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Adding timing requirements

Need for timed models:

the behaviour of most systems depends on time;
(faithful) modelling has to take time into account;

; timed automata, timed Petri nets, timed process algebras, ...

Need for time in specification:

again, the behaviour of most systems depends on time;
untimed specifications are not enough (e.g., bounded response
property);

; TCTL, MTL, TPTL, timed µ-calculus, ...



Time is not always sufficient

In some cases, we don’t want to measure time, but rather energy
consumption, price to pay for reaching some goal, ...

hybrid automata: timed automata augmented with variables
whose derivative is not constant.

; examples: leaking gas burner, water-level monitor, ...
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x≥30, x :=0

x ,y ,z:=0
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Theorem (HKPV97)

Reachability is undecidable (even for timed automata where one
single “clock” has two derivatives).



Time is not always sufficient

In some cases, we don’t want to measure time, but rather energy
consumption, price to pay for reaching some goal, ...

hybrid automata: timed automata augmented with variables
whose derivative is not constant.

; examples: leaking gas burner, water-level monitor, ...
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ẋ = 1
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priced timed automata: similar to hybrid automata, but
the behavior only depends on clock variables.



Related work on priced timed automata

Basic properties
Optimal reachability [ATP01,BFH+01,LBB+01,BBBR06]

Mean-cost optimality [BBL04]

Control games
Properties, and restricted decidability results

[ABM04,BCFL04,BCFL05]

Undecidability for timed game automata with more than three
clocks [BBR05,BBM06]

Decidability for timed automata with one clock [BLMR06]

Model-checking of WCTL
Undecidability for timed automata with more than three clocks

[BBR04,BBM06]

Decidability for timed automata with one clock [BLM07]
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Priced timed game automata

Definition (ALP01,BFH+01)

A priced timed game automaton is a timed automaton with costs
where states are partitionned into controllable and uncontrollable
ones:

G = 〈Qc ∪ Qu,Q0,AP, `, δ, C,G,R, I,Qurg,P〉

a,b

x≤4

ṗ=1

¬ a,¬ b

y≤1∧ x≤4

ṗ=0

¬ a,¬ b

y≤1∧ x≤4

ṗ=0

¬ a,b

y≤2

ṗ=4

x≥1

y=2

x :=0

x≥1

y :=0

y≤1

y :=0x≥1

y=2

x :=0

x≥1

y :=0

p+=2

y≤1

y :=0

AP = {a, b}
C = {x , y}



Example

Example

ṗ=5 y=0

ṗ=6

ṗ=1

,
x≤2

y :=0

x≥3

p+=1

p+=7

x≥3

x=0
y=0

x=1.3
y=1.3

x=1.3
y=0

x=1.3
y=0

x=3.7
y=2.4

x=3.7
y=2.4

Minimal cost for reaching ,:

inf
0≤t≤2

max (5t + 6(3− t) + 1, 5t + (3− t) + 7) = 17.2

(when t = 1.8)
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Strategies

Definitions

Run(A,B) is the set of trajectories from some state in A to
some state in B;

a strategy is a function

σ : Run(Q × R+C ,Qc × R+C)→ δ ∪ R+
>0



Strategies

Definitions

Run(A,B) is the set of trajectories from some state in A to
some state in B;

a strategy is a function

σ : Run(Q × R+C ,Qc × R+C)→ δ ∪ R+
>0

Example

ṗ=5 y=0

ṗ=6

ṗ=1

,
x≤2

y :=0

x≥3

p+=1

p+=7

x≥3

Example of a strategy σ:

in , wait until x = 2;

in , wait until x = 3;

in , wait until x = 4;



Strategies

Definitions

a run ρ = ((qi , vi ))i∈Z+ is compatible with a strategy σ from
step i0 if, for each i ≥ i0 s.t. qi ∈ Qc ,

if σ(ρ≤i ) = e ∈ δ and vi |= I(qi ) and vi |= G(e), then
e = (qi , qi+1) and vi+1 = vi [R(e)← 0].

if σ(ρ≤i ) = r ∈ R+
>0 and, for all t ∈ [0, r ], vi + t |= I(qi ), then

qi+1 = qi and vi+1 = vi + r .

a strategy σ is winning (for some reachability objective
W ⊆ Q) after some finite prefix ρ0 if any “prolongation” of ρ0

that is compatible with σ after ρ0, reaches a location in W .



Strategies

Definitions

the cost of a winning strategy σ from ρ0 is

Cost(σ, ρ0) = sup{cost(ρ) | ρ compatible execution after ρ0}

(assuming that the trajectory stops as soon as it enters any
location in W ).



Strategies

Definitions

the cost of a winning strategy σ from ρ0 is

Cost(σ, ρ0) = sup{cost(ρ) | ρ compatible execution after ρ0}

(assuming that the trajectory stops as soon as it enters any
location in W ).

Example

ṗ=5 y=0

ṗ=6

ṗ=1

,
x≤2

y :=0

x≥3

p+=1

p+=7

x≥3

Consider strategy σ:

in , wait until x = 2;

in , wait until x = 3;

in , wait until x = 4;

Cost(σ, ( , x = 0)) = sup(17, 19) = 19.



Bad news!

Theorem (BBR05,BBM06)

The existence of a strategy with cost less than or equal to a given
value is undecidable on PTGAs.
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Theorem (BBR05,BBM06)

The existence of a strategy with cost less than or equal to a given
value is undecidable on PTGAs.

Idea of the proof. Encoding of a two-counter machine. �

The reduction can be achieved involving only three clocks.



Bad news!

Theorem (BBR05,BBM06)

The existence of a strategy with cost less than or equal to a given
value is undecidable on PTGAs.

Idea of the proof. Encoding of a two-counter machine. �

The reduction can be achieved involving only three clocks.

What happens with only one clock?
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Strategies

Definitions

Run(A,B) is the set of trajectories from some state in A to
some state in B;

a strategy is a function

σ : Run(Q × R+,Qc × R+)→ δ ∪ R+
>0

a strategy is memoryless if it only depends on the present
state:

σ : Qc × R+ → δ ∪ R+
>0



Strategies

Definitions

the cost of a winning strategy σ from ρ0 is

Cost(σ, ρ0) = sup{cost(ρ) | ρ compatible execution after ρ0}

(assuming that the trajectory stops as soon as it enters any
location in W ).

the optimal cost of winning from some state s is

OptCost(s) = inf{Cost(σ, s) | σ winning strategy}

a strategy σ is ε-optimal in state s if

OptCost(s) ≤ Cost(σ, ρ0) ≤ OptCost(s) + ε

a strategy is optimal if it is 0-optimal.



Memorylessness and optimality

Fact

In our PTGAs, optimal strategies do not always exist.

Example

ṗ=2 ṗ=1

x≤1

,

/

x=1

x=0

In this example, only ε-optimal strategies exist, for any ε > 0.



Memorylessness and optimality

Fact

In our PTGAs, optimal strategies do not always exist.

Fact

When optimal strategies exist, they might require some memory.

Example

ṗ=2x≤1 ,

ṗ=1

x=1

x<1,x :=0 x>0

An optimal strategy depends on the date at which the blue state is
entered.

But there is a memoryless ε-optimal strategy.
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Decidability of 1PTGAs

Definition

Given ε > 0 and N ∈ Z+, a strategy σ is (ε, N) acceptable if

σ is ε-optimal and memoryless,

there is a partition (In)n≤N of [0,M] (where M is the maximal
constant of the guards and invariants of the game) s.t., for
any q ∈ Qc , x 7→ σ(q, x) is constant on each In.



Decidability of 1PTGAs

Definition

Given ε > 0 and N ∈ Z+, a strategy σ is (ε, N) acceptable if

σ is ε-optimal and memoryless,

there is a partition (In)n≤N of [0,M] (where M is the maximal
constant of the guards and invariants of the game) s.t., for
any q ∈ Qc , x 7→ σ(q, x) is constant on each In.

Main Theorem

For every location, the optimal cost is computable and is
piecewise affine.

There exists N ∈ Z+ s.t., for any ε > 0, we can effectively
compute an (ε, N)-acceptable (thus, almost-optimal and
memoryless) strategy.



Simplifying the problem

We restrict to TGAs with maximal constant 1 (in clock constraints)
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Simplifying the problem

We restrict to strongly-connected TGAs without resets.

Theorem

OptCostG (q, x) = OptCostG ′(q1, x).

Theorem

If σ′ is (ε′,N ′)-acceptable in G ′, then

σ(q, x) =


σ′(q2, x)

if Cost(q2, x) ≤ Cost(q1, x)

σ′(q1, x) otherwise

is (2ε′,N ′)-acceptable in G .
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ṗ=1

x :=0

x≤1

x :=0
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strongly-connected PTGAs

clock is bounded by 1

no resetting transitions.



Main theorem with outside cost-functions

Theorem

Let G be a strongly-connected non-
resetting 1PTGA with outside cost-
functions.

OptCostG is computable;

in each location, function

x 7→ OptCostG (q, x)

is decreasing, piecewise affine
and continuous. Its finitely many
segments either have slope −c
where c is the price of some
locations, or are fragments of the
outside cost-functions;

ṗ=1

ṗ=1ṗ=5

ṗ=3

x≤1

There exists N ∈ Z+ s.t., for any ε > 0, we can compute an
(ε, N)-acceptable strategy σ.
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ṗ = 2 ṗ = 1



Operations on cost functions: uncontrollable locations
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Operations on cost functions: uncontrollable locations

ṗ = 2

ṗ = 5 ṗ = 3

ṗ = 2 ṗ = 1



Inductive proof

Ideas of the proof

Induction on the number of non-urgent locations in the SCC

base cases:

all locations are urgent (thus uncontrollable);
there is only one location, which is controllable (thus
non-urgent).

induction step:
we consider one of the non-urgent locations having minimal
cost rate:

if it is controllable, we create two SCCs having one less
non-urgent location;
if it is uncontrollable, we make it urgent and add an extra
outside cost function to which it can go.

Skip proof
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ṗ=1ṗ=5
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ṗ=1ṗ=5
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Inductive proof – inductive cases

When qmin is controllable:

ṗ=3

ṗ=2ṗ=1

ṗ=5

x≤1

Let σ be a winning strategy.

Assume there exists an outcome
of σ s.t.:

(qmin, u)→∗ (qmin, v)→∗ win

with 0 ≤ u < v ≤ 1.

Then σ is not optimal: waiting
in qmin would have been cheaper.
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ṗ=2ṗ=1
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ṗ=1
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Inductive proof – inductive cases

When qmin is uncontrollable:

ṗ=1

ṗ=1ṗ=5

ṗ=3

x≤1 This procedure terminates because
fragments having slope strictly less
than cmin are fragments of outside
functions.
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ṗ=1ṗ=5
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ṗ=1ṗ=5
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ṗ=1
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Iterative pseudo-algorithm of [BCFL04]

Theorem

This algorithm terminates on 1PTGAs.

Proof.

The cost functions computed at round i represent the cost of
winning in at most i steps.

Since there exists N ∈ Z+ s.t., for any ε > 0, there exists an
(ε, N)-acceptable strategy, we know that there exists
ε-optimal strategies that are guaranteed to win in at
most N × |Q| steps.
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Conclusion and Perspectives

Summary of our works:

Adding costs to timed automata provides a natural way for
modeling resource consumption.

unfortunately, costs are expensive!

; Undecidable for three-clock automata;
; Complex algorithms for one-clock automata;
; Convergence of the pseudo-algorithm of [BCFL04].

Perspectives:

Complexity gap: our algorithm runs in 3EXPTIME, while our
best lower bound is PTIME;
What happens in two-clock Priced Timed Automata?
Priced ATL model-checking: mixing games and WCTL;
Multi-constrained objectives.
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