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Context

Model-checking

Does the system satisfy the property?
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Timed automata (example)

x,y : clocks

x<5 a y:=0 y>1 b, x:=0
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(clock) valuation

O timed word (a,4.1)(b,5.5)
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Implementatiblity of a timed automaton

o “Implementing” a timed automaton assumes perfect hardware

Infinitely punctual: exact synchronization of communications
Infinitely precise: clocks increase at the same rate
Infinitely fast: a timed automaton might have to perform actions
faster and faster

LATIN’06 — March 24, 2006 6 /19



Implementatiblity of a timed automaton

o “Implementing” a timed automaton assumes perfect hardware

Infinitely punctual: exact synchronization of communications
Infinitely precise: clocks increase at the same rate
Infinitely fast: a timed automaton might have to perform actions

faster and faster

@ In practice, a processor is digital and imprecise

LATIN’06 — March 24, 2006 6 /19



Implementatiblity of a timed automaton

o “Implementing” a timed automaton assumes perfect hardware

Infinitely punctual: exact synchronization of communications
Infinitely precise: clocks increase at the same rate
Infinitely fast: a timed automaton might have to perform actions

faster and faster

@ In practice, a processor is digital and imprecise

0 Even if we prove that a timed automaton is correct, it
may happen that it cannot be correctly implemented.
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From implementability to robustness

@ A design point-of-view [Altisen, Tripakis — FORMATS’05]
@ integrate architecture in the system ~- very general
@ defaults: - correctness depends on the architecture
- faster is not always better
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@ A design point-of-view [Altisen, Tripakis — FORMATS’05]
@ integrate architecture in the system ~- very general
@ defaults: - correctness depends on the architecture
- faster is not always better

@ A semantical point-of-view [De Wulf, Doyen, Raskin — HSCC'04]
[De Wulf, Doyen, Markey, Raskin — FORMATS’04]

¢ enlarge guards: g =[a,b] ~ g®=[a— A, b+ A]
@ a simple model of architecture
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From implementability to robustness

@ A design point-of-view [Altisen, Tripakis — FORMATS’05]
@ integrate architecture in the system ~- very general
@ defaults: - correctness depends on the architecture
- faster is not always better

@ A semantical point-of-view [De Wulf, Doyen, Raskin — HSCC'04]
[De Wulf, Doyen, Markey, Raskin — FORMATS’04]

¢ enlarge guards: g =[a,b] ~ g®=[a— A, b+ A]
@ a simple model of architecture

From implementability to robustness

@ A timed automaton A is implementable w.r.t. property ¢ iff there exists
A s.t. A2 satisfies ¢ (for some properties ).

o If A% satisfies ¢, then for every 0 < A < Ag, A2 satisfies .
U “Faster is better”
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Robust model-checking of pure-safety properties

© Robust model-checking of pure-safety properties
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Robust model-checking of pure-safety properties

Case of pure-safety properties

[Puri — FTRTFT’'98]
[De Wulf, Doyen, Markey, Raskin — FORMATS'04]

Theorem

Given a timed automaton A and a set of bad states Bad, we can decide
whether there exists A > 0 s.t. Reach(A?) N Bad = 0.

It is equivalent to checking that (ﬂA>0 Reach(AA)) N Bad = 0.
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Robust model-checking of pure-safety properties

An example: standard semantics
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Robust model-checking of pure-safety properties

An example: standard semantics

x<2
D—= (©)
y:=0
y:=0
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Robust model-checking of pure-safety properties

An example: standard semantics

x<2
x=1
y:=0

y:=0
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Robust model-checking of pure-safety properties

An example of enlarged semantics with A >0
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An example of enlarged semantics with A >0
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Robust model-checking of pure-safety properties

An example of enlarged semantics with A >0
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Robust model-checking of pure-safety properties

An example of enlarged semantics with A >0

x<2+A

y:=0
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Robust model-checking of pure-safety properties

An example of enlarged semantics with A >0
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Robust model-checking of pure-safety properties

An example of enlarged semantics with A >0

2+6A)
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Robust model-checking of pure-safety properties

An example of enlarged semantics with A >0

xE[1-A;1+A]
y:=0

LATIN’06 — March 24, 2006 11/19



Robust model-checking of pure-safety properties

An example with A very small

y
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Robust model-checking of pure-safety properties

An example with A very small
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Robust model-checking of pure-safety properties

An example with A very small
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Robust model-checking of pure-safety properties

An example with A very small
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Robust model-checking of pure-safety properties

An example with A very small
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Robust model-checking of pure-safety properties

An example with A very small

x<2+A
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Difference between A and A2

Reach(A) MNasoReach(A%)

/.0
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Robust model-checking of pure-safety properties

Case of pure-safety properties

[Puri — FTRTFT’'98]
[De Wulf, Doyen, Markey, Raskin — FORMATS'04]

Theorem

Given a timed automaton A and a set of bad states Bad, we can decide
whether there exists A > 0 s.t. Reach(A%) N Bad = 0.

It is equivalent to checking that (ﬂA>0 Reach(AA)> N Bad = 0.
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Case of pure-safety properties

[Puri — FTRTFT’'98]
[De Wulf, Doyen, Markey, Raskin — FORMATS’04]
Theorem

Given a timed automaton A and a set of bad states Bad, we can decide
whether there exists A > 0 s.t. Reach(A%) N Bad = 0.

It is equivalent to checking that (ﬂA>0 Reach(AA)> N Bad = 0.

Algorithm for computing (ﬂA>O Reach(AA))

1. build the region automaton G of A;
2. compute SCC(G), the set of SCCs of G;
3. J:=Reach(G,[q0]);
4. while 35 €538CC(G). SZ J and SNJ# T,
J:=JUS;
J :=Reach(G, J);
5. return(J);
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Robust model-checking of LTL

© Robust model-checking of LTL
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The logic LTL

@ The linear-time temporal logic LTL [Pnueli - FOCS’77]

LTL3 Y0 2= p | AP | oV | mp | X | U
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The logic LTL

@ The linear-time temporal logic LTL [Pnueli - FOCS’77]

LTL> Y0 2= p | oAY | oV | mp | Xp | ¢U%

X /‘W “In the next state” ¢ holds
eU1p ./"’*c/\o/‘\. » holds “Until” ¢ holds
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The logic LTL

@ The linear-time temporal logic LTL [Pnueli - FOCS’77]
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The logic LTL

@ The linear-time temporal logic LTL [Pnueli - FOCS’77]

LTL> Y0 2= p | oAY | oV | mp | Xp | ¢U%

Xy /‘W “In the next state” ¢ holds
U ./"“"\c/\o/’\. » holds “Until” 4 holds
Fe=TUg ./""“"\o/\/.\. & holds “Eventually”
G o =~(F —p) /W © “Always" holds

@ Examples of formulas:

@ “p occurs infinitely often”: GF p
@ “a request is eventually granted”: G (request — F grant)
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Robust model-checking of LTL

Robust model-checking of LTL properties is decidable and PSPACE-
complete.
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Robust model-checking of LTL

Robust model-checking of LTL properties is decidable and PSPACE-
complete.

@ Model-checking of LTL properties can be reduced to model-checking
of co-Biichi properties [Wolper, Vardi, Sistla — FOCS’83]

@ Extend the classical region automaton with ~-transitions when a
reachable region is adjacent to an SCC ~» R*
@ Checking co-Biichi properties in A and in R* is equivalent
“Taking a ~-transition in R* corresponds to taking a certain
number of times the corresponding SCC in A"
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Conclusion

O Conclusion
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Conclusion

Conclusion

@ robust model-checking of LTL properties is PSPACE-complete

@ robust model-checking of a small fragment of MTL (a real-time
extension of LTL) in PSPACE:

G(p—F<s50)
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Conclusion

Conclusion

@ robust model-checking of LTL properties is PSPACE-complete

@ robust model-checking of a small fragment of MTL (a real-time
extension of LTL) in PSPACE:

G(p—F<s50)

Further work

@ robust model-checking of Safety-MTL? Or even of MTL?
@ synthesis of robust controllers?

@ what about branching-time logics?
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