’06 — March 24, 2006 5/19

Timed automata (example)

x,y : clocks

x<5bh a y:=0 y>1 b, x:=0
—() ® (D—

ZO 5(4.1) EO a 51 5(1.4) gl b 52
x 0 4.1 4.1 55 0
y 0 4.1 0 1.4 1.4

LATIN’06 — March 24, 2006 5/19

Timed automata (example)

x,y : clocks

x<5bh a y:=0 y>1 b, x:=0
—() ® (D—

ZO 5(4.1) EO a, / 5(1.4) Vi b, (o
x 0 4.1 4.1 0
y 0 4.1 0 1.4

(clock) valuation

5/19

LATIN’06 — March 24, 2006

Timed automata (example)

x,y : clocks

x<5 a y:=0 y>1 b, x:=0
— () @ (—

ZO 5(4.1) EO a, / 5(1.4) Vi b, (o
x 0 4.1 4.1 0
y 0 4.1 0 1.4

(clock) valuation

O timed word (a,4.1)(b,5.5)

5/19

LATIN’06 — March 24, 2006

Implementatiblity of a timed automaton

o “Implementing” a timed automaton assumes perfect hardware

Infinitely punctual: exact synchronization of communications
Infinitely precise: clocks increase at the same rate
Infinitely fast: a timed automaton might have to perform actions
faster and faster

LATIN’06 — March 24, 2006 6 /19

Implementatiblity of a timed automaton

o “Implementing” a timed automaton assumes perfect hardware

Infinitely punctual: exact synchronization of communications
Infinitely precise: clocks increase at the same rate
Infinitely fast: a timed automaton might have to perform actions

faster and faster

@ In practice, a processor is digital and imprecise

LATIN’06 — March 24, 2006 6 /19

Implementatiblity of a timed automaton

o “Implementing” a timed automaton assumes perfect hardware

Infinitely punctual: exact synchronization of communications
Infinitely precise: clocks increase at the same rate
Infinitely fast: a timed automaton might have to perform actions

faster and faster

@ In practice, a processor is digital and imprecise

0 Even if we prove that a timed automaton is correct, it
may happen that it cannot be correctly implemented.

LATIN’06 — March 24, 2006 6 /19

From implementability to robustness

@ A design point-of-view [Altisen, Tripakis — FORMATS’05]
@ integrate architecture in the system ~- very general
@ defaults: - correctness depends on the architecture
- faster is not always better

LATIN’06 — March 24, 2006 7/19

From implementability to robustness

@ A design point-of-view [Altisen, Tripakis — FORMATS’05]
@ integrate architecture in the system ~- very general
@ defaults: - correctness depends on the architecture
- faster is not always better

@ A semantical point-of-view [De Wulf, Doyen, Raskin — HSCC'04]
[De Wulf, Doyen, Markey, Raskin — FORMATS’04]

¢ enlarge guards: g =[a,b] ~ g®=[a— A, b+ A]
@ a simple model of architecture

LATIN’06 — March 24, 2006 7/19

From implementability to robustness

@ A design point-of-view [Altisen, Tripakis — FORMATS’05]
@ integrate architecture in the system ~- very general
@ defaults: - correctness depends on the architecture
- faster is not always better

@ A semantical point-of-view [De Wulf, Doyen, Raskin — HSCC'04]
[De Wulf, Doyen, Markey, Raskin — FORMATS’04]

¢ enlarge guards: g =[a,b] ~ g®=[a— A, b+ A]
@ a simple model of architecture

From implementability to robustness

@ A timed automaton A is implementable w.r.t. property ¢ iff there exists
A s.t. A2 satisfies ¢ (for some properties).

o If A% satisfies ¢, then for every 0 < A < Ag, A2 satisfies .
U “Faster is better”

LATIN’06 — March 24, 2006 7/19

Robust model-checking of pure-safety properties

© Robust model-checking of pure-safety properties

LATIN’06 — March 24, 2006 8/19

Robust model-checking of pure-safety properties

Case of pure-safety properties

[Puri — FTRTFT’'98]
[De Wulf, Doyen, Markey, Raskin — FORMATS'04]

Theorem

Given a timed automaton A and a set of bad states Bad, we can decide
whether there exists A > 0 s.t. Reach(A?) N Bad = 0.

It is equivalent to checking that (ﬂA>0 Reach(AA)) N Bad = 0.

LATIN’06 — March 24, 2006 9/19

Robust model-checking of pure-safety properties

An example: standard semantics

LATIN’06 — March 24, 2006 10 /19

Robust model-checking of pure-safety properties

An example: standard semantics

LATIN’06 — March 24, 2006 10 /19

Robust model-checking of pure-safety properties

An example: standard semantics

LATIN’06 — March 24, 2006 10 /19

Robust model-checking of pure-safety properties

An example: standard semantics

LATIN’06 — March 24, 2006 10 /19

Robust model-checking of pure-safety properties

An example: standard semantics

LATIN’06 — March 24, 2006 10 /19

Robust model-checking of pure-safety properties

An example: standard semantics

LATIN’06 — March 24, 2006 10 /19

Robust model-checking of pure-safety properties

An example: standard semantics

LATIN’06 — March 24, 2006 10 /19

Robust model-checking of pure-safety properties

An example: standard semantics

x<2
D—= (©)
y:=0
y:=0

LATIN’06 — March 24, 2006 10 /19

Robust model-checking of pure-safety properties

An example: standard semantics

x<2
x=1
y:=0

y:=0

LATIN’06 — March 24, 2006 10 /19

Robust model-checking of pure-safety properties

An example of enlarged semantics with A >0

Y I I I I
2 L L L L
I I I I
e IR x2ea
I I I I
: : : : xE[1-A;14A] e
I I I | =
Lo T [y:=0
) I A y=o
| | | |
Lo [I T [E
| | | |
| | | |
I I I I
| | | |
I I I I
Lo [S [H
| | | |
L L L L X
0 1 2

LATIN’06 — March 24, 2006 11/19

Robust model-checking of pure-safety properties

An example of enlarged semantics with A >0

y | | | |
2 1 1 1 1
| | | |
e x<21A
| | | |
; ; ; ; x€[1-A;1+4] e
I N7 v:=0
L .V : y=0
A
I L S L -		
1 1 1 1 X
0 1 2

LATIN’06 — March 24, 2006 11/19

Robust model-checking of pure-safety properties

An example of enlarged semantics with A >0

Y | | | |
2 L L L L
| | | |
R i wsora
| | | |
: : : : o xE[1-A;14A] e
I N Lol y:=0
N : y=o
I A Lol
| |
| |
| |
1 1
Ly [I T [
| I
L L X
0 2
1-A 14+A

LATIN’06 — March 24, 2006 11/19

Robust model-checking of pure-safety properties

An example of enlarged semantics with A >0

Y | | | |
2 L L L L
| | | |
R i wsora
| | | |
: : : : o xE[1-A;14A] e
I N L y:=0
e =
I VAR g
| | |
| | |
1 1 ‘ 1
| | |
Ly [[T
| I I
d L x
0 2
1-A 14+A

LATIN’06 — March 24, 2006 11/19

Robust model-checking of pure-safety properties

An example of enlarged semantics with A >0

y | | | |
2 I I I I
| | | |
Y e J
2+2A,J ,,,,, JE R R G .		
A	I O L	
1 I I I		
A R S —		
L	E— [N	
— X
0 1 2

LATIN’06 — March 24, 2006 11/19

Robust model-checking of pure-safety properties

An example of enlarged semantics with A >0

x<2+A

y:=0

LATIN’06 — March 24, 2006 11/19

Robust model-checking of pure-safety properties

An example of enlarged semantics with A >0

x<2+A

o xE[1-A;14A] e
y:=0

y:=0

LATIN’06 — March 24, 2006 11/19

Robust model-checking of pure-safety properties

An example of enlarged semantics with A >0

x<2+A

o xE[1-A;14A] e
y:=0

y:=0

LATIN’06 — March 24, 2006 11/19

Robust model-checking of pure-safety properties

An example of enlarged semantics with A >0

y
2
2+4A x<2+A
o xE[1-A;1+A]
y:=0
y:=0

LATIN’06 — March 24, 2006 11/19

Robust model-checking of pure-safety properties

An example of enlarged semantics with A >0

x<2+A

y:=0

LATIN’06 — March 24, 2006 11/19

Robust model-checking of pure-safety properties

An example of enlarged semantics with A >0

x<2+A

o xE[1-A;14A] e
y:=0

y:=0

LATIN’06 — March 24, 2006 11/19

Robust model-checking of pure-safety properties

An example of enlarged semantics with A >0

o xE[1-A;14A] e
y:=0

LATIN’06 — March 24, 2006 11/19

Robust model-checking of pure-safety properties

An example of enlarged semantics with A >0

2+6A)

LATIN’06 — March 24, 2006 11/19

Robust model-checking of pure-safety properties

An example of enlarged semantics with A >0

2+6A)

LATIN’06 — March 24, 2006 11/19

Robust model-checking of pure-safety properties

An example of enlarged semantics with A >0

xE[1-A;1+A]
y:=0

LATIN’06 — March 24, 2006 11/19

Robust model-checking of pure-safety properties

An example with A very small

y

2 K 11 I
n-------- ap-T T - T T T T ar
| (R |
| I |
| (Bl |
| [N |
| o |
| (Bl |
| [N |
| ! |

1p=—----- ap-—------- -
n-------- anp- T T T T T T ar
| (Bl |
| [N |
| o |
| (Bl |
| [N |
| ! |
| (R |
| I |
o B I | X

0 1 2

LATIN’06 — March 24, 2006 12 /19

Robust model-checking of pure-safety properties

An example with A very small

y

2 K 11

n-------- anp-T T - T T T T [
| (R |
| I |
| (Bl |
| [N |
| o |
| (Bl |
| [N |
| i |

1p=—----- Qf-——-—--=---- -
n-------- n-------- ar
| (Bl |
| [N |
| o |
| (Bl |
| [N |
| ! |
| (R |
| I |
77777777 0 e X

0 1 2

LATIN’06 — March 24, 2006 12 /19

Robust model-checking of pure-safety properties

An example with A very small

y

2 K 11
n-------- anp-T T - T T T T
| (R |
| I |
| (Bl |
| [N |
| o |
| (Bl |
| [N |
| i |

1p=—----- Qf-—-——------]
n-------- n-------- al
| (R |
| [N |
| [N |
| (Bl |
| [N |
| [N |
| (Bl |
| [N |
,,,,,,,,,,,,,,,, -

0 1

131AA

x<2+A

xE[1-A;1+A]

LATIN’06 — March 24, 2006 12 /19

Robust model-checking of pure-safety properties

An example with A very small

y
2 1 L1l
n-—-—-—--=-=-- anpT T T T T T T ™
| it | x<2ia
| [N |
! i ! x€[1—-A;144]
| [N |
| [N |
| i |
1 o i 1
n-—-—~—----- n-—---7-7 7
| [N |
| [N |
| o |
| [N |
| [N |
| ! |
l 'y l
P S P A L. X
0 2

LATIN’06 — March 24, 2006 12 /19

Robust model-checking of pure-safety properties

An example with A very small

2427
1

LATIN’06 — March 24, 2006 12 /19

Robust model-checking of pure-safety properties

An example with A very small

LATIN’06 — March 24, 2006 12 /19

Robust model-checking of pure-safety properties

An example with A very small

LATIN’06 — March 24, 2006 12 /19

Robust model-checking of pure-safety properties

An example with A very small

LATIN’06 — March 24, 2006 12 /19

Robust model-checking of pure-safety properties

An example with A very small

LATIN’06 — March 24, 2006 12 /19

Robust model-checking of pure-safety properties

An example with A very small

2+4A

LATIN’06 — March 24, 2006 12 /19

Robust model-checking of pure-safety properties

An example with A very small

LATIN’06 — March 24, 2006 12 /19

Robust model-checking of pure-safety properties

An example with A very small

LATIN’06 — March 24, 2006 12 /19

Robust model-checking of pure-safety properties

An example with A very small

24+6A

LATIN’06 — March 24, 2006 12 /19

Robust model-checking of pure-safety properties

An example with A very small

24+6A

LATIN’06 — March 24, 2006 12 /19

Robust model-checking of pure-safety properties

An example with A very small

x<2+A

xE[1-A;1+A]

LATIN’06 — March 24, 2006 12 /19

Difference between A and A2

Reach(A) MNasoReach(A%)

/.0

LATIN’06 — March 24, 2006 13 /19

Robust model-checking of pure-safety properties

Case of pure-safety properties

[Puri — FTRTFT’'98]
[De Wulf, Doyen, Markey, Raskin — FORMATS'04]

Theorem

Given a timed automaton A and a set of bad states Bad, we can decide
whether there exists A > 0 s.t. Reach(A%) N Bad = 0.

It is equivalent to checking that (ﬂA>0 Reach(AA)> N Bad = 0.

LATIN’06 — March 24, 2006 14 /19

Case of pure-safety properties

[Puri — FTRTFT’'98]
[De Wulf, Doyen, Markey, Raskin — FORMATS’04]
Theorem

Given a timed automaton A and a set of bad states Bad, we can decide
whether there exists A > 0 s.t. Reach(A%) N Bad = 0.

It is equivalent to checking that (ﬂA>0 Reach(AA)> N Bad = 0.

Algorithm for computing (ﬂA>O Reach(AA))

1. build the region automaton G of A;
2. compute SCC(G), the set of SCCs of G;
3. J:=Reach(G,[q0]);
4. while 35 €538CC(G). SZ J and SNJ# T,
J:=JUS;
J :=Reach(G, J);
5. return(J);

LATIN’06 — March 24, 2006 14 /19

Robust model-checking of LTL

© Robust model-checking of LTL

LATIN’06 — March 24, 2006 15 /19

The logic LTL

@ The linear-time temporal logic LTL [Pnueli - FOCS’77]

LTL3 Y0 2= p | AP | oV | mp | X | U

LATIN’06 — March 24, 2006 16 / 19

The logic LTL

@ The linear-time temporal logic LTL [Pnueli - FOCS’77]

LTL3 Y0 2= p | AP | oV | mp | X | U

X /‘W “In the next state” ¢ holds

LATIN’06 — March 24, 2006 16 / 19

The logic LTL

@ The linear-time temporal logic LTL [Pnueli - FOCS’77]

LTL3 Y0 2= p | AP | oV | mp | X | U

X /‘W “In the next state” ¢ holds
eU1p ./"’*/.\o/'\. » holds “Until” ¢ holds

LATIN’06 — March 24, 2006 16 / 19

The logic LTL

@ The linear-time temporal logic LTL [Pnueli - FOCS’77]

LTL> Y0 2= p | oAY | oV | mp | Xp | ¢U%

X /‘W “In the next state” ¢ holds
eU1p ./"’*c/\o/‘\. » holds “Until” ¢ holds
Fo=TUgp ./""H\o/.\o/‘\. ¢ holds “Eventually”

LATIN’06 — March 24, 2006 16 / 19

The logic LTL

@ The linear-time temporal logic LTL [Pnueli - FOCS’77]

LTL> Y0 2= p | oAY | oV | mp | Xp | ¢U%

Xy /‘W “In the next state” ¢ holds
U ./._""\c/\o/.\. » holds “Until” 4 holds
Fe=TUg ./""“"\o/.\o/.\. & holds “Eventually”
G o =~(F —p) ./‘*‘\0/\/‘\. © “Always" holds

LATIN’06 — March 24, 2006 16 / 19

The logic LTL

@ The linear-time temporal logic LTL [Pnueli - FOCS’77]

LTL> Y0 2= p | oAY | oV | mp | Xp | ¢U%

Xy /‘W “In the next state” ¢ holds
U ./"“"\c/\o/’\. » holds “Until” 4 holds
Fe=TUg ./""“"\o/\/.\. & holds “Eventually”
G o =~(F —p) /W © “Always" holds

@ Examples of formulas:

@ “p occurs infinitely often”: GF p
@ “a request is eventually granted”: G (request — F grant)

LATIN’06 — March 24, 2006 16 / 19

Robust model-checking of LTL

Robust model-checking of LTL properties is decidable and PSPACE-
complete.

LATIN’06 — March 24, 2006 17 /19

Robust model-checking of LTL

Robust model-checking of LTL properties is decidable and PSPACE-
complete.

@ Model-checking of LTL properties can be reduced to model-checking
of co-Biichi properties [Wolper, Vardi, Sistla — FOCS’83]

LATIN’06 — March 24, 2006 17 /19

Robust model-checking of LTL

Robust model-checking of LTL properties is decidable and PSPACE-
complete.

@ Model-checking of LTL properties can be reduced to model-checking
of co-Biichi properties [Wolper, Vardi, Sistla — FOCS’83]

@ Extend the classical region automaton with ~-transitions when a
reachable region is adjacent to an SCC ~» R*

LATIN’06 — March 24, 2006 17 /19

Robust model-checking of LTL

Robust model-checking of LTL properties is decidable and PSPACE-
complete.

@ Model-checking of LTL properties can be reduced to model-checking
of co-Biichi properties [Wolper, Vardi, Sistla — FOCS’83]

@ Extend the classical region automaton with ~-transitions when a
reachable region is adjacent to an SCC ~» R*
@ Checking co-Biichi properties in A and in R* is equivalent
“Taking a ~-transition in R* corresponds to taking a certain
number of times the corresponding SCC in A"

LATIN’06 — March 24, 2006 17 /19

Conclusion

O Conclusion

\TIN’06 — March 24, 2006 18 /19

Conclusion

Conclusion

@ robust model-checking of LTL properties is PSPACE-complete

@ robust model-checking of a small fragment of MTL (a real-time
extension of LTL) in PSPACE:

G(p—F<s50)

LATIN’06 — March 24, 2006 19 /19

Conclusion

Conclusion

@ robust model-checking of LTL properties is PSPACE-complete

@ robust model-checking of a small fragment of MTL (a real-time
extension of LTL) in PSPACE:

G(p—F<s50)

Further work

@ robust model-checking of Safety-MTL? Or even of MTL?
@ synthesis of robust controllers?

@ what about branching-time logics?

LATIN’06 — March 24, 2006 19 /19

	Context
	Robust model-checking of pure-safety properties
	Robust model-checking of LTL
	Conclusion

