
THÈSE DE DOCTORAT

DE L’ÉCOLE NORMALE SUPÉRIEURE DE CACHAN

Présentée par

Monsieur Yu ZHANG

pour obtenir le grade de

DOCTORAT DE L’ÉCOLE NORMALE SUPÉRIEURE DE CACHAN

Domaine : Informatique

Sujet de la thèse :

Relations logiques cryptographiques

— Qu’est-ce que l’équivalence contextuelle des protocoles cryptographiques et
comment la prouver ?

Thèse présentée et soutenue à Cachan le 21 octobre 2005 devant le jury composé de :

Bruno Blanchet Chargé de recherche Examinateur

Pierre-Louis Curien Directeur de recherche Rapporteur

Thomas Genet Maître de conférence Examinateur

Jean Goubault-Larrecq Professeur Directeur de thèse

Martin Hyland Professeur Rapporteur

Jean-François Monin Professeur Président

David Nowak Chargé de recherche Co-directeur de thèse

Laboratoire de Spécification et Vérification

ENS CACHAN / CNRS / UMR 8643

61 avenue du Président Wilson, 94235 CACHAN CEDEX (France)

Résumé

Dans le cadre de la vérification des protocoles cryptographiques, une idée importante est

d’utiliser l’équivalence contextuelle (aussi appelée l’équivalence observationelle) pour décrire

des propriétés de sécurité. Il est difficile de prouver directement l’équivalence contextuelle, mais

dans les lambda-calculs typés, on peut souvent la déduire par l’outil dit des relations logiques.

Nous appliquons cette technique à un métalangage cryptographique, qui est une extension du

lambda-calcul computationnel de Moggi, et nous utilisons la monade de génération de noms de

Stark pour étudier la génération dynamique de clés. La construction de relations logiques pour

les types monadiques (par Goubault-Larrecq et al.) nous permet alors de dériver des relations

logiques sur le modèleSetI de Stark.

Cette étude aboutit à une exploration de ce que doit être la définition de l’équivalence contex-

tuelle pour les protocoles cryptographiques. Nous arguons du fait que l’équivalence contextuelle

définie sur le modèle de Stark ne représente pas fidèlement ce que les contextes ou les attaquants

peuvent faire. En effet, bien que la catégorieSetI soit un modèle parfaitement adéquat de gé-

nération de clés, elle est insuffisante par certains aspects lorsqu’on étudie les relations entre pro-

grammes du métalangage. Nous montrons que, pour définir l’équivalence contextuelle et les re-

lations logiques dans le métalangage cryptographique, la catégorieSetI→ est un meilleur choix,

oùI→ est une catégorie que nous définissons. Pourtant, cette catégorie est encore insuffisante par

d’autres aspects plus subtils, et nous montrons finalement que la catégorie que l’on doit consi-

dérer en est une autre que nous appelonsSetPI→ . Nous définissons une notion d’équivalence

contextuelle adéquate sur cette catégorie.

Nous montrons ensuite que la relation logique cryptographique définie surSetPI→ est cor-

recte, et complète pour certains types du premier ordre. Nous explorons aussi certains cas de la

question de la décidabilité des relations logiques cryptographiques reliant deux termes donnés.

Afin d’étendre nos résultats de correction et de complétude à tous les types, nous rempla-

çons la notion de relations logiques par celle de relations logiques lax, toujours sur la catégorie

SetPI→ . Nous définissons donc une relation logique qui est lax sur les types de fonction et de

monade, mais stricte (non-lax) sur les autres, et nous montrons qu’elle est correcte et complète

pour l’équivalence contextuelle à tous les types.

3

4

Abstract

Using contextual equivalence (a.k.a. observational equivalence) to specify security properties

is an important idea in the field of formal verification of cryptographic protocols. While contex-

tual equivalence is difficult to prove in general, in typed lambda calculi, one is usually able to

deduce it using so-called logical relations.

We apply this technique on the cryptographic metalanguage, an extension of Moggi’s com-

putational lambda calculus. To explore the difficult aspect of dynamic key generation, we use

Stark’s name creation monad. The general construction of logical relations for monadic types

(by Goubault-Larrecq et al.) then allows us to derive logical relations on Stark’s modelSetI .

This study also leads us to an exploration of what should be the right definition of contex-

tual equivalence for cryptographic protocols. We argue that contextual equivalence defined over

Stark’s model cannot represent honestly the power of contexts or attackers. Actually, although

Stark’s categorySetI is a perfectly adequate model of dynamic key generation, it lacks in some

aspects when we study relations between programs in the metalanguage. We show that, to define

contextual equivalence and logical relations in the cryptographic metalanguage, a better choice of

category isSetI→ , whereI→ is a category we define. This category is still lacking in some subt-

ler aspects, and we eventually show that the proper category to consider is one calledSetPI→ .

We find the proper notion of contextual equivalence based on this category.

Next, we show that the cryptographic logical relation defined onSetPI→ is sound, and com-

plete for a certain subset of types up to first order. We explore questions of decidability of cryp-

tographic logical relations relating two given terms in certain cases.

We then extend our soundness and completeness results at all higher-order types. This re-

quires us to shift from logical relations to lax logical relations, still on the categorySetPI→ . We

then define logical relations which are lax at function types and monadic types but strict (non-lax)

at various other types, and show that they are sound and complete for contextual equivalence at

all types.

5

6

Table des matières

1 Introduction 1

1.1 Protocoles cryptographiques . 2

1.1.1 Cryptographie . 2

1.1.2 Protocoles cryptographiques . 3

1.2 Méthodes formelles . 5

1.2.1 La propriété de secret et l’équivalence contextuelle 5

1.2.2 Relations logiques . 7

1.3 Lien avec d’autres travaux . 9

1.4 Plan de la thèse . 10

2 Le métalangage cryptographique 13

2.1 Préliminaires . 15

2.1.1 Le lambda-calcul simplement typé . 15

2.1.2 Le nu-calcul et le lambda-calcul cryptographique 17

2.1.3 Le lambda-calcul computationnel . 18

2.2 Le métalangage cryptographique . 19

2.3 Formalisation de la propriété de secret . 25

2.4 Codage des protocoles . 26

2.4.1 Un protocole de l’échange de clés symétriques 26

2.4.2 Le protocole de Needham-Schroeder . 29

3 Modèles catégoriques 35

3.1 Préliminaires de la théorie des catégories . 38

3.1.1 Interprétation du lambda-calcul en CCCs 41

3.1.2 Monades et le lambda-calcul computationnel 42

3.2 Le catégorie de foncteursSetI . 44

3.3 Interprétation du métalangage cryptographique 46

3.3.1 Dénotation de messages . 46

7

8 TABLE DES MATIÈRES

3.3.2 Interprétation du métalangage enSetI 47

3.4 Formes canoniques . 51

3.5 Équivalence contextuelle . 54

4 Relations logiques 57

4.1 Relations logiques . 60

4.2 Relations logiques pour les types monadiques 64

4.3 Le catégorieI→ . 70

4.4 Dérivation des relations logiques surSetI→ . 74

4.5 Une relation logique pour le métalangage . 77

4.5.1 La relation entre les messages . 78

4.5.2 Une relation logique cryptographique faible 81

5 Relations logiques cryptographiques 87

5.1 La catégoriePI→ . 89

5.2 Dérivation des relations logiques surSetPI→ 93

5.3 Relations logiques cryptographiques . 96

5.4 Vérification des protocoles à l’aide de relations logiques 99

5.4.1 Le protocole de l’échange de clés symétriques 100

5.4.2 Le protocole de Needham-Schroeder-Lowe 102

5.5 Comparaisons avec les relations logiques du nu-calcul 104

6 Complétude des relations logiques 109

6.1 Équivalence contextuelle des protocoles cryptographiques 113

6.2 Complétude pour les types non-monadiques . 116

6.3 Complétude pour les types monadiques . 124

6.4 Relations logiques lax complètes . 129

7 Décidabilité de l’équivalence contextuelle 135

7.1 Décidabilité dans le cas des fonctions . 138

7.2 Décidabilité dans le cas monadique . 141

7.3 Décidabilité de l’équivalence contextuelle . 146

8 Conclusion 151

8.1 Résumé des résultats . 153

8.2 Perspectives . 156

A Règles de raisonnement du métalangage cryptographique 159

TABLE DES MATIÈRES 9

B Complétude des relations logiques monadiques 163

B.1 Partial computation . 167

B.2 Exceptions . 169

B.3 Non-determinism . 171

B.4 State transformers . 173

10 TABLE DES MATIÈRES

Chapitre 1

Introduction

Avec le développement rapide d’Internet et du commerce électronique, les technologies de-

viennent de plus en plus attachées à notre vie quotidienne. Tandis que les technologies infor-

matiques nous apportent beaucoup de confort, elles causent aussi des problèmes, notamment de

sécurité, ce qui est actuellement un sujet critique dans le domaine de l’informatique. En particu-

lier, nous nous intéressons à la sécurité des réseaux, formés de plusieurs terminaux (ordinateurs,

téléphones mobiles, etc.) qui se connectent dans un environnement de communication pas sûr et

qui collaborent via l’échange de messages.

Pourtant, il est en général difficile de sécuriser les communications sur un réseau ouvert, où

les messages envoyés par un terminal passeront devant plusieurs terminaux, avant d’arriver au

receveur souhaité. Pendant l’envoi, des terminaux malveillants peuvent donc facilement lire ces

messages, les enregistrer, les modifier, les retransmettre à un autre destinataire, ou simplement

stopper leur transmission. Essentiellement, les réseaux ouverts ne garantissent pas eux-mêmes la

sécurité des communications.

De nombreux protocoles ont été inventés pour sécuriser les communications sur les réseaux,

en utilisant lacryptographie. Il est universellement considéré que l’appliquer de la cryptographie

dans un système complexe est très subtile et il peut y avoir des attaques, même si la cryptographie

elle-même est incassable. Alors comment appliquer la cryptographiecorrectement? Cette thèse

a pour but de vérifier les propriétés de sécurité des protocoles cryptographiques.

Nous exposons les connaissances dans ce domaine au premier chapitre de la thèse. Dans la

partie 1.1, nous introduirons des concepts de cryptographie et de protocoles cryptographiques,

en donnant des exemples. Dans la partie 1.2, nous donnerons une introduction aux méthodes

formelles, qui sont de plus en plus utilisées dans le domaine de la vérification des protocoles

cryptographiques. En particulier, nous nous concentrons sur la méthode dite desrelations lo-

giques. Puis dans la partie 1.3, nous résumerons les travaux connexes à ceux présentés dans cette

thèse. Enfin, la dernière partie exposera le plan de la thèse.

1

2 CHAPITRE 1. INTRODUCTION

With the rapid development of Internet and e-business, information technologies become

more and more attached to our life. While these technologies offer us much convenience, they

cause a lot of problems as well, especially security problems. Computer security is a very critical

issue nowadays and catches great attention of the research community in computer science. We

are in particular interested in security problems caused by communicating systems, where linked

computers in an open environment are inclined to collaborate through message exchanging.

However, secure communications over an open network are in general very hard to achieve.

In network communications, messages, sent from one computer to another, will pass by several

other computers on route. It is easy for malicious intermediate computers to interfere with these

messages passing through. They may read and record messages, change the contents, redirect

messages elsewhere, or prevent them arriving at their intended destination. In a word, an open

network itself is inherently insecure and does not guarantee any secure communication.

Various protocols have been designed for establishing secure communications over an in-

secure network, and most protocols adopt the mean ofCryptography. A common viewpoint

is that applying cryptography in a complex system is very subtle and error-prone, even though

the cryptography itself is perfect. How can we apply cryptographic methodscorrectly in net-

work communications? This thesis is devoted to verifying security properties of protocols using

cryptography.

1.1 Protocoles cryptographiques

1.1.1 Cryptographie

Cryptography is a fundamental mechanism to achieve security in an open environment. When

we apply cryptography in a network communication, we shall disguise messages before sending

them, so that only the intended recipients are able to retrieve the original text. These disguised

messages are usually calledcipher-textsand the original texts areplain-texts. The operation of

disguising a message is known as theencryptionand the inverse operation, which retrieves the

plain-text from the cipher-text, is calleddecryption.

The precise form of a cipher-text, corresponding to certain plain-textm, depends on an ad-

ditional parameter — thekey. We shall write the cipher-text as{m}k, wherek is the key for

encryption. An encryption (decryption) is just seen as applying the encryption (decryption) al-

gorithm to a plain-text (cipher-text) and a key. In order to recover the original plain-text from a

given cipher-text{m}k, one must obtain the correct decryption key (written ask−1). By restrict-

ing appropriately who has access to the various keys involved we can limit the ability to form

cipher-texts and the ability to derive the corresponding plain-texts.

There are nowadays various cryptographic algorithms [MvOV96, DK02], and most of them

1.1. PROTOCOLES CRYPTOGRAPHIQUES 3

can be classified by two schemes: symmetric cryptography and asymmetric cryptography. In

symmetric cryptography, keys for encryption and for decryption are identical (k−1 = k) and it

holds

dec({m}k, k) = m,

wheredec denotes the decryption algorithm. In asymmetric cryptography, a.k.a., the public key

cryptography, keys always come in pairs, one of which is usually publicly available (known as

thepublic key), and the other is kept secret (known as theprivate key). Anyone can get access to

the public key and use it to encrypt a message, but only the holder of the private key can decrypt

the cipher-texts:

dec({m}pk, sk) = m,

wherepk andsk denote the corresponding public key and private key respectively. Some asym-

metric cryptographic algorithms also allow the private key to be used to encrypt plain-texts with

the public key being used for decryption:

dec({m}sk, pk) = m

This is mainly used in the digital signature scheme to authenticate the identity of the sender of a

message.

1.1.2 Protocoles cryptographiques

There are nowadays several cryptographic algorithms which are considered virtually impossible

to crack: the best known ways of cracking the messages would use vast amounts of computer

power. However, what is surprising is that even with perfect encryption algorithms, it is still

very difficult to achieve secure communication. The question is: how can people agree on a key

across network? This was probably the first problem (known as thekey distribution problem) that

protocol designers aimed at solving using cryptography. Of course, there are many cryptographic

protocols devoted to solving other problems, such as authenticity of principles, anonymity, and

so on.

Cryptographic protocols are protocols that use cryptography to establish secure communica-

tions over open networks. A protocol usually involves several participants, calledprinciplesor

agents. We can simply regard principles as programs running in parallel. Usually these programs

are hosted at different computers in the network, but it is also possible that some of them run

at the same computer. The protocol defines the way how these principles exchange messages

using cryptography. Here is an example of a symmetric key establishment protocol between two

principles, with the help of a trusted server1 (some notations for protocol specification are listed

1This protocol, together with the attack coming after, is from an informal document of Gavin Lowe.

4 CHAPITRE 1. INTRODUCTION

{m}k messagem encrypted with keyk

A→ B : m principleA sends messagem toB

A→ E(B) : m intruderE intercepting messagem intended forB

E(A) → B : m intruderE impersonatingA to send messagem toB

pk(A) principleA’s public key

Figure 1.1: Notations in protocol specifications

in Figure 1.1):

Message1 . A→ S : A,B, {kab}kas

Message2 . S → B : A,B, {kab}kbs

Message3 . A→ B : {i}kab

This protocol uses only symmetric encryption and aims at the distribution of a fresh sym-

metric key between two principles that are inclined to communicate with each other, through a

trusted key server. It is assumed that the serverS shares a secret key with every principle (A,

B, and others including malicious principles) and it would never be malicious, so that every

principle can trustS and communicate with it securely.

Suppose thatA wants to talk toB but he does not share a secret key withB, soA generates a

fresh symmetric keykab, encrypts it with the secret keykas that he shares withS. He sends this

message (Message 1) toS and asksS to deliver this key toB. Message 1 also contains names of

the two intended principles, but they are not encrypted.

Upon receiving Message 1,S knows the fact thatA wishes to talk toB, so he retrieves the

keykab, encrypts it with the keykbs that he shares withB, and sends it toB (Message 2).

WhenB receives Message 2, he retrieves the fresh keykab, then he can use this key to decrypt

messages fromA (Message 3). Certainly, he can also usekab it to encrypt his own messages and

send toA.

Such a protocol can be executed for many times, by different principles and with different

keys. A complete execution of the protocol as described above is called asession.

Specifications of cryptographic protocols, like this protocol, are simple and contain only

several exchanges of messages. Despite of the simplicity, it is difficult to verify that a protocol

can meet its goal. For instance, this symmetric key establishment protocol is flawed: when

a principleA initiates a session of this protocol and wishes to talk to another principleB, an

intruderE interferes with the execution of the protocol and impersonatesB, but the principleA

1.2. MÉTHODES FORMELLES 5

always believes that he is communicating withB and the texts are kept secret.

Message1.1 . A→ E(S) : A,B, {kab}kas

Message2.1 . E(A) → S : A,E, {kab}kas

Message2.2 . S → E : A,E, {kab}kes

Message1.3 . A→ E(B) : {i}kab

WhenA sends Message1.1 to S, the intruderE intercepts this message and prevents it reaching

S. While he cannot decrypt the message to get the keykab without knowingkas, the intruder

modifies the message by replacing the nameB with his own nameE, and sends the fake message

to S (Message2.1). WhatS learns from this fake message is thatA wishes to talk withE, so

he encrypts the keykab with the keykes that he shares withE and sends it toE (Message2.2).

The intruderE can then decrypt the cipher-text in Message2.2 and get the keykab, hence he can

decrypt those encrypted messages sent fromA (intended forB).

Clearly, the flaw in this protocol has nothing to do with the involved cryptographic algo-

rithms. It is a flaw of protocol design alone. There were many such flawed protocols which had

been thought to be secure [Low96b, CJ97, LSV]. The most classic one is probably the Needham-

Schroeder’s public key protocol [NS78] and Lowe’s well-known attack [Low95, Low96a] (see

Chapter 2 for details) .

1.2 Méthodes formelles

Until the middle of 1990s, most work on security protocol analysis was devoted to finding at-

tacks on known protocols and the analysis was quite informal. However, informal analysis is

usually prone to errors and not reliable, because security problems are very complex and some

flaws are not intuitive at all. On the other hand, analysis of cryptographic protocols appears to

be well suited for the application of formal methods. Indeed, a number of formal models for

cryptographic protocols have been proposed in the past decade, which opened a way for the use

of formal methods and formal analysis of protocols [Mea00, Mea03, CS02]. These formal meth-

ods, instead of searching attacks, address mainly proof techniques for protocol correctness. Most

formal models are based on theperfect cryptographyassumption: when we are given a cipher-

text {m}k, the only way to decrypt it is to get the corresponding decryption keyk−1, and it is

assumed that there is no way for attackers to guess or forge the keyk−1, if it is secret. We shall

keep to this assumption in this thesis.

1.2.1 La propriété de secret et l’équivalence contextuelle

While there are many properties that a security protocol may aim to guarantee, we will focus on

the secrecyproperty in this thesis. There are many definitions of secrecy, and the relationship

6 CHAPITRE 1. INTRODUCTION

between them is not clear [Aba99]. In this thesis, we say that a protocol preserves secrecy of a

datum if attackers cannot learn the value by interacting with the protocol within the framework

of the traditional Dolev-Yao model [DY83], where attackers are able to eavesdrop on, remove

and arbitrarily schedule messages sent on public communication channels, create new messages

from pieces of messages they observe and insert them into the channels. The goal of the protocol

analysis is then to determine whether there is a protocol trace in which attachers may learn the

value of the datum that the protocol aims to protect.

A very popular idea in this area is that the secrecy property can be represented by the no-

tion of contextual equivalence(a.k.a. observational equivalence) [AG99, SP03]. Contextual

equivalence is a notion for programming languages. We say that two programs are contextually

equivalent if there is no context that can distinguish them. A context can be simply seen as an

operating system, so in order to test the contextual equivalence between two programs, we just

execute them and observe the results. If the results are always the same, we can then assert that

these two programs are contextually equivalent.

The idea is to consider cryptographic protocols as programs, where secret messages are pa-

rameters. A context is the network that may contain attackers. To put it extremely, contexts

are attackers. Given a protocol, we shall have different protocol instances for different secret

messages, so if two instances of the protocol are proved contextually equivalent, we can then as-

sert that this protocol guarantees the secrecy property, because no attacker can see the difference

between different secrets.

This method requires a (formal) language for specifying cryptographic protocols in the first

place. There are several existing languages for protocol specification. The most well-known is

perhaps the Spi-calculus [AG99]. This is an extension of the pi-calculus — a very simple but

powerful system for studying processes and communication channels [MPW92, Mil99, SW01],

where communication channels can be created and processes can communicate with each other

by sending and receiving messages (even channel names) through channels. While security pro-

tocols rely heavily on communication channels with certain security properties like authenticity

and privacy, it is very natural to use the pi-calculus (with extensions) for describing and ana-

lyzing protocols, at least at an abstract level. The Spi-calculus is basically an extension of the

pi-calculus with cryptographic primitives. In the Spi-calculus, a cryptographic protocol is en-

coded as a process consisting of several child processes running in parallel, each representing

a principle involved in this protocol. Message exchanging is naturally modeled by communica-

tions through channels shared by these principles. Attackers are also encoded as processes in

this language, which are allowed to interact with the protocol process in any possible way. A not

so ideal aspect of the pi-calculus is probably the lack of a good denotational model. Reasoning

about concurrent processes and channels usually rests on syntax.

1.2. MÉTHODES FORMELLES 7

A less known formal language for describing protocols is thecryptographic lambda-calculus,

proposed by Sumii and Pierce [SP01, SP03]. The lambda-calculus has certain advantages. Most

obviously, higher-order behaviors are naturally taken into account, which is ignored in other

models (although, at the moment, higher order is not perceived as a necessary feature in cryp-

tographic protocols). Furthermore, public keys are encoded as functions in a nice way [SP01]

(see Chapter 2 for detail), which requires at least second-order functions in some cases, e.g., the

very original version of Needham-Schroeder’s public key protocol, where public keys are sent as

messages.

Another feature of the lambda-calculus approach is the dynamic generation of fresh keys or

nonces. This mechanism plays a crucial rôle in cryptographic protocols. While dealing with

fresh key generation is a weak point in most formal models, this has been well studied in a

language called thenu-calculus, proposed by Pitts and Stark [PS93a]. The nu-calculus is an ex-

tension of the simply-typed lambda-calculus, devoted to the study of fresh name creation (where

names are seen as syntactically identical to keys). According to Stark’s later work on the nu-

calculus, dynamic name creation can be nicely modeled in the framework of Moggi’s computa-

tional lambda-calculus, in which we are allowed to describe various forms of computation, such

as exceptions, non-determinism, and so on [Mog89, Mog91]. Denotational models of the com-

putational lambda-calculus must be defined using monads. Stark specializes Moggi’s work in the

dynamic name creation monad and builds a denotational model — the categorySetI — for the

nu-calculus [Sta94, Sta96].

The modelSetI is also sufficient for modeling the lambda-calculus with cryptography, since

cipher-texts are usually seen as products of plain-texts and keys. However, defining contextual

equivalence for cryptographic protocols in such a framework needs more attention. In particular,

contexts must represent honestly the power of attackers. It turns out that the categorySetI is not

sufficient for defining a denotational notion for contextual equivalence and we should switch to

some subtler category with more information. Detailed discussion on this point will be found in

Chapter 4 and Chapter 5.

1.2.2 Relations logiques

Direct proofs of contextual equivalence are unfeasible in general, because its definition involves

a universal quantification over an infinite number of contexts.Logical relationsare an alterna-

tive technique for proving contextual equivalence [Mit96], which is the main advantage of the

lambda-calculus approach for verifying protocols.

Logical relations are a frequently used technique in lambda-calculi and it has proved useful

in proving various properties of typed lambda-calculi [Mit96]. Basically, a logical relation is a

family of relations between expressions or elements in semantics, which are indexed by types

8 CHAPITRE 1. INTRODUCTION

and defined by induction on their types. For instance, two pairs are related if and only if their

components are pairwise related. Crucially, two functions are related if and only if they map

related arguments to related results. This technique was first introduced by Plotkin to reason

about definable elements in denotational models of the simply-typed lambda-calculus [Plo80].

Later, using the notion ofsconing, Mitchell and Scedrov obtained a mathematical theory of

logical relations [MS93]. In particular, they define a general way of deriving logical relations on

categorical models. This is again extended by Goubault-Larrecq, Lasota and Nowak to categories

with monads [GLLN02], so that one can naturally derive logical relations for monadic types.

Although logical relations were first developed for the denotational semantics of typed lambda-

calculi, they can also be adapted to their term models and this adaptation is sometimes called syn-

tactic logical relations [Pit98, Pit00]. Indeed, the logical relations that Sumii and Pierce defined

for the cryptographic lambda-calculus are syntactic [SP01, SP03].

Dealing with fresh key generation is again the main technical difficulty that one must face in

defining logical relations for lambda-calculi with cryptography. The work of Sumii and Pierce is

inspired in this respect by Pitts and Stark [PS93a, PS93b], who define the notion ofoperational

logical relation to establish contextual equivalence of nu-calculus expressions. They also show

that this logical relation is complete up to first-order types. Sumii and Pierce’s various logical

relations are extensions of the operational logical relation.

Stark also defines a denotational logical relation, using the notion of “categories with re-

lations”, and shows that such a denotational logical relation identifies their operational logical

relation up to second-order types: if two programs are related by the operational logical relation,

then their interpretations are related by the denotational one [Sta94, Theorem 4.25]. While his

category for deriving denotational logical relations is restricted to the name creation monad, the

work by Goubault-Larrecq et al. on logical relations for monadic types provides a more general

way to build logical relations for computations [GLLN02]. They define as an example a Kripke

logical relation for the dynamic name creation monad, still based on the categorical modelSetI .

But compared to Pitts and Stark’s logical relations, their logical relation is too weak in the sense

that it fails in relating some contextually equivalent programs that are related by Pitts and Stark’s

[ZN03].

Instead, we shall show that, to define logical relations for lambda-calculi with cryptography, a

better choice of category isSetI→ . However, this category is still lacking in some subtler aspects,

and we eventually show that the proper category to consider isSetPI→ . These categories will

be defined in Chapter 4 and Chapter 5. We then define a cryptographic logical relation over this

category, which is proved sound. Logical relations derived over this category are also proved

equivalent to Stark’s denotational logical relations. Furthermore, we show that the category

SetPI→ is also the right category for defining a proper notion of contextual equivalence for

1.3. LIEN AVEC D’AUTRES TRAVAUX 9

cryptographic protocols.

Completeness is an important concern of logical relations. In general, logical relations are

just complete for types up to first order, e.g., Pitts and Stark’s operational logical relation. (Sumii

and Pierce left this problem unsolved for their logical relations in the cryptographic lambda-

calculus. To get the completeness, they switch to the notion of bisimulation [SP04, SP05].)

The introduction of monadic types into typed lambda-calculi makes completeness more difficult

to achieve. An interesting point is that, in the case of dynamic key generation, if there is no

restriction on monadic types, logical relations are not even complete for zero-order types. But

this is not specific to name creation monad. Some other monads like the non-determinism monad

have similar problems (see Appendix B for details). This is probably because contexts always

“flatten” programs to get values that they are able to compare, and information about program

structure, which is usually necessary for building logical relations, might be lost during this

procedure.

With a restriction on monadic types, we show that logical relations derived overSetPI→ are

complete for a certain subset of first-order types. To extend the completeness result to higher-

order types, we switch to the notion oflax logical relations[PPST00], but the cost is that lax

logical relations are not constructed inductively any more. We finally define logical relations

which are lax at function types and monadic types, but strict (non-lax) at various other types, still

over the categorySetPI→ . We show that they are sound and complete for contextual equivalence

at all types.

1.3 Lien avec d’autres travaux

The basic idea of the logical relation approach is that of formalizing and proving secrecy as

equivalences between different instances of a program with secret values. This is usually known

as the non-interference approach, which is very popular both in the security community and in

the programming language community [RS99, SM03]. One of the main goals of this approach,

as Sumii and Pierce claimed, is “to explore how standard techniques for reasoning about type

abstraction can be adapted to the task of reasoning about encryption, in particular about security

protocols” [SP01]. For this purpose, they choose lambda-calculus as a starting point.

Indeed, various techniques from programming languages have been applied in the (static)

analysis of computer security. Some work in this line includes the Spi-calculus (by Abadi and

Gordon) [AG97, AG99] and the applied pi-calculus (by Abadi and Fournet) [AF01], which are

both based on the pi-calculus and come equipped with useful techniques such as bisimulation

for proving behavioral equivalences [AG98]. Also based on the pi-calculus, Gordon and Jeffrey

also develop a system called Cryptyc — a type-effect system aiming at proving authenticity

10 CHAPITRE 1. INTRODUCTION

through static type checking [GJ02, GJ03a, GJ03b, GJ04]. Another example is Heintze and

Riecke’s SLam calculus [HR98]. They proposed lambda-calculus with type-based information

flow control, and proved a non-interference property — that a value of high security does not

leak to contexts of low security — using logical relations.

In addition to logical relations, bisimulations are a main technique for proving contextual

equivalence. Bisimulations were originally designed for process calculi and transition systems

[Mil80, Mil89, Mil99] and have been studied extensively. In particular, various notions of bisim-

ulation have been proposed in cryptographic process calculi [AG98, BNP99, AF01, BN02].

These are calledenvironment-sensitivebisimulations by Borgström and Nestmann [BN02], to

stress the fact they explicitly take into account theknowledgeabout a process. However, there

is no completeness proof available for these bisimulations: they are either proved incomplete

[AG98], or just proved complete for a subset of processes [BNP99].

The notion of bisimulation has also been adapted by Abramsky in lambda-calculi [Abr90].

He calls the adapted notionapplicative bisimulationand uses it to prove contextual equivalence

in untyped lambda-calculus. This was later used by Sumii and Pierce to prove the contextual

equivalence in a language calledλseal, which is basically the untyped version of their crypto-

graphic lambda-calculus [SP04]. Gordon and Rees adapted applicative bisimulations to typed

calculi [Gor99, Gor98, GR96], where objects, subtyping, universal polymorphism and recur-

sive types are present, but not existential types. Sumii and Pierce then introduced a notion of

bisimulationsannotated with type informationand used it to prove the contextual equivalence

in a typed lambda-calculus with full universal, existential, and recursive types [SP05]. These

applicative bisimulations are shown to be sound and complete w.r.t. contextual equivalence.

However, they are still syntactic (even more than syntactic logical relations) and rely heavily on

the operational semantics (e.g., Sumii and Pierce’s bisimulations are defined based on a big-step

style evaluation), hence are not easy to extend. Furthermore, there is no known mathematical the-

ory supporting applicative bisimulations, as those for logical relations [MS93, GLLN02]. Note

that (typed) applicative bisimulations are not essentially logical relations — they have different

definitions on relating functions. Furthermore, the point of applicative bisimulations is the ability

of dealing with recursions since they are usually built co-inductively.

1.4 Plan de la thèse

The main content (from Chapter 2 to Chapter 7) of this thesis can be divided into the specification

part and the verification part.

Specification: This part, consisting of Chapter 2 and Chapter 3, defines a formal model for

1.4. PLAN DE LA THÈSE 11

describing protocols. Precisely, this is a language called thecryptographic metalanguage, ex-

tended from Moggi’s computational lambda-calculus with cryptographic primitives. The syntax

of this language is defined in Chapter 2. This language is shown to be adequate for describ-

ing cryptographic protocols, through encodings of concrete protocols. Then Chapter 3 defines

a denotational semantics of the language. This is based on the categorySetI , which has been

used by Stark to interpret the nu-calculus [Sta96]. We are interested in the precise definition of

contextual equivalence, since the secrecy property is represented by this notion. In particular, we

shall define the contextual equivalence for the cryptographic metalanguage, in the denotational

model, so that our reasoning will rest totally on the denotational model. At the end of Chapter 3,

we discuss what should be the right notion of contextual equivalence for the cryptographic met-

alanguage.

Verification: Chapter 4–7 form a verification part. We shall use the technique of logical re-

lations as the verification tool to prove contextual equivalence. Chapter 4 and Chapter 5 are

about the construction of logical relations for the cryptographic metalanguage over categories.

Constructions of logical relations for lambda-calculus are standard. The metalanguage inherits

in particular the monadic type constructor from the computational lambda-calculus and logical

relations for this kind of types can be defined (over the categorySetI) by following the gen-

eral construction of logical relations for monadic types, proposed by Goubault-Larrecq et al.

[GLLN02]. However, it is noticed that the categorySetI is not sufficient for studying relations

between programs in the metalanguage. For this purpose, a better category to consider is the

categorySetI→ , and eventually the categorySetPI→ . We apply to both categories the general

construction by Goubault-Larrecq et al.. We finally define a cryptographic logical relation based

on the categorySetPI→ and prove some important properties.

We then define at the beginning of Chapter 6 the right notion of contextual equivalence,

also over the categorySetPI→ . The cryptographic logical relation is proved sound, but the

completeness for logical relations derived overSetPI→ is hard to achieve, even for first-order

types. We prove the completeness for a certain subset of first-order types. Then, using the notion

of lax logical relation, we define a complete logical relation, which is lax at function types and

monadic types. We show that it is sound and complete for all types.

Lastly, in Chapter 7, decidability of the cryptographic logical relation is investigated in cer-

tain cases. In particular, relations for typesTτ andkey → τ are shown to be decidable if the

relations for typeτ are decidable.

Chapter 8 concludes the thesis by summarizing the results and discussing directions for future

work.

12 CHAPITRE 1. INTRODUCTION

Chapitre 2

Le métalangage cryptographique

Pour spécifier les protocoles cryptographiques, nous avons actuellement plusieurs langages

formels qui permettent de formaliser des propriétés de sécurité par la notion d’équivalence contex-

tuelle, notamment la propriété de secret. Le langage plus connu est probablement le Spi-calcul

d’Abadi et Gordon [AG99]. Un autre langage moins connu est le lambda-calcul cryptographique

proposé par Sumii et Pierce [SP01, SP03], qui est une extension du lambda-calcul simplement

typé avec deux sortes de primitives : les primitives cryptographiques et les primitives de généra-

tion de clés. La génération de nouvelles clés (ou nonces) est un mécanisme crucial des protocoles

cryptographiques et est une construction de base duπ-calcul, mais pas dans le lambda-calcul. Il y

a déjà eu des études sur ce mécanisme dans le cadre du lambda-calcul et le plus connu est proba-

blement lenu-calculde Pitts et Stark [PS93a, Sta94]. Le nu-calcul est une extension du lambda-

calcul simplement typé avec génération dynamique de noms (que nous verrons ici comme des

clés) et s’occupe de l’étude des noms en programmation.

Le codage des protocoles dans le lambda-calcul cryptographique s’effectue comme dans le

Spi-calcul : un protocole est codé commen-uplet des fonctions qui représentent les participants,

sauf que dans le Spi-calcul ils sont codés comme des processus en parallèle au lieu de fonctions.

La différence remarquable entre les deux modèles est que, dans le lambda-calcul, l’interaction

entre les participants est modélisée par l’application de fonctions, pas par les communications sur

les canaux comme dans le Spi-calcul. Un attaquant dans le lambda-calcul est alors une fonction

qui prend le protocole en paramètre et qui essaye de découvrir le secret.

Nous commençons ce chapitre par une introduction brève aux lambda-calculs typés, dans

la partie 2.1. En particulier, nous introduisons des langages fondés sur le lambda-calcul, par

exemple le nu-calcul de Pitts et Stark, le lambda-calcul cryptographique de Sumii et Pierce, et

le lambda-calcul computationnel de Moggi. Nous définissons ensuite dans la partie 2.2 un lan-

gage appelé lemétalangage cryptographiquepour spécifier les protocoles. Ce langage est étendu

à partir d’une version spécifique du lambda-calcul computationnel (spécialisé pour la généra-

13

14 CHAPITRE 2. LE MÉTALANGAGE CRYPTOGRAPHIQUE

tion de noms) que Stark avait utilisé pour construire un modèle dénotationnel du nu-calcul. La

partie 2.3 montre comment formaliser la propriété de secret en utilisant la notion d’équivalence

contextuelle. La partie 2.4 expose le codage des protocoles dans le métalangage cryptographique

sur deux exemples concrets — le protocole d’établissement de clés symétriques qui a été intro-

duit dans le chapitre 1, et le protocole de Needham-Schroeder [NS78]. Le codage est basé sur

la même idée que le codage dans le lambda-calcul cryptographique de Sumii et Pierce, mais

nous clarifions leur méthode, en particulier notre codage est plus précis et représente vraiment

les traces d’exécution des protocoles.

2.1. PRÉLIMINAIRES 15

There are nowadays some formal languages for specifying cryptographic protocols, where

security properties like secrecy are formalized by contextual equivalence. The most well-known

one is probably Abadi and Gordon’sSpi-calculus[AG99]. A less known language is Sumii and

Pierce’scryptographic lambda-calculus[SP01, SP03]. This is an extension of the simply-typed

lambda-calculus with two kinds of primitives: cryptographic primitives and thekey generation

primitive. Fresh key (or nonce) generation, which is crucial for cryptographic protocols, is native

in the pi-calculus, but not in lambda-calculus. Studying this mechanism within the lambda-

calculus framework is not new. The most well-known work on this aspect is probably Pitts

and Stark’snu-calculus[PS93a, Sta94], which is a language extended from the simply-typed

lambda-calculus with fresh name creation, and is devoted to the study ofnamesin programming

languages (names seen as syntactically identical to keys).

Encoding protocols in the cryptographic lambda-calculus is quite similar as in the Spi-calculus:

protocols are encoded as tuples of functions representing principles, except that in the Spi-

calculus, they are encoded as parallel processes instead of functions. A notable difference is

that, in lambda-calculus, interactions between principles are modeled by function applications,

not by communications over channels. An attacker in this model is encoded as a function that

takes the protocol program as argument and attempts to reveal the secrets.

This chapter starts with a brief introduction to typed lambda-calculi, in Section 2.1. We give

as examples some specific languages based on lambda-calculus, such as Pitts and Stark’s nu-

calculus, Sumii and Pierce’s cryptographic lambda-calculus and Moggi’s computational lambda-

calculus. We then define in Section 2.2 a language called thecryptographic metalanguage, for

specifying cryptographic protocols. This language is extended from a specific version of the

computational lambda-calculus (specialized for fresh name creation) which has been used by

Stark as an intermediate language to build a denotational model for the nu-calculus. Section 2.3

explains how the secrecy property is formalized by the notion of contextual equivalence and

Section 2.4 illustrates the encoding of protocols in the cryptographic metalanguage, through two

concrete examples — the key establishment protocol which has been introduced in Chapter 1

and Needham-Schroeder’s public key protocol [NS78]. The encoding is based on the same idea

of the encoding in the cryptographic lambda-calculus, but we clarify Sumii and Pierce’s methods

by making our encoding based on the protocol execution traces.

2.1 Préliminaires

2.1.1 Le lambda-calcul simplement typé

Lambda-calculus has proved useful in describing and analyzing programming languages [Ten81,

Win93, Mit96]. Pure lambda-calculus [Bar80] is a formal system where everything is afunction

16 CHAPITRE 2. LE MÉTALANGAGE CRYPTOGRAPHIQUE

and the two basic operations areabstractionandapplication: the first one is the way we write

function expressions while the second allows us to use the functions we have defined. More

formally, the syntax of the (untyped) lambda-calculus consists only of the following three sorts

of terms:
t ::= x variable

| λx.t abstraction

| t t application

The lambda-abstractionλx.t binds the variablex in the termt. If a variable is not bound by the

λ in a term, then it is afree variableof this term. We implicitly identify expressions which only

differ in their choice of bound variables (α-equivalence).

In typed lambda calculus, terms are assigned types [Bar91]. In particular, we specify the

domain of a function by giving a type to the formal argument, that is, ift is some well-formed

expression under the assumption that the variablex has typeτ , thenλxτ .t defines the function

mapping allx in τ to the value given byt. We shall omit the type annotation when the type

information is clear from context.

A typed lambda calculus is usually defined based on a collection oftype constants(or base

types) and term constants. For instance, we may have a type constant for integers with some

numerical operations. Such a collection of base types and term constants is called asignature,

denoted byΣ. We useΣb to denote the collection of base types, andΣc for term constants.

Complex types can be constructed from base types by type constructors. Notably, a typed lambda

calculus should contain function types since functions are the very basic primitives of lambda

calculus. We present here a simple typed lambda calculus where we have only base types in the

signatureΣ and one type constructor→:

τ ::= b | τ → τ, b ∈ Σb

τ → τ ′ is the type of functions mapping a value of typeτ to a value of typeτ ′. There often exist

some other standard type constructors such as products and sums, which we shall see later in a

more concrete language. Types may also have type variables, but in this thesis we consider only

simply-typed lambda calculus, by which we refer to any version of typed lambda calculus where

types do not contain type variables.

The collection of terms then contains term constants and expressions built from these con-

stants using abstraction and application:

t ::= x | c | λx.t | t t

wherec is a term constant in the signatureΣ. Every term constant inΣ is associated with a

unique type. For instance, if we have a base typenat for natural numbers, then a constant+ for

2.1. PRÉLIMINAIRES 17

numerical addition is of typenat → nat → nat. We writec : τ ∈ Σ if c is a term constant of

typeτ .

Terms are assigned types via typing assertions and a set of typing rules. Typing asser-

tions are of the formΓ ` t : τ , whereΓ is a typing context — a finite set of typed variables

{x1 : τ1, . . . , xn : τn} where noxi (1 ≤ i ≤ n) occurs twice. We writeΓ, x : τ for the typing

contextΓ ∪ {x : τ}. A typing assertionΓ ` t : τ says that if variablesx1, . . . , xn have types

τ1, . . . , τn respectively, then the expressiont has typeτ .

Types of compound terms are determined through typing rules. A typical typing rule is of

the form
Γ1 ` t1 : τ1 . . . Γn ` tn : τn

.
Γ ` t : τ

Intuitively, this rule says that if the typing assertionsΓ1 ` t1 : τ1, . . . , Γn ` tn : τn hold, then

Γ ` t : τ holds as well. Notably, the typing rules for variables, abstraction and application in the

simply-typed lambda are

x : τ ∈ Γ
(Var)

Γ ` x : τ

c : τ ∈ Σ
(Const)

Γ ` c : τ

Γ, x : τ ` t : τ ′
(Abs)

Γ ` λx.t : τ → τ ′

Γ ` t1 : τ → τ ′ Γ ` t2 : τ
(App)

Γ ` t1t2 : τ ′

Note that sometimes rules for constants appear in another form. For example, the typing rule for

the numerical addition may appear as

Γ ` t1 : nat Γ ` t2 : nat
(Add)

Γ ` t1 + t2 : nat

2.1.2 Le nu-calcul et le lambda-calcul cryptographique

While the standard simply-typed lambda calculus is a simple and powerful mathematical model,

people usually extend it with more constants and type constructors to describe and analyze com-

plex data and features in real programming languages. Thenu-calculus[PS93a] and thecrypto-

graphic lambda-calculus[SP03] are such extensions.

The nu-calculus is a language aiming at the study of dynamic name creation in (functional)

programming languages. The nu-calculus has in particular a base typename for names, which,

not like variables, can be created freshly, compared with others, and passed around. Creating a

fresh name in a nu-calculus expression is defined byνn.t. This term binds the namen in the

termt.

Typing assertions are slightly different from those in standard lambda-calculus. A typing

assertion in the nu-calculus is of the forms; Γ ` t : τ , whereΓ is a set of typed variables as in

18 CHAPITRE 2. LE MÉTALANGAGE CRYPTOGRAPHIQUE

standard typed lambda-calculus, ands is a finite set of names, containing all free names int. The

typing rule for the fresh name creation is

s ∪ {n}; Γ ` t : τ
(New)

s; Γ ` νn.t : τ
,

wheren 6∈ s.
The cryptographic lambda-calculus has more primitives than the nu-calculus, in particular

those related to cryptography. The two main cryptographic primitives are the encryption —

{t1}t2 , and the decryption —let {x}t1 = t2 in t3 else t4. The meaning of the encryption is

clear. In the decryption expression, the key obtained fromt1 is used to decrypt the cipher-text

obtained fromt2. If the decryption succeeds, it binds the plain-text to the variablex and com-

putest3, otherwise it computest4 directly. There is also fresh key generation, seen syntactically

identical as name creation. And the typename in the nu-calculus naturally becomes the typekey.

In fact, thekey type in the cryptographic lambda-calculus is associated with another typeτ and

key[τ] is the type for those keys which can be used to encrypt messages of typeτ , but a more

natural way is to use a uniform typekey. Cipher-texts are of typebits[τ], whereτ is the type of

the corresponding plain-texts. Typing rules of encryption and decryption are as follows

s; Γ ` t1 : τ s; Γ ` t2 : key
(Enc)

s; Γ ` {t1}t2 : bits[τ]

s; Γ ` t1 : key s; Γ ` t2 : bits[τ] s; Γ, x : τ ` t3 : τ ′ s; Γ ` t4 : τ ′
(Dec)

s; Γ ` let {x}t1 = t2 in t3 else t4 : τ ′

Operational semantics in a “big-step” style are both defined in the nu-calculus and the cryp-

tographic lambda-calculus:

s; Γ ` t ⇓s′
τ u,

wheres′ is a set of fresh names (keys) ands ∩ s′ = ∅. This means that in the presence ofs

andΓ, the termt can be reduced to the canonical termu (a canonical term is either a constant,

a variable, a function, a name (key) or a cipher-text), with a sets′ of fresh names (keys) being

generated during the reduction. For instance,∅ ` νn.n ⇓{n}name n.

2.1.3 Le lambda-calcul computationnel

Another example of simply-typed lambda-calculus is Moggi’s computational lambda-calculus

[Mog89, Mog91], which can be used to define a wide range of notions ofcomputationsor

side-effects, e.g., exceptions, non-determinism, continuations, etc.. The computational lambda-

calculus has in particular a unary type constructorT:

τ ::= . . . | Tτ.

2.2. LE MÉTALANGAGE CRYPTOGRAPHIQUE 19

Elements ofTτ are those computations of typeτ . The real contents ofTτ vary largely for

different forms of computations. For instance, when exceptions are concerned, a computation

may abort when an exceptions is raised.Tτ then contains a set of exceptions besides the regular

values ofτ . While in non-determinism, a computation might return one of several possible

values. The result is not deterministic, so an element ofTτ is actually a set of values.

There are two special constants in the computational lambda-calculus that are useful in ex-

pressing most computations:

t ::= . . . | val(t) | let x⇐ t in t.

val(t) denotes the trivial computation which does nothing but returnst as a value. Thelet

construction is a sequential computation:let x⇐ t1 in t2 first executes the computationt1,

binds the result tox and then executes the computationt2. x is a bound variable int2. Typing

rules for these two constants are

Γ ` t : τ
(Val)

Γ ` val(t) : Tτ

Γ ` t1 : Tτ Γ, x : τ ` t2 : Tτ ′

(Let)
Γ ` let x⇐ t1 in t2 : τ ′

Moggi’s calculus provides a general framework for describing various forms of computation.

When dealing with specific computations, we usually need specific constants. For example, in

exceptions, it is necessary to have a constantraiseτ (e), for raising an exception during a com-

putation; while for describing non-determinism, we shall need a constant likeselectτ (t1, t2),
which chooses randomly a value from the two valuest1 andt2 of typeτ .

Dynamic name creation or key generation is another concrete notion of computation. Stark

has shown that the nu-calculus can be interpreted in the computational lambda-calculus special-

ized in name creation [Sta94]. For this, a constantnew for fresh name creation is necessary.new

is of typeTname (or Tkey). It is indeed a computation which generates a fresh name and returns

this name as the value. A term of typeτ in the nu-calculus is then interpreted as a term ofTτ .

For example, the termνn.n is interpreted aslet n⇐ new in val(n). In particular, a canonical

termu is always interpreted asval(u).

2.2 Le métalangage cryptographique

In order to make use of the general framework of deriving logical relations for monadic types

[GLLN02] and approach quickly to the heart of this thesis, we rely on the computational lambda-

calculus and define in this section a cryptographic metalanguage language for specifying cryp-

tographic protocols. This is based on Stark’s computational metalanguage — the computational

lambda-calculus specialized in dynamic name creation and we extend Stark’s language with some

cryptographic primitives.

20 CHAPITRE 2. LE MÉTALANGAGE CRYPTOGRAPHIQUE

Syntaxe

The types of the cryptographic metalanguage are defined by the following grammar:

τ ::= bool | nat | key | msg | τ → τ | τ × τ | opt[τ] | Tτ

There are four base types:bool for booleans,nat for integers,key for keys andmsg for messages.

τ × τ ′ is the type for cartesian products, whereτ andτ ′ are types of the two components respec-

tively. opt[τ] is an option type forτ , which contains a distinguished element besides values ofτ ,

denoting failures of message operations, notably the decryption failure when a wrong key is used.

T is the unary type constructor for computation types as in the computational lambda-calculus.

In this metalanguage, the difference between computations and values is that a computation may

generate some keys before returning a value.

We also define the order and the computation degree of types. The order of a type is defined

by

ord(b) = 0, for all b ∈ Σ,

ord(Tτ) = ord(τ),

ord(τ → τ ′) = max(ord(τ) + 1, ord(τ ′)),

ord(τ × τ ′) = max(ord(τ), ord(τ ′)),

ord(opt[τ]) = ord(τ).

For every well-typed termt of type τ , ord(t) = ord(τ). The computation type constructorT

does not change the type order. When we say first-order types, we usually mean types up to first

order. The computation degree of a type is defined by

deg(b) = 0, for all b ∈ Σ,

deg(Tτ) = deg(τ) + 1,

deg(τ → τ ′) = max(deg(τ),deg(τ ′)),

deg(τ × τ ′) = max(deg(τ),deg(τ ′)),

deg(opt[τ]) = deg(τ).

For every well-typed termt of typeτ , deg(t) = deg(τ).

2.2. LE MÉTALANGAGE CRYPTOGRAPHIQUE 21

x : τ ∈ Γ
(Var)

Γ ` x : τ
(True)

Γ ` true : bool
(False)

Γ ` false : bool

Γ ` t1 : bool, Γ ` t2 : τ, Γ ` t3 : τ
(Cond)

Γ ` if t1 then t2 else t3 : τ

(Int)
Γ ` i : nat

Γ ` t1 : nat . . . Γ ` tn : nat
(Nat_Op)

Γ ` nat_opn(t1, . . . , tn) : nat

Γ, x : τ ` t : τ ′
(Abs)

Γ ` λx.t : τ → τ ′

Γ ` t1 : τ → τ ′, Γ ` t2 : τ
(App)

Γ ` t1t2 : τ ′

Γ ` t1 : τ1, Γ ` t2 : τ2
(Pair)

Γ ` 〈t1, t2〉 : τ1 × τ2

Γ ` t : τ1 × τ2
i = 1, 2 (Proj)

Γ ` proji(t) : τi

(New)
Γ ` new : Tkey

Γ ` t : τ
(Inj)

Γ ` some(t) : opt[τ]

Γ ` t1 : opt[τ], Γ, x : τ ` t2 : τ ′ Γ ` t3 : τ ′
(Case)

Γ ` case t1 of some(x) in t2 else t3 : τ ′

Γ ` t : τ
(Val)

Γ ` val(t) : Tτ

Γ ` t1 : Tτ, Γ, x : τ ` t2 : Tτ ′

(Let)
Γ ` let x⇐ t1 in t2 : Tτ ′

Γ ` t1 : msg Γ ` t2 : key
(M .enc)

Γ ` enc(t1, t2) : msg

Γ ` t1 : msg Γ ` t2 : key
(M .dec)

Γ ` dec(t1, t2) : opt[msg]

Γ ` t1 : msg Γ ` t2 : msg
(M .pair)

Γ ` p(t1, t2) : msg

Γ ` t : msg
(M .fst)

Γ ` fst(t) : opt[msg]

Γ ` t : msg
(M .snd)

Γ ` snd(t) : opt[msg]

Γ ` t : nat
(M .r)

Γ ` n(t) : msg

Γ ` t : msg
(M .mr)

Γ ` getnum(t) : opt[nat]

Γ ` t : key
(M .k)

Γ ` k(t) : msg

Γ ` t : msg
(M .mk)

Γ ` getkey(t) : opt[key]

Figure 2.1: Typing rules for the metalanguage

22 CHAPITRE 2. LE MÉTALANGAGE CRYPTOGRAPHIQUE

Expressions in the cryptographic metalanguage are defined by

t ::= x variables

| true | false boolean values

| if t then t else t conditional

| i integer constants0, 1, 2, . . .
| nat_opn(t, · · · , t) integer operation

| λx.t abstraction

| t t application

| 〈t, t〉 pairing

| proj1(t) | proj2(t) projections

| some(t) option injection

| case t of some(x) in t else t option case

| new fresh key generation

| val(t) trivial computation

| let x⇐ t in t sequential computation

| enc(t, t) encryption

| dec(t, t) decryption

| p(t, t) pairing of messages

| fst(t) | snd(t) message projection

| n(t) | getnum(t) integer as/from messages

| k(t) | getkey(t) keys as/from messages

Typing rules for these terms are given in Figure 2.1. Most rules are standard, such as pair-

ing, projection, injection, case and so on. The option injectionsome(t) and the option case

case t1 of some(x) in t2 else t3 are abbreviated versions of standard injection and case

operations for sum types:opt[τ] is seen as the sum type ofτ + unit with unit a type con-

taining a single (dummy) value,some(_) is the left injection and the option case abbreviates

case t1 of in1(x) . t2; in2(_) . t3. The constantnew stands for fresh key generation, which

generates a fresh key and returns this key as a value. It is a computation of typeTkey.

There are several term constants related to themsg type. enc anddec are two primitives

for encryption and decryption:enc(t1, t2) uses the key obtained fromt2 to encrypt the message

obtained fromt1 and returns the encrypted message;dec(t1, t2) uses the key obtained fromt2 to

decrypt the message obtained fromt1, and returns the corresponding plain-text (if the decryption

succeeds) or an error (if the decryption fails), so it is of typeopt[msg]. One can take an integer

or a key as a message, by the operationsn andk. Constantsgetnum andgetkey are the inverse

operations, which attempt to retrieve an integer or a key from a message. Messages can also be

paired by a particular pairing operationp for messages. The difference between message pairing

2.2. LE MÉTALANGAGE CRYPTOGRAPHIQUE 23

and the normal pairing (〈_,_〉) is that the pairingp of two messages is still of typemsg, not

msg × msg, as shown by the typing rule(M .pair). Correspondingly, we have projectionsfst

andsnd that return the components of a pairing message.

Compared with the cryptographic lambda-calculus, the main change in this metalanguage is

on the treating of messages. Types for cipher-texts are no longer associated with the types of

corresponding plain-texts as in Sumii and Pierce’s language. Instead, we use a more uniform

typemsg and all cryptographic operations such as encryption and decryption can only be applied

to messages. By doing so we are able to encode “typing attacks” in the metalanguage. A typing

attack is an attack where attackers trick principles to accept some fake messages with confused

types. For example, if a principle is waiting for an encrypted message which should be composed

by two keys, e.g.,{k1, k2}k, then an attacker can send him a message{k1, E}k, whereE is a

principle name and is usually represented as an integer, e.g., an IP address. In practice, every

messages is just a bit string. If both principle names and keys are bit strings of the same length,

when the principle receives the message{k1, E}k, he has no way to tell thatE is not a key. This

will become vital if later they useE as a key to exchange secrets. Type flaw does exist in real

protocols [CJ97, HLS03]. To represent these attacks in Sumii and Pierce’s language, we have to

introduce dynamic type checking, because the fake message is not of the expected type and will

be rejected by static type checking (for instance, the message{k1, E}k is of typebits[key× nat]
while a message of typebits[key× key] is expected). but in the cryptographic metalanguage, we

can do this with no cost (messages are all of typemsg).

Furthermore, becausemsg is a base type, the language can be easily extended with other

cryptographic primitives with particular algebraic properties [CDL05], e.g., in RSA encoding

[RSA78], encryptionenc is implemented as modular exponentiation, which obeys various asso-

ciativity, commutativity and distributivity laws. To give an example that remains in the frame-

work of symmetric encryption, DES [DES] obeys the property that

not enc(v, k) = enc(not v, not k), wherenot is bitwise logical not.

In Figure 2.2 are syntax abbreviations which we shall use in the sequel.

Equational semantics

Stark defines an equational logic of Horn clauses for reasoning about terms of his computational

metalanguage [Sta94]. If the typing assertionsΓ ` t1 : τ andΓ ` t2 : τ hold, thenΓ ` t1 =
t2 : τ is anequation in contextΓ. We shall omit the type and writeΓ ` t1 = t2. A sequentis a

judgementΓ;Φ ` φ whereΓ is a typing context,Φ is a finite set of equations in contextΓ andφ

is a single equation in contextΓ. We writeΦ, t1 = t2 for Φ ∪ {t1 = t2 : τ} and we may omitΦ
when it is empty.

Rules for deriving sequents are also given in [Sta94] for the computational metalanguage for

24 CHAPITRE 2. LE MÉTALANGAGE CRYPTOGRAPHIQUE

{t1}t2 ≡ enc(t1, t2).

[t1, t2, . . . , tn] ≡ p(t1, . . . , p(tn−1, tn) · · ·).

πn
i (t) ≡


fst(snd · · · snd︸ ︷︷ ︸

i−1

(t) · · ·) if i < n,

snd(· · · snd︸ ︷︷ ︸
i−1

(t) · · ·) if i = n.

〈t1, t2, . . . , tn〉 ≡ 〈t1, . . . , 〈tn−1, tn〉 · · ·〉.

Πn
i (t) ≡


proj1(proj2 · · · proj2︸ ︷︷ ︸

i−1

(t) · · ·) if i < n,

proj2(· · · proj2︸ ︷︷ ︸
i−1

(t) · · ·) if i = n.

error ≡ dec({1}k1 , k2), (k1 6= k2).

letopt x⇐ t1 in t2 ≡ case t1 of some(x) in t2 else error,

wheret2 must be of typeopt[msg].

λ〈x1, . . . , xn〉.t ≡ λy.(λx1. · · ·λxn.t)projn
1 (y) · · · projn

n(y).

λ{x}k.t ≡ λy.letopt x⇐ dec(y, k) in t.

λ{x1, . . . , xn}k.t ≡ λ{y}k.(λx1. · · ·λxn.t)projn
1 (y) · · · projn

n(y).

ν(x1, . . . , xn).t ≡ let x1 ⇐ new in · · · let xn ⇐ new in val(t).

let 〈x1, . . . , xn〉 ⇐ t in t′ ≡ let y⇐ t in

(λx1. · · ·λxn.t)projn
1 (y) · · · projn

n(y).

Figure 2.2: Syntax abbreviations

2.3. FORMALISATION DE LA PROPRIÉTÉ DE SECRET 25

name creation. In particular, rules for computations are as follows:

Γ ` t : Tτ

Γ ` let x⇐ t in val(x) = t

Γ ` t1, t2 : τ

Γ; val(t1) = val(t2) ` t1 = t2

Γ ` t1 : τ1 Γ, x : τ ` t2 : Tτ2

Γ ` let x⇐ val(t1) in t2 = t2[t1/x]

Γ ` t1 : Tτ1 Γ, x1 : τ ` t2 : Tτ2 Γ, x2 : τ ` t3 : Tτ3

Γ ` let x2 ⇐ (let x1 ⇐ t1 in t2) in t3 = let x1 ⇐ t1 in let x2 ⇐ t2 in t3
.

Because the cryptographic metalanguage is an extension of Stark’s computational metalan-

guage, the equational logic for the computational metalanguage can be easily extended here for

giving the semantics of the cryptographic metalanguage and reasoning about terms. The detailed

rules for deriving sequents are given in Appendix A.

2.3 Formalisation de la propriété de secret

Protocols usually involve several principles running in parallel and interacting with each other.

It is somehow surprising at first glance that they can be encoded in lambda-calculus, which is

natively sequential. The basic idea is that every principle is encoded as a function and interac-

tions between principles can be modeled by function applications. Consider the following naive

protocol:
Message1 . A→ B : {i}k

Message2 . B → A : i mod 2

In this protocol,k is a secret key shared only byA andB (to guarantee this, we letk be freshly

generated in the program).A encrypts an integeri with k and sends it toB (Message 1), thenB

answers by the valuei mod 2. The protocol is encoded as:

p(i) = let k⇐ new in

val(〈enc(i, k),

λx. case dec(x, k) of some(y) in (y mod 2) else −1〉)

whose type isT(msg × (msg → nat)). The first component of the pair, seen as a constant

functionλ_.enc(i, k), represents the principleA. The second component represents the principle

B, a function which receives a message and returns another message.

Interactions between principles are scheduled by the network and every scheduler is encoded

as a function taking the protocol program as an argument, in the same language. A scheduler has

full control of the network and it is possibly malicious and tries to attack protocols. A protocol is a

26 CHAPITRE 2. LE MÉTALANGAGE CRYPTOGRAPHIQUE

sequence of message exchanging operations and the source and destination of every message are

explicitly defined, so a “good” scheduler simply forwards every message to its intended receiver,

and it is easy to check whether the system accomplishes its goal under such a “good” scheduler.

The main property that we like to prove for a protocol is the secrecy property: the secret does not

leak under any schedule. This difficult to prove directly — enumerating all possible schedulers

is not possible. Suppose a protocol is secure in the sense that no execution of this protocol leaks

the secret to attackers. Then it is clear that attackers cannot see the difference between any two

instances of the protocol, hence are not able to distinguish them. For example, in the above

protocol, if the principleA only sends encrypted even numbers toB, then for any secret integers

i andj, the two instancesp(2 ∗ i) andp(2 ∗ j) are equivalent, since the reply fromB is always0.

Such an indistinguishable property can be formalized by a notion in programming languages,

calledcontextual equivalence, a.k.a.observational equivalence. We say that two programs are

contextually equivalent, if we always get the same results when running them in all contexts.

Given a protocol, consider its encoding in the metalanguage, i.e., a program with the secret

message as an argument. If we can prove that two instances of this program are contextually

equivalent, then we can assert that this protocol satisfies the secrecy property. Note that this

requires that both contexts (attackers) and protocols are encoded in the same language.

The rest of our work is to encode protocols in the cryptographic metalanguage and to develop

methods for proving contextual equivalences. In lambda-calculus, there are standard definitions

of contextual equivalences [Mor68, PS93a]. However, it turns out that contextual equivalence

for cryptographic protocols is a very subtle notion, especially when it is defined in a denotational

way. Standard definitions must be adapted carefully in this case. In particular, contexts are

supposed to represent honestly the power of attackers. We shall have more discussion on this at

the end of Chapter 3 and in the Chapter 6.

2.4 Codage des protocoles

Following the scheme given in last section, we can encode concrete protocols in the cryptographic

metalanguage. Two examples are given in this section. Both are flawed protocols, and we show

that these protocols (and their corrected versions), as well as attacks, can be encoded in the

metalanguage.

2.4.1 Un protocole de l’échange de clés symétriques

The first example is the protocol that we have introduced in Chapter 1, which aims at establishing

a fresh symmetric key between two principles, with the help of a trusted key serverS. It uses

only the symmetric encryption.

2.4. CODAGE DES PROTOCOLES 27

A S

S1

B

A1 •
++VVVVVVV

A,B, {kab}kas

++WWWWWWWW

•
++WWWWWWWW

A,B, {kab}kbs

++VVVVVVV

A2 •
--[[[[[[[[[[[[[[[[[[[[[[[[[• B1

{i}kab

--[[[[[[[[[[[[[[[[[[[[[[[[[

• B2

fA1 ≡ 〈[n(A), n(B), {k(kab)}kas], fA2〉

fA2 ≡ {i}kab

fS1 ≡ λx.letopt xa ⇐ getnum(π3
1(x)) in

letopt xb ⇐ getnum(π3
2(x)) in

letopt k⇐ dec(π3
3(x), K(xa, s)) in

some([n(xa), n(xb), {k}K(xb,s)])

fB1 ≡ λx.〈∗, fB2〉

fB2 ≡ λx.∗

whereK(x, s) abbreviates

if x = A then kas else if x = B then kbs else kes

Figure 2.3: A symmetric key establishment protocol and its encoding

28 CHAPITRE 2. LE MÉTALANGAGE CRYPTOGRAPHIQUE

As shown previously, the encoding of a protocol in the cryptographic metalanguage consists

of the encoding of every principle, as a term in the metalanguage. The protocol is reformulated

by the diagram in Figure 2.3, where every principle is a sequence of “bullets”, representing the

“states” of the program. A bullet waits for messages in a certain expected format, does some

checking on the formats and contents upon receiving a message, then sends back another mes-

sage and passes the control to the next bullet. There is no secret channel and every message is

published on the public network. Such a bullet is encoded as a function, which takes the incom-

ing message as argument, and returns a pair of the out-coming message and another function

representing the “next state”. For example, the bulletA1 in the diagram of Figure 2.3 is encoded

as the function:

fA1 ≡ λ_.ν(kab).〈[n(A), n(B), {k(kab)}kas], fA2〉

BecauseA1 does not wait for any message, this is just a constant function (we omit the lambda

binder at the beginning).A1 publishes a message〈A,B, {kab}kas〉 and passes the control to the

bulletA2, denoted by the functionfA2 . Note thatA1 generates a fresh keykab, but since this is

the first step of the protocol, we can assume thatkab is generated by the whole program and we

encodeA1 as

fA1 ≡ 〈[n(A), n(B), {k(kab)}kas], fA2〉.

By doing so we avoid programs with types of the formT(· · ·×T_×· · ·), because completeness

of logical relations for this kind of types is hard to deal with. We shall explain this difficulty in

Chapter 6.

Encodings of other bullets are given in Figure 2.3. The whole protocol is then encoded as a

4-tuple:

P ≡ ν(kas, kbs, kes, kab).〈kes, fA1 , fS1 , fB1〉

wherekes is the key shared by the server and a third (malicious) principle. The trivial function

fB1 can be ignored, so we write simply

P ≡ ν(kas, kbs, kes, kab).〈kes, fA1 , fS1〉, (2.1)

According to the typing rules in Figure 2.1, the type of this program is:

∅ ` P : T(key × (msg ×msg)× (msg → opt[msg]))

As shown in Chapter 1, this protocol is flawed. In the cryptographic metalanguage, an attack

is simply a “bad” scheduler, which can be encoded as a function that takes the program (2.1) as

2.4. CODAGE DES PROTOCOLES 29

argument and tries to reveal the secret texti:

Attack(P) ≡ let 〈ke, 〈m1
a,m

2
a〉, ps〉 ⇐ P in

val(letoptme ⇐ ps([n(A), n(E), π3
3(m

1
a)]) in

letoptm′
e ⇐ dec(π3

3(me), ke) in

letopt k⇐ getkey(m′
e) in

letopt i⇐ dec(m2
a, k) in

some(i))

Since the attack is caused by some replacement of principle identities in messages, to fix this

flaw and prevent the attack, it is sufficient to encrypt those critical identities, so that intruders are

not able to modify them:

Message1 . A→ S : A,B, {B, kab}kas

Message2 . S → B : A,B, {A, kab}kbs

Message3 . A→ B : {i}kab

The diagram and the encoding of the fixed protocol are given in Figure 2.4. The type of the

protocol program does not change.

2.4.2 Le protocole de Needham-Schroeder

Another example is a famous protocol of asymmetric cryptography — the Needham-Schroeder’s

public key protocol [NS78]. This protocol consists of two principles aiming at authenticating

with each other and generating a session key for later communication. The exchange of messages

is specified as follows:

Message1 . A→ B : A

Message2 . B → A : {Nb, B}pk(A)

Message3 . A→ B : {Na, Nb}pk(B)

Message4 . B → A : {Na}pk(A)

Message5 . A→ B : {i}Na

PrincipleA initiates a session by sending its own identity to another principleB. B wantsA to

proveA’s identity first. It generates a nonceNb (a fresh random number) and encrypts it withA’s

public key (Message 2) so that onlyA can decrypt this message.A must send back this nonce

Nb to convinceB that it isA who is talking with it. At the same time,A also wantsB to prove

B’s identity. A then generates another nonceNa and sends it toB by encrypting it withB’s

public key (Message 3). Since onlyB can decrypt this message,B should send back the nonce

30 CHAPITRE 2. LE MÉTALANGAGE CRYPTOGRAPHIQUE

A S

S1

B

A1 •
++WWWWWWWW

A,B, {B, kab}kas

++WWWWWWWWW

•
++WWWWWWWWW

A,B, {A, kab}kbs

++WWWWWWWW

A2 •
--[[[[[[[[[[[[[[[[[[[[[[[[[[[[• B1

{i}kab

--[[[[[[[[[[[[[[[[[[[[[[[[[[[[

• B2

fA1 ≡ 〈[n(A), n(B), {[n(B), k(kab)]}kas], fA2〉

fA2 ≡ {i}kab

fS1 ≡ λx.letopt xa ⇐ getnum(π3
1(x)) in

letopt xb ⇐ getnum(π3
2(x)) in

letopt y⇐ dec(π3
3(x), K(xa, s)) in

letopt x′b ⇐ getnum(fst(y)) in

if xb = x′b then some([n(xa), n(xb), {snd(y)}K(xb,s)])

else error

whereK(x, s) abbreviates

if x = A then kas else if x = B then kbs else kes

Figure 2.4: Fixed symmetric key establishment protocol and its encoding

2.4. CODAGE DES PROTOCOLES 31

A B

A1 •
,,ZZZZZZZZZZZZZZ

A
,,ZZZZZZZZZZZZZZ

• B1rreeeeeeeeee

{Nb, B}ka

rreeeeeeeeee
A2 •

,,YYYYYYYYYY

{Na, Nb}kb

,,YYYYYYYYYY
• B2

rreeeeeeeeeee

{Na}ka

rreeeeeeeeeee
A3 •

,,YYYYYYYYYYYY

{i}Na

,,YYYYYYYYYYYY

• B3

fA1 ≡ 〈n[A], fA2〉

fA2 ≡ λ{x}ka .letopt x
′ ⇐ getnum(snd(x)) in

some(ν(Na).〈{[k(Na), fst(x)]}K(x′), fA3〉)

fA3 ≡ λ{x′′}ka .letopt x
′′′ ⇐ getkey(x′′) in

if x′′′ = Na then some({i}Na) else error

fB1 ≡ λy.letopt y′ ⇐ getnum(y) in

some(ν(Nb).〈{[k(Nb), n(B)]}K(y′), fB2〉)

fB2 ≡ λ{y′′}kb
.letopt y′′′ ⇐ getkey(snd(y′′)) in

if y′′′ = Nb then some({fst(y′′)}K(y′)) else error

whereK(x) abbreviates for

if x = A then ka else if x = B then kb else ke

Figure 2.5: Needham-Schroeder’s public key protocol

32 CHAPITRE 2. LE MÉTALANGAGE CRYPTOGRAPHIQUE

Na (Message 4) to convinceA that it isB who is talking. Finally, the two principles authenticate

with each other and the nonceNa is agreed by them as the session key.

Encoding this protocol in the cryptographic metalanguage is similar as for the previous sym-

metric key establishment protocol. We first reformulate the protocol as the diagram in Figure 2.5,

then encode every bullet function. Note that we have only symmetric cryptography in the meta-

language, sopk(A), pk(B) are represented by two functionsλx.enc(x, ka) andλx.enc(x, kb),
whereka andkb are private keys ofA andB. Finally, we merge these bullet functions in a proper

way and we get the encoding of the whole protocol

P ≡ ν(ka, kb, ke).〈λx.{x}ka , λx.{x}kb
, ke, fA1 , fB1〉.

The type of this program can be deduced using the typing rules:

∅ ` T((msg → msg)× (msg → msg)× key

×(msg × (msg → opt[T(msg × (msg → opt[msg]))]))

×(msg → opt[T(msg × (msg → opt[msg]))]))

For a very long time (around 17 years), this protocol had been regarded as a perfect way

to solve the key distribution and authentication problems, using the public key cryptography

scheme. However, in 1995, a serious flaw was found by Gavin Lowe in this protocol [Low95].

The attack to the protocol is very subtle and it has nothing to do with the adopted cryptographic

algorithms. This is completely a flaw of protocol design.

We demonstrate the attack by the following diagram:

A E B

•
A

ZZZZZZZZZ

,,ZZZZZZZZZ
•

E
ZZZZZZZZZ

,,ZZZZZZZZZ
•

{Nb,B}ke
dddddd

rrdddddd•
{Nb,B}ka

dddddd

rrdddddd•
{Na,Nb}kb

ZZZZZ

,,ZZZZZ •
{Na,Nb}kb

ZZZZZ

,,ZZZZZ •
{Na}ke

dddddd

rrdddddd
•

{Na}ka
ddddddd

rrddddddd
•

{i}Na
ZZZZZZZ

,,ZZZZZZZ
•

This is a typical “man-in-the-middle” attack.A is trying to talk toB, but all messages are

intercepted by another principleE. Instead of forwardingA’s messages toB, E starts another

2.4. CODAGE DES PROTOCOLES 33

session withB. Thus there are two sessions of the protocol running in parallel — one between

A andE and the other betweenE andB. E impersonatesB in the session withA by reusing

messages that he gets fromB in the other session, so thatA believes that he is talking with

B. Clearly, both sessions follow exactly the protocol specification, but messages fromB are

encrypted byE’s public key becauseB believes that he is talking withE, soE can decrypt these

messages. For instance,E can decrypt the fourth message in the right session, and obtain the

critical information — the session key. This attack can be encoded as the following function in

the metalanguage:

Attack(P) ≡ let 〈pka, pkb, ke, 〈A,ma〉,mb〉 ⇐ P in

let 〈m1,m
2
b〉 ⇐mb(E) in

letoptm2 ⇐ (λ{x}ke .x)m1 in

letopt 〈m3,m
3
a〉 ⇐ma(pka(m2)) in

letoptm4 ⇐m2
b(m3) in

letoptm5 ⇐ (λ{x}ke .x)m4 in

letoptm6 ⇐m3
a(pka(m5)) in

letopt i⇐ (λ{x}m5 .x)m6 in

some(i)

The point of this attack is that the intruderE is involved in two sessions of the same protocol

at the same time, and he can make use of some messages from one session in the other session,

without breaking the protocol specification. In particular, the third message in the right session is

exactly the third one in the left session. Hence, we can prevent this attack by adding the identity

of the sender into Message 3 of the protocol:

Message3 . A→ B : {Na, Nb, A}pk(B)

Both the attack and the fix to this protocol were proposed by Gavin Lowe [Low96a], and the

fixed version of Needham-Schroeder’s public key protocol, called Needham-Schroeder-Lowe’s

protocol, is given in Figure 2.6, together with its encoding.

34 CHAPITRE 2. LE MÉTALANGAGE CRYPTOGRAPHIQUE

A B

A1 •
,,YYYYYYYYYYYYYYY

A
,,YYYYYYYYYYYYYYY

• B1
rreeeeeeeeeee

{Nb, B}ka

rreeeeeeeeeee

A2 •
,,YYYYYYYYYY

{Na, Nb, A}kb

,,YYYYYYYYYY
• B2

rreeeeeeeeeeeee

{Na}ka

rreeeeeeeeeeeee

A3 •
,,YYYYYYYYYYYYY

{i}Na

,,YYYYYYYYYYYYY

• B3

fA1 ≡ 〈n(A), fA2〉

fA2 ≡ λ{x}ka .letopt x
′ ⇐ getnum(snd(x)) in

some(ν(Na).〈{[k(Na), fst(x), A]}Ka(x′), fA3〉)

fA3 ≡ λ{x′′}ka .letopt x
′′′ ⇐ getkey(x′′) in

if x′′′ = Na then some({i}Na) else error

fB1 ≡ λy.letopt y′ ⇐ getnum(y) in

some(ν(Nb).〈{[k(Nb), n(B)]}Kb(y′), fB2〉)

fB2 ≡ λ{y′′}kb
.letopt y′′2 ⇐ getkey(π3

2(y
′′)) in

letopt y′′3 ⇐ getnum(π3
3(y

′′)) in

if (y′′2 = Nb and y
′ = y′′3)

then some({π3
1(y

′′)}Kb(y′)) else error

whereKa(x) andKb(x) abbreviate for

Ka(x) ≡ if x = B then kb else ke

Kb(x) ≡ if x = A then ka else ke

Figure 2.6: Needham-Schroeder-Lowe’s public key protocol and its encoding

Chapitre 3

Modèles catégoriques

La syntaxe du métalangage cryptographique et le codage des protocoles ont été vus au cha-

pitre 2. Maintenant, nous allons définir dans ce chapitre la sémantique dénotationnelle du mé-

talangage. En général, le lambda-calcul typé pourrait être interprété dans lescatégories carté-

siennes fermées(CCCen abrégé) [LS86, AL91]. Nous suivons cette convention et nous construi-

sons un modèle catégorique du métalangage cryptographique. Pour cela, nous devons interpré-

ter deux sortes de primitives : les primitives cryptographiques et la génération de clés. Pour la

première, nous adaptons ici des stratégies standard dans la plupart des modèles de protocoles

cryptographiques.

Il est plus difficile de traiter de la génération dynamique de clés. Grâce à Moggi [Mog89,

Mog90, Mog91], ce mécanisme est considéré comme uneffet de bordet par conséquent, elle

peut être formalisée par la notion demonade. Stark précise cette idée par une monade spécifique

de génération de noms et il montre qu’un modèle catégorique correct de la génération de noms

doit satisfaire une liste de propriétés. En particulier, il définit un modèle catégorique basé sur la

catégorie de foncteurs appeléeSetI , qui satisfait les propriétés. Le métalangage computationnel

de la génération de noms, ainsi que le nu-calcul, peut donc être interprété dans ce modèle [Sta94,

Sta96].

Puisque le métalangage cryptographique est une extension du métalangage computationnel

de Stark, nous pouvons naturellement prendre la catégorieSetI comme modèle de notre langage.

Pour cela, nous devons définir d’abord un objet dans cette catégorie pour le typemsg. Nous défi-

nissons aussi la forme canonique du métalangage cryptographique et nous prouvons qu’il existe

un terme en forme canonique (avec la même sémantique) pour chaque terme du métalangage.

Formaliser la propriété de secret à l’aide de la notion d’équivalence contextuelle est un point

crucial de notre modélisation. Alors qu’est-ce que l’équivalence contextuelle pour les proto-

coles cryptographiques ? Nous verrons que la définition standard d’équivalence contextuelle du

lambda-calcul ne s’applique pas dans notre métalangage. En nous inspirant de la notion d’équi-

35

36 CHAPITRE 3. MODÈLES CATÉGORIQUES

valence contextuelle du nu-calcul définie par Pitts et Stark, nous déciderons d’adapter leur défini-

tion à notre métalangage et à notre modèle. Dans ce chapitre, nous n’arriverons pas encore à une

définition finale de l’équivalence contextuelle (qui sera donnée au chapitre 6), mais la discussion

que nous mènerons montra que définir une notion correcte d’équivalence contextuelle dans le

métalangage cryptographique demande réflexion — il faut considérer plusieurs points subtils.

En effet, nous allons montrer dans les chapitres suivants que la catégorieSetI n’est pas suffi-

sante pour étudier les relations entre les programmes du métalangage, y compris l’équivalence

contextuelle.

Ce chapitre commence par une introduction élémentaire de la théorie des catégories dans

la partie 3.1, où nous décrivons en particulier l’interprétation du lambda-calcul dans une caté-

gorie cartésienne fermée et l’interprétation des effets de bord en utilisant les monades. Nous

introduisons le modèle de Stark dans la partie 3.2 et nous définissons ensuite dans la partie 3.3

une sémantique dénotationnelle du métalangage cryptographique, basée sur la catégorieSetI .

La partie 3.4 parle de la forme canonique du métalangage. Le chapitre se termine par la par-

tie 3.5, qui consiste en une discussion sur la notion d’équivalence contextuelle des protocoles

cryptographiques.

37

While Chapter 2 is mainly on the syntax of the cryptographic metalanguage and the encoding

of protocols, we shall define in this chapter its semantics, in a denotational way. It is standard

that typed lambda-calculus can be interpreted bycartesian closed categories(CCC for short)

[LS86, AL91]. We follow this convention to construct a categorical model for the cryptographic

metalanguage. For this purpose, we have to deal with cryptographic primitives and key gener-

ation. Encryption and decryption are usually modeled by products in most formal models for

cryptographic protocols and such a strategy is also adopted here.

Dealing with dynamic key generation is more difficult. Thanks to Moggi’s work on the

computational lambda-calculus [Mog89, Mog90, Mog91], this is seen as some kind ofside effect

and can be modeled by amonad. Stark specializes Moggi’s work in the name creation monad

and shows that a proper categorical model for name creation must satisfy certain properties. He

defines in particular a categorical model based on the functor categorySetI , which satisfies

those properties, so that the computational metalanguage for name creation (consequently the

nu-calculus) can be naturally interpreted in it [Sta94, Sta96].

Since the cryptographic metalanguage is an extension of Stark’s computational metalan-

guage, it is natural to take the categorySetI as model. We then use this category to define

the denotational semantics of our language, by first defining an object for the specific base type

msg. We also define the canonical forms for the cryptographic metalanguage, and prove that

every expression is equivalent to a canonical term (with the same semantics), provided that it

does not return any error (decryption failure for example).

The very essential point of our method is using contextual equivalence to formalize secrecy

property of protocols, but what should be the right notion of contextual equivalence for crypto-

graphic protocols? Indeed, we find that standard definitions for lambda-calculi do not fit in our

case. Inspired by Pitts and Stark’s notion of contextual equivalence for the nu-calculus [PS93a],

we try to adapt their definition to the cryptographic metalanguage and the denotational model.

Note that this kind of equivalence, which states that two values (or terms)a1 anda2 are equiva-

lent provided every context of typebool must give identical results ona1 and ona2, is also called

observational equivalence. We must stress that it should not be confused with observational

equivalence as it is defined for data refinement [Mit96], wheremodelsare related, notvaluesin

the same model as here.

Although this chapter does not arrive finally at a correct definition of contextual equivalence

(the final one will be given in Chapter 6), it indeed shows that defining this notion of equivalence

in the cryptographic metalanguage is not straightforward at all. Several subtle points have to be

taken into account. In fact, as will be shown in later chapters, the categorical modelSetI is

not sufficient for studying relations, including contextual equivalence, between programs in the

metalanguage.

38 CHAPITRE 3. MODÈLES CATÉGORIQUES

We start this chapter by a basic introduction to category theory (Section 3.1), where we show

in particular how to use cartesian closed categories to model lambda-calculus (Section 3.1.1) and

monads to model computations (Section 3.1.2). We then introduce Stark’s model in Section 3.2.

By defining objects for some special types like themsg type, we obtain in Section 3.3 a de-

notational semantics for the cryptographic metalanguage based onSetI . Section 3.4 is about

the canonical forms of the metalanguage and Section 3.5 is a discussion on what should be the

right notion of contextual equivalence for cryptographic protocols. We end this chapter by a

conclusion on our language — the specification part of this thesis.

3.1 Préliminaires de la théorie des catégories

This section is provided here as an introductory text on categories. We shall introduce some

basic concepts in category theory, like categories, functors, cartesian closed categories, and so

on. These are necessary for understanding the rest of the thesis. Most definitions in this section

are from [BW90, LS86, AL91, Pie91].

A categoryC comprises:

• a collectionObj(C) of objects;

• a collectionMor(C) of morphisms(arrows);

• two operationsdom, cod assigning to each morphismf two objects respectively called

domainand codomainof f (we write f : A → B to show thatdom(f) = A and

cod(f) = B; the collection of all morphisms with domainA and codomainB is writ-

tenC[A,B]);

• an operator◦ (composition) assigning to each pair of morphismsf andg, with cod(f) =
dom(g), a morphismg ◦ f : dom(f) → cod(g), satisfying the associative law: for any

morphismsf : A→ B, g : B → C andh : C → D, h ◦ (g ◦ f) = (h ◦ g) ◦ f ;

• for each objectA, anidentitymorphismidA : A → A satisfying the identity law: for any

morphismf : A→ A, idA ◦ f = f andf ◦ idA = f .

Example 3.1. The categorySet has sets as objects and total functions between sets as mor-

phisms. Composition of morphisms is set-theoretic function composition. Identity morphisms

are identity functions.Pfun is the category with sets as objects and partial functions as mor-

phisms.

Let f : B → C be a morphism in a categoryC, thenf is saidmonic(or amonomorphism)

if, for any two morphismsg, h ∈ C[A,B], the equalityf ◦ g = f ◦ h implies thatg = h, and it is

3.1. PRÉLIMINAIRES DE LA THÉORIE DES CATÉGORIES 39

epic(or aepimorphism) if, for any two morphismsg′, h′ ∈ C[C,D], the equalityg′ ◦ f = h′ ◦ f
implies thatg′ = h′. f is a isomorphismif there is a morphismf−1 : C → B such that

f−1 ◦ f = idA andf ◦ f−1 = idB. The objectsB andC are said to beisomorphicif there is an

isomorphism between them. For example, in the categorySet, the monomorphisms are just the

injective functions, the epimorphisms are the surjective functions and the isomorphisms are the

bijective functions.

A diagramin a categoryC is a collection of vertices and directed edges labeled with objects

and morphisms ofC such that if an edge in the diagram is labeled with a morphismf andf has

domainA and codomainB, then the endpoints of this edge must be labeled withA andB. A

diagram is said tocommuteif, for every pair of verticesX andY , all the paths in the diagram

from X to Y are equal, in the sense that each path in the diagram determines a morphism and

these morphisms are identical inC.

Let C andD be categories. AfunctorF : C → D is a pair of operationsFobj : Obj(C) →
Obj(D) andFmor : Mor(C) → Mor(D) such that, for eachf : A→ B, g : B → C in C:

• Fmor(f) : Fobj(A) → Fobj(B) is a morphism inD;

• Fmor(g ◦ f) = Fmor(g) ◦ Fmor(f);

• Fmor(idA) = idFobj(A).

Given functorsF,G : C → D, anatural transformationδ : F → G is a family of morphisms

in the categoryD such that

• for any objectA ∈ C, δA ∈ D[F(A),G(A)], and

• for any morphismf ∈ C[A,B], δB ◦ F(f) = G(f) ◦ δA, i.e., the following square com-

mutes:

F(A)
δA //

F(f)

��

G(A)

G(f)

��
F(B)

δB // G(B)

.

Given a functorF : C → D, we writeFA for Fobj(A) andFf for Fmor(f), for any objectA

and any morphismf in C. We define for any categoryC an identity functorIdC : C → C mapping

every object to itself and every morphism to itself. IfF : C → C is a functor over the category

C, thenF2 : C → C is another functor overC such thatF2A = F(FA) andF2f = F(Ff) for any

objectA and any morphismf in C. This can be generalized to defineFn : C → C for any finite

numbern.

40 CHAPITRE 3. MODÈLES CATÉGORIQUES

An object0 is called aninitial object if, for every objectA, there is exactly one morphism

from 0 toA. Dually, an object1 is called aterminal objectif, for every objectA, there is exactly

one morphism fromA to 1. In the categorySet, the empty set{} is the only initial object; for

every setA, the empty function is the unique function from{} toA. Moreover, each one-element

setS is a terminal object, since for every non-empty setA there is only one total function from

A to S which maps every element ofA to that single element ofS, and for the empty set, there

is the unique empty function.

A productof two objectsA andB is an objectA×B, together with two projection morphisms

proj1 : A×B → A andproj2 : A×B → B, such that for any objectC and pair of morphisms

f : C → A andg : C → B, there is exactly one mediating morphism〈f, g〉 : C → A × B

making the following diagram commute:

C

f

||yy
yy

yy
yy

yy
yy

y
g

""E
EE

EE
EE

EE
EE

EE

〈f,g〉

���
�
�
�

A A×B
proj1oo proj2 // B

,

i.e.,proj1 ◦〈f, g〉 = f andproj2 ◦〈f, g〉 = g. If A×C andB×D are product objects, then for

every pair of morphismsf : A → B andg : C → D, the product morphismf × g : A × C →
B ×D is the morphism〈f ◦ proj1, g ◦ proj2〉.

A coproductof two objectsA andB is an objectA + B, together with two injection mor-

phismsinlA,B : A → A+ B andinrA,B : B → A+ B, such that for any objectC and pair of

morphismsf : A → C andg : B → C, there is exactly one morphism〈f | g〉 : A + B → C

making the following diagram commute:

A
inlA,B //

f

""E
EE

EE
EE

EE
EE

EE
A+B

〈f |g〉

���
�
�
� B

inrA,Boo

g

||yy
yy

yy
yy

yy
yy

y

C

.

If a categoryC has a product (coproduct) for every pair of objects, we say thatC has (binary)

products (coproducts). The categorySet has products and coproducts. The product of two sets

A andB is their cartesian product:

A×B = {(a, b) | a ∈ A & b ∈ B}.

The coproduct is the disjoint union of the two sets:

A+B = {(1, a) | a ∈ A} ∪ {(2, b) | b ∈ B}.

3.1. PRÉLIMINAIRES DE LA THÉORIE DES CATÉGORIES 41

We shall omit the indices1 and2 if there is no confusing element, that is, whenA andB are

disjoint.

Let C be a category with all binary products and letA andB be objects ofC. An objectBA

is anexponential objectif there is a morphismevalAB : (BA×A) → B such that for any object

C and morphismf : C ×A→ B there is a unique morphismcurry(f) : C → BA making the

following triangle commute:

C ×A

curry(f)×idA

��

f

""E
EEEEEEEEEEEEEEE

BA ×A
evalAB // B

.

A categoryC is said to have exponentiation if it has an exponentialBA for every pair of objects

A andB. The categorySet has exponentiation: the exponentialBA of two setsA andB is the set

of all functions fromA to B, i.e.,Set[A,B]. A cartesian closed category(usually abbreviated

as CCC) is a category with a terminal object, binary products and exponentiation.

3.1.1 Interprétation du lambda-calcul en CCCs

It is standard that the simply-typed lambda calculus can be modeled in a cartesian closed category

[LS86, AL91], with types as objects and terms as morphisms. LetΣ be the signature of the

intended lambda calculus andC be a CCC where we choose an objectbC for each base typeb and

a morphismcC : 1 → JτK for each term constantc : τ ∈ Σ. J_K denotes the interpretation inC of

the lambda calculus. A CCCC together with interpretations for base types and term constants in

Σ, is called aΣ-CCCand denoted byCΣ (we may omitΣ when it is clear from the context).

Function types are interpreted using exponentiation, i.e., the interpretation of typeτ → τ ′ is

the exponential objectJτ ′KJτK. Product types and sum types are naturally interpreted as products

and coproducts ofC.

We interpret a typing context as a finite product: ifΓ = {x1 : τ1, . . . , xn : τn}, thenJΓK =
Jτ1K× · · · × JτnK. The denotation of a well-typed termΓ ` t : τ is a morphismJΓ ` t : τK from

JΓK to JτK. Given a typing derivationπ of the judgmentΓ ` t : τ , we defineJπK by structural

induction onπ:

JΓ ` xi : τiK = JΓK
proji−−−→ JτiK,

JΓ ` c : τK = JΓK !−→ 1
fc−→ JτK,

q
Γ ` λx.t : τ → τ ′

y
= JΓK

curry(JΓ,x:τ`t:τ ′K)−−−−−−−−−−−−→
q
τ ′

yJτK
,

q
Γ ` t1t2 : τ ′

y
= JΓK

〈JΓ`t1:τ→τ ′K, JΓ`t2:τK〉−−−−−−−−−−−−−−−→
q
τ ′

yJτK × JτK eval−−−→
q
τ ′

y
.

42 CHAPITRE 3. MODÈLES CATÉGORIQUES

We shall writeΓ ` t : τ or even justt in place ofπ, since typing derivations are (almost)

isomorphic to the termst themselves.

Let the intended categoryCΣ beSet, then the denotation of a type is a set. By selecting a

proper elementfc in JτK for each term constantc : τ ∈ Σ, we shall easily get a set-theoretical

model for the simply-typed lambda calculus, whereJτ → τ ′K is the set of all total functions from

JτK to Jτ ′K. We describe the valueJtKρ of the termt in the environmentρ by structural induction

on t:

JxKρ = ρ(x), wherex : τ ∈ Γ,

Jλx.tKρ = the uniquef ∈
q
τ → τ ′

y
such that

for anya ∈ JτK, f(a) = JtKρ[x 7→ a],

Jt1t2Kρ = Jt1Kρ(Jt2Kρ).

More formally, for any typing contextΓ, aΓ-environmentρ, is a map such that for everyx : τ ∈
Γ, ρ(x) is an element ofJτK. This is isomorphic to an element inJΓK. We writeρ[x 7→ a] for the

environment mappingx to a and every other variabley to ρ(y), and[x1 7→ a1, . . . , xn 7→ an] for

environment mapping eachxi to ai. We also writeJtK instead ofJtKρ when the environmentρ is

irrelevant, e.g.,t is a closed term.

Given a signatureΣ, we define aΣ-CCCλλλ(Σ), for the simply-typed lambda-calculus, as

follows: the objects ofλλλ(Σ) are typing contextsΓ, a morphism fromΓ = {x1 : τ1, . . . , xn : τn}
to ∆ = {y1 : τ ′1, . . . , ym : τ ′m} is a substitution[y1 := t1, . . . , ym := tm], whereΓ ` ti : τi
(1 ≤ i ≤ m), moduloβη-conversion. We often abbreviate a context{x1 : τ1, . . . , xn : τn} to

{xi : τi}n and a substitution[x1 := t1, . . . , xn := tn] to [xi := ti]n. The composition of two

morphisms[yi := ti]m : {xi : τi}n → {yi : τ ′i}m and[zi := ui]l : {yi : τi}m → {zi : τ ′′i }l is the

substitution[z1 := u1[yi := ti]m, . . . , zl := ul[yi := ti]m]. It is easy to check thatλλλ(Σ) is indeed

aΣ-CCC: the terminal object is the empty contextε, products are disjoint unions, the exponential

is defined by∆Γ = {z1 : σ1×· · ·×σm → τ1, . . . zn : σ1×· · ·σm → τn} and for every constant

c : τ ∈ Σ, there is a unique morphism[x := c] : ε → {x : τ} defining the interpretation ofc.

In particular,Γ-environments are exactly morphisms from the empty contextε, to Γ. λλλ(Σ) is a

freeΣ-CCC [LS86], which means that, for everyΣ-CCCC, there is a unique representationJ_K
of Σ-CCCs fromλ(Σ) to C. A representation ofΣ-CCCs is a functor that preserves products,

exponentials and interpretations of each base type and each term constant inΣ.

3.1.2 Monades et le lambda-calcul computationnel

Moggi’s computational lambda-calculus, as presented in the Section 2.1.3 of Chapter 2, is basi-

cally a simply-typed lambda calculus with some special language primitives, hence a categorical

model for this language is necessarily cartesian closed. But this is not sufficient. According to

3.1. PRÉLIMINAIRES DE LA THÉORIE DES CATÉGORIES 43

Moggi, a sound categorical model for the computational lambda-calculus must be a cartesian

closed category together with astrong monad.

A monad [Mac71] over a categoryC is a triple (T, η, µ), whereT : C → C is a functor,

η : IdC → T andµ : T2 → T are natural transformations and the following diagrams commute:

T3A
µTA //

TµA

��

T2A

µA

��
T2A

µA // TA

,

TA
ηTA //

idTA

!!D
DD

DD
DD

DD
DD

D T2A

µA

��

TA
TηAoo

idTA

}}zz
zz

zz
zz

zz
zz

TA

.

If C has products, then a monad overC is said to be astrong monadif there is a natural transfor-

mationtA,B : A× TB → T(A×B) for any pair of objectsA andB [Mog89, Mog91].

As in the construction of categorical models of simply-typed lambda calculus, we can in-

terpret the computational lambda-calculus in a cartesian closed categoryC with a strong monad

(T, η, µ, t), with types as objects and terms as morphisms. Notably, the functorT is used to

model the unary type constructorT: JTτK = TJτK. The interpretation of the constantsval(_)
and thelet construction is defined as follows:

JΓ ` val(t) : TτK =

JΓK
JΓ`t:τK−−−−→ JτK

ηJτK−−→ TJτK,

JΓ ` let x⇐ t1 in t2 : Tτ ′K =

JΓK
〈idJΓK,JΓ`t1:TτK〉
−−−−−−−−−−−→ JΓK× TJτK

tJΓK,JτK−−−−→ T(JΓK× JτK)
TJΓ,x:τ`t2:Tτ ′K−−−−−−−−−−→ TTJτ ′K

µJτ ′K−−−→ TJτ ′K.

A list of monads for concrete forms of computation is given in [Mog91]. We cite here two of

them, both being defined inSet.

Example 3.2. Exceptions:TA = A+ E, whereE is the set of exceptions:

JTτK = JτK ∪ E,

JvaltKρ = JtKρ,

Jlet x⇐ t1 in t2Kρ =

{
Jt2Kρ[x := Jt1Kρ], if Jt1Kρ 6∈ E;
Jt1Kρ, if Jt1Kρ ∈ E.

Example 3.3. Non-determinism:TA = Pfin(A), also known as the powerset monad:

JTτK = Pfin(JτK),

JvaltKρ = {JtKρ},

Jlet x⇐ t1 in t2Kρ =
⋃

a∈Jt1Kρ

Jt2Kρ[x := a].

44 CHAPITRE 3. MODÈLES CATÉGORIQUES

As the simply-typed lambda calculus gives rise to a freeΣ-CCCλλλ(Σ), the computational

lambda-calculus gives rise to afree Σ-let-CCCCompCompComp(Σ). We defineCompCompComp(Σ) in a similar

way as we define the freeΣ-CCCλλλ(Σ), with typing contexts as objects and substitutions as

morphisms.CompCompComp(Σ) is also equipped with a strong monad(TTT, ηηη,µµµ, t), which is defined as

follows:

• TTTΓ = {x̄1 : Tτ1, . . . , x̄n : Tτn};

• TTT[yi := ti]m = [ȳi := let x1 ⇐ x̄1 in · · · let xn ⇐ x̄n in val(ti)]m;

• ηηηΓ = [x̄i := val(xi)]n : Γ → TTTΓ;

• µµµΓ = [x̄i := let x′i ⇐ ¯̄xi in let x′′i ⇐ x′i in val(x
′′
i)]

n : TTT2Γ → TTTΓ;

• tΓ,∆ = [x̄i := val(xi)]n ∪ [ȳj := ȳj]m : Γ×TTT∆ → TTT(Γ×∆),

whereΓ = {xi : τi}n and∆ = {yi : τ ′i}m are arbitrary contexts and[yi := ti]m is seen as a

morphism fromΓ to ∆ inCompCompComp(Σ).

3.2 Le catégorie de foncteursSetI

Stark specializes Moggi’s computational lambda-calculus to the specific computation of dynamic

name creation, and he defines a computational metalanguage to interpret the nu-calculus [Sta96,

Sta94]. According to Stark, if a category satisfies certain requirements then itsinternal language

will include the metalanguage for name creation. As an example, Stark defines a functor category

SetI equipped with a strong monadT and shows that it satisfies those requirements, hence it is

sufficient to model the metalanguage.

The cryptographic metalanguage is indeed an extension of Stark’s computational metalan-

guage. All the requirements that are needed for modeling his language are also necessary for

constructing a categorical model for the cryptographic metalanguage. Besides, an option type

opt[τ] in our language is naturally interpreted as a coproductJτK+1, where1 is the terminal ob-

ject. This requires that coproducts exist for every object and the terminal object, not as in Stark’s

categories where the existence of the coproduct of terminal objects is enough. Fortunately, co-

products of any two objects exist in the categorySetI .

The categorySetI is a functor category where objects are functors fromI to Set and mor-

phisms are natural transformations between these functors. HereI is the category of finite

sets and injective functions. Intuitively, objects ofI representcomputation stages, since an

object contains keys (or names) that have been generated at a certain stage. For any functor

A : I → Set, the setAs is composed of values defined over the keys ins. Morphisms inI and

3.2. LE CATÉGORIE DE FONCTEURS SET I 45

their images inSet correspond to substitutions: ifi : s → s′ is a morphism inI anda ∈ As,

thenAi(a) is the value obtained by substituting every namen ∈ s with i(n) in the valuea.

This category is cartesian closed. LetA,B be two functors fromI to Set. Products and

coproducts1 are taken pointwise:

(A×B)s = As×Bs, s ∈ I,
(A+B)s = As+Bs,

(A×B)i(a, b) = (Ai(a), Bi(b)), i : s→ s′ ∈ I,

(A+B)i(m,x) =

{
Ai(x), if m = 1;
Bi(x), if m = 2.

Exponentials are defined by the standard construction in covariant presheaves [LS86]:

BAs = SetI(I(s,−)×A,B),

BAifs′′〈j, a′′〉 = fs′′〈j ◦ i, a′′〉,

wherei : s → s′, j : s′ → s′′ ∈ I andf ∈ BAs, a′′ ∈ As′′. An equivalent way to define the

exponential inSetI is:

BAs = SetI(A(s+ _), B(s+ _)).

This definition says that a function fromA toB defined at stages includes information on how

it behaves at all later stages.

We then consider a strong monad(T, η, µ, t) onSetI defined in [Sta96, GLLN02]:

• TA = colims′ A(_ + s′) : I → Set. On objects,TAs = colims′ A(s + s′) is the set

of all equivalence classes of pairs(s′, a), with s′ ∈ I anda ∈ A(s + s′), modulo the

smallest equivalence relation' such that(s′, a) ' (s′′, A(ids + j)a) for every morphism

j : s′ → s′′ in I. We write [s′, a] for the equivalence class of(s′, a). On morphisms,

TAi with i : s → s1 ∈ I, maps the equivalence class[s′, a] to the equivalence class

[s′, A(i+ ids′)a].

• For anyf : A→ B in SetI , Tfs : TAs→ TBs is defined byTfs[s′, a] = [s′, f(s+s′)a].
This is compatible with' becausef is natural.

• ηAs : As→ TAs is defined byηAsa = [∅, a].

• µAs : T2As→ TAs is defined byµAs[s′, [s′′, a]] = [s′ + s′′, a].

• tA,Bs : As× TBs→ T(A× B)s is defined bytA,Bs(a, [s′, b]) = [s′, (Ais,s′a, b)] where

is,s′ : s→ s+ s′ is the canonical injection.

1Note that+ is not a coproduct inI. In fact, I does not have a coproduct. However+ is functorial in both

components, associative, and has a neutral element.

46 CHAPITRE 3. MODÈLES CATÉGORIQUES

A setTA is meant to be the denotation of a computation type. The semantics of a computation

of key generation consists of a set of fresh keys generated during the computation, and a final

value. These are exactly the intuitive meaning ofs′ anda of a pair(s′, a) in TA. In particular,

if a sets is given before the execution of such a computation, the final valuea must be defined

over the disjoint sums+ s′, that is, it just uses keys froms+ s′.

The equivalence' means that we care only whether those new keys arefresh, not what

exactly they are. In other words, all the keys ins′ are bound ina but those ins are free, and by

renaming those bound keys we get equivalent values. Furthermore, if a computation generates

some fresh keys but does not use them, then it is equivalent to the one which does not generate

those keys, i.e.,(s′ + s′′, a) ' (s′, a), for any additional sets′′ of fresh keys. To summarize, for

every(s1, a1), (s2, a2) ∈ TAs, (s1, a1) ' (s2, a2) if and only if there is a finite sets0 and two

morphismsi1 : s1 → s0 andi2 : s2 → s0 such thatA(ids + i1)a1 = A(ids + i2)a2.

3.3 Interprétation du métalangage cryptographique

Let Nat be the set of integers andBool be the set of two boolean valuestt andff . We define

functorsN ,B andK from I to Set:

Ns = Nat & Ni = idNat ,

Bs = Bool & Bi = idBool ,

Ks = s & Ki = i,

wheres is an object andi is a morphism inI. These three functors are intended to be denotations

of typesnat, bool andkey respectively.

3.3.1 Dénotation de messages

For the message typemsg, we define another functorM : I → Set by

• For everys ∈ I,Ms is the smallest set which satisfies the following conditions:

– If a ∈ Ks, thenk(a) ∈Ms;

– If a ∈ Ns, thenn(a) ∈Ms;

– If a ∈Ms andk ∈ s, thene(a, k) ∈Ms;

– If a1, a2 ∈Ms, thenp(a1, a2) ∈Ms.

• For everyi : s→ s′ ∈ I,Mi is a function fromMs toMs′ defined by:

– If x = n(a) for somea ∈ Ns, thenMi(x) = n(Ni(a));

3.3. INTERPRÉTATION DU MÉTALANGAGE CRYPTOGRAPHIQUE 47

– If x = k(a) for somea ∈ Ks, thenMi(x) = k(Ki(a));

– If x = e(a, k) for somea ∈Ms andk ∈ s, thenMi(x) = e(Mi(a),Ki(k));

– If x = p(a1, a2) for somea1, a2 ∈Ms, thenMi(x) = p(Mi(a1),Mi(a2)).

Indeed, eachMs (for eachs ∈ I) can be regarded as a set of binary trees where an external

node of such a tree is either a null valuenil, an integer in the setNat or a key in the sets, and

each internal node is denoted by a symboln, k, e or p, with some constraints (being consistent

with the typing rules for messages in Figure 2.1), e.g., if a node is denoted by a symbole, then

its left child is another message tree and its right child is a key in the sets, which must be an

external node. For instance, a messagee(p(p(n(i), n(j)), k(kab)), kb) is represented by:

e
||

|| EE
EE

p
��

� AA
AA

kb

p

��
�� ;;

;;
k

n n kab

i j

.

A functionMi, for somei : s → s′ ∈ I, simply maps a message tree inMs to a tree inMs′,

replacing each external node according toNi andKi, but without changing the tree structure.

SinceNi is an identity function,Mi just changes external nodes of keys. For instance, the image

of the above tree throughMi is the same tree except thatkab andkb are replaced byi(kab) and

i(kb).

3.3.2 Interprétation du métalangage enSetI

As in standard interpretations in cartesian closed categories, we translate types in the crypto-

graphic metalanguage as objects ofSetI :

JnatK = N, JboolK = B,

JkeyK = K, JmsgK = M,

Jτ × τ ′K = JτK× Jτ ′K, Jopt[τ]K = JτK + 1⊥,
Jτ → τ ′K = Jτ ′KJτK, JTτK = TTT JτK,

where we assume that⊥ is a terminal object inSet and1⊥ is a terminal object inSetI defined

by:

∀s ∈ I, 1⊥s = {⊥} and ∀i : s→ s′ ∈ I, 1⊥i = id{⊥}.

Each well-typed termΓ ` t : τ is then interpreted as a morphism fromJΓK to JτK, where

JΓK =
∏

x:τi∈Γ JτiK. In other words,JΓ ` t : τK is a natural transformation such that for every

48 CHAPITRE 3. MODÈLES CATÉGORIQUES

s ∈ I, JΓ ` t : τKs is a function fromJΓKs to JτKs. We then define aΓ-environmentρ, for every

contextΓ and everys ∈ I, as a function which maps every variablex (x : τ ∈ Γ) to an element

of JτKs.
Note that such an environmentρ can be seen as an element ofJΓKs and we shall write later on

ρ ∈ JΓKs. WhenJΓKs is an empty set, e.g.,Γ = {x : key} ands = ∅, we simply mean that there

is no such environment for theseΓ ands. If ρ ∈ JΓKs, we writeρ[x 7→ a] as an environment

mapping each variablex′ : τ ∈ Γ to ρ(x′) and the variablex to the elementa. We accordingly

describe the meaning of a termΓ ` t : τ over a sets and in an environmentρ ∈ JΓKs, as a

valueJΓ ` t : τKsρ in JτKs, by induction on typing derivations, as shown in the Figure 3.1 and

the Figure 3.2. We writeJtKs instead ofJtKsρ when the environmentρ is irrelevant, e.g.,t is a

closed term.

We are using here some kind of free-algebra for interpreting those operations on themsg

type. In particular, for the two cryptographic primitivesenc anddec, a basic algebra property is

required to hold:

∀s ∈ I, a ∈ JmsgKs, k ∈ s, JdecKs(JencKs(a, k), k) = a.

As we have mentioned when introducing themsg type in our language, by defining such a gen-

eral type for messages, we can easily extend our work to a richer language with more specific

cryptographic primitives. All we need to do here is to redefine the denotation of themsg type so

that it satisfies those specific algebraic properties for cryptography.

3.3. INTERPRÉTATION DU MÉTALANGAGE CRYPTOGRAPHIQUE 49

JΓ
,x

:τ
`
x

:τ
Ks
ρ

=
ρ
(x

)
q Γ

`
λ
x
.t

:τ
→
τ
′y
sρ

=
th

e
un

iq
ue
f
∈

q τ
→
τ
′y
s

su
ch

th
at

fo
r

al
li

:s
→
s′
∈
I

an
d

fo
r

al
la
∈

Jτ
Ks
′ ,

f
s′

(i
,a

)
=

q Γ
,x

:τ
`
t
:τ

′y
s′

(J
Γ
Ki

(ρ
)
∪
{x
7→
a
})

q Γ
`
t 1
t 2

:τ
′y
sρ

=
q Γ

`
t 1

:τ
→
τ
′y
sρ

(i
d

s
,J

Γ
`
t 2

:τ
Ks
ρ
)

JΓ
`
〈t

1
,t

2
〉:
τ 1
×
τ 2

Ks
ρ

=
(J

Γ
`
t 1

:τ
1
Ks
ρ
,J

Γ
`
t 2

:τ
2
Ks
ρ
)

JΓ
`
p
r
o
j

i(
t)

:τ
iK
sρ

=
a

i,
w

he
re

JΓ
`
t
:τ

1
×
τ 2

Ks
ρ

=
(a

1
,a

2
)

JΓ
`
s
o
m
e
(t

)
:o

p
t[
τ
]K
sρ

=
JΓ
`
t
:τ

Ks
ρ

q Γ
`
c
a
s
e
t 1

o
f
s
o
m
e
(x

)
i
n
t 2

e
l
s
e
t 3

:τ
′y
sρ

=

{ JΓ
,x

:τ
`
t 2

:τ
′ K
sρ
∪
{x
7→
a
},

if
JΓ
`
t
:o

p
t[
τ
]K
sρ

=
a
6=
⊥

JΓ
`
t 3

:τ
′ K
sρ

if
JΓ
`
t
:o

p
t[
τ
]K
sρ

=
⊥

JΓ
`
v
a
l
(t

)
:T
τ
Ks
ρ

=
[∅
,J

Γ
`
t
:τ

Ks
ρ
]

q Γ
`
l
e
t
x
⇐
t 1
i
n
t 2

:T
τ
′y
sρ

=
[s

1
+
s 2
,
a

2
],

w
he

re
JΓ
`
t 1

:T
τ
Ks
ρ

=
[s

1
,a

1
]a

nd
q Γ
,x

:τ
`
t 2

:T
τ
′y

(s
+
s 1

)ρ
′
=

[s
2
,a

2
]

w
he

re
ρ
′ (
x
)

=
a

1
,
ρ
′ (
y i

)
=

Jτ
iK

(i
n
l s

,s
1
)(
ρ
(y

i)
)

fo
r

an
y
y i

:τ
i
∈

Γ

JΓ
`
n
e
w

:k
ey

Ks
ρ

=
[{
k
},
k
],

w
he

re
k
6∈
s

F
ig

ur
e

3.
1:

In
te

rp
re

ta
tio

n
of

th
e

m
et

al
an

gu
ag

e
te

rm
s

(I
)

50 CHAPITRE 3. MODÈLES CATÉGORIQUES

JΓ
`
e
n
c
(t

1
,t

2
)

:m
sg

Ks
ρ

=
e(

JΓ
`
t 1

:m
sg

Ks
ρ
,J

Γ
`
t 2

:k
ey

Ks
ρ
)

JΓ
`
d
e
c
(t

1
,t

2
)

:o
p
t[
m

sg
]K
sρ

=

    a
,

if
JΓ
`
t 1

:m
sg

Ks
ρ

=
e(
a
,k

)
an

d
JΓ
`
t 2

:k
ey

Ks
ρ

=
k
,

fo
r

so
m

ea
∈

Jm
sg

Ks
an

d
k
∈
s

⊥
,

ot
he

rw
is

e

JΓ
`
p
(t

1
,t

2
)

:m
sg

Ks
ρ

=
p(

JΓ
`
t 1

:m
sg

Ks
ρ
,J

Γ
`
t 2

:m
sg

Ks
ρ
)

JΓ
`
f
s
t
(t

)
:m

sg
Ks
ρ

=

{ a
1
,

if
JΓ
`
t
:m

sg
Ks
ρ

=
p(
a

1
,a

2
)f

or
so

m
ea

1
,a

2
∈

Jm
sg

Ks
⊥
,

ot
he

rw
is

e

JΓ
`
s
n
d
(t

)
:m

sg
Ks
ρ

=

{ a
2
,

if
JΓ
`
t
:m

sg
Ks
ρ

=
p(
a

1
,a

2
)f

or
so

m
ea

1
,a

2
∈

Jm
sg

Ks
⊥
,

ot
he

rw
is

e

JΓ
`
n
(t

)
:m

sg
Ks
ρ

=
n(

JΓ
`
t
:n

at
Ks
ρ
)

JΓ
`
k
(t

)
:m

sg
Ks
ρ

=
k(

JΓ
`
t
:k

ey
Ks
ρ
)

JΓ
`
g
e
t
n
u
m
(t

)
:o

p
t[
n
at

]K
sρ

=

{ a
,

if
JΓ
`
t
:m

sg
Ks
ρ

=
n(
a
)

fo
r

so
m

ea
∈

N
at

⊥
,

ot
he

rw
is

e

JΓ
`
g
e
t
k
e
y
(t

)
:o

p
t[
ke

y]
Ks
ρ

=

{ a
,

if
JΓ
`
t
:m

sg
Ks
ρ

=
k(
a
)

fo
r

so
m

ea
∈
s

⊥
,

ot
he

rw
is

e

F
ig

ur
e

3.
2:

In
te

rp
re

ta
tio

n
of

th
e

m
et

al
an

gu
ag

e
te

rm
s

(I
I)

3.4. FORMES CANONIQUES 51

3.4 Formes canoniques

In this section, we define the canonical form of terms in the cryptographic metalanguage and

show that every term in the metalanguage has an equivalent canonical term (with the same se-

mantics). Precisely, for every well-typed termΓ ` t : τ and for everys ∈ I andρJΓKs, if

JtKsρ 6= ⊥, then there exists a termΓ ` t′ : τ in canonical form such thatJtKsρ = Jt′Ksρ.

A term in the cryptographic metalanguage is said to be in thecanonical formif it is a term

defined by the following grammar:

u ::= x | n | true | false | 〈u, u〉 | some(u) | m |
let s⇐ new in val(u) | λx1 · · ·λxm.ut1 · · · tm′ (m,m′ ≥ 0)

n(x) | n(n) | getnum(u) | k(x) | getkey(u) | enc(u, x) | dec(u, x) |
p(u, u) | fst(u) | snd(u),

wheren are integer constants (0, 1, 2, . . .) and t1, . . . , tm are terms in the metalanguage. The

termlet s⇐ new in val(u), wheres = {x1, . . . , xn} (n ≥ 0) is a set of bound variables of

typekey, abbreviates

let x1 ⇐ new in · · · let xn ⇐ new in val(u).

We shall also writes : key for the typing contextx1 : key, . . . , xn : key, and [s 7→ s] for the

environment[x1 7→ x1, . . . , xn 7→ xn], where we regard keys variables as identical as keys.

Because all canonical terms must be well typed, it is easy to check that canonical terms of

typekey must be variables (the constantnew is of typeTkey, notkey, and a termgetkey(t) has

typeopt[key], notkey either).enc(m,x) anddec(m,x) are canonical forms for encryption and

decryption wherex must be a variable. In particular, in a canonical decryption termdec(u, x),
u must be of typemsg, so it cannot be decryptiondec(u′, x′), fst(u′) or snd(u′), because they

are of typeopt[msg]). If u is any other form besides an encryption, the value ofdec(u, x) is

always⊥, so we may further require that in canonical formdec(u, x), u must be of the form

enc(u′, x′).

Lemma 3.1. For everys ∈ I and every environmentρ ∈ JΓKs, if u1, u2 are two canonical terms

such thatΓ, x : τ ` u1 : τ ′ andΓ ` u2 : τ hold, then eitherJu1[u2/x]Ksρ = ⊥, or there is

another canonical termu such thatΓ ` u : τ ′ hold andJuKsρ = Ju1[u2/x]Ksρ.

Proof. We prove the statement by induction on the structure ofu1. Only some particular cases

are listed here.

• u1 ≡ λx1. · · ·λxm.u
′
1t1 · · · tm′ : By induction, there exists canonical termu′′1 such that

Ju′1[u2/x]Ksρ = Ju′′1Ksρ, thenJu1[u2/x]Ksρ =
q
λx1. · · ·λxm.u

′′
1t
′
1 · · · t′m′

y
sρ, wheret′1 =

t1[u2/x], ... , t′m′ = tm′ [u2/x].

52 CHAPITRE 3. MODÈLES CATÉGORIQUES

• u1 ≡ let s1 ⇐ new in val(u′1): Clearly, Γ, s1 : key, x : τ ` u′1 : τ ′ holds, then by

induction, there is a canonical termu′′1 such thatΓ, s1 : key, x : τ ` u′1 : τ ′ holds and

Ju′′1K(s+ s1)inls,s1(ρ) = Ju1[u2/x]K(s+ s1)inls,s1(ρ), if Ju1[u2/x]K(s+ s1)inls,s1(ρ) 6=
⊥. Therefore,Ju1[u2/x]Ksρ = Jlet s1 ⇐ new in val(u′′1)Ksρ.

• u1 ≡ dec(u′1, y): By induction, if Ju′1[u2/x]Ksρ 6= ⊥, there is a canonical termu′′1 such

thatJu′′1Ksρ = Ju′1[u2/x]Ksρ. ThenJu1[u2/x]Ksρ = Jenc(u′′1, y)Ksρ, whereenc(u′′1, y) is

canonical.

• u1 ≡ dec(u′1, y): If Ju′1[u2/x]Ksρ 6= ⊥, by induction, there is a canonical termu′′1 such

thatJu′′1Ksρ = Ju′1[u2/x]Ksρ, soJu1[u2/x]Ksρ = Jdec(u′′1, y)Ksρ. Clearly, the type ofu′′1
must bemsg. The only case whereJu1[u2/x]Ksρ 6= ⊥ is thatu′′1 ≡ enc(u′′′1 , z), for another

canonical termu′′′1 , andρ(y) = ρ(z). In this case,Ju1[u2/x]Ksρ = Ju′′′1 Ksρ. In any other

case,Ju1[u2/x]Ksρ = ⊥.

Proposition 3.2. Let t be a term such thatΓ ` t : τ is derivable. For everys ∈ I andρ ∈ JΓKs,
if JtKsρ 6= ⊥, there exists a canonical termu such thatΓ ` u : τ holds andJtKsρ = JuKsρ.

Proof. We prove the statement by induction on the structure of termt. We show only the cases of

functions, applications, computations and two message operations — encryption and decryption.

Other cases are standard.

• t ≡ λx.t′: Assume thatt is of typeτ → τ ′ and letf = JtKsρ. By the definition ofJ_Ksρ,

for everyi : s→ s′ ∈ I and every valuea ∈ JτKs′, fs′(i, a) = Jt′Ks′(JΓKi(ρ)[x 7→ a]) =
Ju′Ks′(JΓKi(ρ)[x 7→ a]), where by inductionu is a term in canonical form. Thenλx.u is

also a canonical term andJλx.uKsρ = Jλx.tKsρ.

• t ≡ t1t2: JtKsρ = (Jt1Ksρ)s(ids, Jt2Ksρ). By induction,Jt1Ksρ = Ju1Ksρ andJt2Ksρ =
Ju2Ksρ, whereu1 andu2 are two canonical terms.u1 must be of a function type, so it is

– either a variabley ∈ Γ, thenJtKsρ = (JyKsρ)s(ids, Jt2Ksρ) = Jyt2Ksρ, andyt2 is in

canonical form;

– or an abstractionλx1 · · ·xn.u
′
1t
′
1 · · · t′m, then

JtKsρ =
q
λx2 · · ·xn.u

′
1t
′
1 · · · t′m

y
sρ[x1 7→ Ju2Ksρ]

=
q
λx2 · · ·xn.(u′1[u2/x1])t′′1 · · · t′′m

y
sρ

=
q
λx2 · · ·xn.yt

′′
1 · · · t′′m

y
sρ[y 7→

q
u′1[u2/x1]

y
sρ]

=
q
λx2 · · ·xn.yt

′′
1 · · · t′′m

y
sρ[y 7→

q
u′′1

y
sρ]

(by Lemma 3.1,u′′1 is canonical andJu′′1Ksρ = Ju′1[u2/x]Ksρ)

=
q
λx2 · · ·xn.u

′′
1t
′′
1 · · · t′′m

y
sρ

3.4. FORMES CANONIQUES 53

where t′′i = t′i[u2/x] (i = 1, . . . ,m), and by Lemma 3.1,u′′1 is canonical, then

λx2 · · ·xn.u
′′
1t
′′
1 · · · t′′m is canonical as well.

• t ≡ new: JnewKsρ = Jlet y⇐ new in val(y)Ksρ, for some variabley 6∈ Γ.

• t ≡ let x⇐ t1 in t2: By induction, there are canonical termslet s1 ⇐ new in val(u1)
andlet s2 ⇐ new in val(u2) such that

Jt1Ksρ = Jlet s1 ⇐ new in val(u1)Ksρ

= [s1, Ju1K(s+ s1)inls,s1(ρ)[s1 7→ s1]]

and

Jt2K(s+ s1)ρ′ = Jlet s2 ⇐ new in val(u2)K(s+ s1)ρ′

= [s2, Ju2K(s+ s1 + s2)inls+s1,s2(ρ
′)[s2 7→ s2]]

whereρ′ = inls,s1(ρ)[x 7→ a] for everya ∈ Jτ ′K(s+ s1) (assuming thatt1 is of typeTτ ′).

Let a′ = Ju1K(s+ s1)inls,s1(ρ)[s1 7→ s1], then

q
τ ′

y
inls+s1,s2(a

′) = Ju1K(s+ s1 + s2)inls, s1 + s2(ρ)[s1 7→ s1],

hence,

Ju2K(s+ s1 + s2)inls+s1,s2(inls,s1(ρ[x 7→ a′])[s1 7→ s1, s2 7→ s2]

= Ju2K(s+ s1 + s2)inls,s1+s2(ρ)[x 7→
q
τ ′

y
inls+s1,s2(a

′), s1 7→ s1, s2 7→ s2]

= Ju2[u1/x]K(s+ s1 + s2)inls,s1+s2(ρ)[s1 7→ s1, s2 7→ s2]

=
q
u′

y
(s+ s1 + s2)inls,s1+s2(ρ)[s1 7→ s1, s2 7→ s2],

where by Lemma 3.1,u′ is a canonical term such thatΓ, s1, key, s2, key ` u′ : τ holds.

According to the interpretation in the modelSetI ,

JtKsρ = Jlet x⇐ t1 in t2Ksρ =
q
let s1 + s2 ⇐ new in val(u′)

y
sρ.

Clearly,let s1 + s2 ⇐ new in val(u′) is canonical.

• t ≡ enc(t1, t2): by induction, there are canonical termsu1 andu2 such thatJt1Ksρ =
Ju1Ksρ andJt2Ksρ = Ju2Ksρ, then

JtKsρ = e(Jt1Ksρ, Jt2Ksρ) = e(Ju1Ksρ, Ju2Ksρ) = Jenc(u1, u2)Ksρ.

In particular,u2 is of typekey, so it must be a variable, soenc(u1, u2) is canonical.

54 CHAPITRE 3. MODÈLES CATÉGORIQUES

• t ≡ dec(t1, t2): If Jt1Ksρ = e(a, Jt2Ksρ) for somea ∈ JmsgKs, by induction there is a

canonical termenc(u1, u2) such thatJt1Ksρ = Jenc(u1, u2)Ksρ, thenJtKsρ = a = Ju1Ksρ
andu1 is canonical. Otherwise,JtKsρ = ⊥.

Lemma 3.3. For every termt such thatw : key ` t : msg is derivable,JtKsρ ∈ JmsgKρ(w), for

everys ∈ I andρ ∈
q
key

y
s.

Proof. By Proposition 3.2, we simply consider the canonical form oft (denoted byu), and since

there is no free variable ofmsg type andnat type,u could only bek(x), k(n), enc(u1, u2) or

p(u1, u2). Then we can prove the desired property by induction on the structure ofu.

Given a typing contextΓ and an environmentρ ∈ JΓKs, we say that a valuea ∈ JτKs
is definable, if there is a termt such thatΓ ` t : τ is derivable, andJtKsρ = a. Note that

ρ(w) ⊆ s, henceJmsgKρ(w) ⊆ JmsgKs. The above lemma actually states the definability of

elements inJmsgKs — a value inJmsgKs is definable if and only if it belongs toJmsgKρ(w).
Definability will be largely involved in the discussion of Chapter 6, where we shall concentrate

on the completeness of logical relations.

3.5 Équivalence contextuelle

Contextual equivalence is a crucial notion in our approach, since we use it to describe security

properties of protocols. Although there are standard definitions in lambda-calculus, it turns out

that they do not fit well in the cryptographic metalanguage. Indeed, contextual equivalence for

cryptographic protocols is very subtle and requires careful treatment.

We start by defining contextual equivalence in the simply-typed lambda-calculus. Contexts

are simply programs, but we are not interested in arbitrary programs. We do not get concrete

sense from values like functions or cipher-texts, so we consider only those programs that return

observable values. Fix a setObs of so-calledobservation types. Usually,Obs consists of any

base type with decidable equality. For instance,bool andnat in the cryptographic metalanguage

are observation types, but typeskey andmsg are not. Usually, in a set-theoretic model of simply-

typed lambda calculi, we say that two valuesa1, a2 ∈ JτK, for the same typeτ , arecontextually

equivalent, written asa1 ≈τ a2, if and only if, whatever the termC such thatx : τ ` C : o
(o ∈ Obs) is derivable,

JCK[x 7→ a1] = JCK[x 7→ a2].

Two closed termst1 and t2 such that̀ t1 : τ and` t2 : τ are derivable, are contextually

equivalent (written ast1 ≈τ t2), if and only if their denotations (in the set-theoretical model) are

contextually equivalent.

3.5. ÉQUIVALENCE CONTEXTUELLE 55

Intuitively, this (essentially standard) notion captures the fact that we would like to consider

t1 and t2 as equivalent provided, whatever the question we ask about them, the answer is the

same fort1 andt2. Asking a question aboutt means executingt in a context (a.k.a., an operating

system)C with an observation type,bool for example, i.e., runningC whenx takes the value of

t and watching the output. If the answer differs fort = t1 and fort = t2 in the contextC, then

there is an observable difference betweent1 andt2.

Contextual equivalence for the key generation monad

Defining contextual equivalence in the cryptographic metalanguage (and hence in the categorical

modelSetI) is a bit tricky. First, we have to consider contextsC of type To (o ∈ Obs), not

of type o. Intuitively, contexts should be allowed to do some computations; were they of type

o, they could only return values. In particular, note that contextsC such thatx : Tτ ` C : o is

derivable, meant to observe computations at typeτ , cannot observe anything. This is because the

only way we can make use of values of computations in the metalanguage is to put computations

in thelet construction, while the(let) typing rule only allows us to use computations to build

other computations, never values.

Another tricky aspect is that attackers in the metalanguage are actually modeled by contexts

where a protocol can execute. Hence we cannot take contextsC that only depend on one variable

x : τ as before. We must indeed assume thatC can also depend on an arbitrary set of keys, keys

disclosed to contexts (attackers). Given keysk1, . . . , kn, the only wayC can be made to depend

on them is to assume thatC hasn free variablesz1, . . . , zn of type key, which are mapped to

k1, . . . , kn. (It is more standard [PS93a, AG99] to consider expressions built on separate sets of

variables and keys, thus introducing the semantic notion of keys in the syntax. It is more natural

here to consider that there are variableszm mapped, in a one-to-one way, to keyskm.) Let s′ be a

set of keys containingk1, . . . , kn, letw′ be{z1, . . . , zn}, andi′ : w′ → s′ the injection mapping

eachzm to km (1 ≤ m ≤ n). We shall usei′ to denote the environment mapping every variable

zi to ki:

i′ ≡ [z1 7→ k1, . . . , zn 7→ kn].

We then consider contextsC such thatw′ : key, x : τ ` C : To is derivable, evaluateJCKs′i′[x 7→
a1] and compare it withJCKs′i′[x 7→ a2] to decide whethera1 anda2 are contextually equivalent.

This represents the fact thatC is evaluated in a world where all keys ins′ have been created, and

whereC has access to all (disclosed) keys ini′(w′).
This definition is not yet correct, as this would requirea1 anda2 to be inJτKs′, but they are

in JτKs for some possibly different sets of keys created during the evaluation ofa1 anda2. This

is repaired by considering a coercionJτKl, wherel : s → s′ is an injection inI. We then arrive

at the following definition of Contextual equivalence:

56 CHAPITRE 3. MODÈLES CATÉGORIQUES

Definition 3.1. a1, a2 ∈ JτKs are contextually equivalent ats, written asa1 ≈s
τ a2, if and only

if, for every finite set of variablesw′, for any injectionsi′ : w′ → s′ and l : s → s′, for every

termC such that

w′ : key, x : τ ` C : To, (o ∈ Obs)

is derivable,

JCKs′i′[x 7→ JτKl(a1)] = JCKs′i′[x 7→ JτKl(a2)].

This notion is inspired by [PS93a, Definition 4]. Here we consider only contexts having ac-

cess toall keys ins′, i.e.,i′(w′) = s′, and we lose no generality by this simplification. Moreover,

we can just equatew′ with s′, thena1 ≈s
τ a2 if and only if, for every injectionl : s → s′, for

every termC such that

s′ : key, x : τ ` C : To, (o ∈ Obs)

is derivable,

JCKs′ids′ [x 7→ JτKl(a1)] = JCKs′ids′ [x := JτKl(a2)],

where we see thevariablesin s′ as denoting thekeysin s′ here, equating keys with variables.

Chapitre 4

Relations logiques

Il n’est pas facile de prouver l’équivalence contextuelle directement à cause de la quantifica-

tion universelle sur les contextes. Heureusement, dans le lambda-calcul, nous pourrons déduire

l’équivalence contextuelle en utilisant une technique appelérelations logiques. C’est un outil

puissant des lambda-calculs typés qui permet de prouver de nombreux résultats importants dans

ce domaine (voir [Mit96] pour une liste de résultats qui peuvent être prouvés à l’aide de relations

logiques).

Essentiellement, une relation logique est un ensemble de relations, une pour chaque type, et

les relations sont définies par récurrence sur les types. Le point crucial est que deux fonctions

(forcément du même type) sont reliées si et seulement si les images de deux données reliées

sont reliées. En général, les relations logiques sont définies d’une façon dénotationnelle [Plo80,

Mit96] et la construction sur les catégories cartésiennes fermées permet de déduire les relations

logiques des lambda-calculs simplement typés. Avec cette construction, nous pouvons définir les

relations logiques sur presque tous les modèles concrets des lambda-calculs simplement typés,

par exemple sur les modèles basés sur les ensembles ou sur la catégorie de foncteursSetI .

Pourtant, cette construction générale n’est pas suffisante pour déduire une relation logique

d’un langage avec les types monadiques, puisqu’elle ignore la présence éventuelle de monades.

Cette difficulté a été réglée par Goubault-Larrecq, Lasota et Nowak dans [GLLN02], où ils défi-

nissent une construction générale de relations logiques monadiques sur les catégories avec mo-

nades. Ainsi, ils montrent que certaines conditions doivent être satisfaites pour définir les rela-

tions logiques monadiques. Ils appliquent leur méthode à de nombreuses monades concrètes, y

compris celle du modèleSetI , et ils obtiennent des relations logiques concrètes pour des effets

de bord divers.

Pourtant, nous observons que le modèleSetI n’est pas suffisant pour étudier les relations

entre les programmes de notre métalangage, donc nous ne pouvons pas déduire sur cette catégorie

des relations logiques assez puissantes pour le métalangage cryptographique. Afin de définir une

57

58 CHAPITRE 4. RELATIONS LOGIQUES

relation logique pour la monade de génération de clés, nous avons besoin d’une catégorie plus

riche, c’est-à-dire d’une catégorie avec plus d’informations.

Le chapitre 4, ainsi que le chapitre suivant, porte sur la construction des relations logiques du

métalangage cryptographique. Cela comporte tout d’abord une discussion sur ce que doit être la

catégorie correcte pour dériver les relations logiques.

Les deux premières parties sont des parties préliminaires sur les relations logiques. La par-

tie 4.1 comporte une définition standard des relations logiques du lambda-calcul, notamment

la construction catégorique basée sur les catégories cartésiennes fermées. Pour exemple, nous

montrons comment dériver une relation logique sur la catégorieSetI (sans monade) selon la

construction générale. Nous étendons ensuite la construction pour déduire les relations logiques

monadiques sur les catégories avec monades. Plusieurs exemples sont donnés dans cette partie,

y compris la monade de génération de clés (sur la catégorieSetI). Pourtant, dans la partie 4.3,

nous verrons que les relations logiques dérivées sur le modèleSetI est trop faible — nous ne pou-

vons pas relier des programmes qui sont équivalents contextuellement d’une manière évidente.

Nous définissons alors une nouvelle catégorieSetI→ et la construction des relations logiques sur

cette nouvelle catégorie est exposée dans la partie 4.4. Nous arrivons donc à une relation logique

du métalangage cryptographique dans la partie 4.5, en définissant les relations des types bases,

notamment du typemsg. Nous vérifions aussi quelques propriétés de cette relation logique.

59

Contextual equivalence is not easy to prove directly, notably because of the universal quan-

tification over an infinite number of contexts. In typed lambda-calculi, we are usually able to

deduce contextual equivalence using a technique calledlogical relations. This is a powerful tool

in typed lambda-calculi, which allows us to prove a number of important results in this domain

(see [Mit96] for a list of results that can be proved via logical relations).

Essentially, a logical relation is a family of relations, one for each type, defined inductively.

The crux is that relations for functions must be determined from the relations for arguments

and results, in a way that guarantees closure under application and lambda abstraction. Logical

relations are usually defined in a denotational way [Plo80, Mit96]. In particular, the construc-

tion based on cartesian closed categories [MS93, MR92] defines a general way for constructing

logical relations in typed lambda-calculi. Following this construction, we can define logical

relations over almost all concrete models of typed lambda-calculi (necessarily sound), e.g., a

set-theoretical model or the functor categorySetI .

However, this general construction is not enough to construct logical relations for a language

with monadic types, since a CCC is not equipped with a monad in general, hence there is no

standard way to derive relations for monadic types. This was mended by the work of Goubault-

Larrecq, Lasota and Nowak [GLLN02]. They define a general construction of logical relations

over categories with monads, and show that for defining such logical relations, the model must

satisfy certain properties. They also apply this method to a number of concrete monads, including

the modelSetI , and obtain concrete logical relations for various forms of computation.

However, we observe that the modelSetI is indeed insufficient for the study of relations

between programs of the metalanguage, hence it is insufficient too for us to define logical rela-

tions for the cryptographic metalanguage. In order to define logical relations for dynamic key

generation, we need a category with more information.

Chapter 4 and Chapter 5 are mainly about deriving logical relations for the cryptographic

metalanguage. This includes in the first place a discussion on what should be the right category

for deriving logical relations.

Section 4.1 and Section 4.2 are two introductory sections. Section 4.1 is about the standard

definition of logical relations, in particular the categorical construction in cartesian closed cate-

gories. As an example, we also show how to follow the categorical construction to derive a logical

relation over the categorySetI (without monad). Section 4.2 then extends this construction to

categories with monads. Some examples are also given in this section, notably the dynamic name

creation monad (the modelSetI with monad). Since logical relations derived over this category

are indeed too weak to recognize some obviously contextually equivalent programs, we define

a new categorySetI→ in Section 4.3. Section 4.4 shows how to derive logical relations over

this new category. By defining relations for base types, notably themsg type, we then arrive at

60 CHAPITRE 4. RELATIONS LOGIQUES

a logical relation for the cryptographic metalanguage, in Section 4.5. Some properties are also

checked about this logical relation.

However, logical relations derived over the categorySetI→ are still too weak. We start

Chapter 5 by a counter-example showing the weakness of the categoryI→, then in Section 5.1

we reviseI→ by adding some constraints and call the revised categoryPI→. In Section 5.2, we

show thatSetPI→ is the right category for deriving logical relations for the cryptographic meta-

language. We arrive finally at a cryptographic logical relation for the metalanguage in Section 5.3

and check certain properties. We show that this logical relation can be used to verify protocols in

Section 5.4, by checking the two protocols presented in Chapter 2. In Section 5.5, we do some

comparison with logical relations for the nu-calculus. We in particular show that logical rela-

tions derived over the categorySetPI→ are equivalent to Stark’s (denotational) logical relations

[Sta94].

4.1 Relations logiques

Consider a set-theoretical model of the simply-typed lambda calculus. A (binary)logical relation

is a family(Rτ)τ type of binary relationsRτ on JτK, one for each typeτ , which are defined by

induction on the type structure. In particular, two functions are related if and only if they map

related arguments to related results. Precisely, for every pair of functionsf1, f2 ∈ Jτ → τ ′K, the

following condition must be always satisfied:

(Log) f1 Rτ→τ ′ f2 ⇐⇒ ∀a1, a2 ∈ JτK · a1 Rτ a2 ⇒ f1(a1) Rτ ′ f2(a2).

This is the standard definition of logical relations in theλ-calculus [Mit96]. We writea1 R a2

to say thata1 anda2 are related by the binary relationR.

Note that there is no constraint on relations for base types. In a simply-typed lambda calculus

with only base types and function types, once the relationsRb, for any base typeb, are fixed,

the condition above forces(Rτ)τ type to be uniquely determined, by induction on types. It is

certainly possible to derive relations for other complex types by induction, for example, two

pairs are related if and only if the components are related respectively.

The(Log) condition entails notably the so-calledbasic lemma. To state it, first say that two

Γ-environmentsρ1, ρ2 arerelatedby the logical relation, in notationρ1 RΓ ρ2, if and only if

ρ1(x) Rτ ρ2(x) for everyx : τ in Γ. The basic lemma states that ifΓ ` t : τ is derivable, and

ρ1, ρ2 are two relatedΓ-environments, thenJtKρ1 Rτ JtKρ2. This is a simple induction on (the

typing derivation of)t (see [Mit96] for details).

We are interested in the basic lemma because, as observed e.g. in [SP03], this implies that

for all logical relations that coincide with equality on observation types, two terms with related

4.1. RELATIONS LOGIQUES 61

values must be contextually equivalent. More precisely, assume thatRo is equality onJoK for

every o ∈ Obs. Take the simple notion of contextual equivalence in simply-typed lambda-

calculi, i.e., for any pair of termst1, t2 such that̀ t1 : τ and` t2 : τ are derivable,t1 ≈τ t2 if and

only if, for any termC such thatx : τ ` C : o (o ∈ Obs) is derivable,JCK[x 7→ Jt1K] = JCK[x 7→
Jt2K]. Then, ifJt1K Rτ Jt2K, we conclude thatt1 ≈τ t2. Indeed, by the basic lemma, for everyC

such thatx : τ ` C : o is derivable (o ∈ Obs), it holds thatJCK[x 7→ Jt1K] Ro JCK[x 7→ Jt2K],
i.e.,JCK[x 7→ Jt1K] = JCK[x 7→ Jt2K] since Ro is equality.

Categorical generalization

The standard definition of logical relations can be derived from a general construction over CCCs,

using the notion of sconing [MS93]. Fix two categoriesC andCCC and a functor|_| : C → CCC. The

comma category(CCC ↓ |_|) is the category whose objects are triples〈S, f,A〉, with f : S → |A|
inCCC, and whose morphisms are pairs〈u, v〉 : 〈S, f,A〉 → 〈S′, f ′, A′〉 with u : S → S′ ∈ CCC and

v : A→ A′ ∈ C, such that the following square commutes inCCC:

S
f //

u

��

|A|

|v|

��
S′

f ′ // |A′|

.

This category is also called thescone ofC overCCC. The second projection functorU : (CCC ↓
|_|) → C (also seen as a forgetful functor) maps〈S, f,A〉 to A and a morphism〈u, v〉 to v.

The full subcategory of this scone consisting of all objects〈S, f,A〉 with f a mono is called the

subscone ofC overCCC, denoted bySubsconeCCC
C .

A remarkable feature of sconing is that it preserves almost all additional categorical structures

thatC might have (see [FS90] for further discussion). In particular, if bothC andCCC are CCCs

andCCC has pull-backs and if the functor|_| preserves finite products, thenSubsconeCCC
C is cartesian

closed as well [Laf87, MR92]. SupposeX = 〈S, f,A〉 andY = 〈S′, f ′, A′〉 are two objects in

SubsconeCCC
C . The exponentialY X is constructed as follows:Y X = 〈R, h,A′A〉, together with a

morphismg0 : R→ S′S , such that the following diagram is a pull-back inCCC:

R

g0

��

� � h // |A′A|

g2

��

S′S
� � g1 // |A′|S

,

62 CHAPITRE 4. RELATIONS LOGIQUES

whereg1, g2 are the unique morphisms making the following two diagrams commute:

S′S × S
eval //

g1×id

��

S′� _

f ′

��
|A′|S × S

eval // |A′|

, |A′A| × S
id×f //

g2×id

��

|A′A| × |A|

|eval|

��
|A′|S × S

eval // |A′|

,

and it can be verified thatg1 is a mono, henceh is a mono as well. The application morphism is

defined byevalX,Y = (evalS,S′ ◦ (g0 × idS), evalA,A′). This is indeed a morphism fromY X

to Y in SubsconeCCC
C because the following diagram commutes:

R× S
h×f //

g0×id

��

h×id
%%JJJJJJJJJJJJJ |A′A| × |A|

|A′A| × S

g2×id

��

id×f

88rrrrrrrrrrrrr
|A′A ×A|

|eval|

��

S′S × S

eval

��

g1×id // |A′|S × S

eval

&&LLLLLLLLLLLLLL

S′
f // |A′|

.

The uniqueness property of exponentiation also holds (see [MR92] for the detailed proof).

Now letΣb be the set of all base types inΣ, seen as a discrete category and letC be aΣ-CCC.

As shown in Section 3.1.1, there is a unique representationJ_KC from the freeΣ-CCCλλλ(Σ) to C.

Clearly, the following diagram commutes:

Σb
⊆ //

J_Kb
!!D

DD
DD

DD
DD

DD
λλλ(Σ)

J_KC

��
C

,

whereJ_Kb is the functor representing the intended interpretation of base types inC. Now assume

CCC is anotherΣ-CCC, such thatCCC has pull-backs. Let|_| be a functor fromC toCCC that preserves

terminal object, finite products and interpretations ofΣ, i.e., JbKCCC = JbKC . ThenSubsconeCCC
C

is also aΣ-CCC, with〈JbKCCC , id, JbKC〉 as the denotation for base typeb and〈JcKCCC , JcKC〉 as the

denotation for term constantc. Assume we are given a functor fromΣb to SubsconeCCC
C , i.e., a

collectionRb of objects inSubsconeCCC
C , one for each base typeb. Then there is a unique repre-

4.1. RELATIONS LOGIQUES 63

sentationR of Σ-CCCs fromλλλ(Σ) to SubsconeCCC
C such that the following diagram commutes:

Σb
⊆ //

(Rb)b∈Σ

��

λλλ(Σ)

R
zztttttttttttt

SubsconeCCC
C

.

Now the crux of constructing logical relations in the modelC is as follows. The forgetful functor

U : SubsconeCCC
C → C, which maps an object〈S,m,A〉 toA and a morphism〈u, v〉 to v, is also

a representation ofΣ-CCCs. It follows thatU ◦ R is a representation ofΣ-CCCs again, from

λλλ(Σ) to C. If U ◦ (Rb)b∈Σ = J_Kb, then by the uniqueness property ofJ_KC , we must have

U ◦ R = J_KC , i.e., the following diagram commutes:

λλλ(Σ)

R

zztttttttttttt

J_KC

��
SubsconeCCC

C U
// C

. (4.1)

LetCCC = Set, C = Set×Set and let|_| be the functorid× id, whereid denotes the identity

functor. Every binary relationS ⊆ A1×A2 has a representation〈πS
1 , π

S
2 〉 : S ↪→ A1×A2, where

the arrow is the inclusion induced by two projectionsπS
1 : S → A1 andπS

2 : S → A2. R(τ) is of

the formS ↪→ JτK×JτK, whereJ_K is the interpretation of lambda terms in set-theoretical models

(J_KC = 〈J_K, J_K〉), andS, up to isomorphism, is just a subset ofJτK × JτK. Then(Rτ)(τ type)

behaves like a logical relation: the object part of functorR yields logical relations (or extensions)

in set-theoretical models. In particular, the fact thatR preserve exponentials states the(Log)
condition:

(f1, f2) ∈ R(τ → τ ′) ⇐⇒ ∀(a1, a2) ∈ R(τ) · (f1(a1), f2(a2)) ∈ R(τ ′);

the morphism part of functorR maps each morphism[y := t] : Γ → {y : τ} in λλλ(Σ), namely

a typed termΓ ` t : τ moduloβη, to a morphism in the subscone, i.e., a pair〈u, v〉, where

v = (JΓ ` t : τK, JΓ ` t : τK) according to the commuting diagram 4.1. The fact that〈u, v〉 is a

morphism, i.e., the following diagram commutes:

RΓ
� � //

u

��

JΓK× JΓK

v=(JΓ`t:τK,JΓ`t:τK)

��
Rτ

� � // JτK× JτK

,

64 CHAPITRE 4. RELATIONS LOGIQUES

states the basic lemma: for any pair of environmentsρ1 andρ2,

(ρ1, ρ2) ∈ R(Γ) =⇒ (JΓ ` t : τKρ1, JΓ ` t : τKρ2) ∈ R(τ).

Now consider the functor categorySetI . LetCCC = SetI andC = SetI × SetI . Clearly,

SetI has pull-backs, defined pointwise. Objects of the subscone overSetI give rise toI-indexed

Kripke logical relations[MM91]. Precisely, every relation in anI-indexed Kripke logical rela-

tion is indexed not only by a type, but also by a sets in I. This extra index is usually called

a world, which is also seen as a representation of a computation stage. In the case of dynamic

key generation, a world is just a set of keys that have been generated at that stage. If there is a

morphismi : s → s′ ∈ I, we say thats is asmaller worldands′ is a larger world. Note that

a smaller world does not mean a smaller set here, but a non-larger set, and similar for a larger

world.

As an object in the subsconeSubsconeSet
Set×Set is a representation of a binary relation, an

object 〈πS
1 , π

S
2 〉 : S ↪→ A1 × A2 (S,A1, A2 ∈ SetI) in the subsconeSubsconeSetI

SetI×SetI
is

a representation of a series of binary relations, such that for anys ∈ I, 〈πS
1 , π

S
2 〉s : Ss ↪→

A1s × A2s is an inclusion (up to isomorphism). In other words,S is a family of relationsSs

betweenA1s andA2s, functorial ins, and the functoriality requires that

∀i : s→ s′ ∈ I · (a1, a2) ∈ Ss =⇒ (A1i(a1), A2i(a2)) ∈ Ss′.

This is the so-calledmonotonicityproperty of Kripke logical relations. Intuitively, it says that

every related values at a smaller world must remain related when they are lifted to a larger world.

Exponentials in the subsconeSubsconeSetI

SetI×SetI
define relations for functions in Kripke

logical relations, which are slightly different from those in standard logical relations. Consider

the exponentialY X = S ↪→ B1
A1×B2

A2 , whereX = SA ↪→ A1×A2 andY = SB ↪→ B1×B2.

For anys ∈ I and for any pair of functionsf1 ∈ B1
A1s, f2 ∈ B2

A2s (recall that in the category

SetI , fi is a natural transformation such that for everyi : s → s′ ∈ I, f1s
′ is a morphism

fis
′ : I(s, s′)×Ais

′ → Bis
′):

(f1, f2) ∈ Ss⇐⇒
∀i : s→ s′ ∈ I · ∀a1 ∈ A1s

′, a2 ∈ A2s
′·

(a1, a2) ∈ SAs
′ ⇒ (f1s

′(i, a1), f2s
′(i, a2)) ∈ SBs

′.

This is the so-calledcomprehensionproperty of Kripke logical relations, which means that related

functions at some world should map related argumentsat any larger worldto related results.

4.2 Relations logiques pour les types monadiques

Defining logical relations for Moggi’s computational lambda-calculus follows the same pattern,

but we need to consider thefreeΣ-let-CCCCompCompComp(Σ) overΣ, instead ofλλλ(Σ). Similarly, we

4.2. RELATIONS LOGIQUES POUR LES TYPES MONADIQUES 65

get the following commuting diagram,

Σb
⊆ //

J_Kb

$$H
HHHHHHHHHHHH CompCompComp(Σ)

J_KC

��
C

.

whereC is a Σ-let-CCC, andJ_KC is a representation ofΣ-let-CCCs, i.e., a functor that pre-

serves products, exponentials, interpretations of constants, and the strong monad (functor, unit,

multiplication, strength).

We then needSubsconeCCC
C to be aΣ-let-CCC to establish the diagram

Σb
⊆ //

(Rb)b∈Σ

��

CompCompComp(Σ)

R
xxrrrrrrrrrrrrr

SubsconeCCC
C

.

That is, we need to lift a strong monad(T, η, µ, t) onC to another monad(T̃ , η̃, µ̃, t̃) onSubsconeCCC
C

such that the following diagram

SubsconeCCC
C

eT //

U

��

SubsconeCCC
C

U

��
C T // C

(4.2)

commutes, i.e.,T ◦ U = U ◦ T̃ . Moreover, for any objectX ∈ SubsconeCCC
C , Uη̃X = ηUX and

Uµ̃X = µUX . This amounts to the requirement that the following two diagrams commute:

TUX

UX

ηUX

;;wwwwwwwww U eηX // UT̃X

T2UX
µUX

zztttttttttt

TUX TUT̃X

UT̃X UT̃ 2XU eµX

oo

where by we mean the identity between two objects by (4.2).

According to [GLLN02], to lift a strong monad(T, η, µ, t) onC to SubsconeCCC
C , we need:

• a categoryCCC with explicitly given finite products and natural isomorphismsγγγ andααα:

γγγA : 1×A→ A αααA,B,C : (A×B)× C → A× (B × C)

for anyA,B,C ∈ CCC;

66 CHAPITRE 4. RELATIONS LOGIQUES

• a functor |_| : C → CCC, preserving finite products and natural isomorphisms (namely

mappingγ andα in C toγγγ andααα respectively);

• a strong monad(TTT, ηηη,µµµ, t) onCCC, related to(T, η, µ, t) by a natural transformation (called

amonad morphism) 1 σ : TTT|_| → |T_| making the following diagram commute:

|A| ×TTT|B|
id|A|×σB //

t|A|,|B|
��

|A| × |TB| |A× TB|
|tA,B |
��

TTT(|A| × |B|) TTT|A×B|
σA×B // |T(A×B)|

• amono factorizationsystem onCCC, which is essentially an epi-mono factorization [AHS90]

without the requirement for epis. Formally, a mono factorization system is given by two

distinguished subclasses of morphisms inCCC, the so-calledpseudoepis // // and the

so-calledrelevant monos◦ // . The latter must be monos, while the former are not nec-

essarily epis. Both classes must contain all isomorphisms and be closed under composition

with isomorphisms. Each morphismf inCCC must factor asf = m ◦ e for some pseudoepi

e and some relevant monom. For each commuting diagram as the one on the left, there is

a unique diagonal making both triangles commute in the right diagram:

• // //

��

•

��
•◦ // •

• // //

��

•

����
•◦ // •

• bothTTT and finite products preserve pseudoepis.

All these requirements guarantee the correctness of the lifting of strong monadT of C toSubsconeCCC
C .

The detailed construction can be found in [GLLN02]. We only summarize the definition of the

lifted monad(T̃ , η̃, µ̃, t̃) onSubsconeCCC
C :

• for any object〈S, f,A〉 ∈ SubsconeCCC
C , T̃ 〈S, f,A〉 = 〈S̃,mS,A,TA〉 such that

TTTS
TTTf //

eS,A
����

TTT|A|

σA

��

S̃ ◦
mS,A // |TA|

commutes, for some pseudoepieS,A;

1σ was named ‘distributivity law’ in [GLLN02]. We renamed it as one might confuse it with a distributive law by

Beck [Bec69].

4.2. RELATIONS LOGIQUES POUR LES TYPES MONADIQUES 67

• for any morphism〈u, v〉 : 〈S, f,A〉 → 〈S′, f ′, A′〉 ∈ SubsconeCCC
C , T̃ 〈u, v〉 = 〈ũ, |Tv|〉

whereũ is the unique morphism making the following diagram commute:

TTTS
eS,A // //

TTTu

��

S̃

eu
��

◦
mS,A

��
TTTS′

eS′,A′
����

|TA|

|Tv|
��

S̃′ ◦
mS′,A′// |TA′|

• for every object〈S, f,A〉, η̃〈S,f,A〉 = 〈eS,A ◦ ηηηS , |ηA|〉 is a morphism from〈S, f,A〉 to

T̃ 〈S, f,A〉, i.e.,〈S̃,mS,A,TA〉;

• for every object〈S, f,A〉, µ̃〈S,f,A〉 = 〈k, |TTTA|〉 is a morphism from〈˜̃S,meS,TA
,T2A〉 to

〈S̃,mS,A,TA〉, where〈˜̃S,m′,T2A〉 = T̃ 〈S̃,mS,A, A〉 = T̃ 2〈S, f,A〉 andk : ˜̃
S → S̃ is

the unique morphism making the following right diagram commute,

TTT2S
TTTeS,A // //

µµµS

��

TTTS̃

TTTmS,A

��

l

��

TTTS

eS,A

����

TTT|TA|

σTA

��
|T2A|

|µA|
��

S̃ ◦
mS,A // |TA|

TTTS̃
e eS,TA // //

l

���
�
�
�
�
�
�

˜̃
S◦

m eS,TA

��
k

��

|T2A|

|µA|
��

S̃ ◦
mS,A // |TA|

wherel is the unique morphism making the above left diagram commute.

• for every pair of objects〈S, f,A〉 and〈R, g,B〉, t̃〈S,f,A〉,〈R,g,B〉 = 〈h, tA,B〉, is a morphism

from 〈S, f,A〉×T̃ 〈R, g,B〉, i.e.,〈S × R̃, f ×mR,B, A× TB〉, to〈S̃ ×R,mS×R,A×B,T(A×B)〉
whereh : S × R̃ → S̃ ×R is the unique morphism making the following diagram com-

68 CHAPITRE 4. RELATIONS LOGIQUES

mute:

S ×TTTR
idS×eR,B // //

tS,R

��

S × R̃

f×mR,B

��

h

��

TTT(S ×R)

eS×R,A×B

����

|A| × |TB|

|A× TB|

|tA,B |
��

S̃ ×R ◦
mS×R,A×B // |T(A×B)|

Now assume thatCCC = Set, C = Set × Set, TTT is a strong monad overSet, and |_| is

the functorid × id. A strong monadT on Set × Set can be defined pairwise:T(A1, A2) =
(TTTA1,TTTA2). The monad morphismσ is then defined by the distributivity of the monadTTT onSet
over binary products:

σ(A1,A2) = (TTTπ1,TTTπ2) : TTT(A1 ×A2) → TTTA1 ×TTTA2

whereπ1 andπ2 are the projections fromA1×A2. ObviouslySet has a mono factorization sys-

tem with surjections as pseudoepis and injections as relevant monos. Then all the requirements

are met for lifting the monadT onSet×Set to SubsconeSet
Set×Set, with a strong monad̃T . Every

binary relationS ⊆ A1×A2 has a representation(πS
1 , π

S
2) : S ↪→ A1×A2, and the lifted monad

maps a relationsS to another relatioñS between setsTTTA1 andTTTA2:

TTTS
TTT〈πS

1 ,πS
2 〉 //

����

TTT(A1 ×A2)

σ〈A1,A2〉

��
S̃ ◦ // TTTA1 ×TTTA2

whereS̃ is defined as the direct image of the functionσ〈A1,A2〉 ◦ TTT〈πS
1 , π

S
2 〉, which is proved to

be equal to〈TTTπS
1 ,TTTπ

S
2 〉 [GLLN02].

Moreover, the following diagram commutes:

CompCompComp(Σ)

R

wwooooooooooooooo

〈J_K,J_K〉

��
SubsconeSet

Set×Set
U // Set× Set

whereR, U and J_K are representations ofΣ-let-CCCs, andR(τ), up to isomorphism, is a

subset ofJτK × JτK. The fact thatR preserves (strong) monads gives rise to the logical relation

4.2. RELATIONS LOGIQUES POUR LES TYPES MONADIQUES 69

for monadic types:

(a1, a2) ∈ R(Tτ) ⇐⇒ (a2, a2) ∈ T̃R(τ)

A list of logical relations defined over some concrete monads is given in [GLLN02]. For example,

the relationS̃ for the exception monad (TTTA = A+ E) is

S̃ = S ∪ {(e, e) | e ∈ E},

whereE is the set of exceptions, and̃S for the non-determinism monad (TTTA = Pfin(A)) is

(s1, s2) ∈ S̃ ⇐⇒ (∀a1 ∈ s1.∃a2 ∈ s2.(a1, a2) ∈ S) &

(∀a2 ∈ s2.∃a1 ∈ s1.(a1, a2) ∈ S)

A logical relation for key generation monad

A logical relation for the name creation monad is also defined in [GLLN02]. To derive this logical

relation, we shall consider the functor categorySetI . Precisely, letC = SetI ×SetI ,CCC = SetI

and|_| be the functorid× id. SetI has a mono factorization consisting of pointwise surjections

and pointwise injections. Take the strong monadT on SetI as defined in Section 3.2. For any

A1, A2 ∈ SetI , the functor morphismσ〈A1,A2〉 = 〈Tπ1,Tπ2〉 is then a natural transformation

from T(A1 ×A2) to TA1 × TA2 such that for anys ∈ I, a1 ∈ A1(s+ s′), a2 ∈ A2(s+ s′):

σ〈A1,A2〉s[s
′, (a1, a2)] = ([s′, a1], [s′, a2]),

so we can lift the monadT to SubsconeSetI

SetI×SetI
.

Now consider(πS
1 , π

S
2) : S ↪→ A1 × A2 in the subsconeSubsconeSetI

SetI×SetI
as a represen-

tation of a series of binary relations (for everys ∈ I, Ss ⊆ A1s× A2s). For everys ∈ I, S̃s is

defined as the direct image of〈TπS
1 ,Tπ

S
2 〉s = 〈TπS

1 s,Tπ
S
2 s〉. When we consider the equivalence

relation' between monadic values, this means that for any[s1, a1] ∈ TA1s and[s2, a2] ∈ TA2s,

[s1, a1] S̃s [s2, a2] ⇐⇒
∃s′ ∈ I, a′1 ∈ A1(s+ s′), a′2 ∈ A2(s+ s′) s.t.

(s1, a1) ' (s′, a′1) & (s2, a2) ' (s′, a′2) & a′1 S(s+ s′) a′2,

which is proved to be equivalent to the following definition [GLLN02]:

[s1, a1] S̃s [s2, a2] ⇐⇒
∃s0, i1 : s1 → s0, i2 : s2 → s0 ∈ I s.t.

(A1(ids + i1)a1) S(s+ s0) (A2(ids + i2)a2).

(4.3)

70 CHAPITRE 4. RELATIONS LOGIQUES

4.3 Le catégorieI→

The categorySetI is a perfectly adequate model for dynamic key generation, and we are able

to derive logical relations through the general construction over this category. However, logical

relations derived over this category are too weak in the sense that it is not sufficient for us to

study relations between programs in a language involving dynamic key (or name) generation.

In particular, logical relations for the cryptographic metalanguage depend on what we choose

as relations between keys. This accordingly requires a proper definition ofRs
key. While JkeyKs

varies ass changes,Rs
key should represent the variation of the relation between keys whens

varies. But in the categorySetI , only some very naive relations for keys can be naturally defined,

for instance, an empty relation or a full relation for everys in I (relations for keys are defined

overs sinceJkeyKs = s).

A non-trivial relation ons is the identity relation, but it is noticed in [ZN03] that logical

relations defined inductively from the identity relation on keys are too weak to recognize the

contextual equivalence between certain obviously equivalent programs. Here is an example2,

where we have two programs

p1 = let k⇐ new in val(λx.case dec(x, k) of some(_) in true else false),

p2 = val(λx.false).

In the first program, applying the function to any possible arguments, we always get the value

false, sincek is a fresh key and no context can build a encrypted message withk, hence the

two programs are contextually equivalent, but they are not related by any logical relations that

coincide with equality at the typekey. Write the denotations of the two programs as[{k}, f1] and

[∅, f2]. By (4.3), in order to relate these two computations, we should relate the two functions at

s + {k}, but then we are allowed to apply these functions to messages built fromk and we get

non-related results, namelytrue andfalse.

Recall that our purpose is to use logical relations to prove contextual equivalence. Clearly, not

every pair of keys, but only those disclosed keys can be compared by contexts. We should con-

sider only the equality between these keys. One may argue that those keys that are not disclosed

to contexts are also contextually equivalent since no context can tell the difference between them.

But a subtle point about contextual equivalence is that contextually equivalent programs or values

must be indeed accessible by contexts, while those non-disclosed keys are not, i.e., contexts are

not able to get access to these keys, hence not able to test the equality between them.

2Note that the discussion in [ZN03] is based on the nu-calculus, a language without any constant for encryption,

but a similar counterexample is given with a native constant of testing equality between names (seen equivalently as

keys here) in that language.

4.3. LE CATÉGORIE I→ 71

In fact, there are already several known methods for defining relations between keys. A

very popular way is to take asRs
key the identity on a certain set of “disclosed” keys as in the

framed-bisimulation for Spi-calculus [AG99, AG98], where such a set is called a “frame”. A

more standard way is to consider two different sets of keys and to use a bijection between these

two sets to represent the relation for keys, without forcing related keys to be equal. This is what

Pitts and Stark do for defining an operational logical relation for the nu-calculus [PS93a].

However, in semantics, it is more natural to consider only one set of keys with a subset of

keys seen as “disclosed keys”. We can use the first method here to defineRkey, letting our logical

relation parameterized by a parameterfr (we follow the convention in the framed-bisimulation

and call the parameterfr , denoting “frame”):

k1 Rfr ,s
key k2 ⇐⇒ k1 = k2 ∈ fr

wherefr ⊆ s, denoting those disclosed keys at the stages. Obviously, the parameterfr varies

as the sets changes, and one point that should be noticed in this variation is that, disclosed keys

should always remain disclosed. In other words, when we pass from a smaller worlds to a larger

world s′, keys infr must be still infr . Precisely, for anyi : s → s′ ∈ I and for anyk ∈ frs,

i(k) ∈ frs′ , where we writefrs for the parameterfr at the worlds.

The parameterfr can be formalized by using the comma categoryI→:

Definition 4.1. CategoryI→ is the comma category(I ↓ |_|) where|_| is the identity functor

from I to I. Precisely, objects ofI→ are tuples〈w, i, s〉 with i : w → s in I, and whose

morphisms are pairs(j, l) : 〈w, i, s〉 → 〈w′, i′, s′〉 wherej : w → w′ in I and l : s → s′ in I
such that the following diagram commutes:

w

j

��

i // s

l

��
w′

i′ // s′.

(4.4)

The composition of two morphisms(j, l) : i→ i′ and(j′, l′) : i′ → i′′ is (j′ ◦ j, l ◦ l). We write

i for 〈w, i, s〉 when the domainw and the codomains of i are clear from the context. Intuitively,

every object〈w, i, s〉 of I→ represents a selection of disclosed keys from a sets of keys. Then

naturally,w takes the place of the parameterfr .

In the next section, we shall build another functor categorySetI→ and show how to derive

logical relations over it. The following proposition is useful for refining logical relations derived

overSetI→ .

Proposition 4.1. Suppose thatl1 : s→ s1 andl2 : s→ s2 are two morphisms inI. There exists

a sets′ and two morphismsl′1 : s1 → s′ andl′2 : s2 → s′ in I such thatl′1 ◦ l1 = l′2 ◦ l2.

72 CHAPITRE 4. RELATIONS LOGIQUES

The proof of this proposition will become easier with the following property ofI→:

Proposition 4.2 (Cube property for I→). Suppose that(j1, l1) : 〈w, i, s〉 → 〈w1, i1, s1〉 and

(j2, l2) : 〈w, i, s〉 → 〈w2, i2, s2〉 are two morphisms inI→. There exists〈w′, i′, s′〉 ∈ I→ and

two morphisms(j′1, l
′
1) : i1 → i′ and(j′2, l

′
2) : i2 → i′ such that the following square commutes

in I→:
i

(j1,l1)

����
��

��
�� (j2,l2)

��?
??

??
??

?

i1

(j′1,l′1) ��>
>>

>>
>>

i2

(j′2,l′2)����
��

��
�

i′

(4.5)

Proof. The fact that the diagram (4.5) commutes inI→ is equivalent to the fact that the following

cube commutes inI:
w

j1

}}zz
zz

zz
zz

i
��

j2

!!D
DD

DD
DD

D

w1

i1
��

j′1

BB

!!B
BBB

B

sl1
|||

|

}}||
|

l2
BBB

B

!!B
BB

w2

j′2
||

}}|||
|| i2

��
s1

l′1 B
BB

BB
BB

B w′

i′

��

s2

l′2~~||
||

||
||

s′

(4.6)

Let w′ = w1 ⊕ w2/ ∼w ands′ = s1 ⊕ s2/ ∼s, where⊕ denotes the disjoint union (without

losing generality, we assume thatw1∩w2 = ∅ ands1∩s2 = ∅) and the quotient relations∼w,∼s

are defined by

∀n1 ∈ w1, n2 ∈ w2, n1 ∼w n2 ⇔ ∃n ∈ s s.t.k1(n) = i1(n1) & k2(n) = i2(n2)
∀n1 ∈ s1, n2 ∈ s2, n1 ∼s n2 ⇔ ∃n ∈ s s.t.k1(n) = n1 & k2(n) = n2.

We writeñw for the equivalence of∼w, andñs for that of∼s (we may omitw ands and simply

write ñ when the index is clear from the context). Ifn is not∼-related to other elements, we

haveñ = n.

Definej′l : wl → w′ by j′l(n) = ñw (l = 1, 2), k′l : sl → s′ by k′l(n) = ñs (l = 1, 2) and

i′ : w′ → s′ by

i′(ñw) =
{ ĩ1(n)

s
if n ∈ w1,

ĩ2(n)
s

if n ∈ w2.

Obviously,j1, j2, k1, k2 are (well-defined) injections. We need to show thati′ is also an injection.

For anyñ1
w, ñ2

w ∈ w′ andñ1
w 6= ñ2

w, hencẽn1
w 6∼w ñ2

w, either

4.3. LE CATÉGORIE I→ 73

• n1, n2 ∈ w1, theni1(n1), i1(n2) ∈ s1 andi1(n1) 6= i1(n2) because of the injectivity of

i1. And by the definition of∼s, i1(n1) 6∼s i1(n2), i.e., ĩ1(n1)
s
6= ĩ1(n2)

s
, soi′(ñ1

w) 6=
i′(ñ2

w);

• or n1, n2 ∈ w2. Similarly, we can geti′(ñ1
w) 6= i′(ñ2

w);

• or n1 andn2 are from different sets. Without losing generality, we assumen1 ∈ w1 and

n2 ∈ w2. Becausen1 6∼w n2, i.e., there is non ∈ s such thatk1(n) = i1(n1) and

k1(n) = i2(n2), by the definition of∼s, i1(n1) 6∼s i2(n2), henceĩ1(n1)
s
6= ĩ2(n2)

s
,

which immediately showsi′(ñ1
w) 6= i′(ñ2

w).

Now, the commutativity of the cube (4.6) comes down to that of the following four diagrams:

w

a©
j2
��?

??
?j1

����
��

w2

j′2
����

�
w1

j′1
��?

???

w′

s

b©

k2

��?
??

?k1

����
��

s2

k′2
����

�
s1

k′1
��?

??
?

s′

w1

c©

i1 //

j′1 ��

s1

k′1��
w′

i′
// s′

w2

d©

i2 //

j′2 ��

s2

k′2��
w′

i′
// s′

.

Commutativity of square a©: For anyn ∈ w, because squares
w i //

j1 ��

s
k1��

w1
i1 // s1

and
w i //

j2 ��

s
k2��

w2
i2 // s2

commute, we havei1(j1(n)) = (k1(i(n)) andi2(j2(n)) = k2(i(n)). By the definition of∼w,

j1(n) ∼w j2(n), thenj′1(j1(n)) = j̃1(n)
w

= j̃2(n)
w

= j′2(j2(n)).
Commutativity of square b©: For anyn ∈ s, k1(n) ∼s k2(n), so k′1(k1(n)) = k̃1(n)

s
=

k̃2(n)
s

= k′2(k2(n)).
Commutativity of square c©, d©: For anyn ∈ wl (k = 1, 2), i′(j′l(n)) = i′(ñw) = ĩl(n)

s
=

k′l(il(n)), (k = 1, 2).

Remark4.1. Note that the construction in the above proof is not a push-out. Actually, the cate-

goryI→ has no push-outs. Consider the following diagram inI:

{1}
⊆

||xxxxxxxx
id
��

⊆

""F
FFFFFFF

{1, 2}

id
��

{1}
⊆

||xxxxxxxx ⊆

""F
FFFFFFF
{1, 3}

id
��

{1, 2} {1, 3}

where⊆ denotes the particular injection of inclusion. Assume this diagram has a push-out,

composed byw0
i0→s0 and two morphisms(j01 , k

0
1) (from {1, 2} id→{1, 2} tow0

i0→s0) and(j02 , k
0
2)

74 CHAPITRE 4. RELATIONS LOGIQUES

(from {1, 3} id→{1.3} tow0
i0→s0), then the following two diagrams should commute inI:

{1}

{{vvv
vv

vv
vv

id
�� ##H

HH
HH

HH
HH

{1, 2}

id
�� j0

1

HHH
HHH

##HH

id

��

{1}
vvv

v

{{vvv
v

HHH
H

##HH
HH

{1, 3}

id
��j0

2

vvv
vvv

{{vv

j′2

��

{1, 2}
II

k0
1

II

$$II
I

id

��

w0

i0
��

j′
�

��

��
#
'
+

{1, 3}
uu

k0
2

uu

zzuuu

j′2

��

s0

k′

�
�
��

��

(
,

{1, 2}

id
��

{1, 2}

{1}

zzttt
ttt

ttt
t

id
�� $$JJ

JJJ
JJJ

JJ

{1, 2}

id
�� j0

1

JJJJJJ

$$J
J

⊆

��

{1}
ttt

tt

zzttt
t

JJJ
JJ

$$JJ
JJ

{1, 3}

id
��j0

2
tttttt

zztt

⊆

��

{1, 2}
KK

k0
1

KK

%%KKK

⊆

��

w0

i0
��

j′′
�

��

��
#
'
+

{1, 3}
ss

k0
2
ss

yysss

⊆

��

s0

k′′

�
�
��

��

(
,

{1, 2, 3}

id
��

{1, 2, 3}

wherej′2(1) = 1, j′2(3) = 2. By the left diagram,j′(j01(2)) = 2, j′(j02(3)) = j′2(3) = 2,

then j01(2) = j02(3) (sincej′ is an injection). While by the right diagram,j′′(j01(2)) = 2,

j′′(j02(3)) = 3, and we getj01(2) 6= j02(3) (j′′ is an injection as well), which is a contradiction.

Proof of Proposition 4.1.Take objects〈∅, i, s〉, 〈∅, i1, s1〉 and〈∅, i2, s2〉 in I→, wherei, i1 and

i2 are all empty injections. Clearly,(j1, l1) : i → i1 and(j2, l2) : i → i2, wherej1 andj2 are

empty injections as well, are two morphisms inI→. According to Proposition 4.2, there exist

〈w′, i′, s′〉 and(j′1, l
′
1) : i1 → i′, (j′2, l

′
2) : i2 → i′, such that(j′1, l

′
1) ◦ (j1, l1) = (j′2, l

′
2) ◦ (j2, l2),

which includes the equationl′1 ◦ l1 = l′2 ◦ l2.

4.4 Dérivation des relations logiques surSetI
→

LetSetI→ be the category of functors fromI→ toSet and natural transformations. Note that this

is not a new model for the cryptographic metalanguage. We define the new categorySetI→ just

for deriving a new logical relation and we still consider the interpretation of the metalanguage in

the modelSetI .

For deriving logical relations over categorySetI→ , we must first check the necessary re-

quirements on categories.

SetI→ is cartesian closed. Products and coproducts are defined pointwise. For any two

functorsA,B : I→ → Set, their exponent is defined by

BAi = SetI→(I→(i,−)×A,B)
(BA(j, l)f)i′′((j′, l′), a) = fi′′((j′ ◦ j, l′ ◦ l), a)

4.4. DÉRIVATION DES RELATIONS LOGIQUES SUR SET I→ 75

for any〈w, i, s〉 ∈ I→, (j, l) : i→ i′, (j′, l′) : i′ → i′′ ∈ I→, f ∈ BAi anda ∈ Ai. SetI→ has

also pull-backs, defined pointwise. Now define a strong monad(TTT, ηηη,µµµ, t) onSetI→ by:

• TTTA = colimi′ A(_ + i′) : I→ → Set. On objects,TTTAi = colimi′ A(i+ i′) is the set of

equivalence classes of pairs(i′, a), wherei′ : w′ → s′ in I anda ∈ A(i+ i′), modulo the

smallest equivalence relation∼ such that(i′, a) ∼ (i′′, A(idi+(j, k))a) for each morphism

(j, k) : 〈w′, i′, s′〉 → 〈w′′, i′′, s′′〉 in I→. We write[i, a] for the equivalence class of(i, a).
On morphisms,TTTA(j, k) maps the equivalence class of(i′, a) to the equivalence class of

(i′, A((j, k) + idi′)a);

• for anyf : A→ B in SetI→ , TTTfi : TTTAi→ TTTBi is defined byTTTfi[i′, a] = [i′, f(i+ i′)a];

• ηηηAi : Ai→ TTTAi is defined byηηηAia = [∅, a], where∅ denotes the empty function between

empty sets;

• µµµAi : TTT2Ai→ TTTAi is defined byµµµAi[i′, [i′′, a]] = [i′ + i′′, a];

• tA,Bi : Ai×TTTBi→ TTT(A×B)i is defined bytA,Bi(a, [i′, b]) = [i′, (Ai→i,i′a, b)] where

i→i,i′ : i→ i+ i′ is the canonical injection.

LetU : I→ → I be the forgetful functor which maps an object〈w, i, s〉 to s and a morphism

(j, l) to l. Let |_| : C → CCC be the functoridSet
U (whereC = SetI andCCC = SetI→). On an

objectA, |A| is equal toA ◦ U , that is, for any object〈w, i, s〉 ∈ I→, |A|〈w, i, s〉 = As, and for

any morphism(j, l) ∈ I→, |A|(j, l) = Al. On a morphismf (a natural transformation), for each

〈w, i, s〉 in I→, the component|f |〈w,i,s〉 is equal tofs. It is clear that the functor|_| preserves

finite products.

Recall the strong monadT over the categorySetI , defined in Section 3.2. Letσ : TTT|_| →
|T_| be the monad morphism defined byσAi[〈w′, i′, s′〉, a] = [s′, a], for any objectA in SetI

and 〈w, i, s〉 ∈ I→. This is well defined as|A|(i + i′) = A(s + s′). We can then define

σ(A1,A2) : TTT|A1 ×A2| → |TA1| × |TA2| by

σ(A1,A2) = (σA1 ◦TTT|π1|, σA2 ◦TTT|π2|),

i.e.,

σ〈A1,A2〉i[〈w
′, i′, s′〉, (a1, a2)] = ([s′, a1], [s′, a2]).

SetI→ has a mono factorization system consisting of pointwise surjections and pointwise in-

jections. And it is clear thatTTT and finite products preserve pointwise surjections. Then all the

requirements for building a logical relation onSubsconeSetI
→

SetI×SetI
are satisfied.

Now considerf : S ↪→ |A1 × A2| (A1, A2 ∈ SetI andS ∈ SetI→) as a representation

of a series of binary relations such that for every〈w, i, s〉 ∈ I→, fi : Si ↪→ |A1 × A2|i =

76 CHAPITRE 4. RELATIONS LOGIQUES

(A1 × A2)s = A1s × A2s is an inclusion, representing a binary relation. In particular, the

relation between monadic values is given by mono factorization of the composition ofTTTf with

σ(A1,A2):

TTTS
TTTf //

����

TTT|A1 ×A2|

σ
(A1,A2)

��

S̃
� � // |TA1| × |TA2|

We takeS̃ as the direct image ofσ(A1,A2) ◦ TTTf , then for any〈w, i, s〉 ∈ I→ and any pair of

computations[s1, a1] ∈ |TA1|i, [s2, a2] ∈ |TA2|i,

[s1, a1] S̃i [s2, a2] ⇐⇒
∃〈w′, i′, s′〉 ∈ I→, a′1 ∈ A1(s+ s′), a′2 ∈ A2(s+ s′) s.t.

(s1, a1) ' (s′, a′1) & (s2, a2) ' (s′, a′2) & a′1 S(i+ i′) a′2

(4.7)

According to the definition of', (s1, a1) ' (s′, a′1) means that there is a finite sets′1 and

two morphismsl1 : s1 → s′1, l′1 : s′ → s′1 in I such thatA1(ids + l1)a1 = A1(ids + l′1)a
′
1.

Similarly, (s2, a2) ' (s′, a′2) means that there is a finite sets′2 and two morphismsl2 : s2 → s′2,

l′2 : s′ → s′2 in I such thatA2(ids + l2)a2 = A2(ids + l′2)a
′
2. By Proposition 4.1, there exists0

with two morphismsl′′1 : s′1 → s0, l′′2 : s′2 → s0 in I, such thatl′′1 ◦ l′1 = l′′2 ◦ l′2. hence

ids + (l′′1 ◦ l′1) = ids + (l′′2 ◦ l′2).

Take an arbitrary object〈w0, i0, s0〉 and a morphism(j, l) : i′ → i0 in I→ wherel = l′′1 ◦ l′1 =
l′′2 ◦ l′2 (such objects and morphisms necessarily exist). BecauseS is a functor fromI→ to Set,

S(idi + (j, l))(a′1, a
′
2)

= |A1 ×A2|(idi + (j, l))(a′1, a
′
2)

= (A1(ids + l)a′1, A2(ids + l)a′2)

= (A1(ids + (l′′1 ◦ l′1))a′1, A2(ids + (l′′2 ◦ l′2))a′2)

= (A1(ids + (l′′1 ◦ l1))a1, A2(ids + (l′′2 ◦ l2))a2)

i.e., (A1(ids + (l′′1 ◦ l1))a1, A2(ids + (l′′2 ◦ l2))a2) ∈ S(i + i0). So if [s1, a1] S̃i [s2, a2], then

there are some object〈w0, i0, s0〉 in I→ and some injectionsl01 : s1 → s0 and l02 : s2 → a0,

namelyl01 = l′′1 ◦ l′1 andl02 = l′′2 ◦ l′2, such that

A1(ids + l01)a1 S(i+ i0) A2(ids + l02)a2. (4.8)

4.5. UNE RELATION LOGIQUE POUR LE MÉTALANGAGE 77

Conversely, if (4.8) holds, then the right-hand side of (4.7) holds as well, fori′ = i0, a′1 =
A1(ids + l01)a1 anda′2A2(ids + l02)a2. (4.7) is thus equivalent to

[s1, a1] S̃i [s2, a2] ⇐⇒
∃〈w0, i0, s0〉 ∈ I→, l1 : s1 → s0 ∈ I, l2 : s2 → s0 ∈ I·

A1(ids + l1)(a1) S(i+ i0) A2(ids + l2)(a2).

(4.9)

So we arrive at the definition of logical relations for monadic types, derived overSetI→ .

4.5 Une relation logique pour le métalangage

The derivation of logical relations in the last section, on the categorySetI→ , allows us to de-

rive a logical relation for the cryptographic metalanguage, which requires in the first place the

definitions of relations for base types.

Recall that the very essential point about logical relations is that the Basic Lemma must

hold. The categorical derivation of logical relations already guarantees this, if every constant is

related to itself. Furthermore, logical relations defined over a functor category are Kripke logical

relations and they must satisfy the monotonicity property so that the Basic Lemma will hold for

these logical relations. So basically, when defining a logical relation based on a category like

SetI→ , we must check the following two conditions:

• every constant is related to itself;

• the logical relation is monotonic.

As discussed at the beginning of last section, a proper way to define the relation between keys

is to fix a set of “disclosed” keys (denoted by a parameterfr). This parameter can be defined in

a natural way, using the categoryI→. The relation for keys is then defined as follows: for any

object〈w, i, s〉 ∈ I→ and any pair of keysk1, k2 ∈ JkeyKs = s,

k1 Ri
key k2 ⇐⇒ k1 = k2 ∈ i(w).

We say that a keyk ∈ s is auto-relatedif k ∈ i(w). The original parameterfr becomesi(w).
Indeed, an injectioni : w → s in I can be seen as a selection of disclosed keys ins. In a Kripke

logical relation derived from the categorySetI→ , a world — an object inI→ — is then a set of

keys together with a selection of disclosed keys.

As for relations for typesbool andnat, to identify contextual equivalence, the identity relation

is the only choice.

78 CHAPITRE 4. RELATIONS LOGIQUES

4.5.1 La relation entre les messages

To define the relation for messages, we should pay attention to those “message-related” constants,

namely

Σm = {k, getkey, n, getnum, p, fst, snd, enc, dec}.

Every constant inΣm is used to either construct a message from other messages or concrete

values like integers or keys, or destruct a message into smaller messages or concrete values.

In a word, they change the structure of messages, so a natural way is to define the relation for

messages by induction on the message structure, from those relations for integers and keys.

First, for every injectioni : w → s ∈ I, define a relationMRi
⊥ ⊆ JmsgKs× JmsgKs by

• (n(n1), n(n2)) ∈MRi
⊥, for all (n1, n2) ∈ Ri

nat;

• (k(k1), k(k2)) ∈MRi
⊥, for all (k1, k2) ∈ Ri

key;

• if (m1,m2) ∈MRi
⊥ and(m′

1,m
′
2) ∈MRi

⊥, then(p(m1,m
′
1), p(m2,m

′
2)) ∈MRi

⊥;

• if (m1,m2) ∈MRi
⊥ andk ∈ i(w), then(e(m1, k), e(m2, k)) ∈MRi

⊥.

The relationMR⊥ is indeed built by induction on the message structure, from relationsRnat

andRkey. However, since keys are divided into “disclosed” keys and “secret” keys and none of

“secret” keys is related byRkey, messages, in particular cipher-texts, are accordingly divided

into two parts — “non-secret” cipher-texts that are encrypted using disclosed keys and “secret”

cipher-texts that are encrypted using secret keys. The so inductively defined relationMR⊥
touches only those non-secret cipher-texts and does not say anything about secret cipher-texts.

In other words, a cipher-text encrypted with a secret key (a non-auto-related key) is not related

to any other message byMR⊥. Of course, this is too strict. In our model, if we cannot decrypt

two cipher-texts, we shall then consider them as equivalent, since there is no way for us to see

whether the two corresponding plain-texts are equivalent. Basically, we can simply let all secret

cipher-texts be related with each other and we define another relationMRi
> ⊆ JmsgKs×JmsgKs,

for every injectioni : w′ → s ∈ I, by induction on the structure of messages:

• (n(n1), n(n2)) ∈MRi
>, for all (n1, n2) ∈ Ri

nat;

• (k(k1), k(k2)) ∈MRi
>, for all (k1, k2) ∈ Ri

key;

• if (m1,m2) ∈MRi
> and(m′

1,m
′
2) ∈MRi

>, then(p(m1,m
′
1), p(m2,m

′
2)) ∈MRi

>;

• if (m1,m2) ∈MRi
> andk ∈ i(w), then(e(m1, k), e(m2, k)) ∈MRi

>.

• if (m1,m2) ∈MRi
> andk1, k2 6∈ i(w), then(e(m1, k1), e(m2, k2)) ∈MRi

>.

4.5. UNE RELATION LOGIQUE POUR LE MÉTALANGAGE 79

Clearly, for anyids : s→ s,MRids
⊥ = MRids

> and we write it asMRs.

To make theBasic Lemmahold, the relation for messages must be sandwiched between the

relationMR⊥ and the relationMR> [SP03, GLLNZ04]. In particular, if we do not consider

dynamic key generation and simply take a set-theoretical model, theBasic Lemmaholds for all

relations sandwiched betweenMR⊥ andMR> [GLLNZ04].

The largest relationMR> is somehow too much when contextual equivalence is our concern.

Consider the following program:

p(n) = (νk).〈{n ∗ 2}k, λx.dec(x, k) mod 2〉.

It is clear that ifk is secret, then two instances of this program, with concrete numbers for the

argumentn, should be contextually equivalent, but to relate these instances, we must not relate

encrypted odd numbers, by keyk, with encrypted even numbers, otherwise, instances of the

function (the second component) are not related. This indeed shows that we should not simply

consider all secret cipher-texts as equivalent.

Furthermore, it should be also noticed that, to some extent, logical relations for deducing

contextual equivalence also indicate that contexts can get access to related values. For example,

a proper relation between secret cipher-texts for the above program should not relate encrypted

odd numbers (by keyk) with whatever, since they are never produced. This point does interfere

with our choice of relations for themsg type.

In order to define uniquely a logical relation for the cryptographic metalanguage, a natural

way is to make the relation between secret cipher-texts as a parameter. This is exactly what Sumii

and Pierce did in the cryptographic lambda-calculus [SP01].

For every injectioni : w → s ∈ I, define a functionϕi which maps a pair of secret keys to a

set of message pairs:

ϕi : (s− i(w))× (s− i(w)) → P(JmsgKs× JmsgKs) (4.10)

whereP denotes the power set.ϕ is called acipher function. It is indeed a group of functions

indexed by injections inI, i.e., objects of the categoryI→.

Given a cipher functionϕ, we can then define a unique relation for messages.

Definition 4.2. For every injectioni : w → s ∈ I, a cryptographic message relationMRi,ϕ ⊆
JmsgKs× JmsgKs, is the smallest relation such that

• (n(n1), n(n2)) ∈MRi,ϕ, for all (n1, n2) ∈ Ri
nat;

• (k(k1), k(k2)) ∈MRi,ϕ, for all (k1, k2) ∈ Ri
key;

• if (m1,m2) ∈MRi,ϕ and(m′
1,m

′
2) ∈MRi,ϕ, then(p(m1,m

′
1), p(m2,m

′
2)) ∈MRi,ϕ;

80 CHAPITRE 4. RELATIONS LOGIQUES

• if (m1,m2) ∈MRi,ϕ and(k1, k2) ∈ Ri
key, then(e(m1, k), e(m2, k)) ∈MRi,ϕ.

• if k1, k2 ∈ s− i(w) and(m1,m2) ∈ ϕi(k1, k2), then(e(m1, k1), e(m2, k2)) ∈MRi,ϕ.

We say that a cipher functionϕ is logical if, for every 〈w, i, s〉 ∈ I→ and every pair of keys

k1, k2 ∈ s− i(w),

(m1,m2) ∈ ϕi(k1, k2) =⇒ (e(m1, k1), e(m2, k2)) ∈MRs.

In other words, a logical cipher function must be consistent with the inductively defined message

relation where we assume that all keys are disclosed. In particular, since bothRids
nat andRids

key

are identity relations,MRs is just the identity relation overJmsgKs. Clearly, in a logical cipher

functionϕ, if k1 6= k2, thenϕi(k1, k2) = ∅, and for anyk ∈ s− i(w) and any pair of messages

(m1,m2) ∈ ϕi(k, k), we havem1 = m2.

Lemma 4.3. If the cipher functionϕ is logical, then any pair of messages related byMRi,ϕ are

identical, i.e.,

(m1,m2) ∈MRi,ϕ =⇒ m1 = m2.

Proof. By induction on the message structure.

We say that a cipher functionϕ is monotonically logicalif it is logical and those related

cipher-texts according toϕ should remain related when they are lifted to a larger world. Precisely,

for every morphism(j, l) : 〈w, i, s〉 → 〈w′, i′, s′〉 in I→ and every keyk ∈ s − i(w) such that

l(k) ∈ s′−i′(w′), if a pair of messages(m1,m2) ∈ ϕi(k, k), then(JmsgKl(m1), JmsgKl(m2)) ∈
ϕi′(l(k), l(k)). Indeed, a logical cipher function is a partial identity relation over secret cipher

messages.

Given a cipher functionϕ, if for every morphism(j, l) : 〈w, i, s〉 → 〈w′, i′, s′〉 ∈ I→ and

for every pair of valuesm1,m2 ∈ JmsgKs,

(m1,m2) ∈MRi,ϕ =⇒ (JmsgKl(m1), JmsgKl(m2)) ∈MRi′,ϕ,

then we say that the cryptographic message relationMR is monotonic onI→.

Lemma 4.4. If the cipher functionϕ is monotonically logical, then the cryptographic message

relationMR is monotonic onI→.

Proof. We prove the statement by induction on the message structure. It is easy to check that this

property holds when the message is of the formn(_), k(_) or p(_,_).
If m1 = e(m′

1, k1) and m2 = e(m′
2, k2), JmsgKl(m1) = e(JmsgKl(m′

1), l(k1)) and

JmsgKl(m2) = e(JmsgKl(m′
2), l(k2)). According to Lemma 4.3,m1 = m2, sok1 = k2. Because

l is injective and so isJmsgKl, l(k1) = l(k2) andJmsgKl(m1) = JmsgKl(m2).

4.5. UNE RELATION LOGIQUE POUR LE MÉTALANGAGE 81

• If k1 = k2 ∈ i(w), thenl(k1) = l(k2) ∈ i′(w′) and(m′
1,m

′
2) ∈ MRi,ϕ. By induction,

(JmsgKl(m′
1), JmsgKl(m′

2)) ∈MRi′,ϕ, hence

(e(JmsgKl(m′
1), l(k1), e(JmsgKl(m′

2), l(k2)) ∈MRi′,ϕ.

• If k1 = k2 6∈ i(w) but l(k1) = l(k2) ∈ i′(w′), consider the contents ofm′
1 andm′

2.

If m′
1 andm′

2 contain no secret cipher-texts, i.e.,m1,m2 ∈ JmsgK(i(w)), becauseϕ is

logical, (m′
1,m

′
2) ∈ MRi,ϕ. If m′

1,m
′
2 contain secret cipher-texts, these secret cipher-

texts must be related byMRi,ϕ according toϕ, hence(m′
1,m

′
2) ∈ MRi,ϕ as well. Then

by induction,

(JmsgKl(m′
1), JmsgKl(m′

2)) ∈MRi′,ϕ,

and consequently(JmsgKl(m1), JmsgKl(m2)) ∈MRi′,ϕ.

• If l(k1) = l(k2) 6∈ i′(w′), (JmsgKl(m′
1), JmsgKl(m′

2)) ∈ ϕi′(l(k1), l(k2)) becauseϕ is

monotonically logical, hence

(e(JmsgKl(m′
1), l(k1), e(JmsgKl(m′

2), l(k2)) ∈MRi′,ϕ.

The relationMRi,ϕ is not monotonic onI→ in general. For example, consider a pair of

messages(m1,m2) ∈ ϕ〈w,⊆,s〉(k1, k2), for some pair of keysk1, k2 ∈ s − w. In particular,

we assume thatk1 6= k2. Take a morphism〈j, ids〉 : 〈w,⊆, s〉 → 〈w + {k1},⊆, s〉 wherej is

inclusion, then two encrypted messages(e(m1, k1), e(m2, k2)) ∈ MR〈w,⊆,s〉,ϕ, are not related

byMR〈w+{k1},⊆,s〉,ϕ, whateverϕ is.

Since we allow contexts to be defined at larger worlds, the monotonicity property will inter-

fere a lot with the choice of relations for base types, as we wish to useMR to identify contextual

equivalence between messages. Thus, only relating messages at a certain world is not enough to

show that they are equivalent. We must also be able to relate them at every larger world, against

attackers defined at larger worlds.

4.5.2 Une relation logique cryptographique faible

Putting together relations for different types, we then arrive at a logical relation for the crypto-

graphic metalanguage, defined over the categorySetI→ according to the general construction.

Definition 4.3. For every object〈w, i, s〉 ∈ I→, the relations Ri,ϕ
τ ⊆ JτKs × JτKs, whereϕ

is a cipher function as specified in (4.10), are defined by induction over the structure of typeτ ,

82 CHAPITRE 4. RELATIONS LOGIQUES

according to:

b1 Ri,ϕ
bool b2 ⇐⇒ b1 = b2

n1 Ri,ϕ
nat n2 ⇐⇒ n1 = n2

k1 Ri,ϕ
key k2 ⇐⇒ k1 = k2 ∈ i(w)

m1 Ri,ϕ
msg m2 ⇐⇒ (m1,m2) ∈MRi,ϕ

(a1, a
′
1) R

i,ϕ
τ×τ ′ (a2, a

′
2) ⇐⇒ a1 Ri,ϕ

τ a2 & a′1 R
i,ϕ
τ ′ a

′
2

a1 Ri,ϕ
opt[τ] a2 ⇐⇒ (a1 Ri,ϕ

τ a2) or (a1 = a2 = ⊥)

f1 Ri,ϕ
τ→τ ′ f2 ⇐⇒

∀(j, l) : 〈w, i, s〉 → 〈w′, i′, s′〉 ∈ I→ · ∀a1, a2 ∈ JτKs′·
(a1 Ri′,ϕ

τ a2 ⇒ f1s
′(l, a1) Ri′,ϕ

τ ′ f2s
′(l, a2))

[s1, a1] Ri,ϕ
Tτ [s2, a2] ⇐⇒
∃〈w0, i0, s0〉 ∈ I→, l1 : s1 → s0 ∈ I, l2 : s2 → s0 ∈ I·

JτK(ids + l1)(a1) Ri+i0,ϕ
τ JτK(ids + l2)(a2)

whereMRi,ϕ is a cryptographic message relation.

Keep in mind that we are using logical relations to deduce contextual equivalence and the

Basic Lemma is very crucial for this purpose. Does the Basic Lemma hold for this logical

relation? Recall that the categorical derivation of logical relations guarantees the Basic Lemma,

but we must check two conditions — every constant is related to itself, and logical relations must

be monotonic. Let us check the monotonicity property first.

Lemma 4.5. The logical relationRi,ϕ
τ is monotonic whenϕ is monotonically logical, i.e., for

every morphism(j, l) : 〈w, i, s〉 → 〈w′, i′, s′〉 ∈ I→ and every pair of valuesa1, a2 ∈ JτKs,

a1 Ri,ϕ
τ a2 =⇒ JτKl(a1) Ri′,ϕ

τ JτKl(a2).

Proof. It is obvious that relations for base types are monotonic, in particular the monotonicity

of Rϕ
msg is shown by Lemma 4.4. For complex types, the monotonicity is proved by induction

on the type structure. Here are the cases for function types and computation types. Others are

standard.

• Function typesτ → τ ′: Consider two related functionsf1, f2 ∈ Jτ → τ ′K such that

f1 Ri,ϕ
τ→τ ′ f2. For any morphism〈j′, l′〉 : 〈w′, i′, s′〉 → 〈w′′, i′′, s′′〉 ∈ I→ (〈j′ ◦ j, l′ ◦ l〉

is then a morphism from〈w, i, s〉 to 〈w′′, i′′, s′′〉), and for anya1, a2 ∈ JτKs′′ such that

a1 Ri′′,ϕ
τ a2, becausef1 Ri,ϕ

τ→τ ′ f2,

f1s
′′(l′ ◦ l, a1) Ri′′,ϕ

τ ′ f2s
′′(l′ ◦ l, a2).

4.5. UNE RELATION LOGIQUE POUR LE MÉTALANGAGE 83

By the definition of exponential in the categorySetI , for every functionf ∈ Jτ → τ ′Ks
and every valuea ∈ JτKs′′,

(
q
τ ′

yJτK
l(f))s′′(l′, a) = fs′′(l′ ◦ l, a)

hence

(
q
τ ′

yJτK
l(f1))s′′(l′, a1) Ri′′,ϕ

τ ′ (
q
τ ′

yJτK
l(f2))s′′(l′, a2),

and consequentlyJτ ′KJτKl(f1) Ri′,ϕ
τ→τ ′ Jτ ′KJτKl(f2).

• Computation typesTτ :

JTτKl([s, a]) = TJτKl([s, a]) = [s, JτK(l + ids)(a)].

If [s1, a1] Ri,ϕ
Tτ [s2, a2], we must show that

[s1, JτK(l + ids1)(a1)] Ri′,ϕ
Tτ [s2, JτK(l + ids2)(a2)].

According to the definition ofRTτ , we should find a pair〈w′0, i′0, s′0〉 ∈ I→ and two

injectionsl′1 : s1 → s′0 andl′2 : s2 → s′0 in I such that

JτK(ids′ + l′1)(JτK(l + ids1)(a1)) R
i′+i′0,ϕ
τ JτK(ids′ + l′2)(JτK(l + ids2)(a2))

which, by the functorality ofJτK, is equivalent to

JτKk1(a1) R
i′+i′0,ϕ
τ JτKk2(a2)

where

km = (ids′ + l′m) ◦ (l + idsm) : s+ sm
l+idsm// s′ + sm

ids′+l′m// s′ + s′0 , (m = 1, 2).

Since [s1, a1] Ri,ϕ
Tτ [s2, a2], there exist an object〈w0, i0, s0〉 in I→ and two injections

l1 : s1 → s0, l2 : s2 → s0 such thatJτK(ids + l1)(a1) Ri+i0
τ JτK(ids + l2)(a2).

– If s′ ∩ s0 = ∅, simply lets′0 = s0, w′0 = w0, i′1 = i1 andi′2 = i2, then

(j + idw0 , l + ids0) : 〈w + w0, i+ i0, s+ s0〉 → 〈w′ + w0, i
′ + i0, s

′ + s0〉

is a morphism inI→, and by induction (the relation at typeτ is monotonic),

JτK(l + ids0)(JτK(ids + l1)(a1)) Ri′+i0,ϕ
τ JτK(l + ids0)(JτK(ids + l2)(a2)),

where the two elements equalJτKk1(a1) and JτKk2(a2) respectively, because the

following square commutes inI

s+ sm
l+idsm//

ids+lm
��

s′ + sm

ids′+lm
��

s+ s0
l+ids0 // s′ + s0

(m = 1, 2).

84 CHAPITRE 4. RELATIONS LOGIQUES

– If s′ ∩ s0 6= ∅, it is always possible to find a sets′′0 which is isomorphic tos0 such

thats′ ∩ s′′0 = ∅, then lets′0 = s′′0 and the proof goes identically as in the previous

case.

SoJTτKl([s1, a1]) Ri′,ϕ
Tτ JTτKl([s2, a2]).

Given a cipher functionϕ, say that two environmentsρ1, ρ2 ∈ JΓKs are related at〈w, i, s〉,
written asρ1 Ri,ϕ

Γ ρ2, if and only if, for every variablex : τ ∈ Γ, ρ1(x) Ri,ϕ
τ ρ2(x).

Lemma 4.6. For every morphism(j, l) : 〈w, i, s〉 → 〈w′, i′, s′〉, if ρ1 Ri,ϕ
Γ ρ2 and the cipher

functionϕ is monotonically logical, thenJΓKi(ρ1) Ri′,ϕ
Γ JΓKi(ρ2).

Proof. This is a corollary of Lemma 4.5 sinceJΓK is interpreted asJτ1K× · · · × JτnK.

The logical relationR〈w,i,s〉,ϕ
τ is sound, i.e., the Basic Lemma holds, when the cipher function

ϕ is monotonically logical.

Proposition 4.7 (Basic Lemma).Let Γ ` t : τ be a well typed term in the cryptographic

metalanguage. For every〈w, i, s〉 ∈ I→ and every monotonically logical cipher functionϕ, if

two environmentsρ1, ρ2 ∈ JΓKs are related, i.e.,ρ1 Ri,ϕ
Γ ρ2, thenJtKsρ1 Ri,ϕ

τ JtKsρ2.

Proof. This is proved by induction on the structure of the termt. We show several induction

steps here, notably functions, applications, computation constants and cryptographic primitives.

• Functionsλx.t of type τ → τ ′: according to Figure 3.1,Jλx.tKsρ is some function

f ∈ Jτ → τ ′Ks such that for anyl : s → s′ ∈ I and for anya ∈ JτKs′, fs′(l, a) =
JtKs′(JΓKl(ρ) ∪ {x 7→ a}). Let f1 = Jλx.tKsρ1 andf2 = Jλx.tKsρ2. For every mor-

phism(j, l) : 〈w, i, s〉 → 〈w′, i′, s′〉, let a1, a2 ∈ JτKs′ be related values at〈w′, i′, s′〉, i.e.,

a1 Ri′,ϕ
τ a2. According to Lemma 4.5,Ri,ϕ is monotonic, so

JΓKl(ρ1) ∪ {x 7→ a1} Ri′,ϕ
Γ JΓKl(ρ2) ∪ {x 7→ a2}

and by induction,

JtKs′(JΓKl(ρ1) ∪ {x 7→ a1}) Ri′,ϕ
τ ′ JtKs′(JΓKl(ρ2) ∪ {x 7→ a2}),

hencef1 Ri,ϕ
τ→τ ′ f2.

• Applicationst1t2 of typeτ ′, wheret1 is of typeτ → τ ′ andt2 is of typeτ : First,Jt1Ksρ =
f ∈ Jτ → τ ′Ks such that for anyl : s → s′ ∈ I, fs′(l, a′) = Jt1t2Ks′(JΓKl(ρ)), where

a′ = Jt2Ks′(JΓKl(ρ)). ThenJt1t2Ksρ = fs(ids, a) wherea = Jt2Ksρ. Let f1 = Jt1Ksρ1,

f2 = Jt1Ksρ2, a1 = Jt2Ksρ1 anda2 = Jt2Ksρ2. By induction,f1 Ri,ϕ
τ→τ ′ f2, a1 Ri,ϕ

τ a2, so

f1s(ids, a1) Ri,ϕ
τ ′ f2s(ids, a2).

4.5. UNE RELATION LOGIQUE POUR LE MÉTALANGAGE 85

• Fresh key generation constantnew, of typeTkey: JnewKsρ = [{k}, k], wherek 6∈ s, no

matter whatρ is. Take〈{k}, id{k}, {k}〉 ∈ I→. It is clear thatk Ri+id{k},ϕ

key k, hence

[{k}, k] Ri,ϕ
Tkey [{k}, k].

• Trivial computationsval(t) of type Tτ , wheret is of type τ : BecauseJval(t)Ksρ =
[∅, JtKsρ] and by induction,JtKsρ1 Ri,ϕ

τ JtKsρ2, according to the definition ofRTτ ,

Jval(t)Ksρ1 Ri,ϕ
Tτ Jval(t)Ksρ2.

• Sequential computationslet x⇐ t1 in t2 of typeTτ ′, wherex is of typeτ , t1 is of type

Tτ andt2 is of typeTτ ′: Let Jt1Ksρ1 = [s1, a1] andJt1Ksρ2 = [s2, a2]. By induction,

[s1, a1] Ri,ϕ
Tτ [s2, a2], so there exist some〈w0, i0, s0〉 in I→ and two injectionsl1 : s1 →

s0, l2 : s2 → s0 such that

JτK(l1 + ids)a1 Ri+i0,ϕ
τ JτK(l2 + ids)a2.

Let Jt2K(s+ s0)ρ′1 = [s′1, b1] andJt2K(s+ s0)ρ′2 = [s′2, b2], where

ρ′m = JΓKinls,s0(ρm) ∪ {x 7→ JτK(lm + ids)am}, (m = 1, 2).

Again by induction, there exist some〈w′0, i′0, s′0〉 in I→ and two injectionsl′1 : s′1 → s′0,

l′2 : s′2 → s′0 such that

JτK(l′1 + ids+s0)b1 R
i+i0+i′0,ϕ
τ JτK(l′2 + ids+s0)b2.

According to the definition of monadT onSetI , [sm, am] = [s0, JτK(lm + ids)am], so

Jlet x⇐ t1 in t2Ksρm = [s0 + s′m, bm].

Considering〈w0 + w′0, i0 + i′0, s0 + s′0〉 ∈ I→ and injections

ids0 + l′1 : s0 + s1 → s0 + s′0, ids0 + l′2 : s0 + s2 → s0 + s′0,

we get[s0 + s′1, b1] R
i,ϕ
Tτ ′ [s0 + s′2, b2].

• Encryptionenc(t1, t2) of typemsg, wheret is of typemsg andt2 is of typekey: First, let

a1 = Jt1Ksρ1, a2 = Jt1Ksρ2, k1 = Jt2Ksρ1 andk2 = Jt1Ksρ2, thenJenc(t1, t2)Ksρ1 =
e(a1, k1) andJenc(t1, t2)Ksρ2 = e(a2, k2). By induction,a1 Ri,ϕ

msg a2 andk1 Ri,ϕ
key k2, i.e.,

k1 = k2 ∈ i(w), then according to the definition of the cryptographic message relation,

e(a1, k1)MRi,ϕe(a2, k2), i.e.,Jenc(t1, t2)Ksρ1 Ri,ϕ
msg Jenc(t1, t2)Ksρ2.

• Decryptiondec(t1, t2) of type opt[msg], wheret is of typemsg and t2 is of typekey:

First, leta1 = Jt1Ksρ1, a2 = Jt1Ksρ2, k1 = Jt2Ksρ1 andk2 = Jt1Ksρ2. By induction,

86 CHAPITRE 4. RELATIONS LOGIQUES

k1 Ri,ϕ
key k2, i.e.,k1 = k2 ∈ i(w). If a1 = e(a′1, k) anda2 = e(a′2, k), for somea′1, a

′
2 ∈

JmsgKs andk = k1 = k2, thenJdec(t1, t2)Ksρ1 = a′1 andJdec(t1, t2)Ksρ2 = a′2, and

by the definition of the cryptographic message relation,a′1MRi,ϕa′2; if a1 6= e(a′1, k) and

a2 6= e(a′2, k), thenJdec(t1, t2)Ksρ1 = Jdec(t1, t2)Ksρ2 = ⊥. It is not possible that one

of a1, a2 is a cipher-text encrypted with keyk while the other is not, because it implies that

a1 anda2 must not be related. Therefore,Jdec(t1, t2)Ksρ1 Ri,ϕ
opt[msg] Jdec(t1, t2)Ksρ2.

The Basic Lemma for the logical relationRi,ϕ
τ holds when the cipher functionϕ is mono-

tonically logical. This is indeed a very strict restriction, since such a cipher function relates only

identical cipher-texts. When we take a more general cipher function, it is very likely that the

Basic Lemma does not hold any more in general. For example, for the termy : msg ` λx.y :
bool → msg, take a cipher functionϕ where(m1,m2) ∈ ϕ〈w,⊆,s〉(k1, k2) (k1 6= k2) and two en-

vironmentsρ1, ρ2 ∈ JΓKs (Γ = {y : msg}) such thatρ1(y) = e(m1, k1) andρ2(y) = e(m2, k2).
Obviously,ρ1 R〈w,⊆,s〉,ϕ

Γ ρ2. But Jλx.yKsρ1 andJλx.yKsρ2 are not related byR〈w,⊆,s〉,ϕ
bool→msg, be-

cause related functions should map related arguments to related results,at every larger world,

while at the world〈w + {k1}, s〉, the two encrypted messagese(m1, k1), e(m2, k2) are not re-

lated any more and we get non-related results.

Logical relations derived over the categorySetI→ are too weak in the sense that some non-

trivial contextually equivalent programs are not related by these relations. Recall the two pro-

grams given at the beginning of Section 4.3. Actually, with logical relations derived over the

categorySetI→ , we are still not able to relate those two programs. We shall see a more realistic

example in the next chapter. It turns out that we can derive stronger logical relations with a sub-

tler category, where we are in particular allowed to choose more general cipher functions without

breaking the soundness of logical relations. We shall later on refer to the logical relation defined

in Definition 4.3 as theweak cryptographic logical relation.

Chapitre 5

Relations logiques cryptographiques

Dans ce chapitre, nous continuons notre discussion sur la construction des relations logiques

du métalangage cryptographique. La relation logique définie dans le chapitre 4 n’est pas assez

puissante puisque le lemme fondamental n’est correct que pour un ensemble très limité de fonc-

tions de chiffrementϕ. Le contre-exemple à la fin du chapitre montre en particulier que le lemme

fondamental n’est plus correct si les fonctions de chiffrement permettent de relier des messages

chiffrés par des clés différentes. En effet, même si les fonctions de chiffrement ne relient que les

messages chiffrés par la même clé, il existe encore des programmes équivalents contextuellement

qui ne peuvent pas être reliés par la relation logique.

Nous commençons ce chapitre par un autre exemple qui montre la faiblesse des relations

logiques construites sur la catégorieSetI→ . Nous montrons aussi que la catégorieI→ doit sa-

tisfaire certaines propriétés algébriques pour qu’elle représente une bonne relation entre les clés.

Puis, dans la partie 5.1, nous corrigeons la catégorieI→ en ajoutant certaines contraintes et nous

appelons la nouvelle catégoriePI→. Nous montrons alors que la catégorieSetPI→ est la bonne

catégorie où construire les relations logiques du métalangage cryptographique, et la dérivation

est donnée dans la partie 5.2. Dans la partie suivante, nous arrivons finalement à une relation

logique cryptographique de notre métalangage et nous vérifions certaines propriétés de cette re-

lation logique. De plus, cette relation logique peut servir à vérifier des protocoles concrets. Nous

montrons ceci dans la partie 5.4, en vérifiant les deux protocoles du chapitre 2. Dans la dernière

partie, nous comparons nos relations logiques dérivées sur la catégorieSetPI→ avec les relations

logiques dénotationnelles du nu-calcul de Stark [Sta94] et nous prouvons que les deux sont en

effet équivalentes.

87

88 CHAPITRE 5. RELATIONS LOGIQUES CRYPTOGRAPHIQUES

The logical relation defined in Section 4.5.2 is too weak because the Basic Lemma holds

only for a rather restricted collection of cipher functions. The counterexample at the end of Sec-

tion 4.5.2 in particular shows that if cipher functions are allowed to relate cipher-texts encrypted

by different keys, the Basic Lemma does not hold any more.

However, even if we allow cipher functions to relate only messages encrypted by the same

key, there are still equivalent programs that cannot be related by the logical relation. Consider

the following two programs (using abbreviations in Figure 2.2):

p1 = νk.〈{0}k, {1}k, λx.getnum(dec(x, k))〉,

p2 = νk.〈{1}k, {0}k, λx.letopt y⇐ getnum(dec(x, k)) in some(1− y)〉,

both of type

T(msg ×msg × (msg → opt[nat])),

whose denotations inSetI at some sets are

Jp1Ks = [{k}, ({0}k, {1}k, f1)]

Jp2Ks = [{k}, ({1}k, {0}k, f2)],

where we write{0}k for e(n(0), k) and{1}k for e(n(1), k), for the sake of clarity, andf1 =
Jλx.dec(x, k)K(s+ {k}), f2 = Jλx.letopt y⇐ dec(x, k) in (1− y)K(s+ {k}).

The two programs are contextually equivalent because the first and the second components of

the two tuples are messages encrypted by some secret key and they do not give (directly) useful

information to contexts. What contexts can do with these encrypted messages (and eventually

get some meaningful values) is to apply the third component — a decryption function — to

these messages and see whether some meaningful values will be returned. However, when the

functions are applied to either the first two messages, or the second two messages, the results are

always the same (0 for the first two components and1 for the second two).

In order to relate these two programs at a certain world〈w, s〉, we need to relate the two

tuples at some world〈w′, s′〉, wheres′ = s + {k}. Obviously, we must have thatk 6∈ w′ and

(n(0), n(1)), (n(1), n(0)) ∈ ϕw′,s+{k}(k, k). However, even just for the world〈w′, s′〉, the two

functions are not related, because they have to map related values at any larger world to related

results, while it is possible that at some larger world〈w′′, s′′〉, we havek ∈ w′′, and then the

two functions may get non-related results. For example, applying the two functions to the value

e(n(0), k), which is related to itself at〈w′′, s′′〉 sincek ∈ w′′, we get0 and1 respectively.

What we learn from this example, as well as the one at the end of Chapter 4, is that the

weakness of logical relations built over the categorySetI→ is indeed caused by the relation

between different worlds. Intuitively, the commuting diagram (4.4) says that, when we pass from

a smaller world〈w, i, s〉 to a larger world〈w′, i′, s′〉, we can actually get all keys ins, not just

5.1. LA CATÉGORIE PI→ 89

those ini(w). In other words, this means that all non-disclosed keys at a certain world, may

become known to contexts or attackers at some larger world. This is too much, because it is then

impossible for us to hide information from all possible attackers — there are always attackers

who know every key and can reveal every secret.

We need more restriction on the categoryI→. Intuitively, we should not allow attackers to

get access to keys that are not disclosed, at any larger world. This could seem too strict, as in

practice, there are often cases where we only need to hold a secret for a limited duration, so it

is certainly possible that we generate a fresh key and we do not disclose it immediately, but at

some later stage. However, in our approach, we have to consider this key as a disclosed key, for

any world containing it. The reason is that in our model, computation stages are represented by

sets of keys, not by time. There is no state in the cryptographic metalanguage, hence no way to

disclose a key at latertime. Once we generate a key in a program and we find that at a certain

point this key can be accessed by contexts, then we just take it as a disclosed key when building

logical relations, otherwise, it is seen as a non-disclosed key.

More precisely, every morphism(j, l) : 〈w, i, s〉 → 〈w′, i′, s′〉 in I→ should make the fol-

lowing two conditions hold:

• for any k ∈ w, i′(j(k)) = l(i(k)), i.e., every key that is disclosed at the worldi, must

remain disclosed at the worldi′;

• for anyk ∈ s butk 6∈ i(w), l(k) 6∈ i′(w′), i.e., every key that is not disclosed at the world

i, must remain secret at the worldi′.

For short, these two conditions are just equivalent to the following equation:

i′(j(w)) = l(i(w)) = l(s) ∩ i′(w′), (5.1)

wherei′ ◦ j = l ◦ i.

5.1 La catégoriePI→

To achieve the equation (5.1), we should add some restriction on the categoryI→. In fact, it

turns out that if the diagram
w i //

j ��

s

l��
w′

i′ // s′
is a pull-back inI, then the equation (5.1) necessarily

holds (and conversely).

Lemma 5.1. For any morphism(j, l) : 〈w, i, s〉 → 〈w′, i′, s′〉 in I→, i′(j(w)) = l(i(w)) =

l(s) ∩ i′(w′) if and only if the commuting square
w i //

j ��

s

l��
w′

i′ // s′
is a pull-back inI.

90 CHAPITRE 5. RELATIONS LOGIQUES CRYPTOGRAPHIQUES

Proof. First, assume thati′(j(w)) = l(i(w)) = l(s) ∩ i′(w′), then we need to show that the

following diagram commutes for anyi0 : w0 → s and any(j0, l) : i0 → i′ ∈ I→:

w0

f

!!C
C

C
C

C
i0

$$
j0

��

w i //

j

��

s

l

��
w′

i′ // s′

. (5.2)

We must prove that the two triangles commute and the injectionf : w0 → w is unique. Note

that because(j0, l) is a morphism inI→, l(i0(w0)) = i′(j0(w0)) ⊆ l(s) ∩ i′(w′). Definef by

f(k0) = j−1(j0(k0)), for everyk0 ∈ w0, then

• f is a well-defined injection: becausei′(j0(w0)) ⊆ l(s) ∩ i′(w′) = i′(j(w)) and i′ is

injection,j0(w0) ⊆ j(w), hencej−1(j0(k0)) is defined for anyk0 ∈ w0. Obviously,f is

injective since bothj (as well asj−1 restricted overj0(w0)) andj0 are injective;

• j ◦ f = j0 andi ◦ f = i0: the first is obvious. For anyk0 ∈ w0,

l(i(f(k0))) = i′(j(f(k0))) (becausei′ ◦ j = l ◦ i, in I→)

= i′(j(j−1(j0(k0))))

= i′(j0(k0)) = l(i0(k0)) (becausei′ ◦ j0 = l ◦ i0, in I→),

theni(f(k0)) = i0(k0) sincel is injective;

• f is unique: suppose that there is another injectionf ′ : w0 → w such that the diagram (5.2)

commutes. Take anyk0 ∈ w0, j(f(k0)) = j0(k0) = j(f ′(k0)) and becausej is injective,

f(k0) = f ′(k0), hencef = f ′.

Now suppose that diagram
w i //

j ��

s

l��
w′

i′ // s′
is a pull-back ofi′ and l. First note that because

this diagram commutes,l(i(w)) = i′(j(w)) ⊆ l(s) ∩ i′(w′). Assume that there exists some

k ∈ l(s) ∩ i′(w′) butk 6∈ l(i(w)), theni′−1(k) 6∈ j(w), andl−1(k) 6∈ i(w). Letw0 = w + {k}
and definej0 : w0 → w′ andi0 : w0 → s by: j0(k′) = j(k′), i0(k′) = i(k′) for anyk′ ∈ w, and

j0(k) = i′−1(k), i0(k) = l−1(k). Clearly,i′ ◦ j0 = l ◦ i, i.e.,(j0, l) is a morphism fromi0 to i′ in

I→, but there is no injection fromw0 tow, which is a contradiction to the fact that diagram 5.2

is a pull-back, hencel(s) ∩ i′(w′) ⊆ l(i(w)) = i′(j(w)).

We can then define a new categoryPI→ for worlds as follows:

5.1. LA CATÉGORIE PI→ 91

Definition 5.1. PI→ is a category where objects are tuples〈w, i, s〉 with i : w → s ∈ I, and

morphisms are pairs(j, l) : 〈w, i, s〉 → 〈w′, i′, s′〉, wherej : w → w′ ∈ I and l : s → s′ ∈ I,

such that the following commuting diagram is a pull-back inI:

w i //

j

��

s

l

��
w′

i′ // s′

We writei for 〈w, i, s〉when the domainw and the codomains of i are clear from the context.

The composite of morphisms inPI→ is well defined since the composite of two pull-backs is

still a pull-back.

Lemma 5.2. If
w i //

j ��

s

l��
w′

i′ // s′
and

w′
i′ //

j′ ��

s′

l′��
w′′

i′′ // s′′

are two pull-backs inI, then the square
w i //

j′◦j ��

s

l◦l′��
w′′

i′′ // s′′

is a pull-back as well.

Proof. This is standard in category theory, but here we also make a set-theoretical proof.

By Lemma 5.1, we just need to show that

l′(l(i(w))) = i′′(j′(j(w))) = l′(l(s)) ∩ i′′(w′′).

Without causing confusion, we shall use(j, l) refer to the diagram defining the morphism(j, l),
and similarly for(j′, l′) and(j′ ◦ j, l′ ◦ l).

First, l′(l(i(w))) = l′(i′(j(w))) = i′′(j′(j(w))), according to the commuting squares(j, l)
and(j′, l′). Second, because the diagram(j, l) and(j′, l′) are pull-backs, by Lemma 5.1,l(i(w)) =
i′(j(w)) = l(s) ∩ i′(w′) and l′(i′(w′)) = i′′(j′(w′)) = l′(s) ∩ i′′(w′′). Then l′(l(i(w))) =
l′(l(s) ∩ i′(w′)) = l′(l(s)) ∩ l′(i′(w′)), since l′ is injective. Moreover, becausel(s) ⊆ s′

(l : s → s′ is an injection) andl′ is injective, l′(l(s)) ⊆ l′(s′), hencel′(l(s)) ∩ l′(i′(w′)) =
l′(l(s)) ∩ (l′(s) ∩ i′′(w′′)) = l′(l(s)) ∩ i′′(w′′).

Remark5.1. There is another way to define a category such that the equation (5.1) holds. We take

the same objects ofI→, i.e., morphisms inI, and we take pairs(j, l) : 〈w, i, s〉 → 〈w′, i′, s′〉
as morphisms such that the following diagram commutes in the categoryPfun (the category of

sets and partial functions):

w i // s

w′

j−1

OO

i′ // s′

l−1

OO

(5.3)

92 CHAPITRE 5. RELATIONS LOGIQUES CRYPTOGRAPHIQUES

wherej : w → w′, l : s → s′ ∈ I andj−1, l−1 stand for the reverse (partial) injection ofj, l

respectively. The identity of an object〈w, i, s〉 is just(idw, ids), and compositions of morphisms

are also defined by compositions of partial functions.

The commuting square also implies the equation (5.1), i.e.,i′(j(w)) = l(i(w)) = l(s) ∩
i′(w′′). First, for anyk ∈ w, j(n) is in the domain of definition ofj−1, hencei′(j(n)) must

also be in the domain of definition ofl−1 andl−1(i′(j(k))) = i′(j−1(j(k))) = i(k). Because

l is injective, l(i(k)) = l(l−1(i′(j(k)))) = i′(j(k)). Clearly, l(i(k)) ∈ l(i(w)) ⊆ l(s) and

i′(j(k)) ∈ i′(j(w)) ⊆ i′(w′). Second, ifk ∈ l(s) ∩ i′(w′), thenk is in the domain of definition

of l−1 and there exists somek′ ∈ w′ such thati′(k′) = k. Clearly, k′ is in the domain of

definition ofl−1 ◦ i′, so by the commuting square (5.3), it must be also in the domain ofi ◦ j−1,

consequently in the domain ofj−1. Thus there existsk′′ ∈ w such thatj(k′′) = k′, therefore,

k = i′(k′) = i′(j(k′′)) ∈ i′(j(w)).
The category defined her is basically the same category as defined in Definition 5.1: the con-

dition that the diagram (5.3) commutes is equivalent to the pull-back condition in Definition 5.1.

We prefer the definition using pull-backs to the one using partial functions because pull-backs

have certain nice properties. For instance, to check the composition of morphisms, it is standard

that the composition of two pull-backs is still a pull-back, hence Lemma 5.2 is straightforward

(although we also made a set-theoretical proof), but this is not the case if we the definition using

partial functions. Furthermore, taking partial functions into consideration might also make our

discussion more complicated, notably on the derivation of logical relations.

Clearly, the categoryPI→ is a subcategory ofI→. More specifically, it is a subcategory

of I→, where we have the same collection of objects (Obj(PI→) = Obj(I→)), but fewer

morphisms.

Lemma 5.3. For every morphism(j, l) : 〈w, i, s〉 → 〈w′, i′, s′〉 in PI→, there exists some object

〈w0, i0, s0〉 ∈ PI→ such that〈w′, i′, s′〉 and〈w + w0, i+ i0, s+ s0〉 are isomorphic.

Proof. Let w0 = w′ − j(w), s0 = s′ − l(s) and i0 be i′ limited to the domainw0. Define

j′ : w + w0 → w′ by j′(k) = j(k) for anyk ∈ w andj′(k) = k for anyk ∈ w0 and define

l′ : s+ s0 → s′ by l′(k) = l(k) for anyk ∈ s andl′(k) = k for anyk ∈ s0. Clearly, bothj′ and

l′ are bijective, and it is easy to check that the diagram

w + w0
i+i0 //

j′

��

s+ s0

l′

��
w′

i′ // s′

commutes and is a pull-back inI, hence(j′, l′) is an isomorphism inPI→.

5.2. DÉRIVATION DES RELATIONS LOGIQUES SUR SETPI→ 93

The categoryPI→ also satisfies the “cube property”.

Proposition 5.4 (Cube property forPI→). Suppose that(j1, l1) : 〈w, i, s〉 → 〈w1, i1, s1〉 and

(j2, l2) : 〈w, i, s〉 → 〈w2, i2, s2〉 are two morphisms inPI→. There exists〈w′, i′, s′〉 ∈ PI→

and two morphisms(j′1, l
′
1) : i1 → i′ and (j′2, l

′
2) : i2 → i′ such that the following square

commutes inPI→:
i

(j1,l1)

����
��

��
�� (j2,l2)

��?
??

??
??

?

i1

(j′1,l′1) ��>
>>

>>
>>

i2

(j′2,l′2)����
��

��
�

i′

(5.4)

Proof. According to Lemma 5.3, there exist objects〈w1
0, i

1
0, s

1
0〉 and〈w2

0, i
2
0, s

2
0〉 in PI→ such

that i + i10 is isomorphic toi1 and i + i20 is isomorphic toi2. Let 〈w′, i′, s′〉 be the object

〈w + w1
0 + w2

0, i+ i10 + i20, s+ s10 + s20〉. Consider the diagram

i
(j1,l1)

xxqqqqqqqqqqqqq
(j2,l2)

&&MMMMMMMMMMMMM

i1

(j0
1 ,l01)

��

i2

(j0
2 ,l02)
��

i+ i10

(inl,inl) %%KKKKKKKKK
i+ i20

(inl,inl)yysssssssss

i+ i10 + i20

where(j01 , l
0
1) and (j02 , l

0
2) are isomorphisms such thatj01 ◦ j1, l01 ◦ l1, j02 ◦ j2, l02 ◦ l2 are all

inclusions. This diagram commutes since both paths are pairs of inclusions.

5.2 Dérivation des relations logiques surSetPI
→

To define logical relations for the cryptographic metalanguage, we switch fromSetI→ toSetPI→ ,

the category of functors fromPI→ to Set and natural transformations. Necessary properties for

the derivation must be checked.

First of all,SetPI→ is Cartesian closed. Products and coproducts are still defined pointwise.

For any two functorsA,B : PI→ → Set, their exponent is defined by

BAi = SetPI→(PI→(i,−)×A,B)
(BA(j, l)f)i′′((j′, l′), a) = fi′′((j′ ◦ j, l′ ◦ l), a)

94 CHAPITRE 5. RELATIONS LOGIQUES CRYPTOGRAPHIQUES

for any〈w, i, s〉 ∈ PI→, (j, l) : i→ i′, (j′, l′) : i′ → i′′ ∈ PI→, f ∈ BAi anda ∈ Ai. SetPI→

has pull-backs, taken pointwise.

Define a strong monad(TTT, ηηη,µµµ, t) onSetPI→ by:

• TTTA = colimi′ A(_+ i′) : PI→ → Set. On objects,TTTAi = colimi′ A(i+ i′) is the set of

equivalence classes of pairs(i′, a), wherei′ : w′ → s′ in I anda ∈ A(i+ i′), modulo the

smallest equivalence relation∼ such that(i′, a) ∼ (i′′, A(idi+(j, l))a) for each morphism

(j, l) : 〈w′, i′, s′〉 → 〈w′′, i′′, s′′〉 inPI→. We write[i, a] for the equivalence class of(i, a).
On morphisms,TTTA(j, l) maps the equivalence class of(i′, a) to the equivalence class of

(i′, A((j, l) + idi′)a);

• for anyf : A→ B in SetPI→ , TTTfi : TTTAi→ TTTBi is defined byTTTfi[i′, a] = [i′, f(i+i′)a];

• ηηηAi : Ai→ TTTAi is defined byηηηAia = [∅, a], where∅ denotes the empty function between

empty sets;

• µµµAi : TTT2Ai→ TTTAi is defined byµµµAi[i′, [i′′, a]] = [i′ + i′′, a];

• tA,Bi : Ai×TTTBi→ TTT(A×B)i is defined bytA,Bi(a, [i′, b]) = [i′, (Ai→i,i′a, b)] where

i→i,i′ : i→ i+ i′ is the canonical injection.

Recall the forgetful functorU : I→ → I mapping an object〈w, i, s〉 to s and a morphism

(j, l) to l. Clearly, this is also a functor fromPI→ to I. Let |_| : SetI → SetPI→ be the functor

idSet
U . |_| preserves finite products. Define the monad morphismσ : TTT|_| → |T_|, whereT

is the strong monad over the categorySetI , by σAi[〈w′, i′, s′〉, a] = [s′, a], for any objectA in

SetI and〈w, i, s〉 ∈ PI→. Accordingly, defineσ(A1,A2) : TTT|A1 ×A2| → |TA1| × |TA2| by

σ(A1,A2) = (σA1 ◦TTT|π1|, σA2 ◦TTT|π2|)

SetPI→ has a mono factorization system consisting of pointwise surjections and pointwise in-

jections and it is clear thatTTT and finite products preserve pointwise surjections. All these allow

us to define a logical relation onSubsconeSetPI
→

SetI×SetI
.

The derivation of logical relations overSetI→ can be adapted here without much change.

Considerf : S ↪→ |A1 × A2| (A1, A2 ∈ SetI andS ∈ SetPI→) as a representation of a series

of binary relations such that for every〈w, i, s〉 ∈ PI→, fi : Si ↪→ |A1 ×A2|i = (A1 ×A2)s =
A1s × A2s is an inclusion, representing a binary relation. In particular, the relation between

monadic values is the same as that derived fromSetI→ since the two categoriesI→ andPI→

have the same objects:

[s1, a1] S̃i [s2, a2] ⇐⇒
∃〈w0, i0, s0〉 ∈ PI→, l1 : s1 → s0 ∈ I, l2 : s2 → s0 ∈ I·

A1(ids + l1)(a1) S(i+ i0) A2(ids + l2)(a2).

(5.5)

5.2. DÉRIVATION DES RELATIONS LOGIQUES SUR SETPI→ 95

The only difference is relations for function types:

f1 R〈w,i,s〉
BA f2 ⇐⇒

∀〈j, l〉 : 〈w, i, s〉 → 〈w′, i′, s′〉 ∈ PI→ · ∀a1, a2 ∈ As′·
(a1 Ri′

A a2 ⇒ f1s
′〈l, a1〉 Ri′

B f2s
′〈l, a2〉).

(5.6)

A function relation derived over the categorySetPI→ quantifies over a relatively smaller col-

lection of worlds as there are fewer morphisms inPI→ than inI→, hence we can relate more

functions with this logical relation.

Lemma 5.5. The full subcategoryPI⊆ of PI→ consisting only of inclusions, i.e., objects are

inclusions (〈w,⊆, s〉) of I, is equivalent to the whole categoryPI→.

Proof. Let F : PI⊆ → PI→ be the inclusion functor, andG : PI→ → PI⊆ be the func-

tor which maps〈w, i, s〉 to 〈i(w),⊆, s〉, and(j, l) : 〈w, i, s〉 → 〈w′, i′, s′〉 to (i′ ◦ j ◦ i−1, l) :
〈i(w),⊆, s〉 → 〈i′(w′),⊆, s′〉. Then clearly,G ◦ F is the identity, andF ◦ G maps〈w, i, s〉 to

〈i(w),⊆, s〉 which are isomorphic through(i, ids) and(i−1 �i(w), ids). So(F,G) is an equiva-

lence of categories.

We shall write〈w, s〉 for 〈w,⊆, s〉 and(l, l) for the morphism from〈w, s〉 to 〈w′, s′〉 in PI⊆,

wherel is an injection froms to s′, and the firstl of (l, l) actually denotesl �w with the codomain

w′.

Lemma 5.6. The categorySetPI⊆ is equivalent to the categorySetPI→ .

Proof. Similarly as in the proof of Lemma 5.5, we letF ′ : SetPI⊆ → SetPI→ be the functor

such that

∀A ∈ SetPI
⊆
,∀〈w, i, s〉 ∈ PI→, F ′(A)(〈w, i, s〉) = A(〈i(w), s〉),

andG′ : SetPI→ → SetPI⊆ be the functor such that

∀A ∈ SetPI
→
,∀〈w, s〉 ∈ PI⊆, G′(A)(〈w, s〉) = A(〈w,⊆, s〉).

Clearly,G′ ◦ F ′ is the identity, andF ′ ◦G′ maps every functorA ∈ SetPI→ to another functor

A′ ∈ SetPI→ such that

∀〈w, i, s〉 ∈ PI→, A′(< w, i, s >) = A(i(w),⊆, s),

and these two functors are isomorphic throughA(i, ids) andA(i−1 �i(w), ids). So(F ′, G′) is an

equivalence of categories.

96 CHAPITRE 5. RELATIONS LOGIQUES CRYPTOGRAPHIQUES

If we switch from the categorySetPI→ to the equivalent categorySetPI⊆ , the definition of

S̃i (5.5) is then equivalent to

[s1, a1] S̃〈w, s〉 [s2, a2] ⇐⇒
∃〈w0, s0〉 ∈ PI⊆, l1 : s1 → s0 ∈ I, l2 : s2 → s0 ∈ I·

A1(ids + l1)(a1) S〈w + w0, s+ s0〉 A2(ids + l2)(a2).

The function relation (5.6) is equivalent to

f1 R〈w,s〉
BA f2 ⇐⇒

∀〈w0, s0〉 ∈ PI⊆ · ∀a1, a2 ∈ A(s+ s0)·
(a1 R〈w+w0,s+s0〉

A a2 ⇒
f1s

′〈inls,s0 , a1〉 R〈w+w0,s+s0〉
B f2s

′〈inls,s0 , a2〉).

Since logical relations derived over the categorySetPI→ are Kripke logical relations, they

must satisfy the monotonicity property so that the Basic Lemma will hold. The following propo-

sitions shows that logical relations derived overSetPI→ are monotonic if relations for base types

are monotonic.

Proposition 5.7 (Monotonicity). Suppose that(Rτ)τ type is a logical relation derived from the

categorySetPI→ . If Rb is monotonic for every base typeb, then Rτ is monotonic for every

typeτ , in the sense that for every morphism(j, l) : 〈w, i, s〉 → 〈w′, i′, s′〉 ∈ PI→ and every

pair of valuesa1, a2 ∈ JτKs,

a1 R〈w,i,s〉
τ a2 =⇒ JτKl(a1) R〈w′,i′,s′〉

τ JτKl(a2).

Proof. Similar as the proof of Lemma 4.5, we prove the monotonicity by induction on types. We

do not detail the induction steps, which are almost the same as for Lemma 4.5.

5.3 Relations logiques cryptographiques

We have been very careful in defining the cipher function and the cryptographic message relation

according to injections inI, not objects inI→, althoughI→ andPI→ have exactly the same

collection of objects. Definitions based on injections ofI allow us to reuse them directly to

define a logical relation over the categorySetPI→ .

Definition 5.2 (Cryptographic logical relation). Suppose that〈w, i, s〉 is an object inPI→ and

ϕ is a cipher function. The relationsRRR〈w,i,s〉,ϕ
τ ⊆ JτKs × JτKs (RRRi,ϕ

τ for short) are defined by

5.3. RELATIONS LOGIQUES CRYPTOGRAPHIQUES 97

induction over the structure of typeτ , as follows:

b1 RRRi,ϕ
bool b2 ⇐⇒ b1 = b2,

n1 RRRi,ϕ
nat n2 ⇐⇒ n1 = n2,

k1 RRRi,ϕ
key k2 ⇐⇒ k1 = k2 ∈ i(w),

m1 RRRi,ϕ
msg m2 ⇐⇒ (m1,m2) ∈MRi,ϕ,

(a1, a
′
1)RRR

i,ϕ
τ×τ ′ (a2, a

′
2) ⇐⇒ a1 RRRi,ϕ

τ a2 & a′1 RRR
i,ϕ
τ ′ a

′
2,

a1 RRRi,ϕ
opt[τ] a2 ⇐⇒ a1 RRRi,ϕ

τ a2 or a1 = a2 = ⊥,

f1 RRRi,ϕ
τ→τ ′ f2 ⇐⇒

∀(j, l) : 〈w, i, s〉 → 〈w′, i′, s′〉 ∈ PI→ · ∀a1, a2 ∈ JτKs′·
(a1 RRRi′,ϕ

τ a2 ⇒ f1s
′(l, a1)RRRi′,ϕ

τ ′ f2s
′(l, a2)),

[s1, a1]RRRi,ϕ
Tτ [s2, a2] ⇐⇒
∃〈w0, i0, s0〉 ∈ PI→, l1 : s1 → s0, l2 : s2 → s0 ∈ I·

JτK(ids + l1)(a1)RRRi+i0,ϕ
τ JτK(ids + l2)(a2),

whereMRi,ϕ is the cryptographic message relation of Definition 4.2.

A cipher functionϕ is monotonicif for any morphism(j, l) : 〈w, i, s〉 → 〈w′, i′, s′〉 in PI→,

and for everym1,m2 ∈ JmsgKs,

(m1,m2) ∈ ϕi(k1, k2) =⇒ (JmsgKl(m1), JmsgKl(m2)) ∈ ϕi′(l(k1), l(k2)).

This is well-defined because the categoryPI→ guarantees that ifk1, k2 6∈ w, thenl(k1), l(k2) 6∈
w′ either. Furthermore, a cipher functionϕ is said to beconsistentif

(m1,m2) ∈ ϕi(k1, k2) ⇐⇒ (JmsgKl(m1), JmsgKl(m2)) ∈ ϕi′(l(k1), l(k2)).

Again we must check the Basic Lemma. Recall that this is meant to check the condition of

monotonicity and the one that every constant is related to itself. Once we get these two conditions

satisfied, the categorical construction automatically guarantees that the Basic Lemma necessarily

holds. According to Proposition 5.7, logical relations derived over the categorySetPI→ are

monotonic if all relations for base types are monotonic. It is easy to check that relations for types

nat, bool andkey are monotonic. The following lemma shows that the relation for messages are

monotonic if the cipher functionϕ is monotonic.

Lemma 5.8. If the cipher functionϕ is monotonic, then for any morphism(j, l) : 〈w, i, s〉 →
〈w′, i′, s′〉 ∈ PI→ and for any pair of valuesm1,m2 ∈ JmsgKs,

(m1,m2) ∈MRi,ϕ =⇒ (JmsgKl(m1), JmsgKl(m2)) ∈MRi′,ϕ.

98 CHAPITRE 5. RELATIONS LOGIQUES CRYPTOGRAPHIQUES

Proof. We prove by induction on the message structure. In particular, whenm1 = e(m′
1, k1) and

m2 = e(m′
2, k2),

• eitherk1 = k2 ∈ w and(m′
1,m

′
2) ∈ MRi,ϕ, thenl(k1) = l(k2) ∈ i′(w′). By induction,

(JmsgKl(m′
1), JmsgKl(m′

2)) ∈MRi′,ϕ, hence

(e(JmsgKl(m′
1), l(k1)), e(JmsgKl(m′

2), l(k2))) ∈MRi′,ϕ,

• or k1, k2 6∈ w and (m′
1,m

′
2) ∈ ϕi(k1, k2), then according to the definition ofPI→,

l(k1), l(k2) 6∈ i′(w′). Becauseϕ is monotonic,

(JmsgKl(m′
1), JmsgKl(m′

2)) ∈ ϕi′(l(k1), l(k2)),

hence(e(JmsgKl(m′
1), l(k1)), e(JmsgKl(m′

2), l(k2))) ∈MRi′,ϕ.

Proposition 5.9 (Monotonicity). The cryptographic logical relationRRR〈w,i,s〉,ϕ
τ is monotonic for

any monotonic cipher functionsϕ, in the sense that for every morphism(j, l) : 〈w, i, s〉 →
〈w′, i′, s′〉 ∈ PI→ and every pair of valuesa1, a2 ∈ JτKs,

a1 RRR〈w,i,s〉,ϕ
τ a2 =⇒ JτKl(a1)RRR〈w′,i′,s′〉,ϕ

τ JτKl(a2).

Proof. Clearly, in the cryptographic logical relation, relations for every base type are monotonic.

In particular, Lemma 5.8 shows thatRRRi,ϕ
msg is monotonic when the cipher functionϕ is mono-

tonic. Since the cryptographic logical relation is derived over the categorySetPI→ , according to

Proposition 5.7, it is monotonic for every typeτ .

Lemma 5.10. For any monotonic cipher functionϕ and for any morphism(j, l) : 〈w, i, s〉 →
〈w′, i′, s′〉 ∈ PI→, if ρ1 RRRi,ϕ

Γ ρ2, thenJΓKl(ρ1)RRRi′,ϕ
Γ JΓKl(ρ2).

Proof. This is a corollary of Proposition 5.9.

The Basic Lemma of the cryptographic logical relation holds for a non-trivial collection of

cipher functions, namely for all monotonic cipher functions.

Proposition 5.11 (Basic Lemma for the cryptographic logical relations).Suppose thatΓ `
t : τ is a well-typed term andϕ is a monotonic cipher function. For every〈w, i, s〉 ∈ PI→ and

every pair of environmentsρ1, ρ2 ∈ JΓKs such thatρ1 Ri,ϕ
Γ ρ2, JtKsρ1 RRRi,ϕ

τ JtKsρ2.

Proof. It is proved by induction on the structure of termt, which includes proving that every

constant is related to itself.. We do not detail the induction steps, which are quite similar as in

the proof of Proposition 4.7.

5.4. VÉRIFICATION DES PROTOCOLES À L’AIDE DE RELATIONS LOGIQUES 99

If we consider the equivalent subcategorySetPI⊆ of SetPI→ , Definition 5.2 is actually

equivalent to the following one:

Definition 5.3. Letw ands be two sets inI andw ⊆ s. ϕ is a cipher function. The relations

RRR〈w,s〉,ϕ
τ ⊆ JτKs× JτKs are defined by induction over the structure of typeτ , as follows:

b1 RRR〈w,s〉,ϕ
bool b2 ⇐⇒ b1 = b2,

n1 RRR〈w,s〉,ϕ
nat n2 ⇐⇒ n1 = n2,

k1 RRR〈w,s〉,ϕ
key k2 ⇐⇒ k1 = k2 ∈ w,

m1 RRR〈w,s〉,ϕ
msg m2 ⇐⇒ (m1,m2) ∈MR〈w,s〉,ϕ,

(a1, a
′
1)RRR

〈w,s〉,ϕ
τ×τ ′ (a2, a

′
2) ⇐⇒ a1 RRR〈w,s〉,ϕ

τ a2 & a′1 RRR
〈w,s〉,ϕ
τ ′ a′2,

a1 RRR〈w,s〉,ϕ
opt[τ] a2 ⇐⇒ a1 RRR〈w,s〉,ϕ

τ a2 or a′1 = a′2 = ⊥,

f1 RRR〈w,s〉,ϕ
τ→τ ′ f2 ⇐⇒

∀w′, s′ ∈ I s.t.w′ ⊆ s′ · ∀a1, a2 ∈ JτK(s+ s′)·
(a1 RRR〈w+w′,s+s′〉,ϕ

τ a2 ⇒
f1(s+ s′)(inls,s′ , a1)RRR〈w+w′,s+s′〉,ϕ

τ ′ f2(s+ s′)(inls,s′ , a2)),

[s1, a1]RRR〈w,s〉,ϕ
Tτ [s2, a2] ⇐⇒
∃w0, s0 ∈ I s.t.w0 ⊆ s0 · ∃l1 : s1 → s0 ∈ I, l2 : s2 → s0 ∈ I·

JτK(ids + l1)(a1)RRR〈w+w0,s+s0〉,ϕ
τ JτK(ids + l2)(a2),

whereMR〈w,s〉,ϕ is a cryptographic message relation.

This definition takes as parameters a pair of sets and simply requiresw to be a subset ofs, i.e.,

the set of disclosed keys is a subset of those keys that have been created at that “world”, so it is

much closer to the intuition and we shall use this logical relations to check the relation between

concrete programs.

5.4 Vérification des protocoles à l’aide de relations logiques

The point of checking whether two concrete programs are related is to distinguish between dis-

closed keys and secret keys and to find a proper cipher function. Consider the counterexample at

the beginning of this chapter:

p1 = νk.〈{0}k, {1}k, λx.getnum(dec(x, k))〉,

p2 = νk.〈{1}k, {0}k, λx.letopt y⇐ getnum(dec(x, k)) in some(1− y)〉,

100 CHAPITRE 5. RELATIONS LOGIQUES CRYPTOGRAPHIQUES

with the denotations

Jp1Ks = [{k}, ({0}k, {1}k, f1)]

Jp2Ks = [{k}, ({1}k, {0}k, f2)].

We are now able to relate these two programs with the cryptographic logical relation. Without

loss of generality, we can just start with a world〈∅, ∅〉. Clearly, the fresh keyk is secret, i.e.,

k 6∈ w, then we need to relate the two tuples at the world〈∅, {k}〉. For this, we define the cipher

function at this world as

ϕ〈∅,{k}〉(k, k) = {(0, 1), (1, 0)}.

Note that in order to keep the soundness of the logical relation, cipher-functions must be mono-

tonic, i.e., for every larger world〈w, s〉 such thatk 6∈ w andk ∈ s, (0, 1) and(1, 0) must be

included inϕ〈w,s〉(k, k). Then the cipher-texts in the two programs are related because of this

cipher function. The two functionsf1 andf2 are related as well because they expect cipher-texts

as arguments, but we are only allowed to apply them to related cipher-texts. In this case, we shall

always get the decryption error (⊥) unless we apply these two functions to secret cipher-texts —

({1}k, {0}k), ({0}k, {1}k) — given by the cipher-function, where we get related results.

This section shows that the cryptographic logical relation can be used to relate the different

instances of the protocols in Chapter 2, by carefully choosing the set of secret keys and the

cipher-functionϕ.

5.4.1 Le protocole de l’échange de clés symétriques

Recall the encoding of the (fixed) symmetric key establishment protocol:

P (m) ≡ ν(kas, kbs, kes, kab).〈kes, fa, fs〉,

where

fa ≡ 〈[A,B, {B, kab}kas], {m}kab
〉

fs ≡ λx.letopt xa ⇐ getnum(π3
1(x)) in

letopt xb ⇐ getnum(π3
2(x)) in

letopt y⇐ dec(π3
3(x), K(xa, s)) in

letopt x′b ⇐ getnum(fst(y)) in

if xb = x′b then some([n(xa), n(xb), {snd(y)}K(xb,s)])

else error

5.4. VÉRIFICATION DES PROTOCOLES À L’AIDE DE RELATIONS LOGIQUES 101

Basically, fs expects messages of the form[X,Y, {Y, Z}kxs] and will output messages

[X,Y, {Y, Z}kys]. If the argument message is of a wrong format,fs always returns an error

(⊥).

Proposition 5.12. For any two different messagesm1 6= m2, there exists a monotonic cipher-

functionϕ such thatJP (m1)KRRR〈∅,∅〉,ϕ
τ JP (m2)K.

Proof. Consider the denotation of the protocol program

[{kas, kbs, kes, kab}, 〈kes, [A,B, {B, kab}kas], {m}kab
, f〉],

wheref is the denotation offs defined over{kas, kbs, kes, kab}. In order to relate the two in-

stances wherem = m1 andm = m2, we must select carefully the setw of disclosed keys such

that the tuples are related.

Relating tuples is simply relating components. Relating the first componentskes forces us

to putkes in w. Relating the third components, we must not putkab into w, sincem1 andm2

are different. This accordingly requires that the keykas should be secret, because in the second

component, it is used to encrypt the secret keykab. We also letkbs be a secret key since it is not

disclosed in the program. Letw = {kes} ands = {kas, kbs, kes, kab}. Then at the world〈w, s〉,
the first three components of the tuple are related, with the cipher function defined as (first try):

ϕ〈w,s〉(kab, kab) = {(m1,m2)},

ϕ〈w,s〉(kas, kas) = {([B, kab], [B, kab])},

ϕ〈w,s〉(kbs, kbs) = ∅.

We still need to check whether the functionf is related to itself. Functionf returns meaning-

ful results (non-error) only when it is applied to messages of expected format. In this program,

the possible messages that contexts can build and the corresponding responses fromf are:

[A,B, {B, kab}kas] 7→ [A,B, {B, kab}kbs
],

[E,A, {A, k}kes] 7→ [E,A, {A, k}kas],

[E,B, {B, k}kes] 7→ [E,B, {B, k}kbs
].

wherek is eitherkes or some fresh key not ins. We should then revise the cipher function so that

this function is related to itself:

ϕ〈w
′,s′〉(kab, kab) = {(m1,m2)}

ϕ〈w
′,s′〉(kas, kas) = {([B, kab], [B, kab]), ([A, k], [A, k])}

ϕ〈w
′,s′〉(kbs, kbs) = {([B, k], [B, k])},

102 CHAPITRE 5. RELATIONS LOGIQUES CRYPTOGRAPHIQUES

wherew′ = w + w0 ands′ = s + s0 for any 〈w0, s0〉 ∈ PI⊆, andk ∈ w′. It is clear that

this cipher function is monotonic. Moreover, with this cipher function, other components of the

protocol program are still related.

5.4.2 Le protocole de Needham-Schroeder-Lowe

In the cryptographic metalanguage, G. Lowe’s fixed version of the Needham-Schroeder public

key protocol is encoded as

NS(m) ≡ ν(ka, kb, ke).〈λx.{x}ka , λx.{x}kb
, ke, 〈n(A), fa〉, fb〉,

where

fa ≡ λ{x}ka .letopt x
′ ⇐ getnum(snd(x)) in

some(ν(Na).〈{[k(Na), fst(x), A]}Ka(x′), f
′
a〉)

f ′a ≡ λ{x′′}ka .letopt x
′′′ ⇐ getkey(x′′) in

if x′′′ = Na then some({i}Na) else error

fb ≡ λy.letopt y′ ⇐ getnum(y) in

some(ν(Nb).〈{[k(Nb), n(B)]}Kb(y′), f
′
b〉)

f ′b ≡ λ{y′′}kb
.letopt y′′2 ⇐ getkey(π3

2(y
′′)) in

letopt y′′3 ⇐ getnum(π3
3(y

′′)) in

if (y′′2 = Nb and y
′ = y′′3)

then some({π3
1(y

′′)}Kb(y′)) else error.

Basically,fa expects messages{Nb, B}ka and returns messages{Na, Nx, A}kx , whereNa is a

fresh nonce generated byfa; f ′a then expects exactly the message{Na}ka and returns the secret

messages encrypted withNa; fb expects a principle identityX and returns{Nb, B}kx whereNb

is a fresh nonce generated byfb; thenf ′b expects messages{Nx, Nb, X}kb
and returns messages

{Nx}kx . In particular,f ′b checks whether the principle identityX it receives is the same one as

fb receives.

Proposition 5.13. For any two different messagesm1 6= m2, there exists a monotonic cipher-

functionϕ such thatJNS(m1)KRRR〈∅,∅〉,ϕ
τ JNS(m2)K.

Proof. Consider the denotation of the protocol program

[{ka, kb, ke}, 〈pka, pkb, ke, 〈A, f1〉, f2〉],

wheref1 andf2 are denotations offa andfb defined over the set{ka, kb, ke}. Clearly, keyska

andkb should be considered as secret keys, andke must be a disclosed key so that it is related to

5.4. VÉRIFICATION DES PROTOCOLES À L’AIDE DE RELATIONS LOGIQUES 103

itself. Letw = {ke} ands = {ka, kb, ke}. Then we must relate the two public key functionspka

andpkb, and the two principle functionsf1 andf2, at the world〈w, s〉.
To relate functionspka and pkb with themselves, the cipher function should relate every

related messages encrypted byka or bykb:

ϕ〈w
′,s′〉(ka, ka) = {(m1,m2) | (m1,m2) ∈MR〈w′,s′〉,ϕ}

ϕ〈w
′,s′〉(kb, kb) = {(m1,m2) | (m1,m2) ∈MR〈w′,s′〉,ϕ}

wherew′ = w + w0 ands′ = s+ s0 for any〈w0, s0〉 ∈ PI⊆. WhileMR is defined according

toϕ, this cipher function is indeed recursively defined.

The functionf1 is a mapping

{N,B}ka 7→ [{Na}, 〈{Na, N,A}kb
, f ′1〉],

wheref ′1 is a mapping

{Na}ka 7→ {m}Na .

Clearly,Na should be secret, otherwisef ′1 is not related to itself whenm is replaced by two

different messagesm1 andm2. Furthermore,ϕ(Na, Na) should contains(m1,m2). To relate

the functionf1, ϕ(kb, kb) should contain([Na, N,A], [Na, N,A]), for any keyN .

The functionf2 maps a principle identity to an encrypted message with the secret key of the

received identity. Consider two possible arguments:

A 7→ [{Nb}, 〈{Nb, B}ka , f
′
2〉]

E 7→ [{Nb}, 〈{Nb, B}ke , f
′
2〉],

wheref ′2 is a mapping

{N ′, Nb, A}kb
7→ {N ′}ka whenf1 is applied toA

{N ′, Nb, E}kb
7→ {N ′}ke whenf1 is applied toE.

Nb is not secret, otherwise the functionf2 will return unrelated results when it is applied toE.

BecauseNa is secret, the only message of the form{N ′, Nb, A}kb
that could be applied tof ′2 is

{Na, Nb, A}kb
, i.e.,N ′ = Na, soϕ(ka, ka) must contain(Na, Na) in order to relatef ′2. If f2 is

applied toE, thenN ′ must be a disclosed key according toϕ(kb, kb), sof ′2 is always related to

itself.

To summarize, the different instances of the protocol are related in the cryptographic logical

104 CHAPITRE 5. RELATIONS LOGIQUES CRYPTOGRAPHIQUES

relation, with the cipher function

ϕ〈w
′,s′〉(ka, ka) = {(m1,m2) | (m1,m2) ∈MR〈w′,s′〉,ϕ}

ϕ〈w
′,s′〉(kb, kb) = {(m1,m2) | (m1,m2) ∈MR〈w′,s′〉,ϕ}

ϕ〈w
′′,s′′〉(ka, ka) = {(m1,m2) | (m1,m2) ∈MR〈w′′,s′′〉,ϕ}

∪ {(Na, Na)}

ϕ〈w
′′,s′′〉(kb, kb) = {(m1,m2) | (m1,m2) ∈MR〈w′′,s′′〉,ϕ}

∪ {([Na, Nb, A], [Na, Nb, A])}

ϕ〈w
′′,s′′〉(Na, Na) = {(m1,m2)}

where w′ = {ke} + w0, s′ = {ka, kb, ke} + s0, w′′ = {ke, Nb} + w0 and

s′′ = {ka, kb, ke, Na, Nb}+ s0 for any〈w0, s0〉 ∈ PI⊆.

5.5 Comparaisons avec les relations logiques du nu-calcul

In the nu-calculus, Pitts and Stark proposed anoperational logical relation1 for reasoning about

the contextual equivalence [PS93a]. The operational logical relation is defined over the syntax of

the nu-calculus and relies largely on the operational semantics. Stark later rebuilt the categorical

modelSetI using the machinery ofcategories with relationsand defined the categoryP [Sta94].

This category gives a denotational semantics for the nu-calculus which directly validates most

contextually equivalent programs. In particular, it allows us to derive logical relations for the

nu-calculus, which are proved to be equivalent to the operational logical relation for types up

to second order. We shall show in this section that logical relations defined over the category

SetPI→ are indeed equivalent to those derived from Stark’s categoryP.

A category with relations is a category with a collection of binaryrelationsbetween pairs of

objects, representedR : A↔ B, andparametric squaresof the form

A
f //

OO

R

��

A′OO

R′

��
B

g // B′

,

whereR,R′ are relations andf, g are morphisms. Relations, like morphisms, are simply abstract

data. We rebuild the modelSetI using the machinery of categories with relations, by equipping

both the index categoryI and the base categorySet with relations. For the index categoryI, a

1In [ZN03], we asserted wrongly that logical relations derived overSetI
→

can identify Pitts and Stark’s opera-

tional logical relation.

5.5. COMPARAISONS AVEC LES RELATIONS LOGIQUES DU NU-CALCUL 105

relationR : s1 ↔ s2 onI consists of a finite setR and a pair of injectionss1 � R � s2. Such a

relation is also called aspanin the operational logical relation. The operation ’+’ onI extends to

relations: ifR : s1 ↔ s2 andR′ : s′1 ↔ s′2 are two spans inI, thenR+R′ : s1+s′1 ↔ s2+s′2 is a

span as well. A square inI is parametric if and only if both squares in

s1 // s′1

R

OO

//

��

R′

OO

��
s2 // s′2

are pull-backs.

Up to isomorphism, all parametric squares inI are of the form

s1
inl //
OO

R
��

s1 + s′1OO
R+R′
��

s2
inl // s2 + s′2

.

The base categorySet is extended with ordinary binary relations and a square
A

f //
OO

R ��

A′OO
R′
��

B
f // B′

are parametric if and only if

∀a ∈ A, b ∈ B s.t. (a, b) ∈ R⇒ (fa, gb) ∈ R′.

We then take the ordinary categoryP of parametric functors and parametric natural transforma-

tions fromI to Set.

Every relation inI identifies an object inPI→ and every parametric square identifies a

morphism. Precisely, for every relationR : s1 ↔ s2, define an object〈R, iR, s1 +R s2〉, where

s1 +R s2 is s1 + s2 modulo the relationR, andiR is just the injection mapping every element

in R to the equivalent classes of either of its components. Clearly, if both squares
R //

��

s1

��
R′ // s′1

and
R //

��

s2

��
R′ // s′2

are pull-backs, then
R //

��

s1 +R s
′
1

��
R′ // s2 +R′ s′2

is a pull-back as well. Conversely, for any

object〈w, i, s〉, we can simply build a relationR : s↔ s with Rw = idw.

The categoryP is Cartesian closed. In particular, exponentials are defined by

BAs = P(I(s,−)×A,B),

BAifs′′(j, a) = fs′′(j ◦ i, a),

106 CHAPITRE 5. RELATIONS LOGIQUES CRYPTOGRAPHIQUES

wheres, s′, s′′ ∈ I, i : s→ s′, j : s′ → s′′ ∈ I, f ∈ BAs anda ∈ As′′. Furthermore,

(f1, f2) ∈ BAR ⇐⇒

for all parametric squares
s1

l1 //
OO

R
��

s′1OO
R′
��

s2
l2 // s′2

and elementsa1 ∈ As′1, a2 ∈ As′2,

(a1, a2) ∈ AR′ ⇒ (f1s
′
1(l1, a1), f2s

′
2(l2, a2)) ∈ BR′,

wheres1, s2 ∈ I, f1 ∈ BAs1 andf2 ∈ BAs2. The monad is specified exactly as for the model

SetI except that on objects, it is the quotient

TAs = {(s′, a) | s′ ∈ I, a ∈ A(s+ s′)}/ '

where(s′1, a1) ' (s′2, a2) if and only if there is someR′ : s′1 ↔ s′2 such that(a1, a2) ∈
A(ids +R′). The relationTAR : TAs1 ↔ TAs2, for anyR : s1 ↔ s2 in I, is given by

(e1, e2) ∈ TAR⇐⇒
∃R′ : s′1 ↔ s′2, a1 ∈ A(s1 + s′1), a2 ∈ A(s2 + s′2) s.t.

e1 = [s′1, a1] & e2 = [s′2, a2] & (a1, a2) ∈ A(R+R′).

Logical relations derived overSetPI→ andP are equivalent in the sense that for any type

τ and any relationR : s1 ↔ s2, there is some object〈w, i, s〉 in PI→ such that values related

by JτKR are also related byRi
τ after being lifted to the proper world, and conversely, for any

object〈w, i, s〉 of PI→, there is some relationR such that values related byRi
τ are related by

JτKR. The equivalence can be proved by induction on types when the relations for base types

are carefully defined. The induction steps of function types and monadic types are shown by the

following two propositions, while others are standard. LetR be a logical relation defined over

SetPI→ . In particular,RTA andR
BA are defined by (5.5) and (5.6) respectively.

Proposition 5.14. A is an object inSetI . For every relationR : s1 ↔ s2 and every object

〈w, i, s〉 ∈ PI→, if

(a1, a2) ∈ AR ⇒ (Ai1(a1), Ai2(a2)) ∈ RiR
A ,

(a1, a2) ∈ Ri
A ⇒ (a1, a2) ∈ ARw,

whereiR : R → s1 +R s2 is the injection identifying the relationR, i1 : s1 → s1 +R s2, i2 :
s2 → s1 +R s2 are canonical injections inI, andRw : s↔ s is the identity relation onw, then

(e1, e2) ∈ TAR ⇒ (TAi1(e1),TAi2(e2)) ∈ RiR
TA,

(e1, e2) ∈ Ri
TA ⇒ (e1, e2) ∈ TARw.

5.5. COMPARAISONS AVEC LES RELATIONS LOGIQUES DU NU-CALCUL 107

Proof. If (e1, e2) ∈ TAR, according to the definition ofTAR, there exist some relationR′ :
s′1 ↔ s′2 and two elementsa1 ∈ A(s1+s′1), a2 ∈ A(s2+s′2) such thate1 = [s′1, a1], e2 = [s′2, a2]
and(a1, a2) ∈ A(R+R′). ThenTAi1(e1) = [s′1, A(i1 + ids′1

)a1] andTAi2(e2) = [s′2, A(i2 +
ids′2

)a2]. Let iR′ : R′ → s′1 +R′ s′2 be the injection identified byR′ andi′1 : s′1 → s′1 +R′ s′2 and

i′2 : s′2 → s′1 +R′ s′2 be the canonical injections, so

iR + iR′ : R+R′ → (s1 +R s2) + (s′1 +R′ s′2)

is the injection identified byR+R′. Because(a1, a2) ∈ A(R+R′), by the hypothesis,(A(i1 +
i′1)a1, A(i2 + i′2)a2) ∈ R

iR+iR′
A , hence(TAi1(e1),TAi2(e2)) ∈ RiR

TA according to (5.5).

Suppose thate1 = [s′1, a1] ande2 = [s′2, a2]. If (e1, e2) ∈ Ri
TA, according to (5.5), there

exist some〈w0, i0, s0〉 in PI→ and two injectionsl1 : s′1 → s0, l2 : s′2 → s0 such that(A(ids +
l1)a1, A(ids + l2)a2) ∈ Ri+i0

A . Then by the hypothesis,

(A(ids + l1)a1, A(ids + l2)a2) ∈ ARw+w0 = A(Rw +Rw0).

Clearly, (s1, a1) ' (s0, A(ids + l1)a1) by taking l1 as a relation betweens1 and s0. Also,

(s1, a1) ' (s0, A(ids + l1)a1), hence(e1, e2) ∈ TARw.

Proposition 5.15. Suppose thatA,B are two objects inSetI . For every relationR : s1 ↔ s2

and every object〈w, i, s〉 ∈ PI→, if

(a1, a2) ∈ AR ⇒ (Ai1(a1), Ai2(a2)) ∈ RiR
A ,

(b1, b2) ∈ BR ⇒ (Bi1(b1), Bi2(b2)) ∈ RiR
B ,

(a1, a2) ∈ Ri
A ⇒ (a1, a2) ∈ ARw,

(b1, b2) ∈ Ri
B ⇒ (b1, b2) ∈ BRw,

whereiR : R → s1 +R s2 is the injection identifying the relationR, i1 : s1 → s1 +R s2, i2 :
s2 → s1 +R s2 are canonical injections inI, andRw : s↔ s is the identity relation onw, then

(f1, f2) ∈ BAR ⇒ (BAi1(f1), BAi2(f2)) ∈ RiR
BA ,

(f1, f2) ∈ Ri
BA ⇒ (f1, f2) ∈ BARw.

Proof. If (f1, f2) ∈ BAR, let (j, l) : iR → i′ be an arbitrary morphism inPI→, where

i′ : w′ → s′ ∈ I, then by Lemma 5.3, there exists some object〈w0, i0, s0〉 such that(j, l) is

equivalent to the morphism(inl, inl) from iR to iR + i0. Take two arbitrary elementsa1, a2 ∈
A((s1 +R s2)+s0) such that(a1, a2) ∈ RiR+i0

A . By hypothesis,(a1, a2) ∈ A(R′+Rw0), where

R′ : s1 +R s2 ↔ s1 +R s2 is the relation equivalent toR, so the square
s1

i1 //
OO

R ��

s1 +R s2OO
R′
��

s2
i2 // s1 +R s2

is

108 CHAPITRE 5. RELATIONS LOGIQUES CRYPTOGRAPHIQUES

parametric inI, hence(BAi1(f1), BAi2(f2)) ∈ BAR′ by the functoriality. Because the square

s1 +R s2
inl //

OO
R′
��

(s1 +R s2) + s0
R′+Rw0��

s1 +R s2
inl // (s1 +R s2) + s0

is also parametric,

(BAi1(f1)((s1 +R s2) + s0)(inl, a1), BAi2(f2)((s1 +R s2) + s0)(inl, a2)) ∈ BA(R′ +Rw0),

and by hypothesis, they are related byRiR+i0
B , hence(BAi1(f1), BAi2(f2)) ∈ RiR

BA .

If (f1, f2) ∈ Ri
BA , take an arbitrary parametric square

s
l1 //OO

Rw
��

s′1OO
R′
��

s
l2 // s′2

, which, up to isomor-

phism, is equivalent to

s inl //OO
Rw

��

s+ s01OO
Rw+R0��

s inl // s+ s02

for some relationR0 : s01 ↔ s02. Let iR0 : R0 →

s01 +R0 s
0
2 be the injection identified byR0, i01 : s01 → s01 +R0 s

0
2 andi02 : s02 → s01 +R0 s

0
2 be

the canonical injections, andR′
0 : s01 +R0 s

0
2 ↔ s01 +R0 s

0
2 be the equivalent relation toR0. Then

for every elementsa1 ∈ A(s + s01), a2 ∈ A(S + s02) such that(a1, a2) ∈ A(Rw + R0), by the

hypothesis,

(A(ids + i01)a1, A(ids + i02)a2) ∈ R
i+iR0
A .

Because(inl, inl) : i→ i+ iR0 is a morphism inPI→,

(f1(s+ (s01 +R0 s
0
2))(⊆, A(ids + i01)a1), f2(s+ (s01 +R0 s

0
2))(⊆, A(ids + i02)a2) ∈ R

i+iR0
B

and by hypothesis, they are also related byB(Rw + R′
0), sof1(s + s1)(inl, a1) and(f2(s +

s2)(inl, a2) must be related byB(Rw + R0), otherwise the functoriality would imply that the

above two lifted elements are not related byB(Rw +R′
0). Hence,(f1, f2) ∈ BARw.

Chapitre 6

Complétude des relations logiques

Lorsque nous utilisons les relations logiques pour déduire l’équivalence contextuelle, la com-

plétude des relations logiques est un sujet que nous ne devons pas ignorer. La complétude des

relations logiques peut avoir deux sens :

– dans le sensfort, les relations logiques sont complètes, par rapport à l’équivalence contex-

tuelle, si et seulement s’il existe une relation logique spécifique telle que tous les pro-

grammes équivalents peuvent être reliés par cette relation ;

– dans le sensfaible, les relations logiques sont complètes si et seulement si pour chaque

paire de programmes contextuellement équivalent, il existe une relation logique qui relie

les deux programmes.

Dans cette thèse, nous nous concentrons sur la complétude des relations logiques dans le sens

fort, ce qui est plus utile et plus pratique pour étudier l’équivalence contextuelle.

En général, dans le lambda-calcul simplement typé, les relations logiques ne sont complètes

que pour les types du premier ordre. Nous commençons le chapitre par une revue brève de la

preuve de complétude (pour les types du premier ordre) dans les lambda-calculs typés standards.

La complétude de relations logiques pour les types monadiques est plus subtile. D’abord, la

définition standard d’équivalence contextuelle du lambda-calcul typé ne s’applique pas dans le

métalangage cryptographique. Il faut trouver une définition plus adaptée à notre langage. Ensuite,

il s’avère très difficile d’obtenir un résultat général de complétude pour toutes les monades à

cause de la grande différence entre les propriétés spécifiques des monades, ainsi qu’entre les

définitions des relations logiques. Nous exposerons la difficulté en essayant de faire une preuve

générale pour les types du premier ordre. Le lecteur intéressé par ce sujet peuvent se référer à

l’annexe B pour une discussion détaillée sur la complétude des relations logiques monadiques.

Dans ce chapitre, nous nous concentrons sur les relations logiques pour la monade de la

génération de clés. Tout d’abord, nous continuons notre discussion de la notion d’équivalence

contextuelle commencée à la fin du chapitre 3. Nous arrivons donc, dans la partie 6.1, à une dé-

109

110 CHAPITRE 6. COMPLÉTUDE DES RELATIONS LOGIQUES

finition finale de l’équivalence contextuelle pour les protocoles cryptographiques, et nous mon-

trons que la relation logique cryptographique (définie au chapitre 5) permet de déduire cette

notion d’équivalence contextuelle. Dans la partie 6.2 et la partie 6.3, nous examinons la question

de la complétude des relations logiques dérivées sur la catégorieSetPI→ . En particulier, nous

trouvons que ces relations logiques ne sont pas complètes pour tous les types du premier ordre.

Nous dégageons un sous-ensemble des types du premier ordre pour lesquels nous pouvons ob-

tenir la complétude. Afin d’obtenir la complétude pour tous les types, nous utilisons la notion

de relations logiques lâches (lax). Dans la partie 6.4, nous définissons, sur la même catégorie

SetPI→ , une relation logique complète qui est lâche pour les types de fonctions et les types

monadiques, mais stricte (non lâche) pour les autres.

111

Completenessis an important concern about logical relations that we should not bypass when

we are inclined to use logical relations to deduce contextual equivalence. There are two senses

of completeness for logical relations:

• In the strongsense, we say that logical relations are complete, w.r.t. contextual equiv-

alence, if and only if there exist a logical relation such that all contextually equivalent

programs can be related by this specific logical relation;

• In theweaksense, we say that logical relations are complete, if and only if for every pair

of contextually related programs, there exists a logical relation such that the equivalent

programs can be related.

We shall focus in this thesis on completeness of the strong sense, which is more practical than

the weak one for studying equivalence between programs.

However, in simply-typed lambda-calculus, logical relations are only complete for types up

to first order in general. Recall the standard definition of contextual equivalence in simply-typed

lambda-calculus, defined in a set-theoretical model. Two closed termst1, t2 of the same typeτ ,

are contextually equivalent (t1 ≈τ t2), if and only if, whatever the termC such thatx : τ ` C : o
(o ∈ Obs) is derivable, it holds that

JCK[x 7→ Jt1K] = JCK[x 7→ Jt2K].

Logical relations for simply typed lambda-calculus are complete up to first-order types, in the

strong sense that there exists a logical relation(Rτ)τ type which is partial equality on observation

types, such that if̀ t1 : τ and` t2 : τ are derivable, for any typeτ up to first order, it holds that

t1 ≈τ t2 =⇒ Jt1K Rτ Jt2K.

Say that a valuea ∈ JτK is definableif and only if there exists a closed termt such that̀ t : τ is

derivable anda = JtK. We define the relation∼τ by a1 ∼τ a2 (for a1, a2 ∈ JτK) if and only if

a1, a2 are definable anda1 ≈τ a2. Let (Rτ)τ type be the logical relation induced byRb = ∼b at

every base typeb.

The proof of completeness is by induction onτ . Caseτ = b is obvious. Letτ = b → τ ′.

Take two termst1, t2 of type b → τ ′ such thatt1 andt2 are related by≈b→τ ′ . Let f1 = Jt1K
andf2 = Jt2K. Assume thata1, a2 ∈ JbK are related byRb, thereforea1 ∼b a2 sinceRb = ∼b.

Clearly,a1 anda2 are definable, say by termsu1 andu2, respectively. Then, for any contextC

112 CHAPITRE 6. COMPLÉTUDE DES RELATIONS LOGIQUES

such thatx : τ ′ ` C : o (o ∈ Obs) is derivable,

JCK[x 7→ f1(a1)]

= JC[xu1/x]K[x 7→ f1] (sincea1 = Ju1K)

= JC[xu1/x]K[z 7→ f2] (sincef1 ≈b→τ ′ f2)

= JCK[x 7→ f2(a1)]

= JC[t2x/x]K[x 7→ a1] (sincef2 = Jt2K)

= JC[t2x/x]K[x 7→ a2] (sincea1 ≈b a2)

= JCK[x 7→ f2(a2)].

Hencef1(a1) ≈τ ′ f2(a2). By induction hypothesis,f1(a1) Rτ ′ f2(a2). Becausea1 anda2 are

arbitrary, it holds thatf1 Rb→τ ′ f2.

Completeness of monadic logical relations is much subtler. First, as we have seen in Sec-

tion 3.5, the standard definition of contextual equivalence for simply-typed lambda-calculus is not

suitable for the computational lambda-calculus. We revise the definition and consider contexts

of typeTo (o ∈ Obs): two closed termst1, t2 of the same typeτ , are contextually equivalent

(t1 ≈τ t2), if and only if, whatever the termC such thatx : τ ` C : To (o ∈ Obs) is derivable,

it holds that

JCK[x 7→ Ja1K] = JCK[x 7→ Ja2K].

Second, it is very difficult to get a general result on completeness for all monads, since specific

properties of particular monads (and corresponding logical relations) are quite different. Further-

more, since contexts are involved, language constants play an important role in discussions of

completeness and they vary widely for different forms of computations.

We investigate completeness up to first-order types in the strong sense, in a similar way as

in simply-typed lambda-calculus. We aim at finding a logical relation(Rτ)τ type such that if

` t1 : τ and` t2 : τ are derivable, for any typeτ up to first order, it holds that

t1 ≈τ t2 =⇒ Jt1K Rτ Jt2K.

Or, shortly:∼τ ⊆ Rτ . We again induce a logical relation(Rτ)τ type by Rb =∼b, for every

base typeb. Then the proof would go by induction overτ , to show∼τ ⊆ Rτ for an arbitrary

monadT and every first-order typeτ . Casesτ = b andτ = b→ τ ′ go identically as in the above

proof for simply-typed lambda-calculus. The difficult case isτ = Tτ ′, i.e., the induction step

∼τ ⊆ Rτ =⇒∼Tτ ⊆ RTτ . (6.1)

We did not find any general way to prove this for an arbitrary monad. In fact, this does not

hold for all first-order types. For certain concrete monads, in order to show (6.1), we must have

6.1. ÉQUIVALENCE CONTEXTUELLE DES PROTOCOLES CRYPTOGRAPHIQUES 113

further restrictions onτ . Interested readers are referred to Appendix B for further discussion on

completeness of monadic logical relations, where we show (6.1) for a list of concrete monads

(sometimes with further restrictions onτ).

In this chapter, we shall concentrate ourselves on logical relations for the special monad of

dynamic key generation. First of all, we continue the discussion at the end of Chapter 3, on the

notion of contextual equivalence. We give, in Section 6.1, the final definition of the contextual

equivalence for cryptographic protocols and show that the cryptographic logical relation defined

in Section 5.3 can be used to deduce the contextual equivalence. Then we start to investigate the

completeness of logical relations derived over the categorySetPI→ . In particular, it turns out

that completeness of these logical relations does not hold for every type up to first order, but it

does hold for a certain subset of first-order types. In Section 6.2, we investigate completeness for

non-monadic types, and Section 6.3 is about monadic types. To get completeness for all types,

we switch to the notion oflax logical relations. In Section 6.4, we define a complete lax logical

relation over the categorySetPI→ , which is lax at function types and monadic types, but can be

strict at various other types.

6.1 Équivalence contextuelle des protocoles cryptographiques

Recall the definition of contextual equivalence in the end of Chapter 3: two valuesa1, a2 ∈ JτKs
are contextually equivalentat s, (a1 ≈s

τ a2), if and only if, for every finite set of variablesw′,

every injectionsi′ : w′ → s′ andl : s→ s′ and every termC such that

w′ : key, x : τ ` C : To, (o ∈ Obs)

is derivable,

JCKs′i′[x 7→ JτKl(a1)] = JCKs′i′[x 7→ JτKl(a2)].

This definition potentially allows contexts to have access toall keys, which is too powerful. The

key of defining contextual equivalence for cryptographic protocols is that contexts must represent

honestly the power of attackers. Obviously, attackers do not necessarily know every key.

The categorySetPI→ has been proved very useful for defining logical relations for the cryp-

tographic metalanguage. It can also be used here to define a more reasonable notion of contex-

tual equivalence. Note that we shall consider here the category equivalent toPI→ wherew is

restricted to be a finite set ofvariablesand continue to call this categoryPI→. Objects〈w, i, s〉
are then setsw of variables denoting those disclosed keys ins, together with an injectioni. We

also usei to denote the environment[w 7→ i(w)]. Using the categorySetPI→ , we then arrive at

the following definition of contextual equivalence for dynamic key generation:

114 CHAPITRE 6. COMPLÉTUDE DES RELATIONS LOGIQUES

Definition 6.1 (Contextual equivalence for key generation).Suppose thati : w → s is an

injection in I. Two valuesa1, a2 ∈ JτKs are said to becontextually equivalent at〈w, i, s〉,
writtena1 ≈〈w,i,s〉

τ a2, if and only if, for every morphisms(j, l) : 〈w, i, s〉 → 〈w′, i′, s′〉 in PI→,

for every termC such that

w′ : key, x : τ ` C : To, (o ∈ Obs)

is derivable,

JCKs′i′[x 7→ JτKl(a1)] = JCKs′i′[x 7→ JτKl(a2)].

We often write≈i
τ for short, when the domain and codomain ofi is clear from the context.

This definition is more general than the one we introduced in the end of Chapter 3. In partic-

ular,a1 ≈s
τ a2 if and only if a1 ≈ids

τ a2.

However, contexts in this definition do not represent the full power of real attackers. This is

because morphisms in categoryPI→ do not allow contexts defined at〈w, i, s〉 to get access to

keys ins− i(w), hence contexts cannot build any messages including cipher-texts encrypted by

secret keys. This is too strict, because in reality, attackers are certainly able to make use of those

encrypted messages passing through the network, even though they are not able to decrypt them.

In other words, a context for cryptographic protocols depends not only on a set of disclosed keys,

but also on a set of cipher-texts encrypted by secret keys, which we call theknowledgeof the

context.

Formally, a knowledgeκ is a family of sets of cipher-texts such that for every〈w, i, s〉 ∈
PI→, κ〈w,i,s〉 is a set of cipher-texts encrypted by a key ins− i(w), i.e.,

κ〈w,i,s〉 ⊆ {e(m, k) | m ∈ JmsgKs & k ∈ s− i(w)}.

We also writeκi for κ〈w,i,s〉. Note that in some formal models, the term “knowledge” represents

all messages that an attacker is able to access, not just secret cipher-texts, which is different from

our notion here.

We say that a knowledgeκ is monotonicif and only if for every morphism(j, l) : 〈w, i, s〉 →
〈w′, i′, s′〉 in PI→, and every messagea ∈ JmsgKs,

a ∈ κi =⇒ JmsgKl(a) ∈ κi′ ,

A knowledgeκ is consistentif and only if for every morphism(j, l) : 〈w, i, s〉 → 〈w′, i′, s′〉 in

PI→, and every messagea ∈ JmsgKs,

a ∈ κi ⇐⇒ JmsgKl(a) ∈ κi′ .

Moreover, a knowledgeκ is finite if and only if for every〈w, i, s〉 ∈ PI→, κi is finite.

6.1. ÉQUIVALENCE CONTEXTUELLE DES PROTOCOLES CRYPTOGRAPHIQUES 115

Our notion of contextual equivalence is defined over denotational models, so the way that

a context accesses those secret cipher-texts is by context variables. Given a typing contextΓ
and a knowledgeκ, for every injectioni : w → s, we say that an environmentρ ∈ JΓKs is a

κ-honest environmentif and only if for every variablex : msg ∈ Γ, ρ(x) ∈ κi. If κ is finite, an

environmentρ is said tohave full access toκ if for everya ∈ κi, there is a variablex : msg ∈ Γ
such thatρ(x) = a. This implicitly requires that there must be enough variables of typemsg in

Γ.

Definition 6.2 (Contextual equivalence for cryptographic protocols).Suppose thatκ is a

knowledge andi : w → s is an injection inI. Two valuesa1, a2 ∈ JτKs are contextually

equivalent at〈w, i, s〉 andκ, written asa1 ≈〈w,i,s〉,κ
τ a2, if and only if, for every morphisms

(j, l) : 〈w, i, s〉 → 〈w′, i′, s′〉 in PI→ and every termC such that

x : τ, w′ : key, v : msg ` C : To, (o ∈ Obs)

is derivable, and for anyκ-based environmentρ,

JCKs′ρ[x 7→ JτKl(a1), w′ 7→ i′(w′)] = JCKs′ρ[x 7→ JτKl(a2), w′ 7→ i′(w′)],

whereρ is anyκ-honest environment.

Two termst1 and t2 such thatw : key ` t1 : τ andw : key ` t2 : τ are derivable, are

contextually equivalent at〈w, i, s〉 andκ if and only if Jt1Ksi ≈〈w,i,s〉,κ
τ Jt2Ksi, wherei also

denotes the environment[w 7→ i(w)].

Given a cipher functionϕ, for every〈w, i, s〉 ∈ PI→, consider

|ϕ|i = {e(a, k) | ∃k′ ∈ s− i(w), a′ ∈ JmsgKs,

s.t. (a, a′) ∈ ϕi(k, k′) or (a′, a) ∈ ϕi(k′, k)}.

we call |ϕ| the knowledgeof ϕ, which defines uniquely a knowledge. Using logical relations

to derive contextual equivalence then requires at least two conditions: first, the knowledge of

the cipher function must contain all cipher-texts in the knowledge of contexts, i.e.,κ ⊆ |ϕ|;
second, the cipher functionϕ must respect the identity of the knowledgeκ of contexts, i.e.,

(a, a) ∈ ϕi(k, k) for every〈w, i, s〉 ∈ PI→ and everye(a, k) ∈ κi.

With the cryptographic logical relation(RRRτ)τ type, as defined in Definition 5.2, we can de-

duce the contextual equivalence in the cryptographic metalanguage.

Theorem 6.1 (Soundness of the cryptographic logical relation).Suppose thatϕ is a monotonic

cipher function,κ is a monotonic knowledge andϕ respects the identity ofκ. For every injection

i : w → s in I and every pair of valuesa1, a2 ∈ JτKs, if a1 RRRi,ϕ
τ a2, thena1 ≈i,κ

τ a2, where

(RRRτ)τ type is the cryptographic logical relation as defined in Definition 5.2.

116 CHAPITRE 6. COMPLÉTUDE DES RELATIONS LOGIQUES

Proof. Take any morphism(j, l) : 〈w, i, s〉 → 〈w′, i′, s′〉 in PI→. BecauseRRRi,ϕ
τ is monotonic

(Proposition 5.9), we haveJτKl(a1)RRRi′,ϕ
τ JτKl(a2). Take any contextC such that

x : τ, w′ : key, v : msg ` C : Tnat

is derivable, and letρ1, ρ2 be two environments

ρ1 = ρ[x 7→ JτKl(a1), w′ 7→ i′(w′)],

ρ2 = ρ[x 7→ JτKl(a2), w′ 7→ i′(w′)],

whereρ is anyκ-honest environment. Obviously,ρ1 RRRi′,ϕ
Γ ρ2 sinceϕ respects the identity

of κ, whereΓ = {x : τ, w′ : key, v : msg}. Then by the Basic Lemma (Proposition 5.11),

JCKs′ρ1 RRRi′,ϕ
Tnat JCKs′ρ2, i.e.,JCKs′ρ1 = JCKs′ρ2, hencea1 ≈i,κ

τ a2.

Note that we state this soundness theorem for all values, not necessarily definable values,

while in our later discussion on completeness, we shall focus on definable values.

6.2 Complétude pour les types non-monadiques

While we can use logical relations to deduce contextual equivalence, it is natural to wonder

whether all contextually equivalent programs can be related by logical relations. This is what

we call the completeness of logical relations. However, in the cryptographic metalanguage, if

we do not have restrictions on computation types, logical relations for the key generation monad

(derived over the categorySetPI→) is not even complete for zero order types. Consider the

following two programs of typeTTkey:

let k⇐ new in val(let k′ ⇐ new in val(k)),
let k⇐ new in val(let k′ ⇐ new in val(k′)).

It is easy to compute their denotations inSetI , [{k1}, [{k′1}, k1]] and[{k2}, [{k′2}, k′2]] respec-

tively. They are not logically related because there are two levels of computations, and logical

relations have to be constructed at each level. Since in the first term the value (k1) is a key

generated during the outer computation, while the value of the other term (k′2) is from the inner

computation, which is again fresh for all keys generated during the outer one, there is no way

to define these two values as the same fresh key in semantics. But the only way to distinguish

these two terms is retrieving their values (two fresh keys) and do some comparison. Since both

are fresh, no context can distinguish them, so these two terms are indeed contextually equivalent.

The point is that logical relations are defined by induction on types, but contextual equiva-

lence is not. For those terms including several levels of computations, contexts are usually not

6.2. COMPLÉTUDE POUR LES TYPES NON-MONADIQUES 117

able to know the exact level where a fresh key is generated, but in semantics, these levels are ex-

plicitly identified, by types indeed. This problem exists not only for types of the formTTτ , but

for all computation typesTτ whereτ contains again some computations, e.g.,T(key × Tkey),
except when they are inside a function, e,g.,T(key → Tkey). Encoding of protocols may need

this kind of types for typing the program, but this can be avoided by a careful encoding, e.g., the

encoding of the symmetric key establishment protocol in Chapter 2.

Now that we are not able to show the completeness for types that are simply classified ac-

cording to the order, it is better to do more refined classification on types. Here is a classification

on a subset of first-order types.

τ0 ::= b | τ0 × τ0 | opt[τ0]

τ1
p ::= b | τ1

p × τ1
p | opt[τ1

p] | b→ τ1
p

τ1 ::= τ0 | Tτ0 | b→ τ1 | T(b→ τ1)

whereb ∈ Σ is a base type. Classτ0 consists of types of zero order but not containing any

computation, and we call themplain zero-order types. Classτ1
p is simply the classτ0 plus

first-order functions, but it still contains no computations. We call types inτ1
p plain first-order

types. We then have computations in the classτ1, but these computations can only return values

of plain zero-order types or functions, so types likeTTkey are not allowed. We call types in

classτ1 one-level first-order types. In particular, this class of types is sufficient for typing most

protocols.

We shall temporarily forget monadic types and investigate the completeness of logical rela-

tions derived over the categorySetPI→ , for plain first-order types. In particular, the discussion

shows how complete the cryptographic logical relation(RRRτ)τ type is.

First, say that a valuea ∈ JτKs is definable at〈w, i, s〉, wherei : w → s is an injection in

PI→, if and only if there is a termt such thatw : key ` t : τ is derivable andJtKsi = a (i

denoting the environment[w 7→ i(w)]).

Lemma 6.2. For any object〈w, i, s〉 ∈ PI→, a valuea ∈ JmsgKs is definable at〈w, i, s〉 if and

only if a ∈ JmsgK(i(w)).

Proof. First, we show that for any valuea ∈ JmsgK(i(w)), there is a termt such thatw : key `
t : msg holds andJtKsi = a. This can be proved by induction on the structure of the valuea.

Now consider a valuea ∈ JmsgK(i(w)) which is definable at〈w, i, s〉 (by a termt). Accord-

ing to Lemma 3.3,a ∈ JmsgK(i(w)).

Lemma 6.3. For any morphism〈j, l〉 : 〈w, i, s〉 → 〈w′, i′, s′〉 ∈ PI→, if a valuea ∈ JτKs is

definable ati, thenJτKl(a) is also definable ati′.

118 CHAPITRE 6. COMPLÉTUDE DES RELATIONS LOGIQUES

Proof. Suppose thata is definable by a termt such thatw : key ` t : τ is derivable, i.e.,a =
JtKsi, then

JτKl(a) = JτKl(JtKs[w 7→ i(w)])

= JtKs′[w 7→ JkeyKl(i(w))]

(by naturality ofJtK)

= JtKs′[w 7→ l(i(w))]

(becauseJkeyKl = l by definition)

= JtKs′[w 7→ i′(j(w))]

(becausel ◦ i = i′ ◦ j, by the definition ofPI→)

=
q
t′j

y
s′[w 7→ i′(j(w))]

(wheret′ = tj−1, seeingj andj−1 as substitutions)

=
q
t′
y
s′(JjKs′[w 7→ i′(j(w))])

(becauseJ_K is functorial)

=
q
t′
y
s′[j(w) 7→ i′(j(w))]

=
q
t′
y
s′[w′ 7→ i′(w′)],

henceJτKl(a) is definable.

For every typeτ , every injectioni : w → s in I, define a relation∼〈w,i,s〉,κ
τ , whereκ is a

context knowledge, by: for any valuesa1, a2 ∈ JτKs, a1 ∼i,κ
τ a2 if and only ifa1, a2 are definable

at 〈w, i, s〉 anda1 ≈i,κ
τ a2. We then get the following completeness for logical relations derived

over the categorySetPI→ .

Proposition 6.4 (Completeness for plain first-order types).Letκ be a finite context knowledge.

Logical relation for the cryptographic metalanguage is complete for all plain first-order types in

the strong sense: there exists a logical relation(Rτ)τ type derived over the categorySetPI→

such that for every injectioni : w → s in I and every termst1, t2 such thatw : key ` t1 : τ and

w : key ` t2 : τ are derivable (τ a plain first-order type), ift1 ≈i,κ
τ t2, thenJt1Ksi Ri

τ Jt2Ksi.

Proof. Let Ri
b = ∼i,κ

b for every injectioni : w → s in I and every base typeb. Define

(Rτ)τ type as the logical relation induced byRi
b according to the derivation of logical relations

over the categorySetPI→ , i.e., using the non-base type clauses of Definition 5.2. In particular,

f1 Ri
τ→τ ′ f2 ⇐⇒

∀(j, l) : 〈w, i, s〉 → 〈w′, i′, s′〉 ∈ PI→·
∀a1, a2 ∈ JτKs′ · (a1 Ri′

τ a2 ⇒ f1s
′(l, a1) Ri′

τ ′ f2s
′(l, a2))

6.2. COMPLÉTUDE POUR LES TYPES NON-MONADIQUES 119

We then prove by induction onτ .

If τ is a product typeτ ′ × τ ′′, thena1 = (a′1, a
′′
1) anda2 = (a′2, a

′′
2), wherea′1, a

′
2 ∈ Jτ ′Ks,

a′′1, a
′′
2 ∈ Jτ ′′Ks. Assume thata1 anda2 are definable at〈w, i, s〉, so area′1, a

′′
1, a

′
2, a

′′
2, e.g.,

a′1 is defined byproj1(t) whereJtKsi = a1. Again assume that(a1, a2) 6∈ Ri
τ , then either

(a′1, a
′
2) 6∈ Ri

τ ′ or (a′′1, a
′′
2) 6∈ Ri

τ ′′ . Without loss of generality, suppose that(a′1, a
′
2) 6∈ Ri

τ ′ .

We then show that this implies thata1 6≈i,κ
τ ′×τ ′′ a2. By induction, there is a contextC such that

y : τ ′, w : key, v : msg ` C : Tnat is derivable andJCKsi[y 7→ a′1] 6= JCKsi[y 7→ a′2]. Then the

program

x : τ ′ × τ ′′, w : key, v : msg ` (λy.C)(proj1(x)) : Tnat

can be used to distinguisha1 anda2.

If τ is an option typeopt[τ ′], for two valuesa1, a2 ∈ Jopt[τ]Ks, assume that(a1, a2) 6∈
Ri

opt[τ ′], then either one ofa1 anda2 equals⊥ while the other does not, or both do not equal⊥
but (a1, a2) 6∈ Ri

τ . However, in both cases, we can find programs that can distinguisha1 anda2,

which is a contradiction toa1 ≈i,κ
opt[τ ′] a2. In the former case, the program

x : opt[τ ′], w : key ` case x of some(_) in val(1) else val(0) : Tnat

can be used to distinguisha1 anda2. In the latter case, by induction,a1 6≈i,κ
τ ′ a2, so there is a

contextC such thaty : τ ′, w : key ` C : Tnat is derivable andJCKsi[y 7→ a′1] 6= JCKsi[y 7→ a′2].
Then the program

x : opt[τ ′], w : key, v : msg ` case x of some(y) in C else val(0) : Tnat

can be used to distinguisha1 anda2.

If τ is a function typeb → τ ′, whereb ∈ Σ is a base type. Suppose thatf1, f2 ∈ Jb→ τ ′Ks
andf1, f2 are definable at〈w, i, s〉. Take any morphism(j, l) : 〈w, i, s〉 → 〈w′, i′, s′〉 ∈ PI→.

According to Lemma 6.3,JτKl(f1) and JτKl(f2) are definable at〈w′, i′, s′〉. Take any pair of

valuesa1, a2 ∈ JbKs′ such thata1 Ri′
b a2, thena1 anda2 are definable at〈w′, i′, s′〉 anda1 ≈i′,κ

b

a2. LetC be an arbitrary term such thatx : τ ′, w : key, v : msg ` C : Tnat is derivable, andρ be

120 CHAPITRE 6. COMPLÉTUDE DES RELATIONS LOGIQUES

aκ-honest environment. Take any morphism(j′, l′) : 〈w′, i′, s′〉 → 〈w′′, i′′, s′′〉 ∈ PI→,

JCKs′′ρ[x 7→
q
τ ′

y
l′(f1s

′(l, a1)), w′′ 7→ i′′(w′′)]

= JCKs′′ρ[x 7→ (JτK(l′ ◦ l)f1)s′′(ids′′ ,
q
τ ′

y
l′(a1)), w′′ 7→ i′′(w′′)]

(by the naturality off1)

= JC[t1y/x]Ks′′ρ[y 7→
q
τ ′

y
l′(a1), w′′ 7→ i′′(w′′)]

(becauseJτK(l′ ◦ l)f1 is definable at〈w′′, i′′, s′′〉)

= JC[t1y/x]Ks′′ρ[y 7→
q
τ ′

y
l′(a2), w′′ 7→ i′′(w′′)]

(becausea1 ≈i′
b a2)

= JCKs′′ρ[x 7→ (JτK(l′ ◦ l)f1)s′′(ids′′ , JτKl′(a2)), w′′ 7→ i′′(w′′)]

= JC[zt/x]Ks′′ρ[z 7→ JτK(l′ ◦ l)f1, w′′ 7→ i′′(w′′)]

(becauseJτ ′Kl′(a2) is definable at〈w′′, i′′, s′′〉)

= JC[zt/x]Ks′′ρ[z 7→ JτK(l′ ◦ l)f2, w′′ 7→ i′′(w′′)]

(becausef1 ≈i
b→τ ′ f2)

= JCKs′′ρ[x 7→
q
τ ′

y
l′(f2s

′(l, a2)), w′′ 7→ i′′(w′′)]

so f1s
′(l, a1) ≈i′,κ

τ ′ f2s
′(l, a2). Again, becauseJτKl(f1) and a1 is definable at〈w′, i′, s′〉,

f1s
′(l, a1) = JτKl(f1)s′(ids′ , a1) is definable at〈w′, i′, s′〉 as well. Similarly,f2s

′(l, a2) is

definable. Then by induction,f1s
′(l, a1) Ri′

τ ′ f2s
′(l, a2), hencef1 Ri

b→τ ′ f2 sincea1, a2 and

(j, l) are taken arbitrarily.

In the previous proposition, we have obtained completeness for a logical relation defined at

base types byRi
b = ∼i,κ

b . Let us now come back to the cryptographic logical relation defined

in Chapter 5. Now the question is: for every base typeb, does it hold that

∼i,κ
b = RRRi,ϕ

b , (6.2)

for every injectioni : w → s in I?

Lemma 6.5. Assume that observation types have no junk, in the sense that every value ofJoKs
(o ∈ Obs) is definable at every〈w, i, s〉. Then∼i,κ

o is equality onJoKs, and∼i,κ
To is equality on

JToKs for any observation typeo.

Proof. Clearly∼i,κ
o contains equality. Conversely, leta1, a2 ∈ JoKs such thata1 ∼i,κ

o a2. Take

(j, l) to be the identity morphism from〈w, i, s〉 to itself andC to be the contextval(c = x)
(so thatw : key, x : o ` C : Tbool is derivable), wherec is any term such thatw : key ` c :
o is derivable, and expand the definition of≈i,κ

o : a1 = JcKs[w 7→ i(w)] if and only if a2 =
JcKs[w 7→ i(w)]. Sinceo contains no junk, andc is arbitrary,a1 = a2.

6.2. COMPLÉTUDE POUR LES TYPES NON-MONADIQUES 121

The argument is similar for∼i,κ
To, takinglet z⇐ c in val (z = x) for C instead. We just

have to prove thatTo has no junk. For every observation typeo, JoK is a constant functor, so

the elements ofJToKs are of the form[s′, b] = [∅, b], whereb ∈ JoK(s + s′) = JoKs. Given any

element[∅, b] of JToKs, sinceo has no junk, we may writeb as the value of some termc, hence

[∅, b] is the value ofval(c).

In the cryptographic metalanguage,nat andbool are two observation types, then∼i,κ
nat and

∼i,κ
bool are the identity, which are exactly what we define in the cryptographic logical relation. The

following lemma shows that∼key=RRRkey holds for typekey as well.

Lemma 6.6. Let i : w → s be an injection inI andκ be a context knowledge. Then for every

pair of keysk1, k2 ∈ JkeyKs, k1 ∼i,κ
key k2 if and only ifk1 = k2 ∈ i(w).

Proof. We first claim that(?key): the only valuesk in JkeyKs = s that are definable at〈w, i, s〉
are the keys ini(w). One first observes, by applying any morphisml from s to s that is the

identity on i(w), that the only possible exceptionsk to (?key) must be fix-points ofl: letting

k = JtKs[w 7→ i(w)],

l(k) = JkeyKl(k) = JkeyKl(JtKs[w 7→ i(w)])

= JtKs[w 7→ l(i(w))] (sinceJtK is natural)

= JtKs[w 7→ i(w)] (sincel is the identity oni(w))

= k.

Sincel is arbitrary such that it restricts to the identity oni(w), (?key) can only fail whens consists

of i(w) plus just the one extra keyk. Let thens′ bes plus another keyk′. There is an obvious

morphism(j, l) from 〈w, i, s〉 to 〈w, i, s′〉 and we have seen that in this caseJkeyKl(k) = k is

again definable at〈w, i, s′〉. But this is impossible, sinces′ containstwokeys outside ofi(w).
If k1 ∼i,κ

key k2, then bothk1 andk2 are definable at〈w, i, s〉, so by(?key), k1 = i(z1) for some

z1 ∈ w, andk2 = i(z2) for somez2 ∈ w. Sincek1 ≈i,κ
key k2, if k1 6= k2, then the context

x : key, w : key ` case dec({1}z1 , x) of some(_) in val(1) else val(0) : Tnat

can distinguish the two keys, hencek1 = k2.

Conversely, ifk1 = k2 ∈ i(w), i.e., there is a variablez ∈ w such thatn1 = n2 = i(z), then

clearlyk1 ∼i,κ
key k2.

For themsg type, the equation (6.2) depends on the context knowledgeκ and the cipher

functionϕ. Indeed,≈i,κ
msg involves the relation between secret messages in the knowledgeκ,

precisely, the identity relation onκ〈w,i,s〉 for everyi : w → s, but any secret message inκi is

122 CHAPITRE 6. COMPLÉTUDE DES RELATIONS LOGIQUES

definitely not inJmsgK(i(w)), hence according to Lemma 6.2, it is not definable at〈w, i, s〉. So

interestingly, it holds indeed that

∼i,κ
msg ⊆MRi,ϕ,

for any cipher functionϕ.

Lemma 6.7. Let κ be a context knowledge andi : w → s be an injection inI. For every pair

of valuesa1, a2 ∈ JmsgKs, if a1, a2 are definable at〈w, i, s〉 anda1 ≈i,κ
msg a2, then(a1, a2) ∈

MRi,ϕ, for any cipher functionϕ.

Proof. Becausea1 ≈i
τ a2, a1 anda2 must have the same head message token (n, k, p or e),

i.e., the tokens at the roots of the two message trees are identical. Otherwise, it is easy to find a

context to distinguish these two messages. For instance, ifa1 = n(_) anda2 = e(_,_), then the

context

x : msg, w : key ` case getnum(x) of some(_) in val(1) else val(0) : Tnat

can distinguish them.

Assume thata1 anda2 are definable at〈w, i, s〉 but (a1, a2) 6∈ MRi,ϕ. We then prove that

a1 6≈i,κ
msg a2, by induction on the message structure:

• If a1 = n(n1) anda2 = n(n2) for somen1, n2 ∈ Nat , because(a1, a2) 6∈ MRi,ϕ, it

holds thatn1 6= n2. Then the context

x : msg, w : key ` case getnum(x) of some(y) in val(y + 1) else val(0) : Tnat

can distinguisha1 anda2.

• If a1 = k(k1) anda2 = k(k2), because they are definable at〈w, i, s〉, k1, k2 ∈ i(w),
so there exist two variablesz1, z2 ∈ w such thati(z1) = k1 and i(z2) = k2. Since

(a1, a2) 6∈ MRi,ϕ, k2 6= k2, the context

x : msg, w : key ` case getkey(x) of some(y)
in case dec({1}z1 , y) of some(_)

in val(1) else val(0)
else val(0) : Tnat

can be used to distinguish these two messages.

• If a1 = p(a′1, a
′′
1) anda2 = p(a′2, a

′′
2), then either(a′1, a

′
2) 6∈ MRi,ϕ or (a′′1, a

′′
2) 6∈ MRi,ϕ.

Without loss of generality, suppose that(a′1, a
′
2) 6∈ MRi,ϕ. By induction, there is a context

6.2. COMPLÉTUDE POUR LES TYPES NON-MONADIQUES 123

C such thaty : msg, w : key ` C : Tnat is derivable andJCKsi[y 7→ a′1] 6= JCKsi[y 7→ a′2].
Then the program

x : msg, w : key ` case fst(x) of some(y) in C else val(0) : Tnat

can be used to distinguisha1 anda2.

• If a1 = e(a′1, k1) anda2 = e(a′2, k2), becausea1, a2 are definable at〈w, i, s〉, k1 andk2

must be ini(w), then eitherk1 6= k1 or (a′1, a
′
2) 6∈ MRi,ϕ. If k1 6= k2, the program

x : msg, w : key ` case dec(x, z1) of some(_)
in val(1) else val(0) : Tnat,

wherez1 is a variable inw andi(z1) = k1, can be used to distinguisha1 anda2; if k1 = k2

but (a1, a2) 6∈ MRi,ϕ, by induction, there is a contextC such thaty : msg, w : key ` C :
Tnat is derivable andJCKsi[y 7→ a′1] 6= JCKsi[y 7→ a′2]. Then the program

x : msg, w : key ` case fst(x) of some(y) in C else val(0) : Tnat

can be used to distinguisha1 anda2.

Whereas∼i,κ
msg ⊆ MRi,ϕ holds for any cipher functionϕ, the Lemma 6.2 shows that any

definable messages (at〈w, i, s〉) must be inJmsgK(i(w)), but a non-empty cipher functionϕ nec-

essarily involves secret messages defined over keys that are not ini(w), hence∼i,κ
msg = MRi,ϕ

holds only if the cipher functionϕ is empty. Otherwise, assume that there are two keysk1, k2 ∈
s− i(w) such thatϕi(k1, k2) 6= ∅ and take two messagesa1, a2 such that(a1, a2) ∈ ϕi(k1, k2),
then clearly,(e(a1, k1), e(a2, k2)) ∈ MRi,ϕ, but they are not definable at〈w, i, s〉, hence

e(a1, k1) 6∼i,κ
msg e(a2, k2).

Proposition 6.8. Let κ be a context knowledge andi : w → s be an injection inI. For every

pair of valuesa1, a2 ∈ JmsgKs, ∼i,κ
msg = MRi,ϕ holds if and only if the cipher functionϕ is

empty.

Proof. Lemma 6.7 shows that∼i,κ
msg ⊆ MRi,ϕ for any cipher functionϕ. We shall show that

MRi,ϕ ⊆∼i,κ
msg holds if and only ifϕ is empty.

The “only if” direction is obvious. For the “if” direction, take any two messagesa1, a2 ∈
MRi,∅ (we writeMRi for short). It is clear thata1 anda2 must have the same head message

token (n, k, p or e). We can then prove it by induction on the structure ofa1 anda2. For instance,

if a1 = e(a′1, k1) anda2 = e(a′2, k2), then clearly,k1 = k2 ∈ i(w) and(a′1, a
′
2) ∈ MRi. By

induction,a′1 ∼
i,κ
msg a

′
2, hencea1, a2 are definable at〈w, i, s〉. Furthermore, take any contextC

124 CHAPITRE 6. COMPLÉTUDE DES RELATIONS LOGIQUES

such thatx : Tτ ′, w : key, v : msg ` C : Tnat is derivable, for any morphism(j, l) : 〈w, i, s〉 →
〈w′, i′, s′〉 in PI→ and anyκ-honest environmentρ,

JCKs′ρ[x 7→ JmsgKl(e(a′1, k1)), w′ 7→ i′(w′)]

= JC[enc(y, z)/x]Ks′ρ[y 7→ JmsgKl(a′1), w′ 7→ i′(w′)]

(wherez ∈ w′ andi′(z) = l(k1) = l(k2))

= JC[enc(y, z)/x]Ks′ρ[y 7→ JmsgKl(a′2), w′ 7→ i′(w′)]

(becausea′1 ≈
i,κ
msg a

′
2)

= JCKs′ρ[x 7→ JmsgKl(e(a′2, k2)), w′ 7→ i′(w′)],

soa1 ≈i,κ
msg a2, and consequentlya1 ∼i,κ

msg a2.

6.3 Complétude pour les types monadiques

Completeness for monadic relations are much subtler — we have seen already a counter-example

where two contextually equivalent computations of a zero-order type cannot be related by the

logical relations derived overSetPI→ .

However, even though we consider only computations that return directly concrete values,

i.e., those “one-level” computations, the completeness of monadic logical relations is still hard

to prove. The general induction step, i.e.,

≈i,κ
τ ⊆ Rτ =⇒ ≈i,κ

Tτ ⊆ RTτ

is difficult to achieve. For instance, let[s1, a1], [s2, a2] ∈ JTτKs be two computations such that

[s1, a1] ≈i,κ
Tτ [s2, a2], and assume that they are not related. According to the logical relation for

computations, a natural thought is to show that this implies that their values are not related (if

these computations finally return some values), from which, by induction, we obtain a contextC

that distinguishes the values. Then our next step is to construct another contextC′ from C such

thatC′ can distinguish the two computations. This is a general technique to prove completeness

for monadic types and it does work for most monads (see Appendix B for examples).

However, this technique does not work for the key generation monad. The obstacle is the

construction of a context for computations from contexts for values. For this form of computa-

tions, the definability of contexts interferes with such constructions. Actually, we are not able to

do this kind of constructions. For example, in the above two computations, the two valuesa1 and

a2 are defined ats + s0 (for simplicity, we assume thats1 = s2 = s0). If there is a context that

can distinguish these two values, it must be defined at a larger world. Without loss of generality,

let us just consider a contextC defined overs+s0, but then it is very difficult to construct another

6.3. COMPLÉTUDE POUR LES TYPES MONADIQUES 125

contextC′ (for computations) fromC, because this requires thatC′ is also defined at the world

s+s0, while in the case of key generation, values will be defined overs+s0 +s0, not containing

any keys in the firsts0, and we might not be able to make use of the original contextC, which

never involves any key in the seconds0.

We shall next investigate the completeness of monadic logical relations for some specific

types. Consider computations of typeTτ whereτ is from a subset of plain zero-order types,

defined by

τ ::= nat | bool | key | τ × τ | opt[τ]. (6.3)

In particular, we do not consider themsg type, which we shall discuss later. Indeed, withoutmsg

type, we can simply take the contextual equivalence for key generation (Definition 6.1).

Proposition 6.9. Let i : w → s be an injection inI. There exists a logical relation(Rτ)τ type,

derived overSetPI→ , such that for every pair of computations[s1, a1] and [s2, a2] (both in

JTτKs, whereτ are types defined by (6.3)),

[s1, a1] ≈i
Tτ [s2, a2] ⇒ [s1, a1] Ri

Tτ [s2, a2].

Proof. Let (Rτ)τ type be a logical relation induced byRi
b =∼i,κ

b for every injectioni : w → s

in I, derived over the categorySetPI→ . ThenRi
nat andRi

bool are just the identity, andRi
key is

the partial identity overs, i.e., the identity overi(w).
In a logical relation,[s1, a1] Ri

Tτ [s2, a2] if and only if there are injectionsi0 : w0 → s0 and

l1 : s1 → s0, l2 : s2 → s0 in I such that

JτK(ids + l1)(a1) Ri+i0
τ JτK(ids + l2)(a2).

We then prove by induction on typeτ . Without loss of generality, we assume that|s1| ≥ |s2|.
We simply takes0 = s1, l1 = ids1 , i0 = ids0 and an injection froms2 to s1 asl2.

• If τ is bool or nat, then[s1, a1] = [s2, a2]. Clearly,a1 anda2 must be identical.

• For typekey, either botha1 anda2 are fresh or both are not fresh, otherwise (assume that

a1 is fresh anda2 not, then there must be some variablesz ∈ w such thati(z) = a2), the

context
w : key, x : Tkey ` let y⇐ x in

case dec(enc(0, z), y) of some(_)
in val(1) else val(0) : Tnat

can distinguish the two computations. Ifa1, a2 are not fresh, thena1 = a2 ∈ i(w) (other-

wise the above program can also distinguish the two computations), hence

JkeyK(ids + ids1)(a1) R
i+ids1
key JkeyK(ids + l2)(a2)

126 CHAPITRE 6. COMPLÉTUDE DES RELATIONS LOGIQUES

holds for every injectionl2 : s2 → s1. If a1, a2 are fresh, i.e.,a1 ∈ s1 anda2 ∈ s2, for

every injectionsl2 : s2 → s1 such thatl2(a2) = a1, it holds that

JkeyK(ids + ids1)(a1) R
i+ids1
key JkeyK(ids + l2)(a2).

• If τ ≡ opt[τ ′], either botha1 anda2 are⊥, or both are not⊥ (otherwise it is easy to

find a program to distinguish the two computations). Clearly, in the former case, the two

values are always related. In the latter case,[s1, a1] ∈ JTτ ′Ks and[s2, a2] ∈ JTτ ′Ks. Take

any contextC such thatx : Tτ ′, w : key ` C : Tnat is derivable, for every morphism

(j, l) : 〈w, i, s〉 → 〈w′, i′, s′〉 in PI→,

JCKs′i′[x 7→
q
Tτ ′

y
l[s1, a1]]

=
q
C
′ys′i′[y 7→ JTτKl[s1, a1]] (becausea1 6= ⊥)

=
q
C
′ys′i′[y 7→ JTτKl[s2, a2]] (because[s1, a1] ≈i

Tτ [s2, a2])

= JCKs′i′[x 7→
q
Tτ ′

y
l[s2, a2]],

where

C
′ ≡ let z⇐ y in case z of some(x) in C else val(0),

so [s1, a1] ≈i
Tτ ′ [s2, a2] as well. Then by induction, there is an injectionl2 such that

Jτ ′K(ids + ids1)(a1) R
i+ids1
τ ′ Jτ ′K(ids + l2)(a2), hence it holds that

JτK(ids + ids1)(a1) R
i+ids1

opt[τ ′] JτK(ids + l2)(a2).

• If τ ≡ τ ′ × τ ′′, thena1 = (a′1, a
′′
1) anda2 = (a′2, a

′′
2). Take any contextC such that

x : Tτ ′, w : key ` C : Tnat is derivable, for every morphism(j, l) : 〈w, i, s〉 → 〈w′, i′, s′〉
in PI→,

JCKs′i′[x 7→
q
Tτ ′

y
l[s1, a′1]]

= JC[let z⇐ y in val(proj1(z))/x]Ks
′i′[y 7→ JTτKl[s1, (a′1, a

′′
1)]]

= JC[let z⇐ y in val(proj1(z))/x]Ks
′i′[y 7→ JTτKl[s2, (a′2, a

′′
2)]]

(because[s1, (a′1, a
′′
1)] ≈i

T(τ ′×τ ′′) [s2, (a′2, a
′′
2)])

= JCKs′i′[x 7→
q
Tτ ′

y
l[s2, a′2]],

so [s1, a′1] ≈i
Tτ ′ [s2, a′2]. Similarly, [s1, a′′1] ≈i

Tτ ′′ [s2, a′′2]. Then by induction, there are

injectionsl′2 andl′′2 such that

q
τ ′

y
(ids + ids1)(a

′
1) R

i+ids1
τ ′

q
τ ′

y
(ids + l′2)(a

′
2)

6.3. COMPLÉTUDE POUR LES TYPES MONADIQUES 127

and
q
τ ′′

y
(ids + ids1)(a

′′
1) R

i+ids1
τ ′′

q
τ ′′

y
(ids + l′′2)(a′′2).

In particular, we can always definel′1 andl′′2 as the same injection, then

JτK(ids + ids1)(a1) R
i+ids1
τ ′×τ ′′ JτK(ids + l′2)(a2).

Putting together all the results on completeness that have been presented in this section and in

the previous section, we get the following theorem on the completeness of cryptographic logical

relations:

Theorem 6.10 (Completeness of cryptographic logical relations).The cryptographic logical

relation as defined in Definition 5.2 is complete for types

τ1
c ::= b | Tτ0

c | τ1
c × τ1

c | opt[τ1
c] | b→ τ1

c ,

whereb ∈ {bool, nat, key,msg} andτ0
c is defined by

τ0
c ::= bool | nat | key | τ0

c × τ0
c | opt[τ0

c],

in the sense that for every injectioni : w → s in I and every termst1, t2 such thatw : key ` t1 :
τ1
c andw : key ` t2 : τ1

c are derivable, ift1 ≈i,∅
τ1
c
t2, thenJt1Ksi Ri,∅

τ Jt2Ksi.

Proof. According to Proposition 6.4, Lemma 6.6, Proposition 6.7 and Proposition 6.9.

A special type which is not included inτ1
c is Tmsg. Given two contextually equivalent com-

putations of this type, to check whether they are related, we must construct the cipher function for

those freshly generated keys that are not disclosed. We did not manage to get a formal proof of

completeness for this type, but we conjecture that the cryptographic logical relation is complete

on this type and we provide here an algorithm for constructing the cipher function.

Let i : w → s be an injection inI and[s1, a1], [s2, a2] be two computations inJTmsgKs such

that [s1, a1] ≈i,κ
Tmsg [s2, a2]. Since we aim at constructing the cipher functions for those fresh

keys, without loss of generality, we can simply letκ be an empty knowledge. Clearly,a1 anda2

must have the same head message token, just as shown in the proof of Lemma 6.7. We then show

the existence ofi0 : w0 → s0 andϕ by executing the following “message-checking” algorithm

with the pair of messages(a1, a2). In particular, we simply takei0 as an inclusion. A state of

this algorithm is a 4-tuple〈w0, l1, l2, ϕ〉, wherel1, l2 will finally be defined as injections froms1
ands2 to s0 respectively. We set the initial state of the algorithm withw0 being an empty set,l1
andl2 being empty injections andϕ being an empty cipher functions.

• If a1, a2 are not of the same form, i.e., with different head message token, then stop with

error.

128 CHAPITRE 6. COMPLÉTUDE DES RELATIONS LOGIQUES

• If a1 = n(n1) anda2 = n(n2), then ifn1 = n2, do nothing and stop normally; otherwise,

stop with error.

• If a1 = k(k1) anda2 = k(k2), then ifk1 = k2 ∈ i(w), stop normally; ifk1, k2 6∈ s and

l1(k1) = l2(k2) are already defined, stop normally; ifk1, k2 6∈ s andl1(k1), l2(k2) are not

defined, letl1(k1) = l2(k2) = k for somek 6∈ s+w0 andw0 := w0 +{k}. If ϕ(k1, k2) 6=
∅, then for every(a′1, a

′
2) ∈ ϕ(k1, k2), execute the “message-checking” algorithm with

(a′1, a
′
2) at current state. If every execution stops normally, then letϕ(k1, k2) := ∅ and

stop normally; in any other case, stop with error.

• If a1 = e(a′1, k1) anda2 = e(a′2, k2), then if k1, k2 6∈ i(w) + w0 andk1, k2 are not

defined byl1 and l2, then letϕ(k1, k2) := ϕ(k1, k2) ∪ {(a′1, a′2)} and stop normally; if

k1 = k2 ∈ i(w) + w0 or l1(k1) = l2(k2) ∈ w0, then execute the “message-checking”

algorithm with messagesa′1 anda′2 at the current state. if it stops normally, then stop

normally; otherwise, stop with error.

• If a1 = p(a′1, a
′′
1) anda2 = p(a′2, a

′′
2), then execute the “message-checking” algorithm

with message pairs(a′1, a
′
2) and (a′′1, a

′′
2), at current state. If both stop normally, with

states〈w′0, l′1, l′2, ϕ′〉 and〈w′′0 , l′′1 , l′′2 , ϕ′′〉 respectively, then if these two states are exactly

the same as the initial states of the two executions, then stop normally; if the states are

different from initial states and they are consistent, then merge these two states into a

new state and execute the “message-checking” algorithm with message pairs(a′1, a
′
2) and

(a′′1, a
′′
2), at this new state; in any other case, stop with error. Two statess1 ands2 are

called consistent if, for any keysk1 ∈ s1 andk2 ∈ s2 that are defined byl′1, l
′′
1 andl′2, l

′′
2

respectively,l′1(k1) = l′2(k2) if and only if l′′1(k1) = l′′2(k2). To merge two states in to a new

state〈w0, l1, l2, ϕ〉 means that for everyk ∈ s1, if it is defined byl′1 thenl1(k) = l′1(k),
otherwise, if it is defined byl′′1 , thenl1(k) = l′′1(k). Similar for definingl2. Thenw0 is the

set{l1(k) | k ∈ s1 & k is defined byl1}. ϕ is the union ofϕ′ andϕ′′ point-wisely, but

with ϕ(k1, k2) = ∅ for everyk1 that is defined byl1 and everyk2 that is defined byl2.

This algorithm necessarily stops, since there are only finitely many fresh keys and messages are

finite trees. It is clear that this algorithm just destructs the two messages with the same operation,

so if it stops normally, then the messages must be related at the terminal state, definingl1 andl2
as the identity for every key that is not defined during the algorithm ands0 asl1(s1) ∪ l2(s2). If

it stops with error, then the execution can be encoded in the cryptographic metalanguage and the

program can be used to distinguish these two messages, which is a contradiction of the hypothesis

that[s1, a1] ≈i,κ
Tτ [s2, a2].

6.4. RELATIONS LOGIQUES LAX COMPLÈTES 129

6.4 Relations logiques lax complètes

To get the completeness w.r.t. contextual equivalence at any type, we shall appeal to the notion

of lax logical relations [PPST00]. Recall the categorical construction of logical relations using

subscones, via the following diagram:

λλλ(Σ)
R

yyssssssssss
J_KC
��

SubsconeCCC
C U

// C

(6.4)

For logical relations,R is a representation of CCCs, in which case, as we have seen in Chapter 4,

this diagram necessarily commutes.Lax logical relations are just product preserving functorsR
such that Diagram (6.4) commutes [PPST00, Section 6]. The equality in Diagram 6.4 is the key

to makeR satisfy the basic lemma.

The main difference is that, with lax logical relations, we do not requireR to be represen-

tations of CCCs, just product preserving functors. Furthermore, when we consider the monadic

lambda-calculus, we say thatR is strict at monadic typesif the functorR also preserves the

(strong) monad.

We then consider, for any injectioni : w → s in I and any context knowledgeκ, the relation

∼i,κ
τ : for every pair of valuesa1, a2 ∈ JτKs, a1 ∼i,κ

τ a2 if and only if a1 anda2 are definable at

〈w, i, s〉 anda1 ≈i,κ
τ a2. We shall show that if the context knowledgeκ is monotonic, then∼i,κ

τ

is indeed a lax logical relation, defined over the categorySetPI→ .

Lemma 6.11. Let (j, l) : 〈w, i, s〉 → 〈w′, i′, s′〉 be a morphism inPI→ and κ be a mono-

tonic context knowledge. For every pair of valuesa1, a2 ∈ JτKs, a1 ≈i,κ
τ a2 if and only if

JτKl(a1) ≈i′,κ
τ JτKl(a2).

Proof. We first show the monotonicity property:

a1 ≈i,κ
τ a2 ⇒ JτKl(a1) ≈i′,κ

τ JτKl(a2)

Take any termC such thatx : τ, w′′ : key, v : msg ` C : Tbool is derivable, for every morphism

(j′, l′) : 〈w′, i′, s′〉 → 〈w′′, i′′, s′′〉 in PI→ and everyκ-honest environmentρ:

JCKs′′ρ[x 7→ JτKl′(JτKl(a1)), w′′ 7→ i′′(w′′)]

= JCKs′′ρ[x 7→ JτK(l′ ◦ l)(a1), w′′ 7→ i′′(w′′)]

(becauseJτK is a functor)

= JCKs′′ρ[x 7→ JτK(l′ ◦ l)(a2), w′′ 7→ i′′(w′′)]

(becausea1 ≈i,κ
τ a2 and(j′ ◦ j, l′ ◦ l) is a morphism inPI→)

= JCKs′′ρ[x 7→ JτKl′(JτKl(a2)), w′′ 7→ i′′(w′′)],

130 CHAPITRE 6. COMPLÉTUDE DES RELATIONS LOGIQUES

henceJτKl(a1) ≈i′,κ
τ JτKl(a2).

The anti-monotonicity is equivalent to:

a1 6≈i,κ
τ a2 ⇒ JτKl(a1) 6≈i′,κ

τ JτKl(a2).

Assume thata1 6≈i,κ
τ a2, so there is some termC such that

x : τ, w0 : key, v : msg ` C : Tbool

is derivable, with a morphism(j0, l0) : 〈w, i, s〉 → 〈w0, i0, s0〉 in PI→ and aκ-honest environ-

mentρ, such that

JCKs0ρ[x 7→ JτKl0(a1), w0 7→ i0(w0)] 6= JCKs0ρ[x 7→ JτKl0(a2), w0 7→ i0(w0)]

By theCube property(Proposition 5.4), we have a commuting square:

w

j

}}||
||

||
||

||
|

i

��

j0

!!C
CC

CC
CC

CC
CC

C

w′

i′

�� j′ A
AA

AA
AA

AA
AA

s′
l

}}
}}

}

~~}}
}}

}}

l0
BB

BB
B

 B
BB

BB

w0

j′0~~||
||

||
||

||
|

i0

��
s

l′

 A
AA

AA
AA

AA
AA

A w′′

i′′

��

s0

l′0
~~||

||
||

||
||

|

s′′

(6.5)

To proveJτKl(a1) 6≈i′,κ
τ JτKl(a2), it is sufficient to check that, for some contextC′ such that

x : τ, w′′ : key, v : msg ` C′ : Tbool

is derivable, the following holds for someκ-honest environmentρ′,

q
C
′ys′′ρ′[x 7→ JτKl′(JτKl(a1)), w′′ 7→ i′′(w′′)]

6=
q
C
′ys′′ρ′[x 7→ JτKl′(JτKl(a2)), w′′ 7→ i′′(w′′)].

TakeC′ := C[j′0(w0)/w0] andρ′ = JΓKl′0(ρ). Becauseκ is monotonic,ρ′ is still a κ-honest

6.4. RELATIONS LOGIQUES LAX COMPLÈTES 131

environment.

q
C
′ys′′ρ′[x 7→ JτKl′(JτKl(a1)), w′′ 7→ i′′(w′′)]

=
q
C[j′0(w0)/w0]

y
s′′ρ′[x 7→ JτK(l′ ◦ l)(a1), w′′ 7→ i′′(w′′)]

=
q
C[j′0(w0)/w0]

y
s′′ρ′[x 7→ JτK(l′0 ◦ l0)(a1), w′′ 7→ i′′(w′′)]

(by the commuting square (6.5))

=
q
C[j′0(w0)/w0]

y
s′′ρ′[x 7→ JτKl′0(JτKl0(a1)), w′′ 7→ i′′(w′′)]

= JCKs′′ρ′[x 7→ JτKl′0(JτKl0(a1)), w0 7→ JkeyKi′′(j′0(w0))]

(renaming of free variables does not change the interpretation)

= JCKs′′ρ′[x 7→ JτKl′0(JτKl0(a1)), w0 7→ i′′(j′0(w0))]

(JkeyK is an identity functor)

= JCKs′′ρ′[x 7→ JτKl′0(JτKl0(a1)), w0 7→ l′0(i0(w0))]

(again by the commuting square (6.5))

= JTboolKl′0(JCKs0ρ[x 7→ JτKl0(a1), w0 7→ i0(w0)]

(by the naturality ofJCK).

Similarly,

q
C
′ys′′ρ′[x 7→ JτKl′(JτKl(a2)), w′′ 7→ i′′(w′′)]

= JTboolKl′0(JCKs0ρ[x 7→ JτKl0(a2), w0 7→ i0(w0)].

SinceJTboolK is an identity functor,

q
C
′ys′′ρ′[x 7→ JτKl′(JτKl(a1)), w′′ 7→ i′′(w′′)]

6=
q
C
′ys′′ρ′[x 7→ JτKl′(JτKl(a2)), w′′ 7→ i′′(w′′)],

henceJτKl(a1) 6≈i′,κ
τ JτKl(a2).

Theorem 6.12. Lax logical relations are complete for contextual equivalence in the crypto-

graphic metalanguage, in the strong sense that there is a lax logical relation(Rτ)τ type such

that, for every injectioni : w → s in I and every pair of termst1, t2 such thatw : key ` t1 : τ
andw : key ` t2 : τ are derivable,t1 ≈i,κ

τ t2 if and only if Jt1Ksi Ri
τ Jt2Ksi, whereκ is a

monotonic context knowledge.

Proof. DefineR〈w,i,s〉
τ as the relation∼〈w,i,s〉,κ

τ .

We first need to show thatRτ , mapping〈w, i, s〉 to R〈w,i,s〉
τ , defines an object ofSetPI→ ,

i.e., a functor fromPI→ toSet. The action on morphisms(j, l) is given by our requirement that

132 CHAPITRE 6. COMPLÉTUDE DES RELATIONS LOGIQUES

U ◦ R = J_K1, whereR mapsτ to Rτ , andJτK1〈w, i, s〉 = JτKs × JτKs andJtK1〈w, i, s〉 =
JtKs × JtKs. Expand the equationU ◦ R = J_K1: Rτ (j, l) must map(a1, a2) ∈ JτKs × JτKs
to (JτKl(a1), JτKl(a2)) ∈ JτKs′ × JτKs′. To check thatRτ is a functor, we must check that if

a1 Ri
τ a2, thenJτKl(a1) Ri′

τ JτKl(a2), for every morphism(j, l) in PI→:

• First,a1 anda2 are definable at〈w, i, s〉; by Lemma 6.3,JτKl(a1) andJτKl(a2) are defin-

able at〈w′, i′, s′〉.

• Second,a1 ≈i
τ a2 impliesJτKk(a1) ≈i′

τ JτKk(a2), according to Lemma 6.11.

Next, we need to show thatRτ is the object part of a product-preserving functorR from

CompCompComp(Σ) to SubsconeCCC
C such thatU ◦ R = J_K1. This means showing that, for every typing

contextΓ = {x1 : τ1, . . . , xn : τn}, for every typeτ such thatΓ ` t : τ is derivable, for every

object〈w, i, s〉 ∈ PI→, if am Ri
τm

a′m for everym (1 ≤ m ≤ n), then

JtKs[x1 7→ a1, . . . , xn 7→ an] Ri
τ JtKs[x1 7→ a′1, . . . , xn 7→ a′n].

Since botham anda′m are definable ati, writeam = JtmKsi for sometm such thatw : key ` tm :
τm is derivable, and similarlya′m = Jt′mKsi. Then, it is clear thatJtKs[x1 7→ a1, . . . , xn 7→ an] is

definable ati, by the termt[t1/x1, . . . , tn/xn], and similarly forJtKs[x1 7→ a′1, . . . , xn 7→ a′n].
Second, take anyC such that

x : τ, w′ : key, v : msg ` C : Tbool

is derivable, for every morphism(j, l) : 〈w, i, s〉 → 〈w′, i′, s′〉 in PI→, for everyκ-honest

6.4. RELATIONS LOGIQUES LAX COMPLÈTES 133

environmentρ

JCKs′ρ[x 7→ JτKl(JtKs[x1 7→ a1, . . . , xn 7→ an]), w′ 7→ i′(w′)]

= JCKs′[x 7→ JtKs′ρ[x1 7→ Jτ1Kl(a1), . . . , xn 7→ JτnKl(an)], w′ 7→ i′(w′)]

(sinceJtK is a natural transformation)

= JC[t/x]Ks′ρ[x1 7→ Jτ1Kl(a1), . . . , xn 7→ JτnKl(an), w′ 7→ i′(w′)]

=
q
C[t/x][t1j−1/x1, . . . , tn−1j

−1/xn−1]
y
s′[xn 7→ JτnKl(an), w′ 7→ i′(w′)]

=
q
C[t/x][t1j−1/x1, . . . , tn−1j

−1/xn−1]
y
s′[xn 7→ JτnKl(a′n), w′ 7→ i′(w′)]

(becausean ≈w
i→s

τn
a′n)

= . . .

=
q
C[t/x][t1j−1/x1, . . . , tm−1j

−1/xm−1, t
′
m+1j

−1/xm+1, . . . , t
′
nj

−1/xn]
y
s′

[xm 7→ JτmKl(am), w′ 7→ i′(w′)]

=
q
C[t/x][t1j−1/x1, . . . , tm−1j

−1/xm−1, t
′
m+1j

−1/xm+1, . . . , t
′
nj

−1/xn]
y
s′

[xm 7→ JτmKl(a′m), w′ 7→ i′(w′)] (becauseam ≈w
i→s

τm
a′m)

= . . .

=
q
C[t/x][t′2j

−1/x2, . . . , t
′
nj

−1/xn]
y
s′[x1 7→ Jτ1Kl(a′1), w′ 7→ i′(w′)]

= JC[t/x]Ks′ρ[x1 7→ Jτ1Kl(a′1), . . . , xn 7→ JτnKl(a′n), w′ 7→ i′(w′)]

= JCKs′ρ[x 7→ JtKs′[x1 7→ Jτ1Kl(a′1), . . . , xn 7→ JτnKl(a′n)]), w′ 7→ i′(w′)]

= JCKs′ρ[x 7→ JτKl(JtKs[x1 7→ a′1, . . . , xn 7→ a′n]), w′ 7→ i′(w′)]

Here we notice that, sinceam and a′m are definable ati by tm and t′m, respectively, then

JτmKl(am) andJτmKl(a′m) are definable ati′ by tmj−1, t′mj
−1, respectively. So

JtKs[x1 7→ a1, . . . , xn 7→ an] Ri
τ JtKs[x1 7→ a′1, . . . , xn 7→ a′n].

R is a lax logical relation sinceU ◦ R = J_K1 by construction.

The (non-lax) logical relations (the cryptographic logical relations) are defined onkey by:

k1 R〈w,i,s〉
key k2 if and only if k1 = k2 ∈ i(w). Hence, by Lemma 6.6 the lax logical relation∼i,κ

τ

and the logical relation coincide at typekey type.

For soundness, although∼i,κ
To is the identity onJToKs, because a non-empty knowledgeκ

introduces messages that are not definable〈w, i, s〉, we are not able to apply the Basic Lemma.

But if κ is empty, it is then sound for contextual equivalence since we do not need to consider

contexts with free message variables. Indeed, by the basic lemmaU ◦ R = J_K1, whenever

a1 ∼i,∅
τ a2 (∅ denoting the empty knowledge), then for anyC such thatx : τ, w′ : key ` C : To

134 CHAPITRE 6. COMPLÉTUDE DES RELATIONS LOGIQUES

(o ∈ Obs) is derivable, for any morphism(j, l) : 〈w, i, w〉 → 〈w′, i′, s′〉 in PI→,

JCKs′[w1 := i1(w1), x := JτKl1(a1)] ∼i′,∅
To JCKs′[w1 := i1(w1), x := JτKl1(a2)];

soa1 ≈i,∅
τ a2.

The lax logical relation∼i,κ
τ is also monotonic:

Proposition 6.13. Letκ be a monotonic context knowledge. The relation∼i,κ
τ is monotonic: for

every morphism(j, l) : 〈w, i, s〉 → 〈w′, i′, s′〉 in PI→ and every pair of valuesa1, a2 ∈ JτKs,

a1 ∼i
τ a2 =⇒ JτKl(a1) ∼i′,κ

τ JτKl(a2).

Proof. According to Lemma 6.3, ifa1, a2 ∈ JτKs are definable at〈w, i, s〉, JτKl(a1) andJτKl(a2)
are also definable at〈w′, i′, s′〉. Again by Lemma 6.11,a1 ≈i,κ

τ a2 implies JτKl(a1) ≈i′,κ
τ

JτKl(a2), soa1 ∼i′,′know
τ a2.

Chapitre 7

Décidabilité de l’équivalence

contextuelle

Étant donnés deux programmes, le problème consistant à savoir s’ils sont contextuellement

équivalent est-il décidable ? Nous répondrons à cette question dans certains cas. Les relations

logiques caractérisent l’équivalence contextuelle pour un ensemble de types, comme nous avons

vu dans le chapitre précédant, donc il est naturel d’étudier d’abord le problème de savoir si

deux valeurs arbitraires données sont reliées. Plus précisément, étant donnés une relation logique

(Rτ)τ type et deux valeurs d’un typeτ , est-ce que nous pouvons décider si elles sont reliées par

la relationRτ ? Même si ceci est décidable pour toutes les types de base, il est difficile de décider

si des valeurs d’un type complexe sont reliées, notamment les fonctions. Ce n’est pas étonnant

puisque la définition des relations entre fonctions comporte une quantification universelle sur les

paramètres reliés de ces fonctions — notamment lorsque l’espace de ces paramètres est infini.

Les types monadiques sont des types complexes particuliers du lambda-calcul computation-

nel. Les définitions concrètes de relations logiques pour les types monadiques varient beaucoup

selons les différentes formes d’effets de bord et il est souvent très difficile d’étudier leurs pro-

priétés d’une façon générale, ainsi que la décidabilité. Nous nous concentrons sur les relations

logiques de la monade de la génération de clés, dérivées sur la catégorieSetPI→ . C’est aussi un

cas difficile parce que la définition des relations pour les types monadiques comporte aussi une

recherche d’un “monde” convenable dans un espace infini.

Nous étudierons la décidabilité dans plusieurs cas, pour les relations logiques dérivées sur la

catégorieSetPI→ . Comme ce sont des relations logiques de Kripke, le problème de la décidabi-

lité se divise en deux cas :

– étant donné un monde et un type, est-il décidable de vérifier si deux valeurs sont reliées à

ce monde spécifique ?

135

136 CHAPITRE 7. DÉCIDABILITÉ DE L’ÉQUIVALENCE CONTEXTUELLE

– sans fixer le monde, l’existence d’un monde auquel les deux valeurs données sont reliées

est-elle décidable ?

Nous nous concentrons sur le premier cas où nous supposons toujours que le monde est donné.

Une technique générale pour cette étude est de se ramener à un cas où la quantification porte sur

des éléments pris dans un espace fini.

Nous classifions notre étude dans ce chapitre selon les types. En particulier, nous explorerons

la décidabilité du problème qui consiste à relier deux fonctions (dans la partie 7.1) et à relier

deux éléments d’un type monadique (dans la partie 7.2). La dernière partie résume et présente

un résultat de décidabilité de l’équivalence contextuelle du métalangage cryptographique, en

considérant la complétude des relations logiques dérivées surSetPI→ . Nous montrons aussi

qu’il est en général indécidable de vérifier si deux programmes sont équivalents, en codant une

machine à deux compteurs dans le métalangage.

137

Given two programs, is it decidable whether they are contextually equivalent or not? In

this chapter, we shall try to answer this question for certain cases. Since logical relations can

identify the contextual equivalence for certain types, as discussed in last chapter, it is natural to

start by exploring the decidability of the problem of determining whether two values are related.

In other words, given a logical relation(Rτ)τ type and two values of a typeτ , is it decidable

whether they are related by the relationRτ? This problem depends indeed on the decidability

of relating values of base types, since logical relations are defined inductively from relations for

base types, but even if all relations for base types are decidable, it is still very hard to decide

relations for complex types. The main obstacle is relations for functions, because they include

universal quantifications over all related arguments, which are usually infinitely many, especially

when arguments themselves are again functions.

Monadic types are special complex types in the computational lambda-calculus. Concrete

relations for monadic types vary a lot when the monad is specialized in different forms of com-

putation and it is usually very difficult to study their properties — including decidability — in a

general way. We focus on logical relations for the dynamic key generation monad, derived over

SetPI→ . This is indeed a difficult case, because the definition of monadic relations involves also

an existential quantification over an infinite space, namely searching some object〈w0, i0, s0〉 in

SetPI→ to render uniform the two sets of fresh keys.

We shall study several cases of decidability for logical relations derived over the category

SetPI→ . However, logical relations derived overSetPI→ are necessarily Kripke logical rela-

tions, and the decidability problem is divided into two cases for this kind of logical relations:

• given a world as well as a type, is it decidable whether two values are related at this specific

world?

• or without fixing the world, is it decidable whether there exist a world such that the given

two values can be related?

we shall focus on the first question where we always assume that the world is given. A common

technique used in our proofs is to restrict quantifications over an infinite space to ones over a

finite one.

The cases that we shall discuss in this chapter are classified by types. In particular, we shall

investigate whether it is decidable of relating two values of a function type (Section 7.1) or a

computation type (Section 7.2). In the last section, we summarize these cases, and we also show

that the contextual equivalence is in general undecidable by encoding the 2-counter machine in

the metalanguage.

138 CHAPITRE 7. DÉCIDABILITÉ DE L’ÉQUIVALENCE CONTEXTUELLE

7.1 Décidabilité dans le cas des fonctions

Deciding relations for functions is difficult, especially for higher-order functions, because we

shall probably be forced to do the quantification over infinitely many related arguments. Fur-

thermore, a denotational model such asSetI may contain junks, especially non-computable

functions, which make it even more difficult to decide relations for higher-order functions. The

situation becomes even worse for Kripke logical relations. In a Kripke logical relation, to check

whether two functions are related at a certain world, we are required to check it with related

arguments atevery larger world.

We shall next study several cases of the decidability of relations for first-order functions, i.e.,

functions which accept only values of base types as arguments. A notable case is relations for

typeskey → τ .

First, say thatb is a regular base typeif and only if in the modelSetI , b can be interpreted

as a constant functor fromI to Set, i.e., JbKs = JbKs′ for any s, s′ ∈ I, and for every value

a ∈ JbKs, JbKl(a) = a for any injectionl : s → s′ ∈ I. Two base types in the cryptographic

metalanguage — the boolean typebool and the integer typenat — are typical regular base types.

Lemma 7.1. Suppose thati : w → s is an injection inI and(Rτ)τ type is a monotonic logical

relation derived over the categorySetPI→ . For every typeb→ τ , whereb is a regular base type,

and every pair of functionsf1, f2 ∈ Jb→ τKs, f1 Ri
b→τ f2 if and only if, for every pair of values

a1, a2 ∈ JbKs,
a1 Ri

b a2 =⇒ f1s(ids, a1) Ri
τ f2s(ids, a2).

Proof. The “only if” direction is obvious. We prove the “if” direction.

For any morphism(j, l) : 〈w, i, s〉 → 〈w′, i′, s′〉 ∈ PI→, and for every pair of values

a1, a2 ∈ JbKs′,

a1 Ri′
b a2

⇐⇒ a1 Ri
b a2

(a1, a2 ∈ JbKs andb is a regular base type)

=⇒ f1s(ids, a1) Ri
τ f2s(ids, a2)

=⇒ JτKl(f1s(ids, a1)) Ri′
τ JτKl(f2s(ids, a2))

(Rτ is monotonic)

⇐⇒ f1s
′(l ◦ ids, JbKl(a1)) Ri′

τ f2s
′(l ◦ ids, JbKl(a2))

(by the naturality off1 andf2)

⇐⇒ f1s
′(l, a1) Ri′

τ f2s
′(l, a2)

hencef1 Ri
b→τ f2.

7.1. DÉCIDABILITÉ DANS LE CAS DES FONCTIONS 139

Clearly, if b is also a finite base type, i.e.,JbKs is finite for anys ∈ I, then the decidability of

Rb→τ will depend on the decidability ofRτ .

Proposition 7.2. Suppose thati : w → s is an injection inI and (Rτ)τ type is a monotonic

logical relation derived over the categorySetPI→ . For every typeb → τ , whereb is a regular

finite base type, the relationRb→τ is decidable, if and only ifRτ is decidable.

Proof. According to Lemma 7.1, to check whether two functions are related byRi
b→τ , we just

consider related arguments at the world〈w, i, s〉. Becauseb is a finite base types,Ri
b is finite as

well, so we just apply the two functions to every pair of related values and see whether the results

are related byRi
τ , which is also decidable.

As for the cryptographic logical relation as defined in Definition 5.2, we must moreover

require the cipher function to be monotonic so that the above proposition holds.

The typekey is a special base type. In the modelSetI , JkeyKs varies ass varies. Although for

a certains, JkeyKs is finite and the relation between keys are decidable, to relate two functions of

a typekey → τ , we have to consider those related keys at every larger world, which are obviously

infinite. Fortunately, this infinite quantification can be reduced to a finite one.

Lemma 7.3. Suppose thati : w → s is an injection inI and(Rτ)τ type is a monotonic logical

relation derived over the categorySetPI→ . For every typekey → τ and every pair of functions

f1, f2 ∈ Jkey → τKs, f1 Ri
key→τ f2 if and only if,

∀k ∈ i(w). f1s(ids, k) Ri
τ f2s(ids, k)

and

∃k0 6∈ s. f1s0(inls,{k0}, k0) Ri0
τ f2s0(inls,{k0}, k0)

wherew0 = w + {k0}, s0 = s+ {k0} andi0 is the injectioni+ id{k0} : w0 → s0.

Proof. The “only if” direction is obvious. We prove the “if” direction.

To relate the two functionsf1, f2, we must check that for any morphism(j, l) : 〈w, i, s〉 →
〈w′, i′, s′〉 in PI→ and anyk′ ∈ i′(w′), f1s

′(l, k′) Ri′
τ f2s

′(l, k′).

• If k′ ∈ l(i(w)) = i′(j(w)), there exists somek ∈ i(w) such thatk′ = l(k), so by

hypothesis,f1s(ids, k) Ri
τ f2s(ids, k), then

JτKl(f1s(ids, k)) Ri′
τ JτKl(f2s(ids, k)),

becauseRτ is monotonic (Proposition 5.9). By the naturality off1 andf2,

JτKl(fms(ids, k)) = fms
′(l, l(k)), (m = 1, 2),

we havef1s
′(l, k′) Ri′

τ f2s
′(l, k′);

140 CHAPITRE 7. DÉCIDABILITÉ DE L’ÉQUIVALENCE CONTEXTUELLE

• If k′ 6∈ l(i(w)), define injectionsj′ : w + {w0} → w′ andl′ : s+ {k0} → s′ as

j′(k0) = k′, j′(x) = j(x) for everyx ∈ w,
l′(k0) = k′, l′(x) = l(x) for everyx ∈ s,

then (j′, l′) : 〈w0, i0, s0〉 → 〈w′, i′, s′〉 is a morphism inPI→, and l′ ◦ inls,{k0} = l.

Becausef1s0(inls,{k0}, k0) Ri0
τ f2s0(inls,{k0}, k0), andRτ is monotonic,

JτKl′(f1s0(inls,{k0}, k0)) Ri′
τ JτKl′(f2s0(inls,{k0}, k0)),

where, by the naturality off1 andf2,

JτKl′(fms0(inls,{k0}, k0)) = fms
′(l′ ◦ inls,{k0}, l

′(k0))

= fms
′(l, k′), (m = 1, 2),

hencef1s
′(l, k′) Ri′

τ f2s
′(l, k′).

Lemma 7.3 shows the fact that, in order to relate functions of a typekey → τ , at a certain

world 〈w, i, s〉, we do not need to quantify over all larger worlds, as prescribed by thecompre-

hensionproperty of Kripke logical relations. Instead, by simply considering those related keys

at the original world〈w, i, s〉 plus a related “fresh” key not ins, whatever it is, we can check

whether two functions are related.

This lemma recognizes the “Some/Any” property for logical relations. This property is well

specified in Pitts’ nominal logic and is proved very important for reasoning about fresh resources

(names, keys, nonces, etc.) [Pit03]. Intuitively, if a fact satisfies the “Some/Any” property, then

it holds forall fresh keys if and only if it holds forsomefresh key.

According to Lemma 7.3, if a logical relation is monotonic, deciding the relation for functions

of a typekey → τ , depends indeed on the decidability of relating values of typeτ .

Proposition 7.4. Suppose thati : w → s is an injection inI andRi
τ is a monotonic logical

relation derived over the categorySetPI→ . For every typekey → τ , the relationRkey→τ is

decidable ifRτ is decidable.

Proof. According to Lemma 7.3, to check whether two functions are related byRi
b→τ , we just

apply the two functions to every key ini(w) and an arbitrary key that is not ins, and see whether

the results are related byRi
τ , which is decidable.

7.2. DÉCIDABILITÉ DANS LE CAS MONADIQUE 141

7.2 Décidabilité dans le cas monadique

According to the definition of monadic logical relations over categorySetPI→ , the point of

relating two computations is to find a proper substitution for fresh keys, together with a proper

selection of disclosed keys from the fresh keys, such that the corresponding values are related.

Formally, suppose thats1 ands2 are two sets of fresh keys generated during two computations

respectively, then to relate the two computations at a certain world〈w, i, s〉, we should find a set

s0 together with an injectioni0 : w0 → s0, and two injectionsl1 : s1 → s0, l2 : s2 → s0, so

that the two corresponding values are related at the world〈w + w0, i+ i0, s+ s0〉. While this is

also an exploration over a infinite space of worlds, a natural thought is to restrict this space to a

finite space of worlds where we do not consider fresh keys that are not generated during the two

computations, that is, the largests0 that we need to consider iss1 + s2. However, reducing a

relation at a larger world (larger thans1 + s2) to a smaller world (smaller thans1 + s2) requires

then theop-monotonicityproperty of logical relations.

We say that a logical relation(Rτ)τ type defined overSetPI→ is op-monotonicif and only if,

for every morphism(j, l) : 〈w, i, s〉 → 〈w′, i′, s′〉 inPI→ and every pair of valuesa1, a2 ∈ JτKs,

JτKl(a1) Ri′
τ JτKl(a2) =⇒ a1 Ri

τ a2

Lemma 7.5. Suppose thati : w → s is an injection inI and (Rτ)τ type is an op-monotonic

logical relation derived over the modelSetPI→ . For every pair of computations[s1, a1], [s2, a2]
in JTτKs, if [s1, a1] Ri

Tτ [s2, a2], then there exists a pair〈w0, i0, s0〉 with max(|s1|, |s2|) ≤
|s0| ≤ |s1| + |s2| and two injectionsl1 : s1 → s0, l2 : s2 → s0, such thatJτK(ids +
l1)(a1) Ri+i0

τ JτK(ids + l2)(a2), where|s| denotes the cardinality of the sets.

Proof. Because[s1, a1] Ri
Tτ [s2, a2], by the derivation of logical relations overSetPI→ (5.5),

there exist injectionsi′0 : w′0 → s′0, l′1 : s1 → s′0 andl′2 : s2 → s′0 in I such that

JτK(ids + l′1)(a1) R
i+i′0
τ JτK(ids + l′2)(a2).

Now lets0 = l′1(s1)∪ l′2(s2),w0 = w′0∩ s0 andi0 : w0 → s0 be the injectioni′0 restricted on the

domainw0. Clearly,max(|s1|, |s2|) ≤ |s0| ≤ |s1|+ |s2| holds. Letj0 : w0 → w′0 andl0 : s0 →
s′0 be inclusions inI, then(idw + j0, ids + l0) is a morphism from〈w + w0, i+ i0, s+ s0〉 to

〈w + w′0, i+ i′0, s+ s′0〉 in PI→.

Define lm : sm → s0 by: for anyx ∈ sm, lm(x) = l′m(x) (m = 1, 2), and we have

l0 ◦ lm = l′m. Because

JτK(ids + l′m)(am)

= JτK((ids + l0) ◦ (ids + lm))(am)

= JτK(ids + l0)(JτK(ids + lm)(am)),

142 CHAPITRE 7. DÉCIDABILITÉ DE L’ÉQUIVALENCE CONTEXTUELLE

andRi
τ is op-monotonic,JτK(ids + l1)(a1) Ri+i0

τ JτK(ids + l2)(a2).

According to this lemma, if a logical relation is op-monotonic, then to decide whether two

computations are related, we only need to consider a finite number of substitutions for fresh keys

(up to isomorphism) and check whether the corresponding values under these substitutions are

related. In other words, the decidability of relations for typeTτ depends on the decidability of

relations for typeτ .

Proposition 7.6. Suppose thati : w → s is an injection inI and(Rτ)τ type is an op-monotonic

logical relation derived over the categorySetPI→ . For every typeTτ , the relationRTτ is

decidable ifRτ is decidable.

Proof. According to Lemma 7.5, for every two computations of typeTτ , if there exist injections

i0 : w0 → s0, l1 : s1 → s0 andl2 : s2 → s0, with max(|s1|, |s2|) ≤ |s0| ≤ |s1|+ |s2|, such that

the two values (being lifted properly) are related, then the two computations are related. Since

boths1 ands2 are finite, those possible injections (up to isomorphism) are also finite, and can be

enumerated.

The hypothesis of this proposition is that logical relations under consideration must be op-

monotonic, so if we want to use this result to study the decidability of the cryptographic logical

relation, we must check its op-monotonicity property. It is clear that relations for typebool

andnat are op-monotonic. The relation for keys is also op-monotonic. Consider a morphism

(j, l) : 〈w, i, s〉 → 〈w′, i′, s′〉 in PI→ and a pair of keysk1, k2 ∈ s. If l(k1) RRRi′,ϕ
key l(k2),

thenl(k1) = l(k2) ∈ i′(w′), so l(k1), l(k2) ∈ i′(w′) ∩ l(s). Moreover, in the categoryPI→,

i′(w′) ∩ l(s) = l(i(w)), sok1 = k2 ∈ i(w) sincel is injective, i.e.,k1 RRRi,ϕ
key k2.

Lemma 7.7. Let ϕ be a consistent cipher function, then the cryptographic message relation

MRi,ϕ is op-monotonic in the sense that for every morphism(j, l) : 〈w, i, s〉 → 〈w′, i′, s′〉 in

the categoryPI→, and every pair of messagesa1, a2 ∈ JmsgKs, if (JmsgKl(a1), JmsgKl(a2)) ∈
MRi′,ϕ, then(a1, a2) ∈MRi,ϕ.

Proof. This is proved by induction on the message structure. We show here the case where the

two messages are cipher-texts.

Let a1 = e(a′1, k1) and a2 = e(a′2, k2), then JmsgKl(a1) = e(JmsgKl(a1), l(k1)) and

JmsgKl(a1) = e(JmsgKl(a2), l(k2)).

• If l(k1) = l(k2) ∈ i′(w′), by the definition ofMRi,ϕ,

(JmsgKl(a′1), JmsgKl(a′2)) ∈MRi′,ϕ,

7.2. DÉCIDABILITÉ DANS LE CAS MONADIQUE 143

and by induction,(a′1, a
′
2) ∈MRi,ϕ. And

l(k1) = l(k2) ∈ i′(w′) ∩ l(s) = l(i(w)),

sok1 = k2 ∈ i(w), hence(e(a′1, k1), e(a′2, k2)) ∈MRi,ϕ.

• If l(k1), l(k2) 6∈ i′(w′), then

(JmsgKl(a′1), JmsgKl(a′2)) ∈ ϕi′(l(k1), l(k2)),

andl(k1), l(k2) 6∈ i′(w′) ∩ l(s) = l(i(w)), sok1, k2 6∈ i(w). Becauseϕ is consistent, we

have(a′1, a
′
2) ∈ ϕi(k1, k2), hence(e(a′1, k1), e(a2, k2)) ∈MRi,ϕ.

We then prove that the cryptographic logical relation(RRRτ)τ type (Definition 5.2) is op-monotonic

for certain types.

Proposition 7.8. Letϕ be a consistent cipher function. For every morphism(j, l) : 〈w, i, s〉 →
〈w′, i′, s′〉 in the categoryPI→, and every pair of valuesa1, a2 ∈ JτKs, if JτKl(a1)RRRi′,ϕ

τ JτKl(a2),
thena1 RRRi,ϕ

τ a2, whereRRRi,ϕ
τ is the cryptographic logical relation defined in Definition 5.2 andτ

is any type defined by the grammar

τ ::= b | b′ → τ | Tτ,

whereb ∈ {nat, bool, key,msg} andb′ ∈ {nat, bool, key}.

Proof. We prove the statement by induction on types. The relations for base types are monotonic.

For typesb → τ whereb ∈ {nat, bool}, consider any pair of morphisms(j, l) : 〈w, i, s〉 →
〈w′, i′, s′〉 and(j′, l′) : 〈w′, i′, s′〉 → 〈w′′, i′′, s′′〉 in PI→, then(j′ ◦ j, l′ ◦ l) is a morphism from

〈w, i, s〉 to 〈w′′, i′′, s′′〉. Suppose thatf1 andf2 are two functions inJb→ τKs and

JτKJbKl(f1)RRRi′,ϕ
b→τ JτKJbKl(f2),

144 CHAPITRE 7. DÉCIDABILITÉ DE L’ÉQUIVALENCE CONTEXTUELLE

then for anya1, a2 ∈ JbKs,

a1 RRRi,ϕ
b a2

⇔ a1 RRRi′′,ϕ
b a2

(becauseRRRτ is a regular logical relation)

⇒ (JτKJbKl(f1))s′′(l′, a1))RRRi′′,ϕ
τ (JτKJbKi(f2))s′′(l′, a2)

(becauseJτKJbKl(f1)RRRi′,ϕ
b→τ JτKJbKl(f2))

⇔ f1s
′′(l′ ◦ l, a1)RRRi′′,ϕ

τ f2s
′′(l′ ◦ l, a2)

(by the naturality off1 andf2)

⇔ JτK(l′ ◦ l)(f1s(ids, a1))RRRi′′,ϕ
τ JτK(l′ ◦ l)(f2s(ids, a2))

(again by the naturality off1 andf2)

⇒ f1s(ids, a1)RRRi,ϕ
τ f2s(ids, a2)

(becauseRRRτ is op-monotonic)

and by Lemma 7.1,f1 RRRi,ϕ
b→τ f2.

For typeskey → τ , let f1, f2 ∈ Jkey → τKs andJτKJkeyKl(f1) RRRi′,ϕ
key→τ JτKJkeyKl(f2). To

provef1 RRRi,ϕ
key→τ f2, by Lemma 7.3, it is sufficient to check the following two facts:

Fact 1: ∀k ∈ i(w). f1s(ids, k)RRRi,ϕ
τ f2s(ids, k)

Fact 2: ∃k0 6∈ s. f1s0(inls,{k0}, k0)RRRi0,ϕ
τ f2s0(inls,{k0}, k0)

wherew0 = w + {k0}, s0 = s+ {k0} andi0 is the injectioni+ id{k0} : w0 → s0.

• Fact 1: For anyk ∈ i(w), l(k) ∈ l(i(w)) = i′(w′) ∩ l(s), sol(k) ∈ i′(w′).

(JτKJkeyKl(f1))s′(ids′ , l(k))RRRi′,ϕ
τ (JτKJkeyKl(f2))s′(ids′ , l(k)).

Becausef1 andf2 are natural transformations,

(JτKJkeyKl(fm))s′(ids′ , l(k))

= fms
′(ids′ ◦ l, l(k))

= JτKl(fms(ids, k)), (m = 1, 2)

by induction,RRRτ is op-monotonic, sof1s(ids, k)RRRi,ϕ
τ f2s(ids, k);

• Fact 2: BecauseJτKJkeyKl(f1)RRRi′,ϕ
key→τ JτKJkeyKl(f2), for some keyk0 6∈ s′,

(JτKJkeyKl(f1))s′0(inls′,{k0}, k0)RRR
i′0,ϕ
τ (JτKJkeyKl(f2))s′0(inls′,{k0}, k0).

7.2. DÉCIDABILITÉ DANS LE CAS MONADIQUE 145

wheres′0 = s′ + {k0}, w′0 = w′ + {k0} andi′0 is the injectioni′ + id{k0} : w′0 → s′0. Let

w0 = w + {k0} ands0 = s+ {k0}. Because the following square commutes:

s
inls,{k0} //

i
��

s0

i+id{k0}
��

s′
inls′,{k′0} // s′0

we have

(JτKJkeyKl(fm))s′0(inls′,{k0}, k0)

= fms
′
0(inls′,{k0} ◦ i, k0)

= fms
′
0((i+ id{k0}) ◦ inls,{k0}, k0)

= JτK(i+ id{k0})(fms0(inls,{k0}, k0)),

and because(j + id{k0}, l+ id{k0}) is indeed a morphism from〈w0, i0, s0〉 to 〈w′0, i′0, s′0〉
in PI→, by induction,f1s0(inls,{k0}, k0)RRRi0,ϕ

τ f2s0(inls,{k0}, k0).

From the above two facts, we can deduce thatf1 RRRi,ϕ
key→τ f2.

For computation typesTτ , consider any pair of computations[s1, a1], [s2, a2] ∈ JTτKs,

JTτKl([sm, am]) = TTT JτKl([sm, am]) = [sm, JτK(l + idsm)(am)] (m = 1, 2)

if [s1, JτK(l + ids1)(a1)] RRRi′,ϕ
Tτ [s2, JτK(l + ids2)(a2)], there exist injectionsi0 : w0 → s0,

l1 : s1 → s0 andl2 : s2 → s0 in I such that

JτK(ids′ + l1)(JτK(l + ids1)(a1))RRRi′+i0,ϕ
τ JτK(ids′ + l2)(JτK(l + ids2)(a2))

Because the square

s+ sm
ids+lm //

l+idsm

��

s+ s0

l+ids0

��
s′ + sm

ids′+lm // s′ + s0

commutes,

JτK(ids′ + lm)(JτK(l + idsm)(am))

= JτK((ids′ + lm) ◦ (l + idsm))(am))

(by the functoriality ofJτK)

= JτK((l + ids0) ◦ (ids + lm))(am)

(by the above commuting square)

= JτK(l + ids0)(JτK(ids + lm)(am))

(by the functoriality ofJτK)

146 CHAPITRE 7. DÉCIDABILITÉ DE L’ÉQUIVALENCE CONTEXTUELLE

and(j+ ids0 , l+ ids0) : 〈w + w0, i+ i0, s+ s0〉 → 〈w′ + w0, i+ i′0, s
′ + s0〉 is a morphism in

PI→, by inductionJτK(ids+l1)(a1)RRRi+i0,ϕ
τ JτK(ids+l2)(a2), hence[s1, a1]RRRi,ϕ

Tτ [s2, a2].

7.3 Décidabilité de l’équivalence contextuelle

There are four base types in the cryptographic metalanguage —nat, bool, key andmsg. It is

clear that relating two values of typenat or bool is decidable, as well as two keys since for every

given world 〈w, i, s〉 ∈ PI→, the sets is always finite. Deciding whether two messages are

related depends on the cipher function. We say that a cipher functionϕ is decidable if and only

if for every injectioni : w → s ∈ I, every pair of keysk1, k2 ∈ s− i(w), it is decidable whether

two messagesm1,m2 ∈ JmsgKs are inϕi(k1, k2).

Lemma 7.9. Supposei : w → s is an injection inI andϕ is a decidable cipher function. For

every pair of messagesm1,m2 ∈ JmsgKs, it is decidable whether(m1,m2) ∈ MRi, where

MR is the cryptographic message relation as defined in Definition 4.2.

Proof. The statement is easy to check by decomposing the two messages (both are of finite

size).

To sum up, relating values with the cryptographic logical relation(RRRτ)τ type (Definition 5.2)

is decidable for a certain set of types, namely

τ ::= b | bool → τ | key → τ | Tτ | τ × τ | opt[τ] (7.1)

whereb ∈ {nat, bool, key,msg}.

Theorem 7.10. Supposei : w → s is an injection inI andϕ is a decidable and consistent

cipher function. For everya1, a2 ∈ JτKs, it is decidable whethera1 Ri,ϕ,ϕ
τ a2, whereτ is a type

defined by the grammar (7.1).

Proof. We prove the statement by induction on typeτ . Induction steps are straightforward from

Lemma 7.9, Proposition 7.2, Proposition 7.4 and Proposition 7.6.

Consider the completeness of the cryptographic logical relation, we get then the following

result on the decidability of contextual equivalence.

Corollary 7.11. Supposei : w → s is an injection inI andκ is an empty context knowledge.

For every pair of termst1, t2 such thatw : key ` t1 : τ andw : key ` t2 : τ are derivable, it is

decidable whethert1 ≈i,κ
τ t2, whereτ is defined by

τ ::= b | bool → τ | key → τ | Tτ0 | τ × τ | opt[τ]

7.3. DÉCIDABILITÉ DE L’ÉQUIVALENCE CONTEXTUELLE 147

whereb ∈ {nat, bool, key,msg} andτ0 is defined by

τ0 ::= nat | bool | key | τ0 × τ0 | opt[τ0]

Proof. According to Theorem 6.1, Proposition 6.4, Lemma 6.6, Proposition 6.7 and Proposi-

tion 6.9,∼i,∅
τ = RRRi,∅

τ holds for these types. Then by Theorem 7.10, the contextual equivalence

for these types is decidable.

However, the contextual equivalence for the cryptographic metalanguage is in general unde-

cidable. We shall show this by encoding the 2-counter machine [Min61] in our cryptographic

metalanguage. Such a technique is very common in the field of verifying cryptographic proto-

cols, for showing some problems undecidable [DLMS99].

We assume that a 2-counter machine contains instructions of the form (i ∈ {1, 2}):

(1) q : Ni := Ni + 1; goto q′

(2) q : if Ni = 0 then goto q′

else Ni := Ni − 1; goto q′′

whereN1, N2 denote the two counters. An instruction of type(1) increments the counteri and

jumps to another point of the control. An instruction of type(2), tests whether the counteri is

0, and if it is the case it jumps to a controlq′, otherwise it decrements the counter and jumps to

control pointq′′.

We encode the 2-counter machine into the cryptographic metalanguage so that the problem of

determining whether the initial configuration(q0, 0, 0) of the 2-counter machine does not reach a

desired configuration(qF , n1
F , n

2
F), for some natural numbersn1

F , n
2
F , reduces to the contextual

equivalence of two programs in the metalanguage. We shall represent a configuration(q, n1, n2)
by an encrypted message{[q, n1, n2]}k, wherek is a secret key (not known to contexts). In

particular, a stateq is represented by a natural number in our encoding. (Some syntactic abbrevi-

ations are as defined in Figure 2.2.)

First, for every instruction of type (1) we introduce the following function: (We assume that

the operations act on the first counter (i = 1). The casei = 2 is quite similar.)

fq ≡ λ{x}k.letopt y⇐ getnum(π3
1(x)) in

letopt z1 ⇐ getnum(π3
2(x)) in

letopt z2 ⇐ getnum(π3
3(x)) in

if (y = q) then {[q′, z1 + 1, z2]}k else {x}k,

148 CHAPITRE 7. DÉCIDABILITÉ DE L’ÉQUIVALENCE CONTEXTUELLE

and for every instruction of type (2) we introduce the following function:

fq ≡ λ{x}k.letopt y⇐ getnum(π3
1(x)) in

letopt z1 ⇐ getnum(π3
2(x)) in

letopt z2 ⇐ getnum(π3
3(x)) in

if (y = q) then

if (z1 = 0) then {[q′, z1, z2]}k else {[q′′, z1 − 1, z2]}k

else {x}k.

For the desired configuration(qF , n1
F , n

2
F), we introduce two specific functions

f1
F ≡ λ{x}k.letopt y⇐ getnum(π3

1(x)) in

letopt z1 ⇐ getnum(π3
2(x)) in

letopt z2 ⇐ getnum(π3
3(x)) in

if (y = qF and z1 = n1
F and z2 = n2

F) then n(0) else {x}k,

f2
F ≡ λ{x}k.letopt y⇐ getnum(π3

1(x)) in

letopt z1 ⇐ getnum(π3
2(x)) in

letopt z2 ⇐ getnum(π3
3(x)) in

if (y = qF and z1 = n1
F and z2 = n2

F) then n(1) else {x}k.

These two functions are designed to return distinguished values (namely0 and1) when the ma-

chine reaches the desired configuration(qF , n1
F , n

2
F). We then define two programs:

p1 ≡ ν(k).〈{[0, 0, 0]}k, fq0 , . . . , fqm , f
1
F 〉

p1 ≡ ν(k).〈{[0, 0, 0]}k, fq0 , . . . , fqm , f
2
F 〉,

which are of typeT(msg×(msg → opt[msg])×· · ·×(msg → opt[msg])). The first components

of the two programs act as the initial configuration of the machine. Clearly, contexts can do

arbitrary executions of the 2-counter machine: by applying one of the functionsfq0 , . . . , fqm

to a certain message{[q, n1, n2]}k in their knowledge, they get another message{[q′, n′1, n′2]}k

(from the configuration(q, n1, n2) to the configuration(q′, n′1, n
′
2)). And they are restricted to

the two kinds of instructions defined by the 2-counter machine, because we let the keyk be

freshly generated so that contexts are not able to crack the machine.

The only possibility that a context can get some distinguished values of the above two pro-

grams is that the context gets finally the message{[qF , n1
F , n

2
F]}k and apply the two functions

f1
F , f

2
F to it. In other words, the two programsp1 andp2 are not contextually equivalent if and

only if a configuration(qF , n1
F , n

2
F) is reachable from the initial configuration(q0, 0, 0). Since

7.3. DÉCIDABILITÉ DE L’ÉQUIVALENCE CONTEXTUELLE 149

the latter problem is not decidable, the problem of determining whether two programs are con-

textually equivalent is not decidable either.

This encoding is somewhat tricky because we simply represent the numbers in the two coun-

ters by numbers in the metalanguage. However, even without integers in the language, i.e.,

without typenat, the contextual equivalence is still undecidable.

We encode the natural numbers by encryption chains: the representationn̄ of the number

n is {· · · {{k0 }k}k · · · }k︸ ︷︷ ︸
n

, wherek0 is a plain key representing the number 0 (it does not matter

whetherk andk0 are equal). Then the two operations — increment and decrement — of numbers

are represented by

S(n̄) ≡ {n̄}k

P(n̄) ≡ case dec(n̄, k) of some(x) in x else k(k0).

A configuration(q, n1, n2) is encoded as an encrypted message{[kq, n̄1, n̄2]}k, wherekq, k

are secret keys (not known to contexts) andkq represents the stateq. The encoding of instructions

should be also modified. the representation function for every instruction of type (1) becomes:

fq ≡ λ{x}k.letopt y⇐ getkey(π3
1(x)) in

letopt z1 ⇐ π3
2(x) in

letopt z2 ⇐ π3
3(x) in

if (y = kq) then

some({[kq′ , S(z1), z2]}k)

else some({x}k),

and for every instruction of type (2):

fq ≡ λ{x}k.letopt y⇐ getkey(π3
1(x)) in

letopt z1 ⇐ π3
2(x) in

letopt z2 ⇐ π3
3(x) in

if (y = kq) then

letopt z′1 ⇐ getkey(z1) in

if (z′1 = k0) then

some({[kq′ , z1, z2]}k)

else some({[kq′′ , P(z1), z2]}k)

else some({x}k).

150 CHAPITRE 7. DÉCIDABILITÉ DE L’ÉQUIVALENCE CONTEXTUELLE

For checking whether the desired configuration(qF , n1
F , n

2
F) is reached, we have to test whether

a message is the representation of a particular numbern. The test function is defined as follows:

testn(x) ≡ case dec(x, k) of some(y1) in

case dec(y1, k) of some(y2) in

. . .

case dec(yn−1, k) of some(yn) in true

else false

. . .

esle false

esle false.

Then for the desired configuration(qF , n1
F , n

2
F), we introduce two specific functions

f i
F ≡ λ{x}k.letopt y⇐ getkey(π3

1(x)) in

letopt z1 ⇐ π3
2(x) in

letopt z2 ⇐ π3
3(x) in

if (y = kqF and testn1
F
(z1) and testn2

F
(z2))

then some(k(ki)) else some({x}k) (i = 1, 2),

wherek1, k2 are two different keys that contexts can distinguish. As in the former encoding, the

two functions here may return distinguished values —k1 andk2 when the machine reaches the

desired configuration(qF , n1
F , n

2
F). We then define two programs:

p1 ≡ ν(k, k0, k1, k2, kq0 , . . . , kqm).〈k1, k2, {[kq0 , k0, k0]}k, fq0 , . . . , fqm , f
1
F 〉

p2 ≡ ν(k, k0, k1, k2, kq0 , . . . , kqm).〈k1, k2, {[kq0 , k0, k0]}k, fq0 , . . . , fqm , f
2
F 〉,

which are of typekey × key × msg × (msg → opt[msg]) × · · · × (msg → opt[msg]). The

third components of the two programs act as the initial configuration of the machine. It is clear

that in this encoding, contexts can still do arbitrary executions of the 2-counter machine. And

the only possibility that a context can distinguish the two programsp1 andp2 is that the context

gets the message{[kqF , n̄
1
F , n̄

2
F]}k, i.e., the configuration(qF , n1

F , n
2
F) is reached. Hence for the

same reason as in the former encoding, the problem of determining whether two programs are

contextually equivalent in the cryptographic metalanguage (without typenat) is not decidable.

Chapitre 8

Conclusion

L’idée d’utiliser le lambda-calcul et les techniques connexes pour vérifier les protocoles cryp-

tographiques a été proposée en premier par Sumii et Pierce [SP01]. Bien que la vérification des

protocoles cryptographiques dans le cadre du lambda-calcul soit plus difficile que dans la plu-

part des autres modèles, par exemple le Spi-calcul ou le modèle de Dolev-Yao, nous obtenons

dans cette thèse une compréhension profonde et entière du rôle des fonctions d’ordre supérieur.

Bien que pour le moment, les fonctions d’ordre supérieur soient rarement utilisées pour modéli-

ser les protocoles qui comportent principalement de l’échange de messages, il est naturellement

possible que les protocoles futurs échangent des programmes, par exemple des algorithmes cryp-

tographiques.

L’avantage principal de l’approche par le lambda-calcul est de permettre d’utiliser des tech-

niques puissantes telles que les relations logiques pour prouver des propriétés de sécurité, notam-

ment la propriété de secret. De plus, la génération dynamique de clés est un mécanisme crucial

dans les protocoles cryptographiques, auquel la plupart des modèles formels n’accordent pas une

importance suffisante. La génération de clés était bien étudiée par Pitts et Stark dans le nu-calcul

[PS93a] et elle remonte aux origines des travaux de Moggi sur le lambda-calcul computationnel

[Mog89, Mog91]. Naturellement, nous adoptons des techniques de leurs travaux pour vérifier les

protocoles cryptographiques. De ce point de vue, ce que font Sumii et Pierce consiste à étendre

les travaux de Pitts et Stark à un langage plus riche — le lambda-calcul cryptographique. Le

coeur de leurs travaux est l’utilisation des relations logiques pour prouver l’équivalence contex-

tuelle dans leur langage.

Pitts et Stark définissent une relation logique opérationnelle pour le nu-calcul, qu’ils prouvent

correcte par rapport à l’équivalence contextuelle et complète pour les types du premier ordre. Les

relations logiques diverses de Sumii et Pierce peuvent être considérées comme des extensions de

la relation logique opérationnelle. Pourtant, toutes leurs relations logiques sont syntaxiques, et

elles se fondent sur une sémantique opérationnelle, ce qui rend relativement difficiles l’extension

151

152 CHAPITRE 8. CONCLUSION

et l’adaptation de leurs relations logiques à un langage plus riche. À la place de la sémantique

opérationnelle, notre étude est basée purement sur des modèles dénotationnels. Ceci nous per-

met d’adapter facilement nos résultats à des langages plus riches, à condition que ces langages

puissent être interprétés dans le même modèle.

Ce dernier chapitre est une conclusion de cette thèse. En particulier, nous résumons les ré-

sultats présentés dans la thèse et nous proposons des directions susceptibles d’être suivies pour

approfondir encore le sujet.

8.1. RÉSUMÉ DES RÉSULTATS 153

The idea of using lambda-calculus and relevant techniques to verify cryptographic protocols

was first proposed by Sumii and Pierce in 2001 [SP01]. While verifying cryptographic protocols

in suitable lambda-calculi is harder than in most formal models like Spi-calculus or Dolev-Yao

model, we gain in this thesis a thorough understanding of the role of higher-order functions. This

may come in handy in the future. Although for the moment, higher-order functions are rarely

used in modeling protocols, which are usually sets of message exchanges, it is very possible that

future protocols will involve exchanges of codes, e.g., cryptographic algorithms.

The main advantage of this lambda-calculus approach is to make use of some powerful tech-

niques such as logical relations, to prove desired security properties, notably the secrecy property.

Furthermore, the mechanism of fresh key generation plays a crucial role in cryptographic pro-

tocols while most formal models do not stress it enough. Since fresh key generation has been

well studied by Pitts and Stark in the nu-calculus [PS93a], which is again traced to Moggi’s work

on the computational lambda-calculus [Mog89, Mog91], it is very natural to adopt techniques

from their works in protocol verification. Indeed, on the aspect of fresh key generation, what

Sumii and Pierce did is to extend Pitts and Stark’s work in a richer language — the cryptographic

lambda-calculus. The heart of their work is to prove contextual equivalence in this language,

through logical relations.

Pitts and Stark define an operational logical relation for the nu-calculus, which is proved

sound w.r.t. the contextual equivalence, and complete for types up to first order. Sumii and

Pierce’s various logical relations for the cryptographic lambda-calculus are indeed extensions of

this operational logical relation. However, all these logical relations are syntactic and rely largely

on the operational semantics, which makes them hard to extend and to fit in richer languages.

Instead, we rest on purely denotational models, not only because logical relations are originally

developed on semantics, but also by doing so we are allowed to easily extend our work to richer

languages, provided that the language can be interpreted in the same model.

8.1 Résumé des résultats

This thesis contributes mainly to the theoretical aspect of cryptographic lambda-calculi, on the

following four points:

Categories

First of all, we would like to underline the categories over which we derive logical relations.

The crucial mechanism of dynamic key generation can be nicely modeled in Moggi’s frame-

work of the computational lambda-calculus, through monads. Thanks to Stark’s work, we can

in particular make use of his category for the nu-calculus — the functor categorySetI . This

154 CHAPITRE 8. CONCLUSION

model is comprehensive enough for describing computations of key generation: every computa-

tion consists of a value and a set of freshly generated keys. It also shows how keys are involved

and interfere with programs as computations go along. Defining logical relations over this model

is relatively easy — we can simply follow the categorical construction of logical relations and

this was done by Goubault-Larrecq, Lasota and Nowak. In particular, Goubault-Larrecq et al.

provide a natural way to derive logical relations for monadic types.

However, although the categorySetI is adequately perfect for modeling dynamic key gen-

eration, it is indeed not sufficient when we consider relations between programs. The reason

is that keys must be classified when two programs are taken into account — some keys can be

manipulated by both programs while others not. But in the modelSetI , we do not consider any

classification of keys for any given set of keys. In fact, compared with Pitts and Stark’s opera-

tional logical relation, the logical relation defined by Goubault-Larrecq et al. over the category

SetI is proved too weak in the sense that it fails in relating certain contextually equivalent pro-

grams related by Pitts and Stark’s [ZN03]. Our observation is that, as far as relations between

programs are concerned, a better category to consider isSetI→ , where inI→, we do have some

classification of keys. Precisely, every object in the categoryI→ represents a selection of those

non-secret keys (keys that can be accessed by any program) from a given set of keys. However,

the categoryI→ does not explain properly how these selections evolve as more and more keys

are generated. The classification of keys inI→ is so coarse that logical relations derived over

SetI→ are still too weak. We then refine the classification by the categoryPI→ and show that

SetPI→ is the right category that one should consider when studying relations between programs

with fresh key generation.

Both these categories —SetI→ andSetPI→ — satisfy the categorical requirements for

deriving logical relations, so we follow the general construction to derive sound logical relations

for the cryptographic metalanguage, being careful that the Basic Lemma should hold.

Contextual equivalence

Another contribution of this thesis is the denotational notion of contextual equivalence (in the

framework of lambda-calculus) for cryptographic protocols. Intuitively, the meaning of contex-

tual equivalence is very clear: two programs are contextually equivalent if there is no context that

can distinguish them. This concept should not be difficult to understand and standard definitions

(both syntactic and denotational) in the simply-typed lambda-calculus are simple. However, it

turns out that these standard definitions do not fit in some richer typed lambda-calculi. This is

because a proper notion of contexts becomes very crucial when we have more syntactic compo-

nents, since contexts are closely related to the syntax. Essentially, a context should be neither

too “weak” nor too “strong”. For example, in a standard typed lambda-calculus, we do not have

8.1. RÉSUMÉ DES RÉSULTATS 155

types for computations, so it is sufficient to take contexts of any observation type. But in the

computational lambda-calculus, we must allow contexts to compare computations, for this pur-

pose, we should allow contexts themselves to do some computations, i.e., the type of contexts

should be the corresponding computation types of observation types.

As for cryptographic protocols, the key point is that contexts must represent honestly the

power of attackers. In particular, they should be able to get access to those non-secret keys,

as well as a set of secret cipher-texts. These arguments must be represented in the definition.

While they are probably not easy to define in a syntactic way, the categorySetPI→ allows us

to represent properly these points in semantics. Finally, we arrive at what we believe should be

the proper definition of the contextual equivalence for cryptographic protocols (Definition 6.2,

Chapter 6), still over the categorySetPI→ .

Completeness

Completeness is important for logical relations but it is usually difficult to achieve, because for

contextual equivalence, we do not care about the internal structure of different programs, while

for logical relations, we do. This is probably the reason why usually we only have completeness

for first-order functions (for higher-order functions, contexts may throw away some information

about the function structure). This becomes even worse when we introduce computation types

in the language, since programs may consequently have more complicated structure, notably

those programs of “computations of computation” (typeTTτ) or “computations of function”

(type T(τ → τ ′)). For logical relations derived over the categorySetPI→ , we prove their

completeness for a certain subset of first-order types.

In fact, as for completeness, a better notion is that of lax logical relation. Lax logical rela-

tions do not require to be constructed by strict induction on types, hence it allows us to achieve

completeness of logical relations for any higher order type, by relaxing the restrictions on rela-

tions for certain types, notably function types and computation types. Again over the category

SetPI→ , we define a lax logical relation that is lax at function types and monadic types, but can

remain strict at other types. It is sound, and complete at all types.

Decidability

In the field of formal verification of protocols, a critical criterion for verification techniques

is decidability. However, it is in general undecidable to determine whether two programs are

contextually equivalent in the cryptographic metalanguage. We have shown this by encoding

the 2-counter machine in the metalanguage and reducing the probelm of reachability to that of

deciding contextual equivalence.

156 CHAPITRE 8. CONCLUSION

On the other hand, because logical relations can identify the contextual equivalence for a set

of types and it is decidable, for another set of types, whether two values are related by certain

logical relation, determining the equivalence between programs of certain types is still decidable.

We explore the decidability of the problem whether two values (of certain types) are related by

logical relations derived over the categorySetPI→ and show that relations for two kinds of types

key → τ andTτ are decidable, provided that the relation for typeτ is decidable. Then we

conclude that it is decidable whether two programs of certain types are contextually equivalent

(Corollary 7.11, Chapter 7).

8.2 Perspectives

We have concentrated ourselves on proving the secrecy property of security protocols, by means

of logical relations. Since there are many other security properties like authenticity, anonymity,

etc., it is natural to ask: is it possible to prove security properties other than secrecy in this

framework? The general idea is to prove the equivalence of a real system and an ideal (secure)

one. But it is also possible to introduce other techniques of manipulating message terms into our

framework, in particular symbolic techniques based on term algebra. This is feasible because

the message type is defined as a base type in our metalanguage and all cryptographic primitives

operate only on messages. Such a treatment of messages is quite similar as in Spi-calculus,

where messages (terms) and processes are define separately. Indeed, there are already attempts

of developing symbolic techniques in the framework of cryptographic process calcului [FA01,

AL00, Bor01]. Again, separating (to some extent) messages from the whole language allows

us to extend easily the language with other primitives satisfying specific algebraic properties

[CDL05], and consequently to reason about specific protocols. It would be also interesting to

define proper categorical notions corresponding to these algebraic properties.

Another direction is on the proof techniques for contextual equivalence. We have presented

the technique of logical relations, but recursion is never considered in our language, neither in the

nu-calculus nor in the cryptographic lambda-calculus. Dealing with recursion would be challeng-

ing for defining logical relations. In particular, the presence of recursive functions requires us to

switch to domain theoretical models. Bisimulations present no difficulties with recursion. There

are notions of applicative bisimulations that are sound and complete in typed lambda-calculi

with full universal, existential and recursive types [SP05], but without monadic types. It would

be interesting to extend this notion to some kind of “monadic bisimulation” in the computational

lambda-calculus. Furthermore, all these applicative bisimulations are defined syntactically and

there is no known underlying mathematical theory. A more ambitious direction could be look-

ing for a mathematical model for deriving bisimulations in lambda-calculi, like those categorical

8.2. PERSPECTIVES 157

models for deriving logical relations [MS93, GLLN02].

158 CHAPITRE 8. CONCLUSION

Annexe A

Règles de raisonnement du

métalangage cryptographique

Stark defines an equational logic of Horn clauses for reasoning about terms of his computational

metalanguage [Sta94]. This equational logic can be easily extended for giving the semantics

of the cryptographic metalanguage and reasoning about terms, since the cryptographic metalan-

guage is simply an extension of Stark’s computational metalanguage. Rules of the logic are given

in the form defined at the end of Section 2.2.

The detailed rules are given in following figures.

Horn clauses:
(φ ∈ Φ)

Γ;Φ ` φ
Γ;Φ ` φ Γ;Ψ, φ ` ψ

Γ;Φ ∪Ψ ` ψ

Equality:
Γ ` a : τ

Γ ` a = a

Γ ` a1, a2 : τ

Γ; a1 = a2 ` a2 = a1

Γ ` a1, a2, a3 : τ

Γ; a1 = a2, a2 = a3 ` a1 = a3

Figure A.1: Rules for equational reasoning in the cryptographic metalanguage (I)

159

160ANNEXE A. RÈGLES DE RAISONNEMENT DU MÉTALANGAGE CRYPTOGRAPHIQUE

Congruence:

(x : τ ∈ Γ)
Γ ` x = x Γ ` true = true Γ ` false = false

Γ ` b, b′ : bool Γ ` t1, t′1, t2, t′2 : τ

Γ; b = b′, t1 = t′1, t2 = t′2 ` if b then t1 else t2 = if b′ then t′1 else t
′
2

Γ ` new = new
(i = 0, 1, 2, . . .)

Γ ` i = i

Γ ` t1, t′1, . . . , tn, t′n : nat

Γ; t1 = t′1, . . . , tn = t′n ` nat_opn(t1, . . . , tn) = nat_opn(t′1, . . . , t
′
n)

Γ ` t1, t′1 : τ1 Γ ` t2, t′2 : τ2

Γ; t1 = t′1, t2 = t′2 ` 〈t1, t2〉 = 〈t′1, t′2〉

Γ ` t, t′ : τ1 × τ2

Γ; t = t′ ` proj1(t) = proj1(t)

Γ ` t, t′ : τ1 × τ2

Γ; t = t′ ` proj2(t) = proj2(t)

Γ ` t, t′ : τ

Γ; t = t′ ` some(t) = some(t′)

Γ ` t1, t′1 : opt[τ] Γ, x : τ ; Φ ` t2 = t′2 : τ ′ (x 6∈ fv(Φ)) Γ ` t3, t′3 : τ ′

Γ; t1 = t′1, t3 = t′3 ` case t1 of some(x) in t2 else t3 = case t′1 of some(x) in t′2 else t
′
3

Γ ` t, t′ : τ

Γ ` val(t) = val(t′)

Γ ` t1, t′1 : Tτ Γ, x : τ ; Φ ` t2 = t′2 : Tτ ′

(x 6∈ fv(Φ))
Γ;Φ, t1 = t′1 ` let x⇐ t1 in t2 = let x⇐ t′1 in t

′
2

Γ ` f, f ′ : τ → τ ′ Γ ` t, t′ : τ

Γ; f = f ′, t = t′ ` ft = f ′t′

Γ, x : τ ; Φ ` t = t′ : τ ′
(x 6∈ fv(Φ))

Γ;Φ ` λx.t = λx.t′

Γ ` t1, t′1 : msg Γ ` t2, t′2 : key

Γ; t1 = t′1, t2 = t′2 ` enc(t1, t2) = enc(t′1, t
′
2)

Γ ` t1, t′1 : msg Γ ` t2, t′2 : key

Γ; t1 = t′1, t2 = t′2 ` dec(t1, t2) = dec(t′1, t
′
2)

Γ ` t1, t′1, t2, t′2 : msg

Γ; t1 = t′1, t2 = t′2 ` p(t1, t2) = p(t′1, t
′
2)

Γ ` t, t′ : msg

Γ; t = t′ ` fst(t) = fst(t′)

Γ ` t, t′ : msg

Γ; t = t′ ` snd(t) = snd(t′)

Γ ` t, t′ : nat

Γ; t = t′ ` n(t) = n(t′)

Γ ` t, t′ : msg

Γ; t = t′ ` getnum(t) = getnum(t′)

Γ ` t, t′ : key

Γ; t = t′ ` k(t) = k(t′)

Γ ` t, t′ : msg

Γ; t = t′ ` getkey(t) = getkey(t′)

Figure A.2: Rules for equational reasoning in the cryptographic metalanguage (II)

161

Functions:

β
Γ, x : τ1 ` t2 : τ2 Γ ` t1 : τ1

Γ ` (λxτ1 .t2)t1 = t2[t1/x]
η

Γ ` f : τ1 → τ2

Γ ` f = λxτ1 .fx

Booleans:

Γ;Φ, b = true ` φ Γ;Φ, b = false ` φ

Γ;Φ ` φ

Γ;Φ ` true = false

Γ;Φ ` φ

Γ ` t, t′ : τ

Γ ` if true then t else t′ = t

Γ ` t, t′ : τ

Γ ` if false then t else t′ = t′

Products:

Γ ` t1 : τ1 Γ ` t2 : τ2
(i = 1, 2)

Γ ` proji(〈t1, t2〉) = ti

Γ ` t : τ1 × τ2

Γ ` 〈proj1(t), proj2(t)〉 = t

Options:
Γ ` t1 : τ Γ, x : τ ` t2 : τ ′ Γ ` t3 : τ ′

Γ ` case some(t1) of some(x) in t2 else t3 = t2[t1/x]

Γ, x : τ ` t2 : τ ′ Γ ` t3 : τ ′

Γ ` case ⊥τ of some(x) in t2 else t3 = t3

Messages:

Γ ` k, k′ : key

Γ, dec(enc(n(1), k), k′) = some(1) ` k = k′

Γ ` t : msg Γ ` k : key

Γ ` dec(enc(t, k), k) = some(t)

Γ ` t1, t2 : msg

Γ ` fst(p(t1, t2)) = some(t1)

Γ ` t1, t2 : msg

Γ ` snd(p(t1, t2)) = some(t2)

Γ ` t : nat

Γ ` getnum(n(t)) = some(t)

Γ ` t : key

Γ ` getkey(k(t)) = some(t)

Figure A.3: Rules for equational reasoning in the cryptographic metalanguage (III)

162ANNEXE A. RÈGLES DE RAISONNEMENT DU MÉTALANGAGE CRYPTOGRAPHIQUE

Computations:

Γ ` t : Tτ

Γ ` let x⇐ t in val(x) = t

Γ ` t, t′ : τ

Γ; val(t) = val(t′) ` t = t′

Γ ` t : τ Γ, x : τ ` t′ : Tτ ′

Γ ` let x⇐ val(t) in t′ = t′[t/x]

Γ ` t : Tτ Γ, x : τ ` t′ : Tτ ′ Γ, x′ : Tτ ′ ` t′′ : Tτ ′′

Γ ` let x′ ⇐ (let x⇐ t in t′) in t′′ = let x⇐ t in (let x′ ⇐ t′ in t′′)

Generating keys:

(DROP)
Γ ` t : Tτ

(k : key 6∈ Γ)
Γ ` t = let k⇐ new in t

(SWAP)
Γ, k, k′ : key ` t : Tτ

Γ ` let k⇐ new in let k′ ⇐ new in t = let k′ ⇐ new in let k⇐ new in t

(FRESH)
Γ ` k : key Γ, k′ : key; Φ, dec(enc(1, k), k′) = error ` t = t′

Γ;Φ ` let k′ ⇐ new in t = let k′ ⇐ new in t′

whereerror is the syntatic abbreviation as defined in Figure 2.2.

Figure A.4: Rules for equational reasoning in the cryptographic metalanguage (VI)

Annexe B

Complétude des relations logiques

monadiques

Completeness (w.r.t. the contextual equivalence) is an important concern of logical relations, We

say that a logical relation iscomplete, if and only if any pair of contextually related programs

can be related by this logical relation. However, completeness is rather difficult to achieve. In

simply-typed lambda-calculi, logical relations are only complete for types up to first order in

general. When we have monadic types, things become much subtler, even for first-order types.

As shown in the discussion at the beginning of Chapter 6, it is very difficult to get a general

result on completeness for all monads, because particular monads (and corresponding logical

relations) usually have specific properties, which are quite different. Furthermore, since contexts

must be involved in the discussion, language constants play an important role in discussions of

completeness and these constants vary widely for different kinds of computations. So in this

appendix, we shall investigate the completeness of monadic logical relations for a set of concrete

monads, namely partial computations, exceptions, non-determinism and state transformers.

Recall the syntax of the computational lambda-calculus. We have in particular a unary type

constructorT to construct types for computations, and two relevant constants

t ::= . . . | val(t) | let x⇐ t in t,

with corresponding typing rules

Γ ` t : τ
(Val)

Γ ` val(t) : Tτ

Γ ` t1 : Tτ Γ, x : τ ` t2 : Tτ ′

(Let)
Γ ` let x⇐ t1 in t2 : Tτ ′

We shall restrict ourselves to types up tofirst order in the computational lambda-calculus, i.e.,

those given by the grammar

τ1 ::= b | Tτ1 | b→ τ1,

163

164 ANNEXE B. COMPLÉTUDE DES RELATIONS LOGIQUES MONADIQUES

whereb ∈ Σ ranges over a set of base types. In certain cases, e.g., the non-determinism monad,

we will only consider a subset of types up to first order which we callweak first-order types.

They are given by the following grammar:

τ1
w ::= b | Tb | b→ τ1

w. (B.1)

As we have seen in Section 3.1.2, semantics of the two computation constructs can be given

in full generality in a categorical setting. In particular, the interpretation of terms in the compu-

tational lambda-calculus must satisfy the following equations:

Jlet x⇐ val(t1) in t2Kρ = Jt2[t1/x]Kρ (B.2)

Jlet x⇐ t in val(x)Kρ = JtKρ (B.3)

Jlet x2 ⇐ (let x1 ⇐ t1 in t2) in t3Kρ = Jlet x1 ⇐ t1 in let x2 ⇐ t2 in t3Kρ(B.4)

Indeed, every term of a monadic type can be written in some canonical form (respecting these

equations):

Definition 1 (Computational canonical form). A termt of a monadic typeTτ in the computa-

tional λ-calculus is said to be acomputational canonical termif it is of the form

let x1 ⇐ t1 in · · · let xn ⇐ tn in val(u) (n = 0, 1, 2, . . .)

whereu is a term of typeτ , x1, . . . ,xn are variables and everyti (i = 1, . . . , n) is a weak head

normal form, i.e.,ti = uiwi1 · · ·wiki
and eachui is either a variable or a constant.

Proposition B.1. For every termt of a monadic typeTτ in the computationalλ-calculus, there

exists a computational canonical termt′ such thatJt′Kρ = JtKρ, for every valid interpretation

J_Kρ (i.e., interpretations satisfying the equations (B.2-B.4)).

Proof. The computationalλ-calculus is strongly normalizing [BBdP98], so we consider theβ-

normal form of termt and prove it by induction ont.

If t is a variable or a constant, then according to the equation (B.3)

JtKρ = Jlet x⇐ t in val(x)Kρ,

wherex is not free int.

If t is an applicationt1t2 · · · tn , thent1 is of a functions type and it must be a variable or a

constant (it cannot be aλ-abstraction sincet is β-normal). Similarly,t is equivalent to the term

let x⇐ t in val(x).
If t is a trivial computationval(t′), it is already in the computational canonical form.

165

If t is a sequential computationlet x⇐ t1 in t2, by induction, there are computational

canonical terms for botht1 andt2, namely

let x1
1 ⇐ t11 in · · · let x1

m ⇐ t1m in val(u1)

and

let x2
1 ⇐ t21 in · · · let x2

n ⇐ t2n in val(u2),

wherex1
1, . . . , x

1
m, x

2
1, . . . , x

2
n are not free int. Replacet1 andt2 with these terms int and we

get

JtKρ =
q
let x⇐ (let x1

1 ⇐ t11 in · · · let x1
m ⇐ t1m in val(u1)) in t2

y
ρ

= Jlet x1
1 ⇐ t11 in

let x⇐ (let x1
2 ⇐ t12 in · · · let x1

m ⇐ t1m in val(u1)) in t2Kρ

=

=
q
let x1

1 ⇐ t11 in · · · let x1
m ⇐ t1m in let x⇐ val(u1) in t2

y
ρ

= Jlet x1
1 ⇐ t11 in · · · let x1

m ⇐ t1m in let x⇐ val(u1) in

let x2
1 ⇐ t21 in · · · let x2

n ⇐ t2n in val(u2)Kρ.

Because allt11, . . . , t
1
m, t

2
1, . . . , t

2
n andval(u) are weak head normal forms, so the last term in the

above equation is computational canonical.

Now define the contextual equivalence in the computational lambda-calculus (we consider

here a set-theoretical model of the computational lambda-calculus):

Definition B.1 (Contextual equivalence in the computational lambda-calculus).In the com-

putational lambda-calculus, two closed termst1, t2, of the same typeτ , arecontextually equiva-

lent, written ast1 ≈τ t2, if and only if, whatever the termC such thatx : τ ` C : To (o ∈ Obs)

is derivable,

JCK[x 7→ Jt1K] = JCK[x 7→ Jt2K].

In a set-theoretical model, a valuea ∈ JτK is definableif and only if there is a termt such

that` t : τ is derivable anda = JtK. We then define a relation∼τ , for every typeτ , by: for every

pair of valuesa1, a2 ∈ JτK, a1 ∼τ a2 if and only if a1, a2 are definable anda1 ≈τ a2.

We shall investigate completeness in a strong sense and aim at finding a logical relation

(Rτ)τ type such that if̀ t1 : τ and` t2 : τ are derivable, for any typeτ up to first order, then

t1 ≈τ t2 =⇒ Jt1K Rτ Jt2K

Or, shortly:∼τ⊆ Rτ . Let us induce a logical relation(Rτ)τ type byRb =∼b, for any base type

b. Then the proof would go by induction overτ , to show∼τ ⊆ Rτ for an arbitrary monad

166 ANNEXE B. COMPLÉTUDE DES RELATIONS LOGIQUES MONADIQUES

T and every first-order typeτ . Casesτ = b andτ = b → τ ′ go identically as in the proof for

simply-typed lambda-calculus (see Chapter 6). The difficult case isτ = Tτ ′, i.e.,

∼τ ⊆ Rτ =⇒ ∼Tτ ⊆ RTτ (B.5)

We did not find any general way to prove this for arbitrary monad. Instead, in the following

subsections we show it for particular ones. In fact, (B.5) does not always hold for all first-order

type. For certain concrete monads, we must have further restrictions onτ .

There is also another subtle point – notice that it is even not true in general that relations on

To (o an observation type) is partial identity. Fortunately, this difficulty can be solved in general,

under some mild assumptions onT, fulfilled by all the monads investigated in the sequel.

At the heart of the difficulty of showing (B.5), one finds an issue of definability at monadic

types. By definition, an elementc of JTτK is definable if and only if there is a close termt

such that̀ t : Tτ is derivable andJtK = c. But this definition states nothing on the connection

between the definablity of a computation and its corresponding “value”. Intuitively, if an element

of JTτK is definable, either it corresponds to a computation which “returns a definable value”

(necessarily of typeτ), or there is a specific constant in the language which defines this value.

This is of course informal. We shall make this argument precise and formal for each monad, in

Propositions B.3, B.6, B.10 and B.13. Interestingly, all of these propositions can be spelled out

asdefTτ ⊆ Tdefτ , where bydefτ ⊆ JτK we mean the subset of definable elements ofJτK. But

even if stated easily in general, this fact needs substantially different proofs for different monads.

Before moving on to discussions of concrete monads, we first define aP-form for closed

terms, parameterized by a predicateP on terms.

Definition B.2. For any predicateP on terms, we say that a closed term (necessarily of a com-

putation typeTτ for someτ) is inP-form if and only if it is of the form

let x1 ⇐ t1 in · · · let xn ⇐ tn in val(u) (n = 0, 1, 2, . . .),

whereP is a predicate on closed terms,ti = uiwi1 · · ·wiki
(1 ≤ i ≤ n), ui is either a variable

xl (1 ≤ l ≤ i − 1) or a closed term such thatP(ui) holds,wim (1 ≤ m ≤ ki) is a term

whose free variables must be in{x1, . . . , xi−1} andu is any term of typeτ with free variables in

{x1, . . . , xn}.

We then define, for every monad, a predicateCond on closed terms. These predicates im-

pose a restriction on constants, and we show that reasonable constants in these concrete monads

all satisfy the corresponding predicates.

B.1. PARTIAL COMPUTATION 167

B.1 Partial computation

In the case of partial computations, the semantics of the monadic types and theval andlet

constructs are given by:

JTτK = JτK ∪ {⊥},

Jval(t)Kρ = JtKρ,

Jlet x⇐ t1 in t2Kρ =

{
Jt2Kρ[x 7→ Jt1Kρ] if Jt1Kρ 6= ⊥
⊥ if Jt1Kρ = ⊥

,

where⊥ denotes all non-terminating computations. Logical relations at monadic types are given

by [GLLN02]:

c1 RTτ c2 ⇐⇒ c1 Rτ c2 or c1 = c2 = ⊥ (B.6)

Let Cond be the smallest set of closed terms such that, for any closed termt of typeτ1 →
· · · → τn → Tτ , Cond(t) holds if and only if: for any closed terms̀ t1 : τ1, · · · ,` tn : τn,

JtK(Jt1K, · · · , JtnK) is either:

• equal to⊥, or

• in JτK and definable by some closed termt′ of type τ ; if τ is of the formτ ′1 → · · · →
τ ′m → Tτ ′, thenCond(t′) holds.

We assume that for any constantd, Cond(d) holds. We also assume that there is, for everyτ , a

constantΩτ of typeTτ such thatJΩτ K = ⊥. ClearlyCond(Ωτ) holds.

Lemma B.2. For any closed termt (of typeTτ) in Cond-form, JtK is either⊥, or a definable

value at typeτ .

Proof. Becauset is of theCond-form,

t ≡ let x1 ⇐ t1 in · · · let xn ⇐ tn in val(u), (n = 0, 1, . . .).

We reason by induction onn:

• In the base case (n = 0): Jval(u)K = JuK. It is obvious thatJtK is definable at typeτ (by

the termu in particular).

• For anyn ≥ 1,

Jt1K = Ju1w11 · · ·w1k1K = Ju1K(Jw11K, · · · , Jw1k1K),

whereu1, w11, · · · , w1k1 are all closed terms andCond(u1) holds, soJt1K is either equal

to⊥ or definable at typeτ1 (note thatt1 is of typeTτ1). If Jt1K = ⊥, then the denotation

168 ANNEXE B. COMPLÉTUDE DES RELATIONS LOGIQUES MONADIQUES

of the whole term is⊥, i.e.,JtK = ⊥. If Jt1K 6= ⊥, supposeJt1K is defined by a closed term

t′1 (of type τ1). BecauseCond(u1) holds, so doesCond(t′1), thenCond(u2[t′1/x1]),
..., Cond(un[t′1/x1]) hold as well (becauseu2[t′1/x1], . . . , un[t′1/x1] are eithert′1 or a

constant). Lett′i = ti[t′1/x1] (2 ≤ i ≤ n), then

Jlet x1 ⇐ t1 in let x2 ⇐ t2 in · · · let xn ⇐ tn in val(u)K

= Jlet x2 ⇐ t2 in · · · let xn ⇐ tn in val(u)K[x1 7→
q
t′1

y
]

=
q
let x2 ⇐ t′2 in · · · let xn ⇐ t′n in val(u[t′1/x1])

y
.

Clearly,let x2 ⇐ t′2 in · · · let xn ⇐ t′n in val(u[t′1/x1]) is again inCond-form, so by

induction, its denotation is either⊥ or a value which is definable at typeτ .

Proposition B.3. A valuec ∈ JTτK is definable if and only if, eitherc is definable at typeτ , or

c = ⊥, i.e.: defTτ (c) ⇐⇒ defτ (c) or c = ⊥.

Proof. The “if” direction: For any valuec ∈ JTτK, if c = ⊥, it is obvious (Ωτ defines it); if

c ∈ JτK anddefτ (c) holds, supposec is defined by some closed termt of typeτ , thenc is also

definable at typeTτ (by the termval(t)), i.e.,defTτ (c) holds.

The “only if” direction: Suppose that there is a valuec ∈ JTτK which is definable by some

closed termt of typeTτ . Consider the computational canonical form oft:

ut ≡ let x1 ⇐ t1 in · · · let xn ⇐ tn in val(u), (n = 0, 1, . . .)

whereti = yiwi1 · · ·wiki
(1 ≤ i ≤ n), yi is either a constant or a variablexl (1 ≤ l ≤ i − 1, if

i ≥ 2), andwim (1 ≤ m ≤ ki) is a term with free variables all in{x1, · · · , xi−1}. ut is in the

Cond-form, because for any constantd, Cond(d) holds. Hence by Lemma B.2, the denotation

of termt (the valuec) is either⊥ or a definable value of typeτ .

Lemma B.4. For any logical relation(Rτ)τ type,∼τ⊆ Rτ =⇒ ∼Tτ⊆ RTτ .

Proof. We assume that∼τ⊆ Rτ . Take any two elements(c1, c2) 6∈ RTτ . There are two cases:

• c1, c2 ∈ JτK but (c1, c2) 6∈ Rτ , thenc1 6∼τ c2. If one of these two values is not definable at

typeτ , by Proposition B.3, it is not definable at typeTτ either. If both values are definable

at typeτ but are not contextually equivalent, then there is a contextx : τ ` C : To such

thatJCK[x 7→ c1] 6= JCK[x 7→ c2]. Thus, the contexty : Tτ ` let x⇐ y in C : To can

distinguishc1 andc2 (as two values of typeTτ).

• c1 ∈ JτK and c2 = ⊥ (or symmetrically,c1 = ⊥ and c2 ∈ JτK, then the context

let x⇐ y in val(true) can be used to distinguish them.

B.2. EXCEPTIONS 169

In both cases,c1 6∼Tτ c2, hence∼Tτ⊆ RTτ .

Theorem B.5. Logical relations for the partial computation monad are complete up to first-order

types, in the strong sense that there exists an observational logical relation(Rτ)τ type such that

for any closed termst1, t2 of a typeτ1 up to first order,

t1 ≈τ1 t2 =⇒ (Jt1K, Jt2K) ∈ Rτ1

Proof. Take the logical relation(Rτ)τ type induced byRb =∼b, for any base typeb. It can be

proved by induction on types that∼τ1⊆ Rτ1 for any typeτ1 up to first order (using Lemma B.4

for the induction case of monadic types).

B.2 Exceptions

The exception monad is seen as generalization of the partial computation monad. The semantics

of monadic types and of theval andlet constructs are given by

JTτK = JτK ∪ E

Jval(tKρ = JtKρ

Jlet x⇐ t1 in t2Kρ =

{
Jt2Kρ[x 7→ Jt1Kρ] if Jt1Kρ 6∈ E
Jt1Kρ if Jt1Kρ ∈ E

whereE is a fixed set of exceptions. Logical relations at monadic types are given by [GLLN02]:

c1 RTτ c2 ⇐⇒ c1 Rτ c2 or c1 = c2 ∈ E

Let Cond be the smallest set of closed terms such that, for any closed termt of typeτ1 →
· · · → τn → Tτ , Cond(t) holds if and only if, for any terms̀ t1 : τ1, · · · ,` tn : τn,

JtK(Jt1K, · · · , JtnK) is either:

• an exceptione in E, or

• in JτK and definable by some closed termt′ of typeτ , and if τ is again of the formτ ′1 →
· · · → τ ′m → Tτ ′, thenCond(t′) holds.

We assume that for any constantd, Cond(d) holds. We also assume that there is, for every type

τ and every exceptione ∈ E, a constantraisee
τ of typeTτ such thatJraisee

τ K = e. Clearly,

Cond(raisee
τ) holds.

Proposition B.6. A valuec ∈ JTτK is definable at typeTτ , if and only if, eitherc ∈ JτK andc is

definable at typeτ , or c = e for somee ∈ E.

170 ANNEXE B. COMPLÉTUDE DES RELATIONS LOGIQUES MONADIQUES

Proof. Similarly as in proofs of Lemma B.2 and Proposition B.3, this is proved by induction on

the computational canonical form of terms.

Lemma B.7. For any logical relation(Rτ)τ type,∼τ⊆ Rτ =⇒ ∼Tτ⊆ RTτ .

Proof. We assume that∼τ⊆ Rτ . Take any pair of computations(c1, c2) 6∈ RTτ . There are three

cases where(c1, c2) 6∈ RTτ :

• c1, c2 ∈ JτK but (c1, c2) 6∈ Rτ , thenc1 6∼τ c2. Suppose both values are definable at type

τ , otherwise by Proposition B.3, they must not be definable at typeTτ . Similar as in the

proof of Lemma B.4, we can build a context that distinguishesc1 andc2 as values of type

Tτ , from the context that distinguishesc1 andc2 as values of typeτ .

• c1 ∈ JτK, c2 ∈ E. Consider the following context:

y : Tτ ` let x⇐ y in val(true) : Tbool.

Wheny is substituted byc1 andc2, the context evaluates to different values, namely, a

boolean and an exception.

• c1, c2 ∈ E but c1 6= c2. Try the same context as in the second case, which will evaluate to

two different exceptions that can be distinguished.

In all the three cases, we havec1 6∼Tτ c2, hence∼Tτ⊆ RTτ .

Theorem B.8. Logical relations for the exception monad are complete up to first-order types, in

the strong sense that there exists an observational logical relation(Rτ)τ type such that for any

closed termst1, t2 of any typeτ1 up to first order,

t1 ≈τ1 t2 =⇒ Jt1K Rτ1 Jt2K

Proof. Take the logical relation(Rτ)τ type induced byRb =∼b, for any base typeb. We prove

by induction on types that∼τ1⊆ Rτ1 for any typeτ1 up to first order. The induction step at

monadic types is in particular proved in Lemma B.7.

It is interesting to note that our proof of completeness does not require any language primitive

able to distinguish a normal value from an exception, or between two different exceptions. It is

because our contextual equivalence is defined at the level of semantics instead of syntax. In prac-

tice this means that, even though the language itself does not provide any mechanism to capture

exceptions, we can still observe them and tell the difference when programs throw exceptions.

B.3. NON-DETERMINISM 171

B.3 Non-determinism

In the case of non-determinism, the semantics of monadic types and relevant constructs are de-

fined by

JTτK = PfinJτK

Jval(t)Kρ = {JtKρ}

Jlet x⇐ t1 in t2Kρ =
⋃

a∈Jt1Kρ

Jt2Kρ[x 7→ a]

wherePfin(S) is the set of finite subsets ofS. Logical relations at monadic types are given by

[GLLN02]:
c1 RTτ c2 ⇐⇒ (∀a1 ∈ c1. ∃a2 ∈ c2. a1 Rτ a2)

& (∀a2 ∈ c2. ∃a1 ∈ c1. a1 Rτ a2)
(B.7)

Let Cond be the smallest set of closed terms such that, for any closed termt of typeτ1 →
· · · → τn → Tτ , Cond(t) holds if and only if:

• for any closed terms̀ t1 : τ1, · · · ,` tn : τn, JtK(Jt1K, · · · , JtnK) is a finite set where each

element is definable at typeτ (by a closed termt′), and,

• if τ is again of the formτ ′1 → · · · → τ ′m → Tτ ′, then, for everyt′, Cond(t′) holds.

We assume that for any constantd, Cond(d) holds. We also assume that there is, for everyτ , a

constant+τ of typeτ → τ → Tτ and a constant∅τ of typeTτ such that for anya1, a2 ∈ JτK,
J+τ K(a1, a2) = {a1} ∪ {a2} andJ∅τ K = ∅. Obviously,Cond(+τ) andCond(∅τ) hold.

Lemma B.9. For any closed termt (of typeTτ) in Cond-form, JtK is a finite set of definable

values of typeτ .

Proof. Becauset is of theCond-form,

t ≡ let x1 ⇐ t1 in · · · let xn ⇐ tn in val(u), (n = 0, 1, 2, . . .).

We reason by induction onn:

• In the base case (n = 0): Jval(u)K = {JuK}. It is obvious thatJuK is definable at typeτ

(by the termu in particular).

• For anyn ≥ 1,

Jt1K = Ju1w11 · · ·w1k1K = Ju1K(Jw11K, · · · , Jw1k1K),

172 ANNEXE B. COMPLÉTUDE DES RELATIONS LOGIQUES MONADIQUES

whereu1, w11, · · · , w1k1 are all closed terms andCond(u1) holds, so every element of

Jt1K is definable at typeτ1 (note thatt1 is of typeTτ1). Suppose that for everya ∈ Jt1K,
there is a closed termta1 such thatJta1K = a. BecauseCond(u1) holds, for everya ∈ Jt1K,
Cond(ta1) holds as well, henceCond(u2[ta1/x1]), ..., Cond(un[ta1/x1]) hold (because

u2[ta1/x1], . . . , un[ta1/x1] are eitherta1 or a constant). Lettai = ti[ta1/x1] (2 ≤ i ≤ n), then

Jlet x1 ⇐ t1 in let x2 ⇐ t2 in · · · let xn ⇐ tn in val(u)K

=
⋃

a∈Jt1K

Jlet x2 ⇐ t2 in · · · let xn ⇐ tn in val(u)K[x1 7→ a]

=
⋃

a∈Jt1K

Jlet x2 ⇐ ta2 in · · · let xn ⇐ tan in val(u[ta1/x1])K.

Clearly, for everya ∈ Jt1K, let x2 ⇐ ta2 in · · · let xn ⇐ tan in val(u[ta1/x1]) is again in

Cond-form, so by induction, its denotation is a finite set of definable values of typeτ , and

so is the union of all these sets, sinceJt1K is also finite.

Proposition B.10. A valuec ∈ JTτK is definable at typeTτ , if and only if, for anya ∈ c, a is

definable at typeτ .

Proof. By considering the computational canonical form of those terms defining the valuec and

applying Lemma B.9.

However, for the non-determinism monad, we are not able to achieve the completeness of

logical relations for any type up to first order. We assume that for every non-observable base

typeb, there is an equality test constanttestb : b → b → bool (clearly,Cond(testb) holds).

We then show that logical relations for the non-determinism monad are complete for weak first-

order types.

Theorem B.11. Logical relations for the non-determinism monad are complete up to weak first-

order types (as defined in (B.1)), in the strong sense that there exists an observational logical

relation (Rτ)τ type such that for any closed termst1, t2 of a weak first-order typeτ1
w,

t1 ≈τ1
w
t2 =⇒ Jt1K Rτ1

w
Jt2K

Proof. Take the logical relation(Rτ)τ type induced byRb =∼b, for any base typeb. We prove

by induction on types that∼τ1
w
⊆ Rτ1

w
for any weak first-order typeτ1

w.

Casesb and b → τ1
w go identically as in normal typed lambda-calculi (Chapter 6). For

monadic typesTb, suppose that(c1, c2) 6∈ RTb, which means that either there is a value inc1
such that no value ofc2 is related to it, or there is such a value inc2. We assume that every value

in c1 andc2 is definable (otherwise it is obvious thatc1 6∼Tb c2 because at least one of them is

B.4. STATE TRANSFORMERS 173

not definable, according to Proposition B.10). Suppose there is a valuea ∈ c1 such that no value

in c2 is related to it, anda can be defined by a closed termt of typeb. Then the following context

can distinguishc1 andc2:

x : Tτ ` let y⇐ x in testb(y, t) : Tbool

since every value inc2 is not contextually equivalent toa, hence not equal toa.

B.4 State transformers

In the case of the state monad, the semantics of the monadic types and constructs are defined by:

JTτK = (JτK× St)St

Jval(t)Kρ = s 7−→ (JtKρ, s)

Jlet x⇐ t1 in t2Kρ = s 7−→ Jt2Kρ[x 7→ a1](s1)

wherea1 = π1(Jt1Kρ(s)), s1 = π2(Jt2Kρ(s))

whereSt is a finite set of states. Logical relations at monadic types are given by [GLLN02]:

c1 RTτ c2 ⇐⇒ ∀s ∈ St . π1(c1s) Rτ π1(c2s) & π2(c1s) = π2(c2s)

Let Cond be the smallest set of closed terms such that, for any closed termt of type

τ1 → · · · → τn → Tτ , Cond(t) holds if and only if,

• for any closed terms̀ t1 : τ1, · · · ,` tn : τn, JtK(Jt1K, · · · , JtnK) is a function such that

for anys ∈ St , JtK(Jt1K, · · · , JtnK)(s) = (a, s′) wheres′ ∈ St anda is definable at typeτ

(by some closed termt′), and

• if τ is of the formτ ′1 → · · · → τ ′m → Tτ ′, thenCond(t′) holds.

We assume that for any constantd, Cond(d) holds. Letunit be the base type which contains

only a dummy value∗. We assume that there is, for eachs ∈ St , a constantupdates of type

Tunit such that for anys′ ∈ St , JupdatesK(s
′) = (∗, s). This constant does nothing but change

the current state tos. Clearly,Cond(updates) holds.

Lemma B.12. For any closed termt (of typeTτ) in Cond-form, and for anys ∈ St , π1(JtKs)
is definable at typeτ .

Proof. Becauset is of theCond-form,

t ≡ let x1 ⇐ t1 in · · · let xn ⇐ tn in val(u), (n = 0, 1, 2, . . .).

We reason by induction onn:

174 ANNEXE B. COMPLÉTUDE DES RELATIONS LOGIQUES MONADIQUES

• In the base case (n = 0), for everys ∈ St , Jval(u)Ks = (JuK, s). It is obvious thatJuK is

definable at typeτ (by the termu in particular).

• For anyn ≥ 1,

Jt1K = Ju1w11 · · ·w1k1K = Ju1K(Jw11K, · · · , Jw1k1K),

whereu1, w11, · · · , w1k1 are all closed terms andCond(u1) holds, so for everys ∈ St ,
π1(Jt1K(s)) is definable at typeτ1 (note thatt1 is of typeTτ1). Suppose that for everys ∈
St , ts1 is a closed term of typeτ1 such thatπ1(Jt1K(s)) = Jts1K. BecauseCond(u1) holds,

Cond(ts1) holds as well, henceCond(u2[ts1/x1]), ..., Cond(un[ts1/x1]) hold (because

u2[ts1/x1], . . . , un[ts1/x1] are eitherts1 or a constant). For everys ∈ St , let tsi = ti[ts1/x1]
(2 ≤ i ≤ n), then

Jlet x1 ⇐ t1 in let x2 ⇐ t2 in · · · let xn ⇐ tn in val(u)K(s)

= Jlet x2 ⇐ t2 in · · · let xn ⇐ tn in val(u)K[x 7→ Jts1K](s
′)

=
q
let x2 ⇐ ts2 in · · · let xn ⇐ t′n in val(u[ts1/x1])

y
(s′)

wheres′ = π2(Jt1K(s)). Clearly, for everya ∈ Jt1K,

let x2 ⇐ ts2 in · · · let xn ⇐ tsn in val(u[ts1/x1])

is again inCond-form, so by induction, its denotation, when applied to any state, is a pair

of a definable value at typeτ and a state inSt .

Proposition B.13. If a valuec ∈ JTτK is definable at typeTτ , then, for anys ∈ St , π1(cs) is

definable at typeτ .

Proof. By considering the computational canonical form of corresponding terms.

Lemma B.14. For any logical relation(Rτ)τ type,∼τ⊆ Rτ =⇒ ∼Tτ⊆ RTτ .

Proof. We assume that(c1, c2) 6∈ RTτ , so there exists somes0 ∈ St such that

• either(π1(c1s0), π1(c2s0)) 6∈ Rτ . Then by inductionπ1(c1s0) 6∼τ π1(c2s0). If π1(cis0)
(i = 1, 2) is not definable, then by Proposition B.13,ci is not definable either. If both

π1(c1s0) andπ1(c2s0) are definable, butπ1(c1s0) 6≈τ π1(c2s0), then there is a context

x : τ ` C : To such thatJCK[x 7→ π1(c1s0)] 6= JCK[x 7→ π1(c2s0)], i.e., for some state

s′0 ∈ St ,

JCK[x 7→ π1(c1s0)](s′0) 6= JCK[x 7→ π1(c1s0)](s′0)

B.4. STATE TRANSFORMERS 175

Now we can use the following context

y : Tτ ` let x⇐ y in let z⇐ updates′0
in C : To,

Let fi = Jlet x⇐ y in do C at s′0K[y 7→ ci] (i = 1, 2), then for anys ∈ St ,

fi(s) =
r
let z⇐ updates′0

in C
z
[x 7→ π1(cis)](π2(cis))

= JCK[x 7→ π1(cis)](s′0), (i = 1, 2).

f1 6= f2, because when applied to the states0, they will return two different pairs, so the

above context can distinguish the two valuesc1 andc2;

• or π2(c1s0) 6= π2(c2s0). We use the context

y : Tτ ` let x⇐ y in val(true) : Tbool,

then

Jlet x⇐ y in val(true)K[y 7→ ci] = λs.(true, π2(cis)) (i = 1, 2)

These two functions are not equal since they return different results when applied to the

states0.

In both cases,c1 6∼Tτ c2, hence∼Tτ⊆ RTτ .

Note that in the above proof, we assume that contexts can distinguish different states. For

this purpose, the language must provide some mechanism to read the current state. Since usually

a state is just a set of variables with values assigned to them, such a “state access” mechanism is

just retrieving values of these variables.

Theorem B.15. Logical relations for the state monad are complete up to first-order types, in

the strong sense that there exists an observational logical relation(Rτ)τ type such that for any

closed termst1, t2 of any typeτ1 up to first order,

t1 ≈τ1 t2 =⇒ Jt1K Rτ1 Jt2K

Proof. Take the logical relation(Rτ)τ type induced byRb =∼b, for any base typeb. We prove

by induction on types that∼τ1⊆ Rτ1 for any typeτ1 up to first order. The induction step at

monadic types is proved by Lemma B.14.

176 ANNEXE B. COMPLÉTUDE DES RELATIONS LOGIQUES MONADIQUES

Bibliographie

[Aba99] Martín Abadi. Security protocols and specifications. InFoundations of Software

Science and Computation Structures : Second International Conference (FOS-

SACS), volume 1578 ofLecture Notes in Computer Science, pages 1–13. Springer-

Verlag, 1999.

[Abr90] Samson Abramsky. The lazy lambda calculus. In David A. Turner, editor,Research

Topics in Functional Programming, pages 65–116. Addison-Welsey, 1990.

[AF01] Martín Abadi and Cédric Fournet. Mobile values, new names, and secure commu-

nication. InProceedings of the 28th Annual Symposium on Principles of Program-

ming Languages (POPL), pages 104–115. ACM Press, January 2001.

[AG97] Martín Abadi and Andrew D. Gordon. Reasoning about cryptographic protocols in

the Spi calculus. InProceedings of the 8th International Conference on Concur-

rency Theory (CONCUR), volume 1243 ofLecture Notes in Computer Science,

pages 59–73. Springer-Verlag, 1997.

[AG98] Martín Abadi and Andrew D. Gordon. A bisimulation method for cryptographic

protocols.Nordic Journal of Computing, 5(4) :267–303, 1998.

[AG99] Martín Abadi and Andrew D. Gordon. A calculus for cryptographic protocols : The

Spi calculus.Journal of Information and Computation, 148(1) :1–70, 1999.

[AHS90] Jĭrí Adámek, Horst Herrlich, and George E. Strecker.Abstract and Concrete Cate-

gories. Pure and applied mathematics. John Wiley and Sons, New York, 1990.

[AL91] Andrea Asperti and Giuseppe Longo.Categories, Types, and Structures : An Intro-

duction to Category Theory for the Working Computer Scientist. The MIT Press,

Cambridge, MA, 1991.

[AL00] Roberto Amadio and Denis Lugiez. On the rechability problems in cryptographic

protocols. InProceedings of the 11th International Conference on Concurrency

Theory (CONCUR), volume 1877 ofLecture Notes in Computer Science, pages

380–394. Springer-Verlag, 2000.

177

178 BIBLIOGRAPHIE

[Bar80] Hank P. Barendregt.The Lambda-Calculus : Its Syntax and Semantics. North-

Holland, 1980.

[Bar91] Henk P. Barendregt. Lambda calculi with types. In S. Abramsky, D. M. Gabbay,

and T. S. E. Maibaum, editors,Handbook of Logic in Computer Science. Oxford

University Press, 1991.

[BBdP98] P. N. Benton, G. M. Bierman, and V. C. V. de Paiva. Computational types from

a logical perspective.Journal of Functional Programming, 8(2) :177–193, March

1998.

[Bec69] Jon Beck. Distributive laws. In B. Eckmann, editor,Seminar on Triples and Ca-

tegorical Homology Theory, ETH, Zürich, 1966/67, volume 80 ofLecture Notes in

Mathematics, pages 119–140. Springer-Verlag, Berlin, 1969.

[BN02] Johannes Borgström and Uwe Nestmann. On bisimulations for the spi calcu-

lus. In Hélène Kirchner and Christophe Ringeissen, editors,Proceedings of the

9th International Conference on Algebraic Methodology and Software Technology

(AMAST), volume 2422 ofLecture Notes in Computer Science, pages 287–303.

Springer-Verlag, 2002.

[BNP99] Michele Boreale, Rocco De Nicola, and Rosario Pugliese. Proof techniques for

cryptographic processes. InProceedings of the 14th Symposium on Logic in Com-

puter Science (LICS), pages 157–166. IEEE Computer Society, July 1999.

[Bor01] Michele Boreale. Symbolic trace analysis of cryptographic protocols. InProcee-

dings of the 28th International Colloquium on Automata, Languages and Program-

ming (ICALP), volume 2076 ofLecture Notes in Computer Science, pages 667–681.

Springer-Verlag, 2001.

[BW90] Michael Barr and Charles Wells. Category Theory for Computing Science.

Prentice-Hall, London, 1990.

[CDL05] Véronique Cortier, Stéphanie Delaune, and Pascal Lafourcade. A survey of alge-

braic properties used in cryptographic protocols.Journal of Computer Security,

2005. To appear.

[CJ97] John A. Clark and Jeremy L. Jacob. A survey of authentication protocol litera-

ture. Version 1.0, University of York, Department of Computer Science, November

1997.

[CS02] Hubert Comon and Vitaly Shmatikov. Is it possible to decide whether a cryptogra-

phic protocol is secure or not ?Journal of Telecommunications and Information

Technology, 4, 2002.

BIBLIOGRAPHIE 179

[DES] DES. The data encryption standard. FIPS PUB 46.

[DK02] Hans Delfs and Helmut Knebl.Introduction to Cryptography — Principles and

Applications. Information Security and Cryptography. Springer-Verlag, 2002.

[DLMS99] Nancy Durgin, Pat D. Lincoln, John C. Mitchell, and Andre Scedrov. Undecida-

bility of bounded security protocols. InProceedings of the FLOC Workshop on

Formal Methods in Security Protocols, 1999.

[DY83] Danny Dolev and Andrew C. Yao. On the security of public key protocols.IEEE

Transactions on Information Theory, 29(2) :198–208, 1983.

[FA01] Marcelo Fiore and Martín Abadi. Computing symbolic models for verifying crypto-

graphic protocols. InProceedings of the 14th IEEE Computer Security Foundations

Workshop (CSFW), pages 160–173. IEEE Computer Society, June 2001.

[FS90] Peter J. Freyd and Andre Scedrov.Categories, Allegories, volume 39 ofNorth-

Holland Mathematical Library. North-Holland, Amsterdam, 1990.

[GJ02] Andrew D. Gordon and Alan S. A. Jeffrey. Typing one-to-one and one-to-many cor-

respondences in security protocols. InProceedings International Software Security

Symposium, volume 2609 ofLecture Notes in Computer Science, pages 263–282.

Springer-Verlag, 2002.

[GJ03a] Andrew D. Gordon and Alan S. A. Jeffrey. Authenticity by typing for security

protocols.Journal Computer Security, 11(4) :451–521, 2003.

[GJ03b] Andrew D. Gordon and Alan S. A. Jeffrey. Typing correspondence assertions for

communication protocols.Theoretical Computer Science, 300 :379–409, 2003.

[GJ04] Andrew D. Gordon and Alan S. A. Jeffrey. Types and effects for asymmetric cryp-

tographic protocols.Journal Computer Security, 12(3/4) :435–484, 2004.

[GLLN02] Jean Goubault-Larrecq, Sławomir Lasota, and David Nowak. Logical relations for

monadic types. InProceedings of the 16th International Workshop of Computer

Science Logic (CSL), volume 2471 ofLecture Notes in Computer Science, pages

553–568. Springer-Verlag, 2002.

[GLLNZ04] Jean Goubault-Larrecq, Sławomir Lasota, David Nowak, and Yu Zhang. Complete

lax logical relations for cryptographic lambda-calculi. InProceedings of the 18th

International Workshop of Computer Science Logic (CSL), volume 3210 ofLecture

Notes in Computer Science, pages 400–414. Springer-Verlag, 2004.

[Gor98] Andrew D. Gordon. Operational equivalences for untyped and polymorphic object

calculi. In Andrew D. Gordon and Andrew M. Pitts, editors,Higher-Order Opera-

tional Techniques in Semantics, Publications of the Newton Institute, pages 9–54.

Cambridge University Press, 1998.

180 BIBLIOGRAPHIE

[Gor99] Andrew D. Gordon. Bisimilarity as a theory of functional programming.Theoreti-

cal Computer Science, 228(1–2) :5–47, October 1999.

[GR96] Andrew D. Gordon and Gareth D. Rees. Bisimilarity for a first-order calculus of

objects with subtyping. InConference Record of the 23rd ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL), pages 386–395.

ACM Press, January 1996.

[HLS03] James Heather, Gavin Lowe, and Steve Schneider. How to prevent type flaw attacks

on security protocols.Journal of Computer Security, 11(2) :217–244, 2003.

[HR98] Nevin Heintze and Jon G. Riecke. The SLam calculus : Programming with security

and integrity. InProceedings of the 25th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages (POPL), pages 365–377, San Diego, Cali-

fornia, 1998.

[Laf87] Yves Lafont. Logiques, Catégories and Machines. Ph. D. dissertation, Université

Paris 7, September 1987.

[Low95] Gavin Lowe. An attack on the Needham-Schroeder public-key authentication pro-

tocol. Information Processing Letters, 56(3) :131–133, 1995.

[Low96a] Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key protocol

using FDR. InTools and Algorithms for the Construction and Analysis of Sys-

tems (TACAS), volume 1055 ofLecture Notes in Computer Science, pages 147–166.

Springer-Verlag, 1996.

[Low96b] Gavin Lowe. Some new attacks upon security protocols. InProceedings of the 9th

IEEE Computer Security Foundations Workshop (CSFW), pages 162–169. IEEE

Computer Society, June 1996.

[LS86] Joachim Lambek and Philip J. Scott.Introduction to Higher-Order Categorical

Logic. Cambridge studies in advanced mathematics. Cambridge University Press,

1986.

[LSV] LSV. Security protocols open repository. http ://www.lsv.ens-cachan.fr/spore/.

[Mac71] Saunders MacLane.Categories for the Working Mathematician. Graduate Texts in

Mathematics. Springer-Verlag, New York, 1971.

[Mea00] Catherine Meadows. Open issues in formal methods for cryptographic proto-

col analysis. InProceedings of the DARPA Information Survivability Conference

and Exposition (DISCEX), pages 237–250. IEEE Computer Society Press, January

2000.

BIBLIOGRAPHIE 181

[Mea03] Catherine Meadows. Formal methods for cryptographic protocol analysis : Emer-

ging issues and trends.IEEE Journal on Selected Areas in Communications, 21(1),

2003.

[Mil80] Robin Milner. A Calculus of Communicating Systems. Springer-Verlag, 1980.

[Mil89] Robin Milner. Communication and Concurrency. Series in Computer Science.

Prentice Hall International, 1989.

[Mil99] Robin Milner. Communicating and Mobile Systems : Theπ-Calculus. Cambridge

University Press, 1999.

[Min61] Marvin L. Minsky. Recursive unsolvability of Post’s problem of “tag” and other

topics in the theory of Turing machines.Annals of Mathematics, Second Series,

74(3) :437–455, 1961.

[Mit96] John C. Mitchell.Foundations of Programming Languages. MIT Press, 1996.

[MM91] John C. Mitchell and Eugenio Moggi. Kripke-style models for typed lambda cal-

culus.Annals of Pure and Applied Logic, 51(1–2) :99–124, 1991.

[Mog89] Eugenio Moggi. Computational lambda-calculus and monads. InProceedings of

the 4th IEEE Symposium on Logic in Computer Science (LICS), pages 14–23. IEEE

Computer Society Press, June 1989.

[Mog90] Eugenio Moggi. An abstract view of programming languages. Technical Report

ECS-LFCS-90-113, LFCS, Department of Computer Science, University of Edin-

burgh, 1990.

[Mog91] Eugenio Moggi. Notions of computation and monads.Information and Computa-

tion, 93(1) :55–92, 1991.

[Mor68] James H. Morris.Lambda-Calculus Models of Programming Languages. Ph. D.

dissertation, Massachusetts Institute of Technology, December 1968. Report No.

MAC–TR–57.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes,

parts I and II.Information and Computation, 100(1) :1–77, September 1992.

[MR92] Qingming Ma and John C. Reynolds. Types, abstraction and parametric polymor-

phism, part 2. InProceedings of the 7th International Conference on Mathematical

Foundations of Programming Semantics (MFPS), volume 598 ofLecture Notes in

Computer Science, pages 1–40. Springer-Verlag, Berlin, 1992.

[MS93] John C. Mitchell and Andre Scedrov. Notes on sconing and relators. In E. Boerger

et al., editor,Proceedings of the 6th International Workshop on Computer Science

Logic (CSL), volume 702 ofLecture Notes in Computer Science, pages 352–378.

Springer-Verlag, 1993.

182 BIBLIOGRAPHIE

[MvOV96] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanston, editors.Handbook

of Applied Cryptography. CRC Press, 1996.

[NS78] Roger M. Needham and Michael D. Schroeder. Using encryption for authentication

in large networks of computers.Communications of the ACM, 21(12) :993–999,

December 1978.

[Pie91] Benjamin C. Pierce.Basic Category Theory for Computer Scientists. MIT Press,

1991.

[Pit98] Andrew M. Pitts. Existential types : Logical relations and operational equivalence.

In Proceedings of the 25th International Colloquium on Automata, Languages and

Programming (ICALP), volume 1443 ofLecture Notes in Computer Science, pages

309–326. Springer-Verlag, 1998.

[Pit00] Andrew M. Pitts. Parametric polymorphism and operational equivalence.Mathe-

matical Structures in Computer Science, 10 :321–359, 2000.

[Pit03] Andrew M. Pitts. Nominal logic, a first order theory of names and binding.Infor-

mation and Computation, 186(2) :165–193, 2003.

[Plo80] Gordon D. Plotkin. Lambda-definability in the full type hierarchy. In J[onathan] P.

Seldin and J. R[oger] Hindley, editors,To H. B. Curry : Essays on Combinatory

Logic, Lambda Calculus and Formalism, pages 363–373. Academic Press, 1980.

[PPST00] Gordon Plotkin, John Power, Donald Sannella, and Robert Tennent. Lax logical

relations. In Ugo Montanari, José D. P. Rolim, and Emo Welzl, editors,Procee-

dings of the 27th International Colloquium on Automata, Languages and Program-

ming (ICALP), volume 1853 ofLecture Notes in Computer Science, pages 85–102.

Springer-Verlag, 2000.

[PS93a] Andrew Pitts and Ian Stark. Observable properties of higher order functions that

dynamically create local names, or : What’snew? InProceedings of the 18th Inter-

national Symposium on Mathematical Foundations of Computer Science (MFCS),

number 711 in Lecture Notes in Computer Science, pages 122–141. Springer-

Verlag, 1993.

[PS93b] Andrew Pitts and Ian Stark. On the observable properties of higher-order func-

tions that dynamically create local names (preliminary report). InProceedings

of the ACM SIGPLAN Workshop on State in Programming Languages, number

YALEU/DCS/RR-968 in Research Report, pages 31–45. Yale University Depart-

ment of Computer Science, 1993.

BIBLIOGRAPHIE 183

[RS99] Peter Y. A. Ryan and Steve A. Schneider. Process algebra and non-interference. In

Proceedings of the 12th IEEE Computer Security Foundations Workshop (CSFW),

pages 214–227. IEEE Computer Society, June 1999.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining

digital signatures and public-key cryptosystems.Communications of the ACM,

21(2) :120–126, 1978.

[SM03] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow secu-

rity. IEEE Journal on Selected Areas in Communications, 21(1) :5–19, January

2003.

[SP01] Eijiro Sumii and Benjamin Pierce. Logical relations for encryption. InProceedings

of the 14th IEEE Computer Security Foundations Workshop (CSFW), pages 256–

272. IEEE Computer Society, June 2001.

[SP03] Eijiro Sumii and Benjamin C. Pierce. Logical relations for encryption.Journal of

Computer Security, 11(4) :521–554, 2003.

[SP04] Eijiro Sumii and Benjamin C. Pierce. A bisimulation for dynamic sealing. InACM

SIGPLAN–SIGACT Symposium on Principles of Programming Languages (POPL),

2004.

[SP05] Eijiro Sumii and Benjamin C. Pierce. A bisimulation for type abstraction and re-

cursion. InACM SIGPLAN–SIGACT Symposium on Principles of Programming

Languages (POPL), 2005.

[Sta94] Ian Stark.Names and Higher-Order Functions. PhD thesis, University of Cam-

bridge, December 1994. Also available as Technical Report 363, University of

Cambridge Computer Laboratory.

[Sta96] Ian Stark. Categorical models for local names.Lisp and Symbolic Computation,

9(1) :77–107, 1996.

[SW01] Davide Sangiorgi and David Walker.The Pi-Calculus — A Theory of Mobile Pro-

cesses. Cambridge University Press, 2001.

[Ten81] Robert D. Tennent.Principles of Programming Languages. Prentice-Hall Interna-

tional, 1981.

[Win93] Glynn Winskel.The Formal Semantics of Programming Languages : An Introduc-

tion. Foundations of Computing series. MIT Press, February 1993.

[ZN03] Yu Zhang and David Nowak. Logical relations for dynamic name creation. In

Proceedings of the 17th International Workshop of Computer Science Logic and

the 8th Kurt Gödel Colloqium (CSL & KGL), volume 2803 ofLecture Notes in

Computer Science, pages 575–588. Springer-Verlag, 2003.

