
Laboratoire Spécification & Vérification

École Normale Supérieure de Cachan
61, avenue du Président Wilson
94235 Cachan Cedex France

Language Preservation Problems
in Parametric Timed Automata

Étienne André and Nicolas Markey

June 2015

Research report LSV-15-05 (Version 1)

Language Preservation Problems
in Parametric Timed Automata?

Étienne André1 and Nicolas Markey2

1 Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS, Villetaneuse, France
2 LSV, CNRS & ENS Cachan, France

Abstract. Parametric timed automata (PTA) are a powerful formal-
ism to model and reason about concurrent systems with some unknown
timing delays. In this paper, we address the (untimed) language- and
trace-preservation problems: given a reference parameter valuation, does
there exist another parameter valuation with the same untimed language
(or trace)? We show that these problems are undecidable both for gen-
eral PTA, and even for the restricted class of L/U-PTA. On the other
hand, we exhibit decidable subclasses: 1-clock PTA, and 1-parameter
deterministic L-PTA and U-PTA.

1 Introduction

Timed Automata. Timed Automata (TA hereafter) were introduced in the
1990’s [1] as an extension of finite automata with clock variables, which can be
used to constrain the delays between transitions. Despite this flexibility, TA enjoy
efficient algorithms for checking reachability (and many other properties), which
makes them a perfect model for reasoning about real-time systems.

In TA, clock variables are compared to (integer) constants in order to allow
or disallow certain transitions. The behaviour of a TA may heavily depend on the
exact values of the constants, and slight changes in any constant may give rise to
very different behaviours. In many cases however, it may be desirable to optimise
the values of some of the constants of the automaton, in order to exhibit better
performances. The question can then be posed as follows: given a TA and one of
the integer constant in one of the clock constraints of this TA, does there exist
another value of this constant for which the TA has the exact set of (untimed)
behaviours? We call this problem the language-preservation problem.

A special case of this problem occurs naturally in recent approaches for dealing
with robustness of timed automata [7,11,12]. The question asked there is whether
the behaviour of a timed automaton is preserved when the clock constraints
are slightly (parametrically) enlarged. In most of those cases, the existence of a
parametric enlargement for which the behaviours are the same as in the original
TA has been proved decidable.

? This work is partially supported by the ANR national research program PACS
(ANR-14-CE28-0002), and by European projects ERC EQualIS (308087) and FET
Cassting (601148).

1

For the general problem however, the decidability status remains open. To the
best of our knowledge, the only approach to this problem is a procedure (called
the inverse method [3]) to compute a dense set of parameter valuations around a
reference valuation v0.

Parametric Timed Automata. In this paper, we tackle the language-preservation
problem using Parametric Timed Automata (PTA) [2]. A PTA is a TA in
which some of the constants in clock constraints are replaced by variables (a.k.a.
parameters), whose value is not fixed a priori. The classical problem (sometimes
called the EF-emptiness problem) in PTA asks whether a given target location
of a PTA is reachable for some valuation of the parameter(s). This problem was
proven undecidable in various settings: for integer parameter valuations [2], for
bounded rational valuations [10], etc. The proofs of these results exist in many
different flavours, with various bounds on the number of parameters and clocks
needed in the reductions.

To the best of our knowledge, the only non-trivial syntactic subclass of PTA
with decidable EF-emptiness problem is the class of L/U-PTA [8]. These models
have the following constraint: each parameter may only be used either always
as a lower bound in the clock constraints, or always as an upper bound. For
those models, the problems of the emptiness, universality and finiteness (for
integer-valued parameters) of the set of parameters under which a target location
is reachable, are decidable [8,6]. In contrast, the AF-emptiness problem (“does
there exist a parameter valuation for which a given location is eventually visited
along any run?”) is undecidable for L/U-PTA [9].

Our Contributions. In this paper, we first prove that the language-preservation
problem (and various related problems) is undecidable in most cases. While it
might not look surprising given the numerous undecidability results about PTA,
it contrasts with the decidability results proved so far for robustness of TA.

Our second contribution is to devise a semi-algorithm that solves the language-
and trace-preservation problems (and actually synthesizes all parameter valuations
yielding the same untimed language (or trace) as a given reference valuation), in
the setting of deterministic PTA. Finally, we also study the decidability of these
emptiness problems for subclasses of PTA: we prove decidability for PTA with a
single clock, undecidability for L/U-PTA, and decidability for two subclasses of
L/U-PTA with a single parameter.

A long version of this paper, with detailed proofs, is available as [4].

2 Definitions

Constraints. We fix a finite set X = {x1, . . . , xH} set of real-valued variables
(called clocks in the sequel). A clock valuation w is a function w : X → R≥0.
We define two operations on clock valuations: for d ∈ R≥0 and a clock valuation w,
we let w+ d be the valuation w′ such that w′(x) = w(x) + d for all x ∈ X. Given
a set R ⊆ X and a valuation w, we let w[R 7→ 0] be the clock valuation w′

such that w′(x) = 0 if x ∈ R, and w′(x) = w(x) otherwise. We also fix a finite
set P = {p1, . . . , pM} of rational-valued variables called parameters. A parameter

2

valuation v is a function v : P → Q≥0. In the sequel, we will have to handle clocks
and parameters together. A valuation is a function u : X ∪ P → R≥0 such that
u|X is a clock valuation and u|P is a parameter valuation.

An atomic constraint over X and P is an expression of the form either
x ≺ p + c or x ≺ c or p ≺ c, where ≺ ∈ {<,≤,=,≥, >}, x ∈ X, p ∈ P and
c ∈ Z. The symbols > and ⊥ are also special cases of atomic constraints. Notice
that our constraints are a bit more general than in the setting of [2], where only
atomic constraints of the form x ≺ p and x ≺ c (and > and ⊥) were allowed.
A constraint over X and P is a conjunction of atomic constraints. An (atomic)
diagonal constraint is a constraint of the form x − x′ ≺ p + c or x − x′ ≺ c,
where x and x′ are two clocks and ≺, p and c are as in plain atomic constraints.
A generalized constraint over X and P is a conjunction of atomic constraints
and atomic diagonal constraints.

Remark 1. We mainly focus here on continuous time (clock valuations take real
values) and rational-valued parameters, as defined above. However, several of our
results remain valid for discrete time (clock valuations take integer values) and
integer-valued parameters. We will mention it explicitly when it is the case.

A valuation u satisfies an atomic constraint ϕ : x ≺ p+ c, which we denote
u |= ϕ, whenever u(x) ≺ u(p) + c. The definition for diagonal constraints is
similar. All valuations satisfy >, and none of them satisfies ⊥. A valuation u
satisfies a constraint Φ, denoted u |= Φ if, and only if, it satisfies all the conjuncts
of Φ. A constraint Φ is said to depend on D ⊆ X ∪ P whenever for any two
valuations u and u′ such that u(d) = u′(d) for all d ∈ D, it holds u |= Φ if, and
only if, u′ |= Φ. A parameter constraint is a constraint that depends only on P .

Given a partial valuation u and a constraint Φ, we write u(Φ) for the constraint
obtained by replacing each z ∈ dom(u) in Φ with u(z). The resulting constraint
depends on (X ∪ P) \ dom(u).

We denote by Φ↓V the projection of constraint Φ onto V ⊆ X ∪ P , i.e. the
constraint obtained by eliminating the clock variables. This projection has the
property that v |= Φ↓P if, and only if, there is an extension u of v to X ∪
P such that u |= Φ. Such projections can be computed e.g. using Fourier-
Motzkin elimination. We also define the time elapsing of Φ, denoted by Φ↑, as the
generalized constraint over X and P obtained from C by delaying an arbitrary
amount of time. The time-elapsing of a constraint Φ is obtained by preserving
all differences between any pair of clocks, preserving lower bounds, and relaxing
upper bounds on atomic (single-clock) constraints. Given R ⊆ X, we define the
reset of Φ, denoted by [Φ]R, as the constraint obtained from Φ by resetting the
clocks in R, and keeping the other clocks unchanged. This is computed in the
same way as projection above (i.e., it corresponds to an existential quantification),
and then adding constraints x = 0 on the clocks being reset.

Parametric Timed Automata. Parametric timed automata are an extension
of the class of timed automata to the parametric case, where parameters can be
used within guards and invariants in place of constants [2].

3

l1 l2 l3

y ≤ p2
y ≤ p3

press?
x := 0
y := 0

y = p2
cup!

x ≥ p1
press?
x := 0

y = p3
coffee!

Fig. 1: An example of a coffee machine

Definition 2. A parametric timed automaton (PTA for short) is a tuple A =
〈Σ,L, linit, X, P, I,→〉, where: Σ is a finite set of actions; L is a finite set of
locations; linit ∈ L is the initial location; X is a set of clocks; P is a set of
parameters; I assigns to every l ∈ L a constraint I(l), called the invariant of l; →
is a set of edges (l, g, a,R, l′), also denoted by l

g,a,R−−−→ l′, where l, l′ ∈ L are the
source and destination locations, g is a constraint (called guard of the transition),
a ∈ Σ, and R ⊆ X is a set of clocks to be reset.

For example, the PTA in Fig. 1 has 3 locations, 3 parameters p1, p2, p3 and
2 clocks x, y.

A PTA is deterministic if, for all l ∈ L, for all a ∈ Σ, there is at most one
edge (l′, g, a′, R, l′′) ∈ → with l′ = l and a′ = a.

Given a PTA A = 〈Σ,L, linit, X, P, I,→〉, and a parameter valuation v, v(A) de-
notes the automaton obtained from A by substituting every occurrence of a
parameter pi by the constant v(pi) in the guards and invariants. Then v(A) is a
timed automaton [1], whose semantics is defined as follows:

Definition 3. Given a PTA A = 〈Σ,L, linit, X, P, I,→〉, and a parameter valua-
tion v, the semantics of v(A) is given by the timed transition system 〈Q, qinit,⇒〉
where Q = {(l, w) ∈ L × (R≥0)X | w(v(I(l))) evaluates to true}, with initial
state qinit = (linit,0X), and ((l, w), (d, e), (l′, w′)) ∈ ⇒ whenever e is a transition
(l, g, a,R, l′) ∈ → such that (l, w + d) |= I(l)∧ g and w′ = (w + d)[R 7→ 0].

A run of a TA is a maximal sequence of consecutive transitions of the timed
transition system associated with the TA. For the sake of readability, we usually

write runs as s0
d0,e0⇒ s1

d1,e1⇒ · · · dm−1,em−1⇒ sm · · · . With maximal, we mean that a
run may only be finite if its last state has no outgoing transition. The timed word

associated to a run s0
d0,e0⇒ s1

d1,e1⇒ · · · dm−1,em−1⇒ sm · · · is the (finite or infinite)
sequence (di, ai)i such that for all i, ai is the action of edge ei. The corresponding
untimed word is the word (ai)i. The timed (resp. untimed) language of a TA A,
denoted by Langt(A) (resp. Lang(A)), is the set of timed (resp. untimed) words
associated with maximal runs of this automaton. Similarly, the untimed trace

associated with the run s0
d0,e0⇒ s1

d1,e1⇒ · · · dm−1,em−1⇒ sm · · · is the sequence
(li, ai)i s.t. li is the location of si and ai is the action of edge ei. The set of
untimed traces of A is denoted by Traces(A).

4

Given a state s = (l, w), state s is said reachable in A under valuation v if s
belongs to a run of v(A); a location l is reachable if some state (l, w) is.

Following [8], we now define a symbolic semantics for PTA:

Definition 4 (Symbolic state). A symbolic state of a PTA A is a pair (l,C)
where l ∈ L is a location, and C is a generalized constraint.

Given a parameter valuation v, a state s = (l,C) is v-compatible if v |= C↓P .
The computation of the state space relies on the Succ operation. The initial

state of A is sinit = (linit, (X = 0)↑∧I(linit)). Given a symbolic state s = (l,C) and a

transition e = (l, g, a,R, l′), we let Succe(s) = {(l′,C′) | C′ =
(
[(C∧g)]R

)↑∩I(l′)}
(notice that this is a singleton); we write Succ(s) =

⋃
e∈→ Succe(s). By extension,

given a set S of states, Succ(S) = {s′ | ∃s ∈ S s.t. s′ ∈ Succ(s)}. Again, this
gives rise to an infinite-state transition system, called the parametric zone graph
later on. A symbolic run of a PTA from some symbolic state s0 is an infinite
sequence of edges (ei)i such that there exists a sequence of symbolic states (si)i
such that si+1 = Succei(si). Two runs are said equivalent when they correspond
to the same sequences of edges (hence the same sequences of locations), but may
visit different symbolic states.

In this paper, we address the following two problems:

Definition 5. Given a PTA A and a parameter valuation v,

– the language preservation problem asks whether there exists another param-
eter valuation v′ giving rise to the same untimed language (i.e. such that
Lang(v(A)) = Lang(v′(A));

– the trace preservation problem asks whether there exists another parameter
valuation v′ giving rise to the same set of traces (i.e. such that Traces(v(A)) =
Traces(v′(A)) [3].

The continuous versions of those problems additionally require that the lan-
guage (resp. set of traces) is preserved under any intermediary valuation of the
form λ · v + (1 − λ) · v′, for λ ∈ [0, 1] (with the classical definition of addition
and scalar multiplication).

3 Undecidability of the Preservation Problems in General

3.1 Undecidability of the Language Preservation Problem

Theorem 6. The language preservation problem for PTA with one parameter is
undecidable (both over discrete and continuous time, and for integer and rational
parameter valuations).

Proof. The proof proceeds by a reduction from the halting problem for two-counter
machines. We begin with reducing this problem into the classical problem of
reachability emptiness (“EF-emptiness”) in parametric timed automata (“does
there exist a valuation of the parameters under which the target location is
reachable?”). We then extend the construction in order to prove the result.

5

s s′ s′
xk = p− 1
xk := 0

z = p− 1
z := 0

(a) Incrementing ck

s

s0 s0

s1 s1

t = 0 ∧ xk = 0

t 6= 1 ∧ xk = 1
xk := 0

z = p− 1
z := 0

z = p− 1
z := 0

(b) Decrementing ck

Fig. 2: Encoding a 2-counter machine

Fix a deterministic two-counter machine M = 〈S, T 〉. Our reduction requires
four clocks: clock t will serve as a tick (it will be reset exactly every p time
units, where p is the parameter), and we will have a correspondence between
a configuration of the timed automaton and a configuration of the two-counter
machine exactly when t = 0; clocks x1 and x2 are used to store the values of
counters c1 and c2 ofM, with the correspondence x1 = c1 and x2 = c2 when t = 0;
finally, clock z is used to count the number of steps of the two-counter machine:
this is where our construction differs from the classical ones (e.g., [2,9]), as we
use the parameter p to bound the length (number of step) of the possible halting
computation of the two-counter machine. As the number of steps is bounded
by p, we know that both c1 and c2 are also bounded by p. The parametric timed
automaton A associated with M is defined as follows:

– its set of states has two copies of the set S of states ofM: for each s ∈ S, there
is a main state with the same name s, and an intermediary state named s;

– each state of A carries four self-loops, associated with each of the four clocks
and reseting that clock when it reaches value p. This requires a global invariant
enforcing the clocks t, x1 and x2 to remain below p, and clock z to remain
below p− 1.
Then each transition (s, ck + +, s′) incrementing counter ck in M gives rise
to a transition from state s to state s′, with guard is xk = p− 1, and reseting
clock xk (see Figure 2a). Each transition of the form (s, ck − −, s0, s1) is
handled similarly, but gives rise to two transitions: one transition from s to s0
with guard t = 0∧xk = 0, and one transition from s to s1 with guard xk = 1
and reseting clock xk. Then, from each state s of A, there is a transition to
the corresponding state s with guard z = p− 1 and reseting z (see Figure 2b).

This construction works as we expect (assuming p is an integer, which is easily
checked by a simple initial module): clock t is reset every p time units (which
cannot be seen in Figure 2 because we omitted the self-loops); clocks x1 and x2
keep track the values of c1 and c2, with the correspondence xk = ck when t = 0;
finally, clock z counts the number of steps (when considering the value of this clock
when t = 0, it encodes a counter that is incremented at every transition of M).
Notice that clock z counts, but for the moment, it does not impose any constraint
on the length of the simulation. Notice also that this construction currently does
not correctly encode the runs of M, since the counters are encoded modulo p.

6

sinit

s0 shalt

s∞p = 0

p > 0

Fig. 3: Encoding the halting problem into the language-preservation problem

We modify our construction by adding the extra condition that 0 < t < p (or
equivalently 1 ≤ t ≤ p− 1) to the guards z = p− 1 of the transitions leaving the
intermediary states. This way, when z (seen as a counter) has value p−1, no tran-
sition is available from any state s (or a transition to a sink state can be added),
so that the encoding stops after mimicking p− 1 steps of the execution of M.

With this reduction, we have:

Lemma 7. The two-counter machineM has a computation of length at most p−1
reaching shalt from (s0, (c1 = 0, c2 = 0)) if, and only if, there is a run reaching
the corresponding state shalt from (s0, (t = 0, x1 = 0, x2 = 0, z = 0)) in v(A).

We now explain how to adapt this construction to the language preservation
problem. The idea is depicted on Figure 3 (where all transitions are labeled with
the same letter a): when p = 0, the automaton accepts the untimed language
{aω}. Notice that the guard p = 0 in the automaton can be encoded by requiring
t = 0∧ t = p. On the other hand, when p > 0, we have to enter the main part of the
automaton A, and mimic the two-counter machine. From our construction above,
the untimed language is the same if, and only if, the halting location is reachable.

Finally, notice that our reduction is readily adapted to the discrete-time
setting, and/or to integer-valued parameters. ut

Remark 8. Our construction uses both p and p− 1 in the clock constraints, as
well as parametric constraints p = 0 and p > 0. This was not allowed in [2] (where
three parameters were needed to compare the clocks with p, p − 1 and p + 1).
Our construction could be adapted to only allow comparisons with p− 1, while
keeping the number of clocks unchanged:

– the parametric constraints p = 0 and p > 0 could be respectively encoded as
(x = p)∧(x = 0) and (x < p)∧(x = 0);

– transitions guarded by x = p (which always reset the corresponding clock x)
would then be encoded by a first transition with x = p− 1 resetting x and
moving to a copy of A where we remember that the value of x should be
shifted up by p − 1. All locations have invariant x ≤ 1, and transitions
guarded with x = 1, resetting x and returning to the main copy of A. The
same can be achieved for the other clocks, even if it means duplicating A
16 times (twice for each clock).

7

3.2 Undecidability of the Trace Preservation Problem.

In this section, we provide two proofs of the following result:

Theorem 9. The trace-preservation problem for PTA with one parameter is
undecidable.

The first proof is by a generic transformation of timed automata without zero-
delay cycle into one-location timed automata; it involves diagonal constraints,
but only a fixed number of parametric clocks. The second proof does not involve
diagonal constraints, but it uses an unbounded number of parametric clocks.

Encoding timed automata into one-location timed automata. Our first
proof relies on the encoding of TA (with the restriction that no sequence of
more than k transitions may occur in zero delay, for some k; equivalently, those
timed automata may not contain zero-delay cycles) into an equivalent TA with a
single location; this reduction uses k × |L| additional clocks (where |L| denotes
the number of clocks of A) and requires diagonal constraints, i.e. constraints
comparing clocks with each other (of the form x1 − x2 ≺ c).

This result extends to PTA, and the additional clocks are non-parametric.
Using this reduction, the undecidability of the language preservation (Theorem 6)
trivially extends to trace preservation. Let us first show the generic result for TA.

Proposition 10. Let A be a TA in which, for some k, no sequence of more than
k transitions occur in zero delay. Then there exists an equivalent TA A′ with only
one location and k× |A|+ 1 additional clocks, such that the timed languages of A
and A′ are the same.

Proof. We begin with the intuition behind our construction: each location ` of the
automaton A is encoded using an extra clock x`, with the following property: when
location ` is entered, the clock x` is reset. An extra clock x0 is reset along each
transition. Then when the automaton is visiting `, it holds x` − x0 = 0. However,
the converse does not hold, because several transitions may be taken in zero delay.

To overcome this difficulty, we use k + 1 copies of x`, numbered x1` to xk+1
` .

The exact encoding is then as follows: each transition (`, g, a,R, `′) is encoded as
several self-loops on the single location of A′:

– one self-loop is guarded with the conjunction of the guard g and of the
constraint x0 > 0∧

∨
i≥1
[
xi` − x0 = 0∧

∧
`′′∈L x

i+1
`′′ − x0 > 0

]
; it is labeled

with a, and resets the clocks in R as well as x0 and x1`′ .
– for each 1 ≤ i ≤ k, one self-loop is guarded with the conjunction of g and
x0 = 0∧

[
xi` = 0∧

∧
`′′∈L x

i+1
`′′ > 0

]
; it is labeled with a and resets the clocks

in R and xi+1
`′ .

With this transformation, we get a one-to-one correspondence between the run
in A and in A′, so that both automata have the same timed language. ut

The above transformation can be applied to a PTA, with the property that the
timed language is preserved for any valuation of the parameters. Proposition 10
can be extended to PTA as follows:

8

Proposition 11. Let A be a PTA with no zero-delay cycle (for any valuation of
the parameters). Then there exists an equivalent PTA A′ with only one location
and k×|A|+1 additional clocks such that for any parameter valuation v, the timed
languages of v(A) and v(A′) coincide.

Now, for one-location automata, the untimed languages and the sets of untimed
traces coincide. Applying this to our construction of Theorem 6 proves our result.

An Ad-Hoc Proof Avoiding Diagonal Constraints. We propose a second
proof, where we avoid the use of diagonal constraints, at the expense of using
unboundedly many parametric clocks. This proof follows the reduction of the
proof of Theorem 6, but with only four states: one state is used to initialize the
computation, and the other three states are then visited cyclically, in order to
first update the information about the counters and then about the state of the
two-counter machine. The location of the machine is then stored using as many
clocks as the number of locations of the machine: the clock with least value (less
than or equal to p) corresponds to the current location.

Formally, from a deterministic two-counter machine M with n states, we
build a PTA with n+ 4 (parametric) clocks: n clocks q1 to qn are used to store
the current location of M (the only clock with value less than or equal to p
corresponds to the current state of M), two clocks x1 and x2 store the values
of the two counters, clock t measures periods of p time units (where p is the
parameter), and an extra clock r stores temporary information along the run.
Intuitively, the PTA cycles between two main states: it goes from the first one to
the second one for updating the values of the counters, and from the second one
back to the first one for updating clocks encoding the location of M.

This is a direct encoding of a two-counter machine as a PTA. It can easily be
adapted to follow the reduction scheme of Theorem 6, which entails our result.
Notice that by adding two extra clocks and two intermediary locations, we can
get rid of comparisons with p− 1 and p+ 1, in order to use only constraints of
the form x ∼ p.

3.3 Undecidability of the Robust Language-Preservation Problem

The robust language-preservation problem extends discrete one by additionally
requiring that the language is preserved on a “line” of valuations originating from
the reference valuation. This is not the case of our previous proofs, which require
the parameter to take integer values for the reduction to be correct. In this
section, we depart from the “discrete” setting of the previous section, and use
rational-valued parameters and the full power of real-valued clocks.

Theorem 12. The robust language preservation problem for PTA with one
(possibly bounded) parameter is undecidable.

Proof. We begin with a reduction1 of the halting problem for counter machines
to the EF-emptiness problem for 1-parameter PTA. The proof is then adapted to
the language-preservation problem in the same way as for the proof of Theorem 9.

1 This reduction for the EF problem we present here is an unpublished proof by Didier
Lime; we develop the reduction here for our paper to be self-contained.

9

The encoding of the two-counter machine is as follows: it uses one rational-
valued parameter p, one clock t to tick every time unit, and one parametric
clock xi for storing the value of each counter ci, with xi = 1− p · ci when t = 0.

An initial transition is used to initialize the values of x1 and x2 to 1, while it
sets t to zero. It also checks that the value of p is in (0, 1). Zero-tests are easily
encoded by checking whether xi = 1 while t = 0. Incrementation is achieved by
reseting clock xi when it reaches 1 + p, while the other clocks are reset when they
reach 1. This way, exactly one time unit elapses in this module, and clock xi is
decreased by a, which corresponds to incrementing ci. Decrementing is handled
similarly. Finally, notice that the use of the constraint xi = 1 + p can be easily
avoided, at the expense of an extra clock.

One easily proves that if a (deterministic) two-counter machineM halts, then
by writing P for the maximal counter value reached during its finite computation,
the PTA above has a path to the halting location as soon as 0 < p ≤ 1/P .
Conversely, assume that the machine does not halt, and fix a parameter value 0 <
p < 1. If some counter of the machine eventually exceeds 1/p, then at that
moment in the corresponding execution in the associated PTA, the value of t
when xi = 1 + p will be larger than 1, and the automaton will be in a deadlock.
If the counters remain bounded below 1/p, then the execution of the two-counter
machine will be simulated correctly, and the halting state will not be reached.

We now adapt this construction to our language preservation problem. We have
to forbid the infinite non-halting run mentioned above. For this, we add a third
counter, which will be incremented every other step of the resulting three-counter
machine, in the very same way as in the proof of Theorem 9. We then have
the property that if M does not halt, the simulation in the associated PTA
will be finite. Adding states sinit and s∞ as in Fig. 3, we get the result that the
two-counter machineM halts if, and only if, there is a parameter value v0(p) > 0
such that all values v(p) between 0 and v0(p) give rise to timed automata v(A)
accepting the same language. ut

3.4 Undecidability of the Robust Trace Preservation Problem

Combining Theorem 12 and the arguments of Section 3.2, we get:

Theorem 13. The robust trace-preservation problem is undecidable for PTA
with one (possibly bounded) parameter.

4 A Semi-Algorithm for the Trace Preservation Synthesis

In this section, we propose a semi-algorithm that solves the following parameter-
synthesis problem: “given a PTA A and a parameter valuation v, synthesize
parameter valuations that yield the same language (or trace set) as v”.

The inverse method proposed in [3] outputs a parameter constraint that is
a correct but non-complete answer to the trace-preservation problem. Below,
we rewrite this algorithm so that, whenever it terminates, it outputs a correct
answer for any PTA, and a complete answer for deterministic PTA.

10

Algorithm 1: TPSynth(A, v)

input : PTA A, parameter valuation v
output : Constraint K over the parameters

1 Kgood ← > ; Kbad ← ⊥ ; Snew ← {sinit} ; S ← ∅
2 while true do
3 foreach state (l,C) ∈ Snew do
4 if v |= C↓P then Kgood ← Kgood ∧ C↓P ;
5 else Kbad ← Kbad ∨ C↓P ; Snew ← Snew \ {(l,C)} ;

6 if Snew ⊆ S then return Kgood ∧ ¬Kbad ;
7 S ← S ∪ Snew ; Snew ← Succ(Snew)

We give TPSynth(A, v) in Algorithm 1. TPSynth maintains two constraints:
Kgood is the intersection of v-compatible states met, whereas Kbad is the union2 of
all v-incompatible states. TPSynth also maintains two sets of states, viz. the set
S of all states met, and the set Snew of states met at the latest iteration of the
while loop. TPSynth is a breadth-first search algorithm, that iteratively explores
the symbolic state space. Whenever a new state is met, its v-compatibility is
checked (line 4). If it is v-compatible, its projection onto the parameters is
added to Kgood (line 4). Otherwise, its projection onto the parameters is added
to Kbad (line 5), and the state is discarded from Snew (line 5), i.e. its successors
will not be explored. When no new states can be explored, i.e. the set Snew is
either empty or contains only states explored earlier (line 6), the intersection
of v-compatible parametric constraints and the negation of the v-incompatible
parametric constraints is returned (line 6). Otherwise, the algorithm explores
one step further in depth (line 7).

Theorem 14 states that, in case TPSynth(A, v) terminates, its result is correct.

Theorem 14 (correctness of TPSynth). Let A be a PTA, let v be a parameter
valuation. Assume TPSynth(A, v) terminates with constraint K. Then v |= K, and
for all v′ |= K, Traces(v′(A)) = Traces(v(A)).

We now state the completeness of TPSynth for deterministic PTA.

Theorem 15 (completeness of TPSynth). Let A be a deterministic PTA, let
v be a parameter valuation. Assume TPSynth(A, v) terminates with constraint K.
Then v′ |= K iff Traces(v′(A)) = Traces(v(A)).

Remark 16. The incompleteness of TPSynth for nondeterministic PTA is easily
seen: consider a PTA with two states l and l′, and two transitions from l to l′

labeled with a and guarded with x = p∧x ≥ 5 and x = p∧x ≤ 2. Consider
v such that p = 0. TPSynth(A, v) outputs p ≤ 2, whereas the complete set of
parameter valuations with the same trace set as v(A) is in fact p ≤ 2 ∨ p ≥ 5.

2 This union of a constraints can be seen (and implemented) as a finite list of convex
constraints.

11

5 Decidability Results for Subclasses of PTA

In this section, we first prove the finiteness of the parametric zone graph of 1-
clock PTA over both discrete and rational time (Section 5.1). We then study the
(un)decidability of the language and trace preservation emptiness problems for
deterministic 1-clock PTA (Section 5.2), L/U-PTA (Section 5.3) and deterministic
1-parameter L-PTA and U-PTA (Section 5.4).

5.1 1-Clock PTA

In this section, we restrict the number of clocks of a PTA, without any restriction
on the number of parameters. In fact, we even slightly extend the definition of
PTA, by allowing parametric linear terms in guards and invariants.

Definition 17. An extended 1-clock PTA (1cPTA for short) is a PTA with only
one clock and possibly several parameters, and allowing guards and invariants of
the form x ≺

∑
i αipi + c, with pi ∈ P and αi ∈ Z.

We show below that the parametric zone graph for 1cPTA is finite. In [2],
it is shown that the set of parameters reaching some location can be computed
for PTA over discrete time with only one parametric clock and arbitrarily many
non-parametric clocks. Here, we lift the assumption of discrete time, we allow
more general guards and invariants, and the finiteness of the parametric zone
graph allows to synthesize valuations for more complex properties than pure
reachability; however, we only consider a single (parametric) clock. Eliminating
non-parametric clocks in this setting is the subject of future work.

Definition 18. Given a 1cPTA A, a 1-clock symbolic constraint is a constraint
over X ∪ P of the form

∧
i(lt i ∼ x) ∧

∧
j(lt1j ∼ lt2j), where i, j ∈ N, x is the

unique clock of A, and lt i, lt
1
j , lt

2
j are parametric linear terms either (i.e. of the

form
∑

i αipi + c) appearing in guards and invariants of A, or equal to 0, and
such that lt1j , lt

2
j are all different from each other. We denote by 1CSC(A) the set

of 1-clock symbolic constraints of A.

Lemma 19. Let A be a 1cPTA. Let (l,C) be a reachable symbolic state of A.
Then C ∈ 1CSC(A).

Proof sketch. We reason by induction on the length of the runs. For the base
case, the initial state is obviously in 1CSC(A). Then, for any state, we compute
one of its successors using the Succ relation; and we show that each operation
(intersection with the guard, resetting clocks, time elapsing, intersection with the
invariant) makes the resulting constraint still belong to 1CSC(A). ut

Theorem 20. The parametric zone graph of a 1cPTA is finite.

12

Proof. From Lemma 19, each symbolic state of a 1cPTA A belongs to 1CSC(A).
Due to the finite number of linear terms in the guards and invariants in A and
the finite number of locations of A, there is a finite number of possible symbolic
states reachable in A. ut

Let us compute below an upper bound on the size of this symbolic graph.
In the following, |LT | denotes the number of different parametric linear terms
(i.e. the number of guards and invariants) used in A.

Proposition 21. The parametric zone graph of a 1cPTA is in |L|×2|LT |(|LT |+1).

5.2 Decidability and Synthesis for Deterministic 1-clock PTA

We show here that the language- and trace-preservation problems are decidable
for deterministic 1cPTA. These results rely on the correctness and completeness
of Algorithm 1 and on the finiteness of the parametric zone graph of 1cPTA.

Theorem 22 (trace-preservation synthesis). Let A be a deterministic 1cPTA
and v be a parameter valuation. The set of parameters for which the trace set is
the same as in v(A) is computable in |L| × 2|LT |(|LT |+1).

Proof. Since A is a 1cPTA, then its parametric zone graph is finite from Theo-
rem 20. Hence TPSynth(A, v) terminates. Furthermore, since A is deterministic,
from Theorems 14 and 15, TPSynth(A, v) returns all parameter valuations v′

such that Traces(v′(A)) = Traces(v(A)).
Concerning the complexity, in the worst case, all symbolic states of A are

v-compatible, and TPSynth(A, v) needs to explore the entire parametric zone
graph, which is of size |L| × 2|LT |(|LT |+1). ut

Theorem 23 (language-preservation synthesis). Let A be a deterministic
1cPTA and v be a parameter valuation. The set of parameters for which the
language is the same as in v(A) is computable in |L| × 2|LT |(|LT |+1).

Proof. Since A is deterministic, the set of parameter valuations v′ such that
Lang(v′(A)) = Lang(v(A)) is the same as the set of parameter valuations v′ such
that Traces(v′(A)) = Traces(v(A)). Hence one can directly apply TPSynth(A, v)
to compute the parameter valuations with the same language as v(A). ut

As direct corollaries of these results, the language- and trace-preservation
problems are decidable for deterministic 1cPTA.

5.3 Undecidability for L/U-PTA

We showed so far that the language- and trace-preservation problems are undecid-
able for general PTA (Section 3) and decidable for (deterministic) 1-clock PTA
(Section 5.2). These results match the EF-emptiness problem, also undecidable
for general PTA [2] and decidable for 1-clock PTA (at least over discrete time).
We now show that the situation is different for L/U-PTA (PTA in which each
parameter is always either used as a lower bound or always as an upper bound [8]):
while EF-emptiness is decidable for L/U-PTA [8,6], we show that the language-
and trace-preservation problems are not.

13

l0 l1

l2

x1 ≤ pu x1 ≤ pu

x1 ≥ pl
a

x2 := 0 x2 > 0
b

x2 = 0
a

Fig. 4: PTA gadget ensuring pl = pu

Constraining parameter equality. We first
show how to encode equality of a lower-
bound parameter and an upper-bound
parameter in a L/U-PTA, using language
preservation. Consider the PTA gadget
depicted in Figure 4. Assume a parameter
valuation v such that pl = pu. Note that
since pl = pu, no time can elapse in l1,
and the b transition can never be taken.
In fact, we have that the language of this
gadget is aa iff pl = pu.

Now, one can rewrite the 2CM encoding of Section 3.1 using an L/U-PTA
which, together with the previous gadget, gives the following undecidability result.

Theorem 24. The language-preservation problem is undecidable for L/U-PTA
with at least one lower-bound and at least one upper-bound parameter.

This reasoning can be reused to prove the undecidability for L/U-PTA of the
other problems considered in Section 3. It follows:

Theorem 25. 1. The trace-preservation problem is undecidable for L/U-PTA
with at least one lower-bound and at least one upper-bound parameter.

2. The robust language- and trace-preservation problems are undecidable for L/U-
PTA with at least one lower-bound and at least one upper-bound parameter.

5.4 A Decidability Result for 1-Parameter L-PTA and U-PTA

In [6], a bound is exhibited for both L-PTA and U-PTA (i.e. PTA with only
lower-bound, resp. upper-bound, parameters) such that either all parameter
valuations beyond this threshold have an accepting run, or none of them has.
This provides an algorithm for synthesizing all integer parameter valuations
for which there exists an accepting run, by considering this bound, and then
enumerate all (integer) valuations below this bound.

l1 l2

x1 = 1 ∧ x2 ≤ p
a; x1 := 0

x2 ≤ p
b

b

Fig. 5: An U-PTA with differ-
ent language for each parame-
ter valuation

Unfortunately, such a bound for U-PTA (and
L-PTA) does not exist for the language, as wit-
nessed by the U-PTA of Fig. 5: given p ∈ N, the
accepted language is a≤pbω. A similar L-PTA
example is easily obtained.

We now show that the trace-preservation
problem is decidable for deterministic L-PTA
and U-PTA with a single integer parameter and
arbitrarily many clocks: given a reference integer
parameter valuation v, it suffices to check v + 1
and v − 1 to decide whether another parameter
valuation yields the same trace set as v.

Theorem 26. The trace-preservation problem is decidable for deterministic U-
PTA and deterministic L-PTA with a single integer-valued parameter.

14

Proof. Let A be a deterministic U-PTA with a single integer-valued parameter p
(the reasoning is dual for L-PTA). Let v be a valuation of p. Construct the trace
set of v(A). Consider the valuation v + 1 (i.e. the smallest integer valuation
larger than v). It is known that increasing a parameter in a U-PTA can only add
behaviors. Suppose v + 1(A) adds a behavior, i.e. enables a transition that was
not enabled in v(A). Since A is deterministic, then necessarily v + 1(A) contains

a transition l1
a⇒ l2 that did not exist in v(A). Hence the trace set of v + 1(A)

strictly contains the trace set of v(A), and the trace set of any valuation greater
or equal to v + 1 will again strictly contain the trace set of v(A). Hence, deciding
whether there exists a valuation greater than v for which the trace set is the
same as v(A) is equivalent to checking whether the trace set of v + 1(A) is the
same as the trace set of v(A).

The proof for v − 1 is symmetric. Hence it is decidable whether there exists a
valuation different from v for which the trace set is the same as v(A). ut

Since we have a direct correspondence between trace sets and languages in
deterministic automata, we get:

Theorem 27. The language-preservation problem is decidable for deterministic
U-PTA and deterministic L-PTA with a single integer-valued parameter.

l1

l3 l4

l2

x = 1 ∧ x ≤ p, a

b

x = 2 ∧ x ≤ p, a

x = 3 ∧ x ≤ p, b
b

Fig. 6

Theorem 27 cannot be lifted to the
language for non-deterministic L- and
U-PTA. Consider the U-PTA in Fig. 6:
for p = 1, the language is abω. For
p = 2, the language is abω|a, which
is different from p = 1. But then for
p ≥ 3, the language is again abω. Hence
testing only v + 1 = 2 is not enough.

Similarly, a counter-example to
the extension of Theorem 26 to non-
deterministic L- and U-PTA can be
obtained easily.

6 Conclusion and Perspectives

In this paper, we studied the decidability of the language and trace preservation
emptiness. We summarize in Table 1 our (un)decidability results for PTA and its
subclasses with arbitrarily many clocks; an italicized cell denotes undecidability.
(1ip-dL&U-PTA stand for deterministic L-PTA, resp. U-PTA, with one integer-
valued parameter; L&U-PTA stand for L-PTA and U-PTA; bPTA stand for PTA
with bounded parameters.) We also showed that both problems are decidable for
deterministic PTA with a single clock.

Future Works. First, we used an ad-hoc encoding of a 2-counter machine for
our proofs of undecidability, using four parametric clocks. In contrast, a new
encoding of a 2-counter machine using PTA was proposed very recently in [5],

15

Preservation 1ip-dL&U-PTA L&U-PTA bL/U-PTA L/U-PTA bPTA PTA
Language Th. 27 open Th. 25 Th. 24 Th. 12 Th. 6

Trace Th. 26 open Th. 25 Th. 25 Th. 13 Th. 9
Robust language open open Th. 25 Th. 25 Th. 12 Th. 12

Robust trace open open Th. 25 Th. 25 Th. 13 Th. 13

Table 1: Undecidability of preservation emptiness problems for subclasses of PTA

that makes use of only three parametric clocks. We assume that our proofs could
be rewritten using that encoding, proving the undecidability of the problems
considered in this paper with as few as three clocks.

A promising direction to find decidability results consists in considering L-
PTA and U-PTA. Furthermore, our results are linked to the robustness of timed
systems; future works consist in finding the boundary between expressive models
of robustness (with many parameter dimensions), that are undecidable, and less
expressive models (usually with a single parameter), that are decidable.

Acknowledgement. We thank Didier Lime for telling us about the reduction we
used in the proof of Theorem 12.

References

[1] R. Alur and D. L. Dill. Automata for modeling real-time systems. In ICALP,
volume 443 of LNCS, pages 322–335. Springer, 1990.

[2] R. Alur, T. A. Henzinger, and M. Y. Vardi. Parametric real-time reasoning. In
STOC, pages 592–601. ACM Press, 1993.

[3] É. André, Th. Chatain, E. Encrenaz, and L. Fribourg. An inverse method for
parametric timed automata. IJFCS, 20(5):819–836, 2009.

[4] É. André and N. Markey. Language preservation problems in parametric timed
automata. Research Report LSV-15-05, Laboratoire Spécification et Vérification,
ENS Cachan, France, June 2015.

[5] N. Beneš, P. Bezděk, K. G. Larsen, and J. Srba. Language emptiness of continuous-
time parametric timed automata. In ICALP, Part II, volume 9135 of LNCS.
Springer, July 2015. To appear.

[6] L. Bozzelli and S. La Torre. Decision problems for lower/upper bound parametric
timed automata. FMSD, 35(2):121–151, 2009.

[7] M. De Wulf, L. Doyen, N. Markey, and J.-F. Raskin. Robust safety of timed
automata. FMSD, 33(1-3):45–84, 2008.

[8] T. Hune, J. Romijn, M. Stoelinga, and F. Vaandrager. Linear parametric model
checking of timed automata. Journal of Logic and Algebraic Programming, 52-
53:183–220, 2002.

[9] A. Jovanović, D. Lime, and O. H. Roux. Integer parameter synthesis for timed
automata. IEEE Transactions on Software Engineering, 41(5):445–461, 2015.

[10] J. S. Miller. Decidability and complexity results for timed automata and semi-linear
hybrid automata. In HSCC, volume 1790 of LNCS, pages 296–309, 2000.

[11] O. Sankur. Untimed language preservation in timed systems. In MFCS, volume
6907 of LNCS, pages 556–567. Springer, 2011.

[12] O. Sankur. Robustness in Timed Automata: Analysis, Synthesis, Implementation.
Thèse de doctorat, Laboratoire Spécification & Vérification, ENS Cachan, France,
2013.

16

A Proofs of Section 3

Theorem 6. The language preservation problem for PTA with one parameter is
undecidable (both over discrete and continuous time, and for integer and rational
parameter valuations).

Proof. The proof proceeds by a reduction from the halting problem for two-counter
machines. We begin with reducing this problem into the classical problem of
reachability emptiness (“EF-emptiness”) in parametric timed automata (“does
there exist a valuation of the parameters under which the target location is
reachable?”). We then extend the construction in order to prove the result.

Fix a deterministic two-counter machine M = 〈S, T 〉. Our reduction requires
four clocks: clock t will serve as a tick (it will be reset exactly every p time
units, where p is the parameter), and we will have a correspondence between
a configuration of the timed automaton and a configuration of the two-counter
machine exactly when t = 0; clocks x1 and x2 are used to store the values of
counters c1 and c2 ofM, with the correspondence x1 = c1 and x2 = c2 when t = 0;
finally, clock z is used to count the number of steps of the two-counter machine:
this is where our construction differs from the classical ones (e.g., [2,9]), as we
use the parameter p to bound the length (number of step) of the possible halting
computation of the two-counter machine. As the number of steps is bounded
by p, we know that both c1 and c2 are also bounded by p. The parametric timed
automaton A associated with M is defined as follows:

– its set of states contains exactly two copies of the set S of states of M: for
each s ∈ S, there is a main state with the same name s, and an intermediary
state named s;

– each state of A carries four self-loops, associated with each of the four clocks
and reseting that clock when it reaches value p. This requires a global invariant
enforcing the clocks t, x1 and x2 to remain below p, and clock z to remain
below p− 1.
Then each transition (s, ck + +, s′) incrementing counter ck in M gives rise
to a transition from state s to state s′, with guard is xk = p− 1, and reseting
clock xk (see Figure 2a). Each transition of the form (s, ck − −, s0, s1) is
handled similarly, but gives rise to two transitions: one transition from s to s0
with guard t = 0∧xk = 0, and one transition from s to s1 with guard xk = 1
and reseting clock xk. Then, from each state s of A, there is a transition to
the corresponding state s with guard z = p− 1 and reseting z (see Figure 2b).

This construction works as we expect (assuming p is an integer, which is easily
checked by a simple initial module): clock t is reset every p time units (which
cannot be seen in Figure 2 because we omitted the self-loops); clocks x1 and x2
keep track the values of c1 and c2, with the correspondence xk = ck when t = 0;
finally, clock z counts the number of steps (when considering the value of this
clock when t = 0, it encodes a counter that is incremented at every transition
of M). Notice that clock z counts, but for the moment, it does not impose any

17

constraint on the length of the simulation. Notice also that this construction
currently does not correctly encode the runs ofM, since the counters are encoded
modulo p.

We modify our construction by adding the extra condition that 0 < t < p (or
equivalently 1 ≤ t ≤ p − 1) to the guards z = p − 1 of the transitions leaving
the intermediary states. This way, when z (seen as a counter) has value p− 1,
no transition is available from any state s (or a transition to a sink state can be
added), so that the encoding stops after mimicking p− 1 steps of the execution
of M.

Now, fix an integer value v for p. With a run of v(A), we associate a se-
quence built as follows: with each occurrence of a transition from some s to s,
we associate a configuration of M. If the transition enters state s with clock
valuation (x1, x2, z = 0, t), we let m = v(p)− t, `m = s, and cmi = xi +m− v(p).
We claim that (`m, c

m
1 , c

m
2) is the m-th configuration of the (unique) run of M.

We prove this result inductively: the first time the transition is taken, we reach
s0 with x1 = x2 = t = v(p)− 1, so that m = 1, `1 = s0, and c11 = c12 = 0, which
indeed corresponds to the first configuration of any run of M. Now, if the m-th
configuration is (`m, c

m
1 , c

m
2) and corresponds to entering state `m with clock

valuation x1 = v(p)−m+ cm1 , x2 = v(p)−m+ cm2 , t = v(p)−m and z = 0 (with
the additional properties that cmi < m), we consider three possible evolutions
of M:

– if `m increments counter ck, then a delay of m − cmk − 1 is elapsed in `m,
and then the transition to some s′ is taken, with clock xk being reset. In s′,
a delay of v(p) −m + cmk is elapsed before going to s′. In the end, a total
delay of v(p)− 1 has elapsed, but t, x1 and x2 have been reset when they did
reach v(p), which equivalently amounts to decreasing their values by v(p). So
the new value of t is one less than the value when entering `m, which means
that m has been incremented. Similarly, we can check that the values of the
counters have been correctly updated.

– the other cases (zero test and possible decrement) are handled similarly.

It follows:

Lemma 7. The two-counter machineM has a computation of length at most p−1
reaching shalt from (s0, (c1 = 0, c2 = 0)) if, and only if, there is a run reaching
the corresponding state shalt from (s0, (t = 0, x1 = 0, x2 = 0, z = 0)) in v(A).

We now explain how to adapt this construction to the language preservation
problem. The idea is depicted on Figure 3 (where all transitions are labeled with
the same letter a): when p = 0, the automaton accepts the untimed language
{aω}. Notice that the guard p = 0 in the automaton can be encoded by requiring
t = 0∧ t = p. On the other hand, when p > 0, we have to enter the main part of
the automaton A, and mimic the two-counter machine. From our construction
above, the untimed language is the same if, and only if, the halting location is
reachable.

Finally, notice that our reduction is readily adapted to the discrete-time
setting, and/or to integer-valued parameters. ut

18

Theorem 9. The trace-preservation problem for PTA with one parameter is
undecidable.

Encoding timed automata into one-location timed automata.

Proposition 10. Let A be a TA in which, for some k, no sequence of more than
k transitions occur in zero delay. Then there exists an equivalent TA A′ with only
one location and k× |A|+ 1 additional clocks, such that the timed languages of A
and A′ are the same.

Proof. We begin with the intuition behind our construction: each location ` of
the automaton A is encoded using an extra clock x`, with the following property:
when location ` is entered, the clock x` is reset. An extra clock x0 is reset along
each transition. We then have the property that when we are in `, it holds
x` − x0 = 0. However, the converse does not hold, because several transitions
may be taken in zero delay.

To overcome this difficulty, we use k + 1 copies of x`, numbered x1` to xk+1
` .

The exact encoding is then as follows: each transition (`, g, a,R, `′) is encoded as
several self-loops on the single location of A′:

– one self-loop is guarded with the conjunction of g, x0 > 0, and

∨
i≥1

[
xi` − x0 = 0∧

∧
`′′∈L

xi+1
`′′ − x0 > 0

]
;

Indeed, after a sequence of i zero-delay transitions (preceded by a non-zero-
delay transition), it holds xi+1

` −x0 > 0 for all `, and only the state ` reached
at the end of the sequence satisfies xi` = x0. The self-loop is labeled with a,
and resets the clocks in R as well as x0 and x1`′ .

– for each 1 ≤ i ≤ k, one self-loop is guarded with the conjunction of g, x0 = 0,
and [

xi` = 0∧
∧

`′′∈L

xi+1
`′′ > 0

]
;

it is labeled with a and resets the clocks in R and xi+1
`′ .

With this transformation, we get a one-to-one correspondence between the run
in A and the runs in A′, so that both automata have the same timed language.

ut

An Ad-Hoc Proof Avoiding Diagonal Constraints. We propose a second
proof, where we avoid the use of diagonal constraints, at the expense of using
unboundedly many parametric clocks. This proof follows the reduction of the
proof of Theorem 6, but with only four states: one state is used to initialize the
computation, and the other three states are then visited cyclically, in order to
first update the information about the counters and then about the state of the
two-counter machine. The location of the machine is then stored using as many

19

s1 s2 s3 s4 t1

qi ≤ p∧ t = 0∧x2 > 0

qi ≤ p∧ t = 0∧x2 = 0

r := 0

qj ≤ p∧x1 = p

x1 := 0

qj ≤ p∧x2 = p∧ r ≤ p

x2 := 0

qj ≤ p∧x2 = p− 1∧ r > p

x2 := 0

...

qj ≤ p∧x1 = p

x1 := 0

qj ≤ p∧x2 = p∧ r ≤ p

x2 := 0

qj ≤ p∧x2 = p− 1∧ r > p

x2 := 0

...

t = p∧ r = p

t := 0, r := 0

t = p∧ r > p

t := 0

Fig. 7: Encoding a two-counter machine (only a transition from qi testing and
decrementing clock x2 has been encoded; the other transitions would add more
transitions between s2 and s4).

clocks as the number of locations of the machine: the clock with value less than
or equal to one corresponds to the current location.

Formally, from a deterministic two-counter machine M with n states, we
build a PTA with n+ 4 (parametric) clocks: n clocks q1 to qn are used to store
the current location of M (the only clock with value less than or equal to p
corresponds to the current state of M), two clocks x1 and x2 store the values
of the two counters, clock t measures periods of p time units (where p is the
parameter), and an extra clock r stores temporary information along the run.
Intuitively, the PTA cycles between two main states: it goes from the first one to
the second one for updating the values of the counters, and from the second one
back to the first one for updating clocks encoding the location of M.

More preciely, after spending p time units in the initial location of the PTA,
we take a transition resetting clocks q1, x1, x2, z and t. The run of the PTA then
successively visits two modules. The first module (see Fig. 7) is used to update
the values of the clocks encoding the counters: depending on the instruction to
perform, it first tests whether clock x1 or x2 is zero, and resets clock r if needed
(in case that counter is tested to zero and actually is zero). It then performs the
operation on x1 or x2, depending on the current state of M. It also resets the
non-updated clock when it reaches p. Finally, it waits until t = p.

From state t1, a second module updates the values of clocks qi depending on
the transition to be performed in M. It suffices to reset the clock corresponding
to the new location (while t = 0, and using the value of clock r to decide the
issue of the possible zero test). The automaton then returns to s1 after letting p
time unit elapse, and resetting t and the clock qi whose value equals p.

This is a direct encoding of a two-counter machine as a PTA. It can easily be
adapted to follow the reduction scheme of Theorem 6, which entails our result.
Notice that by adding two extra clocks and two intermediary locations, we can
get rid of comparisons with p− 1 and p+ 1, in order to use only constraints of
the form x ∼ p.

20

s0

s1

s′1

s2 s3

x1=1+p∧ t≤1
x1:=0

x2=1
x2:=0

x1=1+p∧ t≤1
x1:=0

x2=1
x2:=0

t=1

t:=0

t=0

Fig. 8: Encoding incrementation with a rational parameter

Theorem 12. The robust language preservation problem for PTA with one
(possibly bounded) parameter is undecidable.

Proof. We begin with a reduction3 of the halting problem for counter machines
to the EF-emptiness problem for 1-parameter PTA. The proof is then adapted to
the language-preservation problem in the same way as for the proof of Theorem 9.

The encoding of the two-counter machine is as follows: it uses one rational-
valued parameter p, one clock t to tick every time unit, and one parametric
clock xi for storing the value of each counter ci, with xi = 1− p · ci when t = 0.

An initial transition is used to initialize the values of x1 and x2 to 1, while it
sets t to zero. It also checks that the value of p is in (0, 1). Zero-tests are easily
encoded by checking whether xi = 1 while t = 0. Incrementation is achieved by
reseting clock xi when it reaches 1 + a, while the other clocks are reset when they
reach 1 (see Fig. 8). This way, exactly one time unit elapses in this module, and
clock xi is decreased by a, which corresponds to incrementing ci. Decrementing
is handled similarly. Finally, notice that the use of the constraint xi = 1 + p can
be easily avoided, at the expense of an extra clock.

One easily proves that if a (deterministic) two-counter machineM halts, then
by writing P for the maximal counter value reached during its finite computation,
the PTA above has a path to the halting location as soon as 0 < p ≤ 1/P .
Conversely, assume that the machine does not halt, and fix a parameter value 0 <
p < 1. If some counter of the machine eventually exceeds 1/p, then at that
moment in the corresponding execution in the associated PTA, the value of t
when xi = 1 + p will be larger than 1, and the automaton will be in a deadlock.
If the counters remain bounded below 1/p, then the execution of the two-counter
machine will be simulated correctly, and the halting state will not be reached.

We now adapt this construction to our language preservation problem. We have
to forbid the infinite non-halting run mentioned above. For this, we add a third
counter, which will be incremented every other step of the resulting three-counter
machine, in the very same way as in the proof of Theorem 9. We then have
the property that if M does not halt, the simulation in the associated PTA
will be finite. Adding states sinit and s∞ as in Fig. 3, we get the result that the
two-counter machineM halts if, and only if, there is a parameter value v0(p) > 0

3 This reduction for the EF problem we present here is an unpublished proof by Didier
Lime; we develop the reduction here for our paper to be self-contained.

21

such that all values v(p) between 0 and v0(p) give rise to timed automata v(A)
accepting the same language. ut

Theorem 13. The robust trace-preservation problem is undecidable for PTA
with one (possibly bounded) parameter.

The two different proofs we developed at Section 3.2 can be applied here:

– the first proof, using diagonal constraints, applies as the PTA built above
does not contain zero-delay cycles;

– the second proof also applies, by using one clock si per location `i of the
two-counter machine with the encoding that the clock corresponding to the
current location `i is the only clock si with value less than or equal to 1.
Notice that we keep a bounded number of parametric clocks in that case.

B Proof of Theorem 14

Let us first recall below a useful result stating that the projection onto the
parameters of a constraint can only become stricter along a run.

Lemma 28. Let A be a PTA, and let ρ be a run of A reaching (l,C). Then, for
any successor (l′,C′) of (l,C), we have C′↓P ⊆ C↓P .

We recall below two results from [8].

Proposition 29. Let A be a PTA, and let ρ be a run of A reaching (l,C). Let v
be a parameter valuation. There exists an equivalent run in v(A) iff v |= C↓P .

Proof. From [8, Propositions 3.17 and 3.18]. ut

Proposition 30. Let A be a PTA, let v be a parameter valuation. Let ρ be a
run of v(A) reaching (l, w).

Then there exists an equivalent symbolic run in A reaching (l,C), with v |=
C↓P .

Proof. From [8, Proposition 3.18]. ut
We will formally show the correctness of TPSynth in Theorem 14. Before that,

we need some intermediate results.

Lemma 31. Let A be a PTA, let v be a parameter valuation. Assume TPSynth(A, v)
terminates with constraint K. Then v |= K.

Proof. By construction, all constraints added to Kgood are v-compatible, hence
their intersection is v-compatible. By construction, all constraints added to Kbad

are v-incompatible, hence their union is v-incompatible; hence the negation of
their union is v-compatible. This gives that v |= Kgood ∧¬Kbad , thus v |= K. ut

22

Lemma 32. Let A be a PTA, let v be a parameter valuation. Assume TPSynth(A, v)
terminates with constraint K. Then for all v′ |= K, Traces(v′(A)) = Traces(v(A)).

Proof. Let v′ |= K.

⊆ Let ρ′ be a run of v′(A), reaching a state (l, w′). From Proposition 30, there
exists an equivalent run in A reaching a state (l,C′), with v′ |= C′↓P .
We will now prove by reductio ad absurdum that v |= C′↓P . Assume v 6|= C′↓P .
Hence (l,C′) is either a v-incompatible state met in TPSynth(A, v), or the
successor of some v-incompatible state met in TPSynth(A, v).
1. Assume (l,C′) is a v-incompatible state met in TPSynth(A, v). By con-

struction, C′↓P has been added to Kbad (line 1 in Algorithm 1), hence
C′↓P ⊆ Kbad hence ¬Kbad ∩ C′↓P = ∅ hence (Kgood¬Kbad) ∩ C′↓P = ∅
hence K ∩ C′↓P = ∅. This contradicts that v′ |= K.

2. Assume (l,C′) is a v-incompatible state not met in TPSynth(A, v), i.e. it
belongs to some path starting from a v-incompatible state (l′′,C′′) met
in TPSynth(A, v). From Lemma 28, C′↓P ⊆ C′′↓P , and hence C′↓P ⊆
C′′↓P ⊆ Kbad ; then we apply the same reasoning as above to show that
K ∩ C′↓P = ∅, which contradicts that v′ |= K.

Hence v |= C′↓P .
Now, from Proposition 29, there exists an equivalent run in v(A), which gives
that Traces(v′(A)) ⊆ Traces(v(A)).

⊇ Let ρ be a run of v(A), reaching a state (l, w). From Proposition 30, there
exists an equivalent run in A reaching a state (l,C), with v |= C↓P . From
the fixpoint condition of Algorithm 1, all v-compatible states of A have been
explored in TPSynth(A, v), hence (l,C) ∈ S, where S is the set of states
explored just before termination of TPSynth(A, v). By construction, K ⊆ C↓P ;
since v′ |= K then v′ |= C↓P . Hence, from Proposition 29, there exists an
equivalent run in v′(A), which gives that Traces(v′(A)) ⊇ Traces(v(A)). ut

Theorem 14 (correctness of TPSynth). Let A be a PTA, let v be a parameter
valuation. Assume TPSynth(A, v) terminates with constraint K. Then v |= K, and
for all v′ |= K, Traces(v′(A)) = Traces(v(A)).

Proof. From Lemmas 31 and 32. ut

C Proof of Theorem 15

Theorem 15 (completeness of TPSynth). Let A be a deterministic PTA, let
v be a parameter valuation. Assume TPSynth(A, v) terminates with constraint K.
Then v′ |= K iff Traces(v′(A)) = Traces(v(A)).

Proof.

⇒ From Theorem 14.

23

⇐ Let v′ be a parameter valuation such that Traces(v′(A)) = Traces(v(A)). The
result comes from the fact that, in a deterministic (P)TA, the equality of trace
sets implies the equivalence of runs. Hence we can show a stronger result,
that is TPSynth(A, v) = TPSynth(A, v′). Indeed, TPSynth(A, v′) proceeds
by exploring states similarly to TPSynth(A, v). From Proposition 29, the
v-incompatible and v-compatible states met TPSynth(A, v′) will be the same
as in TPSynth(A, v), and hence the constraints Kgood and Kbad will be the
same too. Hence TPSynth(A, v) = TPSynth(A, v′), which trivially gives that
v′ |= TPSynth(A, v). ut

D Proofs of Section 5.1

D.1 Proof of Lemma 19

Lemma 19. Let A be a 1cPTA. Let (l,C) be a reachable symbolic state of A.
Then C ∈ 1CSC(A).

Proof. By induction on the length of the runs.

Base case A run of length 0 consists of the sole initial state. According to the
semantics of PTA, this state is (linit,Cinit), where Cinit is (X = 0)↑ ∧ I(linit),
i.e. x ≥ 0 ∧ I(linit). From Definition 17, I(linit) is of the form

∧
i lt i ∼ x,

with lt i parametric linear terms of A, hence I(linit) ∈ 1CSC(A). Furthermore,
x ≥ 0 obviously belongs to 1CSC(A). Hence the initial constraint belongs to
1CSC(A).

Induction step Consider a run of length n reaching state (l,C), and assume C
is of the form ∧

i

(lt i ∼ x) ∧
∧
j

(lt1j ∼ lt2j).

Let (l′,C′) be a successor of (l,C) through the Succ operation, for some edge

(l, g, a,R, l′). Remind that C′ =
(
[(C ∧ g)]R

)↑ ∩ I(l′). Let us the consider the
different operations sequentially.
Guard From Definition 17, a guard is of the form x ≺

∑
i αipi + c, with

pi ∈ P and αi ∈ Z; hence g ∈ 1CSC(A). Since C ∈ 1CSC(A) by induction
hypothesis, then C ∧ g ∈ 1CSC(A).

Reset Then, [(C ∧ g)]R is equivalent to removing x in C ∧ g (using variable
elimination technique such as Fourier-Motzkin) and adding a fresh equal-
ity x = 0. The elimination of x will leave the set of parametric inequalities
(i.e.

∧
j lt1j ∼ lt2j) unchanged. As for the inequalities containing x (i.e.∧

i lt i ∼ x), the elimination of x will lead to the disappearance of some
of the lt i, as well as the creation of new inequalities of the form lt i ∼ lt i′ ,
which will be added to the set of parametric inequalities. Finally, adding
x = 0 (which belongs to 1CSC(A)) makes [(C ∧ g)]R remain in 1CSC(A).

Time elapsing The time elapsing will remove some upper bounds on x,
which leads to the disappearance of some of the inequalities, and hence

makes
(
[(C ∧ g)]R

)↑
still belong to 1CSC(A).

24

Addition of the destination invariant The destination invariant I(l′)

adds new inequalities, all belonging to 1CSC(A), hence
(
[(C ∧ g)]R

)↑ ∩
I(l′) ∈ 1CSC(A).

Hence, C′ ∈ 1CSC(A). ut

D.2 Proof of Proposition 21

Proposition 21. The parametric zone graph of a 1cPTA is in |L|×2|LT |(|LT |+1).

Proof. First, note that, given a parametric linear term lt i, an inequality x ≺ lt i
cannot be conjuncted with other x ≺′ lt i, where ≺ 6= ≺′ (unless ≺ = ≥ and ≺′ =
≤ or the converse, in which case the conjunction is equivalent to a single equality).
Hence, given lt i, a 1-clock symbolic constraint contains only one inequality of
the form x ≺ lt i. The same reasoning applies to parametric inequalities lt1j ∼ lt2j .

There are |LT | different linear terms in A, and hence |LT | different inequalities
of the form x ≺ lt i to be used in a 1-clock symbolic constraint. Following the
same reasoning, there are |LT |2 different inequalities of the form lt1j ∼ lt2j .

Hence the set 1CSC(A) contains 2|LT | × 2|LT |
2

= 2|LT |(|LT |+1) elements.
These constraints can be met for each of the |L| locations. This gives that

the zone graph of A contains at most |L| × 2|LT |(|LT |+1) symbolic states. ut

E Proof of Theorem 24

The PTA gadget depicted in Fig. 4 can be characterized in the following lemma.

Lemma 33. In the PTA gadget depicted in Figure 4, l2 is reachable and b can
never fire iff pl = pu.

Proof.

⇒ Assume l2 is reachable; hence, from the guards and invariants, we necessarily
have pl ≤ pu. Furthermore, b can fire iff it is possible to stay a non-null
duration in l1 iff pl < pu. Hence, b cannot fire implies pl ≥ pu.

⇐ Assume pl = pu. Then no time can elapse in l1, and hence b cannot fire.
Furthermore, l2 is obviously reachable for any such parameter valuation.

ut

Theorem 24. The language-preservation problem is undecidable for L/U-PTA
with at least one lower-bound and at least one upper-bound parameter.

Proof. The proof is based on the reduction from the halting problem of a 2CM.
The construction encodes the 2CM using an L/U-PTA with 2 parameters.

First, let us rewrite the 2CM encoding of Section 3.1 using L/U-PTA as
follows. We split the parameter p used in the PTA A in the proof of Theorem 6
into two parameters pl and pu. Any occurrence of p as an upper-bound (resp.

25

lower-bound) in a constraint is replaced with pu (resp. pl). Equalities of the form
p = x+ c are replaced with pl ≤ x+ c ∧ pu ≥ x+ c.

Then, we plug the gadget in Figure 4 before the initial state of our modified
encoding of the proof of Theorem 6; more precisely, we fuse l2 in Fig. 4 with sinit
in Fig. 3, and we reset all clocks in the transition from l1 to l2. This gives a new
PTA, say ALU .

Let v be the reference parameter valuation such that pl = pu = 0. For v, the
language of the gadget of Figure 4 is aa. Recall that in the proof of Theorem 6,
the language of p = 0 is aω, and hence the language of our modified PTA ALU

for v is aaaω = aω.
Suppose the 2CM does not halt, and consider a parameter valuation v′ 6= v.

If pl 6= pu in v′, then from Lemma 33, the language of the gadget for v′ is either
a single deadlocked a (if pl > pu), or abω|aa (if pl < pu); in both cases, the
language of v′(ALU) differs from the language of v(ALU) (that is aω). If pl = pu,
then we fall in the situation of Theorem 6: that is, there is no way for v′ to accept
the same language as v. Hence there exists no parameter valuation v′ 6= v such
that the language is the same as for v.

Conversely, suppose the 2CM halts, and consider a parameter valuation v′ 6= v.
Again, if pl 6= pu in v′, then the language necessarily differs from v. If pl = pu,
then we fall again in the situation of Section 3.1: for some v′ 6= v such that
pl = pu and pl is large enough to encode the two counters maximum value, then
the language is the same as for v. Hence there exists a parameter valuation v′ 6= v
such that the language is the same as for v.

As a consequence, the 2CM halts iff there exists a parameter valuation v′ 6= v
such that the language is the same as for v. ut

26

	Language Preservation Problems in Parametric Timed Automata

