Almost-Optimal Strategies in Priced Timed Games

Patricia Bouyer¹, Kim G. Larsen², Nicolas Markey¹, and Jacob Illum Rasmussen²

¹ Lab. Specification et Verification, ENS Cachan & CNRS, France ² Dept of Computer Science, Aalborg University, Denmark

December 15, 2006

Verification & Model-Checking

yes/no

Verification & Control

Adding timing requirements

- Need for timed models:
 - the behaviour of most systems depends on time;
 - (faithful) modelling has to take time into account;
- \sim timed automata, timed Petri nets, timed process algebras, ...
 - Need for time in specification:
 - again, the behaviour of most systems depends on time;
 - untimed specifications are not enough (e.g., *bounded* response property);
- \rightsquigarrow TCTL, MTL, TPTL, timed $\mu\text{-calculus},$...

Time is not always sufficient

In some cases, we don't want to measure time, but rather energy consumption, price to pay for reaching some goal, ...

Time is not always sufficient

In some cases, we don't want to measure time, but rather energy consumption, price to pay for reaching some goal, ...

- hybrid automata: timed automata augmented with variables whose derivative is not constant.
- \rightsquigarrow examples: leaking gas burner, water-level monitor, ...

$$\begin{array}{c} x \leq 1 \\ \dot{x} = 1 \\ \dot{y} = 1 \\ \dot{z} = 1 \end{array} \xrightarrow{ x \leq 1, x := 0 } \\ x \leq 1, x := 0 \\ \dot{x} = 1 \\ \dot{y} = 1 \\ \dot{z} = 0 \end{array} \xrightarrow{ x \leq 30, x := 0 } \\ \begin{array}{c} true \\ \dot{x} = 1 \\ \dot{y} = 1 \\ \dot{z} = 0 \end{array}$$

Theorem (HKPV97)

Reachability is undecidable (even for timed automata where one single "clock" has two derivatives).

Time is not always sufficient

In some cases, we don't want to measure time, but rather energy consumption, price to pay for reaching some goal, ...

- hybrid automata: timed automata augmented with variables whose derivative is not constant.
- \rightsquigarrow examples: leaking gas burner, water-level monitor, ...

$$\begin{array}{c} x \leq 1 \\ \dot{x} = 1 \\ \dot{y} = 1 \\ \dot{z} = 1 \end{array} \xrightarrow{ x \leq 1, x := 0 } \begin{array}{c} true \\ \dot{x} = 1 \\ \dot{y} = 1 \\ \dot{z} = 0 \end{array}$$

 priced timed automata: similar to hybrid automata, but the behavior only depends on clock variables.

Related work on priced timed automata

• Basic properties

- Optimal reachability
- Mean-cost optimality

• Control games

• Properties, and restricted decidability results

[ABM04, BCFL04, BCFL05]

- Undecidability for timed game automata with more than three clocks [BBR05,BBM06]
- Decidability for timed automata with one clock [BLMR06]

Model-checking of WCTL

• Undecidability for timed automata with more than three clocks

[BBR04,BBM06]

• Decidability for timed automata with one clock [BLM07]

[ATP01,BFH⁺01,LBB⁺01,BBBR06] [BBL04]

Outline of the talk

3 Existence of optimal strategies in 1PTGAs is decidable

(Pseudo-)algorithm for computing the optimal cost

Outline of the talk

1 Introduction

3 Existence of optimal strategies in 1PTGAs is decidable

(Pseudo-)algorithm for computing the optimal cost

Priced timed game automata

Definition (ALP01,BFH⁺01)

A *priced timed game automaton* is a timed automaton with costs where states are partitionned into *controllable* and *uncontrollable* ones:

$$\mathcal{G} = \langle \textit{Q}_{\textit{c}} \cup \textit{Q}_{\textit{u}}, \textit{Q}_{0}, \textsf{AP}, \ell, \delta, \mathcal{C}, \textsf{G}, \textsf{R}, \textsf{I}, \textit{Q}_{\textsf{urg}}, \textsf{P} \rangle$$

Example

Example x≥3 $\dot{p}=6$ p+=1*x*≤2 *॑*p=5 \odot y=0*y*:=0 *x*≥3 $\dot{p}=1$ *p*+=7 x=0x=1.3 x=1.3 x=1.3 x=3.7 x=3.7 y=2.4 y=0y = 1.3y=0y=0y=2.4

Example

Example

Minimal cost for reaching ©:

Example

Minimal cost for reaching ©:

$$5t + 6(3 - t) + 1$$

Example

Minimal cost for reaching ©:

5t + 6(3 - t) + 1, 5t + (3 - t) + 7

Example

Minimal cost for reaching ©:

 $\max (5t + 6(3 - t) + 1, 5t + (3 - t) + 7)$

▲ 臣 ▶ ▲ 臣 ▶

Example

Minimal cost for reaching ©:

$$\inf_{0 \le t \le 2} \max (5t + 6(3 - t) + 1, 5t + (3 - t) + 7)$$

Example

Minimal cost for reaching ©:

$$\inf_{0 \le t \le 2} \max (5t + 6(3 - t) + 1, 5t + (3 - t) + 7) = 17.2$$
(when $t = 1.8$)

Definitions

- Run(A, B) is the set of trajectories from some state in A to some state in B;
- a strategy is a function

$$\sigma \colon \mathsf{Run}(Q \times \mathbb{R}^{+\mathcal{C}}, Q_c \times \mathbb{R}^{+\mathcal{C}}) \to \delta \cup \mathbb{R}^+_{>0}$$

Definitions

- Run(A, B) is the set of trajectories from some state in A to some state in B;
- a strategy is a function

$$\sigma \colon \mathsf{Run}(Q \times \mathbb{R}^{+\mathcal{C}}, Q_c \times \mathbb{R}^{+\mathcal{C}}) \to \delta \cup \mathbb{R}^+_{>0}$$

Definitions

- a run $\rho = ((q_i, v_i))_{i \in \mathbb{Z}^+}$ is compatible with a strategy σ from step i_0 if, for each $i \ge i_0$ s.t. $q_i \in Q_c$,
 - if $\sigma(\rho_{\leq i}) = e \in \delta$ and $v_i \models I(q_i)$ and $v_i \models G(e)$, then $e = (q_i, q_{i+1})$ and $v_{i+1} = v_i[\mathsf{R}(e) \leftarrow 0]$.
 - if $\sigma(\rho_{\leq i}) = r \in \mathbb{R}^+_{>0}$ and, for all $t \in [0, r]$, $v_i + t \models I(q_i)$, then $q_{i+1} = q_i$ and $v_{i+1} = v_i + r$.
- a strategy σ is winning (for some reachability objective W ⊆ Q) after some finite prefix ρ₀ if any "prolongation" of ρ₀ that is compatible with σ after ρ₀, reaches a location in W.

Definitions

• the cost of a winning strategy σ from $\rho_{\rm 0}$ is

 $Cost(\sigma, \rho_0) = sup\{cost(\rho) \mid \rho \text{ compatible execution after } \rho_0\}$

(assuming that the trajectory stops as soon as it enters any location in W).

Definitions

• the cost of a winning strategy σ from $\rho_{\rm 0}$ is

 $Cost(\sigma, \rho_0) = sup\{cost(\rho) \mid \rho \text{ compatible execution after } \rho_0\}$

(assuming that the trajectory stops as soon as it enters any location in W).

Consider strategy σ :

- in \bigcirc , wait until x = 2;
- in \bigcirc , wait until x = 3;
- in \bigcirc , wait until x = 4;

 $Cost(\sigma, (\bigcirc, x = 0)) = sup(17, 19) = 19.$

Bad news!

Theorem (BBR05,BBM06)

The existence of a strategy with cost less than or equal to a given value is **undecidable** on PTGAs.

Bad news!

Theorem (BBR05,BBM06)

The existence of a strategy with cost less than or equal to a given value is **undecidable** on PTGAs.

Idea of the proof. Encoding of a two-counter machine.

The reduction can be achieved involving only three clocks.

Bad news!

Theorem (BBR05,BBM06)

The existence of a strategy with cost less than or equal to a given value is **undecidable** on PTGAs.

Idea of the proof. Encoding of a two-counter machine.

The reduction can be achieved involving only three clocks.

What happens with only one clock?

Outline of the talk

Introduction

3 Existence of optimal strategies in 1PTGAs is decidable

(Pseudo-)algorithm for computing the optimal cost

Definitions

- Run(A, B) is the set of trajectories from some state in A to some state in B;
- a strategy is a function

$$\sigma \colon \mathsf{Run}(Q \times \mathbb{R}^+, Q_c \times \mathbb{R}^+) \to \delta \cup \mathbb{R}^+_{>0}$$

• a strategy is memoryless if it only depends on the present state:

$$\sigma\colon Q_{c}\times\mathbb{R}^{+}\to\delta\cup\mathbb{R}^{+}_{>0}$$

Definitions

• the cost of a winning strategy σ from ρ_0 is

 $Cost(\sigma, \rho_0) = sup\{cost(\rho) \mid \rho \text{ compatible execution after } \rho_0\}$

(assuming that the trajectory stops as soon as it enters any location in W).

• the optimal cost of winning from some state *s* is

 $OptCost(s) = inf{Cost(\sigma, s) | \sigma winning strategy}$

• a strategy σ is ε -optimal in state s if

 $\mathsf{OptCost}(s) \leq \mathsf{Cost}(\sigma, \rho_0) \leq \mathsf{OptCost}(s) + \varepsilon$

• a strategy is optimal if it is 0-optimal.

Memorylessness and optimality

In our PTGAs, optimal strategies do not always exist.

Memorylessness and optimality

Fact

In our PTGAs, optimal strategies do not always exist.

Fact

When optimal strategies exist, they might require some memory.

Example

An optimal strategy depends on the date at which the blue state is entered.

Memorylessness and optimality

Fact

In our PTGAs, optimal strategies do not always exist.

Fact

When optimal strategies exist, they might require some memory.

Example

An optimal strategy depends on the date at which the blue state is entered. But there is a memoryless ε -optimal strategy.

Decidability of 1PTGAs

Definition

Given $\varepsilon > 0$ and $N \in \mathbb{Z}^+$, a strategy σ is (ε, N) acceptable if

- σ is ε -optimal and memoryless,
- there is a partition (I_n)_{n≤N} of [0, M] (where M is the maximal constant of the guards and invariants of the game) s.t., for any q ∈ Q_c, x → σ(q, x) is constant on each I_n.

Decidability of 1PTGAs

Definition

Given $\varepsilon > 0$ and $N \in \mathbb{Z}^+$, a strategy σ is (ε, N) acceptable if

- σ is ε -optimal and memoryless,
- there is a partition (I_n)_{n≤N} of [0, M] (where M is the maximal constant of the guards and invariants of the game) s.t., for any q ∈ Q_c, x → σ(q, x) is constant on each I_n.

Main Theorem

- For every location, the optimal cost is computable and is piecewise affine.
- There exists N ∈ Z⁺ s.t., for any ε > 0, we can effectively compute an (ε, N)-acceptable (thus, almost-optimal and memoryless) strategy.
We restrict to TGAs with maximal constant 1 (in clock constraints)

We restrict to TGAs with maximal constant 1 (in clock constraints)

We restrict to strongly-connected TGAs without resets.

We restrict to strongly-connected TGAs without resets.

We restrict to strongly-connected TGAs without resets.

We restrict to strongly-connected TGAs without resets.

We restrict to strongly-connected TGAs without resets.

We restrict to strongly-connected TGAs without resets.

We restrict to strongly-connected TGAs without resets.

Theorem OptCost_G(q, x) = OptCost_{G'}(q_1, x).

We restrict to strongly-connected TGAs without resets.

Theorem

$$\mathsf{OptCost}_G(q, x) = \mathsf{OptCost}_{G'}(q_1, x).$$

Theorem

If σ' is ($\varepsilon', \mathit{N}')\text{-acceptable}$ in $\mathit{G}'\text{, then}$

$$\sigma(q,x) = egin{cases} \sigma'(q_2,x) \ ext{if } \operatorname{Cost}(q_2,x) \leq \operatorname{Cost}(q_1,x) \ \sigma'(q_1,x) \ ext{otherwise} \end{cases}$$

is $(2\varepsilon', N')$ -acceptable in G.

- strongly-connected PTGAs
- clock is bounded by 1
- no resetting transitions.

- strongly-connected PTGAs
- clock is bounded by 1
- no resetting transitions.

- strongly-connected PTGAs
- clock is bounded by 1
- no resetting transitions.

- strongly-connected PTGAs
- clock is bounded by 1
- no resetting transitions.

- strongly-connected PTGAs
- clock is bounded by 1
- no resetting transitions.

- strongly-connected PTGAs
- clock is bounded by 1
- no resetting transitions.

- strongly-connected PTGAs
- clock is bounded by 1
- no resetting transitions.

- strongly-connected PTGAs
- clock is bounded by 1
- no resetting transitions.

- strongly-connected PTGAs
- clock is bounded by 1
- no resetting transitions.

- strongly-connected PTGAs
- clock is bounded by 1
- no resetting transitions.

Main theorem with outside cost-functions

Theorem

Let G be a strongly-connected nonresetting 1PTGA with outside costfunctions.

- OptCost_G is computable;
- in each location, function $x \mapsto \operatorname{OptCost}_{G}(q, x)$

is decreasing, piecewise affine and continuous. Its finitely many segments either have slope -cwhere c is the price of some locations, or are fragments of the outside cost-functions;

• There exists $N \in \mathbb{Z}^+$ s.t., for any $\varepsilon > 0$, we can compute an (ε, N) -acceptable strategy σ .

Inductive proof

Ideas of the proof

Induction on the number of non-urgent locations in the SCC

- base cases:
 - all locations are urgent (thus uncontrollable);
 - there is only one location, which is controllable (thus non-urgent).
- o induction step:

we consider one of the non-urgent locations having minimal cost rate:

- if it is controllable, we create two SCCs having one less non-urgent location;
- if it is uncontrollable, we make it urgent and add an extra outside cost function to which it can go.

Inductive proof – base cases

Inductive proof – base cases

• When q_{\min} is controllable:

Let σ be a winning strategy.

• When q_{\min} is controllable:

Let σ be a winning strategy.

Assume there exists an outcome of σ s.t.:

 $(q_{\min}, u) \rightarrow^* (q_{\min}, v) \rightarrow^* win$

with $0 \le u < v \le 1$.

• When q_{\min} is controllable:

Let σ be a winning strategy.

Assume there exists an outcome of σ s.t.:

 $(q_{\min}, u) \rightarrow^* (q_{\min}, v) \rightarrow^* win$

with $0 \le u < v \le 1$.

Then σ is not optimal: waiting in q_{\min} would have been cheaper.

• When q_{\min} is controllable:

Theorem

$$\mathsf{OptCost}_{G'}(q_1, x) = \mathsf{OptCost}_G(q, x).$$

• When q_{\min} is controllable:

Theorem

$$\mathsf{OptCost}_{G'}(q_1, x) = \mathsf{OptCost}_G(q, x).$$

Theorem

Let σ' be an (ε', N') -acceptable strategy for G'. Let $\sigma(q, x) = \begin{cases} \sigma'(q_2, x) \\ \text{if } \operatorname{Cost}_{G'}(q_{2}, x) \leq \operatorname{OptCost}_{G'}(q_{\min}, x) \\ \sigma'(q_1, x) & \text{otherwise} \end{cases}$

Then σ is $(3\varepsilon', N)$ -acceptable in G, for some N independant of ε' .

• When q_{\min} is uncontrollable:

• When q_{\min} is uncontrollable:

• When q_{\min} is uncontrollable:

• When q_{\min} is uncontrollable:

• When q_{\min} is uncontrollable:

• When q_{\min} is uncontrollable:

• When q_{\min} is uncontrollable:

• When q_{\min} is uncontrollable:

• When q_{\min} is uncontrollable:

This procedure terminates because fragments having slope strictly less than c_{\min} are fragments of outside functions.

Outline of the talk

Introduction

2 Definitions and examples

3 Existence of optimal strategies in 1PTGAs is decidable

(Pseudo-)algorithm for computing the optimal cost

5 Conclusion

★ E > < E >

< 2 > < 2 >

< 2 > < 2 >

< E > < E >

< ≣ > < ≣)

Theorem

This algorithm terminates on 1PTGAs.

Theorem

This algorithm terminates on 1PTGAs.

Proof.

- The cost functions computed at round *i* represent the cost of winning in at most *i* steps.
- Since there exists N ∈ Z⁺ s.t., for any ε > 0, there exists an (ε, N)-acceptable strategy, we know that there exists ε-optimal strategies that are guaranteed to win in at most N × |Q| steps.

Outline of the talk

Introduction

- 2 Definitions and examples
- 3 Existence of optimal strategies in 1PTGAs is decidable
- (Pseudo-)algorithm for computing the optimal cost

Conclusion and Perspectives

- Summary of our works:
 - Adding costs to timed automata provides a natural way for modeling resource consumption.
 - unfortunately, costs are expensive!
 - \rightsquigarrow Undecidable for three-clock automata;
 - → Complex algorithms for one-clock automata;
 - \sim Convergence of the pseudo-algorithm of [BCFL04].

• Perspectives:

- Complexity gap: our algorithm runs in 3EXPTIME, while our best lower bound is PTIME;
- What happens in two-clock Priced Timed Automata?
- Priced ATL model-checking: mixing games and WCTL;
- Multi-constrained objectives.