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Résumé

Dans le cadre de la vérification des protocoles cryptographiques, une idée importante est
d'utiliser I'équivalence contextuelle (aussi appelée I'équivalence observationelle) pour décrire
des propriétés de sécurité. Il est difficile de prouver directement I'équivalence contextuelle, mais
dans les lambda-calculs typés, on peut souvent la déduire par I'outil dit des relations logiques.

Nous appliquons cette technique & un métalangage cryptographique, qui est une extension du
lambda-calcul computationnel de Moggi, et nous utilisons la monade de génération de noms de
Stark pour étudier la génération dynamique de clés. La construction de relations logiques pour
les types monadiques (par Goubault-Larrecq et al.) nous permet alors de dériver des relations
logiques sur le model§et’ de Stark.

Cette étude aboutit a une exploration de ce que doit étre la définition de I'équivalence contex-
tuelle pour les protocoles cryptographiques. Nous arguons du fait que I'équivalence contextuelle
définie sur le modéle de Stark ne représente pas fidélement ce que les contextes ou les attaquants
peuvent faire. En effet, bien que la catégaSie&’ soit un modele parfaitement adéquat de gé-
nération de clés, elle est insuffisante par certains aspects lorsqu’on étudie les relations entre pro-
grammes du métalangage. Nous montrons que, pour définir I'équivalence contextuelle et les re-
lations logiques dans le métalangage cryptographique, la catéfyafie est un meilleur choix,
ouZ estune catégorie que nous définissons. Pourtant, cette catégorie est encore insuffisante par
d’autres aspects plus subtils, et nous montrons finalement que la catégorie que I'on doit consi-
dérer en est une autre que nous appel®adZ . Nous définissons une notion d’équivalence
contextuelle adéquate sur cette catégorie.

Nous montrons ensuite que la relation logique cryptographique définigeslif ~ est cor-
recte, et complete pour certains types du premier ordre. Nous explorons aussi certains cas de la
guestion de la décidabilité des relations logiques cryptographiques reliant deux termes donnés.

Afin d’étendre nos résultats de correction et de complétude a tous les types, nous rempla-
¢ons la notion de relations logiques par celle de relations logiques lax, toujours sur la catégorie
SetP?” . Nous définissons donc une relation logique qui est lax sur les types de fonction et de
monade, mais stricte (non-lax) sur les autres, et nous montrons qu’elle est correcte et compléte
pour I'équivalence contextuelle a tous les types.






Abstract

Using contextual equivalence (a.k.a. observational equivalence) to specify security properties
is an important idea in the field of formal verification of cryptographic protocols. While contex-
tual equivalence is difficult to prove in general, in typed lambda calculi, one is usually able to
deduce it using so-called logical relations.

We apply this technique on the cryptographic metalanguage, an extension of Moggi's com-
putational lambda calculus. To explore the difficult aspect of dynamic key generation, we use
Stark’s hame creation monad. The general construction of logical relations for monadic types
(by Goubault-Larrecq et al.) then allows us to derive logical relations on Stark’s rSedfel

This study also leads us to an exploration of what should be the right definition of contex-
tual equivalence for cryptographic protocols. We argue that contextual equivalence defined over
Stark’s model cannot represent honestly the power of contexts or attackers. Actually, although
Stark’s categonSet” is a perfectly adequate model of dynamic key generation, it lacks in some
aspects when we study relations between programs in the metalanguage. We show that, to define
contextual equivalence and logical relations in the cryptographic metalanguage, a better choice of
category isSet’ , whereZ is a category we define. This category is still lacking in some subt-
ler aspects, and we eventually show that the proper category to consider is oneSealiéd .

We find the proper notion of contextual equivalence based on this category.

Next, we show that the cryptographic logical relation definedetf” ~ is sound, and com-
plete for a certain subset of types up to first order. We explore questions of decidability of cryp-
tographic logical relations relating two given terms in certain cases.

We then extend our soundness and completeness results at all higher-order types. This re-
quires us to shift from logical relations to lax logical relations, still on the cate§ety” . We
then define logical relations which are lax at function types and monadic types but strict (non-lax)
at various other types, and show that they are sound and complete for contextual equivalence at
all types.
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Chapitre 1

Introduction

Avec le développement rapide d’'Internet et du commerce électronique, les technologies de-
viennent de plus en plus attachées a notre vie quotidienne. Tandis que les technologies infor-
matiques nous apportent beaucoup de confort, elles causent aussi des problémes, notamment de
sécurité, ce qui est actuellement un sujet critique dans le domaine de I'informatique. En particu-
lier, nous nous intéressons a la sécurité des réseaux, formés de plusieurs terminaux (ordinateurs,
téléphones mobiles, etc.) qui se connectent dans un environnement de communication pas sdr et
qui collaborent via I'échange de messages.

Pourtant, il est en général difficile de sécuriser les communications sur un réseau ouvert, ou
les messages envoyés par un terminal passeront devant plusieurs terminaux, avant d’arriver au
receveur souhaité. Pendant I'envoi, des terminaux malveillants peuvent donc facilement lire ces
messages, les enregistrer, les modifier, les retransmettre a un autre destinataire, ou simplement
stopper leur transmission. Essentiellement, les réseaux ouverts ne garantissent pas eux-mémes la
sécurité des communications.

De nombreux protocoles ont été inventés pour sécuriser les communications sur les réseaux,
en utilisant lacryptographie Il est universellement considéré que I'appliquer de la cryptographie
dans un systéme complexe est trés subtile et il peut y avoir des attaques, méme si la cryptographie
elle-méme est incassable. Alors comment appliquer la cryptographiectemen? Cette thése
a pour but de vérifier les propriétés de sécurité des protocoles cryptographiques.

Nous exposons les connaissances dans ce domaine au premier chapitre de la thése. Dans la
partie 1.1, nous introduirons des concepts de cryptographie et de protocoles cryptographiques,
en donnant des exemples. Dans la partie 1.2, nous donnerons une introduction aux méthodes
formelles, qui sont de plus en plus utilisées dans le domaine de la vérification des protocoles
cryptographiques. En particulier, nous nous concentrons sur la méthode diedadems lo-
giques Puis dans la partie 1.3, nous résumerons les travaux connexes a ceux présentes dans cette
thése. Enfin, la derniére partie exposera le plan de la thése.
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With the rapid development of Internet and e-business, information technologies become
more and more attached to our life. While these technologies offer us much convenience, they
cause a lot of problems as well, especially security problems. Computer security is a very critical
issue nowadays and catches great attention of the research community in computer science. We
are in particular interested in security problems caused by communicating systems, where linked
computers in an open environment are inclined to collaborate through message exchanging.

However, secure communications over an open network are in general very hard to achieve.
In network communications, messages, sent from one computer to another, will pass by several
other computers on route. It is easy for malicious intermediate computers to interfere with these
messages passing through. They may read and record messages, change the contents, redirect
messages elsewhere, or prevent them arriving at their intended destination. In a word, an open
network itself is inherently insecure and does not guarantee any secure communication.

Various protocols have been designed for establishing secure communications over an in-
secure network, and most protocols adopt the mea@rgptography A common viewpoint
is that applying cryptography in a complex system is very subtle and error-prone, even though
the cryptography itself is perfect. How can we apply cryptographic methordsctly in net-
work communications? This thesis is devoted to verifying security properties of protocols using

cryptography.

1.1 Protocoles cryptographiques

1.1.1 Cryptographie

Cryptography is a fundamental mechanism to achieve security in an open environment. When
we apply cryptography in a network communication, we shall disguise messages before sending
them, so that only the intended recipients are able to retrieve the original text. These disguised
messages are usually calleipher-textsand the original texts anglain-texts The operation of
disguising a message is known as #@reryptionand the inverse operation, which retrieves the
plain-text from the cipher-text, is callatkcryption

The precise form of a cipher-text, corresponding to certain plain#texdepends on an ad-
ditional parameter — thkey We shall write the cipher-text aign},, wherek is the key for
encryption. An encryption (decryption) is just seen as applying the encryption (decryption) al-
gorithm to a plain-text (cipher-text) and a key. In order to recover the original plain-text from a
given cipher-tex{m}, one must obtain the correct decryption key (writterta$). By restrict-
ing appropriately who has access to the various keys involved we can limit the ability to form
cipher-texts and the ability to derive the corresponding plain-texts.

There are nowadays various cryptographic algorithms [MvOV96, DK02], and most of them
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can be classified by two schemes: symmetric cryptography and asymmetric cryptography. In
symmetric cryptography, keys for encryption and for decryption are idenfical € k) and it
holds

dec({m}y, k) =m,

wheredec denotes the decryption algorithm. In asymmetric cryptography, a.k.a., the public key
cryptography, keys always come in pairs, one of which is usually publicly available (known as
the public key, and the other is kept secret (known asphigate key. Anyone can get access to
the public key and use it to encrypt a message, but only the holder of the private key can decrypt
the cipher-texts:

dec({m} i, sk) = m,

wherepk andsk denote the corresponding public key and private key respectively. Some asym-
metric cryptographic algorithms also allow the private key to be used to encrypt plain-texts with
the public key being used for decryption:

dec({m}, pk) =m

This is mainly used in the digital signature scheme to authenticate the identity of the sender of a
message.

1.1.2 Protocoles cryptographiques

There are nowadays several cryptographic algorithms which are considered virtually impossible
to crack: the best known ways of cracking the messages would use vast amounts of computer
power. However, what is surprising is that even with perfect encryption algorithms, it is still
very difficult to achieve secure communication. The question is: how can people agree on a key
across network? This was probably the first problem (known dsayndistribution problenthat
protocol designers aimed at solving using cryptography. Of course, there are many cryptographic
protocols devoted to solving other problems, such as authenticity of principles, anonymity, and
SO on.

Cryptographic protocols are protocols that use cryptography to establish secure communica-
tions over open networks. A protocol usually involves several participants, gailecplesor
agents We can simply regard principles as programs running in parallel. Usually these programs
are hosted at different computers in the network, but it is also possible that some of them run
at the same computer. The protocol defines the way how these principles exchange messages
using cryptography. Here is an example of a symmetric key establishment protocol between two
principles, with the help of a trusted servgisome notations for protocol specification are listed

1This protocol, together with the attack coming after, is from an informal document of Gavin Lowe.
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{m}x messagen encrypted with key
A—B:m principle A sends message to B
A— E(B):m intruder E intercepting message intended forB
E(A) —- B:m intruder E impersonatingd to send message to B
pk(A) principle A’s public key

Figure 1.1: Notations in protocol specifications

in Figure 1.1):

Messagel . A — S : A B, {kuls,.
Message2. S — B: A, B, {ku}k,.
Message3. A — B: {i}s,

This protocol uses only symmetric encryption and aims at the distribution of a fresh sym-
metric key between two principles that are inclined to communicate with each other, through a
trusted key server. It is assumed that the sefsghares a secret key with every principh, (

B, and others including malicious principles) and it would never be malicious, so that every
principle can trustS and communicate with it securely.

Suppose that wants to talk taB but he does not share a secret key withso A generates a
fresh symmetric ke¥;, encrypts it with the secret kdy,s that he shares with. He sends this
message (Message 1)&mand asksS to deliver this key taB. Message 1 also contains names of
the two intended principles, but they are not encrypted.

Upon receiving Message &, knows the fact thatl wishes to talk taB, so he retrieves the
key k., €ncrypts it with the key,s that he shares witl, and sends it t@3 (Message 2).

WhenB receives Message 2, he retrieves the freshikgythen he can use this key to decrypt
messages from (Message 3). Certainly, he can also #éggit to encrypt his own messages and
send toA.

Such a protocol can be executed for many times, by different principles and with different
keys. A complete execution of the protocol as described above is cadleskin

Specifications of cryptographic protocols, like this protocol, are simple and contain only
several exchanges of messages. Despite of the simplicity, it is difficult to verify that a protocol
can meet its goal. For instance, this symmetric key establishment protocol is flawed: when
a principle A initiates a session of this protocol and wishes to talk to another prinéiplan
intruder E interferes with the execution of the protocol and impersonBtdsut the principleAd
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always believes that he is communicating wigtand the texts are kept secret.

Messagel.l. A— E(S): A, B,{ka}n,.
Message2.1. FE(A) — S: A E, {ka}r,.
Message2.2 . S—FE: AE{kyp.
Messagel.3. A— E(B): {i}x,

When A sends Messagke1 to S, the intruderE intercepts this message and prevents it reaching
S. While he cannot decrypt the message to get thelsgywithout knowingk,s, the intruder
modifies the message by replacing the ngnaith his own namé?, and sends the fake message
to S (Message2.1). What.S learns from this fake message is thhivishes to talk withE, so

he encrypts the ke, with the keyk.; that he shares witly and sends it t&& (Message2.2).

The intruderE’ can then decrypt the cipher-text in Mess@dgeand get the ke¥,;, hence he can
decrypt those encrypted messages sent fAofimtended forB).

Clearly, the flaw in this protocol has nothing to do with the involved cryptographic algo-
rithms. Itis a flaw of protocol design alone. There were many such flawed protocols which had
been thought to be secure [Low96b, CJ97, LSV]. The most classic one is probably the Needham-
Schroeder’s public key protocol [NS78] and Lowe’s well-known attack [Low95, Low96a] (see
Chapter 2 for details) .

1.2 Méthodes formelles

Until the middle of 1990s, most work on security protocol analysis was devoted to finding at-
tacks on known protocols and the analysis was quite informal. However, informal analysis is
usually prone to errors and not reliable, because security problems are very complex and some
flaws are not intuitive at all. On the other hand, analysis of cryptographic protocols appears to
be well suited for the application of formal methods. Indeed, a number of formal models for
cryptographic protocols have been proposed in the past decade, which opened a way for the use
of formal methods and formal analysis of protocols [Mea00, Mea03, CS02]. These formal meth-
ods, instead of searching attacks, address mainly proof techniques for protocol correctness. Most
formal models are based on therfect cryptographyassumption: when we are given a cipher-

text {m}, the only way to decrypt it is to get the corresponding decryptionikey and it is
assumed that there is no way for attackers to guess or forge thiekeif it is secret. We shall

keep to this assumption in this thesis.

1.2.1 La propriété de secret et I'équivalence contextuelle

While there are many properties that a security protocol may aim to guarantee, we will focus on
the secrecyproperty in this thesis. There are many definitions of secrecy, and the relationship
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between them is not clear [Aba99]. In this thesis, we say that a protocol preserves secrecy of a
datum if attackers cannot learn the value by interacting with the protocol within the framework

of the traditional Dolev-Yao model [DY83], where attackers are able to eavesdrop on, remove
and arbitrarily schedule messages sent on public communication channels, create new messages
from pieces of messages they observe and insert them into the channels. The goal of the protocol
analysis is then to determine whether there is a protocol trace in which attachers may learn the
value of the datum that the protocol aims to protect.

A very popular idea in this area is that the secrecy property can be represented by the no-
tion of contextual equivalencé.k.a. observational equivalendAG99, SP03]. Contextual
equivalence is a notion for programming languages. We say that two programs are contextually
equivalent if there is no context that can distinguish them. A context can be simply seen as an
operating system, so in order to test the contextual equivalence between two programs, we just
execute them and observe the results. If the results are always the same, we can then assert that
these two programs are contextually equivalent.

The idea is to consider cryptographic protocols as programs, where secret messages are pa-
rameters. A context is the network that may contain attackers. To put it extremely, contexts
are attackers. Given a protocol, we shall have different protocol instances for different secret
messages, so if two instances of the protocol are proved contextually equivalent, we can then as-
sert that this protocol guarantees the secrecy property, because no attacker can see the difference
between different secrets.

This method requires a (formal) language for specifying cryptographic protocols in the first
place. There are several existing languages for protocol specification. The most well-known is
perhaps the Spi-calculus [AG99]. This is an extension of the pi-calculus — a very simple but
powerful system for studying processes and communication channels [MPW92, Mil99, SWO01],
where communication channels can be created and processes can communicate with each other
by sending and receiving messages (even channel names) through channels. While security pro-
tocols rely heavily on communication channels with certain security properties like authenticity
and privacy, it is very natural to use the pi-calculus (with extensions) for describing and ana-
lyzing protocols, at least at an abstract level. The Spi-calculus is basically an extension of the
pi-calculus with cryptographic primitives. In the Spi-calculus, a cryptographic protocol is en-
coded as a process consisting of several child processes running in parallel, each representing
a principle involved in this protocol. Message exchanging is naturally modeled by communica-
tions through channels shared by these principles. Attackers are also encoded as processes in
this language, which are allowed to interact with the protocol process in any possible way. A not
so ideal aspect of the pi-calculus is probably the lack of a good denotational model. Reasoning
about concurrent processes and channels usually rests on syntax.
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A less known formal language for describing protocols isttyptographic lambda-calculys
proposed by Sumii and Pierce [SP01, SP03]. The lambda-calculus has certain advantages. Most
obviously, higher-order behaviors are naturally taken into account, which is ignored in other
models (although, at the moment, higher order is not perceived as a necessary feature in cryp-
tographic protocols). Furthermore, public keys are encoded as functions in a nice way [SP01]
(see Chapter 2 for detail), which requires at least second-order functions in some cases, e.g., the
very original version of Needham-Schroeder’s public key protocol, where public keys are sent as
messages.

Another feature of the lambda-calculus approach is the dynamic generation of fresh keys or
nonces. This mechanism plays a crucial r6le in cryptographic protocols. While dealing with
fresh key generation is a weak point in most formal models, this has been well studied in a
language called thieu-calculus proposed by Pitts and Stark [PS93a]. The nu-calculus is an ex-
tension of the simply-typed lambda-calculus, devoted to the study of fresh name creation (where
names are seen as syntactically identical to keys). According to Stark’s later work on the nu-
calculus, dynamic name creation can be nicely modeled in the framework of Moggi’s computa-
tional lambda-calculus, in which we are allowed to describe various forms of computation, such
as exceptions, non-determinism, and so on [Mog89, Mog91]. Denotational models of the com-
putational lambda-calculus must be defined using monads. Stark specializes Moggi's work in the
dynamic name creation monad and builds a denotational model — the catgdry— for the
nu-calculus [Sta94, Sta96].

The modelSet? is also sufficient for modeling the lambda-calculus with cryptography, since
cipher-texts are usually seen as products of plain-texts and keys. However, defining contextual
equivalence for cryptographic protocols in such a framework needs more attention. In particular,
contexts must represent honestly the power of attackers. It turns out that the catetfois/not
sufficient for defining a denotational notion for contextual equivalence and we should switch to
some subtler category with more information. Detailed discussion on this point will be found in
Chapter 4 and Chapter 5.

1.2.2 Relations logiques

Direct proofs of contextual equivalence are unfeasible in general, because its definition involves
a universal quantification over an infinite number of contekisgical relationsare an alterna-
tive technique for proving contextual equivalence [Mit96], which is the main advantage of the
lambda-calculus approach for verifying protocols.

Logical relations are a frequently used technique in lambda-calculi and it has proved useful
in proving various properties of typed lambda-calculi [Mit96]. Basically, a logical relation is a
family of relations between expressions or elements in semantics, which are indexed by types
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and defined by induction on their types. For instance, two pairs are related if and only if their
components are pairwise related. Crucially, two functions are related if and only if they map
related arguments to related results. This technique was first introduced by Plotkin to reason
about definable elements in denotational models of the simply-typed lambda-calculus [Plo80].
Later, using the notion oéconing Mitchell and Scedrov obtained a mathematical theory of
logical relations [MS93]. In particular, they define a general way of deriving logical relations on
categorical models. This is again extended by Goubault-Larrecq, Lasota and Nowak to categories
with monads [GLLNO2], so that one can naturally derive logical relations for monadic types.

Although logical relations were first developed for the denotational semantics of typed lambda-
calculi, they can also be adapted to their term models and this adaptation is sometimes called syn-
tactic logical relations [Pit98, Pit00]. Indeed, the logical relations that Sumii and Pierce defined
for the cryptographic lambda-calculus are syntactic [SP01, SP03].

Dealing with fresh key generation is again the main technical difficulty that one must face in
defining logical relations for lambda-calculi with cryptography. The work of Sumii and Pierce is
inspired in this respect by Pitts and Stark [PS93a, PS93b], who define the notperational
logical relationto establish contextual equivalence of nu-calculus expressions. They also show
that this logical relation is complete up to first-order types. Sumii and Pierce’s various logical
relations are extensions of the operational logical relation.

Stark also defines a denotational logical relation, using the notion of “categories with re-
lations”, and shows that such a denotational logical relation identifies their operational logical
relation up to second-order types: if two programs are related by the operational logical relation,
then their interpretations are related by the denotational one [Sta94, Theorem 4.25]. While his
category for deriving denotational logical relations is restricted to the name creation monad, the
work by Goubault-Larrecq et al. on logical relations for monadic types provides a more general
way to build logical relations for computations [GLLNO2]. They define as an example a Kripke
logical relation for the dynamic name creation monad, still based on the categorical Seotlel
But compared to Pitts and Stark’s logical relations, their logical relation is too weak in the sense
that it fails in relating some contextually equivalent programs that are related by Pitts and Stark’s
[ZNO03].

Instead, we shall show that, to define logical relations for lambda-calculi with cryptography, a
better choice of category &et” . However, this category is still lacking in some subtler aspects,
and we eventually show that the proper category to considgeti8 . These categories will
be defined in Chapter 4 and Chapter 5. We then define a cryptographic logical relation over this
category, which is proved sound. Logical relations derived over this category are also proved
equivalent to Stark’s denotational logical relations. Furthermore, we show that the category
SetP?” is also the right category for defining a proper notion of contextual equivalence for
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cryptographic protocols.

Completeness is an important concern of logical relations. In general, logical relations are
just complete for types up to first order, e.g., Pitts and Stark’s operational logical relation. (Sumii
and Pierce left this problem unsolved for their logical relations in the cryptographic lambda-
calculus. To get the completeness, they switch to the notion of bisimulation [SP04, SP05].)
The introduction of monadic types into typed lambda-calculi makes completeness more difficult
to achieve. An interesting point is that, in the case of dynamic key generation, if there is no
restriction on monadic types, logical relations are not even complete for zero-order types. But
this is not specific to name creation monad. Some other monads like the non-determinism monad
have similar problems (see Appendix B for details). This is probably because contexts always
“flatten” programs to get values that they are able to compare, and information about program
structure, which is usually necessary for building logical relations, might be lost during this
procedure.

With a restriction on monadic types, we show that logical relations derivedSwér ~ are
complete for a certain subset of first-order types. To extend the completeness result to higher-
order types, we switch to the notion laix logical relations[PPSTO0OQ], but the cost is that lax
logical relations are not constructed inductively any more. We finally define logical relations
which are lax at function types and monadic types, but strict (non-lax) at various other types, still
over the categorget”Z . We show that they are sound and complete for contextual equivalence
at all types.

1.3 Lien avec d'autres travaux

The basic idea of the logical relation approach is that of formalizing and proving secrecy as
equivalences between different instances of a program with secret values. This is usually known
as the non-interference approach, which is very popular both in the security community and in
the programming language community [RS99, SM03]. One of the main goals of this approach,
as Sumii and Pierce claimed, is “to explore how standard techniques for reasoning about type
abstraction can be adapted to the task of reasoning about encryption, in particular about security
protocols” [SPO1]. For this purpose, they choose lambda-calculus as a starting point.

Indeed, various techniques from programming languages have been applied in the (static)
analysis of computer security. Some work in this line includes the Spi-calculus (by Abadi and
Gordon) [AG97, AG99] and the applied pi-calculus (by Abadi and Fournet) [AF01], which are
both based on the pi-calculus and come equipped with useful techniques such as bisimulation
for proving behavioral equivalences [AG98]. Also based on the pi-calculus, Gordon and Jeffrey
also develop a system called Cryptyc — a type-effect system aiming at proving authenticity
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through static type checking [GJ02, GJ03a, GJO3b, GJ0O4]. Another example is Heintze and
Riecke’s SLam calculus [HR98]. They proposed lambda-calculus with type-based information
flow control, and proved a non-interference property — that a value of high security does not
leak to contexts of low security — using logical relations.

In addition to logical relations, bisimulations are a main technique for proving contextual
equivalence. Bisimulations were originally designed for process calculi and transition systems
[Mil80, Mil89, Mil99] and have been studied extensively. In particular, various notions of bisim-
ulation have been proposed in cryptographic process calculi [AG98, BNP99, AF01, BNO2].
These are calleénvironment-sensitiveisimulations by Borgstrém and Nestmann [BN02], to
stress the fact they explicitly take into account km®wledgeabout a process. However, there
is no completeness proof available for these bisimulations: they are either proved incomplete
[AG98], or just proved complete for a subset of processes [BNP99].

The notion of bisimulation has also been adapted by Abramsky in lambda-calculi [Abr90].
He calls the adapted noti@pplicative bisimulatiorand uses it to prove contextual equivalence
in untyped lambda-calculus. This was later used by Sumii and Pierce to prove the contextual
equivalence in a language callad..1, which is basically the untyped version of their crypto-
graphic lambda-calculus [SP04]. Gordon and Rees adapted applicative bisimulations to typed
calculi [Gor99, Gor98, GR96], where objects, subtyping, universal polymorphism and recur-
sive types are present, but not existential types. Sumii and Pierce then introduced a notion of
bisimulationsannotated with type informatioand used it to prove the contextual equivalence
in a typed lambda-calculus with full universal, existential, and recursive types [SP05]. These
applicative bisimulations are shown to be sound and complete w.r.t. contextual equivalence.
However, they are still syntactic (even more than syntactic logical relations) and rely heavily on
the operational semantics (e.g., Sumii and Pierce’s bisimulations are defined based on a big-step
style evaluation), hence are not easy to extend. Furthermore, there is no known mathematical the-
ory supporting applicative bisimulations, as those for logical relations [MS93, GLLNO2]. Note
that (typed) applicative bisimulations are not essentially logical relations — they have different
definitions on relating functions. Furthermore, the point of applicative bisimulations is the ability
of dealing with recursions since they are usually built co-inductively.

1.4 Plan de lathese

The main content (from Chapter 2 to Chapter 7) of this thesis can be divided into the specification
part and the verification part.

Specification: This part, consisting of Chapter 2 and Chapter 3, defines a formal model for
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describing protocols. Precisely, this is a language callecttyygtographic metalanguagex-

tended from Moggi’s computational lambda-calculus with cryptographic primitives. The syntax
of this language is defined in Chapter 2. This language is shown to be adequate for describ-
ing cryptographic protocols, through encodings of concrete protocols. Then Chapter 3 defines
a denotational semantics of the language. This is based on the cafgdrywhich has been

used by Stark to interpret the nu-calculus [Sta96]. We are interested in the precise definition of
contextual equivalence, since the secrecy property is represented by this notion. In particular, we
shall define the contextual equivalence for the cryptographic metalanguage, in the denotational
model, so that our reasoning will rest totally on the denotational model. At the end of Chapter 3,
we discuss what should be the right notion of contextual equivalence for the cryptographic met-
alanguage.

Verification: Chapter 4—7 form a verification part. We shall use the technique of logical re-
lations as the verification tool to prove contextual equivalence. Chapter 4 and Chapter 5 are
about the construction of logical relations for the cryptographic metalanguage over categories.
Constructions of logical relations for lambda-calculus are standard. The metalanguage inherits
in particular the monadic type constructor from the computational lambda-calculus and logical
relations for this kind of types can be defined (over the categery) by following the gen-

eral construction of logical relations for monadic types, proposed by Goubault-Larrecq et al.
[GLLNO2]. However, it is noticed that the categasyt” is not sufficient for studying relations
between programs in the metalanguage. For this purpose, a better category to consider is the
categorySet’ , and eventually the categoSet™ . We apply to both categories the general
construction by Goubault-Larrecq et al.. We finally define a cryptographic logical relation based
on the categonSet”Z~ and prove some important properties.

We then define at the beginning of Chapter 6 the right notion of contextual equivalence,
also over the categorget”” . The cryptographic logical relation is proved sound, but the
completeness for logical relations derived ot~ is hard to achieve, even for first-order
types. We prove the completeness for a certain subset of first-order types. Then, using the notion
of lax logical relation, we define a complete logical relation, which is lax at function types and
monadic types. We show that it is sound and complete for all types.

Lastly, in Chapter 7, decidability of the cryptographic logical relation is investigated in cer-
tain cases. In particular, relations for types andkey — 7 are shown to be decidable if the
relations for typer are decidable.

Chapter 8 concludes the thesis by summarizing the results and discussing directions for future
work.
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Chapitre 2
Le métalangage cryptographique

Pour spécifier les protocoles cryptographigues, nous avons actuellement plusieurs langages
formels qui permettent de formaliser des propriétés de sécurité par la notion d’équivalence contex-
tuelle, notamment la propriété de secret. Le langage plus connu est probablement le Spi-calcul
d’Abadi et Gordon [AG99]. Un autre langage moins connu est le lambda-calcul cryptographique
proposé par Sumii et Pierce [SP01, SP03], qui est une extension du lambda-calcul simplement
typé avec deux sortes de primitives : les primitives cryptographiques et les primitives de généra-
tion de clés. La génération de nouvelles clés (ou honces) est un mécanisme crucial des protocoles
cryptographiques et est une construction de basechlcul, mais pas dans le lambda-calcul. Il y
a déja eu des études sur ce mécanisme dans le cadre du lambda-calcul et le plus connu est proba-
blement lenu-calculde Pitts et Stark [PS93a, Sta94]. Le nu-calcul est une extension du lambda-
calcul simplement typé avec génération dynamique de noms (que nous verrons ici comme des
clés) et s’occupe de I'étude des noms en programmation.

Le codage des protocoles dans le lambda-calcul cryptographique s’effectue comme dans le
Spi-calcul : un protocole est codé commelplet des fonctions qui représentent les participants,
sauf que dans le Spi-calcul ils sont codés comme des processus en paralléle au lieu de fonctions.
La différence remarquable entre les deux modéles est que, dans le lambda-calcul, I'interaction
entre les participants est modélisée par I'application de fonctions, pas par les communications sur
les canaux comme dans le Spi-calcul. Un attaquant dans le lambda-calcul est alors une fonction
qui prend le protocole en paramétre et qui essaye de découvrir le secret.

Nous commencgons ce chapitre par une introduction breve aux lambda-calculs typés, dans
la partie 2.1. En particulier, nous introduisons des langages fondés sur le lambda-calcul, par
exemple le nu-calcul de Pitts et Stark, le lambda-calcul cryptographique de Sumii et Pierce, et
le lambda-calcul computationnel de Moggi. Nous définissons ensuite dans la partie 2.2 un lan-
gage appelé lmétalangage cryptographiqumur spécifier les protocoles. Ce langage est étendu
a partir d'une version spécifique du lambda-calcul computationnel (spécialisé pour la généra-

13
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tion de noms) que Stark avait utilisé pour construire un modéle dénotationnel du nu-calcul. La
partie 2.3 montre comment formaliser la propriété de secret en utilisant la notion d’équivalence
contextuelle. La partie 2.4 expose le codage des protocoles dans le métalangage cryptographique
sur deux exemples concrets — le protocole d'établissement de clés symétriques qui a été intro-
duit dans le chapitre 1, et le protocole de Needham-Schroeder [NS78]. Le codage est basé sur
la méme idée que le codage dans le lambda-calcul cryptographique de Sumii et Pierce, mais
nous clarifions leur méthode, en particulier notre codage est plus précis et représente vraiment
les traces d’exécution des protocoles.
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There are nowadays some formal languages for specifying cryptographic protocols, where
security properties like secrecy are formalized by contextual equivalence. The most well-known
one is probably Abadi and Gordorpi-calculugAG99]. A less known language is Sumii and
Pierce’scryptographic lambda-calculugsP01, SP03]. This is an extension of the simply-typed
lambda-calculus with two kinds of primitives: cryptographic primitives andkige generation
primitive. Fresh key (or nonce) generation, which is crucial for cryptographic protocols, is native
in the pi-calculus, but not in lambda-calculus. Studying this mechanism within the lambda-
calculus framework is not new. The most well-known work on this aspect is probably Pitts
and Stark’snu-calculus[PS93a, Sta94], which is a language extended from the simply-typed
lambda-calculus with fresh name creation, and is devoted to the studyedsn programming
languages (names seen as syntactically identical to keys).

Encoding protocols in the cryptographic lambda-calculus is quite similar as in the Spi-calculus:
protocols are encoded as tuples of functions representing principles, except that in the Spi-
calculus, they are encoded as parallel processes instead of functions. A notable difference is
that, in lambda-calculus, interactions between principles are modeled by function applications,
not by communications over channels. An attacker in this model is encoded as a function that
takes the protocol program as argument and attempts to reveal the secrets.

This chapter starts with a brief introduction to typed lambda-calculi, in Section 2.1. We give
as examples some specific languages based on lambda-calculus, such as Pitts and Stark’s nu-
calculus, Sumii and Pierce’s cryptographic lambda-calculus and Moggi’s computational lambda-
calculus. We then define in Section 2.2 a language calledriyypographic metalanguagéor
specifying cryptographic protocols. This language is extended from a specific version of the
computational lambda-calculus (specialized for fresh name creation) which has been used by
Stark as an intermediate language to build a denotational model for the nu-calculus. Section 2.3
explains how the secrecy property is formalized by the notion of contextual equivalence and
Section 2.4 illustrates the encoding of protocols in the cryptographic metalanguage, through two
concrete examples — the key establishment protocol which has been introduced in Chapter 1
and Needham-Schroeder’s public key protocol [NS78]. The encoding is based on the same idea
of the encoding in the cryptographic lambda-calculus, but we clarify Sumii and Pierce’s methods
by making our encoding based on the protocol execution traces.

2.1 Préliminaires

2.1.1 Le lambda-calcul simplement typé

Lambda-calculus has proved useful in describing and analyzing programming languages [Ten81,
Win93, Mit96]. Pure lambda-calculus [Bar80] is a formal system where everythinfuiscéion
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and the two basic operations abstractionandapplication the first one is the way we write
function expressions while the second allows us to use the functions we have defined. More
formally, the syntax of the (untyped) lambda-calculus consists only of the following three sorts
of terms:

t = x variable
| Azt abstraction
| tt application

The lambda-abstractiokz.t binds the variable: in the term¢. If a variable is not bound by the
Ain aterm, then it is dree variableof this term. We implicitly identify expressions which only
differ in their choice of bound variablea{equivalence).

In typedlambda calculus, terms are assigned types [Bar91]. In particular, we specify the
domain of a function by giving a type to the formal argument, that isjsfsome well-formed
expression under the assumption that the varialiias typer, then\z™.t defines the function
mapping allz in 7 to the value given by. We shall omit the type annotation when the type
information is clear from context.

A typed lambda calculus is usually defined based on a collectidypef constantgor base
typeg andterm constants For instance, we may have a type constant for integers with some
numerical operations. Such a collection of base types and term constants is atiedtare
denoted byX. We useX, to denote the collection of base types, andfor term constants.
Complex types can be constructed from base types by type constructors. Notably, a typed lambda
calculus should contain function types since functions are the very basic primitives of lambda
calculus. We present here a simple typed lambda calculus where we have only base types in the
signatureX and one type constructes:

Tu=b|T—T, be

T — 7’ is the type of functions mapping a value of typ&o a value of type~’. There often exist
some other standard type constructors such as products and sums, which we shall see later in a
more concrete language. Types may also have type variables, but in this thesis we consider only
simply-typed lambda calculus, by which we refer to any version of typed lambda calculus where
types do not contain type variables.

The collection of terms then contains term constants and expressions built from these con-
stants using abstraction and application:

tu=x|c|Axt|tt

wherec is a term constant in the signature Every term constant i is associated with a
unique type. For instance, if we have a base tyaefor natural numbers, then a constantor
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numerical addition is of typeat — nat — nat. We writec : 7 € X if ¢ is a term constant of
typer.

Terms are assigned types via typing assertions and a set of typing rules. Typing asser-
tions are of the forni” F ¢ : 7, wherel' is a typing context — a finite set of typed variables

{z1:71,...,2n : 7} Where nox; (1 < i < n) occurs twice. We writd", z : 7 for the typing
contextI’ U {x : 7}. A typing assertiod + ¢ : 7 says that if variables,, ..., z,, have types
T1,..., Ty Fespectively, then the expressibhas typer.

Types of compound terms are determined through typing rules. A typical typing rule is of
the form

ity ... TpEt, 7
I'kHt:7 .
Intuitively, this rule says that if the typing assertidnst ¢ : 7, ..., ', F ¢, : 7, hold, then

I' ¢t : 7 holds as well. Notably, the typing rules for variables, abstraction and application in the
simply-typed lambda are

z:T7€el c:TEX
— (Var) — (Const)
I'tx:71 I'kFe:7
Lx:7kt:7 F'tty:r—7 Thty:r
(Abs) (App)

FFXet:T7— 71 T tity: 7

Note that sometimes rules for constants appear in another form. For example, the typing rule for
the numerical addition may appear as

I'tty:nat T'Fty:nat

(Add)
I'Ft1 + 1ty : nat

2.1.2 Le nu-calcul et le lambda-calcul cryptographique

While the standard simply-typed lambda calculus is a simple and powerful mathematical model,
people usually extend it with more constants and type constructors to describe and analyze com-
plex data and features in real programming languages ntifealculugPS93a] and therypto-
graphic lambda-calculugSP03] are such extensions.

The nu-calculus is a language aiming at the study of dynamic name creation in (functional)
programming languages. The nu-calculus has in particular a basedyfefor nameswhich,
not like variables, can be created freshly, compared with others, and passed around. Creating a
fresh name in a nu-calculus expression is definedy. This term binds the name in the
termt.

Typing assertions are slightly different from those in standard lambda-calculus. A typing
assertion in the nu-calculus is of the forwyl" - ¢ : 7, wherel is a set of typed variables as in
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standard typed lambda-calculus, and a finite set of names, containing all free names ifihe
typing rule for the fresh name creation is

sU{nhTHt:7

New),
s;Fvnt:r

wheren ¢ s.

The cryptographic lambda-calculus has more primitives than the nu-calculus, in particular
those related to cryptography. The two main cryptographic primitives are the encryption —
{t1}+,, and the decryption et {z};, = t2 in t3 else t4. The meaning of the encryption is
clear. In the decryption expression, the key obtained ftps used to decrypt the cipher-text
obtained fromt,. If the decryption succeeds, it binds the plain-text to the variatded com-
putests, otherwise it computes, directly. There is also fresh key generation, seen syntactically
identical as name creation. And the tyzene in the nu-calculus naturally becomes the tkpe.

In fact, thekey type in the cryptographic lambda-calculus is associated with another-tgpd
key[7] is the type for those keys which can be used to encrypt messages of,thpea more
natural way is to use a uniform typey. Cipher-texts are of typhits[r]|, wherer is the type of
the corresponding plain-texts. Typing rules of encryption and decryption are as follows
s;PFty:7 st key
s; T F {t1}4, : bits[7]

Enc)

s;T -ty i key s;TbFty:bits|r] s;Tya:7mht3:7 sty 7

s;TF let {x}y, =ty intzelsety: 7

Dec)

Operational semantics in a “big-step” style are both defined in the nu-calculus and the cryp-
tographic lambda-calculus:
s;I'Ht l}i, u,
wheres’ is a set of fresh names (keys) andh s’ = (). This means that in the presencesof
andT, the termt can be reduced to the canonical tetinfa canonical term is either a constant,
a variable, a function, a name (key) or a cipher-text), with assef fresh names (keys) being
generated during the reduction. For instarfce,vn.n ui@;ﬁe n.

2.1.3 Le lambda-calcul computationnel

Another example of simply-typed lambda-calculus is Moggi's computational lambda-calculus
[Mog89, Mog91], which can be used to define a wide range of notionsoofputationsor
side-effectse.g., exceptions, non-determinism, continuations, etc.. The computational lambda-
calculus has in particular a unary type construdtor

Tu=...|Tr
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Elements of T+ are those computations of type The real contents of  vary largely for
different forms of computations. For instance, when exceptions are concerned, a computation
may abort when an exceptions is raisé&d. then contains a set of exceptions besides the regular
values ofr. While in non-determinism, a computation might return one of several possible
values. The result is not deterministic, so an elemeftrofs actually a set of values.

There are two special constants in the computational lambda-calculus that are useful in ex-
pressing most computations:

tu=...|val(t) |letx <t int.

val(t) denotes the trivial computation which does nothing but returas a value. Thaet
construction is a sequential computatiaret x < t; in to first executes the computatian,
binds the result ta: and then executes the computattgn = is a bound variable ity. Typing
rules for these two constants are

I'Ht:r Pt :Tr Dyx:rhkty: T
(Val) (Let)

I'tval(t): Tr 'Fletxz <ty inty: 7

Moggi’s calculus provides a general framework for describing various forms of computation.
When dealing with specific computations, we usually need specific constants. For example, in
exceptions, it is necessary to have a constatite - (e), for raising an exception during a com-
putation; while for describing non-determinism, we shall need a constantédikect . (¢1, t2),
which chooses randomly a value from the two valtieandt, of typer.

Dynamic name creation or key generation is another concrete notion of computation. Stark
has shown that the nu-calculus can be interpreted in the computational lambda-calculus special-
ized in name creation [Sta94]. For this, a constaat for fresh name creation is necessatgw
is of typeTname (or Tkey). Itis indeed a computation which generates a fresh name and returns
this name as the value. A term of typen the nu-calculus is then interpreted as a terni of
For example, the termn.n is interpreted adet n < new in val(n). In particular, a canonical
termu is always interpreted asl(u).

2.2 Le métalangage cryptographique

In order to make use of the general framework of deriving logical relations for monadic types
[GLLNO2] and approach quickly to the heart of this thesis, we rely on the computational lambda-
calculus and define in this section a cryptographic metalanguage language for specifying cryp-
tographic protocols. This is based on Stark’s computational metalanguage — the computational
lambda-calculus specialized in dynamic name creation and we extend Stark’s language with some
cryptographic primitives.
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Syntaxe

The types of the cryptographic metalanguage are defined by the following grammar:

7 ::=bool | nat | key | msg | 7 — 7 |7 X 7 | opt[7] | TT

There are four base typésool for booleansnat for integerskey for keys andnsg for messages.

T x 7’ is the type for cartesian products, wherandr’ are types of the two components respec-
tively. opt[7] is an option type for, which contains a distinguished element besides values of
denoting failures of message operations, notably the decryption failure when a wrong key is used.
T is the unary type constructor for computation types as in the computational lambda-calculus.
In this metalanguage, the difference between computations and values is that a computation may
generate some keys before returning a value.

We also define the order and the computation degree of types. The order of a type is defined
by

ord(b) = 0, forallbeX,

ord(Tr) = ord(7),
ord(tr — 7') = max(ord(r) + 1,0rd(7")),
ord(r x ') = max(ord(r),ord(r")),
ord(opt[7]) = ord(r).

For every well-typed term of type 7, ord(t) = ord(7). The computation type constructdr
does not change the type order. When we say first-order types, we usually mean types up to first
order. The computation degree of a type is defined by

deg(b) = 0, forallbeX,

deg(Tr

) = deg(r)+1,
)

deg(t — 7') = max(deg(r),deg(")),
deg(T x 7') = max(deg(7),deg(7")),

deg(opt[r]) = deg(r).

For every well-typed term of typer, deg(t) = deg(7).
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— (True False
I‘I—:Jc:T(VW) I' F true : bool ( ) Fl—false:bool( )

I'Hti:bool, T'kFte:7, I'Ftg:7T
I'Hif ¢t; thenty elsets: T

Cond)

I'Ht1:nat ... T'Ft,:nat
; (Int) (Nat_Op)
I't4: nat I' Fnat_op,,(t1,...,ty) : nat

Lz:rkt:7 F'kty:r—7, Thty:7
- (Abs) , (App)
I'FXet:iT— 71 I'Ftita: 71

I'Hti:7m, Thiy:m 'bt:m xm
(Pair) i=1,2 (Proj)
F|—<t1,t2>:7'1 X T9 Fl—proji(t):n

'kt 7
——— (New) (Inj)
I' - new : Tkey I' - some(t) : opt[7]

Cktycoptfr], T,z:7hkte:7 Thitsz:7

Case)
[ I case t; of some(z) in ty else t3: 7’

I'Ht: 7 Pkt :Tr, T,x:7kty:T7
— (Val) (Let)
'tk val(t): Tr I'Fletx <t;inty: T7

I'Eti:msg I'Fty: key I'Fti:msg I'Ety: key
M .enc) (M .dec)
I'F enc(t1,t2) : msg I'F dec(t1,t2) : opt[msg]

I'Et1:msg D'ty :msg
'k p(tl,tg) . msg

(M .pair)

I'Ht:msg I'Ft:msg
(M .fst) (M .snd)
'k £st(t) : opt[msg] I'F snd(t) : opt[msg]

I'+1%:nat I'H1:msg
— (M.r) (M.mr)
I'Fn(t) : msg I' - getnum(¢) : opt[nat]

I'Ft:key I'Ht:msg
I'Fk(t) : msg I' - getkey(¢) : opt[key]

Figure 2.1: Typing rules for the metalanguage
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Expressions in the cryptographic metalanguage are defined by

t =z variables
|  true|false boolean values
| if tthentelset conditional
| integer constants, 1,2, . ..
| nat_op,(t,- - ,t) integer operation
| Azt abstraction
|ttt application
| () pairing
| proj(t) | proj,(t) projections
| some(t) option injection
| casetof some(x) intelset option case
| new fresh key generation
| val(t) trivial computation
| letz<tint sequential computation
| enc(t,t) encryption
| dec(t,t) decryption
| p(t,t) pairing of messages
| £st(t) | snd(t) message projection
| n(t) | getnunm(t) integer as/from messages
| k(t) | getkey(t) keys as/from messages

Typing rules for these terms are given in Figure 2.1. Most rules are standard, such as pair-
ing, projection, injection, case and so on. The option injectione(t) and the option case
case t; of some(x) in ty else t3 are abbreviated versions of standard injection and case
operations for sum typesopt[r] is seen as the sum type of+ unit with unit a type con-
taining a single (dummy) valuesome(_) is the left injection and the option case abbreviates
case t; of inj(z) > tg; ing(_) > t3. The constanhew stands for fresh key generation, which
generates a fresh key and returns this key as a value. It is a computation dkeype

There are several term constants related tontbg type. enc anddec are two primitives
for encryption and decryptiorenc(t;, t2) uses the key obtained frotp to encrypt the message
obtained fromt; and returns the encrypted messaiy&; (¢, t2) uses the key obtained froty to
decrypt the message obtained fromand returns the corresponding plain-text (if the decryption
succeeds) or an error (if the decryption fails), so it is of typgmsg|. One can take an integer
or a key as a message, by the operatioandk. Constantgetnum andgetkey are the inverse
operations, which attempt to retrieve an integer or a key from a message. Messages can also be
paired by a particular pairing operatiprior messages. The difference between message pairing
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and the normal pairing((, _)) is that the pairing of two messages is still of typesg, not
msg X msg, as shown by the typing rulgl/ .pair). Correspondingly, we have projectiofist
andsnd that return the components of a pairing message.

Compared with the cryptographic lambda-calculus, the main change in this metalanguage is
on the treating of messages. Types for cipher-texts are no longer associated with the types of
corresponding plain-texts as in Sumii and Pierce’s language. Instead, we use a more uniform
typemsg and all cryptographic operations such as encryption and decryption can only be applied
to messages. By doing so we are able to encode “typing attacks” in the metalanguage. A typing
attack is an attack where attackers trick principles to accept some fake messages with confused
types. For example, if a principle is waiting for an encrypted message which should be composed
by two keys, e.g.{ki, k2 }, then an attacker can send him a messggeF};, whereFE' is a
principle name and is usually represented as an integer, e.g., an IP address. In practice, every
messages is just a bit string. If both principle names and keys are bit strings of the same length,
when the principle receives the message, £}, he has no way to tell that is not a key. This
will become vital if later they usé’ as a key to exchange secrets. Type flaw does exist in real
protocols [CJ97, HLSO03]. To represent these attacks in Sumii and Pierce’s language, we have to
introduce dynamic type checking, because the fake message is not of the expected type and will
be rejected by static type checking (for instance, the mesgagé } . is of typebits[key X nat]
while a message of typsts[key x key] is expected). but in the cryptographic metalanguage, we
can do this with no cost (messages are all of type).

Furthermore, becausesg is a base type, the language can be easily extended with other
cryptographic primitives with particular algebraic properties [CDL05], e.g., in RSA encoding
[RSA78], encryptiorenc is implemented as modular exponentiation, which obeys various asso-
ciativity, commutativity and distributivity laws. To give an example that remains in the frame-
work of symmetric  encryption, DES |[DES] obeys the property that
not enc(v, k) = enc(not v,not k), wherenot is bitwise logical not.

In Figure 2.2 are syntax abbreviations which we shall use in the sequel.

Equational semantics

Stark defines an equational logic of Horn clauses for reasoning about terms of his computational
metalanguage [Sta94]. If the typing assertibhs ¢; : 7 andI' F ¢5 : 7 hold, thenl’ - ¢; =
to : T is anequation in context’. We shall omit the type and writé - ¢; = ¢5. A sequents a
judgement’; ® - ¢ wherel is a typing context® is a finite set of equations in conteXtand¢
is a single equation in contekt We write®, ¢y = to for ® U {t; = t5 : 7} and we may omifd
when it is empty.

Rules for deriving sequents are also given in [Sta94] for the computational metalanguage for
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{tl}tz

[t1,t2, ..., tn]

error
letopt z <=t1 intg

Mz, .., xp)t
Mahy.t
Mz, .o T biet
v(x1, ..., o).t

let (w1,...,z,) <= tint’

enc(ty, t2).

p(tl, e ,p(tn,]_’tn) e )
fst(snd:--snd(t)---)
i—1
snd(---snd(t)---)
—_—————
\ 1—1
(t1y ey (b1, tn) - o).
proj;(projy - -projy(t)--
—_—
i—1
projz(. . .pron(t) o )
N——
i—1
dec({1}k,,k2), (k1 # ko).

case t; of some(x) in {9 else error,

if 2 <n,

if 2 =n.

2) ifi <,

if 7 = n.

wheret, must be of typept[msg].
Ay-(Azy.- -+ Azn t)proji(y) - - - projy (y)-
Ay.letopt x < dec(y, k) in t.
Myte-(Az1. -+ Az t)projy (y) - - - projy (y).
let x; < new in - - - let x, < new in val(t).

lety<«+tin

(Azy. - Azp.t)projt(y) - - - projy, (y).

Figure 2.2: Syntax abbreviations
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name creation. In particular, rules for computations are as follows:
'bt:Tr IEity,te: T
'Fletz<tinval(z) =t I;val(ty) = val(te) Ft1 = to

I'tti:m TDyx:mthty:Tr
I'F let v < val(ty) inte = ta[t1 /7]

I'tHt1:Try Ty 7kt Ty Tiazg:7hkity: Ty

'k let xg < (let x1 <t inty) inty = let x1 < t; in let x9 < t9 in t3

Because the cryptographic metalanguage is an extension of Stark’s computational metalan-
guage, the equational logic for the computational metalanguage can be easily extended here for
giving the semantics of the cryptographic metalanguage and reasoning about terms. The detailed
rules for deriving sequents are given in Appendix A.

2.3 Formalisation de la propriété de secret

Protocols usually involve several principles running in parallel and interacting with each other.

It is somehow surprising at first glance that they can be encoded in lambda-calculus, which is
natively sequential. The basic idea is that every principle is encoded as a function and interac-
tions between principles can be modeled by function applications. Consider the following naive

protocol:
Messagel . A — B: {i}
Message2. B — A: imod?2

In this protocol,k is a secret key shared only byyand B (to guarantee this, we létbefreshly
generated in the programll encrypts an integerwith £ and sends it t&3 (Message 1), the®
answers by the valuemod 2. The protocol is encoded as:

p(i) = 1letk < newin
val({enc(s, k),

Az. case dec(z, k) of some(y) in (y mod 2) else —1))

whose type isT(msg x (msg — nat)). The first component of the pair, seen as a constant
function_.enc(i, k), represents the principlé. The second component represents the principle
B, a function which receives a message and returns another message.

Interactions between principles are scheduled by the network and every scheduler is encoded
as a function taking the protocol program as an argument, in the same language. A scheduler has
full control of the network and it is possibly malicious and tries to attack protocols. A protocol is a
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sequence of message exchanging operations and the source and destination of every message are
explicitly defined, so a “good” scheduler simply forwards every message to its intended receiver,
and it is easy to check whether the system accomplishes its goal under such a “good” scheduler.
The main property that we like to prove for a protocol is the secrecy property: the secret does not
leak under any schedule. This difficult to prove directly — enumerating all possible schedulers

is not possible. Suppose a protocol is secure in the sense that no execution of this protocol leaks
the secret to attackers. Then it is clear that attackers cannot see the difference between any two
instances of the protocol, hence are not able to distinguish them. For example, in the above
protocol, if the principled only sends encrypted even numbergtahen for any secret integers

i andj, the two instances(2 i) andp(2 « j) are equivalent, since the reply frobhis always0.

Such an indistinguishable property can be formalized by a notion in programming languages,
calledcontextual equivalenca.k.a. observational equivalencéVe say that two programs are
contextually equivalent, if we always get the same results when running them in all contexts.
Given a protocol, consider its encoding in the metalanguage, i.e., a program with the secret
message as an argument. If we can prove that two instances of this program are contextually
equivalent, then we can assert that this protocol satisfies the secrecy property. Note that this
requires that both contexts (attackers) and protocols are encoded in the same language.

The rest of our work is to encode protocols in the cryptographic metalanguage and to develop
methods for proving contextual equivalences. In lambda-calculus, there are standard definitions
of contextual equivalences [Mor68, PS93a]. However, it turns out that contextual equivalence
for cryptographic protocols is a very subtle notion, especially when it is defined in a denotational
way. Standard definitions must be adapted carefully in this case. In particular, contexts are
supposed to represent honestly the power of attackers. We shall have more discussion on this at
the end of Chapter 3 and in the Chapter 6.

2.4 Codage des protocoles

Following the scheme given in last section, we can encode concrete protocols in the cryptographic
metalanguage. Two examples are given in this section. Both are flawed protocols, and we show
that these protocols (and their corrected versions), as well as attacks, can be encoded in the
metalanguage.

2.4.1 Un protocole de I'échange de clés symétriques

The first example is the protocol that we have introduced in Chapter 1, which aims at establishing
a fresh symmetric key between two principles, with the help of a trusted key serdéuses
only the symmetric encryption.
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AuBa {kab}kbs

5 \. B

2

= ((A)n(B), (k) ), fao)

fa, = Aitr,

fs, = Mz.letopt z, < getnum(r(z)) in
letopt z; < getnum(7s(x)) in
letopt k < dec(ms(z),K(24, 8)) in
some([n(za), n(z3), (£} ey )

By, = Ax.(x, fB,)

fB, = Ax.x

whereK(z, s) abbreviates

if x = A then k,s else if x = B then ks else ks

Figure 2.3: A symmetric key establishment protocol and its encoding
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As shown previously, the encoding of a protocol in the cryptographic metalanguage consists
of the encoding of every principle, as a term in the metalanguage. The protocol is reformulated
by the diagram in Figure 2.3, where every principle is a sequence of “bullets”, representing the
“states” of the program. A bullet waits for messages in a certain expected format, does some
checking on the formats and contents upon receiving a message, then sends back another mes-
sage and passes the control to the next bullet. There is no secret channel and every message is
published on the public network. Such a bullet is encoded as a function, which takes the incom-
ing message as argument, and returns a pair of the out-coming message and another function
representing the “next state”. For example, the bullein the diagram of Figure 2.3 is encoded
as the function:

fay = A v(kap)([0(A), n(B), {k(Kab) }o.]s fa2)

Becaused; does not wait for any message, this is just a constant function (we omit the lambda
binder at the beginning)4; publishes a messadé, B, {k.}x,.) and passes the control to the
bullet A, denoted by the functiofis4,. Note that4; generates a fresh key,;,, but since this is

the first step of the protocol, we can assume thais generated by the whole program and we
encodeA; as

fa, = ([n(A)an(B)7{k(kab)}kas]a fA2>'

By doing so we avoid programs with types of the fofifi- - x T_x - - - ), because completeness
of logical relations for this kind of types is hard to deal with. We shall explain this difficulty in
Chapter 6.

Encodings of other bullets are given in Figure 2.3. The whole protocol is then encoded as a
4-tuple:

P= V(ka57kb57k65akab)-<kes’ pr fSp fBl>

wherek,, is the key shared by the server and a third (malicious) principle. The trivial function
fB, can be ignored, so we write simply

P= V(kaSa ka)ke& kab)-<k657 fAlu f51>7 (21)
According to the typing rules in Figure 2.1, the type of this program is:
O F P:T(key x (msg x msg) x (msg — opt[msg]))

As shown in Chapter 1, this protocol is flawed. In the cryptographic metalanguage, an attack
is simply a “bad” scheduler, which can be encoded as a function that takes the program (2.1) as
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argument and tries to reveal the secret text

Attack(P) = 1et (ke,(m.,m?),p;) < P in
val(letopt me < ps([n(A),n(E),73(ml)]) in
letopt m), < dec(ms(me), ke) in
letopt k < getkey(m.) in
letopt i < dec(m?, k) in

some(7))

Since the attack is caused by some replacement of principle identities in messages, to fix this
flaw and prevent the attack, it is sufficient to encrypt those critical identities, so that intruders are
not able to modify them:

Messagel. A — S : A B, {B ka},.
Message2. S — B: A, B, {A kat,
Message3. A — B: {i}x,

The diagram and the encoding of the fixed protocol are given in Figure 2.4. The type of the
protocol program does not change.

2.4.2 Le protocole de Needham-Schroeder

Another example is a famous protocol of asymmetric cryptography — the Needham-Schroeder’s
public key protocol [NS78]. This protocol consists of two principles aiming at authenticating
with each other and generating a session key for later communication. The exchange of messages
is specified as follows:

Messagel. A—B: A
Message2. B — A: {Ny, B}ya)
Message3. A — B: {Na, No}pin)
Messaged . B — A: {Ng}pua)
Message5. A — B: {iln,

Principle A initiates a session by sending its own identity to another prindiplé3 wantsA to
proveA’s identity first. It generates a nonég, (a fresh random number) and encrypts it witls
public key (Message 2) so that onlyycan decrypt this message. must send back this nonce
N, to convinceB that it is A who is talking with it. At the same time4 also wantsB to prove
B’s identity. A then generates another nong and sends it td3 by encrypting it withB’s
public key (Message 3). Since only can decrypt this messagB,should send back the nonce
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A7 B7 {A7 kab}kbs

A 0\
{i}kab
5 \. B

2

fa, = (n(4),n(B),{[n(B), k(kab)] koo ]s fa2)
fa, = {i}kab
sy =

A\z.letopt , < getnum(73(z)) in
letopt z;, < getnum(7s(z)) in
letopt y < dec(7s (), K(xq, 8)) in
letopt 7}, < getnum(fst(y)) in

if xp, = x, then some([n(z,),n(zyp), {s0d(Y) }x(zy,5)])

else error

whereK(z, s) abbreviates

if © = A then ks else if x = B then kp else ks

Figure 2.4: Fixed symmetric key establishment protocol and its encoding
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fa,
fa,

fas

fBy

[Bs

<Il[A], fA2>
Mz}, letopt 7' < getnum(snd(z)) in

some (v (N ). ({[k(Na), £5t ()] }x(arys fas)
M}, - letopt 2 < getkey(z”) in

if 2" = N, then some({i}y,) else error
A\y.letopt 3y < getnum(y) in

some (v (Np).({[k(Np), n(B)] }k(yys B2))
)\{y”}kb.letopt y"

"

< getkey(snd(y”)) in

if y"" = N, then some({fst(y")}x(,)) else error

whereK(z) abbreviates for

if © = A then k, else if x = B then kj else k.

Figure 2.5: Needham-Schroeder’s public key protocol
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N, (Message 4) to convincé that it is B who is talking. Finally, the two principles authenticate
with each other and the non@é§, is agreed by them as the session key.

Encoding this protocol in the cryptographic metalanguage is similar as for the previous sym-
metric key establishment protocol. We first reformulate the protocol as the diagram in Figure 2.5,
then encode every bullet function. Note that we have only symmetric cryptography in the meta-
language, s@k(A), pk(B) are represented by two functions.enc(z, k,) andAz.enc(z, k),
wherek, andk, are private keys oft andB. Finally, we merge these bullet functions in a proper
way and we get the encoding of the whole protocol

P = l/(kavkb’ke)'<)\$‘{x}ka7 /\I.{$}kb, kea fA17 fBl>-
The type of this program can be deduced using the typing rules:

0 F T((msg — msg) x (msg — msg) x key
x (msg x (msg — opt[T(msg x (msg — opt[msg]))]))
x (msg — opt[T(msg x (msg — opt[msg]))]))

For a very long time (around 17 years), this protocol had been regarded as a perfect way
to solve the key distribution and authentication problems, using the public key cryptography
scheme. However, in 1995, a serious flaw was found by Gavin Lowe in this protocol [Low95].
The attack to the protocol is very subtle and it has nothing to do with the adopted cryptographic
algorithms. This is completely a flaw of protocol design.

We demonstrate the attack by the following diagram:

4 12 B
; T ;
: ;. T——F :
=T
{Ny, B},
.
{Nb7B}ka/ :

(N
[ ] :
T %
T .

This is a typical “man-in-the-middle” attackA is trying to talk to B, but all messages are
intercepted by another principle. Instead of forwardingd’s messages t®, £ starts another
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session withB. Thus there are two sessions of the protocol running in parallel — one between
A and E and the other betweel and B. E impersonate$3 in the session witld by reusing
messages that he gets frabhin the other session, so that believes that he is talking with

B. Clearly, both sessions follow exactly the protocol specification, but messagesSfrara
encrypted byr’s public key becaus® believes that he is talking with, so £ can decrypt these
messages. For instanck,can decrypt the fourth message in the right session, and obtain the
critical information — the session key. This attack can be encoded as the following function in
the metalanguage:

Attack(P) = 1let (pkq,pks, ke, (A, my), mp) < P in
let (my,mi) < my(E) in
letopt mg < (Ma}y, .x)m; in
letopt (ms3,m3) < mqa(pke(mz)) in
letopt my < mi(m3) in
letopt ms < (Mz}g, .x)my in
letopt mg <= m2 (pka(ms)) in
letopt i <= (AM{Z}m,.z)me in

some(1)

The point of this attack is that the intrudEris involved in two sessions of the same protocol
at the same time, and he can make use of some messages from one session in the other session,
without breaking the protocol specification. In particular, the third message in the right session is
exactly the third one in the left session. Hence, we can prevent this attack by adding the identity
of the sender into Message 3 of the protocol:

Message3. A — B: {Na, Ny, Ali(n)

Both the attack and the fix to this protocol were proposed by Gavin Lowe [Low96a], and the
fixed version of Needham-Schroeder’s public key protocol, called Needham-Schroeder-Lowe’s
protocol, is given in Figure 2.6, together with its encoding.
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1
{Ny, B}, —
AQ o
{Nm Nb7 A}kb
; — By
Ve

{itn.

: \. B

3

fa, = <n(A)7fA2>

fa, = Maly, letopt 2’ < getnum(snd(z)) in
some((Na)-({[k(Na), £55(2), Alb, oy, S45))
fas, = M2}, letopt 2" < getkey(z”) in
if 2" = N, then some({i}y,) else error
fB, = My.letopty < getnum(y) in

some (V(No)-({[k(No), n(B)]}x, () [52))
fB: = My"}u,-letopt yy < getkey(m3(y”)) in
letopt ¢4 < getnum(3(y”)) in

£ (y5 = Ny and y' = y3)

then some({ﬂi}’(y”)}Kb(y/)) else error
whereK, () andK;,(z) abbreviate for

Ko(z) = if x = B then ky else k.

~
=,
&

Il

if x = A then k, else k.

Figure 2.6: Needham-Schroeder-Lowe’s public key protocol and its encoding




Chapitre 3

Modeles catégorigues

La syntaxe du métalangage cryptographique et le codage des protocoles ont été vus au cha-
pitre 2. Maintenant, nous allons définir dans ce chapitre la sémantique dénotationnelle du mé-
talangage. En général, le lambda-calcul typé pourrait étre interprété dacedgeries carté-
siennes ferméd€CCen abrégé) [LS86, AL91]. Nous suivons cette convention et nous construi-
sons un modele catégorique du métalangage cryptographique. Pour cela, nous devons interpré-
ter deux sortes de primitives : les primitives cryptographiques et la génération de clés. Pour la
premiére, nous adaptons ici des stratégies standard dans la plupart des modéles de protocoles
cryptographiques.

Il est plus difficile de traiter de la génération dynamique de clés. Grace a Moggi [Mog89,
Mog90, Mog91], ce mécanisme est considéré commeftet de bordet par conséquent, elle
peut étre formalisée par la notion dwnade Stark précise cette idée par une monade spécifique
de génération de noms et il montre qu’'un modele catégorique correct de la génération de nhoms
doit satisfaire une liste de propriétés. En particulier, il définit un modéle catégorique basé sur la
catégorie de foncteurs appel8et”, qui satisfait les propriétés. Le métalangage computationnel
de la génération de noms, ainsi que le nu-calcul, peut donc étre interprété dans ce modele [Sta94,
Sta96].

Puisque le métalangage cryptographique est une extension du métalangage computationnel
de Stark, nous pouvons naturellement prendre la caté§etfecomme modéle de notre langage.

Pour cela, nous devons définir d’abord un objet dans cette catégorie pour tesgygeous défi-
nissons aussi la forme canonique du métalangage cryptographique et nous prouvons qu'il existe
un terme en forme canonique (avec la méme sémantique) pour chaque terme du métalangage.

Formaliser la propriété de secret a I'aide de la notion d’équivalence contextuelle est un point
crucial de notre modélisation. Alors gqu’est-ce que I'équivalence contextuelle pour les proto-
coles cryptographigues ? Nous verrons que la définition standard d’équivalence contextuelle du
lambda-calcul ne s’applique pas dans notre métalangage. En nous inspirant de la notion d’équi-

35
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valence contextuelle du nu-calcul définie par Pitts et Stark, nous déciderons d'adapter leur défini-
tion & notre métalangage et a notre modele. Dans ce chapitre, nous n’arriverons pas encore a une
définition finale de I'équivalence contextuelle (qui sera donnée au chapitre 6), mais la discussion
gue nous menerons montra que définir une notion correcte d'équivalence contextuelle dans le
métalangage cryptographique demande réflexion — il faut considérer plusieurs points subtils.
En effet, nous allons montrer dans les chapitres suivants que la catSgofi@’est pas suffi-

sante pour étudier les relations entre les programmes du métalangage, y compris I'équivalence
contextuelle.

Ce chapitre commence par une introduction élémentaire de la théorie des catégories dans
la partie 3.1, ou nous décrivons en particulier lI'interprétation du lambda-calcul dans une caté-
gorie cartésienne fermée et l'interprétation des effets de bord en utilisant les monades. Nous
introduisons le modéle de Stark dans la partie 3.2 et nous définissons ensuite dans la partie 3.3
une sémantique dénotationnelle du métalangage cryptographique, basée sur la cSitéforie
La partie 3.4 parle de la forme canonique du métalangage. Le chapitre se termine par la par-
tie 3.5, qui consiste en une discussion sur la notion d’équivalence contextuelle des protocoles
cryptographiques.
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While Chapter 2 is mainly on the syntax of the cryptographic metalanguage and the encoding
of protocols, we shall define in this chapter its semantics, in a denotational way. It is standard
that typed lambda-calculus can be interpretedcstesian closed categorig€CC for short)

[LS86, AL91]. We follow this convention to construct a categorical model for the cryptographic
metalanguage. For this purpose, we have to deal with cryptographic primitives and key gener-
ation. Encryption and decryption are usually modeled by products in most formal models for
cryptographic protocols and such a strategy is also adopted here.

Dealing with dynamic key generation is more difficult. Thanks to Moggi’s work on the
computational lambda-calculus [Mog89, Mog90, Mog91], this is seen as some ldidkafffect
and can be modeled byraonad Stark specializes Moggi’s work in the name creation monad
and shows that a proper categorical model for name creation must satisfy certain properties. He
defines in particular a categorical model based on the functor cateyofy which satisfies
those properties, so that the computational metalanguage for name creation (consequently the
nu-calculus) can be naturally interpreted in it [Sta94, Sta96].

Since the cryptographic metalanguage is an extension of Stark’'s computational metalan-
guage, it is natural to take the categd®yt’ as model. We then use this category to define
the denotational semantics of our language, by first defining an object for the specific base type
msg. We also define the canonical forms for the cryptographic metalanguage, and prove that
every expression is equivalent to a canonical term (with the same semantics), provided that it
does not return any error (decryption failure for example).

The very essential point of our method is using contextual equivalence to formalize secrecy
property of protocols, but what should be the right notion of contextual equivalence for crypto-
graphic protocols? Indeed, we find that standard definitions for lambda-calculi do not fit in our
case. Inspired by Pitts and Stark’s notion of contextual equivalence for the nu-calculus [PS93a],
we try to adapt their definition to the cryptographic metalanguage and the denotational model.
Note that this kind of equivalence, which states that two values (or terfref)da, are equiva-
lent provided every context of typgmol must give identical results ann and onas, is also called
observational equivalenceWe must stress that it should not be confused with observational
equivalence as it is defined for data refinement [Mit96], wheoglelsare related, notaluesin
the same model as here.

Although this chapter does not arrive finally at a correct definition of contextual equivalence
(the final one will be given in Chapter 6), it indeed shows that defining this notion of equivalence
in the cryptographic metalanguage is not straightforward at all. Several subtle points have to be
taken into account. In fact, as will be shown in later chapters, the categorical wedels
not sufficient for studying relations, including contextual equivalence, between programs in the
metalanguage.
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We start this chapter by a basic introduction to category theory (Section 3.1), where we show
in particular how to use cartesian closed categories to model lambda-calculus (Section 3.1.1) and
monads to model computations (Section 3.1.2). We then introduce Stark’s model in Section 3.2.
By defining objects for some special types like theg type, we obtain in Section 3.3 a de-
notational semantics for the cryptographic metalanguage basé@tdn Section 3.4 is about
the canonical forms of the metalanguage and Section 3.5 is a discussion on what should be the
right notion of contextual equivalence for cryptographic protocols. We end this chapter by a
conclusion on our language — the specification part of this thesis.

3.1 Préliminaires de la théorie des catégories

This section is provided here as an introductory text on categories. We shall introduce some
basic concepts in category theory, like categories, functors, cartesian closed categories, and so
on. These are necessary for understanding the rest of the thesis. Most definitions in this section
are from [BW90, LS86, AL91, Pie91].

A categoryC comprises:

e acollectionObj(C) of objects
e a collectionMor(C) of morphismgarrows);

¢ two operationglom, cod assigning to each morphisifitwo objects respectively called
domainand codomainof f (we write f : A — B to show thatdom(f) = A and
cod(f) = B; the collection of all morphisms with domaift and codomain3 is writ-
tenC[A, B));

e an operatop (compositiof assigning to each pair of morphisrfindg, with cod(f) =
dom(g), a morphisny o f : dom(f) — cod(g), satisfying the associative law: for any
morphismsf : A — B,g: B— Candh:C — D,ho(go f) =(hog)o f;

o for each object4, anidentitymorphismid4 : A — A satisfying the identity law: for any
morphismf : A — A,idgo f = fandfoidy = f.

Example 3.1. The categorySet has sets as objects and total functions between sets as mor-
phisms. Composition of morphisms is set-theoretic function composition. Identity morphisms
are identity functions.P fun is the category with sets as objects and partial functions as mor-

phisms.

Let f : B — C be a morphism in a catego6y then f is saidmonic(or amonomorphism
if, for any two morphismg, h € C[A, B], the equalityf o g = f o h implies thaty = h, and itis
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epic(or aepimorphisnif, for any two morphismg/, 4’ € C[C, D], the equalityy’ o f = h' o f

implies thatg’ = h’. f is aisomorphismif there is a morphismy~! : C — B such that
f~lof=idyandfo f~! = idp. The objects3 andC are said to bésomorphicif there is an
isomorphism between them. For example, in the cate§etythe monomorphisms are just the
injective functions, the epimorphisms are the surjective functions and the isomorphisms are the
bijective functions.

A diagramin a category is a collection of vertices and directed edges labeled with objects
and morphisms of such that if an edge in the diagram is labeled with a morphfisand f has
domain A and codomainB, then the endpoints of this edge must be labeled withnd B. A
diagram is said t@ommutdf, for every pair of verticesX andY’, all the paths in the diagram
from X to Y are equal, in the sense that each path in the diagram determines a morphism and
these morphisms are identical@n

Let C andD be categories. AunctorF : C — D is a pair of operation§,,; : Obj(C) —
Obj(D) andF,,or : Mor(C) — Mor(D) such that, foreacli: A — B,g: B — C'inC:

® Fuor(f) : Fopj(A) — Fyj(B) is a morphism irD;
L4 Fmor(.g © f) = Fmor(g) o Fmor(f);
° Fmor(idA) = idFobj(A)-

Given functorsF, G : C — D, anatural transformation : F — G is a family of morphisms
in the categoryD such that

e for any objectd € C, 54 € D[F(A), G(A)], and

e for any morphismf € C[A, B], 6p o F(f) = G(f) o d4, i.e., the following square com-

mutes:
F(A) — 4~ G(A)
F(f) G(f) -
F(B) —2~ G(B)

Given a functorF : C — D, we write FA for Fy,;(A) andFf for F,,,,,(f), for any objectA
and any morphisnf in C. We define for any categoryan identity functodd; : C — C mapping
every object to itself and every morphism to itself.Af C — C is a functor over the category
C, thenF? : C — C is another functor ovef such thatt? A = F(FA) andF? f = F(Ff) for any
objectA and any morphisnf in C. This can be generalized to defife : C — C for any finite
numbern.



40 CHAPITRE 3. MODELES CATEGORIQUES

An object0 is called aninitial objectif, for every objectA, there is exactly one morphism
from 0 to A. Dually, an object is called aerminal objecif, for every objectA, there is exactly
one morphism fromA to 1. In the categorySet, the empty sef} is the only initial object; for
every set4, the empty function is the unique function frgrhto A. Moreover, each one-element
setS is a terminal object, since for every non-empty dethere is only one total function from
A to S which maps every element of to that single element o, and for the empty set, there
is the unique empty function.

A productof two objectsA and B is an objectd x B, together with two projection morphisms
proj; : Ax B — Aandproj, : A x B — B, such that for any object and pair of morphisms
f:C — Aandg : C — B, there is exactly one mediating morphisifig) : C — A x B
making the following diagram commute:

C

I
/ KRN ,
L Lproin Y proi N

i.e.,proj;o(f,g) = fandproj,o(f,g) = g. If Ax C andB x D are product objects, then for
every pair of morphismg : A — B andg : C — D, the product morphisnf x g : A x C —
B x D is the morphism(f o proj;, g o projs).

A coproductof two objectsA and B is an objectA + B, together with two injection mor-
phismsinly p : A - A+ B andinry g : B — A+ B, such that for any objed and pair of
morphismsf : A — C andg : B — C, there is exactly one morphis(if | g) : A+ B — C
making the following diagram commute:

inly B inrs B

A+ B
|
|
|
v

A
\ {flo -,

C

B

If a categoryC has a product (coproduct) for every pair of objects, we sayGimes (binary)
products (coproducts). The categ@yt has products and coproducts. The product of two sets
A andB is their cartesian product:

AxB={(a,b)|ac A & be B}.
The coproduct is the disjoint union of the two sets:

A+B={1,a)|ac A} U{(2,b)|be B}.
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We shall omit the indice$ and?2 if there is no confusing element, that is, whdrand B are
disjoint.

Let C be a category with all binary products and Jetand B be objects of’. An objectB4
is anexponential objedf there is a morphisneval 45 : (B4 x A) — B such that for any object
C and morphisny : C x A — B there is a unique morphisourry(f) : C — B4 making the
following triangle commute:

CxA

curry(f)xida

evalap

BAx A B

A categoryC is said to have exponentiation if it has an exponerdgdlfor every pair of objects
A andB. The categonSet has exponentiation: the exponentif of two sets4 andB is the set
of all functions fromA to B, i.e., Set[A, B]. A cartesian closed categofysually abbreviated
as CCCQC) is a category with a terminal object, binary products and exponentiation.

3.1.1 Interprétation du lambda-calcul en CCCs

Itis standard that the simply-typed lambda calculus can be modeled in a cartesian closed category
[LS86, AL91], with types as objects and terms as morphisms. 3Lée the signature of the
intended lambda calculus adde a CCC where we choose an objecfor each base typeand
amorphisnx¢ : 1 — [r] for each term constant: 7 € X. [_] denotes the interpretation ¢hof
the lambda calculus. A CCCtogether with interpretations for base types and term constants in
3, is called ax-CCCand denoted b¢y, (we may omit: when it is clear from the context).
Function types are interpreted using exponentiation, i.e., the interpretation of type’ is
the exponential objecﬁtr’]]m. Product types and sum types are naturally interpreted as products
and coproducts af.
We interpret a typing context as a finite productl’it= {1 : 71,...,2, : 7}, then[I'] =
[m1] x - -+ x [m]. The denotation of a well-typed terthi- ¢ : 7 is a morphisn{I" - ¢ : 7] from
[T'] to []. Given a typing derivatiom of the judgment” + ¢ : 7, we define[r] by structural
induction onr:

Ckzn] = [0 2% [,
[CFe:r] = [O]512 [0,
[[F E\pt T T/]] _ [[F]] curry ([I,z:7Ht:7']) [[7'/]] [[T]]’

HF -ty : 7_/]] _ [[F]] ([THty:7—7'], [THta:r]) HT/]] [] o [[T]] ev_al) [[7—’]].
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We shall writel' - ¢ : 7 or even justt in place ofr, since typing derivations are (almost)
isomorphic to the termsthemselves.

Let the intended categoiis; be Set, then the denotation of a type is a set. By selecting a
proper elemenf, in [7] for each term constant: = € 3, we shall easily get a set-theoretical
model for the simply-typed lambda calculus, wh§re— 7'] is the set of all total functions from
[7] to [7']. We describe the valug]p of the termt in the environmenp by structural induction
ont:

[x]p = p(z), wherez: 7 €T,
[Ax.t]p = the uniquef € [r — 7] such that
foranya € 7], f(a) = [t]p[z — al,
[tit2lp = [talp([t2]p)-

More formally, for any typing contexXt, aI'-environmenp, is a map such that for evenry: 7 €
T, p(x) is an element of7]. This is isomorphic to an element [i']. We writep[z — a] for the
environment mapping to « and every other variableto p(y), and[z; — aq, ..., x, — a,] for
environment mapping eaah to a;. We also writeft] instead offt] o when the environment is
irrelevant, e.g.t is a closed term.

Given a signature:, we define a2-CCC A(X), for the simply-typed lambda-calculus, as

follows: the objects oA(X) are typing context¥', a morphism fronT" = {1 : 71,..., 2y : T}
to A = {y1:7,...,Ym : T, } IS @ substitutiory; := t1,...,ym := t,n), wherel' - ¢; : 7;
(1 <4 < m), modulopn-conversion. We often abbreviate a contéxt : 7,...,z, : 7,} to

{z; 77} and a substitutiofz; := t1,...,z, = t,] to [x; := {;]™. The composition of two

morphismdy; .= &;|™ : {Zi 77 }" — {y; : 7/} and [z =) (g™ — {2 7/} is the
substitutionzy := w1 [y; := &|™, ..., z; := wly; := ;]™]. ltis easy to check that(X) is indeed
aX-CCC: the terminal object is the empty contexproducts are disjoint unions, the exponential
is defined byAl = {2 : 0y x -+ X 0y, — T1,... 2 : 01 X - 0y — T} @nd for every constant
c: 7 € %, there is a unique morphisfa := ¢| : ¢ — {x : 7} defining the interpretation of.

In particular,I"-environments are exactly morphisms from the empty cortettI". A(X) is a
free X-CCC [LS86], which means that, for eveBtCCCC, there is a unique representatipr

of ¥-CCCs fromA(X) to C. A representation oE-CCCs is a functor that preserves products,
exponentials and interpretations of each base type and each term con&tant in

3.1.2 Monades et le lambda-calcul computationnel

Moggi’s computational lambda-calculus, as presented in the Section 2.1.3 of Chapter 2, is basi-
cally a simply-typed lambda calculus with some special language primitives, hence a categorical
model for this language is necessarily cartesian closed. But this is not sufficient. According to
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Moggi, a sound categorical model for the computational lambda-calculus must be a cartesian
closed category together withstrong monad

A monad [Mac71] over a category is a triple (T,n, ), whereT : C — C is a functor,
n:Ide — Tandy : T2 — T are natural transformations and the following diagrams commute:

A 724 TA— "4 e <y
Ml o \ H/

idTA idTA
TA—2 > TA TA

If C has products, then a monad odeis said to be @&trong monadf there is a natural transfor-
mationts g : A x TB — T(A x B) for any pair of objectsA and B [Mog89, Mog91].

As in the construction of categorical models of simply-typed lambda calculus, we can in-
terpret the computational lambda-calculus in a cartesian closed categotly a strong monad
(T,n, u,t), with types as objects and terms as morphisms. Notably, the fufici®used to
model the unary type constructdr [T7] = T[r]. The interpretation of the constantsl(_)
and thelet construction is defined as follows:

[T'Fval(t): Tr] =

[r] =7 ] 22 7,
[TFletz <t in.tg (T =
[r] = [ 1] S T > )

T z:mhta:TT']
Mrre T, rpgep AL 1.

A list of monads for concrete forms of computation is given in [Mog91]. We cite here two of
them, both being defined ifiet.

Example 3.2. Exceptions:TA = A + E, whereFE is the set of exceptions:

[Tr] = [r]JUE,
e = [,
. B [t2lplz := [ta]p], i [ta]p € E;
[let x <=t inta]p = { [, it [ € E.

Example 3.3. Non-determinismTA = P, (A), also known as the powerset monad:

[Tr] = Pan(l7]),
[valilp = {[tr},

[letz <t ints]p = U [t2] plz == a].
a€fti]p
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As the simply-typed lambda calculus gives rise to a ffte€CC A(X), the computational
lambda-calculus gives rise tofeee X-let-CCC Comp(X). We defineComp(X) in a similar
way as we define the freE-CCC A(X), with typing contexts as objects and substitutions as
morphisms.Comp(Y) is also equipped with a strong mon&f,n, u, t), which is defined as
follows:

° T[‘:{i‘l ZTTl,...,f‘n:TTn};

o Ty, :=t;]" = [y; := let 1 < Z1 in - - - let &, < Ty, in val(t;)]™;

o nr = [z; :=val(x;)]" : T — TT;

o ur = [7; := let 2} < I; in let o/ < 2} inval(a!)]" : T°T — TT;

e tra = [i’z = val(x,-)]" U [g] =Yy m.T'x TA — T(F X A),

wherel' = {z;77;}" andA = {y; : 7/}"" are arbitrary contexts ang, := ;| is seen as a
morphism froml" to A in Comp(X).

3.2 Le catégorie de foncteursSet”

Stark specializes Moggi's computational lambda-calculus to the specific computation of dynamic
name creation, and he defines a computational metalanguage to interpret the nu-calculus [Sta96,
Sta94]. According to Stark, if a category satisfies certain requirements theteitsal language

will include the metalanguage for name creation. As an example, Stark defines a functor category
Set equipped with a strong monaland shows that it satisfies those requirements, hence it is
sufficient to model the metalanguage.

The cryptographic metalanguage is indeed an extension of Stark’s computational metalan-
guage. All the requirements that are needed for modeling his language are also necessary for
constructing a categorical model for the cryptographic metalanguage. Besides, an option type
opt[7] in our language is naturally interpreted as a coprofiuft- 1, wherel is the terminal ob-
ject. This requires that coproducts exist for every object and the terminal object, not as in Stark’s
categories where the existence of the coproduct of terminal objects is enough. Fortunately, co-
products of any two objects exist in the categSet”.

The categonSet” is a functor category where objects are functors ftbto Set and mor-
phisms are natural transformations between these functors. Hexdhe category of finite
sets and injective functions. Intuitively, objects Bfrepresentcomputation stagessince an
object contains keys (or names) that have been generated at a certain stage. For any functor
A : 7T — Set, the setds is composed of values defined over the keys.iMorphisms inZ and



3.2. LE CATEGORIE DE FONCTEURS SET* 45

their images inSet correspond to substitutions: if: s — s’ is @ morphism ifZ anda € As,
then Ai(a) is the value obtained by substituting every name s with i(n) in the valueu.

This category is cartesian closed. L&tB be two functors frontZ to Set. Products and
coproducts are taken pointwise:

(Ax B)s = Asx Bs, sel,
(A+ B)s = As+ Bs,
(A x B)i(a,b) = (Ai(a),Bi(b)), i:s— s €T,
Ai if m =1,
(A + Bi(m, 2 o, A=
Bi(x), ifm=2.

Exponentials are defined by the standard construction in covariant presheaves [LS86]:

BAs = Set’(I(s,—) x A, B),
BAifs"(j,a")y = fs"(joi,d"),

wherei : s — §',j: s — s € Tandf € BAs, a” € As”. An equivalent way to define the
exponential inSet” is:

Bs = Set? (A(s +_), B(s +_)).
This definition says that a function fros to B defined at stage includes information on how

it behaves at all later stages.
We then consider a strong mon@H 7, 1, t) onSet? defined in [Sta96, GLLNO2]:

e TA = colimy A(_+ ') : T — Set. On objectsTAs = colimy A(s + ') is the set
of all equivalence classes of paifs,a), with s’ € 7 anda € A(s + '), modulo the
smallest equivalence relatiensuch that(s’, a) ~ (s”, A(ids + j)a) for every morphism
j: s — §"inZ. We write[s', a] for the equivalence class ¢§',a). On morphisms,
TAi with i : s — s; € Z, maps the equivalence clags, a] to the equivalence class
[¢', A(i + idg )al.

e Foranyf: A — BinSet?, Tfs : TAs — TBsis defined byT'fs[s, a] = [¢', f(s+5')al.
This is compatible witl~ because is natural.

e 145 : As — TAs is defined byysa = [0, al.
o uas: T?As — TAsis defined byuas[s’, [s”,a]] = [s' + 5", a].

o typs: As x TBs — T(A x B)s is defined byt 4 ps(a, [¢',b]) = [¢', (Ais s a,b)] where
is,s s — s+ s is the canonical injection.

!Note that+ is not a coproduct ir¥. In fact, Z does not have a coproduct. Howeveris functorial in both
components, associative, and has a neutral element.
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A setTA is meant to be the denotation of a computation type. The semantics of a computation
of key generation consists of a set of fresh keys generated during the computation, and a final
value. These are exactly the intuitive meaning‘oinda of a pair(s’,a) in TA. In particular,
if a sets is given before the execution of such a computation, the final valmeist be defined
over the disjoint sums + ¢/, that is, it just uses keys from+ s’.

The equivalence~ means that we care only whether those new keysras not what
exactly they are. In other words, all the keyssirare bound ir: but those ins are free, and by
renaming those bound keys we get equivalent values. Furthermore, if a computation generates
some fresh keys but does not use them, then it is equivalent to the one which does not generate
those keys, i.e(s’ + s”,a) ~ (s, a), for any additional set” of fresh keys. To summarize, for
every(sy,ay), (s2,az) € TAs, (s1,a1) ~ (s2,az) if and only if there is a finite set; and two
morphismsi; : s — sg andiy : so — so such thatd(ids + i1)a; = A(ids + i2)as.

3.3 Interprétation du métalangage cryptographique

Let Nat be the set of integers anBlool be the set of two boolean valuésand ff. We define
functorsN, B andK from Z to Set:

Ns = Nat & Ni:idNata
Bs = Bool & Bi= idBool:
Ks=s & Ki=i,

wheres is an object andis a morphism irZ. These three functors are intended to be denotations
of typesnat, bool andkey respectively.

3.3.1 Dénotation de messages

For the message typesg, we define another functavl : 7 — Set by

e Foreverys € 7, Ms is the smallest set which satisfies the following conditions:

If a € Ks, thenk(a) € Ms;

If « € Ns, thenn(a) € Ms;
If a € Msandk € s, thene(a, k) € Ms;

If a1,a9 € Ms, thenp(ay,az) € Ms.
e Foreveryi:s — s’ € Z, Miis afunction fromM s to M s’ defined by:

— If z = n(a) for somea € Ns, thenMi(z) = n(Ni(a));
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— If z = k(a) for somea € Ks, thenMi(x) = k(Ki(a));
— If z = e(a, k) for somea € Ms andk € s, thenMi(z) = e(Mi(a), Ki(k));
— If x = p(ay, az) for someay, as € Ms, thenMi(z) = p(Mi(ay), Mi(az)).

Indeed, eachd/ s (for eachs € 7) can be regarded as a set of binary trees where an external
node of such a tree is either a null valu# an integer in the se¥at or a key in the set, and
each internal node is denoted by a symhok, e or p, with some constraints (being consistent
with the typing rules for messages in Figure 2.1), e.g., if a node is denoted by a syt
its left child is another message tree and its right child is a key in the, sghich must be an
external node. For instance, a messa@ép(n(i),n(j)), k(kap)), kp) IS represented by:

N
p kp
/.
P k
/N |
1‘1 1‘1 Eap
i J

A function M, for somei : s — s’ € Z, simply maps a message treelifis to a tree inM s/,
replacing each external node accordingMé and K¢, but without changing the tree structure.
SinceNi is an identity function)M just changes external nodes of keys. For instance, the image
of the above tree through/: is the same tree except thay, andk, are replaced by(k,;) and

(k).

3.3.2 Interprétation du métalangage erSet”

As in standard interpretations in cartesian closed categories, we translate types in the crypto-
graphic metalanguage as objectsSef”

[nat] = N, [bool] = B,
[key] = K, [msg] = M,
[rx7] = [r] <[], [opt[]] = [r]+ 1.,
[r-+1 = 71", [T7] = Tl

where we assume that is a terminal object ifSet and1; is a terminal object irSet” defined
by:
VseZ, 1;s={L1l} and Vi:s—s €7, 11i=1idy.
Each well-typed terni” - ¢ : 7 is then interpreted as a morphism frdi] to [7], where
['] = Il..r,er []- In other words|I' ¢ : 7] is a natural transformation such that for every



48 CHAPITRE 3. MODELES CATEGORIQUES

s €Z,[I'+t:]sis afunction from[I']s to [r]s. We then define &-environmenp, for every
contextl” and everys € Z, as a function which maps every variabiéx : 7 € I') to an element
of [r]s.

Note that such an environmemtan be seen as an elemen{bjs and we shall write later on
p € [I']s. When[I']s is an empty set, e.dl, = {z : key} ands = (), we simply mean that there
is no such environment for the$eands. If p € [I']s, we write p[z — a] as an environment
mapping each variable’ : 7 € T to p(z’) and the variable: to the element. We accordingly
describe the meaning of a tefiht- ¢ : 7 over a sets and in an environment € [I']s, as a
value[I' ¢ : 7]sp in [7]s, by induction on typing derivations, as shown in the Figure 3.1 and
the Figure 3.2. We writft]s instead offt]sp when the environmeni is irrelevant, e.g.t is a
closed term.

We are using here some kind of free-algebra for interpreting those operations sghe
type. In particular, for the two cryptographic primitivesc anddec, a basic algebra property is
required to hold:

Vs €Z, a€ [msg]s, ke€s, [dec]s([enc]s(a,k), k)=a.

As we have mentioned when introducing theg type in our language, by defining such a gen-
eral type for messages, we can easily extend our work to a richer language with more specific
cryptographic primitives. All we need to do here is to redefine the denotation efd¢héype so

that it satisfies those specific algebraic properties for cryptography.
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3.4 Formes canoniques

In this section, we define the canonical form of terms in the cryptographic metalanguage and
show that every term in the metalanguage has an equivalent canonical term (with the same se-
mantics). Precisely, for every well-typed teimt ¢ : 7 and for everys € Z andp[I']s, if
[t]sp # L, then there exists a terint- ¢’ : 7 in canonical form such thdt]sp = [t'] sp.

A term in the cryptographic metalanguage is said to be ircimnical formif it is a term
defined by the following grammar:

u = x|n|true|false| (u,u) | some(u)|m |
let s < newinval(u) | Axy - Axp.uty -ty (mym' > 0)
n(z) | n(n) | getnum(u) | k(x) | getkey(u) | enc(u, z) | dec(u, ) |
b, ) | £5t(u) | snd(u),

wheren are integer constant§,(1,2,...) andty,...,t, are terms in the metalanguage. The
termlet s <= new in val(u), wheres = {z1,...,x,} (n > 0) is a set of bound variables of
typekey, abbreviates

let 1 < new in - - - let x,, < new in val(u).

We shall also writes : key for the typing contexts; : key,...,z, : key, and[s+ s] for the
environmenfx; — z1,...,z, — ], where we regard keys variables as identical as keys.
Because all canonical terms must be well typed, it is easy to check that canonical terms of

type key must be variables (the constardw is of type Tkey, notkey, and a terngetkey(¢) has
typeopt[key], notkey either).enc(m, z) anddec(m, x) are canonical forms for encryption and
decryption wherer must be a variable. In particular, in a canonical decryption tésa{u, x),

u must be of typensg, so it cannot be decryptiafec(v’, '), £st(u’) or snd(v’), because they

are of typeopt[msg]). If u is any other form besides an encryption, the valudef(u, ) is
always L, so we may further require that in canonical foémic(u, x), v must be of the form

enc(u/,z’).

Lemma 3.1. For everys € 7 and every environmemte [I']s, if u;, ug are two canonical terms
such thatl',z : 7 uy : 7 andT F ug : 7 hold, then eithef[u;[uz/x]]sp = L, or there is
another canonical term such thafl” - « : 7/ hold and[u]sp = [u1[uz/z]]sp.

Proof. We prove the statement by induction on the structure;ofOnly some particular cases
are listed here.

o u; = A\xy.--- Axp.ufty - -ty By induction, there exists canonical tersff such that
[} [ug/x]|]sp = [uf]sp, then[ui[ug/z]]sp = [Az1. - Az uft] - - t] ] sp, wheret| =

tl[UQ/fE], ,tfm, = tm/[uQ/x].
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e u; = let s; < newinval(u)): Clearly,I',s; : key,z : 7 F «} : 7/ holds, then by
induction, there is a canonical teraf such thatl’, s; : key,z : 7 F «} : 7/ holds and

[ui](s + s1)inls s, (p) = [uafuz/2]](s + s1)inlss, (p), if [ur[uz/z]] (s + s1)inls s, (p) #
L. ThereforeJu;[uz/z]]sp = [Let s; < new in val(uf)]sp.

e u; = dec(u},y): By induction, if [u}[uz/x]]sp # L, there is a canonical termf| such
that[u]]sp = [u}[uz/z]]sp. Then[ui[uz/z]]sp = [enc(uf,y)]sp, whereenc(uf,y) is
canonical.

e u; = dec(u),y): If [uf[uz/z]]sp # L, by induction, there is a canonical terj such
that[u]]sp = [u)[uz/x]]sp, SO[ui[uz/z]]sp = [dec(u],y)]sp. Clearly, the type of.
must bemsg. The only case wheifpi; [ua/z|]sp # L is thatu! = enc(u!’, z), for another
canonical termu’, andp(y) = p(z). In this case[u;[uz/x]]sp = [u]"]sp. In any other
caseJuqug/z]|Jsp = L. O

Proposition 3.2. Lett be a term such thdt I ¢ : 7 is derivable. For everg € Z andp € [I']s,
if [t]sp # L, there exists a canonical termsuch that” - » : 7 holds and[t]sp = [u]sp.

Proof. We prove the statement by induction on the structure of teivle show only the cases of
functions, applications, computations and two message operations — encryption and decryption.
Other cases are standard.

e ¢ = A\z.t": Assume that is of typer — 7/ and letf = [t]sp. By the definition of]_]sp,
foreveryi : s — s’ € 7 and every value € [7]s/, fs'(i,a) = [t']s'([T]i(p)[x — a]) =
[«']s'([T]é(p)[z — a]), where by induction: is a term in canonical form. Theke.u is
also a canonical term affdz.u]sp = [Az.t]sp.

o t = tity: [t]sp = ([t1]sp)s(ids, [t2]sp). By induction,[t;]sp = [ui]sp and[ta]sp =
[uz]sp, whereu; anduy are two canonical terms.,; must be of a function type, so it is

— either a variablg € T, then[t]sp = ([y]sp)s(ids, [t2]sp) = [yt2]sp, andyts is in
canonical form;

— or an abstractionx; - - -z, .ujt] - - - £, then

[tlsp = [Mxa---azpaity---6,]splzr — [uz]sp]
= [zo--zp. (W) fug /i)t -t ] sp
= a2 anyt! -t ]sply = [ui[ua/z1]]sp]
= [Mea--zpyt! -t ] sply — [ui]sp]
(by Lemma 3.1/ is canonical andu{]sp = [u}[u2/z]]sp)

= ﬂ/\avg'--acun.u’{tlll'--t',i1 sp
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wheret! = t/[us/x] (i = 1,...,m), and by Lemma 3.1y} is canonical, then
Azg - xpuft] - t7 is canonical as well.

e ¢t =new: [new]sp = [let y <= new in val(y)]sp, for some variableg ¢ I'.

e { =1let x < t; in to: By induction, there are canonical termst s; < new in val(u;)

andlet s <= new in val(ug) such that

[ti]sp = [let sy < new inval(uy)]sp

= [s1, [ur] (s + s1)inls 5, (p)[51 7 51]]

and

[t2](s + s1)p’ = [let so < new inval(usg)](s+ s1)p

= [s2, [u2] (s + 51+ s2)inlsys, 5, () 527 53]

wherep’ = inl, g, (p)[z — a] for everya € [7](s + s1) (assuming that; is of typeT7’).
Leta’ = [ui](s + s1)inls 5, (p)[ST — s1), then

[7']inlsts, 5, (a") = [ur](s + s1 + s2)inls, 51 + sa(p)[s1 7 51),

hence,

[ua](s + s1 + s2)inlsy s, s, (inls s, (p[z — o'])[5T7 51,5 53]

= [u2l(s + s1 + s2)inks 5, 45, (p)[z — [7']inlyts, s, ('), 577 51,52 53]

= [uz[u1/z]](s + s1 + s2)inls 5, 15, (p)[5T = 51,52 = 52)

= [[u'ﬂ (s + 51+ s2)inls g, 45, (p)[51 7 51,52 = 52),

where by Lemma 3.1/ is a canonical term such that sq, key, s, key - «/ : 7 holds.
According to the interpretation in the modg#t”,

[t]sp = [let z <t ints]sp = [let s1 + s3 < mew inval(u')]sp.
Clearly,let s; + sy < new in val(u’) is canonical.

t = enc(t1,t2): by induction, there are canonical terms anduy such thatf¢,]sp =
[ui]sp and[ta] sp = Juz]sp, then

[11sp = e([t:sp. [t2]5p) = e(lur]sp, [uzlsp) = [enc(ur, uz)]sp.

In particular,us is of typekey, so it must be a variable, sac(u1,us) is canonical.
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o t = dec(ty,t2): If [t1]sp = e(a, [t2]sp) for somea € [msg]s, by induction there is a
canonical termenc(uy, ug) such thaft;]sp = [enc(u1, u2)]sp, then[t]sp = a = Jui]sp
andu, is canonical. Otherwis€t]sp = L. 0

Lemma 3.3. For every ternmt such thatw : key - ¢ : msg is derivable,[t]sp € [msg]p(w), for
everys € Zandp € [key]s.

Proof. By Proposition 3.2, we simply consider the canonical form @enoted by:), and since
there is no free variable ofisg type andnat type, u could only bek(z), k(n), enc(uy, us) Or
p(u1,u2). Then we can prove the desired property by induction on the structure of O

Given a typing context” and an environment € [I']s, we say that a value € [7]s
is definable if there is a term¢ such thatl’ - ¢ : 7 is derivable, andt]sp = a. Note that
p(w) C s, hence[msg]p(w) C [msg]s. The above lemma actually states the definability of
elements infmsg]s — a value in[msg]s is definable if and only if it belongs tmsg]p(w).
Definability will be largely involved in the discussion of Chapter 6, where we shall concentrate
on the completeness of logical relations.

3.5 Equivalence contextuelle

Contextual equivalence is a crucial notion in our approach, since we use it to describe security
properties of protocols. Although there are standard definitions in lambda-calculus, it turns out
that they do not fit well in the cryptographic metalanguage. Indeed, contextual equivalence for
cryptographic protocols is very subtle and requires careful treatment.

We start by defining contextual equivalence in the simply-typed lambda-calculus. Contexts
are simply programs, but we are not interested in arbitrary programs. We do not get concrete
sense from values like functions or cipher-texts, so we consider only those programs that return
observable values. Fix a s®bs of so-calledobservation typesUsually, Obs consists of any
base type with decidable equality. For instartesy| andnat in the cryptographic metalanguage
are observation types, but typesy andmsg are not. Usually, in a set-theoretic model of simply-
typed lambda calculi, we say that two valuasas € [r], for the same type, arecontextually
equivalent written asa; ~, as, if and only if, whatever the ternt such thatr : 7+ C : o
(o € Obs) is derivable,

[Cl[z = ai] = [C][z — ag].

Two closed termg; andt, such that- ¢; : 7 andt ¢y : 7 are derivable, are contextually
equivalent (written as; =~ t), if and only if their denotations (in the set-theoretical model) are
contextually equivalent.
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Intuitively, this (essentially standard) notion captures the fact that we would like to consider
t1 andt, as equivalent provided, whatever the question we ask about them, the answer is the
same fort; andte. Asking a question aboutmeans executingin a context (a.k.a., an operating
system)C with an observation typéyool for example, i.e., runnin@ whenzx takes the value of
t and watching the output. If the answer differs foe t; and fort = t, in the contextC, then
there is an observable difference betwegandts.

Contextual equivalence for the key generation monad

Defining contextual equivalence in the cryptographic metalanguage (and hence in the categorical
modelSet?) is a bit tricky. First, we have to consider contekif type To (o € Obs), not
of typeo. Intuitively, contexts should be allowed to do some computations; were they of type
o, they could only return values. In particular, note that contéxssich thatr : Tr = C : ois
derivable, meant to observe computations at typeannot observe anything. This is because the
only way we can make use of values of computations in the metalanguage is to put computations
in the 1let construction, while thélet) typing rule only allows us to use computations to build
other computations, never values.

Another tricky aspect is that attackers in the metalanguage are actually modeled by contexts
where a protocol can execute. Hence we cannot take coritekts only depend on one variable
x : T as before. We must indeed assume thatn also depend on an arbitrary set of keys, keys
disclosed to contexts (attackers). Given kgys . ., k,,, the only wayC can be made to depend
on them is to assume th@thasn free variables:, . .., z, of type key, which are mapped to
k1,...,kn. (Itis more standard [PS93a, AG99] to consider expressions built on separate sets of
variables and keys, thus introducing the semantic notion of keys in the syntax. It is more natural
here to consider that there are variablgsmapped, in a one-to-one way, to kdys.) Lets’ be a
set of keys containing, . . ., k,, letw’ be{z1,..., z,}, andi’ : w’ — s’ the injection mapping
eachz,, to k,, (1 < m < n). We shall use’ to denote the environment mapping every variable
z; 10 k;:

i =21 k1, .., 20— k.

We then consider contextssuch that’ : key,z : 7 - C : Tois derivable, evaluatgC]s'i'[z —
a1] and compare it witfiC] s'#’[x — as] to decide whethet; anda, are contextually equivalent.
This represents the fact th@tis evaluated in a world where all keys shhave been created, and
whereC has access to all (disclosed) keys'ifw’).

This definition is not yet correct, as this would requifeanda, to be in[r]s’, but they are
in [7]s for some possibly different setof keys created during the evaluationagfandas. This
is repaired by considering a coercipril, wherel : s — s’ is an injection inZ. We then arrive
at the following definition of Contextual equivalence:
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Definition 3.1. a1, ay € [7]s are contextually equivalent at, written asa; ~£ as, if and only
if, for every finite set of variables’, for any injections’ : w’ — s’ andl : s — s, for every
termC such that

w' :key,r:7FC:To, (o€ Obs)

is derivable,
[C]s" [z = [r]i(a1)] = [C]s" [z — [r]i(a2)].

This notion is inspired by [PS93a, Definition 4]. Here we consider only contexts having ac-
cess tall keysing/, i.e.,i’(w’) = s/, and we lose no generality by this simplification. Moreover,
we can just equate’ with s, thena; ~2 ay if and only if, for every injection] : s — ¢/, for
every termC such that

s’ key,r:7FC:To, (o€ Obs)

is derivable,
[Cs'idy [z + [7]i(a1)] = [C]s'idy [z := [7]i(az)]

where we see theariablesin s’ as denoting th&eysin s’ here, equating keys with variables.



Chapitre 4

Relations logiques

Il n’est pas facile de prouver I'équivalence contextuelle directement a cause de la quantifica-
tion universelle sur les contextes. Heureusement, dans le lambda-calcul, nous pourrons déduire
I'équivalence contextuelle en utilisant une technique appabiions logiquesC’est un outil
puissant des lambda-calculs typés qui permet de prouver de nombreux résultats importants dans
ce domaine (voir [Mit96] pour une liste de résultats qui peuvent étre prouveés a l'aide de relations
logiques).

Essentiellement, une relation logique est un ensemble de relations, une pour chaque type, et
les relations sont définies par récurrence sur les types. Le point crucial est que deux fonctions
(forcément du méme type) sont reliées si et seulement si les images de deux données reliées
sont reliées. En général, les relations logiques sont définies d’'une fagon dénotationnelle [Plo80,
Mit96] et la construction sur les catégories cartésiennes fermées permet de déduire les relations
logiques des lambda-calculs simplement typés. Avec cette construction, nous pouvons définir les
relations logiques sur presque tous les modeéles concrets des lambda-calculs simplement typés,
par exemple sur les modeéles basés sur les ensembles ou sur la catégorie de fSatteurs

Pourtant, cette construction générale n’est pas suffisante pour déduire une relation logique
d’'un langage avec les types monadiques, puisqu’elle ignore la présence éventuelle de monades.
Cette difficulté a été réglée par Goubault-Larrecq, Lasota et Nowak dans [GLLNOZ2], ou ils défi-
nissent une construction générale de relations logiques monadiques sur les catégories avec mo-
nades. Ainsi, ils montrent que certaines conditions doivent étre satisfaites pour définir les rela-
tions logiques monadiques. lls appliguent leur méthode a de nombreuses monades concretes, y
compris celle du model&et?, et ils obtiennent des relations logiques concrétes pour des effets
de bord divers.

Pourtant, nous observons que le modgée’ n’est pas suffisant pour étudier les relations
entre les programmes de notre métalangage, donc nous ne pouvons pas déduire sur cette catégorie
des relations logiques assez puissantes pour le métalangage cryptographique. Afin de définir une

57
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relation logique pour la monade de génération de clés, nous avons besoin d’'une catégorie plus
riche, c’est-a-dire d’'une catégorie avec plus d’informations.

Le chapitre 4, ainsi que le chapitre suivant, porte sur la construction des relations logiques du
métalangage cryptographique. Cela comporte tout d’abord une discussion sur ce que doit étre la
catégorie correcte pour dériver les relations logiques.

Les deux premieres parties sont des parties préliminaires sur les relations logiques. La par-
tie 4.1 comporte une définition standard des relations logiques du lambda-calcul, notamment
la construction catégorique basée sur les catégories cartésiennes fermées. Pour exemple, nous
montrons comment dériver une relation logique sur la catégtwié (sans monade) selon la
construction générale. Nous étendons ensuite la construction pour déduire les relations logigues
monadiques sur les catégories avec monades. Plusieurs exemples sont donnés dans cette partie,
y compris la monade de génération de clés (sur la catégeti®). Pourtant, dans la partie 4.3,
nous verrons que les relations logiques dérivées sur le medéfeest trop faible — nous ne pou-
vons pas relier des programmes qui sont équivalents contextuellement d’'une maniére évidente.
Nous définissons alors une nouvelle catégSee? ~ et la construction des relations logiques sur
cette nouvelle catégorie est exposée dans la partie 4.4. Nous arrivons donc a une relation logique
du métalangage cryptographigue dans la partie 4.5, en définissant les relations des types bases,
notamment du typensg. Nous Vvérifions aussi quelques propriétés de cette relation logique.
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Contextual equivalence is not easy to prove directly, notably because of the universal quan-
tification over an infinite number of contexts. In typed lambda-calculi, we are usually able to
deduce contextual equivalence using a technique clagdal relations This is a powerful tool
in typed lambda-calculi, which allows us to prove a number of important results in this domain
(see [Mit96] for a list of results that can be proved via logical relations).

Essentially, a logical relation is a family of relations, one for each type, defined inductively.
The crux is that relations for functions must be determined from the relations for arguments
and results, in a way that guarantees closure under application and lambda abstraction. Logical
relations are usually defined in a denotational way [P1o80, Mit96]. In particular, the construc-
tion based on cartesian closed categories [MS93, MR92] defines a general way for constructing
logical relations in typed lambda-calculi. Following this construction, we can define logical
relations over almost all concrete models of typed lambda-calculi (necessarily sound), e.g., a
set-theoretical model or the functor categSwut”.

However, this general construction is not enough to construct logical relations for a language
with monadic types, since a CCC is not equipped with a monad in general, hence there is no
standard way to derive relations for monadic types. This was mended by the work of Goubault-
Larrecq, Lasota and Nowak [GLLNOZ2]. They define a general construction of logical relations
over categories with monads, and show that for defining such logical relations, the model must
satisfy certain properties. They also apply this method to a number of concrete monads, including
the modelSet?, and obtain concrete logical relations for various forms of computation.

However, we observe that the mod®d¢Z is indeed insufficient for the study of relations
between programs of the metalanguage, hence it is insufficient too for us to define logical rela-
tions for the cryptographic metalanguage. In order to define logical relations for dynamic key
generation, we need a category with more information.

Chapter 4 and Chapter 5 are mainly about deriving logical relations for the cryptographic
metalanguage. This includes in the first place a discussion on what should be the right category
for deriving logical relations.

Section 4.1 and Section 4.2 are two introductory sections. Section 4.1 is about the standard
definition of logical relations, in particular the categorical construction in cartesian closed cate-
gories. As an example, we also show how to follow the categorical construction to derive a logical
relation over the categor§et” (without monad). Section 4.2 then extends this construction to
categories with monads. Some examples are also given in this section, notably the dynamic name
creation monad (the modskt” with monad). Since logical relations derived over this category
are indeed too weak to recognize some obviously contextually equivalent programs, we define
a new categonySet’  in Section 4.3. Section 4.4 shows how to derive logical relations over
this new category. By defining relations for base types, notablynigetype, we then arrive at
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a logical relation for the cryptographic metalanguage, in Section 4.5. Some properties are also
checked about this logical relation.

However, logical relations derived over the categSiat’ are still too weak. We start
Chapter 5 by a counter-example showing the weakness of the catEgomen in Section 5.1
we revise€Z " by adding some constraints and call the revised categ@ry. In Section 5.2, we
show thatSet?Z " is the right category for deriving logical relations for the cryptographic meta-
language. We arrive finally at a cryptographic logical relation for the metalanguage in Section 5.3
and check certain properties. We show that this logical relation can be used to verify protocols in
Section 5.4, by checking the two protocols presented in Chapter 2. In Section 5.5, we do some
comparison with logical relations for the nu-calculus. We in particular show that logical rela-
tions derived over the categoSet”™ ~ are equivalent to Stark’s (denotational) logical relations
[Sta94].

4.1 Relations logiques

Consider a set-theoretical model of the simply-typed lambda calculus. A (bingigal relation

is a family (R ), type Of binary relationsk ; on 7], one for each type, which are defined by
induction on the type structure. In particular, two functions are related if and only if they map
related arguments to related results. Precisely, for every pair of functioris € [ — 7'], the
following condition must be always satisfied:

(Log) f1 RT—>7” f2 < Vaj,as € [[T]] - ap RT as = fl(al) RT/ fg(CLQ).

This is the standard definition of logical relations in thealculus [Mit96]. We writea; R as
to say thati; andas are related by the binary relation.

Note that there is no constraint on relations for base types. In a simply-typed lambda calculus
with only base types and function types, once the relati®psfor any base typ#, are fixed,
the condition above force(sRT)Ttype to be uniquely determined, by induction on types. It is
certainly possible to derive relations for other complex types by induction, for example, two
pairs are related if and only if the components are related respectively.

The (Log) condition entails notably the so-calledsic lemmaTo state it, first say that two
I'-environments, po arerelatedby the logical relation, in notatiop; Rr pe, if and only if
p1(z) R, p2(x) for everyzx : 7 in T. The basic lemma states thaflif- ¢ : 7 is derivable, and
p1, p2 are two related -environments, thefit]p; R, [t]p2. This is a simple induction on (the
typing derivation of) (see [Mit96] for details).

We are interested in the basic lemma because, as observed e.g. in [SP03], this implies that
for all logical relations that coincide with equality on observation types, two terms with related
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values must be contextually equivalent. More precisely, assuméthat equality on[o] for
everyo € Obs. Take the simple notion of contextual equivalence in simply-typed lambda-
calculi, i.e., for any pair of termsg , t5 such that- ¢; : 7 andr t, : 7 are derivablet; =, ¢» ifand

only if, for any termC such thatz : 7 C : o (o € Obs) is derivable[C][x — [t1]] = [C][z —

[t2]]. Then, if[t1] R: [t2], we conclude that; ~; t5. Indeed, by the basic lemma, for every
such thate : 7 = C : o is derivable ¢ € Obs), it holds that[C][z — [t1]] Ro [C][x — [t2]].

i.e., [C][z — [ti]] = [C][x — [t2]] since R, is equality.

Categorical generalization

The standard definition of logical relations can be derived from a general construction over CCCs,
using the notion of sconing [MS93]. Fix two categorieandC and a functot_| : C — C. The
comma categoryC | |_|) is the category whose objects are trip{és f, A), with f : S — |A]

in C, and whose morphisms are pajts v) : (S, f, A) — (S, f, A') withu : S — S’ € C and
v:A— A’ € C, such that the following square commute<in

s —L 14
P Al

This category is also called tteeone ofC overC. The second projection functér : (C |
|_|) — C (also seen as a forgetful functor) maf#s f, A) to A and a morphismu, v) to v.
The full subcategory of this scone consisting of all objéétsf, A) with f a mono is called the

subscone of overC, denoted bySubsconeg.

A remarkable feature of sconing is that it preserves almost all additional categorical structures
thatC might have (see [FS90] for further discussion). In particular, if Eb#ndC are CCCs
andC has pull-backs and if the functor| preserves finite products, thSubsconeg is cartesian
closed as well [Laf87, MR92]. Supposé = (S, f, A) andY = (5, f/, A’) are two objects in
SubsconeS. The exponential’ ¥ is constructed as followsr X = (R, h, A'4), together with a
morphismg, : R — 5’9, such that the following diagram is a pull-backah

R— I |A™A

g0 92

S’SCL) \A’]S
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wheregy, go are the unique morphisms making the following two diagrams commute:

id
S’ % S&)Sl , ‘A,A| % S ! Xf |A1A| « |A|
glxidL [f’ ggxidt |eval|
’A/|S « geval eval ‘Al| |A/|S % S eval ’Al‘

and it can be verified that, is a mono, henceé is a mono as well. The application morphism is
defined byevalx y = (evalg s o (go x idg), evaly 4/). This is indeed a morphism from X
toYin Subsconeg because the following diagram commutes:

Rx S |AA| x |A] -
goxid |A4| x S | A4 x
lgzxid
id
S'9 x § —— N ’A/|S x S leval|
eval
eval
s . 4]

The uniqueness property of exponentiation also holds (see [MR92] for the detailed proof).

Now letY, be the set of all base typesil) seen as a discrete category and’lee a>-CCC.
As shown in Section 3.1.1, there is a unique representétifynfrom the freex-CCCA(X) toC.
Clearly, the following diagram commutes:

Sy ——== (D)
[[_ﬂb lﬂ_ﬂc )
C

where[_], is the functor representing the intended interpretation of base ty@edNow assume

C is anothe:-CCC, such thaf' has pull-backs. Let | be a functor fronC to C that preserves

terminal object, finite products and interpretationsifi.e., [b], = [b].. Then Subscone§

is also aX-CCC, with([b], id, [b] ) as the denotation for base typand([c]., [c].) as the

denotation for term constant Assume we are given a functor frol), to Subscone$, i.e., a

collectionR;, of objects inSubsconeg, one for each base tyge Then there is a unique repre-
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sentatiorR of -CCCs fromA(X) to Subscone§ such that the following diagram commutes:

Sy = A(Y)

(Rb)bEE‘/ /

Subscone$

Now the crux of constructing logical relations in the mo@es as follows. The forgetful functor
U : Subscone§ — C, which maps an objedtS, m, A) to A and a morphisnju, v) to v, is also
a representation 0£-CCCs. It follows that/ o R is a representation aL-CCCs again, from
A(X)toC. If Uo (Ry)sex = [_],, then by the uniqueness property [of] ., we must have
UoR =[] ie., the following diagram commutes:

A%)

/ luc . (4.1)

Subscone§ - €

LetC = Set,C = Set x Set and let|_| be the functoid x id, whereid denotes the identity
functor. Every binary relatio§ C A; x A; hasa representatia(nf, 7r§> : S — Ay x Ay, where
the arrow is the inclusion induced by two projections: S — A; andrs : S — Aa. R(7) is of
the formS — [] x [r], where[_] is the interpretation of lambda terms in set-theoretical models
([_e = ([, [L])), andS, up to isomorphism, is just a subsetfef] x [r]. Then(R:)(; type)
behaves like a logical relation: the object part of fun@@oyields logical relations (or extensions)
in set-theoretical models. In particular, the fact tRapreserve exponentials states {ieg)
condition:

(f1, f2) € R(T — 7') <= V(a1, a2) € R(7) - (f1(a1), fa(az)) € R(7);

the morphism part of functoR maps each morphisiiy := ¢] : I' — {y : 7} in A(¥), namely
a typed terml” + ¢ : 7 modulo 8n, to a morphism in the subscone, i.e., a pairv), where
v=([T'Ft:7],[I'Ft:7]) according to the commuting diagram 4.1. The fact thav) is a
morphism, i.e., the following diagram commutes:

Rp——[I] x [I'] ;

u‘/ Jv:([FI—t:T]],[[FI—t:T]])

Re———[r] x 7]
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states the basic lemma: for any pair of environmentand p-,
(p1,p2) € R(I) = ([L' Ft:7]p1, [T Ft:7]p2) € R(7).

Now consider the functor categoSet’. LetC = Set? andC = Set? x Set’. Clearly,
Set’ has pull-backs, defined pointwise. Objects of the subsconeSevémive rise taZ-indexed
Kripke logical relationsfMM91]. Precisely, every relation in ab-indexed Kripke logical rela-
tion is indexed not only by a type, but also by a seh Z. This extra index is usually called
aworld, which is also seen as a representation of a computation stage. In the case of dynamic
key generation, a world is just a set of keys that have been generated at that stage. If there is a
morphismi : s — s’ € Z, we say thatk is asmaller worldands’ is alarger world. Note that
a smaller world does not mean a smaller set here, but a non-larger set, and similar for a larger
world.

As an object in the subscorfatbsconel<, ., is a representation of a binary relation, an
object (7, 75) : S — A; x Ag (S, Ay, Ay € Set?) in the subscon@ubsconegzﬁXsetI is
a representation of a series of binary relations, such that forsagyZ, (77, 75)s : Ss
Ai1s x Ags is an inclusion (up to isomorphism). In other wordsijs a family of relationsS's
betweenA;s and A,s, functorial ins, and the functoriality requires that

Vi:s— s €T (a1,a2) € Ss = (Ayi(ay), Asi(az)) € Ss'.

This is the so-callednonotonicityproperty of Kripke logical relations. Intuitively, it says that
every related values at a smaller world must remain related when they are lifted to a larger world.
Exponentials in the SUbSCOf&leCODegigxsetI define relations for functions in Kripke
logical relations, which are slightly different from those in standard logical relations. Consider
the exponentiat ¥ = S < B;41 x By4?, whereX = S «— A;xAsandY = S < B; X Bs.

For anys € Z and for any pair of functiong, € B14's, fo € By?s (recall that in the category
Set”, f; is a natural transformation such that for evéry s — s € Z, f1s' is a morphism

fis' : Z(s,s'") x A;s' — B;s'):
(fl, f2) € Ss <—
Vi:s—s €I -Va € A1s',as € Ays'-
(a1,a2) € Sps’ = (f15'(i,a1), f25'(i,a2)) € Sps'.
This is the so-calledomprehensioproperty of Kripke logical relations, which means that related
functions at some world should map related argumanésy larger worldto related results.

4.2 Relations logiques pour les types monadiques

Defining logical relations for Moggi’'s computational lambda-calculus follows the same pattern,
but we need to consider thee X-let-CCCComp(X) over Y, instead ofA(X). Similarly, we
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get the following commuting diagram,

Sy —— = Comp(X)

Mluc .

C

where(C is a ¥-let-CCC, and[_] . is a representation df-let-CCCs, i.e., a functor that pre-
serves products, exponentials, interpretations of constants, and the strong monad (functor, unit,
multiplication, strength).

We then nee@ubscone§ to be ax-let-CCC to establish the diagram

> Comp(Y)
(Rb)beZ‘( /
Subsconed

Thatis, we need to lift a strong moné&d, 7, 12, t) onC to another mona(rl’, 77, 7z, t) onSubscone&
such that the following diagram

T
Subscone§ —— Subscone§

Ul T iU (4.2)

commutes, i.e.To U = U o T. Moreover, for any objecK € SubsconeS, Uijx = nux and
Unx = pyx- This amounts to the requirement that the following two diagrams commute:

T2UX

A

UX —>UTx
UTX <5 UT?X
where by =—= we mean the identity between two objects by (4.2).

According to [GLLNO02], to lift a strong monadr, n, 1, t) onC to Subsconeg, we need:

e a categonC with explicitly given finite products and natural isomorphisinanda:
Y4:1xA— A aspc:(AxB)xC—Ax(BxC)

forany A, B,C € C,
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e a functor|_| : C — C, preserving finite products and natural isomorphisms (namely
mappingy anda in C to vy anda respectively);

e astrong monadT,n, u,t) onC, related to( T, n, 1, t) by a natural transformation (called
amonad morphisint o : T|_| — |T_| making the following diagram commute:

id‘A‘XUB

|A| x T|B| |A| x |TB| == |A x TB|
t|A\,\B\l J/ItA,B\

T(|A| x | B]) = T|A x B IT(A x B)|

e amono factorizatiorsystem orC, which is essentially an epi-mono factorization [AHS90]
without the requirement for epis. Formally, a mono factorization system is given by two
distinguished subclasses of morphismdnthe so-calledoseudoepis —= and the
so-calledelevant monose—— . The latter must be monos, while the former are not nec-
essarily epis. Both classes must contain all isomorphisms and be closed under compaosition
with isomorphisms. Each morphisfnin C must factor ag’ = m o e for some pseudoepi
e and some relevant monna. For each commuting diagram as the one on the left, there is
a unique diagonal making both triangles commute in the right diagram:

L

e both T and finite products preserve pseudoepis.

All these requirements guarantee the correctness of the lifting of strong rffaig&gdo Subsconeg.

The detailed construction can be found in [GLLNO2]. We only summarize the definition of the

lifted monad(T', 7, 7z, t) on Subscone§:

o for any object(S, f, A) € Subscone§, T(S, f, A) = (S,ms.4, TA) such that

TS o T4

esyAi \LO—A

ms, A

§o—|TA]

commutes, for some pseudoegi;

& was named ‘distributivity law’ in [GLLNO2]. We renamed it as one might confuse it with a distributive law by
Beck [Bec69].
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e for any morphism(u,v) : (S, f,A) — (', f/, A’) € Subscone$, T(u,v) = (i, |Tv|)
whereu is the unique morphism making the following diagram commute:

TS 2 3
Tu Ims,A
TS’ © |TA

es',A'i J{Tv|
}) msl’A/

Gie A

o for every object(S, f, A), 1(s,r,4) = (es,.a°ns,|nal) is @ morphism from(S, f, A) to
T(S, f, A, i.e., (S, ms.a, TA);

o for every objecS, f, A), fi(s s,a) = (k,|Tal) is @ morphism from(S, mg 4 T°A) to

(S, ms.a, TA), where(S,m’, T2A) = T(S,mg., A) = T2(S, f,A) andk : S — S'is
the unique morphism making the following right diagram commute,

Tes, a _
T?S — TS
~ 6§,TA ~
Ms S| Tms,a TS S
: | s
TS A T|TA] [ Im’s',m
| ’
l oTA 71 k - ‘T2A|
[
es,A \T2A| [ llwﬂ
Y ¥
, Jal G4 |TA
Y mga
S |TA|

wherel is the uniqgue morphism making the above left diagram commute.

o for every pair of objectss, f, A) and(R,g,B),'E<S7f,A>1<R,g,B> = (h,ta,B), isamorphism
from (S, f, AYxT(R, g, B),i.e..(S x R, f x mp,p, A x TB),10(8 x R, msxn.xp, T(A x B))

—_~—

whereh : S x R — S x R is the unigue morphism making the following diagram com-
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mute:
d N
SxTR—" o R
ts,Rr ifme,B
T(S x R) " |A| x |TB|
€ESXR,AXB |A X TB’
ltA,B|
MSxR,AxB
SxR | T(A x B)|

Now assume thaf' = Set, C = Set x Set, T is a strong monad oveSet, and|_| is
the functorid x id. A strong monadI’ on Set x Set can be defined pairwisel(A;, Ay) =
(TA1, TA3). The monad morphism is then defined by the distributivity of the mon&dn Set
over binary products:

U(Al,Ag) = (Tﬂ'l,Tﬂ'Q) : T(A1 X AQ) — TA1 X TAQ

wherem; andm, are the projections from; x As. ObviouslySet has a mono factorization sys-

tem with surjections as pseudoepis and injections as relevant monos. Then all the requirements
are met for liting the monad on Set x Set to Subscone3’:, 5., With a strong monad’. Every

binary relationS C A; x A, has a representatigny’, 75) : S < A; x Ay, and the lifted monad

maps a relations' to another relatio between set€A; andTAs:

T(x5 x5
TS (7 ,73) T(A, x Ay)
J]‘7<A1ﬁA2>
§ TA1 X TA2

whereS is defined as the direct image of the functiomy, 4,y o T(r7, 75), which is proved to
be equal to Ty, Try') [GLLNO2].
Moreover, the following diagram commutes:

Comp(X)
/ Lm,m
Subsconelet, o, Y Set x Set

whereR, U and[_] are representations ai-let-CCCs, andR(7), up to isomorphism, is a
subset of[7] x [7]. The fact thatR preserves (strong) monads gives rise to the logical relation
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for monadic types:
(a1,a2) € R(TT) <= (ag,a2) € TR(T)

Alist of logical relations defined over some concrete monads is given in [GLLNOZ2]. For example,
the relationS for the exception monadld = A + E) is

S=5U{(e,e)|ec EY,
whereF is the set of exceptions, arttifor the non-determinism mona@'ll = Pg,(A)) is

(s1,80) €S <= (Yaj € s1.3as € sa.(a1,a2) € 5) &

(Vag € s9.day € 51.(a1,a2) € S)

A logical relation for key generation monad

A logical relation for the name creation monad is also defined in [GLLNOZ2]. To derive this logical
relation, we shall consider the functor categSey”. Precisely, le€ = Set? x Set?, C = Set?
and|_| be the functoid x id. Set’ has a mono factorization consisting of pointwise surjections
and pointwise injections. Take the strong morfadn Set” as defined in Section 3.2. For any
A, Ay € Set?, the functor morphisrmAl,Az) = (Try, Tra) is then a natural transformation
from T(A; x Ag) to TA; x TAy such thatforany € 7,a; € A1(s+ '), a2 € Aa(s+ §'):

(A1, A0)8l8", (a1, a2)] = ([s', a1, [8', az)),

Set”

Set? xSet””

Now consider(n{, 75) : S < A; x Ay inthe subsconéubsconegzﬁxsetz as a represen-
tation of a series of binary relations (for everg 7, Ss C Ays x Ags). Foreverys € Z, Ssis
defined as the directimage (fr7, Tr5)s = (Tr{'s, Tr5's). When we consider the equivalence
relation~ between monadic values, this means that for[any:,| € TA;s and[sz, az] € TAss,

so we can lift the monad to Subscone

[s1,a1] Ss [s2,a2] <=
ds' € I,a} € A1(s+ §'),a, € Aa(s+ ¢) s.t.
(s1,01) = (5,00) & (s22) = (5,0b) & df S(s+ ) ab,

which is proved to be equivalent to the following definition [GLLNO2]:

[s1,a1] Ss [s2,as] <
380,i1 181 — So,ig 182 — S € 7 s.t. (43)
(Al (lds + il)al) S(S + So) (Ag(lds + iz)ag).
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4.3 Le catégorieZ™

The categonSet?” is a perfectly adequate model for dynamic key generation, and we are able
to derive logical relations through the general construction over this category. However, logical
relations derived over this category are too weak in the sense that it is not sufficient for us to
study relations between programs in a language involving dynamic key (or name) generation.
In particular, logical relations for the cryptographic metalanguage depend on what we choose
as relations between keys. This accordingly requires a proper definit'rﬁjjegf While [key]s

varies ass changes;R;,, should represent the variation of the relation between keys when
varies. But in the categoet”, only some very naive relations for keys can be naturally defined,
for instance, an empty relation or a full relation for everin Z (relations for keys are defined
overs sincefkey]s = s).

A non-trivial relation ons is the identity relation, but it is noticed in [ZNO3] that logical
relations defined inductively from the identity relation on keys are too weak to recognize the
contextual equivalence between certain obviously equivalent programs. Here is an éxample
where we have two programs

p1 = let k< newinval(\z.case dec(x,k) of some(_) in true else false),

pe = val(\x.false).

In the first program, applying the function to any possible arguments, we always get the value
false, sincek is a fresh key and no context can build a encrypted messagée:witance the

two programs are contextually equivalent, but they are not related by any logical relations that
coincide with equality at the typesy. Write the denotations of the two programd fis}, f1] and

[0, f2]. By (4.3), in order to relate these two computations, we should relate the two functions at
s + {k}, but then we are allowed to apply these functions to messages builtframd we get
non-related results, nametyue andfalse.

Recall that our purpose is to use logical relations to prove contextual equivalence. Clearly, not
every pair of keys, but only those disclosed keys can be compared by contexts. We should con-
sider only the equality between these keys. One may argue that those keys that are not disclosed
to contexts are also contextually equivalent since no context can tell the difference between them.
But a subtle point about contextual equivalence is that contextually equivalent programs or values
must be indeed accessible by contexts, while those non-disclosed keys are not, i.e., contexts are
not able to get access to these keys, hence not able to test the equality between them.

2Note that the discussion in [ZN03] is based on the nu-calculus, a language without any constant for encryption,
but a similar counterexample is given with a native constant of testing equality between names (seen equivalently as
keys here) in that language.
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In fact, there are already several known methods for defining relations between keys. A
very popular way is to take B, the identity on a certain set of “disclosed” keys as in the
framed-bisimulation for Spi-calculus [AG99, AG98], where such a set is called a “frame”. A
more standard way is to consider two different sets of keys and to use a bijection between these
two sets to represent the relation for keys, without forcing related keys to be equal. This is what
Pitts and Stark do for defining an operational logical relation for the nu-calculus [PS93a].

However, in semantics, it is more natural to consider only one set of keys with a subset of
keys seen as “disclosed keys”. We can use the first method here toﬂgjy:ndetting our logical
relation parameterized by a parametefwe follow the convention in the framed-bisimulation

and call the parametgr, denoting “frame”):

by R by = ky = ko € fr

wherefr C s, denoting those disclosed keys at the stag®bviously, the parametgr varies
as the set changes, and one point that should be noticed in this variation is that, disclosed keys
should always remain disclosed. In other words, when we pass from a smallerswoddarger
world s, keys infr must be still infr. Precisely, forany : s — s’ € Z and for anyk € fr,,
i(k) € fry, where we writefr, for the parametefr at the worlds.
The parametefr can be formalized by using the comma catedory:

Definition 4.1. CategoryZ— is the comma categoryZ | |_|) where|_| is the identity functor
from Z to Z. Precisely, objects af — are tuples{w, i, s) withi : w — s in Z, and whose
morphisms are pair$j,l) : (w,i,s) — (w',i’,s’) wherej : w — w'inZandl : s — s inZ
such that the following diagram commutes:

7
_—

l J @)

J
w —— .

The composition of two morphisnig, ) : i — " and(j’,1’) : i’ — " is (j' 0 j,1 o 1). We write
i for (w, i, s) when the domaimw and the codomain of i are clear from the context. Intuitively,
every object{w, i, s) of Z~" represents a selection of disclosed keys from & sétkeys. Then
naturally,w takes the place of the paramefer

In the next section, we shall build another functor categéut? ~ and show how to derive
logical relations over it. The following proposition is useful for refining logical relations derived
overSet! .

Proposition 4.1. Suppose that : s — s; andls : s — s9 are two morphisms iff. There exists
a sets’ and two morphismg : s; — s’ andlj : s — s’ inZ such that o i1 = 15 o ls.
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The proof of this proposition will become easier with the following propert§ of

Proposition 4.2 (Cube property for Z—). Suppose thatji,!;) : (w,i,s) — (wi,41,$1) and
(42, 12) : (w,i,8) — (wa,is, s7) are two morphisms i —. There existsuw’,i’,s’) € Z— and
two morphismg;j1,1}) : i1 — ¢’ and(j5,15) : i2 — ¢’ such that the following square commutes

inZ—:
1
(jl»ll/ \Q,lz)
i1 19
wa\ /MQ)
i/

Proof. The fact that the diagram (4.5) commutegin is equivalent to the fact that the following
cube commutes iff:

(4.5)

(4.6)

Letw' = w1 & wy/ ~y ands’ = s1 & so/ ~5, Whered® denotes the disjoint union (without
losing generality, we assume thatNw- = () ands; Nsy = () and the quotient relations,,, ~
are defined by

Vn, € W1, N2 € W2, N1~y N2 = dn € s s.t. k‘l(n) = il(nl) & k‘z(n) = ig(ng)
Vny € s1,n9 € S3, Ny ~sng < In € ss.tki(n) =n; & ka(n) = no.

We writen® for the equivalence of,,, andn?® for that of ~4 (we may omitw ands and simply
write n when the index is clear from the context). rifis not ~-related to other elements, we
haven = n.

Definej; : w; — w' by jj(n) =n" (I =1,2), k) : s; — s’ by kj(n) =n° (I = 1,2) and

7w — s’ by

. ifnew,
v = {1
iz(n) if n € w,.

Obviously,j1, j2, k1, ko are (well-defined) injections. We need to show thét also an injection.
For anyn;”,ny" € w' andni" # n3", henceni” #., ny", either
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e ny,ng € wy, theniy(ny),i1(n2) € s1 andiy(n1) # i1(ng) because of the injectivity of
— 5 — S8

1. And by the definition Of\/s, il(nl) 755 il(ng), i.e.,il(nl) 7é il(nz) , SOi/(;L\Iw) 7é
i'(n2");

e Orny,ny € wo. Similarly, we can get'(n1") # i'(n2");

e oOr n; andny are from different sets. Without losing generality, we assume& w; and
ny € we. Becausen; £, no, i.e., there is no € s such thatk(n) = zl(nl) and

—~— S

k:l(n) = iQ(ng), by the definition Ost, il(nl) 743 iz(ng), henceil(nl) 7& 22(77,2) ,
which immediately shows (n1") # ¢/ (n3").

Now, the commutativity of the cube (4.6) comes down to that of the following four diagrams:

Jl/ \\j2 kl/ \k2 w1 L> S1 w2 £> S9

wr @ wr $1 jil © iki jgi © iké.
\ / \ / / / / /
71 W ki o w s w s
7 %
o w—3=S w—=
Commutativity of square @: For anyn € w, because squar%% i k, and jw i ke
w1 Z—> S1 w9 l—) S9

commute, we have (ji(n)) = (k:l( (n)) andlg(jg( )) = ka(i(n)). By the definition of~,,,
J1(n) ~ Ga(n), theni (ja(n) = j1(n) = ja(n) = Gb(ja(n)). .
(zclmmutativity of square ©®: For anyn € s, ki(n) ~s ka(n), soki(ki1(n)) = ki(n) =
ka(n)” = ky(ka(n)). .
Commutativity of square ©, @: For anyn € w; (k = 1,2), ¢'(jj(n)) = /(n") = i/(n) =

Remark4.1 Note that the construction in the above proof is not a push-out. Actually, the cate-
goryZ— has no push-outs. Consider the following diagrar:in

{1}

>N

{1,2} {1} {1,3}

N

{1,2} {1,3}

where C denotes the particular injection of inclusion. Assume this dlagram has a push-out,
composed byu0—>so and two morphismg;?, £9) (from {1, 2}—>{1 2} to w0—>so) and (59, k9)
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(from {1, 3}5{1.3} to woiso), then the following two diagrams should commute&in

{T}
I

{1,2} {1} {1,3} {1,2} {1} {1,3}

.
/
\

NN | \/
id id id
AV N AV
{1,2} wo 11,3} {1,2}
’ NS J//z‘ K07 ! ) N 7”“
NV 2 Ny Y

|
\/ S \/
N N/
4 {12} ;2 S {1,2,3}
¥ ¥

{1,2} {1,2,3}

where j5(1) = 1,75(3) = 2. By the left diagram/(j9(2)) = 2, j'(/%(3)) = 7(3) = 2,
then j9(2) = 49(3) (sincej’ is an injection). While by the right diagram? (j{(2)) = 2,
3"(58(3)) = 3, and we geti?(2) # 59(3) (5" is an injection as well), which is a contradiction.

Proof of Proposition 4.1 .Take objects0, i, s), (0,41, s1) and (0, i2, s2) in Z—, wherei, i; and
io are all empty injections. Clearly;i,l1) : i — i1 and(jz2,l2) : @ — io, Wherej; andjs are
empty injections as well, are two morphismsZinm. According to Proposition 4.2, there exist
(w7, 8"y and(jy, 1) = in — @', (j, 1) = 42 — @', such tha(j}, 17) o (j1, 1) = (j3. 1) © (2, l2),
which includes the equatidh o [; = I} o l5. O

4.4 Dérivation des relations logiques suSet?

LetSet? " be the category of functors frofT” to Set and natural transformations. Note that this
is not a new model for the cryptographic metalanguage. We define the new cafegbryjust
for deriving a new logical relation and we still consider the interpretation of the metalanguage in
the modelSet?.

For deriving logical relations over categoSet’ , we must first check the necessary re-
quirements on categories.

Set’” is cartesian closed. Products and coproducts are defined pointwise. For any two
functorsA, B : 77 — Set, their exponent is defined by

B4 = Set’ (I7(i,—) x A,B)
(BA(, ) N)i"((5,1),a) = fi"((§' 0 4,1 o 1), a)
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for any (w,i,s) € Z7, (j,1) : i — i, (§/,1') : 4" — " € 7, f € B4 anda € Ai. Set’” has
also pull-backs, defined pointwise. Now define a strong mafag, u, t) on Set by:

e TA = colimy A(_+1i') : Z— — Set. On objectsTAi = colim; A(i + i) is the set of
equivalence classes of paii$, a), wherei’ : w' — s inZ anda € A(i + "), modulo the
smallest equivalence relatiensuch thati’, a) ~ (i, A(id;+(j, k))a) for each morphism
(4, k) : (W', 4,8y — (w”,4",s") in T7. We write[i, a] for the equivalence class ¢f, a).
On morphismsTA(j, k) maps the equivalence class(@f, ) to the equivalence class of
(', A((4, k) + idy)a);

e foranyf: A — BinSet?, Tfi: TAi — TBiis defined byT'fi[i’,a] = [i', f(i +14')al;

e nAi: Ai — TAiis defined by Aia = [, a], wherel) denotes the empty function between
empty sets;

o pAi: T>Ai — TAiis defined by Ai[i’, [i", a)] = [/ + 3", al;

o tA, Bi: Ai x TBi — T(A x B)iis defined byt A, Bi(a, [i',b]) = [/, (Ai;,a,b)] where
1., .1 — 1+ 14" is the canonical injection.

LetU : Z— — T be the forgetful functor which maps an objéat, i, s) to s and a morphism
(7,1)tol. Let|_| : C — C be the functoiids.;" (whereC = Set’ andC = Set’ ). On an
objectA, | A| is equal toA o U, that is, for any objectw, i, s) € 7, |A[{w, i, s) = As, and for
any morphism(j,1) € Z—, |A|(j,1) = Al. On a morphisny (a natural transformation), for each
(w,i,s) in Z7, the componentf| ,, ; , is equal tof;. Itis clear that the functor | preserves
finite products.

Recall the strong monad over the categonget?, defined in Section 3.2. Let : T|_| —
|T_| be the monad morphism defined byi[(w’,i’,s'),a] = [/, a], for any objectA in Set?
and (w,i,s) € Z—. This is well defined as$A|(i + i) = A(s + s’). We can then define
O(A1,A0)  TIA1 X Ag| — [TA;| x [TA2| by

w,i,8

O(A1,42) = (UAI o T|7T1|7UA2 o T‘ﬂ?’)a

ie.,
U<A1,A2)i[<wlv 7, S,>v (a1,a2)] = ([3/7 1], [3/7 a)).

Set?” has a mono factorization system consisting of pointwise surjections and pointwise in-
jections. And it is clear thaT and finite products preserve pointwise surjections. Then all the
requirements for building a logical relation Snbsconegzﬁz seiz are satisfied.

Now considerf : S < |A; X As| (41, Az € Set? andS € Setzﬁ) as a representation

of a series of binary relations such that for evewy,i,s) € Z7, fi : Si — |A; x Asli =



76 CHAPITRE 4. RELATIONS LOGIQUES

(A1 x Ag)s = Ajs x Ays is an inclusion, representing a binary relation. In particular, the
relation between monadic values is given by mono factorization of the compositiBfi wfth

O(A1,A2)-
T
TS ! T|A1 X A2|
T(A1,A9)
S |TA;| x |TA;|

We takeS as the direct image of(Al Az) © Tf, then for any(w,i,s) € Z— and any pair of
computationgsy, a1]| € |TA1li, [s2,a2] € |TAsli,

[sl,al] §’L [SQ,CLQ] <~
', i, 8"y €T, a) € Ai(s+¢),adl, € As(s + §') s.t. 4.7)
(s1,01) = (,04) & (s2,02) = (s, a) & af (i +7) df

According to the definition of-, (s1,a1) ~ (¢,a}) means that there is a finite sétand
two morphismd; : s; — i, 1 : 8 — s} inZ such thatd; (ids + l1)a1 = A;(ids + 1})a].
Similarly, (s2, a2) ~ (', ay) means that there is a finite sgtand two morphisms, : so — s,
lh 8" — shinZ such thatds(ids + l2)as = As(ids + 15)al,. By Proposition 4.1, there exisg
with two morphismg : s} — s, 15 : s, — spinZ, such that{ o I} =14 o I},. hence

ids + (I o 1)) = ids + (1§ o 15).

Take an arbitrary objectwy, i, so) and a morphisnij,l) : i' — igin Z— wherel = 1] o l} =
15 o I}, (such objects and morphisms necessarily exist). Becéuse functor fromZ — to Set,

S(id; + (4,1))(ai, a3)
= [A1 x Apf(id; + (4, 1)) (a1, a5)
= (A1(ids + 1)a}, A2(ids + 1)ab)
= (Au(ids + (I o 11))al, A2(ids + (I3 0 15))a3)
= (A1(ids + (If o l))ar, A2(ids + (I3 0 l2))az)
i.e., (Ai(ids + (I} o 1))a1, As(ids + (1§ 0 I2))az) € S(i + ig). SO if [s1,a1] Si [s2,as], then
there are some objectvy, ig, So) iIn Z— and some injectioné{ 181 — So andlg 1 89 — ag,

namelyl{ = I} o I} andi§ = 14 o I, such that

Ay (ids + 19)ay S(i + o) As(ids + 19)as. (4.8)
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Conversely, if (4.8) holds, then the right-hand side of (4.7) holds as well! ferig, a} =
Ay (ids + 19)ay andah As(ids + 19)as. (4.7) is thus equivalent to

[81,a1] §Z [SQ,CLQ] <
E|<w0,’i0,80> EIH,ll 181 — So GI,Z2:82—>80€I- (49)
Ai(ids + 11)(a1) S(i +io) A2(ids + I2)(az).

So we arrive at the definition of logical relations for monadic types, derived$wer .

4.5 Une relation logique pour le métalangage

The derivation of logical relations in the last section, on the categery , allows us to de-
rive a logical relation for the cryptographic metalanguage, which requires in the first place the
definitions of relations for base types.

Recall that the very essential point about logical relations is that the Basic Lemma must
hold. The categorical derivation of logical relations already guarantees this, if every constant is
related to itself. Furthermore, logical relations defined over a functor category are Kripke logical
relations and they must satisfy the monotonicity property so that the Basic Lemma will hold for
these logical relations. So basically, when defining a logical relation based on a category like
Set?™, we must check the following two conditions:

e every constant is related to itself;
¢ the logical relation is monotonic.

As discussed at the beginning of last section, a proper way to define the relation between keys
is to fix a set of “disclosed” keys (denoted by a paramgterThis parameter can be defined in
a natural way, using the categdfy’. The relation for keys is then defined as follows: for any
object(w, i, s) € Z— and any pair of key&;, ks € [key]s = s,

k1 Riey k2 <= k1 = ks € i(w).

We say that a key: € s is auto-relatedif £ € i(w). The original parametefir becomes(w).
Indeed, an injection : w — s in Z can be seen as a selection of disclosed keys in a Kripke
logical relation derived from the categafet’ , a world — an object i — — is then a set of
keys together with a selection of disclosed keys.

As for relations for typebool andnat, to identify contextual equivalence, the identity relation
is the only choice.
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4.5.1 Larelation entre les messages

To define the relation for messages, we should pay attention to those “message-related” constants,
namely
Ym = {k, getkey,n, getnum, p, fst, snd, enc,dec}.

Every constant irt,,, is used to either construct a message from other messages or concrete

values like integers or keys, or destruct a message into smaller messages or concrete values.

In a word, they change the structure of messages, so a natural way is to define the relation for

messages by induction on the message structure, from those relations for integers and keys.
First, for every injection : w — s € Z, define a relatioo MR} C [msg]s x [msg]s by

e (n(n1),n(n2)) € MR, forall (ny,ng) € Rl

o (k(k1),k(kg)) € MR, forall (k1,ka) € Ri,,;

o if (m1,m2) € MR and(m},m}) € MR, then(p(my,m}), p(ma, m})) € MR ;
o if (my,m2) € MRY andk € i(w), then(e(mi, k), e(ma, k)) € MR,

The relationMR | is indeed built by induction on the message structure, from relains
andeey. However, since keys are divided into “disclosed” keys and “secret” keys and none of
“secret” keys is related bﬁkey, messages, in particular cipher-texts, are accordingly divided
into two parts — “non-secret” cipher-texts that are encrypted using disclosed keys and “secret”
cipher-texts that are encrypted using secret keys. The so inductively defined reldfion
touches only those non-secret cipher-texts and does not say anything about secret cipher-texts.
In other words, a cipher-text encrypted with a secret key (a non-auto-related key) is not related
to any other message by(R | . Of course, this is too strict. In our model, if we cannot decrypt
two cipher-texts, we shall then consider them as equivalent, since there is no way for us to see
whether the two corresponding plain-texts are equivalent. Basically, we can simply let all secret
cipher-texts be related with each other and we define another refetiBh C [msg]s x [msg]s,
for every injectioni : w’ — s € Z, by induction on the structure of messages:

e (n(n1),n(ng)) € MR, forall (n1,ny) € Riyy;

o (k(k1),k(k2)) € MR, forall (ki, ka) € Ri,;

e if (my,m2) € MRY and(m}, m)) € MRE, then(p(m1, m}), p(mz, mb)) € MRE;
o if (my,m2) € MRE andk € i(w), then(e(my, k), e(ma, k)) € MRE-.

o if (ml, m2) S M’Rﬁr andkl, ko ¢ i(w), then(e(ml, kl), C(mQ, kz)) S MRZT
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Clearly, for anyid, : s — s, MR'"* = MR and we write it as\{R*.

To make theBasic Lemmadnold, the relation for messages must be sandwiched between the
relation MR | and the relatiootMR+ [SP0O3, GLLNZ04]. In particular, if we do not consider
dynamic key generation and simply take a set-theoretical modeBakie Lemmanolds for all
relations sandwiched betwegR | and MR+ [GLLNZ04].

The largest relatioM R+ is somehow too much when contextual equivalence is our concern.
Consider the following program:

p(n) = (vk).({n * 2}k, Az.dec(z, k) mod 2).

It is clear that ifk is secret, then two instances of this program, with concrete numbers for the
argumentn, should be contextually equivalent, but to relate these instances, we must not relate
encrypted odd numbers, by kéy with encrypted even numbers, otherwise, instances of the
function (the second component) are not related. This indeed shows that we should not simply
consider all secret cipher-texts as equivalent.

Furthermore, it should be also noticed that, to some extent, logical relations for deducing
contextual equivalence also indicate that contexts can get access to related values. For example,
a proper relation between secret cipher-texts for the above program should not relate encrypted
odd numbers (by key) with whatever, since they are never produced. This point does interfere
with our choice of relations for theisg type.

In order to define uniquely a logical relation for the cryptographic metalanguage, a natural
way is to make the relation between secret cipher-texts as a parameter. This is exactly what Sumii
and Pierce did in the cryptographic lambda-calculus [SPO1].

For every injection : w — s € Z, define a functionp’ which maps a pair of secret keys to a
set of message pairs:

o' (s —i(w)) x (s —i(w)) — P([msg]s x [msg]s) (4.10)

whereP denotes the power sep is called acipher function It is indeed a group of functions
indexed by injections i, i.e., objects of the categofy .
Given a cipher functiorp, we can then define a unique relation for messages.

Definition 4.2. For every injection : w — s € Z, a cryptographic message relatigt R¥ C
[msg]s x [msg]s, is the smallest relation such that

e (n(n1),n(n2)) € MR"%, forall (n1,n2) € R,

o (k(k1),k(kq)) € MR"#, for all (ky, ko) € R

key :

o if (m1,my) € MR and(m), mh) € MR"%, then(p(my,m}), p(ma, mh)) € MR"¥;
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o if (m1,m2) € MR and(k1, k) € R, then(e(my, k), e(ma, k)) € MR?.

o if ki,ko € s — z(w) and (ml,mg) S @i(kl,k‘g), then(e(ml,kl),e(mg,kzg)) € MRi’w.

We say that a cipher functiop is logical if, for every (w, i, s) € Z— and every pair of keys
ki,ka € s —i(w),

(ml,mg) € @i(kl,kg) - (6(m1,k‘1),6(m2,]€2)) e MR?.

In other words, a logical cipher function must be consistent with the inductively defined message
relation where we assume that all keys are disclosed. In particular, sinc&ifhttand R,S;
are identity relationsMR? is just the identity relation oveimsg]s. Clearly, in a logical cipher

function, if ki # ke, theny!(k1, ko) = ), and for anyk € s — i(w) and any pair of messages

(m1,m2) € ¢'(k, k), we havem; = mo.

Lemma 4.3. If the cipher functionp is logical, then any pair of messages relatedfR > are
identical, i.e.,
(my,mg) € MR = my = ma.

Proof. By induction on the message structure. O

We say that a cipher functiop is monotonically logicalif it is logical and those related
cipher-texts according tp should remain related when they are lifted to a larger world. Precisely,
for every morphism(j, 1) : (w,i,s) — (w',4,s’) in Z— and every key: € s — i(w) such that
(k) € s’ —i'(w"), if a pair of message@n, mz) € p'(k, k), then([msg]l(m1), [msg]i(mz)) €
¢ (1(k),1(k)). Indeed, a logical cipher function is a partial identity relation over secret cipher
messages.

Given a cipher functionp, if for every morphism(j,1) : (w,i,s) — (v',4,s') € T~ and
for every pair of valuesn,, ms € [msg]s,

(m1,my) € MRY = ([msg]i(my), [msg]l(ms)) € MR*#,
then we say that the cryptographic message relatitR is monotonic oriZ .

Lemma 4.4. If the cipher functiony is monotonically logical, then the cryptographic message
relation MR is monotonic orf .

Proof. We prove the statement by induction on the message structure. Itis easy to check that this
property holds when the message is of the faKm), k(_) or p(_, ).

If mi = e(m), k1) andmy = e(mh, ka), [msg]li(mi) = e([msg]i(m}),l(k1)) and
[msg]i(mz) = e([msg]i(m}),1(k2)). According to Lemma 4.3n; = mg, Sok; = ko. Because
lis injective and so i§msg]|l, [(k1) = I(k2) and[msg]l(m1) = [msg]l(ms2).
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o If k1 = ko € i(w), thenl(ky) = I(k2) € i'(w’) and(m/, m}) € MR"?. By induction,
([msg]l(m}), [msg]i(m})) € MRY*#, hence

(e([msg]i(mh), (k1 ), e([msg]i(mb), U(kz)) € MR"%.

o If ky = ko & i(w) buti(ky) = I(ke) € ¢ (w'), consider the contents of} andm,.
If m)} andml, contain no secret cipher-texts, i.ey, mo € [msg](i(w)), becausep is
logical, (m},m}) € MR"%. If m), m, contain secret cipher-texts, these secret cipher-
texts must be related bWIR"¥ according tap, hence(m/, m}) € MR"? as well. Then
by induction,

(Imsgli(my). [msgli(m})) € MR,

and consequentl§fmsg]l(m), [msg]i(ms)) € MR,

o If (k1) = I(ko) & '(w'), ([msg]l(mh), [msg]l(mb)) € ¢ (I(k1),1(ks)) becausep is
monotonically logical, hence

(e([msg]l(m}), 1(k1), e([msg]i(mb), 1(k2)) € MR %, .

The relationMR>¥ is not monotonic orZ — in general. For example, consider a pair of
message$mi,mo) € oS (ky, k), for some pair of keyg:, ks € s — w. In particular,
we assume thdt; # ko. Take a morphisnyj, ids) : (w, C,s) — (w + {k1},C, s) wherej is
inclusion, then two encrypted messagesn,, k1), e(ms, k2)) € MRWS=)%  are not related
by MR(wH{F1}.Cs)e whatevery is.

Since we allow contexts to be defined at larger worlds, the monotonicity property will inter-
fere a lot with the choice of relations for base types, as we wish taui&eto identify contextual
equivalence between messages. Thus, only relating messages at a certain world is not enough to
show that they are equivalent. We must also be able to relate them at every larger world, against
attackers defined at larger worlds.

4.5.2 Une relation logique cryptographique faible

Putting together relations for different types, we then arrive at a logical relation for the crypto-
graphic metalanguage, defined over the categery  according to the general construction.

Definition 4.3. For every objectw, i,s) € Z~, the relations R C [r]s x [r]s, wherep
is a cipher function as specified in (4.10), are defined by induction over the structure of,type
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according to:

by REP. by <= by = by

bool
ni Rf{;i Nng <= N1 = N9
ki Rys by <= k= ka € i(w)
m1 Riglg ma <= (m1,mg) € MRV

(a1,al) Rf_’iT, (ag,ah) <= a1 R2¥ ay & d R:_’,‘P al
ai RZ’:;[T} a9 < (a1 ,Rz_,ap ag) or (a1 = a9 = J_)

IR fo =
V(5,1) : (w,i,8) — (w',i',s") € T7 - Vay,ay € [1]s"-
(aq REP qy = f1s' (1, ay) Ri}“p f2s'(l,a2))
[s1,a1] RlT’f [s2,a2] <=
Hwo, i0,80) €L, 11151 = so€ZL,la: 89— 50 €L
[7](ids + 1) (a1) RETO? [7](ids + I2)(az)

where MR is a cryptographic message relation.

Keep in mind that we are using logical relations to deduce contextual equivalence and the
Basic Lemma is very crucial for this purpose. Does the Basic Lemma hold for this logical
relation? Recall that the categorical derivation of logical relations guarantees the Basic Lemma,
but we must check two conditions — every constant is related to itself, and logical relations must
be monotonic. Let us check the monotonicity property first.

Lemma 4.5. The logical reIationRi’“" is monotonic wherp is monotonically logical, i.e., for
every morphisntj, () : (w,i,s) — (w',i',s’) € Z— and every pair of values;, as € [7]s,

a1 %% ay = [7]l(a1) RE% [r]l(as).

Proof. It is obvious that relations for base types are monotonic, in particular the monotonicity
of Rimsg is shown by Lemma 4.4. For complex types, the monotonicity is proved by induction
on the type structure. Here are the cases for function types and computation types. Others are
standard.

e Function typesr — 7': Consider two related functiong, fo € [r — 7] such that
fi Ri’ﬁT, fo. For any morphismij’, ") : (w',i',s"y — (w",i", ") € T ((j 0 j,I' o)

is then a morphism fronfw, i, s) to (w”,i",s")), and for anya;,a; € [r]s” such that
a1 RE ¢ ay, becausd; REY ., fo,

T—T1/

f18" (o la1) RE? fas" (I o1, ag).
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By the definition of exponential in the categayt?, for every functionf € [r — 7']s
and every value € [r]s”,
([P N)s" @ a) = £5"(0 o 1,a)
hence
([ 17y @ a0) RE# (P17 f2))s" (1 00),
and consequentl| 711 1) RY?, 7101 £2).

T—T7/

e Computation type3r:

[T71i(ls, al) = T[]i([s; a]) = [s, [7](1 + ids)(a)].
If [51,a1] R%Y [so, az], we must show that

51, [7)0+ 3dks, ) (an)] R [s2: [7] (0 + i, (a2))
According to the definition ofR_, we should find a paifwy, iy, s;) € Z— and two
injectionsl] : s; — s( andl}, : so — s in Z such that

[ridy + (7] + idy,) (@) Re T [r] iy + ) ([r] (0 + id.y ) (a2))
which, by the functorality of 7], is equivalent to
[rlk1(ar) RE 0 [r]ka(az)

where

. . I+id,,, id,/+,
km = (lds’ + lv/n) © (l + ldSm) D8+ Sm ;‘ s’ + 3m1*>5/ + 56 ) (m = 172)'

Since [s1, a1] Rle [s2, as], there exist an objedtwy, ig, so) IN Z— and two injections

Iy : 81 — s, la : 82 — s such thaf[ 7] (ids + I1)(a1) REF [7](ids + l2) (az).
— If ' Nsg =0, simply lets, = so, wj, = wo, i} = i1 andil, = iy, then
(4 + idy,, ! +ids,) : (w + wo, i + g, s + so) — (W' + wo, i’ +ig, s’ + o)
is a morphism irZ —, and by induction (the relation at typeis monotonic),
[71( +id, ) ([7](ids + 1) (a1)) REFO# [F](1+ ids, ) ([7](ids + 12) (a2)),

where the two elements equit]ki(a1) and [r]k2(az) respectively, because the
following square commutes

l+ids
S+ Sm—=5" + s,

lids,ﬂm (m=1,2).
I+ids,

s+ s ——=5"+ 59

ids+lmJ/
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—If s N'sg # 0, it is always possible to find a sef which is isomorphic tos, such
thats’ N sj = 0, then lets; = s and the proof goes identically as in the previous
case.

So[Tr]i([s1, a1]) RE:# [Tr]i([s2, az). 0

Given a cipher functiorp, say that two environmenis;, p2 € [I']s are related afw, 7, s),
written asp; R?P p2, if and only if, for every variable: : 7 € T', py(z) R%¥ pa(z).

Lemma 4.6. For every morphisnij, () : (w,i,s) — (w',i,s'), if p1 R?“’ p2 and the cipher
functiony is monotonically logical, thefil'[i(p1) Rirl’“” [T]i(p2).

Proof. This is a corollary of Lemma 4.5 sind&] is interpreted agri] x - - - x [7,,]. O

<w7i’s>7

The logical relatiorR ¥ issound, i.e., the Basic Lemma holds, when the cipher function
0 is monotonically logical.

Proposition 4.7 (Basic Lemma).LetT" + ¢ : 7 be a well typed term in the cryptographic
metalanguage. For ever§w,i,s) € Z— and every monotonically logical cipher functign if
two environmentp;, ps € [[']s are related, i.e.p; R:? pa, then[t]spr RY? [t]spo.

Proof. This is proved by induction on the structure of the ternmiWe show several induction
steps here, notably functions, applications, computation constants and cryptographic primitives.

e Functions\z.t of type 7 — 7': according to Figure 3.1[\z.t]sp is some function
f € [r — 7']s such that for any : s — s’ € Z and for anya € [7]s, fs'(l,a) =
[t]s' ([T]l(p) U {x — a}). Let fi = [Mx.t]sp; and fo = [A\z.t]sps. For every mor-
phism(j,1) : (w,i,s) — (w',i',s'), letay,as € [7]s’ be related values dt', i, s'), i.e.,
a1 RY? ao. According to Lemma 4.3R"% is monotonic, So

[T)i(p1) U {x = a1} Rp? [Dlip2) U fa > az}
and by induction,

415 (IT]i(p1) U { — a1}) RY# [£]s'(IT]A(p2) U { > a2}),

hencef, R“?_, fo.

T—T

e Applicationst;t, of typer’, wheret; is of typer — 7’ andt, is of typer: First, [t1]sp =
f € [r— 1']ssuchthatforany : s — s € Z, fs'(l,a’) = [tit2]s'([T]i(p)), where
a' = [ta] s ([T]i(p)). Then[tite]sp = fs(ids,a) wherea = [ta]sp. Let fi = [t1]sp1,
fo = [t1]sp2, a1 = [t2]sp1 anday = [t2]sp2. By induction, f1 Ri’fw, fo, a1 RE? ay, SO
fis(ids, a1) RYY fos(ids, as).
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e Fresh key generation constantw, of type Tkey: [new]sp = [{k}, k], wherek ¢ s, no
matter whatp is. Take({k},id,{k}) € Z~. Itis clear thatk RO L hence

) key
[{k}, k] R, [{k}, K.

e Trivial computationsval(t) of type T7, wheret is of typer: Because]val(t)]sp =
[0, [t]sp] and by induction,[t]spr R%? [t]sp2, according to the definition oR_,
[val(t)]sp1 RYZ [val(t)]spa.

e Sequential computationst x < t; in t, of type T7/, wherez is of typer, t; is of type
Tr andt, is of type T7': Let [t1]sp1 = [s1,a1] and[t1]sp2 = [s2,az]. By induction,
[s1,a1] Rsz [s2, as], SO there exist someuy, i, sp) iN Z— and two injectiong; : s; —
80, la 1 s9 — sg such that

[7](11 4 ids)a; REF0% [r] (12 + ids)as.
Let [t2] (s + s0)p} = [s], b1] and[t2] (s + so)ph = [sh, ba], where
P = [Llinks 5 (pm) U{z = [r](ln +ids)an},  (m=1,2).

Again by induction, there exist somey, i(,, s(,) in Z— and two injectiond] : s} — s{,
lh : sh — s; such that

[F1 (T + idgssy )by REOT0L [1](1 + id,sg )bo-
According to the definition of mona@ on SetZ, [s,,, am] = [s0, [7](lm + ids)am], SO
[let z < t1 into]spm = [so + L, bin)-
Considering(wo + wy, io + %, So + sp) € Z~ and injections
idg, + 15 : so+ 51— so+ 8y, ids, +15: 80+ 82 — S0 + s,
we get[so + 1, bi] R%Y, [so + sb, ba.

e Encryptionenc(t;, t2) of typemsg, wheret is of typemsg andts is of typekey: First, let
a1 = [t1]sp1, aa = [t1]sp2, k1 = [to]sp1 andks = [[tl]]spz, then[[enc(tl,'tg)]]spl =
e(a1, k1) and[enc(t1,t2)]sp2 = e(as, k2). By induction,a; Rmse a2 andk; Rf(’;‘; ko, i.€.,
k1 = ko € i(w), then according to the definition of the cryptographic message relation,
e(ar, k1) MR"?e(az, ks), i.e.,[enc(t1, t2)]sp1 Rfﬁfg [enc(ty,t2)]spa.

e Decryptiondec(t1,t2) of type opt[msg], wheret is of type msg andts is of type key:
First, Ieta1 = [[tl]]spl, ay = [[tl]]spg, k1 = [[tQ]]Spl andkz = [[tl]]spg. By induction,
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ky Rf«g ko, i€, ki = ky € i(w). If a; = e(a), k) anday = e(ab, k), for somed,, aly €
[msg]s andk = ki = ko, then[dec(t1,t2)]sp1 = a} and[dec(t1,t2)]sp2 = af, and
by the definition of the cryptographic message relatiquVR*¥al; if a; # e(a}, k) and

ag # e(dh, k), then[dec(ty,t2)]sp1 = [dec(t1,t2)]sp2 = L. Itis not possible that one
of a1, as is a cipher-text encrypted with k&ywhile the other is not, because it implies that

a; andags must not be related. Thereforfglec(t1, t2)]sp1 Ri’:f;[msg] [dec(ti,t2)]sp2. 7

The Basic Lemma for the logical relatioR“? holds when the cipher functiop is mono-
tonically logical. This is indeed a very strict restriction, since such a cipher function relates only
identical cipher-texts. When we take a more general cipher function, it is very likely that the
Basic Lemma does not hold any more in general. For example, for theitermsg - Ax.y :
bool — msg, take a cipher functiom where(my, my) € 'S (ky, ky) (k1 # ko) and two en-
vironmentspy, p2 € [I']s (I' = {y : msg}) such thap; (y) = e(m1, k1) andpa(y) = e(me, k2).
Obviously,p; RIS py. But [Az.y]sp1 and[Az.y]sps are not related byz&'jfjﬁfg, be-
cause related functions should map related arguments to related raseaigry larger world
while at the world{w + {k1}, s), the two encrypted message@n,, k1), e(ms, k2) are not re-
lated any more and we get non-related results.

Logical relations derived over the categdyt’ are too weak in the sense that some non-
trivial contextually equivalent programs are not related by these relations. Recall the two pro-
grams given at the beginning of Section 4.3. Actually, with logical relations derived over the
categorySet? ", we are still not able to relate those two programs. We shall see a more realistic
example in the next chapter. It turns out that we can derive stronger logical relations with a sub-
tler category, where we are in particular allowed to choose more general cipher functions without
breaking the soundness of logical relations. We shall later on refer to the logical relation defined

in Definition 4.3 as theveak cryptographic logical relatian



Chapitre 5

Relations logiques cryptographiques

Dans ce chapitre, nous continuons notre discussion sur la construction des relations logiques
du métalangage cryptographique. La relation logique définie dans le chapitre 4 n'est pas assez
puissante puisque le lemme fondamental n’est correct que pour un ensemble trés limité de fonc-
tions de chiffremeng. Le contre-exemple a la fin du chapitre montre en particulier que le lemme
fondamental n’est plus correct si les fonctions de chiffrement permettent de relier des messages
chiffrés par des clés différentes. En effet, méme si les fonctions de chiffrement ne relient que les
messages chiffrés par la méme clé, il existe encore des programmes équivalents contextuellement
qui ne peuvent pas étre reliés par la relation logique.

Nous commencons ce chapitre par un autre exemple qui montre la faiblesse des relations
logiques construites sur la catégofet’ . Nous montrons aussi que la catégdfie doit sa-
tisfaire certaines propriétés algébriques pour qu’elle représente une bonne relation entre les clés.
Puis, dans la partie 5.1, nous corrigeons la catégorien ajoutant certaines contraintes et nous
appelons la nouvelle catégofZ . Nous montrons alors que la catégafie”™ ~ est la bonne
catégorie ou construire les relations logiques du métalangage cryptographique, et la dérivation
est donnée dans la partie 5.2. Dans la partie suivante, nous arrivons finalement a une relation
logique cryptographique de notre métalangage et nous vérifions certaines propriétés de cette re-
lation logique. De plus, cette relation logique peut servir a vérifier des protocoles concrets. Nous
montrons ceci dans la partie 5.4, en vérifiant les deux protocoles du chapitre 2. Dans la derniére
partie, nous comparons nos relations logiques dérivées sur la caifgtitfe avec les relations
logiques dénotationnelles du nu-calcul de Stark [Sta94] et nous prouvons que les deux sont en
effet équivalentes.

87
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The logical relation defined in Section 4.5.2 is too weak because the Basic Lemma holds
only for a rather restricted collection of cipher functions. The counterexample at the end of Sec-
tion 4.5.2 in particular shows that if cipher functions are allowed to relate cipher-texts encrypted
by different keys, the Basic Lemma does not hold any more.

However, even if we allow cipher functions to relate only messages encrypted by the same
key, there are still equivalent programs that cannot be related by the logical relation. Consider
the following two programs (using abbreviations in Figure 2.2):

p1 = vk.({0}x, {1}k, A\z.getnum(dec(z, k))),
p2 = vk.({1}k, {0}k, Az.letopt y <= getnum(dec(z, k)) in some(1 — y)),

both of type
T(msg x msg x (msg — opt[nat])),

whose denotations ifet” at some set are

[pids = [{F} {0k {1}e, f1)]
[p2s = [{F} ({1hr: {O}e, f2)],

where we write{0}, for e(n(0), k) and {1}, for e(n(1), k), for the sake of clarity, ang; =
[Ar.dec(z, k)] (s + {k}), fo = [Az.letopt y <= dec(x, k) in (1 — y)](s + {k}).

The two programs are contextually equivalent because the first and the second components of
the two tuples are messages encrypted by some secret key and they do not give (directly) useful
information to contexts. What contexts can do with these encrypted messages (and eventually
get some meaningful values) is to apply the third component — a decryption function — to
these messages and see whether some meaningful values will be returned. However, when the
functions are applied to either the first two messages, or the second two messages, the results are
always the samd(for the first two components aridfor the second two).

In order to relate these two programs at a certain woulds), we need to relate the two
tuples at some worldw’, s’), wheres’ = s + {k}. Obviously, we must have that ¢ «’ and
(n(0),n(1)), (n(1),n(0)) € "5k} (k k). However, even just for the worldy', s'), the two
functions are not related, because they have to map related values at any larger world to related
results, while it is possible that at some larger wod’, s”), we havek € w”, and then the
two functions may get non-related results. For example, applying the two functions to the value
e(n(0), k), which is related to itself auw”, s”) sincek € w”, we get0 and1 respectively.

What we learn from this example, as well as the one at the end of Chapter 4, is that the
weakness of logical relations built over the categSet”  is indeed caused by the relation
between different worlds. Intuitively, the commuting diagram (4.4) says that, when we pass from
a smaller world(w, i, s) to a larger world(w’, ¢’, s’), we can actually get all keys iy not just
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those ini(w). In other words, this means that all non-disclosed keys at a certain world, may
become known to contexts or attackers at some larger world. This is too much, because it is then
impossible for us to hide information from all possible attackers — there are always attackers
who know every key and can reveal every secret.

We need more restriction on the categdry. Intuitively, we should not allow attackers to
get access to keys that are not disclosed, at any larger world. This could seem too strict, as in
practice, there are often cases where we only need to hold a secret for a limited duration, so it
is certainly possible that we generate a fresh key and we do not disclose it immediately, but at
some later stage. However, in our approach, we have to consider this key as a disclosed key, for
any world containing it. The reason is that in our model, computation stages are represented by
sets of keys, not by time. There is no state in the cryptographic metalanguage, hence no way to
disclose a key at latdime. Once we generate a key in a program and we find that at a certain
point this key can be accessed by contexts, then we just take it as a disclosed key when building
logical relations, otherwise, it is seen as a non-disclosed key.

More precisely, every morphisiy,l) : (w,i,s) — (w’,i,s") in T~ should make the fol-
lowing two conditions hold:

e foranyk € w, i'(j(k)) = I(i(k)), i.e., every key that is disclosed at the wot|dnust
remain disclosed at the woritl

e foranyk € sbutk ¢ i(w), l(k) & i'(w’), i.e., every key that is not disclosed at the world
i, must remain secret at the world

For short, these two conditions are just equivalent to the following equation:

i'(j(w)) = U(i(w)) = 1(s) N’ (w'), (5.1)

wherei’ o j =l o1.

5.1 LacatégoriePZ

To achieve the equation (5.1), we should add some restriction on the categorin fact, it

1
w—3S

turns out that if the diagrarw W is a pull-back inZ, then the equation (5.1) necessarily
w’ 2 s’
holds (and conversely).

Lemma 5.1. For any morphism(j, 1) : (w,i,s) — (w',¢,s) inZ7,d(j(w)) = l(i(w)) =
w5

I(s) N4 (w') if and only if the commuting squar,e¢ ' il is a pull-back inZ.
w —>= '



90 CHAPITRE 5. RELATIONS LOGIQUES CRYPTOGRAPHIQUES

Proof. First, assume that(j(w)) = I(i(w)) = I(s) Ni'(w’), then we need to show that the
following diagram commutes for any : wy — s and any(jo, 1) : io — i’ € Z:

(5.2)

/ i /
w ——>3s

We must prove that the two triangles commute and the injectionvy — w is unique. Note
that becauséjo, 1) is @ morphism irZ —, I(io(wo)) = ¢’ (jo(wo)) C I(s) N#'(w'). Definef by
f(ko) = 57 (jo(ko)), for everykqy € wo, then

e [ is a well-defined injection: becausjj(wg)) C i(s) N (w') = ¢ (j(w)) andi’ is

injection, jo(wo) C j(w), hencej =1 (jo(ko)) is defined for anyky € wg. Obviously, f is
injective since bothy (as well asj ! restricted overjy(wg)) andjo are injective;

e jo f=joandio f =ig: the firstis obvious. For anky € wy,

1(i(f(ko))) = #(j(f(ko)))  (because oj=1loi,inZ™)
= (" (o(ko))))
= '(jo(ko)) = l(io(ko))  (because’ o jo =1oig,iNZ7),

theni(f(ko)) = io(ko) sincel is injective;

e fisunique: suppose that there is another injecfiomuy — w such that the diagram (5.2)
commutes. Take anky € wo, j(f(ko)) = jo(ko) = 7(f' (ko)) and becausg is injective,
f(ko) = f'(ko), hencef = f".

%
—

w S
Now suppose that diagram ¢ il is a pull-back ofi’ andl. First note that because
w

~
~

this diagram commutes(i(w)) = '(j f )) € I(s) N#'(w'). Assume that there exists some
kel(s)ni'(w) butk & i(i(w)), theni’~ (k) & j(w), andl~1(k) & i(w). Letwy = w + {k}
and defingjy : wy — w’ andig : wy — s by: jo(k') = j(K'),i0(k") = i(k’) for anyk’ € w, and
jo(k) = i1 (k),i0(k) = 11 (k). Clearly,i’ o jo = loi, i.e.,(jo, ) is @ morphism fromi, to 4’ in
77, but there is no injection fromyy to w, which is a contradiction to the fact that diagram 5.2
is a pull-back, henc&s) N i’ (w') C I(i(w)) = ' (j(w)). O

We can then define a new categ@¥ — for worlds as follows:
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Definition 5.1. PZ~ is a category where objects are tupl@s, i, s) withi : w — s € Z, and
morphisms are pair$j, ) : (w,i,s) — (w',i',s'), wherej : w - w' € ZTandl: s — ¢ € Z,
such that the following commuting diagram is a pull-baciin

7
w————-—-S

|

Y
w S

We writes for (w, i, s) when the domaim and the codomaig of i are clear from the context.
The composite of morphisms iRZ~ is well defined since the composite of two pull-backs is
still a pull-back.

w Z% S w, L Sl w % s
Lemma5.2.1f ;| |+ and 7| | are two pull-backs iiT, then the squargy.; fter
W' L/> s/ W' L’; S w" L’; S
is a pull-back as well.
Proof. This is standard in category theory, but here we also make a set-theoretical proof.

By Lemma 5.1, we just need to show that

U((i(w)) =" (5" (5 (w))) = T'(1(s)) Ni" (w").

Without causing confusion, we shall usg!) refer to the diagram defining the morphigm!),
and similarly for(;',1") and(j' 0 4,1’ o 1).

First, '(1(i(w))) = I'({'(j(w))) = i"(5'(j(w))), according to the commuting squargs!)
and(j',1"). Second, because the diagraiyl) and(;j’, !') are pull-backs, by Lemma 5.1 (w)) =
i'(j(w)) = I(s) N (w) andl' (' (w')) = "(j'(w')) = I'(s) Ni"(w"). Thenl'(I(i(w))) =
U(l(s) ni'(w") = U(l(s)) N (' (w")), sincel’ is injective. Moreover, becaudés) C s’
(I : s — &' is an injection) and’ is injective,l’'(I(s)) C I'(s"), hencel’(I(s)) N I'(i'(w")) =
V()N (U'(s)nd”(w™)) =V (1(s)) Na"(w").

O

Remarks.1l There is another way to define a category such that the equation (5.1) holds. We take
the same objects &f , i.e., morphisms irZ, and we take pair§j, () : (w,i,s) — (w',i,s’)
as morphisms such that the following diagram commutes in the cat@fuy (the category of
sets and partial functions):
j—lw 1l1 (53)
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wherej : w — w',1: s — s’ € Z andj~!,I~! stand for the reverse (partial) injection pfl
respectively. The identity of an obje@b, 4, s) is just(id,,, id), and compositions of morphisms
are also defined by compositions of partial functions.

The commuting square also implies the equation (5.1),d.€.(w)) = I(i(w)) = I(s) N
i'(w"). First, for anyk € w, j(n) is in the domain of definition of —* hencez’(j( )) must
also be in the domain of definition éf* andi=1(i'(j(k))) = i'(;71(j(k))) = i(k). Because
[ is injective, I(i(k)) = I1(I71(i'(j(k)))) = i'(j(k)). Clearly,i(i(k)) € l(z’(w)) C I(s) and
i'(§(k)) € ' (j(w)) C ¥ (w'). Second, ifc € I(s) N (w'), thenk is in the domain of definition
of /=1 and there exists somé € w’ such thati'(k') = k. Clearly, k" is in the domain of
definition of{~! o 4/, so by the commuting square (5.3), it must be also in the domaiin ¢f !,
consequently in the domain gf-!. Thus there exists” € w such thatj(k”) = k/, therefore,
k=d(K)=7(i(K") €i'(j(w)).

The category defined her is basically the same category as defined in Definition 5.1: the con-
dition that the diagram (5.3) commutes is equivalent to the pull-back condition in Definition 5.1.
We prefer the definition using pull-backs to the one using partial functions because pull-backs
have certain nice properties. For instance, to check the composition of morphisms, it is standard
that the composition of two pull-backs is still a pull-back, hence Lemma 5.2 is straightforward
(although we also made a set-theoretical proof), but this is not the case if we the definition using
partial functions. Furthermore, taking partial functions into consideration might also make our
discussion more complicated, notably on the derivation of logical relations.

Clearly, the categorfPZ— is a subcategory df —. More specifically, it is a subcategory
of Z—, where we have the same collection of obje€®b§(PZ~) = Obj(Z)), but fewer
morphisms.

Lemma 5.3. For every morphisnfy, ) : (w,,s) — (w’,4', s’y in PZ 7, there exists some object
(wo, 10, So) € PZ~ such that(w', ', s") and (w + wy, i + ip, s + o) are isomorphic.

Proof. Let wy = w’ — j(w), so = s’ — I(s) andiy be ¢ limited to the domainw,. Define
w4 wy — w by (k) = j(k) foranyk € wandj’(k) = k for anyk € w and define
I':s+4s9g— s byl'(k) =1(k) foranyk € s andl’(k) = k for anyk € sq. Clearly, both;j’ and
I" are bijective, and it is easy to check that the diagram

1414
w + wo 0

s+ Sg

-/

J U

-/
(A
w———>4

commutes and is a pull-back i hence(j’,1’) is an isomorphism ifPZ . O
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The categoryPZ — also satisfies the “cube property”.

Proposition 5.4 (Cube property for PZ~). Suppose thatji, ) : (w,i,s) — (wi,11,s1) and
(42, 12) : (w,i,8) — (wa,is, s2) are two morphisms ifPZ . There existguw’,i,s’) € PZ~
and two morphismg;i,7}) : i1 — ¢ and (j},15) : i — ¢ such that the following square

commutes iPZ—": .
11 12
RN

i

Proof. According to Lemma 5.3, there exist obje¢ts;, i3, si) and (w3, i3, s3) in PZ~ such
thati + ij is isomorphic toi; andi + i is isomorphic tois. Let (w',4’,s’) be the object
(w+wh +wd, i + iy + i, s + s + s3). Consider the diagram

)
i1 12

(j?,l?)l l(a’%l%)

i+ i+ i

i+ iy + i

(5.4)

where (59,19) and (59, 19) are isomorphisms such thgf o ji, I o 1, j9 o ja, 13 o I5 are all
inclusions. This diagram commutes since both paths are pairs of inclusions. O]

5.2 Dérivation des relations logiques suSet”Z

To define logical relations for the cryptographic metalanguage, we switchSeafn to Set?”
the category of functors frorRZ " to Set and natural transformations. Necessary properties for
the derivation must be checked.

First of all, Set?Z ™ is Cartesian closed. Products and coproducts are still defined pointwise.
For any two functorsA, B : PZ— — Set, their exponent is defined by

BAi = SetPT" (PT7(i,—) x A, B)
(BAG, DN (5 1),a) = fi"(( 0 4,1 01),a)
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forany(w,i,s) € P, (j,1) :i — i, (j/,1') : i’ —i" € PI~, f € B4 anda € Ai. Set?*~
has pull-backs, taken pointwise.
Define a strong mona(,n, p, t) onSet™  by:

e TA = colimy A(_+1i') : PZ— — Set. On objectsTAi = colimy A(i+ ') is the set of
equivalence classes of pairé, a), wherei’ : w' — s’ inZ anda € A(i + i), modulo the
smallest equivalence relatiensuch thati’, a) ~ (i, A(id;+(j,1))a) for each morphism
(7,0 : (', i, ") — (", ", s") Iin PZ~. We write[i, a] for the equivalence class ¢f, a).
On morphismsTA(j,1) maps the equivalence class(@f, a) to the equivalence class of
(7', A((4,1) +idir)a);

o foranyf: A — BinSet??, Tfi: TAi — TBiis defined byT'fi[i’, a] = [/, f(i+i')al;

e nAi: Ai — TAiis defined byyAia = [, a], where) denotes the empty function between
empty sets;

o pAi: T>Ai — TAiis defined by Ai[i’, [i", a]] = [/ + 4", al;

e tA, Bi: Ai x TBi — T(A x B)iis defined byt A, Bi(a, [/, b]) = [i’, (Ai;,a,b)] where

i77, 1 — 1+ is the canonical injection.

Recall the forgetful functot/ : Z— — 7 mapping an objectw, i, s) to s and a morphism
(4,1) tol. Clearly, this is also a functor froRZ~ to Z. Let|_| : Set? — Set?? " be the functor
ids.;”. |_| preserves finite products. Define the monad morphismT|_| — |T_|, whereT
is the strong monad over the categdiyt”, by o 4i[(w’, ', '), a] = [s', a], for any objectA in
Set’ and(w, i, s) € PI~. Accordingly, definer 4, 4, : TIAy X Ag| — |TA;| x |TA| by

0(Ay,A5) = (04, 0 TIm1|,04, 0 T|m2])

SetPI™ has a mono factorization system consisting of pointwise surjections and pointwise in-
jections and it is clear thak and finite products preserve pointwise surjections. All these allow
us to define a logical relation Cﬁ’ubsconegzgi;e /T

The derivation of logical relations ovefet? can be adapted here without much change.
Considerf : S < |A; x Ag| (A1, Ay € Set? andS € SetP? ™) as a representation of a series
of binary relations such that for evety, i, s) € PZ—, fi : Si — |A1 x Asli = (A1 X Ag)s =
Ays x Ass is an inclusion, representing a binary relation. In particular, the relation between
monadic values is the same as that derived fl®at¥ ~ since the two categories™ andPZ~

have the same objects:

[sl,al] gl [SQ,GQ] <~
3<w0,i0,50> € 'PIH,ll 181 — 89 €L, ly:89 — 59 €T (55)
Aq (ids + ll)(al) S(Z + io) Ag(ids + lz)(ag).



5.2. DERIVATION DES RELATIONS LOGIQUES SUR SETPT™ 95

The only difference is relations for function types:

i Rf;"f’s> f2 =
V{5, 1) : (w,i,s) — (w',i',s") € PIT™ - Vaj,as € As' (5.6)

(a1 Ri‘ ag = f13’<l,a1) Rll; f23,<l,a2>).

A function relation derived over the categaft”™  quantifies over a relatively smaller col-
lection of worlds as there are fewer morphismsA@ — than inZ—, hence we can relate more
functions with this logical relation.

Lemma 5.5. The full subcategorfPZ< of PZ— consisting only of inclusions, i.e., objects are
inclusions (w, C, s)) of Z, is equivalent to the whole categoBZ —.

Proof. Let F : PZ< — PZ— be the inclusion functor, an@ : PZ~ — PI< be the func-
tor which maps(w, i, s) to (i(w), C, s), and(j,1) : (w,i,s) — (w',i',s') to (i’ o joi~L)I) :
(i(w),C,s) — (i'(w'),C,s'). Then clearlyG o F is the identity, and®’ o G maps(w, i, s) to
(i(w), C, s) which are isomorphic throughi, id,) and(i~! 1;.,,ids). So(F,G) is an equiva-
lence of categories. O

We shall write(w, s) for (w, C, s) and(l, 1) for the morphism from{w, s) to (', s') in PZ<,

wherel is an injection froms to s’, and the first of (i, /) actually denotes [, with the codomain

w'.

Lemma 5.6. The categonSetPZ< is equivalent to the categoget”Z .

Proof. Similarly as in the proof of Lemma 5.5, we 1& : Set?Z= — SetPZ be the functor
such that

VA € Set’?" Y(w,i,s) € PT~, F'(A)((w,i,s)) = A((i(w), s)),
andG’ : SetPT~ — SetPI" be the functor such that
VA € Set™ " \Y(w,s) € PIS, G'(A)((w,s)) = A((w, C, s)).

Clearly,G’ o F' is the identity, and’ o G’ maps every functod € Set”? " to another functor
A’ € SetP?” such that

V(w,i,s) € PI7, A (< w,i,s >) = A(i(w), C, s),

and these two functors are isomorphic throutf, id,) and A(i ' 1, ids). So(F’,G’) is an
equivalence of categories. O]
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If we switch from the categorget”Z to the equivalent catego§et”Z<, the definition of
Si (5.5) is then equivalent to

[s1,a1] S{w, s) [s2,as] <
I(wo, s0) € PIS, 1y : 81 — 59 €L, 1o : 59 — 59 € I-
A1(ids + 11)(a1) S(w 4+ wog, s + so) A2(ids + 12)(a2).

The function relation (5.6) is equivalent to

AR =
Y{(wg, s0) € PI< - Vai,as € A(s + sg)-
(a1 R[(qw—&—wg,s—f—so) as =

bil S/<inls,507 al) R(éu-l-wo,S—&-S()) f28/<in18,807 CL2>).

Since logical relations derived over the categSeg”” are Kripke logical relations, they
must satisfy the monotonicity property so that the Basic Lemma will hold. The following propo-
sitions shows that logical relations derived o$er”” ~ are monotonic if relations for base types
are monotonic.

Proposition 5.7 (Monotonicity). Suppose thatR ;) «ype iS a logical relation derived from the
categorySet”™ . If R, is monotonic for every base typethen R, is monotonic for every
typer, in the sense that for every morphism!i) : (w,i,s) — (w',i’,s’) € PZ~ and every
pair of valuesay, as € [7]s,

ar R ay = [r]i(ar) RE) [7]i(as).

Proof. Similar as the proof of Lemma 4.5, we prove the monotonicity by induction on types. We
do not detail the induction steps, which are almost the same as for Lemma 4.5. O

5.3 Relations logiques cryptographiques

We have been very careful in defining the cipher function and the cryptographic message relation
according to injections i, not objects inZ—, althoughZ— andPZ— have exactly the same
collection of objects. Definitions based on injectionsZoéllow us to reuse them directly to
define a logical relation over the categadtyt”™” .

Definition 5.2 (Cryptographic logical relation). Suppose thatw, 7, s) is an object ifPZ— and
o is a cipher function. The relatior®{""**¥ [7]s x [r]s (R%¥ for short) are defined by
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induction over the structure of type as follows:

by RE% by <= by = by,

bool
R%w —
N1 Kyt N2 <= N1 = N2,

k1 Ri’;’; ko <= k1 = ko € i(w),

mi R?ﬁfg mo <— (ml,mg) c MRZ"@,
(ala a/1> Ri,cp

T/
L
ay Ropt

hRYE . fo =
V(4,0 : (w,i,s) — (w',i',s') € PI™ - Yay,aq € [7]$"
(a1 'R,i-/’(p as = f15'(l,a1) 'R,i//’(p fas'(l,a2)),

[81, (11] Rzﬁf [82, az] <

/ i ! PLe )
(ag,ah) <= a1 RZ¥ ay & da) R.Y db,

7] ag <—— a1 ’Rff as 0Ora; = ag = _L,

E|<w0,i0,50> € PL7,ly:81 — sg,lo:8 — syl
[7](ids + 11)(a1) RE? [](ids + l2)(az),

where MR"¥ is the cryptographic message relation of Definition 4.2.

A cipher functiony is monotonidf for any morphism(j, 1) : (w,i,s) — (w',i',s') in PZ~,
and for everymy, my € [msg]s,

(m1,m2) € @' (ky, k) = ([msg]l(my), [msg]i(m2)) € " (I(k1),1(k2)).

This is well-defined because the categ®¥y — guarantees that ¥, k2 ¢ w, thenl(k1),(kz) &
w’ either. Furthermore, a cipher functignis said to beconsistentf

(m1,ma) € @' (ky, k2) <= ([msg]i(m1), [msg]l(m2)) € ¢” (I(k1),1(k2)).

Again we must check the Basic Lemma. Recall that this is meant to check the condition of
monotonicity and the one that every constant is related to itself. Once we get these two conditions
satisfied, the categorical construction automatically guarantees that the Basic Lemma necessarily
holds. According to Proposition 5.7, logical relations derived over the cate§ery’  are
monotonic if all relations for base types are monotonic. It is easy to check that relations for types
nat, bool andkey are monotonic. The following lemma shows that the relation for messages are
monotonic if the cipher functiop is monotonic.

Lemma 5.8. If the cipher functiony is monotonic, then for any morphisfi () : (w,i,s) —
(w',4',s"y € PZ and for any pair of valuesi;, mg € [msg]s,

(m1,m2) € MR = ([msg]i(m1), [msg]l(ms2)) € MR?*%.
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Proof. We prove by induction on the message structure. In particular, whes e(m/, k1) and

mo = e(m'2, kg),

e eitherk; = ky € w and(m}, m}) € MR*?, thenl(ky) = I(k2) € #'(w'). By induction,
([msg]l(m}), [msg]i(m})) € MRY*¥, hence

(e([msg]i(m}), 1(k1)), e([msg]i(mb), [(k2))) € MR'#,

e Of ki,ky & w and (m},m}) € ¢'(k1,k2), then according to the definition G?Z,
[(k1),1(ke) ¢ i'(w'). Becausep is monotonic,

(Imseli(m). [msgli(mb)) € o (1(k1), 1(k2)).
hence(e([msgli(m4), I(k1)). e([msli(mb). (k2))) € MR". -

<w?i7s>7

Proposition 5.9 (Monotonicity). The cryptographic logical relatiofR ; * is monotonic for
any monotonic cipher functiong, in the sense that for every morphigm!) : (w,i,s) —
(w',i',s"y € PZ™ and every pair of values;, as € [7]s,

sl ol

a1 REHH8 ay = [r]i(ar) RETD¢ [7]i(ag).

T

Proof. Clearly, in the cryptographic logical relation, relations for every base type are monotonic.
In particular, Lemma 5.8 shows th’ﬂfﬁfg is monotonic when the cipher functignis mono-
tonic. Since the cryptographic logical relation is derived over the cate§ey/’ , according to
Proposition 5.7, it is monotonic for every type O]

Lemma 5.10. For any monotonic cipher functiop and for any morphisntj,?) : (w,i,s) —
(w',i',s'y € PT ™, if p1 RE? py, then[T]i(p1) RE¥? [T]i(p2).

Proof. This is a corollary of Proposition 5.9. O

The Basic Lemma of the cryptographic logical relation holds for a non-trivial collection of
cipher functions, namely for all monotonic cipher functions.

Proposition 5.11 (Basic Lemma for the cryptographic logical relations).Suppose thal' +-
t : 7 is a well-typed term ang is a monotonic cipher function. For evefy, i, s) € PZ~ and
every pair of environmenis;, ps € [I']s such thatp; R:? pa, [t]sp1 RE? [t]spa.

Proof. It is proved by induction on the structure of temmwhich includes proving that every
constant is related to itself.. We do not detail the induction steps, which are quite similar as in
the proof of Proposition 4.7. O



5.4. VERIFICATION DES PROTOCOLES A L’AIDE DE RELATIONS LOGIQUES 99

If we consider the equivalent subcateg@dytPZ< of Set”Z~, Definition 5.2 is actually
equivalent to the following one:

Definition 5.3. Letw and s be two sets irf andw C s. ¢ is a cipher function. The relations
R\ C [7]s x [r]s are defined by induction over the structure of typas follows:
by Rélgfl)’(p by <= b1 = bs,

<w7s>7<P
ni Rnat Ng < N1 = Ny,

k1 RliieUy,S),AO ko <= k1 =k € w,

my ’R'r<nué’gs>,w mg < (ml)m2) € MR<’(U,S>,§0’

(a17a,1) R<w75>7‘p (a27al2) — 'Rg_w75>730 as & a{l 'R,7<—1/075>7‘10 a/27

TXT!

<w75>730 <’LU78>730 /A
al Ropt[ﬂ as <= a1 R+ azora) =ajy =1,

AR fp =

T—T1!
V' s e Tstw' Cs'- Vay,az € [7](s+ §)-
/ /
(al ,R'ﬂ(_erw sts')e ag =

fl(S + 5/)(inls,s’,a1) R<w+w/7s+5/>,90 fg(s + S,)(inlS’S/,QQ)),

[s1,a1] Rfrt’8>’“0 [s2, as] <
Jwg, s € ZSt.wyg C sg-3ly:81 — 89 €L, lo:8 — sg €L
[7](ids + I1)(ar) RETUOST002 121 G, + 1) (az),

where MR (%5 is a cryptographic message relation.

This definition takes as parameters a pair of sets and simply requite®e a subset of, i.e.,

the set of disclosed keys is a subset of those keys that have been created at that “world”, so it is
much closer to the intuition and we shall use this logical relations to check the relation between
concrete programs.

5.4 Verification des protocoles a I'aide de relations logiques

The point of checking whether two concrete programs are related is to distinguish between dis-
closed keys and secret keys and to find a proper cipher function. Consider the counterexample at
the beginning of this chapter:

p1 = vk.({0}x, {1}k, Ax.getnum(dec(x,k))),
p2 = vk.({1}k, {0}x, Az.letopt y < getnum(dec(z, k)) in some(l — y)),
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with the denotations

[p1]s [k} {0}k, {1}k, A1)
[p2]s = &} {13k, {0}k, f2)]-

We are now able to relate these two programs with the cryptographic logical relation. Without
loss of generality, we can just start with a wotltl 0). Clearly, the fresh key: is secret, i.e.,
k ¢ w, then we need to relate the two tuples at the walld £ }). For this, we define the cipher
function at this world as

O (&, k) = {(0,1), (1,0)}.

Note that in order to keep the soundness of the logical relation, cipher-functions must be mono-
tonic, i.e., for every larger worldw, s) such thatt ¢ w andk € s, (0,1) and(1,0) must be
included inp(™*) (k, k). Then the cipher-texts in the two programs are related because of this
cipher function. The two functiong, and f> are related as well because they expect cipher-texts
as arguments, but we are only allowed to apply them to related cipher-texts. In this case, we shall
always get the decryption errat J unless we apply these two functions to secret cipher-texts —
({1}x,{0}x), ({0}, {1}x) — given by the cipher-function, where we get related results.

This section shows that the cryptographic logical relation can be used to relate the different
instances of the protocols in Chapter 2, by carefully choosing the set of secret keys and the
cipher-functionyp.

5.4.1 Le protocole de I'échange de clés symétriques

Recall the encoding of the (fixed) symmetric key establishment protocol:
P(m) = V(kaSa ks, keSa kab)-<kesa faa fs>,

where

fa ([A, B, {B, kab}tka)s {m}ha,)
fs = Az.letopt x, < getnum(rs(z)) in
letopt 1y, < getnum(7s(z)) in
letopt y < dec(m(2),K(xq, 8)) in
letopt 7}, < getnum(fst(y)) in
£ 1, = 2} then some([n(za), n(z3), {nd(y) ey

else error
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Basically, fs expects messages of the forfX,Y,{Y,Z}, s] and will output messages
(X, Y, {Y, Z},]. If the argument message is of a wrong format.always returns an error

(L).

Proposition 5.12. For any two different messages; # ms, there exists a monotonic cipher-
functiony such that[ P(m1)] RV [P(mo)].

Proof. Consider the denotation of the protocol program

[{ka& ks, kes, kab}v <k6$7 [Av B, {B) kab}kas]a {m}kaba f>]7

where f is the denotation of s defined over{ kqs, ks, kes, kap }- N Order to relate the two in-
stances wherer» = mq andm = ms, we must select carefully the setof disclosed keys such
that the tuples are related.

Relating tuples is simply relating components. Relating the first compokgnterces us
to putk.s in w. Relating the third components, we must not put into w, sincem; andms
are different. This accordingly requires that the key should be secret, because in the second
component, it is used to encrypt the secret kgy We also letk;s be a secret key since it is not
disclosed in the program. Lat = {k.s} ands = {kqs, kbs, kes, kap }- Then at the worldw, s),
the first three components of the tuple are related, with the cipher function defined as (first try):

) (kap, kap) = {(m1,ma)},
‘P<w’s>(k7a8ak7a8) = {([Bakab]>[Bakab])}a
O (kps, kps) = 0.

We still need to check whether the functifiis related to itself. Functiof returns meaning-
ful results (non-error) only when it is applied to messages of expected format. In this program,
the possible messages that contexts can build and the corresponding respongeargom

[A7B7{B’kab}kas] = [A7B7{B7kllb}kbs]v
[Ev A, {A’ k}k‘es] = [Ev A, {Aa k}k‘as]?
[E7B?{B7k}kes] = [E7B7{B?k}kbs]'

wherek is eitherk.s or some fresh key not in. We should then revise the cipher function so that
this function is related to itself:

O (kapy kap) = {(m1,ma)}
0 (ks kas) = {([Bskap), [B, kb)), ([A, K], [A, k])}
90<w/’8,>(kbsykbs) = {([ka}v[B?k])]ﬁ
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wherew’ = w + wg ands’ = s + s for any (wg, so) € PZS, andk € w'. Itis clear that
this cipher function is monotonic. Moreover, with this cipher function, other components of the
protocol program are still related. O

5.4.2 Le protocole de Needham-Schroeder-Lowe

In the cryptographic metalanguage, G. Lowe’s fixed version of the Needham-Schroeder public
key protocol is encoded as

NS( ) = V(kwkb? ) <)\£C {$}ka7)‘x {x}kbv €7< (A),fa>,fb>,

where
fa = Maly, letopt 2’ < getnum(snd(z)) in
some((Na)-({[K(Na), £5%(2), AT}, oy, £2))
i = Ma"}i, letopt 2 < getkey(z”) in
if 2" = N, then some({i}y,) else error
fo = My.letopty < getnum(y) in

some(V(Nb)~<{[ ) (B>]}Kb y') >
fr = My}, -letopt yf < getkey(mi(y")) in
letopt y3 = getnum(ﬂg(y”))

if (yh = Ny and ¢y = 3

then some ({7} (y ")}k, (y)) else error.

Basically, f, expects messag€ésV,, B}y, and returns messagéd/,, N,, A}x., whereN, is a
fresh nonce generated y; f. then expects exactly the messggé, } ., and returns the secret
messages encrypted witt},; f, expects a principle identitX and returng Ny, B}, whereN,

is a fresh nonce generated fiy then f; expects messag¢sV,, N,, X };, and returns messages
{N}k,. In particular, f; checks whether the principle identify it receives is the same one as
f» receives.

Proposition 5.13. For any two different messages; # ms, there exists a monotonic cipher-
functiony such that[ N S (m1)] R [N S (my)].

Proof. Consider the denotation of the protocol program
[{kav kbv k€}7 <pka7pkba k87 <A7 f1>7 f2>]7

where f; and f, are denotations of, and f, defined over the sdtk,, k, k. }. Clearly, keysk,
andk;, should be considered as secret keys, lanchust be a disclosed key so that it is related to
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itself. Letw = {k.} ands = {k, ks, k. }. Then we must relate the two public key functigrg
andpk;, and the two principle functiong and fs, at the world(w, s).

To relate functiongk, and pk; with themselves, the cipher function should relate every
related messages encryptedigyor by ky:

P kaska) = {(m1,ma) | (m1,ma) € MR}
P (ke k) = {(m1,ma) | (ma,ma2) € MR®WH7)

wherew’ = w + wy ands’ = s 4 sq for any (wy, so) € PZ<. While MR is defined according
to ¢, this cipher function is indeed recursively defined.

The functionf; is a mapping

{N7B}ka = [{Na}v <{Na7N7 A}kb’f{”?

wheref] is a mapping

{Natk, = {m}n,.

Clearly, N, should be secret, otherwigg is not related to itself whem: is replaced by two
different messages:; andmsy. Furthermorep(N,, N,) should containgm;, mg). To relate
the functionfy, ¢(ks, k) should contaif{[N,, N, A], [Na, N, A]), for any keyN.

The functionf, maps a principle identity to an encrypted message with the secret key of the
received identity. Consider two possible arguments:

A = [{No}, ({ Ny, B}, f5)]
E — [{Np}, ({No, B}r., f5)],

wheref} is a mapping

{N',Ny, A}, — {N'}r,  whenf; is applied toA
{N',Ny,E}, — {N'}p, when f; is applied toE.

Ny is not secret, otherwise the functign will return unrelated results when it is applied o
BecauseV, is secret, the only message of the fofti’, N, A}y, that could be applied t@ is
{Na, Ny, A}p,, 1.6, N' = Ny, sop(kq, k,) must contain N,, N,) in order to relatefs. If f> is
applied toE, then N’ must be a disclosed key accordinggty, k), SO f4 is always related to
itself.

To summarize, the different instances of the protocol are related in the cryptographic logical
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relation, with the cipher function

N kayka) = {(m1,ma) | (m1,my) € MRI2)
o (ki k) = {(ma,ma) | (ma,ma) € MRWH)H2Y
" (hayka) = {(m1,ma) | (m1,mg) € MRM"")2}
U {(Na> No)}

o ke, k) = {(ma,ma) | (ma, ma) € MRW2)

U {([Na, Ny, A}, [Na, Ny, A]) }

90<w”’s”>(Na>Na) = {(mlamZ)}
where w' = {k.} + wo, & = {ka kp, ket + s0, W' = {ke, Ny} + wo and
s" = {kq, kb, ke, Noy Ny} + s0 for any (wyo, sg) € PZE. O

5.5 Comparaisons avec les relations logiques du nu-calcul

In the nu-calculus, Pitts and Stark proposeaparational logical relation' for reasoning about
the contextual equivalence [PS93a]. The operational logical relation is defined over the syntax of
the nu-calculus and relies largely on the operational semantics. Stark later rebuilt the categorical
modelSet? using the machinery afategories with relationand defined the categofy [Sta94].
This category gives a denotational semantics for the nu-calculus which directly validates most
contextually equivalent programs. In particular, it allows us to derive logical relations for the
nu-calculus, which are proved to be equivalent to the operational logical relation for types up
to second order. We shall show in this section that logical relations defined over the category
SetP1™ are indeed equivalent to those derived from Stark’s catefory

A category with relations is a category with a collection of binaatationsbetween pairs of
objects, representeld : A — B, andparametric squaresf the form

f

A Al
R R »
B—L s p

whereR, R’ are relations and, g are morphisms. Relations, like morphisms, are simply abstract
data. We rebuild the modélet” using the machinery of categories with relations, by equipping
both the index category and the base categofiet with relations. For the index categaofy a

In [ZNO3], we asserted wrongly that logical relations derived a¥et”  can identify Pitts and Stark’s opera-
tional logical relation.
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relationR : s; < s onZ consists of a finite sk and a pair of injections; <~ R »— s5. Sucha

relation is also called spanin the operational logical relation. The operation '+ Brextends to

relations: ifR : s1 < sy andR’ : s} « s, aretwo spansiff, thenR+ R’ : s1+s| < sa+shisa
51— )

Pt

span as well. A square ihis parametric if and only if both squares iR — R’ are pull-backs.

I

82%3/2

inl
817> 51 + 8

Up to isomorphism, all parametric squaregiare of the form Ri @RH@ :
s2h ) + s
A u
The base catego§et is extended with ordinary binary relations and a squ%e ¢R,
b
B—pB

are parametric if and only if

Va € A,b € Bst.(a,b) € R= (fa,gb) € R'.

We then take the ordinary categdPyof parametric functors and parametric natural transforma-
tions fromZ to Set.

Every relation inZ identifies an object ifPZ— and every parametric square identifies a
morphism. Precisely, for every relatidd: s; < s9, define an objectR, ir, s1 +r s2), where
s1 +r s2 1S $1 + s2 modulo the relation?, andip is just the injection mapping every element

R— 51
in R to the equivalent classes of either of its components. Clearly, if both squéres i
R — 5]
R—=52 R—>$1+Rr S}
and i i are pull-backs, theni i is a pull-back as well. Conversely, for any
R/‘>8/2 R/‘>52+R’5/2

object(w, i, s), we can simply build a relatioR : s < s with R,, = id,,.

The categoryP is Cartesian closed. In particular, exponentials are defined by

BAs P(Z(s,—) x A, B),
BAifs"(j,a) = fs"(joi,a),
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wheres,s',s" € T,i:s—s',j:s — " €I, f € BAsanda € As". Furthermore,

(f1, fg) S BAR <
81 N sh
for all parametric square% $R/ and elements; € As),ay € As),
Iy
82 —= 89

(a1,a2) € AR = (fi1s1(l1,a1), f2s5(l2,a2)) € BR/,

wheresy, s, € Z, fi € BAs; andf, € B4s,. The monad is specified exactly as for the model
Set? except that on objects, it is the quotient

TAs ={(s',a) | s € ZT,a € A(s+§')}/ ~

where (s},a1) ~ (s5,a2) if and only if there is someR’ : s} < s, such that(a1,as) €
A(ids + R'). The relationTAR : TAsy < TAssy, foranyR : s; < s inZ, is given by

(e1,e2) € TAR <
AR : s — shya1 € A(s1 + 8)),a2 € A(s2 + s) s.t.
e1 = [s],a1] & e2 =[sh,a2] & (a1,a2) € A(R+ R').

Logical relations derived oveSet”? andP are equivalent in the sense that for any type
7 and any relatiom? : s; < s9, there is some objectw, i, s) in PZ~ such that values related
by [7] R are also related bR’ after being lifted to the proper world, and conversely, for any
object(w, i, s) of PZ, there is some relatioR such that values related 1. are related by
[]R. The equivalence can be proved by induction on types when the relations for base types
are carefully defined. The induction steps of function types and monadic types are shown by the
following two propositions, while others are standard. Rebe a logical relation defined over
Set™ . In particular,R ., andR ,, are defined by (5.5) and (5.6) respectively.

Proposition 5.14. A is an object inSet?. For every relationR : s; < s, and every object
(w,i,s) € PLT7,if

(a1,a2) € AR = (Ai1(ar), Aiz(az)) € R'F,
(al,ag) S R% = (CL1,CL2) € ARw,

whereig : R — s1 +r s2 is the injection identifying the relatioR, i1 : s1 — s1 +g S2,12 :
s9 — 81 +g s9 are canonical injections i, and R, : s < s is the identity relation onv, then

(e1,e2) € TAR = (TAiy(e1), TAig(e2)) € RIE,
(61,62) S RITA = (61,62) € TAR,,.
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Proof. If (e1,e2) € TAR, according to the definition oT' AR, there exist some relatioR’ :
sy « shandtwo elements; € A(s1+5)), az € A(sa+s)) suchthat, = [s],a1], e2 = [sh, as]
and(a1,az) € A(R+ R'). ThenTAii(e1) = [s}, A(i1 + idy )a1] andTAiz(e2) = [s5, A(i2 +
idy, )as]. Letip : R' — s} +ps s5 be the injection identified by’ andi} : s| — s+ s3 and
i5 1 s — s} +r s, be the canonical injections, so

ir+ir : R+ R — (s1+rs2)+ (s] +r sh)

is the injection identified by? + R’. Becauséa,,as) € A(R+ R'), by the hypothesig,A (i1 +
ih)ar, Alia + ih)az) € Rff”R/, hence(TAi; (e1), TAiz(e2)) € R, according to (5.5).

Suppose that; = [s},a1] andes = [sh,as]. If (e1,e2) € RE,, according to (5.5), there
exist somewy, ip, so) in PZ~— and two injections; : s§ — so, l2 : sh — sp such tha A(id, +
l1)a1, A(ids + lo)az) € R% ™. Then by the hypothesis,

(A(ldS + ll)al, A(lds + lg)az) € ARw+w0 = A(Rw + Rwo)-

Clearly, (s1,a1) ~ (so, A(ids + 11)aq) by takingl; as a relation betwees; andsy. Also,
(81, al) ~ (SQ, A(lds -+ l1)a1), hence(el, 62) € TAR,,. O

Proposition 5.15. Suppose thatl, B are two objects irSet”. For every relationR : s; < so
and every objectw, i, s) € PZ, if

(a1,a2) € AR = (Aiy(ar), Aiz(az)) € R'F,
(b1,ba) € BR = (Bii(b1), Biz(b)) € R,
(a1,a0) €ERY = (ay1,a2) € ARy,
(b,ba) ERYy = (b1,by) € BRy,

whereig : R — s1 +r $2 is the injection identifying the relatioR, i1 : s1 — s1 +g S2,12 :
sy — S1 +g s9 are canonical injections i, and R, : s < s is the identity relation onw, then

(fi. f2) € BAR = (B%i1(f1), Bia(f2)) € R,
(fi.f2) €ERGa = (f1, f2) € B*Ry.

Proof. If (f1,fs) € BAR, let (j,1) : ir — 4 be an arbitrary morphism i®Z~, where

i’ : w' — ¢ € Z, then by Lemma 5.3, there exists some objegy, ig, so) such that(j,[) is

equivalent to the morphisitinl, inl) from iy to ip + ig. Take two arbitrary elements, ay €

A((s1+rs2)+so) such thata, as) € Rfj“o. By hypothesis(ai, az) € A(R'+ R,,,), where
S1 o, S§1+R S2

R : s1 +g 59 < s1 +pg s9 is the relation equivalent t&, so the squareR$ ‘ @R, is

2
52 —> 51 +R S2
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parametric inZ, hence(B4i;(f1), BYia(f2)) € BAR' by the functoriality. Because the square
s1+r 82 2% (51 +r s2) + 50
$ R J/R/+Rwo is also parametric,

s1+R 52 2% (s1 +r 52) + 50
(BYi1(f1)((s1 +r s2) + s0)(inl, a1), BYia(f2)((s1 +r s2) + s0)(inl, a2)) € B (R + Ruy),

and by hypothesis, they are related®{ **, hence( BAi1(f1), BAia(f2)) € RIE,.

Lo,
5981

If (f1,f2) € RiBA, take an arbitrary parametric squa;gg}i $R, , Which, up to isomor-

l2
S%SQ

inl 0
§—>s+ 5]
phism, is equivalent tORwi @RIU+R0 for some relationRy : s{ « s9. Letig, : Ry —
inl 0
§—>5+ 85
s + g, s be the injection identified bRy, i{ : s{ — s§ +g, 8§ andi§ : s§ — s¥ +x, s be
the canonical injections, an, : s{ + g, s9 < s{ + g, s3 be the equivalent relation t,. Then
for every elementa; € A(s + s9),a2 € A(S + s9) such thata;, a2) € A(Ry + Rp), by the
hypothesis,

(A(id, + 1%)a1, A(id, + i9)az) € R, 70
Becaus€inl, inl) : ¢ — i + i, is a morphism ifPZ ",

(F1(s + (9 +ro s9)(C, Alids +9)ar), fols + (1 +ry 9))(C, Alid, + §)an) € Ry ™
and by hypothesis, they are also related®yR?,, + Ry), S0 fi(s + s1)(inl,a;) and(fa(s +
s9)(inl, ag) must be related by3(R,, + Ry), otherwise the functoriality would imply that the
above two lifted elements are not relatedByR,, + R))). Hence,(f1, f2) € BAR,,. O



Chapitre 6

Complétude des relations logiques

Lorsque nous utilisons les relations logiques pour déduire I'équivalence contextuelle, la com-
plétude des relations logiques est un sujet que nous ne devons pas ignorer. La complétude des
relations logiques peut avoir deux sens :

— dans le senfort, les relations logiques sont completes, par rapport a I'équivalence contex-
tuelle, si et seulement s'il existe une relation logique spécifique telle que tous les pro-
grammes équivalents peuvent étre reliés par cette relation;

— dans le senfaible, les relations logiques sont complétes si et seulement si pour chaque
paire de programmes contextuellement équivalent, il existe une relation logique qui relie
les deux programmes.

Dans cette thése, nous nous concentrons sur la complétude des relations logiques dans le sens
fort, ce qui est plus utile et plus pratique pour étudier I'équivalence contextuelle.

En général, dans le lambda-calcul simplement typé, les relations logiques ne sont complétes
gue pour les types du premier ordre. Nous commencons le chapitre par une revue bréve de la
preuve de complétude (pour les types du premier ordre) dans les lambda-calculs typés standards.
La complétude de relations logiques pour les types monadiques est plus subtile. D’abord, la
définition standard d’équivalence contextuelle du lambda-calcul typé ne s’applique pas dans le
métalangage cryptographique. Il faut trouver une définition plus adaptée a notre langage. Ensuite,
il s'avere trés difficile d’obtenir un résultat général de complétude pour toutes les monades a
cause de la grande différence entre les propriétés spécifiques des monades, ainsi qu’entre les
définitions des relations logiques. Nous exposerons la difficulté en essayant de faire une preuve
générale pour les types du premier ordre. Le lecteur intéressé par ce sujet peuvent se référer a
I'annexe B pour une discussion détaillée sur la complétude des relations logiques monadiques.

Dans ce chapitre, nous nous concentrons sur les relations logiques pour la monade de la
génération de clés. Tout d’abord, nous continuons notre discussion de la notion d'équivalence
contextuelle commencée a la fin du chapitre 3. Nous arrivons donc, dans la partie 6.1, & une dé-
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finition finale de I'équivalence contextuelle pour les protocoles cryptographiques, et nous mon-
trons que la relation logique cryptographique (définie au chapitre 5) permet de déduire cette
notion d’équivalence contextuelle. Dans la partie 6.2 et la partie 6.3, nous examinons la question
de la complétude des relations logiques dérivées sur la caté§arié . En particulier, nous
trouvons que ces relations logiques ne sont pas complétes pour tous les types du premier ordre.
Nous dégageons un sous-ensemble des types du premier ordre pour lesquels nous pouvons ob-
tenir la complétude. Afin d’obtenir la complétude pour tous les types, nous utilisons la notion

de relations logiques laches (lax). Dans la partie 6.4, nous définissons, sur la méme catégorie
SetP1™, une relation logique compléte qui est lache pour les types de fonctions et les types
monadiques, mais stricte (non lache) pour les autres.
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Completeness an important concern about logical relations that we should not bypass when
we are inclined to use logical relations to deduce contextual equivalence. There are two senses
of completeness for logical relations:

¢ In the strong sense, we say that logical relations are complete, w.r.t. contextual equiv-
alence, if and only if there exist a logical relation such that all contextually equivalent
programs can be related by this specific logical relation;

¢ In theweaksense, we say that logical relations are complete, if and only if for every pair
of contextually related programs, there exists a logical relation such that the equivalent
programs can be related.

We shall focus in this thesis on completeness of the strong sense, which is more practical than
the weak one for studying equivalence between programs.

However, in simply-typed lambda-calculus, logical relations are only complete for types up
to first order in general. Recall the standard definition of contextual equivalence in simply-typed
lambda-calculus, defined in a set-theoretical model. Two closed tgrmsof the same type,
are contextually equivalent( = t5), if and only if, whatever the terrt suchthatc : 7= C : o
(o € Obs) is derivable, it holds that

[Cl[z = [t]] = [Cllx = [t2]].

Logical relations for simply typed lambda-calculus are complete up to first-order types, in the
strong sense that there exists a logical relati®n) - «,. Which is partial equality on observation
types, such that if t; : 7 andt ¢, : 7 are derivable, for any type up to first order, it holds that

11 =rtyg = [[tl]] R~ [[tQ]].

Say that a value € [[7] is definableif and only if there exists a closed tersuch that- ¢ : 7 is
derivable and: = [t]. We define the relatior; by a1 ~, as (for a1, ae € [7]) if and only if
a1, ap are definable and; ~; ay. Let (R;)- type b€ the logical relation induced iy, = ~; at
every base typeé.

The proof of completeness is by induction enCaser = b is obvious. Letr = b — 7.
Take two termg;, o of typeb — 7/ such that; andt, are related by, ... Let f1 = [t1]
and fy = [[t2]]. Assume that,as € [b] are related byR,, thereforea; ~y, as SinCeR;y = ~y.
Clearly,a; anda, are definable, say by termg andus, respectively. Then, for any conteit
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suchthat: : 7/ F C : 0 (0 € Obs) is derivable,

[C]z — fi(an)
= [Clzui/z]][z — f1] (sincea; = [u1])
= [Claw/z]][z — fa] (sincefi ~p—.rr f2)
= [Cllz — fa(ar)]
= [Cltaz/z]][x = a1] (sincefz = [t2])
= [Cltaz/x]][z — a2] (Sincea; =~y az)

= [Cllz — fa(a2)].

Hencefi(a1) =~ fa(az). By induction hypothesisf; (a1) R, f2(a2). Becauser; anda, are
arbitrary, it holds thaff; Ry fa.

Completeness of monadic logical relations is much subtler. First, as we have seen in Sec-
tion 3.5, the standard definition of contextual equivalence for simply-typed lambda-calculus is not
suitable for the computational lambda-calculus. We revise the definition and consider contexts
of type To (o € Obs): two closed terms,, o of the same type, are contextually equivalent
(t1 =, t9), if and only if, whatever the terri such thatz : 7+ C : To (o € Obs) is derivable,
it holds that

[C][z — [a1]] = [C][z — [a2]].
Second, it is very difficult to get a general result on completeness for all monads, since specific
properties of particular monads (and corresponding logical relations) are quite different. Further-
more, since contexts are involved, language constants play an important role in discussions of
completeness and they vary widely for different forms of computations.

We investigate completeness up to first-order types in the strong sense, in a similar way as
in simply-typed lambda-calculus. We aim at finding a logical relati®} ) ¢ype Such that if
Ft1 : 7 andk t5 : 7 are derivable, for any type up to first order, it holds that

t1 =t — [[751]] R~ [[tg]].

Or, shortly: ~, € R, . We again induce a logical relatidfR ;) - type by Ry =~4, for every
base typé. Then the proof would go by induction over to show~, C R, for an arbitrary
monadT and every first-order type. Cases = b andr = b — 7’ go identically as in the above
proof for simply-typed lambda-calculus. The difficult case is T7/, i.e., the induction step

~r C Ry =~1r C Rre (61)

We did not find any general way to prove this for an arbitrary monad. In fact, this does not
hold for all first-order types. For certain concrete monads, in order to show (6.1), we must have
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further restrictions omr. Interested readers are referred to Appendix B for further discussion on
completeness of monadic logical relations, where we show (6.1) for a list of concrete monads
(sometimes with further restrictions a.

In this chapter, we shall concentrate ourselves on logical relations for the special monad of
dynamic key generation. First of all, we continue the discussion at the end of Chapter 3, on the
notion of contextual equivalence. We give, in Section 6.1, the final definition of the contextual
equivalence for cryptographic protocols and show that the cryptographic logical relation defined
in Section 5.3 can be used to deduce the contextual equivalence. Then we start to investigate the
completeness of logical relations derived over the categety’” . In particular, it turns out
that completeness of these logical relations does not hold for every type up to first order, but it
does hold for a certain subset of first-order types. In Section 6.2, we investigate completeness for
non-monadic types, and Section 6.3 is about monadic types. To get completeness for all types,
we switch to the notion dfax logical relations In Section 6.4, we define a complete lax logical
relation over the catego§et™ ~, which is lax at function types and monadic types, but can be
strict at various other types.

6.1 Equivalence contextuelle des protocoles cryptographiques

Recall the definition of contextual equivalence in the end of Chapter 3: two vajues € []s
are contextually equivalert s, (a1 ~2 as), if and only if, for every finite set of variables’,

T

every injectiong’ : w’ — s’ andl : s — s’ and every ternt such that
w' :key,z:7FC:To, (o€ Obs)

is derivable,
[C]s'd'[x = [7]i(a1)] = [C]sd" [z — [r]i(a2)].

This definition potentially allows contexts to have accesadlitgeys, which is too powerful. The
key of defining contextual equivalence for cryptographic protocols is that contexts must represent
honestly the power of attackers. Obviously, attackers do not necessarily know every key.

The categonySet”™ ~ has been proved very useful for defining logical relations for the cryp-
tographic metalanguage. It can also be used here to define a more reasonable notion of contex-
tual equivalence. Note that we shall consider here the category equivalBft tovherew is
restricted to be a finite set @hriablesand continue to call this categoBZ . Objects(w, i, s)
are then sets of variables denoting those disclosed keys,itogether with an injection. We
also use to denote the environmeft — i(w)]. Using the categorget™ ", we then arrive at
the following definition of contextual equivalence for dynamic key generation:
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Definition 6.1 (Contextual equivalence for key generation).Suppose that : w — s is an
injection inZ. Two valuesa;,ay € [7]s are said to becontextually equivalent atw, i, s),
writtena; ~4"*) a,, if and only if, for every morphism, 1) : (w, i, s) — (w',i’,s') in PT~,
for every ternC such that

w' :key,z:7HC:To, (o€ Obs)

is derivable,
[C]s" [z — [r]i(a1)] = [C]s" [z — [r]i(a2)].

We often writex%. for short, when the domain and codomain @ clear from the context.

This definition is more general than the one we introduced in the end of Chapter 3. In partic-
ular,a; ~2 ay if and only if a; ~19s a,.

However, contexts in this definition do not represent the full power of real attackers. This is
because morphisms in categd?Z — do not allow contexts defined &b, i, s) to get access to
keys ins — i(w), hence contexts cannot build any messages including cipher-texts encrypted by
secret keys. This is too strict, because in reality, attackers are certainly able to make use of those
encrypted messages passing through the network, even though they are not able to decrypt them.
In other words, a context for cryptographic protocols depends not only on a set of disclosed keys,
but also on a set of cipher-texts encrypted by secret keys, which we céhtvdedgeof the
context.

Formally, a knowledge: is a family of sets of cipher-texts such that for evéwy, i, s) €
PI—, k{w5s) is a set of cipher-texts encrypted by a keyin i(w), i.e.,

KW C {e(m, k) | m e [msg]s & k€ s—i(w)}.

We also writex? for (%5}, Note that in some formal models, the term “knowledge” represents
all messages that an attacker is able to access, not just secret cipher-texts, which is different from
our notion here.

We say that a knowledgeis monotonidf and only if for every morphisngj, ) : (w, i, s) —
(w',4',s") in PZ7, and every messagec [msg]s,

,L'/

a € k' = [msg]i(a) € K",

A knowledgex is consistentf and only if for every morphisnij, () : (w,i,s) — (w',i’,s") in
PZ~, and every messagec [msg]s,

Z‘/

a € k' <= [msg]l(a) € K.

Moreover, a knowledge is finite if and only if for every(w, i, s) € PZ, ' is finite.
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Our notion of contextual equivalence is defined over denotational models, so the way that
a context accesses those secret cipher-texts is by context variables. Given a typingItontext
and a knowledge:, for every injectioni : w — s, we say that an environmepte [I']s is a
rx-honest environmerit and only if for every variabler : msg € T, p(z) € &' If  is finite, an
environmen is said tohave full access te if for everya € «?, there is a variable : msg € T’
such thaip(x) = a. This implicitly requires that there must be enough variables of tygein
I.

Definition 6.2 (Contextual equivalence for cryptographic protocols).Suppose thak is a
knowledge and : w — s is an injection inZ. Two valuesui,ay € [7]s are contextually
<w77;78>7"{

equivalent at(w, i, s) and k, written asa; ~; ag, if and only if, for every morphisms
(4,0) : {w,i,s) — (w',7,s") in PZ~ and every ternt such that

x:7T,w :key,v:msgF C:To, (o€ Obs)
is derivable, and for any-based environment,
[C]spla = [7]i(a1), w" = i (w')] = [C]s'plz — [r]i(az),w’ — 7 (w)],

wherep is anyx-honest environment.
Two termst; and ¢, such thatw : key - ¢ : 7 andw : key + ¢5 : 7 are derivable, are
NAwyi,s

contextually equivalent afw, i, s) andx if and only if [t1]si ~; - [t2] si, wherei also
denotes the environmeht — i(w)].

Given a cipher functiorp, for every(w, i, s) € PZ~, consider

o' = {ela, k)| I €5 —i(w),a € [msg]s,
s.t.(a,ad’) € ¢'(k, k') or (d',a) € o' (K k)}.

we call || the knowledgeof ¢, which defines uniquely a knowledge. Using logical relations
to derive contextual equivalence then requires at least two conditions: first, the knowledge of
the cipher function must contain all cipher-texts in the knowledge of contextsxi.€.,|¢|;
second, the cipher functiop must respect the identity of the knowledgeof contexts, i.e.,
(a,a) € ¢i(k, k) for every(w, i, s) € PZ~ and every(a, k) € x'.

With the cryptographic logical relatiofR ) type, as defined in Definition 5.2, we can de-
duce the contextual equivalence in the cryptographic metalanguage.

Theorem 6.1 (Soundness of the cryptographic logical relation)Suppose thap is a monotonic
cipher function is a monotonic knowledge andrespects the identity @f. For every injection
i w — sinZ and every pair of values,,as € [7]s, if a1 RY% 4y, thena; ~2" ay, where
(R+)r type is the cryptographic logical relation as defined in Definition 5.2.
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Proof. Take any morphisntj, !) : (w,i,s) — (w',i',s') in PZ~. BecauséR:? is monotonic
(Proposition 5.9), we havlg-]i(a;) R [7]l(a2). Take any context such that

x:T1,w :key,v:msgF C: Tnat
is derivable, and lep, po be two environments

pro= plr = [rli(ar), w' = @' (w)],
p2 = plr— [rli(ag), v’ —i'(w)],

where p is any k-honest environment. Obviously; ’Rfrl"p p2 sincey respects the identity

of k, whereI' = {z:7,w': key,v:msg}. Then by the Basic Lemma (Proposition 5.11),
[C]s p1 ’Rﬁ;’nﬁt [C]s'p2. i.e.,[C]s'p1 = [C]s pa2, hencen; ~2" ay. O

Note that we state this soundness theorem for all values, not necessarily definable values,
while in our later discussion on completeness, we shall focus on definable values.

6.2 Complétude pour les types non-monadiques

While we can use logical relations to deduce contextual equivalence, it is natural to wonder
whether all contextually equivalent programs can be related by logical relations. This is what
we call the completeness of logical relations. However, in the cryptographic metalanguage, if
we do not have restrictions on computation types, logical relations for the key generation monad
(derived over the categor§et”” ") is not even complete for zero order types. Consider the
following two programs of typd Tkey:

let k < new in val(let k' < new in val(k)),
let k < new in val(let k¥’ <= new in val(k’)).

It is easy to compute their denotationsSat?, [{k1}, [{k}}, k1]] and [{k2}, [{k}}, kb]] respec-
tively. They are not logically related because there are two levels of computations, and logical
relations have to be constructed at each level. Since in the first term the ¥g@jus & key
generated during the outer computation, while the value of the other igjrisfrom the inner
computation, which is again fresh for all keys generated during the outer one, there is no way
to define these two values as the same fresh key in semantics. But the only way to distinguish
these two terms is retrieving their values (two fresh keys) and do some comparison. Since both
are fresh, no context can distinguish them, so these two terms are indeed contextually equivalent.
The point is that logical relations are defined by induction on types, but contextual equiva-
lence is not. For those terms including several levels of computations, contexts are usually not
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able to know the exact level where a fresh key is generated, but in semantics, these levels are ex-
plicitly identified, by types indeed. This problem exists not only for types of the foim, but
for all computation type3+ wherer contains again some computations, elgkey x Tkey),
except when they are inside a function, eJgkey — Tkey). Encoding of protocols may need
this kind of types for typing the program, but this can be avoided by a careful encoding, e.g., the
encoding of the symmetric key establishment protocol in Chapter 2.

Now that we are not able to show the completeness for types that are simply classified ac-
cording to the order, it is better to do more refined classification on types. Here is a classification
on a subset of first-order types.

0 u= b |79 x 70| opt[r?]
TI} n= b 7'pl X TI} ] opt[Tl}] |b— TZ}
o= T T —

whereb € ¥ is a base type. Class’ consists of types of zero order but not containing any
computation, and we call themplain zero-order types ClassT]} is simply the class® plus
first-order functions, but it still contains no computations. We call type@}iplain first-order
types We then have computations in the clasdsbut these computations can only return values
of plain zero-order types or functions, so types lik€key are not allowed. We call types in
classr! one-level first-order typedn particular, this class of types is sufficient for typing most
protocols.

We shall temporarily forget monadic types and investigate the completeness of logical rela-
tions derived over the categoet™ , for plain first-order types. In particular, the discussion
shows how complete the cryptographic logical relati@®} ) - ¢ype iS.

First, say that a value € []s is definable at(w, i, s), wherei : w — s is an injection in
PZ, if and only if there is a ternt such thatw : key I~ ¢ : 7 is derivable andt]si = a (i
denoting the environmei — i(w))).

Lemma 6.2. For any objec{w, i, s) € PZ—, avaluea € [msg]s is definable a{w, i, s) if and
only ifa € [msg](i(w)).

Proof. First, we show that for any value € [msg](i(w)), there is a term such thatw : key -

t : msg holds and[t]si = a. This can be proved by induction on the structure of the value
Now consider a value € [msg](i(w)) which is definable atw, i, s) (by a termt). Accord-

ing to Lemma 3.3¢ € [msg](i(w)). O

Lemma 6.3. For any morphism(j, 1) : (w,i,s) — (w',i',s') € PZ7, ifavaluea € [7]s is
definable at, then[r]l(a) is also definable at'.
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Proof. Suppose that is definable by a termy such thatw : key - ¢ : 7 is derivable, i.e.a =
[t]si, then

[r]i(a) = [r]i([t])s[w — i(w)])
= [t]s'[w— [key]i(i(w))]
(by naturality of[¢])
= [tls'[w— (i(w))]
(becausdkey]! = [ by definition)
= [t]s'[w — i'(j(w))]
(becausé o1 =1 o j, by the definition ofPZ™)
= [t5]s'lw—(i(w))]
(wheret’ = t]—l seeingj and;j ! as substitutions)
= [¢]s'(Lls'lw — @ (G(w))))
(becausd_] is functorial)
= [t]s'li(w) = ¥(j(w))]

= [1]s'Tw = '],

hencer]i(a) is definable. O

w,i,8),

For every typer, every injectioni : w — s in Z, define a relatlonvﬁ " wherex is a
context knowledge, by: for any values, as € [7]s, a1 N} as ifand only if a1, as are definable
at(w,i,s) anda; ~2" ay. We then get the following completeness for logical relations derived
over the categonget”? .

Proposition 6.4 (Completeness for plain first-order types)Letx be a finite context knowledge.
Logical relation for the cryptographic metalanguage is complete for all plain first-order types in
the strong sense: there exists a logical relatidR; ) yp. derived over the categorget”?
such that for every injection: w — s in Z and every terms,, ¢, such thatw : key - ¢; : 7 and

w : key - £, : 7 are derivable ¢ a plain first-order type), if; ~2" t,, then[t,]si RE [to]si.

Proof. Let R} = NE’“ for every injectioni : w — s in Z and every base typke Define
(R+)r type as the logical relation induced b’Rg according to the derivation of logical relations
over the categonget”Z | i.e., using the non-base type clauses of Definition 5.2. In particular,

fi R

T—7!

 fa =
V(5,0 : (w,i,s) — (w',i', ") € PT-
Yai,az € [7]s" - (a1 RY ag = f15'(1,a1) RY, f25'(1,a2))
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We then prove by induction on

If 7is a product type”’ x 7", thena; = (a},d}) andas = (a},ay), wherea), a), € [7']s,
al,af € [r"]s. Assume thau; anday are definable afw, 1, s), so area,dl,dal, s, e.g.,
a} is defined byproj,(t) where[t]si = a;. Again assume thafa;,as) ¢ R%, then either
(ah,ah) & RL or (af,ay) & RL,. Without loss of generality, suppose that, ab) ¢ RL..
We then show that this implies that !/, ., a2. By induction, there is a contet such that
y: 7w : key,v:msg F C : Tnatis derivable andC]si[y — a}] # [C]sily — df]. Then the
program

z:7 x 7" w:key,v:msgF (A\y.C)(proj,(x)) : Tnat

can be used to distinguigh andas.

If 7 is an option typeopt[7’], for two valuesai,as € [opt[r]]s, assume thata;,as) ¢
f)pt['r’}’ then either one af; anda, equalsL while the other does not, or both do not equal
but (a1,as) ¢ RL. However, in both cases, we can find programs that can distingyiahdas,

which is a contradiction ta; %i’sth’] ae. In the former case, the program

x :opt[7'],w : key I case x of some(_) in val(l) else val(0) : Tnat

can be used to distinguishh andas. In the latter case, by induction; 733’,"‘ as, SO there is a
contextC such that) : 7/, w : key F C : Tnat is derivable andC]si[y — a}] # [C]si[y — a}).
Then the program

x :opt[r’],w : key, v msg I- case x of some(y) in C else val(0) : Tnat

can be used to distinguish andas.

If 7 is a function type — 7/, whereb € X is a base type. Suppose that f2 € [b — 7']s
and f1, f, are definable atw, i, s). Take any morphisnj, () : (w,i,s) — (w',i',s’) € PZT.
According to Lemma 6.3[7]I(f1) and[7]i(f2) are definable afw’,i’,s’). Take any pair of
valuesay, as € [b]s’ such thatuy RZ/ as, thena; anda, are definable atw’, ', s’) anda, %Z/’”
as. LetC be an arbitrary term such that: 7/, w : key,v - msg - C : Tnat is derivable, ang be



120 CHAPITRE 6. COMPLETUDE DES RELATIONS LOGIQUES

ar-honest environment. Take any morphisjh ') : (w',4', s’y — (w”,i",s") € PZ7,

[Cls" plz — [7']V(f18' (1, a1)), w" — &' (w")]

= [C)s"plz — ([7](V o ) f1)s" (idgr, [7']V (a1)), w" — i (w")]
(by the naturality off;)

_ [[ [hy/a?H]SNp y s [[ ]]l al w// —s i//(wl/)]
(becausdr](l’ o) f1 is definable atw”,i", s"))

= [Clty/alls"ply — [7']V(az), 0" — @ (w")]
(because; % as)

= [C]"plx — ([T o D) f1)s" (idyr, [F]V (a2)), 0" > ("))

= [Clet/alls"plz — [7](1' 0 1) fr,w" — i (w")]
(becausdr']l'(az) is definable atw”,i"”, s"))

= [Clet/z]]s"plz — [[Tﬂ I"ol) fa, 0" — 1" (w")]
(becausef; ~; ., f2)

= [C]s"plx — [V (f25"(l,a2)), w" — " (w")]

so f1s'(l,aq) zi’,’” f2s'(l,a2). Again, becausdr]i(f1) and a; is definable at{w’, ', s'),
f1s'(l,a1) = [7]i(f1)s'(idy, aq) is definable at(w’,4’, s") as well. Similarly, f2s'(1, a2) is
definable. Then by inductiory; s'(l, a;) R’T' f28'(1,a2), hencef; R: ., f» sinceay, as and
(7,1) are taken arbitrarily. O

In the previous proposition, we have obtained completeness for a logical relation defined at
base types byR! = Nf;”. Let us now come back to the cryptographic logical relation defined
in Chapter 5. Now the question is: for every base typ#oes it hold that

~ = RyY, (6.2)
for every injection; : w — sinZ?

Lemma 6.5. Assume that observation types have no junk, in the sense that every viiie of
(o € Obs) is definable at everyw, i, s). Then~%" is equality ono] s, andw - is equality on
[To]s for any observation type.

Proof. Clearlywﬁ;” contains equality. Conversely, let, as € [o]s such thatu; ~EE g, Take
(7,1) to be the identity morphism fronw, 7, s) to itself andC to be the contextal(c = x)
(so thatw : key,z : o - C : Tbool is derivable), where is any term such thab : key - ¢ :
o is derivable, and expand the definition of": a; = []s[w — i(w)] if and only if ay =

[c]s[w — i(w)]. Sinceo contains no junk, andis arbitrary,a; = as.
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The argument is similar fo&fr’; takinglet z <= cinval (z = z) for C instead. We just
have to prove thalo has no junk. For every observation type[o] is a constant functor, so
the elements of To]s are of the forms’, b] = [0, b], whereb € [o](s + s') = [o]s. Given any
element{(), b] of [To]s, sinceo has no junk, we may writé as the value of some term hence
[0, b] is the value ofral(c). O

In the cryptographic metalanguaget andbool are two observation types, theﬁ;ft and
~po are the identity, which are exactly what we define in the cryptographic logical relation. The
following lemma shows thatie,= R, holds for typekey as well.

Lemma 6.6. Leti : w — s be an injection inZ and x be a context knowledge. Then for every
pair of keysk:, ks € [key]s, ki1 foy kq if and only ifky = ks € i(w).

Proof. We first claim that(x,,): the only values: in [key[s = s that are definable gtw, i, s)

are the keys in(w). One first observes, by applying any morphisifiom s to s that is the
identity oni(w), that the only possible exceptiohsto (xx,) must be fix-points of: letting
k = [t]s[w — i(w)],

(k) = [keyli(k) = [keyI([t]sfw — i(w)])
= [t]s[w — I(i(w))] (since[t] is natural)
= [ths[w — i(w)] (sincel is the identity oni(w))
= k.

Sincel is arbitrary such that it restricts to the identity @), (xkey) can only fail whens consists
of i(w) plus just the one extra kely. Let thens’ be s plus another key’. There is an obvious
morphism(j,{) from (w, i, s) to (w, 7, s’) and we have seen that in this cdgey]i(k) = k is
again definable afw, 7, s’). But this is impossible, sinc€ containswo keys outside of (w).

If &y Ni’“ ks, then bothk; andks are definable a(tw, i,5), SO bY(*key), k1 = i(21) for some

z1 € w, andk2 = i(z9) for somez, € w. Sincek; ~ key ko, if k1 # ko, then the context

x : key,w : key - case dec({1}.,,x) of some(_) in val(l) else val(0) : Tnat

can distinguish the two keys, henkg= ks.
Conversely, ifk; = ko € i(w), i.e., there is a variable € w such that; = ny = i(z), then
clearlyk; Nf(:y ko. O

For themsg type, the equation (6.2) depends on the context knowledgad the cipher
function ¢. Indeed,~ns involves the relation between secret messages in the knowledge
precisely, the identity relation on(®-**) for everyi : w — s, but any secret messageshis
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definitely not in[msg] (i(w)), hence according to Lemma 6.2, it is not definabl&at, s). So
interestingly, it holds indeed that
N C MRi,(p,

msg =

for any cipher functionp.

Lemma 6.7. Let x be a context knowledge ard w — s be an injection inZ. For every pair
of valuesay,ay € [msg]s, if a1, as are definable atw, i, s) and ay zf;{;g az, then(ay,aq) €
MR, for any cipher functionp.

Proof. Becausez; zg a2, a1 andas must have the same head message toket, (p or e),
i.e., the tokens at the roots of the two message trees are identical. Otherwise, it is easy to find a
context to distinguish these two messages. For instanee#f n(_) andas = e(_, _), then the

context
x : msg,w : key - case getnum(x) of some(_) in val(l) else val(0) : Tnat

can distinguish them.
Assume that;; andas are definable atw, i, s) but (a1, a2) ¢ MR"%. We then prove that
al %fﬁ’zg as, by induction on the message structure:

e If a1 = n(ny) andas = n(ny) for someny,ny € Nat, becausda;,as) ¢ MR, it
holds that; # no. Then the context

x :msg,w : key - case getnum(z) of some(y) in val(y + 1) else val(0) : Tnat
can distinguistu; andas.

o If a; = k(k1) anday = k(k2), because they are definable(at, i, s), k1, ke € i(w),
so there exist two variables, zo € w such thati(z;) = k; andi(z2) = ko. Since
(a1,a2) € MRY?, ky # ko, the context

r:msg,w: key F case getkey(z) of some(y)
in case dec({1},,,y) of some(_)
in val(l) else val(0)
else val(0) : Tnat

can be used to distinguish these two messages.

e If a1 = p(a}, a) anday = p(d), a), then eithea), ay) ¢ MR™¥ or (a,ay) & MR"?.
Without loss of generality, suppose tfiaf, a}) ¢ MR"¥. By induction, there is a context
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C such that) : msg,w : key - C : Tnat is derivable andC]si[y — a}] # [C]si[y — ab].
Then the program

x :msg,w : key - case fst(x) of some(y) in C else val(0) : Tnat

can be used to distinguish andas.

o If ay = e(a), k1) anday = e(dh, k2), because, ay are definable atw, i, s), k1 andks
must be ini(w), then eithedk; # k; or (a}, ab) & MR, If ki # ko, the program

x:msg,w: key F case dec(r,z1) of some(_)
in val(l) else val(0) : Tnat,

wherez; is a variable inv andi(z1) = k1, can be used to distinguish andas; if k1 = ko
but (a1, az) € MR"¥, by induction, there is a conteftsuch thaty : msg, w : key - C :
Tnat is derivable andC]si[y — a}] # [C]si[y — a5]. Then the program

x :msg,w : key - case fst(x) of some(y) in C else val(0) : Tnat

can be used to distinguigh andas. 0

WhereaSwfﬁ’Zg C MR%? holds for any cipher functiorp, the Lemma 6.2 shows that any
definable messages (at, 7, s)) must be iNfmsg] (i(w)), but a non-empty cipher functignnec-
essarily involves secret messages defined over keys that arez’r(m)t)imencew’ﬁﬁ’ég = MR
holds only if the cipher functiorp is empty Otherwise, assume that there are two kieyg, €
s — i(w) such thaty’ (ky, ko) # () and take two messages, as such thatay, as) € ¢ (k1, ko),
then clearly, (e(a1, k1), e(az, k2)) € MR"?, but they are not definable dtv,,s), hence
e(ar, k1) 7/4?{1'3% e(az, ko).

Proposition 6.8. Let x be a context knowledge and w — s be an injection inZ. For every
pair of valuesa;,as € [msg]s, Nf{ég = MR¥ holds if and only if the cipher functiop is
empty.

Proof. Lemma 6.7 shows tha@f{,’ég C MR for any cipher functionp. We shall show that
MR C~bii holds if and only ify is empty.

The “only if” direction is obvious. For the “if” direction, take any two messagesis €
MR (we write MR for short). It is clear that; anda; must have the same head message
token (@, k, p or ¢). We can then prove it by induction on the structure.pinda,. For instance,
if a1 = e(a), k1) anday = e(dh, ko), then clearlyk; = ko € i(w) and(a},ay) € MR'. By

/L‘?

induction,a ~msg ab, henceas, as are definable atw, 4, s). Furthermore, take any conte&t
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such thate : T7',w : key, v msg I C : Tnat is derivable, for any morphisiy, ) : (w,,s) —
(w',#',s")y in PZ~ and anyx-honest environment,

[Cls'pla — [msgli(e(al, k1)), w' = i’ (w’)]

= [Clenc(y, 2)/x]]s'ply — [msg]i(ay), w’ — i’ (w’)]
(wherez € v’ andi/(z) = I(k1) = I(k2))

= [Clenc(y, 2)/x]]s'ply — [msg]i(as), w’ — i’ (w’)]
(because/, ~i; ab)

= [C]s'plz — [msg]i(e(as, k2)), w' — i (w')],

S0a1 ~msg a2, and consequently; ~meg a2. O

6.3 Complétude pour les types monadiques

Completeness for monadic relations are much subtler — we have seen already a counter-example
where two contextually equivalent computations of a zero-order type cannot be related by the
logical relations derived oveSet”? .

However, even though we consider only computations that return directly concrete values,
i.e., those “one-level” computations, the completeness of monadic logical relations is still hard
to prove. The general induction step, i.e.,

j 0K
%zTﬁ C R, = T C Rrr

is difficult to achieve. For instance, Igt1, a1], [s2,a2] € [T7]s be two computations such that
[s1,a1] m’T’j [s2, as], and assume that they are not related. According to the logical relation for
computations, a hatural thought is to show that this implies that their values are not related (if
these computations finally return some values), from which, by induction, we obtain a context
that distinguishes the values. Then our next step is to construct another donfiexxh C such

thatC’ can distinguish the two computations. This is a general technique to prove completeness
for monadic types and it does work for most monads (see Appendix B for examples).

However, this technique does not work for the key generation monad. The obstacle is the
construction of a context for computations from contexts for values. For this form of computa-
tions, the definability of contexts interferes with such constructions. Actually, we are not able to
do this kind of constructions. For example, in the above two computations, the two valaed
as are defined at + s( (for simplicity, we assume that = s, = s¢). If there is a context that
can distinguish these two values, it must be defined at a larger world. Without loss of generality,
let us just consider a contektdefined over + s, but then it is very difficult to construct another
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contextC’ (for computations) frontC, because this requires that is also defined at the world
s+ sg, while in the case of key generation, values will be defined eves, + s, hot containing
any keys in the firsky, and we might not be able to make use of the original corfiexthich
never involves any key in the secosg
We shall next investigate the completeness of monadic logical relations for some specific
types. Consider computations of type wherer is from a subset of plain zero-order types,
defined by
T = nat | bool | key | 7 x 7 | opt][7]. (6.3)

In particular, we do not consider tinesg type, which we shall discuss later. Indeed, withesg
type, we can simply take the contextual equivalence for key generation (Definition 6.1).

Proposition 6.9. Leti : w — s be an injection inZ. There exists a logical relatio(iR ) type.
derived overSet”Z ", such that for every pair of computations;, a;] and [sz, as] (both in
[T]s, wherer are types defined by (6.3)),

[Slaal} %zl'r [8270’2] = [Slva’l] Rzl'r [827@2]'

Proof. Let (R+)- type be a logical relation induced by} :Nf;”‘ for every injection; : w — s
in Z, derived over the categoyet™ . ThenR;,,, andR; , are just the identity, an®]_ is
the partial identity oves, i.e., the identity ovei(w).

In a logical relation|sy, a;] RiTT [s2, as] if and only if there are injectiong) : wy — sp and
l1:81 — 8p,la : 59 — 5o inZ such that

[7](ids + 1) (a1) RT™ [7](ids + l2)(az)-

We then prove by induction on type Without loss of generality, we assume that| > |s2.
We simply takesy = s1, [; = ids,, ig = ids, and an injection frons; to s; asls.

e If 7isbool or nat, then[sy, a1] = [s2, as]. Clearly,a; andas must be identical.

e For typekey, either bothu, andas are fresh or both are not fresh, otherwise (assume that
ay is fresh andus not, then there must be some variabies w such that(z) = as), the

context
w:key,x: Tkey F lety<zin

case dec(enc(0, 2),y) of some(_)
in val(l) else val(0) : Tnat

can distinguish the two computations.alf, as are not fresh, then; = a2 € i(w) (other-
wise the above program can also distinguish the two computations), hence

Tkey](id, + ids, ) (a1) Rigy ™" [key](id, + L) (az)
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holds for every injectionl, : so — s1. If a1, as are fresh, i.e.q; € sy andas € so, for
every injectionds : s — s; such thafy(az) = a1, it holds that

key[ (id, + ids, ) (a1) Rigy ™" [key](id, + L) (az).

e If 7 = opt[r'], either botha; anday are L, or both are notL (otherwise it is easy to
find a program to distinguish the two computations). Clearly, in the former case, the two
values are always related. In the latter casg,a;] € [T7']s and[sz, ag] € [T7']s. Take
any contextC such thatr : T7/,w : key - C : Tnat is derivable, for every morphism
(7,0) : (w,i,8) — (W', ¢ inPI,

[Cls"d'[x — [T7'][s1, ]
= [[(C ]]8 [y — [T7]i[s1, a1]
= [C']s"ly — [T7]i[s2, as]
— [[([)]]3 T +— [[TT ]]1[32, as]

]
] (because; # 1)

] (becausgsy, ai] ~% [s2, a2])
]

)

where

C' =1let 2z < y in case z of some(x) in C else val(0),

SO [s1, a1] s?ﬁ [s2,a2] as well. Then by induction, there is an injectibnsuch that
[7'](ids + ids, ) (a1) RHI U [7'](ids + l2)(a2), hence it holds that

[r(id, +idy, ) (1) RoG! [r](id, + 12) (a2).

o If 7 = 7/ x 7" thena; = (a},d]) anday = (da},al)). Take any contex€ such that
x: T/, w : key - C : Tnat is derivable, for every morphisify, () : (w,i,s) — (w',i,s)
in P71,

[C]s"i[x — [TT’]]l[sl,a’I]]
= [Cliet z < y inval(proj,(2))/]]s"d'[y — [T7]i[s1, (a3, a7)]]
= [Cliet z < y inval(proj,(2))/=]]s'd'[y = [T]i[s2, (a2, a3)]]
(becaUS¢517 (a17 )] z|'(T X7/ [527 (a’/27 ag)])
= [C]s"{[x — [T7]i[s2,a5]],

S0 [s1,a}] &%, [s2,ab]. Similarly, [s1,a]] % ., [s2,a3]. Then by induction, there are
injectionsl), andl} such that

[7']Gds + idy, ) (ah) R[] (s + ) (ah)

T
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and
[7"] (id + id., ) (a}) R[] (ids + 15)(al).

7—/1

In particular, we can always defiieandl as the same injection, then

[F1(ids + idy, ) (a1) RIS [7](Gd, + 1) (az).

O

Putting together all the results on completeness that have been presented in this section and in
the previous section, we get the following theorem on the completeness of cryptographic logical
relations:

Theorem 6.10 (Completeness of cryptographic logical relations)The cryptographic logical
relation as defined in Definition 5.2 is complete for types

L= b T2 7 xrd | optfrt] [ b — 72,

whereb € {bool, nat, key, msg} and7? is defined by

70 ::= bool | nat | key | 70 x 70 | opt[r?],
in the sense that for every injection w — s in Z and every terms,, t, such thatw : key + ¢; :
7l andw : key I- t5 : 7! are derivable, ift z;? to, then[t,]si REY [t]si.

Proof. According to Proposition 6.4, Lemma 6.6, Proposition 6.7 and Proposition 6.9. [

A special type which is not included irl is Tmsg. Given two contextually equivalent com-
putations of this type, to check whether they are related, we must construct the cipher function for
those freshly generated keys that are not disclosed. We did not manage to get a formal proof of
completeness for this type, but we conjecture that the cryptographic logical relation is complete
on this type and we provide here an algorithm for constructing the cipher function.

Leti : w — s be aninjection irf and[sy, a1, [s2, a2] be two computations ifiT msg] s such
that [s1, a1] zfﬁ’;sg [s2,az2]. Since we aim at constructing the cipher functions for those fresh
keys, without loss of generality, we can simply iebe an empty knowledge. Clearly andas
must have the same head message token, just as shown in the proof of Lemma 6.7. We then show
the existence ofy : wg — sp andy by executing the following “message-checking” algorithm
with the pair of messages;, az). In particular, we simply take, as an inclusion. A state of
this algorithm is a 4-tupléwy, 11, l2, ), wherely, Io will finally be defined as injections fromy
andss to sy respectively. We set the initial state of the algorithm withbeing an empty set;
andls being empty injections and being an empty cipher functions.

e If a1, ao are not of the same form, i.e., with different head message token, then stop with
error.
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e If a; = n(n;) andaz = n(n2), then ifn; = ng, do nothing and stop normally; otherwise,

stop with error.

If a; = k(k1) andag = k(k2), then ifk; = ko € i(w), stop normally; ifk;, ks ¢ s and
l1(k1) = la(k2) are already defined, stop normally#if, ko & s andly(k1), l2(ke) are not
defined, let; (k1) = la(k2) = k for somek & s+ wo andwg := wo + {k}. If o(k1, ko) #

0, then for every(a), al) € ¢(k1,k2), execute the “message-checking” algorithm with
(a},dl) at current state. If every execution stops normally, therplét, k2) := 0 and
stop normally; in any other case, stop with error.

If a1 = e(a), k1) andas = e(dah, ka), then if ki, ko & i(w) + wp andky, ko are not
defined byl; andiy, then letp(ki, k2) := @(k1,k2) U {(a},a,)} and stop normally; if
k1 = ko € i(w) + wo or l1(k1) = la(k2) € wp, then execute the “message-checking”
algorithm with messages, andd, at the current state. if it stops normally, then stop
normally; otherwise, stop with error.

If a1 = p(a),af) anday = p(ah,aly), then execute the “message-checking” algorithm
with message pairga},a)) and (af,af), at current state. If both stop normally, with
states(wy, I}, 15, ¢') and(wy, 1], 15, ¢") respectively, then if these two states are exactly
the same as the initial states of the two executions, then stop normally; if the states are
different from initial states and they are consistent, then merge these two states into a
new state and execute the “message-checking” algorithm with messagéupairs) and
(af,dl), at this new state; in any other case, stop with error. Two stgtesd s, are

called consistent if, for any keys € s; andk; € s, that are defined by, I{ andl, I5
respectivelyl| (k1) = l5(k2) ifand only if 1} (k1) = 15(k2). To merge two states in to a new
state(wo, l1, l2, p) means that for everg € sy, if it is defined byl} theni; (k) = I} (k),
otherwise, if it is defined by/, thenl; (k) = I{ (k). Similar for defininglz. Thenuwy is the
set{li(k) | k € s1 & kisdefinedby}. ¢ is the union ofy’ andy” point-wisely, but

with ¢ (k1, ko) = () for everyk; that is defined by, and everyk, that is defined bys.

This algorithm necessarily stops, since there are only finitely many fresh keys and messages are
finite trees. Itis clear that this algorithm just destructs the two messages with the same operation,

so if it stops normally, then the messages must be related at the terminal state, defamdg

as the identity for every key that is not defined during the algorithmsgrassi; (s1) U la(s2). If

it stops with error, then the execution can be encoded in the cryptographic metalanguage and the
program can be used to distinguish these two messages, which is a contradiction of the hypothesis

that([si, a1] zfr': [s2, as].
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6.4 Relations logiques lax completes

To get the completeness w.r.t. contextual equivalence at any type, we shall appeal to the notion
of lax logical relations [PPSTO00]. Recall the categorical construction of logical relations using
subscones, via the following diagram:

A(%)
/ luc (6.4)
Subscone§ U C

For logical relationsR is a representation of CCCs, in which case, as we have seen in Chapter 4,
this diagram necessarily commutésix logical relations are just product preserving functBrs

such that Diagram (6.4) commutes [PPSTO0O, Section 6]. The equality in Diagram 6.4 is the key
to makeR satisfy the basic lemma.

The main difference is that, with lax logical relations, we do not reqRir® be represen-
tations of CCCs, just product preserving functors. Furthermore, when we consider the monadic
lambda-calculus, we say th& is strict at monadic type# the functorR also preserves the
(strong) monad.

We then consider, for any injectian w — s in Z and any context knowledge the relation
~LR: for every pair of values, as € [7]s, a1 ~LF g if and only if a; anday are definable at
(w, i, s) anday mi”“ as. We shall show that if the context knowledgés monotonic, thenui’”
is indeed a lax logical relation, defined over the categu/” .

Lemma 6.11. Let (j,1) : (w,i,s) — (w',7,s") be a morphism ifPZ~ and x be a mono-
tonic context knowledge. For every pair of valuesas € [7]s, a; zi’” ao if and only if
[7]i(a1) =" [7]i(a2).

Proof. We first show the monotonicity property:

a1~ ay = [r]i(ar) =% [7]l(as)

Take any tern€ such thatr : 7,w” : key, v msg  C : Tbool is derivable, for every morphism
(7, 0) : (w',d', 8"y — (w”",i",s") in PZ~ and everyx-honest environment:
[C]s"pla = [ ([7]i(ar)), w” = " (w")]
= [C]s"plz — [7](1" o [)(ar), w" — " (w")]
(becausgr] is a functor)
= [C]s"plz = [7](1" 0 D(az), w” = " (w")]
(because; ~=" ay and(j’ o j, I’ o 1) is a morphism ifPZ )
= [C]s"plx — [r]V'([r]i(az)), w” — i (w")],
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hence[r]i(a1) ~2 " [r]l(as).

The anti-monotonicity is equivalent to:
a1 #% ay = [rliar) #0° [7]i(az).
Assume that; #vi’“ a2, SO there is some terM such that
x:T,wp : key,v:msg F C : Thool

is derivable, with a morphisryo, lo) : (w,i,s) — (wy, g, so) INn PZ~ and ax-honest environ-
mentp, such that

[Clsoplz = [7]lo(a1), wo — io(wo)] # [Clsop[z — [T]lo(az), wo — io(wo)]

By the Cube propertyProposition 5.4), we have a commuting square:

w

N

0
[

w' l s’ o w
l\/ >/‘ (6.5)
A

S0

\

To prove[r]i(a;) R []i(az2), itis sufficient to check that, for some contéXtsuch that
x:T1,w" : key,v:msg - C': Thool
is derivable, the following holds for somehonest environment,

[€]s"p v = [71V (I7]i(ar)), w"” = i (w")]
# [C]s"ple =[]V ([7]i(a2)), w" = i (w")].

TakeC' := Cl[j{(wo)/wo] andp’ = [I'];(p). Becauses is monotonic,p’ is still a x-honest
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environment.

[C]s" Pl = D71 (Iri(an)), w” = " (w")]
= [Clig(wo)/wo]]s"p'[z +— [7](1' 0 1)(a1), w" = i (w")]
= [Clig(wo)/wo]]s"p'[x +— [7](lh o lo)(ar), w" i (w")]
(by the commuting square (6.5))
= [Clio(wo)/wo]]s"p'[z — [7]ig([7]lo(ar)), w" i (w")]
= [C]s"p [z = [r]i([7]lo(ar)), wo — [key]i” (jg(wo))]
(renaming of free variables does not change the interpretation)
= [C]s"p [z = [r]io([7]lo(ar)), wo — " (jo(wo))]
([key] is an identity functor)
= [C]s"/ [z = [r]io([7]lo(a1)), wo I (io(wo))]
(again by the commuting square (6.5))
= [Tbool]l,([C]soplx — [T]lo(a1),wo — io(wp)]
(by the naturality of[C]).

Similarly,

[C]s"p' [z = [7]V([7]i(a2)), w" = i"(w")]
= [Tbool]ij([C]sop[z — [T]lo(az), wo — io(wo)].

Since[Tbool] is an identity functor,

[]s" s e [ (Ir]iar)), v o i ()]
£ []s"Fla = [ (I )iaz)), v — i (w)]

hence[r]i(a1) #2" [r]i(as). 0

Theorem 6.12. Lax logical relations are complete for contextual equivalence in the crypto-
graphic metalanguage, in the strong sense that there is a lax logical rel@fign), ¢ype such
that, for every injectioni : w — s in Z and every pair of terms;, o such thatw : key - t; : 7
andw : key - ty : T are derivablet; ~2* t, if and only if [t1]si RE [to]si, wherex is a
monotonic context knowledge.

w,5,8),K

Proof. DefineR{”"* as the relation-"
We first need to show thak.,, mapping(w, i, s) to R\, defines an object a$et™Z
i.e., afunctor fromPZ " to Set. The action on morphismg, {) is given by our requirement that
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UoR = [_],, whereR mapsr to R, and[7],(w,i,s) = [r]s x [r]s and [t],(w,i,s) =
[t]s x [t]s. Expand the equatioti o R = [_];: R-(j,!) must map(ai,az) € [r]s x [7]s
to ([7]i(a1), [T]i(a2)) € [r]s" x [r]s’. To check thatR, is a functor, we must check that if
a1 RL ag, then[r]l(a1) R [r]l(az), for every morphisnij, 1) in PZ~:

e First,a; andasy are definable atw, i, s); by Lemma 6.3[7]i(a1) and[r])l(a2) are defin-
able at{w’, ', s').

e Secondg; & ay implies[r]k(a1) ~% [r]k(as2), according to Lemma 6.11.

Next, we need to show th& ;. is the object part of a product-preserving functorfrom
Comp(Y) to Subsconeg such thatU o R = [_];. This means showing that, for every typing
contextl’ = {x; : 71,...,xy, : T, }, for every typer such thaf” + ¢ : 7 is derivable, for every
object(w, i,s) € PZ ", if am RL a, for everym (1 < m < n), then

[tls[z1 — a1,... 20 — an) RE [t]s[xr — df, ... 2, — dl)].

Since bothu,,, anda!,, are definable at, write a,,, = [[t,,]si for somet,,, such thatw : key I t,,, :
Tm 1S derivable, and similarly!, = [t/ ]si. Then, itis clear thaft]s[z1 — a1, ..., 2, — ay]is
definable at, by the term¢[t; /x1, ..., t,/zy], and similarly for[t]s[z1 — af,...,z, — al].
Second, take an§ such that

x:7,w :key,v:msgF C: Thool

is derivable, for every morphisrty, ) : (w,i,s) — (w',i,s') in PZ—, for every k-honest
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environmenfp

[C]s plz — [r]I([t]s[z1 — a1, .., Tn — an]),w" — & (w')]
= [Cs'[z = [t]s'plz1 — [n]l(ar), ..., 20 = [m]l(an)], w" — @'(w)]
(sinceft] is a natural transformation)
= [C[t/z]]s' plz1r — [mi]i(ar),. .. 20 = [ma]l(an), w’ — @' (w)]
= [Clt/x]tri /71, tn1d  ana]] s 2 = [mall(an), w' — 7 (w')]
= [Clt/z)[tii " /z1,. o tne1i " anaa]] 8 [wn = [ma]l(al,), w — i (w')]
(because,, an‘i’s an)
= [Clt/z)tii " /z1, s tme1d T Tt g Tt -t )]
[ = [rm]l(am), 0" — i’ (w')]
= [[(E[t/:c][tlj_l/xl, . ,tm_lj_1/$m_1,t;n_’_lj_l/l'm_i_l, . ,t'nj_l/:vn]]]s'
[Zm — [Tm]l(al,), w’ — @ (w')]  (because,, z?js a,
= [Clt/alltyi™" /a2, tni ™" Jaa]]8 [x1 = [m]l(a)), 0" = 7 ()]
= [Clt/2ls'plz1 — [ni]i(a)), ...,z = [ra]l(ay), w' — @'(w)]
= [Cls'plz = [t]s'[z1 — [n]i(a1), ..., 2n = [m]i(as)]), w' — i (w')]

= [Cls'pl = [FTU([tDslzr = a1, - .y 20— ag]), w' = il (w')]

Here we notice that, since,, and a), are definable at by t,, andt,,, respectively, then

[7]l(am) and[7,,.]I(a’,) are definable at by t,,j 71, ¢, j~!, respectively. So
[t]s[z1 = a1, ..., 20— an] RE [t]s[z1 = dl, ... 20— al)].
R is a lax logical relation sinc& o R = [_]; by construction. O

The (non-lax) logical relations (the cryptographic logical relations) are defind@yhy:
ky Rﬁ’e"y”"S) ks if and only if k; = ky € i(w). Hence, by Lemma 6.6 the lax logical relatiof”
and the logical relation coincide at tygey type.

For soundness, althoughiT”; is the identity on[To]s, because a non-empty knowledge
introduces messages that are not definéble, s), we are not able to apply the Basic Lemma.
But if x is empty, it is then sound for contextual equivalence since we do not need to consider
contexts with free message variables. Indeed, by the basic le&thm& = [_],, whenever

ai N?@ as () denoting the empty knowledge), then for abysuch thatr : 7,w’ : key - C : To
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(o € Obs) is derivable, for any morphisity, ) : (w,i,w) — (w’,i,s') in PZ—,
[C]s'Tw = ix(wy), 2 = [r]la(ar)] ~p [C]s [wr = ix(wr), @ := [F]h(a2));

SOaq %2—’0 as.
The lax logical relation-;" is also monotonic:

Proposition 6.13. Let x be a monotonic context knowledge. The relatidrf is monotonic: for
every morphisntj, () : (w,i,s) — (w',i',s’) in PZ— and every pair of valueg, , as € [7]s,

a1~ ay = [r]i(ar) ~F [7]i(a2).

Proof. According to Lemma 6.3, ié1, a2 € [7]s are definable atw, 7, s), [7]l(a1) and[7]l(az2)
are also definable atw’,i’,s'). Again by Lemma 6.11q; ~2" ay implies [7]l(a1) L

[r]i(as), SOay ~iF1o gy O



Chapitre 7

Décidabilite de I'équivalence
contextuelle

Etant donnés deux programmes, le probléme consistant a savoir s'ils sont contextuellement
équivalent est-il décidable ? Nous répondrons a cette question dans certains cas. Les relations
logiques caractérisent I'équivalence contextuelle pour un ensemble de types, comme nous avons
vu dans le chapitre précédant, donc il est naturel d'étudier d'abord le probléme de savoir si
deux valeurs arbitraires données sont reliées. Plus précisément, étant donnés une relation logique
(R+)r type €t deux valeurs d’'un type, est-ce que nous pouvons décider si elles sont reliées par
la relationR.- ? Méme si ceci est décidable pour toutes les types de base, il est difficile de décider
si des valeurs d’'un type complexe sont reliées, notamment les fonctions. Ce n’est pas étonnant
puisque la définition des relations entre fonctions comporte une quantification universelle sur les
parametres reliés de ces fonctions — notamment lorsque I'espace de ces paramétres est infini.

Les types monadiques sont des types complexes particuliers du lambda-calcul computation-
nel. Les définitions concrétes de relations logiques pour les types monadiques varient beaucoup
selons les différentes formes d'effets de bord et il est souvent tres difficile d’étudier leurs pro-
priétés d’'une fagon générale, ainsi que la décidabilité. Nous nous concentrons sur les relations
logiques de la monade de la génération de clés, dérivées sur la catggdife . C’est aussi un
cas difficile parce que la définition des relations pour les types monadiques comporte aussi une
recherche d’'un “monde” convenable dans un espace infini.

Nous étudierons la décidabilité dans plusieurs cas, pour les relations logiques dérivées sur la
catégorieSet”Z . Comme ce sont des relations logiques de Kripke, le probléme de la décidabi-
lité se divise en deux cas :

— étant donné un monde et un type, est-il décidable de vérifier si deux valeurs sont reliées a

ce monde spécifique ?

135
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— sans fixer le monde, I'existence d’un monde auquel les deux valeurs données sont reliées
est-elle décidable ?
Nous hous concentrons sur le premier cas ou nous supposons toujours que le monde est donné.
Une technique générale pour cette étude est de se ramener a un cas ou la quantification porte sur
des éléments pris dans un espace fini.

Nous classifions notre étude dans ce chapitre selon les types. En particulier, nous explorerons
la décidabilité du probleme qui consiste a relier deux fonctions (dans la partie 7.1) et a relier
deux éléments d’'un type monadique (dans la partie 7.2). La derniére partie résume et présente
un résultat de décidabilité de I'équivalence contextuelle du métalangage cryptographique, en
considérant la complétude des relations logiques dérivéesaiir . Nous montrons aussi
gu'il est en général indécidable de vérifier si deux programmes sont équivalents, en codant une
machine a deux compteurs dans le métalangage.
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Given two programs, is it decidable whether they are contextually equivalent or not? In
this chapter, we shall try to answer this question for certain cases. Since logical relations can
identify the contextual equivalence for certain types, as discussed in last chapter, it is natural to
start by exploring the decidability of the problem of determining whether two values are related.
In other words, given a logical relatiofR ) «ype and two values of a type, is it decidable
whether they are related by the relati®}? This problem depends indeed on the decidability
of relating values of base types, since logical relations are defined inductively from relations for
base types, but even if all relations for base types are decidable, it is still very hard to decide
relations for complex types. The main obstacle is relations for functions, because they include
universal quantifications over all related arguments, which are usually infinitely many, especially
when arguments themselves are again functions.

Monadic types are special complex types in the computational lambda-calculus. Concrete
relations for monadic types vary a lot when the monad is specialized in different forms of com-
putation and it is usually very difficult to study their properties — including decidability — in a
general way. We focus on logical relations for the dynamic key generation monad, derived over
SetP?. This is indeed a difficult case, because the definition of monadic relations involves also
an existential quantification over an infinite space, namely searching some @hjegt, so) in
SetP1™ to render uniform the two sets of fresh keys.

We shall study several cases of decidability for logical relations derived over the category
SetPT™. However, logical relations derived ov8et?Z are necessarily Kripke logical rela-
tions, and the decidability problem is divided into two cases for this kind of logical relations:

e given aworld as well as a type, is it decidable whether two values are related at this specific
world?

e or without fixing the world, is it decidable whether there exist a world such that the given
two values can be related?

we shall focus on the first question where we always assume that the world is given. A common
technique used in our proofs is to restrict quantifications over an infinite space to ones over a
finite one.

The cases that we shall discuss in this chapter are classified by types. In particular, we shall
investigate whether it is decidable of relating two values of a function type (Section 7.1) or a
computation type (Section 7.2). In the last section, we summarize these cases, and we also show
that the contextual equivalence is in general undecidable by encoding the 2-counter machine in
the metalanguage.
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7.1 Décidabilité dans le cas des fonctions

Deciding relations for functions is difficult, especially for higher-order functions, because we
shall probably be forced to do the quantification over infinitely many related arguments. Fur-
thermore, a denotational model such&s? may contain junks, especially non-computable
functions, which make it even more difficult to decide relations for higher-order functions. The
situation becomes even worse for Kripke logical relations. In a Kripke logical relation, to check
whether two functions are related at a certain world, we are required to check it with related
arguments agvery larger world

We shall next study several cases of the decidability of relations for first-order functions, i.e.,
functions which accept only values of base types as arguments. A notable case is relations for
typeskey — 7.

First, say thab is aregular base typéf and only if in the modelSetZ, b can be interpreted
as a constant functor frofi to Set, i.e., [b]s = [b]s’ for any s, s’ € Z, and for every value
a € [b]s, [b]i(a) = a for any injectionl : s — s’ € Z. Two base types in the cryptographic
metalanguage — the boolean tyipeol and the integer typeat — are typical regular base types.
Lemma 7.1. Suppose that: w — s is an injection inZ and (R ;) type IS @ Monotonic logical
relation derived over the categosSet”” . For every typé — 7, whereb is a regular base type,
and every pair of functiong;, f» € [b — 7]s, f1 Ri_._ f» if and only if, for every pair of values
ay,az € [b]s,

a1 Ry az = fis(ids, a1) RL fos(ids, az).

Proof. The “only if” direction is obvious. We prove the “if” direction.

For any morphism(j,1) : (w,i,s) — (w',i',s’)y € PZ—, and for every pair of values
ai,az € [b]s,

al Rg as
<~ a1 RZ as

(a1, a2 € [b]s andb is a regular base type)
fis(ids, a1) RE fos(ids, az)
[TlU(f15(ids, a1)) R [r]i(fos(ids, az))

(R is monotonic)
— fis'(loidy, [b]l(a1)) RY fos'(loids, [b]l(az))

(by the naturality off; and f5)

= fi1s'(l,a1) R fos'(1,a2)

L

hencefi R} .. fo. O



7.1. DECIDABILITE DANS LE CAS DES FONCTIONS 139

Clearly, ifb is also a finite base type, i.g4]s is finite for anys € Z, then the decidability of
R,_,, will depend on the decidability dR ..

Proposition 7.2. Suppose that : w — s is an injection inZ and (R ;) type IS @ monotonic
logical relation derived over the catego§et™Z . For every type — 7, whereb is a regular
finite base type, the relatioR,_, _ is decidable, if and only iR is decidable.

Proof. According to Lemma 7.1, to check whether two functions are relateRpy_, we just
consider related arguments at the wafdd ¢, s). Because is a finite base types! is finite as

well, so we just apply the two functions to every pair of related values and see whether the results
are related byzi, which is also decidable. O

As for the cryptographic logical relation as defined in Definition 5.2, we must moreover
require the cipher function to be monotonic so that the above proposition holds.

The typekey is a special base type. Inthe model?, [key]s varies as varies. Although for
a certains, [key]s is finite and the relation between keys are decidable, to relate two functions of
atypekey — 7, we have to consider those related keys at every larger world, which are obviously
infinite. Fortunately, this infinite quantification can be reduced to a finite one.

Lemma 7.3. Suppose that: w — s is an injection inZ and (R ;) type IS @ Monotonic logical
relation derived over the categot§et”™ . For every typekey — 7 and every pair of functions
fi, f2 € [key — 7]s, fi Rig, ., f2if and onlyif,

VE € i(w). fis(ids, k) RE fas(ids, k)

and
ko & 5. fiso(inls (3, ko) R faso(inlg 40y, ko)

wherewy = w + {ko}, so = s + {ko} andiy is the injectioni + id} : wo — so.

Proof. The “only if” direction is obvious. We prove the “if” direction.
To relate the two functiong, , f>, we must check that for any morphism!) : (w,i,s) —
(w',i',s')in PT~ and anyk’ € 7' (w'), fis' (I, k') RE fos' (I, k).

o If ¥ € I(i(w)) = i'(j(w)), there exists somé € i(w) such thatt’ = [(k), so by
hypothesisf;s(ids, k) RL fas(ids, k), then

[T fisids, k) RY [rli(fas(ids, k),
becauser ; is monotonic (Proposition 5.9). By the naturality afand fs,
[[T]]l(fms(ldsvk)) :fmS/(l,l(k‘)), (m: 172)7

we havef,s'(1, k') RE fos' (I, K');
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o If k' & 1(i(w)), define injectiong’ : w + {wo} — w’ andl’ : s + {ko} — s’ as

j'(ko) =K, j'(z) = j(z) for everyz € w,
(ko) =K, UI'(z) = l(x) for everyx € s,

then (5,1') : (wo, %0, 80) — (w',4’,s') is @ morphism inPZ~, and’ o inl, g, = I.
Becausefiso(inl g1}, ko) Rio f2s0(inl, (41, ko), andR . is monotonic,

[7D0 (fuso(inls g4y}, o)) RE [7]1 (faso(inl, (41, ko)),

where, by the naturality of; and f5,

[[T]]l/(fmSO(inls,{k’o}v ko)) = fms'(I'o inl&{ko}a I'(ko))
= fums' (LK), (m=1,2),

hencef,s'(I, k') RY fos' (1, k').

Lemma 7.3 shows the fact that, in order to relate functions of a kgpe— 7, at a certain
world (w, 4, s), we do not need to quantify over all larger worlds, as prescribed bgdhere-
hensionproperty of Kripke logical relations. Instead, by simply considering those related keys
at the original world(w, i, s) plus a related “fresh” key not is, whatever it is, we can check
whether two functions are related.

This lemma recognizes the “Some/Any” property for logical relations. This property is well
specified in Pitts’ nominal logic and is proved very important for reasoning about fresh resources
(names, keys, nonces, etc.) [Pit03]. Intuitively, if a fact satisfies the “Some/Any” property, then
it holds forall fresh keys if and only if it holds fosomefresh key.

According to Lemma 7.3, if a logical relation is monotonic, deciding the relation for functions
of atypekey — 7, depends indeed on the decidability of relating values of type

Proposition 7.4. Suppose that : w — s is an injection inZ and R% is a monotonic logical
relation derived over the categoi§et”™ . For every typekey — 7, the relationR, . is
decidable ifR . is decidable.

Proof. According to Lemma 7.3, to check whether two functions are relateRpy_, we just
apply the two functions to every key ifw) and an arbitrary key that is not in and see whether
the results are related 9%, which is decidable. O
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7.2 Décidabilité dans le cas monadique

According to the definition of monadic logical relations over categSey”” ~, the point of
relating two computations is to find a proper substitution for fresh keys, together with a proper
selection of disclosed keys from the fresh keys, such that the corresponding values are related.
Formally, suppose that; andss are two sets of fresh keys generated during two computations
respectively, then to relate the two computations at a certain werld s), we should find a set
so together with an injectiory : wyg — s, and two injectiong; : s; — sg, ls : S — S0, SO
that the two corresponding values are related at the warlé w, i + ig, s + so). While this is
also an exploration over a infinite space of worlds, a natural thought is to restrict this space to a
finite space of worlds where we do not consider fresh keys that are not generated during the two
computations, that is, the largest that we need to consider ks + so. However, reducing a
relation at a larger world (larger than + s5) to a smaller world (smaller than + s5) requires
then theop-monotonicityproperty of logical relations.

We say that a logical relatiofR ;) - type defined oveSet”  is op-monotonidf and only if,
for every morphisnij, 1) : (w,i,s) — (w',i, s') in PZ~ and every pair of values; , as € [7]s,

[7]i(a1) RE [r]i(ag) = a1 R ay

Lemma 7.5. Suppose that : w — s is an injection inZ and (R.)r type IS an op-monotonic
logical relation derived over the mod&kt™Z . For every pair of computations, ai], [s2, as]
in [Tr]s, if [s1,a1] RY%., [s2,a2], then there exists a paifwo, ig, so) with max(|s1],[sz]) <
|so|] < |s1| + |s2| and two injectiond; : s; — sg, lo @ s2 — sp, such that]r](ids +
11)(a1) RiFo [7](ids + I2)(ag), where|s| denotes the cardinality of the set

Proof. Becausesi,a1] RY-. [s2,as], by the derivation of logical relations ovélet”™ ~ (5.5),
there exist injectiong) : wj, — s, [} : s1 — s andl, : so — s in Z such that

[7]Gds + 2)(a1) REO [r](ids + 1) (as).

Now letsy = I} (s1) Ul5(s2), wo = w(,Nsp andip : wy — s be the injection, restricted on the
domainwy. Clearly,max(|s1],[s2|) < |so| < |s1] + |s2| holds. Letjy : wg — wj andly : so —
sy, be inclusions irZ, then(id,, + jo, ids + ly) is @ morphism fromw + wy, @ + ig, s + so) t0
(w + wy, i + g, s + sq) INPL .

Definel,, : s, — so by: foranyz € s, ln(z) = 1),(x) (m = 1,2), and we have
lpol, =1,. Because

[7](ids + I7) (am)
= [7]((ids + lo) o (ids + Im)) (am)
[71(ids + lo)([7] (ids + L) (am)),
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andR: is op-monotonic[r](ids + I1)(a1) REF0 [7](ids + l2)(az). O

According to this lemma, if a logical relation is op-monotonic, then to decide whether two
computations are related, we only need to consider a finite number of substitutions for fresh keys
(up to isomorphism) and check whether the corresponding values under these substitutions are
related. In other words, the decidability of relations for tylpedepends on the decidability of
relations for typer.

Proposition 7.6. Suppose that: w — s is an injection inZ and (R ;) ype IS an 0p-monotonic
logical relation derived over the categoet” . For every typeTr, the relationR+_ is
decidable ifR , is decidable.

Proof. According to Lemma 7.5, for every two computations of tylpe if there exist injections

ip 1 wo — S0, 11 : 81 — sp andly : s5 — s, With max(|s1], [s2|) < |so| < |s1] + |s2|, such that

the two values (being lifted properly) are related, then the two computations are related. Since
boths; andss are finite, those possible injections (up to isomorphism) are also finite, and can be
enumerated. O

The hypothesis of this proposition is that logical relations under consideration must be op-
monotonic, so if we want to use this result to study the decidability of the cryptographic logical
relation, we must check its op-monotonicity property. It is clear that relations for hgpe
andnat are op-monotonic. The relation for keys is also op-monotonic. Consider a morphism
(3,0) : (w,i,s) — (w',4,s') in PZ~ and a pair of keysi1, ko € s. If I(k;) ’Rf('e’f l(k2),
thenl(ky) = l(k2) € i'(w'), sol(k1),l(k2) € i'(w’) NI(s). Moreover, in the categorPZ —,

(W) NI(s) = I(i(w)), SOk = kg € i(w) sincel is injective, i.e. Rﬁg; ko.

Lemma 7.7. Let © be a consistent cipher function, then the cryptographic message relation
MR"% is op-monotonic in the sense that for every morphigm) : (w,i,s) — (w',#,s’) in

the categoryPZ—, and every pair of messages, as € [msg]s, if ([msg]i(a1), [msg]l(az)) €
MR"% then(ay,as) € MR,

Proof. This is proved by induction on the message structure. We show here the case where the
two messages are cipher-texts.

Let a; = e(a}, k1) andas = e(dh, ko), then[msg]i(a1) = e([msg]i(a1),l(k1)) and
[msg]i(a1) = e([msg]i(az), l(k2)).

o If I(k1) = I(k2) € ' (w'), by the definition ofMR"?,

(Imsgli(a}), [msgli(a3)) € MR,
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and by induction(a/, a}) € MR"¥. And
I(k1) = I(k2) € @' (w') N(s) = 1(i(w)),
SOk; = ko € i(w), hence(e(a), k1), e(a, k2)) € MRH?.
o If [(ky),l(ke) & i'(w'), then
([msgli(ay), [msgli(an)) € ¢* (I(k1), U(k2)),
andl(ky),l(ke) &€ ¢'(w") NI(s) = l(i(w)), SOky, ks & i(w). Becausep is consistent, we

have(a),ab) € ¢'(k1, k2), hence(e(a), k1), e(az, k2)) € MRH®.
O

We then prove that the cryptographic logical relati®y )  «yp. (Definition 5.2) is op-monotonic
for certain types.

Proposition 7.8. Let ¢ be a consistent cipher function. For every morphigii) : (w,i,s) —
(w',4’',s") inthe category?Z ", and every pair of values;, as € [r]s, if [7]l(a1) RL# [T]l(az2),
thena; R:¥ as, whereR%? is the cryptographic logical relation defined in Definition 5.2 and
is any type defined by the grammar

Tu=b|b — 7| Tr,
whereb € {nat, bool, key, msg} andd’ € {nat, bool, key}.

Proof. We prove the statement by induction on types. The relations for base types are monotonic.

For typesh — 7 whereb € {nat, bool}, consider any pair of morphisntg, /) : (w,i,s) —
(W', syand(j',1') : (W', i, ") — (W",i", "y in PZ7, then(j' o j,I' ol) is @ morphism from
(w,1,s) to (w”,i",s"). Suppose thaf; and f, are two functions iffb — 7]s and

[P s) Ry 71PN ),
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then for anya;, as € [b]s,

al ’R,Z’“O as

S q ’R,é"’“’ as
(becaus&R . is a regular logical relation)

= ([1M())s" (1 a0)) RE# ([ ]i(2))" (1 a2)
(becausdr] (1) Ry, [7]"i(£2))

& f1s"(lol,a1) RE % fos" (' 01, ap)
(by the naturality off; and f5)

& [l o D(fislids, ar)) RY# [r](1 0 )(fas(ids, az)
(again by the naturality of; and f5)

= fis(ids, a1) RE? fos(ids, ag)

(becaus&R . is op-monotonic)

and by Lemma 7.1f; R>?_ fo.

b—T

For typeskey — 7, let f1, fo € [key — 7]s and[r]* (1) RE:?  [r]tli(f,). To

key—T

prove fi RL¥ f2, by Lemma 7.3, it is sufficient to check the following two facts:

key—T1

Fact1l: Vk €i(w). fis(ids, k) RY? fos(ids, k)
Fact 2: Jko & s. flso(inl&{ko}, ko) ’R,ZTO’“D fgSo(in157{kO}, ko)

wherewy = w + {ko}, so = s + {ko} andig is the injectioni + id ;) : wo — so.
e Fact1: Forany: € i(w), (k) € l(i(w)) = ' (w") N1(s), sol(k) € ¢ (w').
(1" () (i, 1k) RE# ([ 1(f2))s' (s, 1(R)).
Becausef; and f; are natural transformations,

([P 1™ fn))s' (i, U(K))
= fms'(idy o1, 1(k))
= [[Tﬂl(fms(id&k))v (m:1>2)

by induction,R._ is op-monotonic, sgs(ids, k) R2? fas(ids, k);

e Fact 2: Becausgr]*li(f)) Rf:ef;ZT [7]™1( ), for some keyko ¢ s,

(1% 1)) s (indy gy ko) REO? ([ 11 f2)) s (il r3, ko)
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wheresy = s' + {ko}, wy = w’ + {ko} andi is the injection’ + id;,, : wy — s;. Let
wo = w + {ko} andsg = s + {ko}. Because the following square commutes:

inlsy{k }
s—% o 5

zl li-i—id{ko}
K inls’, {k)} M
we have
(1™ 1(fm)) st (inly gho ko)
= fmso(inly ey 04, ko)
= fmso((i + idypy) o inlg 103, ko)
= [71( + idgey) (fmso(inlg 10y, ko)),

and becausgj +idy,y, ! +idy,}) is indeed a morphism frorfwo, io, so) t0 (wy, g, 5p)
inPZ—, by indUCtion,flso(inl&{ko}, ]{0) 'R,io"p fgso(inl&{ko}, k‘g)

From the above two facts, we can deduce theR?__ fs.

key—T

For computation type$+, consider any pair of computatiohs, a1], [s2, as] € [T7]s,
[T 0($ms @m)) = Il (s am]) = [, [71( + iy, ) (am)]  (m = 1,2)

if [s1,[7](l + ids,)(a1)] ’R#’f [s2, [T](I + ids,)(a2)], there exist injectionsy : wy — so,
l1: 81 — spandly : s — sgin Z such that

[F)Gdy + L) ([ +ids, ) (@) REFO? [r(idy + 1) ([7](L + ids, ) (az))

Because the square

id,+1
S+ Sm ———> 5+ S

I+ids,, l
id/+1lm

s+ s,

I+ids,

s’ + s
commutes,
[71Gds + i) ([7]( + ids,, ) (am))
= [rI((dy +ln) o (I +1ids,,))(am))
(by the functoriality of]7])
= [7]((l +ids,) o (ids + L)) (am)
(by the above commuting square)
[71(1 + ids ) ([7] (ids + In) (@)
(by the functoriality of]7])
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and(j +ids,, [ +ids,) : (w 4+ wo, i + ig, s + so) — (W' + wo, i + ig, s + so) is a morphism in
PZ~, by induction]r] (ids+11)(a1) RET? [7](ids+1a)(as), hencesy, ai] REY [s2, as). O

7.3 Décidabilité de I'équivalence contextuelle

There are four base types in the cryptographic metalanguagat—bool, key andmsg. It is
clear that relating two values of typet or bool is decidable, as well as two keys since for every
given world (w,i,s) € PZ, the sets is always finite. Deciding whether two messages are
related depends on the cipher function. We say that a cipher fungtisecidable if and only

if for every injectioni : w — s € Z, every pair of key$:, ks € s —i(w), it is decidable whether
two messages;, my € [msg]s are inp'(ky, ks).

Lemma 7.9. Supposeé : w — s is an injection inZ and ¢ is a decidable cipher function. For
every pair of messages;, my € [msg]s, it is decidable whethefm;, ms) € MR’, where
MR is the cryptographic message relation as defined in Definition 4.2.

Proof. The statement is easy to check by decomposing the two messages (both are of finite
size). O

To sum up, relating values with the cryptographic logical relatin) - ¢yp. (Definition 5.2)
is decidable for a certain set of types, namely

T =10 |bool = 7 |key = 7| T7 | 7 X 7| opt[7] (7.1)
whereb € {nat, bool, key, msg}.

Theorem 7.10. Suppose : w — s is an injection inZ and ¢ is a decidable and consistent
cipher function. For every;, as € [7]s, it is decidable whethet, REP¥ ay, wherer is atype
defined by the grammar (7.1).

Proof. We prove the statement by induction on typdnduction steps are straightforward from
Lemma 7.9, Proposition 7.2, Proposition 7.4 and Proposition 7.6. O

Consider the completeness of the cryptographic logical relation, we get then the following
result on the decidability of contextual equivalence.

Corollary 7.11. Suppose : w — s is an injection inZ and x is an empty context knowledge.
For every pair of termg4, ¢, such thatw : key - ¢1 : 7 andw : key F ¢5 : 7 are derivable, it is
decidable whethet; zi’“ to, wherer is defined by

7 =b|bool = 7 | key — 7| T7% | 7 x 7 | opt[7]
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whereb € {nat, bool, key, msg} and 7 is defined by

7% ::= nat | bool | key | 7° x 7° | opt[7°]

Proof. According to Theorem 6.1, Proposition 6.4, Lemma 6.6, Proposition 6.7 and Proposi-
tion 6.9, ~2?= R:? holds for these types. Then by Theorem 7.10, the contextual equivalence
for these types is decidable. O

However, the contextual equivalence for the cryptographic metalanguage is in general unde-
cidable. We shall show this by encoding the 2-counter machine [Min61] in our cryptographic
metalanguage. Such a technigue is very common in the field of verifying cryptographic proto-
cols, for showing some problems undecidable [DLMS99].

We assume that a 2-counter machine contains instructions of the farrii( 2}):

(1) q : N;:=N; +1; goto ¢
(2) g :if N; =0 then goto ¢’
else N; := N; — 1; goto q’

whereN;, N, denote the two counters. An instruction of tyflg increments the countérand
jumps to another point of the control. An instruction of ty@e, tests whether the counteis

0, and if it is the case it jumps to a contig| otherwise it decrements the counter and jumps to
control pointg”.

We encode the 2-counter machine into the cryptographic metalanguage so that the problem of
determining whether the initial configuratidgq, 0, 0) of the 2-counter machine does not reach a
desired configuratiofyr, nk., n%), for some natural numbers, n2, reduces to the contextual
equivalence of two programs in the metalanguage. We shall represent a configlratioms)
by an encrypted messadéy, n1,n2]}x, Wherek is a secret key (not known to contexts). In
particular, a state is represented by a natural number in our encoding. (Some syntactic abbrevi-
ations are as defined in Figure 2.2.)

First, for every instruction of type (1) we introduce the following function: (We assume that
the operations act on the first countee( 1). The case = 2 is quite similar.)

fo = Ma}i.letopt y < getnum(7i(z)) in

)
letopt 21 < getnum(rs(x)) in
letopt 23 < getnum(rs(x)) in

if (y = q) then {[¢, 21 + 1, 22} else {z}y,
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and for every instruction of type (2) we introduce the following function:

fo = Ma}x.letopt y < getnum(7i (7)) in
x)) in
z)) in

letopt 21 < getnum

(
w%’
i

(
(

—~~

letopt 29 < getnum
f (y = q) then
if (21 = 0) then {[¢/, 21, 22) }x else {[¢", 21 — 1, 22]}x

else {z}y.
For the desired configuratidr, n}., n%), we introduce two specific functions

f+ = Ma}r.letopt y < getnum(ms(x)) in

letopt 21 < getnum(7s(z)) in

letopt 2y < getnum(7s(z)) in

if (y = qr and 2; = n} and 29 = n%) then n(0) else {z}y,
f& = Ma}rletopt y < getnum(mi(x)) in

letopt 21 < getnum(7s(x)) in

letopt 23 < getnum(ns(x)) in

if (y = qp and z; = nk and 25 = n%) then n(1) else {z};.

These two functions are designed to return distinguished values (naraaly1) when the ma-
chine reaches the desired configuratign, nk., n%). We then define two programs:

pr =v(k).({[0,0,01}k, foor -+ foms [i)
b1 Ey(k)'<{[07030]}k7 fQOv EER) fqm’ f}27>’

which are of typ€l (msg x (msg — opt[msg]) x - - - x (msg — opt[msg])). The first components
of the two programs act as the initial configuration of the machine. Clearly, contexts can do
arbitrary executions of the 2-counter machine: by applying one of the funcfigns. ., f,,.
to a certain messagdgq, n1, no] }x in their knowledge, they get another messé@g, n', nb)}«
(from the configuratior{g, n1,n2) to the configuratioriq’, n’, n})). And they are restricted to
the two kinds of instructions defined by the 2-counter machine, because we let thebieey
freshly generated so that contexts are not able to crack the machine.

The only possibility that a context can get some distinguished values of the above two pro-
grams is that the context gets finally the messfige, nk., n%]}x and apply the two functions
fE, f2 toit. In other words, the two programs andp, are not contextually equivalent if and
only if a configuration(gr, nk., n%) is reachable from the initial configuratidio, 0,0). Since
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the latter problem is not decidable, the problem of determining whether two programs are con-
textually equivalent is not decidable either.

This encoding is somewhat tricky because we simply represent the numbers in the two coun-
ters by numbers in the metalanguage. However, even without integers in the language, i.e.,
without typenat, the contextual equivalence is still undecidable.

We encode the natural numbers by encryption chains: the representatiothe number
nis{---{{ko }r}r - }x, Whereky is a plain key representing the number O (it does not matter

UL

n
whetherk andkg are equal). Then the two operations — increment and decrement — of numbers
are represented by

s(n) = {n}k

P(n) = casedec(n,k) of some(z) in x else k(ky).

A configuration(g, n1, n2) is encoded as an encrypted messflge, 71, n2] }i, Wherek,, k
are secret keys (not known to contexts) apdepresents the stage The encoding of instructions
should be also modified. the representation function for every instruction of type (1) becomes:

fo = Ma}r.letopt y < getkey(ri(x)) in
letopt 21 < my(x) in
letopt 23 < mh(x) in
if (y = kq) then
some({[ky, S(21), z2] }x)

else some({z}y),
and for every instruction of type (2):

fo = Ma}letopt y <= getkey(n(z)) in
letopt 21 < ma(x) in
letopt 23 < 75 (x) in
if (y = kq) then
letopt 2} < getkey(z1) in
if (2] = ko) then
some ({[kg', 21, 22] }1)
else some({[ky7,P(21), 22) }k)

else some({x}y).
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For checking whether the desired configuratigp, n},ﬂ, n%) is reached, we have to test whether
a message is the representation of a particular numbe€he test function is defined as follows:

test,(x) = casedec(x,k) of some(y;) in

case dec(y, k) of some(ysz) in

case dec(yn—1, k) of some(y,) in true

else false

esle false

esle false.
Then for the desired configuratignz, n};, n%), we introduce two specific functions

fi = Malp.letopt y < getkey(n3(x)) in
letopt 21 < m5(x) in
letopt 2y < 75 (x) in
if (y = k¢, and testn}w(zl) and test,z2 (22))
then some(k(k;)) else some({x}) (i=1,2),

whereky, ko are two different keys that contexts can distinguish. As in the former encoding, the
two functions here may return distinguished valuess—andk, when the machine reaches the
desired configuratiofyr, nk, n%.). We then define two programs:

p1 = V(k7k07k1ak:2akqoa"
b2 = V(kak(%klakakqov"

I

kqm)-<k17k?a{[kqovk0>k0]}ka fqm ceey fqm7 f}'>
7kqm)'<k17k27{[kqoak07k0]}k7 fqm SRR} fqm7 f}%">7

which are of typekey x key x msg x (msg — opt[msg]) x --- x (msg — opt[msg]). The

third components of the two programs act as the initial configuration of the machine. It is clear
that in this encoding, contexts can still do arbitrary executions of the 2-counter machine. And
the only possibility that a context can distinguish the two prograpendp- is that the context

gets the messadék,,., nt., %]}, i.e., the configuratioigr, nk, n%) is reached. Hence for the
same reason as in the former encoding, the problem of determining whether two programs are

contextually equivalent in the cryptographic metalanguage (withoutrtydds not decidable.



Chapitre 8

Conclusion

L'idée d'utiliser le lambda-calcul et les techniques connexes pour veérifier les protocoles cryp-
tographigues a été proposée en premier par Sumii et Pierce [SP01]. Bien que la vérification des
protocoles cryptographiques dans le cadre du lambda-calcul soit plus difficile que dans la plu-
part des autres modéles, par exemple le Spi-calcul ou le modeéle de Dolev-Yao, nous obtenons
dans cette these une compréhension profonde et entiére du réle des fonctions d’ordre supérieur.
Bien que pour le moment, les fonctions d’ordre supérieur soient rarement utilisées pour modéli-
ser les protocoles qui comportent principalement de I'échange de messages, il est naturellement
possible que les protocoles futurs échangent des programmes, par exemple des algorithmes cryp-
tographiques.

L'avantage principal de I'approche par le lambda-calcul est de permettre d'utiliser des tech-
niques puissantes telles que les relations logiques pour prouver des propriétés de sécurité, notam-
ment la propriété de secret. De plus, la génération dynamique de clés est un mécanisme crucial
dans les protocoles cryptographiques, auquel la plupart des modeéles formels n’accordent pas une
importance suffisante. La génération de clés était bien étudiée par Pitts et Stark dans le nu-calcul
[PS93a] et elle remonte aux origines des travaux de Moggi sur le lambda-calcul computationnel
[Mog89, Mog91]. Naturellement, nous adoptons des techniques de leurs travaux pour vérifier les
protocoles cryptographigues. De ce point de vue, ce que font Sumii et Pierce consiste a étendre
les travaux de Pitts et Stark a un langage plus riche — le lambda-calcul cryptographique. Le
coeur de leurs travaux est I'utilisation des relations logiques pour prouver I'équivalence contex-
tuelle dans leur langage.

Pitts et Stark définissent une relation logique opérationnelle pour le nu-calcul, qu’ils prouvent
correcte par rapport a I'équivalence contextuelle et compléte pour les types du premier ordre. Les
relations logiques diverses de Sumii et Pierce peuvent étre considérées comme des extensions de
la relation logique opérationnelle. Pourtant, toutes leurs relations logiques sont syntaxiques, et
elles se fondent sur une sémantique opérationnelle, ce qui rend relativement difficiles I'extension
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et 'adaptation de leurs relations logiques & un langage plus riche. A la place de la sémantique
opérationnelle, notre étude est basée purement sur des modéles dénotationnels. Ceci nous per-
met d’adapter facilement nos résultats a des langages plus riches, a condition que ces langages
puissent étre interprétés dans le méme modéle.

Ce dernier chapitre est une conclusion de cette thése. En particulier, nous résumons les ré-
sultats présentés dans la thése et nous proposons des directions susceptibles d’étre suivies pour
approfondir encore le sujet.
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The idea of using lambda-calculus and relevant techniques to verify cryptographic protocols
was first proposed by Sumii and Pierce in 2001 [SP0O1]. While verifying cryptographic protocols
in suitable lambda-calculi is harder than in most formal models like Spi-calculus or Dolev-Yao
model, we gain in this thesis a thorough understanding of the role of higher-order functions. This
may come in handy in the future. Although for the moment, higher-order functions are rarely
used in modeling protocols, which are usually sets of message exchanges, it is very possible that
future protocols will involve exchanges of codes, e.g., cryptographic algorithms.

The main advantage of this lambda-calculus approach is to make use of some powerful tech-
niques such as logical relations, to prove desired security properties, notably the secrecy property.
Furthermore, the mechanism of fresh key generation plays a crucial role in cryptographic pro-
tocols while most formal models do not stress it enough. Since fresh key generation has been
well studied by Pitts and Stark in the nu-calculus [PS93a], which is again traced to Moggi’s work
on the computational lambda-calculus [Mog89, Mog91], it is very natural to adopt techniques
from their works in protocol verification. Indeed, on the aspect of fresh key generation, what
Sumii and Pierce did is to extend Pitts and Stark’s work in a richer language — the cryptographic
lambda-calculus. The heart of their work is to prove contextual equivalence in this language,
through logical relations.

Pitts and Stark define an operational logical relation for the nu-calculus, which is proved
sound w.r.t. the contextual equivalence, and complete for types up to first order. Sumii and
Pierce’s various logical relations for the cryptographic lambda-calculus are indeed extensions of
this operational logical relation. However, all these logical relations are syntactic and rely largely
on the operational semantics, which makes them hard to extend and to fit in richer languages.
Instead, we rest on purely denotational models, not only because logical relations are originally
developed on semantics, but also by doing so we are allowed to easily extend our work to richer
languages, provided that the language can be interpreted in the same model.

8.1 Résumé des résultats

This thesis contributes mainly to the theoretical aspect of cryptographic lambda-calculi, on the
following four points:

Categories

First of all, we would like to underline the categories over which we derive logical relations.

The crucial mechanism of dynamic key generation can be nicely modeled in Moggi’s frame-
work of the computational lambda-calculus, through monads. Thanks to Stark’s work, we can
in particular make use of his category for the nu-calculus — the functor cateyyofy This
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model is comprehensive enough for describing computations of key generation: every computa-
tion consists of a value and a set of freshly generated keys. It also shows how keys are involved
and interfere with programs as computations go along. Defining logical relations over this model
is relatively easy — we can simply follow the categorical construction of logical relations and
this was done by Goubault-Larrecq, Lasota and Nowak. In particular, Goubault-Larrecq et al.
provide a natural way to derive logical relations for monadic types.

However, although the catego8et” is adequately perfect for modeling dynamic key gen-
eration, it is indeed not sufficient when we consider relations between programs. The reason
is that keys must be classified when two programs are taken into account — some keys can be
manipulated by both programs while others not. But in the m&def, we do not consider any
classification of keys for any given set of keys. In fact, compared with Pitts and Stark’s opera-
tional logical relation, the logical relation defined by Goubault-Larrecq et al. over the category
Set’ is proved too weak in the sense that it fails in relating certain contextually equivalent pro-
grams related by Pitts and Stark’s [ZNO3]. Our observation is that, as far as relations between
programs are concerned, a better category to considgtis , where inZ—, we do have some
classification of keys. Precisely, every object in the categoryrepresents a selection of those
non-secret keys (keys that can be accessed by any program) from a given set of keys. However,
the categoryZ— does not explain properly how these selections evolve as more and more keys
are generated. The classification of key<in is so coarse that logical relations derived over
Set?™ are still too weak. We then refine the classification by the categdry and show that
SetP1™ is the right category that one should consider when studying relations between programs
with fresh key generation.

Both these categories <Set? and Set?? — satisfy the categorical requirements for
deriving logical relations, so we follow the general construction to derive sound logical relations
for the cryptographic metalanguage, being careful that the Basic Lemma should hold.

Contextual equivalence

Another contribution of this thesis is the denotational notion of contextual equivalence (in the
framework of lambda-calculus) for cryptographic protocols. Intuitively, the meaning of contex-
tual equivalence is very clear: two programs are contextually equivalent if there is no context that
can distinguish them. This concept should not be difficult to understand and standard definitions
(both syntactic and denotational) in the simply-typed lambda-calculus are simple. However, it
turns out that these standard definitions do not fit in some richer typed lambda-calculi. This is
because a proper notion of contexts becomes very crucial when we have more syntactic compo-
nents, since contexts are closely related to the syntax. Essentially, a context should be neither
too “weak” nor too “strong”. For example, in a standard typed lambda-calculus, we do not have
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types for computations, so it is sufficient to take contexts of any observation type. But in the
computational lambda-calculus, we must allow contexts to compare computations, for this pur-
pose, we should allow contexts themselves to do some computations, i.e., the type of contexts
should be the corresponding computation types of observation types.

As for cryptographic protocols, the key point is that contexts must represent honestly the
power of attackers. In particular, they should be able to get access to those non-secret keys,
as well as a set of secret cipher-texts. These arguments must be represented in the definition.
While they are probably not easy to define in a syntactic way, the catejoR  allows us
to represent properly these points in semantics. Finally, we arrive at what we believe should be
the proper definition of the contextual equivalence for cryptographic protocols (Definition 6.2,
Chapter 6), still over the catego8et?” .

Completeness

Completeness is important for logical relations but it is usually difficult to achieve, because for
contextual equivalence, we do not care about the internal structure of different programs, while
for logical relations, we do. This is probably the reason why usually we only have completeness
for first-order functions (for higher-order functions, contexts may throw away some information
about the function structure). This becomes even worse when we introduce computation types
in the language, since programs may consequently have more complicated structure, notably
those programs of “computations of computation” (typ€7) or “computations of function”

(type T(r — 7')). For logical relations derived over the categd®yt”? ', we prove their
completeness for a certain subset of first-order types.

In fact, as for completeness, a better notion is that of lax logical relation. Lax logical rela-
tions do not require to be constructed by strict induction on types, hence it allows us to achieve
completeness of logical relations for any higher order type, by relaxing the restrictions on rela-
tions for certain types, notably function types and computation types. Again over the category
SetPT™ we define a lax logical relation that is lax at function types and monadic types, but can
remain strict at other types. It is sound, and complete at all types.

Decidability

In the field of formal verification of protocols, a critical criterion for verification techniques

is decidability. However, it is in general undecidable to determine whether two programs are
contextually equivalent in the cryptographic metalanguage. We have shown this by encoding
the 2-counter machine in the metalanguage and reducing the probelm of reachability to that of
deciding contextual equivalence.
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On the other hand, because logical relations can identify the contextual equivalence for a set
of types and it is decidable, for another set of types, whether two values are related by certain
logical relation, determining the equivalence between programs of certain types is still decidable.
We explore the decidability of the problem whether two values (of certain types) are related by
logical relations derived over the categdtyt”™ ~ and show that relations for two kinds of types
key — 7 and T are decidable, provided that the relation for typés decidable. Then we
conclude that it is decidable whether two programs of certain types are contextually equivalent
(Corollary 7.11, Chapter 7).

8.2 Perspectives

We have concentrated ourselves on proving the secrecy property of security protocols, by means
of logical relations. Since there are many other security properties like authenticity, anonymity,
etc., it is natural to ask: is it possible to prove security properties other than secrecy in this
framework? The general idea is to prove the equivalence of a real system and an ideal (secure)
one. Butitis also possible to introduce other techniques of manipulating message terms into our
framework, in particular symbolic techniques based on term algebra. This is feasible because
the message type is defined as a base type in our metalanguage and all cryptographic primitives
operate only on messages. Such a treatment of messages is quite similar as in Spi-calculus,
where messages (terms) and processes are define separately. Indeed, there are already attempts
of developing symbolic techniques in the framework of cryptographic process calcului [FAOL,
ALOO, Bor01]. Again, separating (to some extent) messages from the whole language allows
us to extend easily the language with other primitives satisfying specific algebraic properties
[CDLO5], and consequently to reason about specific protocols. It would be also interesting to
define proper categorical notions corresponding to these algebraic properties.

Another direction is on the proof techniques for contextual equivalence. We have presented
the technique of logical relations, but recursion is never considered in our language, neither in the
nu-calculus nor in the cryptographic lambda-calculus. Dealing with recursion would be challeng-
ing for defining logical relations. In particular, the presence of recursive functions requires us to
switch to domain theoretical models. Bisimulations present no difficulties with recursion. There
are notions of applicative bisimulations that are sound and complete in typed lambda-calculi
with full universal, existential and recursive types [SP05], but without monadic types. It would
be interesting to extend this notion to some kind of “monadic bisimulation” in the computational
lambda-calculus. Furthermore, all these applicative bisimulations are defined syntactically and
there is no known underlying mathematical theory. A more ambitious direction could be look-
ing for a mathematical model for deriving bisimulations in lambda-calculi, like those categorical
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models for deriving logical relations [MS93, GLLNO2].
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Annexe A

Regles de raisonnement du
metalangage cryptographique

Stark defines an equational logic of Horn clauses for reasoning about terms of his computational
metalanguage [Sta94]. This equational logic can be easily extended for giving the semantics
of the cryptographic metalanguage and reasoning about terms, since the cryptographic metalan-
guage is simply an extension of Stark’s computational metalanguage. Rules of the logic are given

in the form defined at the end of Section 2.2.
The detailed rules are given in following figures.

Horn clauses: . Lok o
(¢ c (b) ) ¢ ) 9

Lok o¢ T;0UT
Equality:
I'ta:r I'aj,a9: 7
'Fa=a Iiar =askaz=a;

I'tay,a0,a3: 7

F;alzag,agzagl—alzag

Figure A.1: Rules for equational reasoning in the cryptographic metalanguage (1)
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Congruence:

—(zx:7€l)
I'tax==x '+ true = true I'+ false = false

I'Fb,b : bool Dkt )ttty 7
[;b=0b,t) =t],to =th - if bthent; else ty = if V' then t| else t}

(i=0,1,2,...)

I' - new = new I'Fi=1

Tty ty, .. tn, th o nat

ity =ty,...,t, =t, Fnat_op,(t1,...,t,) = nat_op,(t},...,t,)
Fl—tl,t,ll’l'l Fl—tg,tIQ:TQ F'—t,t,I’HXTQ
ity =), to = th = (t1,te) = (t],15) It =t Fproj,(t) = proj,(t)

FHt,t 1 x1n -t :r
[;t =t F proj,(t) = proj,(t) [;t =t F some(t) = some(t)
[+ t1,t) : opt[7] Dx:m;@bteo=th:7 (z & fo(P)) [k ts,th:7

[ty =t),t3 =t I case t; of some(z) in ¢ty else t3 = case t} of some(z) in t}, else t§
Lttt :r Lttty Tr Tx:7; @ty =1t : T7
[Fval(t)=val(t/) T;®,t1=t]Fletxz <t inty=1etz<1t]int)
C-fflir—7 Lttt 7 Lx:m;®bt=¢t:7

(z & fu(®))

Lif=ft=tF ft=ft ;0 vt = \a.t/ (=& fo(®))
[k ty,t) i msg ['Fto,th : key
[ty =t),ta =ty - enc(ty,ta) = enc(t),t))
Tkty,tyimsg T kto,th: key [ ty,t),ta, th - msg

[ty =t),ta = th - dec(ty, to) = dec(ty, ty) Tty =ty ta =th - p(t1,t2) = p(t],th)
I'Ftt:msg I'Ft,t:msg
[t =t'F fst(t) = fst(t) Iyt =t snd(t) = snd(t)

I'Ft¢t:nat I'Ft,t:msg
I;t=tFn(t) =nt) [;t =t F getnum(t) = getnum(t')

L't t :key I'Ftt :msg
Iit=tFk(t)=k(t) T;t=tF getkey(t) = getkey(t)

Figure A.2: Rules for equational reasoning in the cryptographic metalanguage (I1)
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Functions:
Fe:mbty:m I'Hti:n 'tf:mn—mn
I'E (Az™.t2)t) = talty /] 7 L'k f=X\x"fx
Booleans:
I'®,0 =truek ¢ I'y®,b=falsel ¢ I';® | true = false
| L ) ok ¢
Lttt :r CHtt:r
'k if true thentelset =t 'k if false thentelset =1t
Products:
I'Eti:m I'Fity:m 'kt:m xm
(i=1,2)
'k proj;((t1,t2)) = ti I+ (proj,(t),proj,(t)) =t
Options:
I'kty:7 Dox:Thkty: 7 Lkty: 7
I' - case some(t1) of some(z) in ty else t3 = toft1/x]
Loox:mkty:7 FHty:7
I't case L, of some(x) in ty else t3 = t3
Messages:
I'FE K : key I'Ht:msg I'FE: key
I',dec(enc(n(1), k), k') = some(1) - k =k’ I' - dec(enc(t, k), k) = some(t)
T'Ft1,t2 : msg 'Ft1,t9 : msg
'+ fst(p(t1,t2)) = some(t;) I' - snd(p(t1,t2)) = some(ts)
I'-t¢:nat I'Ft: key

I' - getnum(n(t)) = some(t) I' - getkey(k(t)) = some(t)

Figure A.3: Rules for equational reasoning in the cryptographic metalanguage (ll)
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Computations:

L-t:Tr =ttt :r
I'Fletz<tinval(z)=t T;val(t)=val(t)rt=1

'Ht:r Cox:7kHt T
[k let z < val(t) int' = ¢'[t/x]
't Tr Loz:7kHt:T7 L T+t T1"

F'lets' = (letx<tint)int”" =letx <tin(leta’ <t int")

Generating keys:

I'H¢t:Tr
(DROP) : (k:key ¢T)
I'Ft=1letk < newint
Dk E :keybt:T
(SWAP) AR T
't let k< newinlet k' < newint = let k' < new in let k < new in ¢
'k k: key I,k : key; ®,dec(enc(1,k), k') = error -t =t/

(FRESH)

I;®Flet k' < newint = let k' < newint

whereerror is the syntatic abbreviation as defined in Figure 2.2.

Figure A.4: Rules for equational reasoning in the cryptographic metalanguage (VI)




Annexe B

Complétude des relations logiques
monadiques

Completeness (w.r.t. the contextual equivalence) is an important concern of logical relations, We
say that a logical relation isomplete if and only if any pair of contextually related programs
can be related by this logical relation. However, completeness is rather difficult to achieve. In
simply-typed lambda-calculi, logical relations are only complete for types up to first order in
general. When we have monadic types, things become much subtler, even for first-order types.
As shown in the discussion at the beginning of Chapter 6, it is very difficult to get a general
result on completeness for all monads, because particular monads (and corresponding logical
relations) usually have specific properties, which are quite different. Furthermore, since contexts
must be involved in the discussion, language constants play an important role in discussions of
completeness and these constants vary widely for different kinds of computations. So in this
appendix, we shall investigate the completeness of monadic logical relations for a set of concrete
monads, namely partial computations, exceptions, non-determinism and state transformers.
Recall the syntax of the computational lambda-calculus. We have in particular a unary type
constructofT to construct types for computations, and two relevant constants

tu=...|val(t) |letx <t int,

with corresponding typing rules

I'Ht:r Pt :Tr Tyx:rhkty: T
(Val) (Let)
F'Fval(t): Tr I'Fletx <t;inty: T7'

We shall restrict ourselves to types upfiist orderin the computational lambda-calculus, i.e.,
those given by the grammar
ho=b|Trt | b— 71,

163
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whereb € ¥ ranges over a set of base types. In certain cases, e.g., the non-determinism monad,
we will only consider a subset of types up to first order which we waldk first-order types
They are given by the following grammar:

Tj, 2=b|Th| b—>7'&]. (B.1)

As we have seen in Section 3.1.2, semantics of the two computation constructs can be given
in full generality in a categorical setting. In particular, the interpretation of terms in the compu-
tational lambda-calculus must satisfy the following equations:

[let z <= val(ty) inta]p = [ta2[t1/z]]p (B.2)
[let z <= tinval(z)]p = [t]p (B.3)
[let z2 <= (let 1 < t1 inty) ints]lp = [let x; < t; in let xy < 2 int3]p(B.4)

Indeed, every term of a monadic type can be written in some canonical form (respecting these
equations):

Definition 1 (Computational canonical form). A term¢ of a monadic typd 7 in the computa-
tional A-calculus is said to be aomputational canonical terifit is of the form

letx; <t in---let x, < t, inval(u) (n=0,1,2,...)

whereu is a term of type, z1, ..., x, are variables and ever (i = 1,...,n) is a weak head
normal form, i.e.f; = w;w;; - - - wik, and eachy; is either a variable or a constant.

Proposition B.1. For every termt of a monadic typd 7 in the computationah-calculus, there
exists a computational canonical terthsuch that]t']p = [¢t]p, for every valid interpretation
[_]p (i.e., interpretations satisfying the equations (B.2-B.4)).

Proof. The computationah-calculus is strongly normalizing [BBdP98], so we consider the
normal form of termt and prove it by induction on
If ¢ is a variable or a constant, then according to the equation (B.3)

[t]p = [let x <=t inval(x)]p,

wherez is not free int.

If ¢ is an applicatiort s - - - t,, , thenty is of a functions type and it must be a variable or a
constant (it cannot be &abstraction sinceis G-normal). Similarly,t is equivalent to the term
let x <=t inval(x).

If ¢ is a trivial computatiorval(t’), it is already in the computational canonical form.
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If ¢is a sequential computatioret = < t; in t9, by induction, there are computational
canonical terms for bothy andt,, namely

let ] <t} in---let 2}, <t inval(u;)

and
1 2 2 . 2 2 .
et x] < tiin---let z; < t; inval(ua),
wherez},... zl 2% ... 22 are not free int. Replacet; andt, with these terms it and we
get
[tlp = [letz < (let 2} <t in---let 2] < t! inval(u;)) in ta] p
= [letz} <t in
let x < (let 23 <ty in---let x), <t inval(uy)) ints]p
_ 1, 1 1 1. .
= [letzj<tjin---let x), <1,, inlet v < val(uy) inty]p
= [letaz] «tlin---letx) <t} inlet s < val(u)in
let 27 <13 in---let 22 < 2 in val(us)]p.
Because alt}, ..., tL 2 ... t2 andval(u) are weak head normal forms, so the last term in the
above equation is computational canonical. O

Now define the contextual equivalence in the computational lambda-calculus (we consider
here a set-theoretical model of the computational lambda-calculus):

Definition B.1 (Contextual equivalence in the computational lambda-calculus)In the com-
putational lambda-calculus, two closed termsts, of the same type, are contextually equiva-
lent, written asty =, to, if and only if, whatever the terd such thatz : 7+ C : To (0 € Obs)
is derivable,

[Clz = [t = [C][z — [ta).

In a set-theoretical model, a valaec [7] is definableif and only if there is a term such
thatt ¢ : 7 is derivable and. = [t]. We then define a relation ., for every typer, by: for every
pair of valuesiy, as € [7], a1 ~; ag if and only if ay, ay are definable and; ~; as.

We shall investigate completeness in a strong sense and aim at finding a logical relation
(R+)r type SUch that if- ¢ : 7 andt t, : 7 are derivable, for any type up to first order, then

t1 =r ta = [t1] R+ [t2]

Or, shortly:~.C R .. Let us induce a logical relatiofR )~ type DY Ry, =~, for any base type
b. Then the proof would go by induction over to show~, C R, for an arbitrary monad
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T and every first-order type. Casesr = b andt = b — 7’ go identically as in the proof for
simply-typed lambda-calculus (see Chapter 6). The difficult casedsT 7/, i.e.,

~r C RT — ~17 C RTT (BS)

We did not find any general way to prove this for arbitrary monad. Instead, in the following
subsections we show it for particular ones. In fact, (B.5) does not always hold for all first-order
type. For certain concrete monads, we must have further restrictions on

There is also another subtle point — notice that it is even not true in general that relations on
To (0o an observation type) is partial identity. Fortunately, this difficulty can be solved in general,
under some mild assumptions @hfulfilled by all the monads investigated in the sequel.

At the heart of the difficulty of showing (B.5), one finds an issue of definability at monadic
types. By definition, an elementof [T7] is definable if and only if there is a close term
such that- ¢ : T is derivable and¢] = ¢. But this definition states nothing on the connection
between the definablity of a computation and its corresponding “value”. Intuitively, if an element
of [Tr] is definable, either it corresponds to a computation which “returns a definable value”
(necessarily of type), or there is a specific constant in the language which defines this value.
This is of course informal. We shall make this argument precise and formal for each monad, in
Propositions B.3, B.6, B.10 and B.13. Interestingly, all of these propositions can be spelled out
asdeft, C Tdef,, where bydef, C [7] we mean the subset of definable elementfrdf But
even if stated easily in general, this fact needs substantially different proofs for different monads.

Before moving on to discussions of concrete monads, we first deffddoam for closed
terms, parameterized by a predica®n terms.

Definition B.2. For any predicateP on terms, we say that a closed term (necessarily of a com-
putation typel = for somer) is in P-form if and only if it is of the form

let 1 <t in---let x, < t, inval(u) (n=0,1,2,...),

whereP is a predicate on closed terms, = u;w;1 - - - wik, (1 <7 < n), u; is either a variable
21 (1 <1 < i—1)oraclosed term such tha®(u;) holds, w;,, (1 < m < k;) is a term
whose free variables must be{m;, ..., z;_;} andu is any term of type with free variables in

{3:1, oo ,.%'n}.

We then define, for every monad, a predic&@end on closed terms. These predicates im-
pose a restriction on constants, and we show that reasonable constants in these concrete monads
all satisfy the corresponding predicates.
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B.1 Partial computation

In the case of partial computations, the semantics of the monadic types anditlad let
constructs are given by:

[Tr] = [Flu{Ll},

[val®)]p = [tlp,
[letz <ty inta]p = [ta]plz = [talp] if [talp # L
1 21p 1 f Ty = L :

where L denotes all non-terminating computations. Logical relations at monadic types are given
by [GLLNO2]:
1 Rtrco<=c1 Rrcy OF ci =co = L (BG)

Let Cond be the smallest set of closed terms such that, for any closedteftype r; —
- — 1, — T7, Cond(t) holds if and only if: for any closed terms ¢, : 7y, -, t, : 7,
[t1([ta], - - - 5 [ta]) is either:

e equaltol, or

e in [r] and definable by some closed tethof type r; if 7 is of the formr{ — --- —
7). — T7', thenCond(¢') holds.

We assume that for any constantCond(d) holds. We also assume that there is, for everst
constant) of type T such thaf2,] = L. ClearlyCond(f2;,) holds.

Lemma B.2. For any closed term (of typeT7) in Cond-form, [[¢] is either L, or a definable
value at typer.

Proof. Because is of theCond-form,
t=1letz) <t in---let x, < t, inval(u), (n=0,1,...).
We reason by induction om:

e In the base case(= 0): [val(u)] = [u]. Itis obvious thaft] is definable at type (by
the termu in particular).

e Foranyn > 1,

[t1] = [viwir - - - wig | = [ud](Jwnn], - - - [wik, ),

whereu;, w1, - - - ,wik, are all closed terms andond(u,) holds, sq[t;] is either equal
to L or definable at type; (note that; is of typeTr;). If [¢t1] = L, then the denotation
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of the whole termisL, i.e.,[t] = L. If [¢;] # L, supposdt,] is defined by a closed term
ty (of type 7). BecauseCond(u;) holds, so doe€ond(¢;), thenCond (us[t] /z1]),
..., Cond(uy, [t} /x1]) hold as well (becauses[t|/x1],...,u,[t)/z1] are eithert] or a
constant). Let, = ¢;[t] /z1] (2 < i < n), then

[let 1 < t; in let w9 <ty in---let x, < t, in val(u)]
= [letzy <=tyrin---let z, < t, inval(u)][z1 — [t1]]

= [letazy < thin---let z, <1, inval(ult)/z1])].

Clearly,let x9 < t, in---let z, <t/ in val(ult}/x1]) is again inCond-form, so by
induction, its denotation is either or a value which is definable at type ]

Proposition B.3. A valuec € [T7] is definable if and only if, eithef is definable at type, or
c=1,ie.:defr.(c) < def (c)orc= L.

Proof. The “if” direction: For any value: € [Tr], if ¢ = L, it is obvious 2, defines it); if
¢ € [r] anddef,(c) holds, suppose is defined by some closed ternof type 7, thenc is also
definable at typd 7 (by the termval(¢)), i.e.,deft,(c) holds.

The “only if” direction: Suppose that there is a value [T7] which is definable by some
closed ternt of type T+. Consider the computational canonical forntof

us = let xy < t1 in - - - let x, < ¢, in val(u), (n=0,1,...)

wheret; = y;w; -+ wig, (1 <@ < n), y; is either a constant or a variable (1 <1 < i — 1, if

i > 2), andw;,, (1 < m < k;) is a term with free variables all iy, - ,x;_1}. u is in the
Cond-form, because for any constahitCond(d) holds. Hence by Lemma B.2, the denotation
of termt (the valuer) is either L or a definable value of type. O]

Lemma B.4. For any logical relation(R . ) type, ~+C Ry = ~7,C R7.
Proof. We assume that.C R.. Take any two element{s;, c2) € R,.. There are two cases:

e c1,co € [7] but(cy,c2) € R, thenc; 4, co. If one of these two values is not definable at
type, by Proposition B.3, it is not definable at type either. If both values are definable
at typer but are not contextually equivalent, then there is a context + C : To such
that[C][z — c1] # [C][z — c2]. Thus, the contex : TT - letx <y inC : To can
distinguishc; andcs (as two values of typ& ).

e ¢ € [r] andey = L (or symmetrically,c; = L andce € [r], then the context
let x < y in val(true) can be used to distinguish them.
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In both cases;; 1, c2, hence~1,.C Ry.. O

Theorem B.5. Logical relations for the partial computation monad are complete up to first-order
types, in the strong sense that there exists an observational logical re(@ip)} yp. such that
for any closed terms;, ¢, of a typer! up to first order,

1 ~aty = ([[tl]], [[tg]]) ERA

Proof. Take the logical relatioiR ) 4, induced byR, =~;, for any base typé. It can be
proved by induction on types that.1 C R for any typer! up to first order (using Lemma B.4
for the induction case of monadic types). O]

B.2 Exceptions

The exception monad is seen as generalization of the partial computation monad. The semantics
of monadic types and of theal andlet constructs are given by

[Tr] = [rJUE
[val(tlp = [tp
. _ ) [edplz = [tadp] i [ta]p & E
[let z <ty ints]p = { [t]p if [ti]p € B

whereFE is a fixed set of exceptions. Logical relations at monadic types are given by [GLLNO2]:
CIRTTCQ<:>01R7-C2 orcp=ccekl

Let Cond be the smallest set of closed terms such that, for any closedtteftype r; —
- — 7, — T7, Cond(t) holds if and only if, for any terms- ¢; : 71,--- b ¢, : 7,
[th([ta], - - - [tn]) is either:

e an exceptiore in £, or

e in [7] and definable by some closed tethof typer, and if 7 is again of the formr{ —
-+ — 1) — T7/, thenCond(¢') holds.

We assume that for any constantCond(d) holds. We also assume that there is, for every type
7 and every exception € F, a constantaise® of type Tt such thaffraiset] = e. Clearly,
Cond(raise?) holds.

Proposition B.6. A valuec € [T7] is definable at typ&r, if and only if, eitherc € [r] andcis
definable at type, or ¢ = e for somee € F.
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Proof. Similarly as in proofs of Lemma B.2 and Proposition B.3, this is proved by induction on
the computational canonical form of terms. O]

Lemma B.7. For any logical relation(R.); type; ~+C Ry = ~7,C R,

Proof. We assume that,C R .. Take any pair of computatioris;, c2) ¢ R+.. There are three
cases wherécy, c2) € R;:

e ci,co € [7] but(c1,c2) € R, thenc; - co. Suppose both values are definable at type
T, otherwise by Proposition B.3, they must not be definable at TypeSimilar as in the
proof of Lemma B.4, we can build a context that distinguishheandc, as values of type
T, from the context that distinguishesandc; as values of type.

e ¢ € [7],c2 € E. Consider the following context:
y:TTF let v < y in val(true) : Thool.

Wheny is substituted by:; andcs, the context evaluates to different values, namely, a
boolean and an exception.

e c1,c9 € E bute; # co. Try the same context as in the second case, which will evaluate to
two different exceptions that can be distinguished.

In all the three cases, we havg 1, c2, hence~1,.C R, . O

Theorem B.8. Logical relations for the exception monad are complete up to first-order types, in
the strong sense that there exists an observational logical reld@®n - +,,. such that for any
closed terms,, t5 of any typer! up to first order,

t1 =ty = [[tl]] R [[tg]]

Proof. Take the logical relatioiR ) ¢, induced byR;, =~;, for any base typé. We prove
by induction on types that, 1 C R.,: for any typer! up to first order. The induction step at
monadic types is in particular proved in Lemma B.7. O

Itis interesting to note that our proof of completeness does not require any language primitive
able to distinguish a normal value from an exception, or between two different exceptions. It is
because our contextual equivalence is defined at the level of semantics instead of syntax. In prac-
tice this means that, even though the language itself does not provide any mechanism to capture
exceptions, we can still observe them and tell the difference when programs throw exceptions.
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B.3 Non-determinism

In the case of non-determinism, the semantics of monadic types and relevant constructs are de-
fined by

[Tl = Plrl
[val(®lp = {[tlo}

[let x <t ints]p = U [t2] plx — a]
a€fti]p

whereP g, (5) is the set of finite subsets &f. Logical relations at monadic types are given by
[GLLNO2]:
1 R1r 0 — (Val € c1.dag € . a1 R+ ag)

(B.7)
& (V(ZQ € co.dag €c1. a1 Ry CLQ)

Let Cond be the smallest set of closed terms such that, for any closed:teftype r, —
-+ — 1, — T7, Cond(t) holds if and only if:

e forany closed terms ty : 71, -+ ,F &y : 7, [t]([t1], - - -, [t=]) is @ finite set where each
element is definable at type(by a closed tern'), and,

e if 7is again of the formr; — --- — 7/, — T7/, then, for every’, Cond(t') holds.

We assume that for any constantCond(d) holds. We also assume that there is, for everst
constant-. of typer — 7 — Tr and a constarit, of type T+ such that for anyiy, ay € 7],
[+-1(a1,a2) = {a1} U {az} and[d,] = 0. Obviously,Cond(+,) andCond(f-) hold.

Lemma B.9. For any closed termt (of typeT7) in Cond-form, [¢] is a finite set of definable
values of type-.

Proof. Because is of theCond-form,
t=1letxy <t;in---let z, < t, in val(u), (n=0,1,2,...).
We reason by induction om:

e In the base casei(= 0): [val(u)] = {[u]}. Itis obvious thafu] is definable at type
(by the termu in particular).

e Foranyn > 1,

[t1] = [uviwir - - - wig, | = [un](Jwnn], - - - [wik, ),
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whereu;, wiy, - -+ ,wyy, are all closed terms an@ond(u;) holds, so every element of
[t1] is definable at type; (note thatt; is of typeTr;). Suppose that for every € [t1],
there is a closed ter§ such thaft{] = a. Becaus&Cond(u;) holds, for every: € [¢1],
Cond(t}) holds as well, henc€ond(us2[t{/z1]), ..., Cond(u,[t{/z1]) hold (because
uplt/x1],. .., u,[t}/z1] are either{ or a constant). Let? = ¢;[t{/z1] (2 < i < n), then

[let z1 < t; inlet x9 <ty in .- - let x, < t, in val(u)]
= U [let 29 < tg in---let z, < t, inval(u)][z; — d
a€ft1]
= U [let 29 <=5 in - --let z, <t in val(u[t{/z1])].
a€t1]

Clearly, for everyu € [t1], let zg <= t§ in-- - let z, < t% in val(u[t{/x1]) isagainin
Cond-form, so by induction, its denotation is a finite set of definable values ofityped
so is the union of all these sets, sirf¢g] is also finite. n

Proposition B.10. A valuec € [T7] is definable at typd 7, if and only if, for anya € ¢, a is
definable at type-.

Proof. By considering the computational canonical form of those terms defining the wahgk
applying Lemma B.9. O

However, for the non-determinism monad, we are not able to achieve the completeness of
logical relations for any type up to first order. We assume that for every non-observable base
typeb, there is an equality test constarstb : b — b — bool (clearly, Cond(testb) holds).

We then show that logical relations for the non-determinism monad are complete for weak first-
order types.

Theorem B.11. Logical relations for the non-determinism monad are complete up to weak first-
order types (as defined in (B.1)), in the strong sense that there exists an observational logical
relation (R;)r type SUch that for any closed terns, ¢, of a weak first-order type.,

t1~p te = [t1] Ry [to]

Proof. Take the logical relatiofiR ;) typ. induced byR; =~, for any base typé. We prove
by induction on types that.. C R , for any weak first-order type..

Casesh andb — 7. go identiwcally as in normal typed lambda-calculi (Chapter 6). For
monadic typesl'd, suppose thafc;, c2) ¢ Rts, Which means that either there is a value-in
such that no value af; is related to it, or there is such a valuecin We assume that every value
in ¢; andcy is definable (otherwise it is obvious that 41, co because at least one of them is



B.4. STATE TRANSFORMERS 173

not definable, according to Proposition B.10). Suppose there is ayaug such that no value
in co is related to it, and can be defined by a closed tetraf typeb. Then the following context
can distinguistr; andcs:

x:TTk lety <z intesty(y,t) : Thool

since every value ins is not contextually equivalent t@, hence not equal te. O

B.4 State transformers

In the case of the state monad, the semantics of the monadic types and constructs are defined by:

[Tr] = ([7] x St)
[val@®)lp = s+ ([tlp,s)
[let x <ty intalp = s+ [to]p[z — a1](s1)
wherea; = m([t1]p(s)), s1 = m2([t2]p(s))
whereSt is a finite set of states. Logical relations at monadic types are given by [GLLNO2]:

1 R1r co < Vs € St. 7T1(618) R, 7T1(628) & 7'('2(618) = 71'2(028)

Let Cond be the smallest set of closed terms such that, for any closed tterrtype
71 — -+ — T, — T7, Cond(t) holds if and only if,

e for any closed terms t1 : 71, & t, = 7, [E]([t1], - - , [tn]) is @ function such that
foranys € St, [t]([t1], - - - , [tn])(s) = (a, ") wheres’ € St anda is definable at type
(by some closed ternt), and

e if 7is of the formr{ — .- — 7/, — T7/, thenCond(t') holds.

We assume that for any constantCond(d) holds. Letunit be the base type which contains
only a dummy value:. We assume that there is, for eacke St, a constantipdate, of type
Tunit such that for any’ € St, [update,](s’) = (x, s). This constant does nothing but change
the current state tg. Clearly,Cond(update,) holds.

Lemma B.12. For any closed term (of typeT7) in Cond-form, and for anys € St, w1 ([t]s)
is definable at type.

Proof. Becausé is of theCond-form,
t=1letxy <ty in---let z, < ¢, in val(u), (n=0,1,2,...).

We reason by induction om:
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e In the base case:(= 0), for everys € St, [val(u)]s = ([u], s). Itis obvious thafu] is
definable at type (by the termu in particular).

e Foranyn > 1,

[t1] = [viwir - - wig | = [un]([win], - - - [wik, ),

whereuy, wyy, - -+ ,wyk, are all closed terms an@ond(u;) holds, so for every € St,
m1([t1](s)) is definable at type; (note thatt; is of typeTr;). Suppose that for everye
St, t; is a closed term of type, such thatr;([¢1](s)) = [t;]. Becaus€Cond(u;) holds,
Cond(t3) holds as well, henc€ond (usz[t]/z1]), ..., Cond(u,[t;/z1]) hold (because
ug[ty/z1], ..., uy[t; /z1] are either] or a constant). For evewye St, lett! = t;[t]/x1]
(2 <i<n),then

[let z1 <1 inlet x9 <ty in---let x, < t, inval(u)](s)
= [letzo <ty in---let z, < t, inval(u)][z — [t]](s")

= [let zp <5 in - - let z, <), inval(u[t]/z1])](s")
wheres’ = mo([t1](s)). Clearly, for everyu € [t1],
let x9 < t5 in - - let @, <t in val(u[t]/x1])

is again inCond-form, so by induction, its denotation, when applied to any state, is a pair
of a definable value at typeand a state irbt. 0

Proposition B.13. If a valuec € [Tr] is definable at typd 7, then, for anys € St, m1(cs) is
definable at type-.

Proof. By considering the computational canonical form of corresponding terms. O]

Lemma B.14. For any logical relation( R, ) ~C R = ~1,C Ry,

T type’

Proof. We assume thdt, c2) € R, SO there exists somg € St such that

e either(m(c150), m1(c250)) € R,. Then by inductionr (¢159) 7+ m1(caso). If m1(ciso)
(: = 1,2) is not definable, then by Proposition B.13,is not definable either. If both
m1(c180) andm(ceso) are definable, but(c1s9) #- m1(casp), then there is a context
x: 7k C: TosuchthafC][z — mi(c150)] # [C][z — m1(c2s0)], i.e., for some state
s( € St,

[C][z +— m1(c150)](s0) # [Cllz = m1(er150))(s0)
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Now we can use the following context
y: TrFletx < yinlet 2 <:update86 inC: To,
Let f; = [let z <y indo C at sj][y — ¢ (¢ = 1,2), then for anys € St,

fi(s) = [[let z < updatey in Cﬂ [z +— m1(cis)](m2(cis))
=[Ol - mleslsh),  G=1,2)

f1 # f2, because when applied to the stagethey will return two different pairs, so the
above context can distinguish the two valuggndcs;

e ormy(cisp) # ma(casg). We use the context
y: T7F let x < y in val(true) : Thool,

then
[let z < y inval(true)]y — ¢;] = As.(true, ma(cis)) (i =1,2)

These two functions are not equal since they return different results when applied to the
statesy.

In both cases;; %1, c2, hence~t.C Ry O

Note that in the above proof, we assume that contexts can distinguish different states. For
this purpose, the language must provide some mechanism to read the current state. Since usually
a state is just a set of variables with values assigned to them, such a “state access” mechanism is
just retrieving values of these variables.

Theorem B.15. Logical relations for the state monad are complete up to first-order types, in
the strong sense that there exists an observational logical relg@®n - ;,,. such that for any
closed terms,, t5 of any typer! up to first order,

t1 1 tg — [[tl]] RTl [[tQ]]

Proof. Take the logical relatiofiR ), ¢, induced byR;, =~;, for any base typé. We prove
by induction on types that1C R for any typer! up to first order. The induction step at
monadic types is proved by Lemma B.14. O
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