
Laboratoire Spécification & Vérification

École Normale Supérieure de Cachan
61, avenue du Président Wilson
94235 Cachan Cedex France

Controller Synthesis for MTL
Specifications

Patricia Bouyer, Laura Bozzelli, Fabrice Chevalier

March 2015

Research report LSV-15-03 (Version 1)

Controller Synthesis for MTL Specifications?

Patricia Bouyer, Laura Bozzelli, and Fabrice Chevalier

LSV, CNRS & ENS Cachan, France
{bouyer,bozzelli,chevalie}@lsv.ens-cachan.fr

Abstract. We consider the control problem for timed automata against speci-
fications given asMTL formulas. The logicMTL is a linear-time timed tempo-
ral logic which extendsLTL with timing constraints on modalities, and recently,
its model-checking has been proved decidable in several cases. We investigate
these decidable fragments ofMTL (full MTL when interpreted over finite timed
words, andSafety-MTL when interpreted over infinite timed words), and prove
two kinds of results.(1) We first prove that, contrary to model-checking, the con-
trol problem is undecidable. Roughly, the computation of a lossy channel system
could be encoded as a model-checking problem, and we prove here that a perfect
channel system can be encoded as a control problem.(2) We then prove that if we
fix the resources of the controller (by resources we mean clocks and constants that
the controller can use), the control problem becomes decidable. This decidability
result relies on properties of well (and better) quasi-orderings.

1 Introduction

Control of timed systems.Timed automata are a well-established and widely used
model for representing real-time systems. Since their definition in the 90’s [5], many
works have investigated this model, and several tools have been developed for model-
checking timed automata and have been used for verifying real industrial case studies.

To deal withopensystems,i.e. systems interacting with an environment (which is
the case for most embedded systems), model-checking may be not sufficient, and we
need tocontrol (or guide) the system so that it satisfies the specification, whatever the
environment does. More formally, thecontrol problemasks, given a systemS and a
specificationϕ, whether there exists a controllerC such thatS guided byC satisfiesϕ.
Since the mid-90’s, the control of real-time systems has developed a lot [8, 17, 12, 15,
14, 10, 4], and several kinds of properties have been investigated, for instance properties
based on states of the system [8, 17, 4], or expressed inLTL [14], or in the branching-
time timed temporal logicTCTL [15], or even expressed by timed automata [12]. How-
ever, to our knowledge no work has investigated the control problem against properties
expressed in a linear-time timed temporal logic.

The logicMTL. The logicMTL [18] is a linear-time timed temporal logic which extends
LTL with timing constraints on Until modalities. For instance,we can write a formula
ψ = � (p→ ♦=1q), which expresses that a requestp is always followed one time unit
later by a responseq. The interest in this logic has encountered a great soar in the last

? Work supported by the ACI Cortos, a program of the French ministry of research.

year, since Ouaknine and Worrell proved that the model-checking and the satisfiability
problems for this logic are decidable [21] (though non-primitive recursive), as soon
as they are interpreted using apointwise semanticsover finite timed words. It is worth
noticing thatMTL, like most real-time logics, can be interpreted either using a pointwise
semantics (the system is observed through events), or usinga continuous semantics (the
system is observed at any point in time). These two points of view lead to pretty different
decidability properties: for instance, while the first semantics makes model-checking
decidable, the second semantics leads to undecidability [6]. Since this new insight into
decidability of linear-time timed temporal logics, works on MTL are flourishing [9, 13,
22, 23]. Let us for instance point out the result of [23], stating that the fragment of
MTL calledSafety-MTL (which roughly imposes upper bounds on Until modalities) is
decidable for the pointwise semantics when interpreted over infinite timed words, while
model-checking fullMTL is undecidable in this case [22].

Our contributions. In this paper, we consider the control problem for properties given
asMTL or Safety-MTL formulas. We prove the following results:

– The control problem forMTL is undecidable for the pointwise semantics, even
when considering finite timed words. In addition, if restricting toSafety-MTL, the
control problem is also undecidable when interpreted over infinite timed words.
These undecidability results rely on an elegant construction which (roughly) uses
(un)controllable actions and strategies to check that every p action is preceded one
time unit earlier by aq action: this property cannot be expressed inMTL, but is
somehow sufficient to lead to undecidability [13].

– When bounding resources of the controller (its set of clocks, and constants it can
use in its constraints), the control problem becomes decidable for MTL specifica-
tions interpreted over finite timed words, and forSafety-MTL specifications inter-
preted over infinite timed words. Note that such a restriction to bounded resources
is quite common in the framework of synthesis of timed systems [19, 12, 10]. How-
ever, the construction proposed here is much more involved than those done in pre-
vious papers, and requires well (and better) quasi-ordering arguments for proving
correctness and termination of the construction.

For lack of space, some proofs are omitted but they can be found in the appendix.

2 Preliminaries

Time, granularity, and symbolic alphabet. Let R≥0 be the set of non-negative reals
andQ≥0 be the set of non-negative rational numbers. LetΣ be an alphabet. Atimed
word overΣ is a wordσ = (a1, τ1)(a2, τ2) . . . overΣ × R≥0 such thatτ1 = 0 and
τi ≤ τi+1 for every1 ≤ i < |σ| (where|σ| denotes the (possibly infinite) length ofσ).1

If σ is infinite, it is non-Zenoif the sequence{τi}i∈N is unbounded. LetTΣ∗ be the
set of finite timed words overΣ, andTΣω be the set of infinite non-Zeno timed words
overΣ.

1 We force timed words to satisfyτ1 = 0 in order to have a natural way to define intial satisfia-
bility in the semantics ofMTL.

Let X be a finite set of variables (calledclocksin our context). The setG(X) of
clock constraintsg overX is defined by the grammar:g ::= g ∧ g | x ./ c, where
./∈ {<,≤,=,≥, >}, x ∈ X , andc ∈ Q≥0. A valuationoverX is a mappingν :
X → R≥0. Whether a valuationν satisfies a constraintg (written ν |= g) is defined
naturally, and we setJgK = {ν | ν |= g}. Fort ∈ R≥0, the valuationν + t is defined as
(ν + t)(x) = ν(x) + t for all x ∈ X . ForY ⊆ X , the valuationν[Y ← 0] is defined
asν[Y ← 0](x) = 0 if x ∈ Y andν[Y ← 0](x) = ν(x) otherwise. Also, we use

−→
0 to

denote the valuation which maps everyx ∈ X to 0.
We define a measure of the clocks and constants used in a set of constraints, called

its granularity. A granularity is specified by a triple(X,m,K) whereX is a finite set
of clocks,m ∈ N>0, andK ∈ N. A constraintg is µ-granular if the clocks it uses
belong toX and each constant occurri ng ing is an integral multipleα

m with α ≤ K. A
granularityµ is finer thanµ′ if all µ′-granular constraints are alsoµ-granular. Also, we
say thatµ = (X,m,K) is thegranularity of a finite set of constraints ifX (resp.m,
resp.Km) is the exact set of clocks (resp. the lcm of all denominatorsof constants, resp.
the largest constant) mentioned in the constraints. Aµ-granular constraintg isµ-atomic
if for everyµ-granular constraintg′, eitherJgK ⊆ Jg′K, or JgK ∩ Jg′K = ∅.

For an alphabetΣ and a set of clocksX , asymbolic alphabetΓ based on(Σ,X) is
a finite subset ofΣ × G(X)× 2X . A (symbolic) wordγ = (a1, g1, Y1)(a2, g2, Y2) . . .
over Γ gives rise to a set of timed words overΣ, denotedtw(γ). We interpret the
symbolic action(a, g, Y) to mean that actiona can happen if the constraintg is satisfied,
with the clocks inY being reset after the action. Formally,σ ∈ tw(γ) iff |σ| = |γ|,
σ = (a1, τ1)(a2, τ2) . . ., and there is a sequence of valuationsν0, ν1, ν2, . . . overX
such thatν0 =

−→
0 and for all0 ≤ i < |γ|, νi + τi+1 − τi ∈ Jgi+1K andνi+1 =

(νi + τi+1 − τi)[Yi+1 ← 0] (assumingτ0 = 0).

Symbolic transition systems and timed automata. A symbolic transition system(STS)
over a symbolic alphabetΓ based on(Σ,X) is a tupleT = 〈S, s0,→, F 〉 whereS
is a (possibly infinite) set of states,s0 ∈ S is the initial state,→ ⊆S × Γ × S is the
transition relation, andF ⊆ S is a set of accepting states.2 An STSwith finitely many
states is atimed automaton(TA, for short) [5]. In the sequel, ifA is a TA, then we will
write T (A) for theSTScorresponding toA where all states are considered accepting.

For a finite or infinite pathπ = s1
b1−→ s2

b2−→ . . . of T , thetraceof π is the word
overΓ given by b1b2 Such a finite (resp. infinite) path is accepting if it ends in
(resp. visits infinitely often) an accepting state. We denote byL∗symb(T) (resp.Lω

symb(T))
the set of finite (resp. infinite) symbolic words overΓ that are traces of finite (resp.
infinite) accepting paths starting from the initial states0. We setLsymb(T) = L∗symb(T)∪

Lω
symb(T). The STST is symb-deterministicwhenevers

b
−→ s1 ands

b
−→ s2 implies

s1 = s2. For each states ∈ S, we denote byenabledT (s) the set of symbolic actions

b ∈ Γ such thats
b
−→ s′ for somes′ ∈ S. If T is symb-deterministic, then for each word

γ ∈ Lsymb(T), there is at most one path starting froms0 whose trace isγ. In this case
and assuming thatγ is finite, we denote bystateT (γ), the last state of such a path. Let
T = 〈S, s0,→〉 be anSTS. Thedeterministic versionof T is the symb-deterministic

2 We may omitF in the tuple if all states are accepting.

STS Det(T) = 〈2S , {s0},→D〉, whereS1
b
−→D S2 iff S2 = {s2 ∈ S | ∃s1 ∈ S1. s1

b
−→

s2} andS2 6= ∅. Note thatL∗symb(Det(T)) = L∗symb(T).
Let T be anSTS. It also recognizes timed words.Thetimed languageover finite

words accepted byT , denotedL∗(T), is defined byL∗(T) = tw(L∗symb(T)), while
the timed language over infinite words accepted byT , denotedLω(T), is defined by
Lω(T) = tw(Lω

symb(T)) ∩ TΣω. TheSTST is saidtime-deterministicif there are no

distinct transitionsq
a,g1,Y1
−−−−→ q1 andq

a,g2,Y2
−−−−→ q2 with Jg1K ∩ Jg2K 6= ∅. This notion is

stronger than symb-determinism.
Let T1 = 〈Q1, q

1
0 ,→1, F1〉 andT2 = 〈Q2, q

2
0 ,→2〉 be twoSTSover an alphabetΓ

based on(Σ,X). Theparallel compositionof T1 andT2, denotedT1 ‖ T2, is theSTS

〈Q, q0,→, F 〉 whereQ = Q1 ×Q2, q0 = (q10 , q
2
0), F = F1 ×Q2, and(p1, p2)

a,g,Y
−−−→

(q1, q2) iff p1
a,g1,Y1
−−−−→1 q1 andp2

a,g2,Y2
−−−−→2 q2 with g = g1 ∧ g2 andY = Y1 ∪ Y2.

2.1 Metric Temporal Logic (MTL)

The logicMTL [18] is a linear-time timed temporal logic which extendsLTL with time
constraints on Until modalities. The set ofMTL formulae over a setΣ of atomic actions
is defined inductively as follows:

ϕ ::= > | a | ¬ϕ | ϕ ∧ ϕ | ϕ UI ϕ

where> denotes “true”,a ∈ Σ, andI ⊆ R≥0 is an interval with bounds inN∪{∞}. We
will use some classical shortcuts:♦Iϕ stands for> UI ϕ (the constrained eventually
operator),�Iϕ stands for¬♦I¬ϕ (the constrained alwaysoperator), andϕ1 ŨI ϕ2

stands for¬((¬ϕ1) UI (¬ϕ2)) (thedual-untiloperator). We also use pseudo-arithmetic
expressions (like ‘≥ 1’ or ‘ = 1’) to denote intervals. We may omit the subscriptI when
it is equal toR≥0.

In this paper we consider the so-calledpointwise semantics, and thus interpretMTL
over timed words [21]. Given a (finite or infinite) timed wordσ = (a1, τ1)(a2, τ2) . . .
and anMTL formulaϕ, for each1 ≤ i ≤ |σ|, the satisfaction relation(σ, i) |= ϕ
(which reads as “σ satisfiesϕ at positioni”) is defined by induction. The rules for
atoms, negation, and conjunction are standard. For the until modality, following [21],
we give astrict-futureinterpretation as follows:

(σ, i) |= ϕ1 UI ϕ2 iff there isj > i such that(σ, j) |= ϕ2, τj − τi ∈ I, and

(σ, k) |= ϕ1 for all k with i < k < j

We say thatσ satisfiesϕ, denotedσ |= ϕ, if (σ, 1) |= ϕ. The set of finite models of
ϕ is given byL∗(ϕ) = {σ ∈ TΣ∗ | σ |= ϕ}. The set of infinite models ofϕ is given
byLω(ϕ) = {σ ∈ TΣω | σ |= ϕ}.

Using the dual-until operator and the disjunction we can rewrite everyMTL formula
into an equivalent formula inpositive normal form, i.e. where negation is only applied
to actionsa ∈ Σ. We then define the fragment ofMTL, calledSafety-MTL [21],
consisting of thoseMTL formulas in positive normal form that only include instances
of the constrained until operatorUI in which intervalI has bounded length. Note that
no restriction is placed on the dual-until operator.

Example 1.We give an example ofMTL formulaϕ such that theuntimedof L∗(ϕ)
(i.e. the projection ofL∗(ϕ) overΣ), writtenUntimed(L∗(ϕ)), is not regular. LetΣ =
{a, b} andϕ1 := �(a → ♦=1b) requiring that eacha-event is followed one time unit
later by ab-event. Also, letL be the language consisting of finite timed wordsσ such
that the untimed ofσ is in a∗b∗ and two different events do not happen at the same
time. It is clear thatL can be specified by someMTL formulaϕ2. Now, we note that
Untimed(L∗(ϕ1 ∧ ϕ2)) = {anbm | m ≥ n}, which is a non-regular language [7].

2.2 Control Problem for MTL Specifications

LetΣ = ΣC ∪ΣE be an alphabet partitioned into a set ofcontrollableactionsΣC and
a set ofenvironmentactionsΣE . A plantP overΣ is a time-deterministicTA. Let the
clocks used inP beXP , andµ = (XP ∪ XC ,m,K) be a granularity finer than that
of the plant. Then, aµ-controller for P is a time-deterministicSTSC over a symbolic
alphabet based on(Σ,XP ∪XC) having granularityµ and satisfying:

(C1) C does not reset the clocks of the plant:qC
a,g,Y
−−−→ q′C in C impliesY ⊆ XC.

(C2) C does not restrict environment actions (non-restricting): if σ ∈ L∗(T (P‖C))
andσ · (e, t) ∈ L∗(T (P)) with e ∈ ΣE , thenσ · (e, t) ∈ L∗(T (P‖C)).

(C3) C is non-blocking: if σ ∈ L∗(T (P‖C)) andσ·(a, t) ∈ L∗(T (P)), thenσ·(b, t′) ∈
L∗(T (P‖C)) for someb ∈ Σ andt′ ∈ R≥0.

(C4) all states ofC are accepting (fairness).

For a timed languageL ⊆ TΣ∗, we say that aµ-controllerC controlsP against
the specification of desired (resp. undesired) behavioursL iff L∗(P‖C) ⊆ L (resp.
L∗(P‖C)∩L = ∅). A similar notion is defined for timed languages over infinite words.

Problem 1.Thecontrol problem for specified granularity against desired (resp. un-
desired) behavioursis to decide, given a plantP , a specificationL, and a granularity
µ finer than that ofP , whether there exists aµ-controllerC which controlsP against
the specification of desired (resp. undesired) behavioursL.

Problem 2.Thecontrol problem for unspecified granularity is analogous to the pre-
vious one with the important difference that the granularity of the controller is not
specifieda priori.

In this paper we study the decidability of these problems forspecifications given as
MTL formulas (i.e.L = Lω(ϕ) or L = L∗(ϕ) for a givenMTL formulaϕ). However,
for MTL specifications over infinite words, it is easy to show that thecontrol problem
is undecidable (also for specified granularity) by a trivialreduction from theMTL satis-
fiability problem over infinite words that is known to be undecidable [22]. Thus, in the
following we consider the cases in which eitherL is the set offinitemodels of anMTL
formula or the set of infinite models of aSafety-MTL formula.

3 Undecidability Results

In this section we show that for unspecified granularity, thecontrol problems for both
MTL over finite words andSafety-MTL over infinite words againstdesiredbehaviours

are undecidable. We obtain these undecidability results bya reduction from the reacha-
bility problem of channel machines, which is known to be undecidable [11].

A deterministic channel machine(DCM, for short)S = 〈S, s0, shalt,M,∆〉 is a
finite-state automaton acting on an unbounded fifo channel, whereS is a finite set of
(control) states,s0 ∈ S is the initial state,shalt ∈ S is the halting state,M is a finite set
of messages, and∆ ⊆ S × {m!,m? | m ∈M} × S is the transition relation satisfying
the followingdeterminismhypothesis:(1) (s, a, s1) ∈ ∆ and(s, a, s2) ∈ ∆ implies
s1 = s2; and(2) (s,m!, s1) ∈ ∆ and(s, a, s2) ∈ ∆ impliesa = m! ands1 = s2.

The semantics is described by a labelled graphG(S), whose set of vertices (global
states) is the set of pairs(s, x) with s ∈ S andx ∈ M∗ (representing the channel
content), and whose edge relation is defined as follows:(s, x)

a
−→ (s′, y) iff (s, a, s′) ∈

∆ and eithera = m! andy = x ·m, or a = m? andx = m · y. We say thatshalt is
reachablein S iff there is path inG(S) from (s0, ε) to (shalt, x) for somex ∈M∗.

Thehalting problem forDCMsasks whether, given aDCM S, shalt is reachable inS.

Proposition 1 ([11]).The halting problem forDCMs is undecidable.

Theorem 1. The control problem with unspecified granularity forMTL specifications
overfinite words representing desired or undesired behaviours is undecidable.

Proof. We reduce the halting problem forDCMs to the control problem forMTL spec-
ifications againstdesiredbehaviours (note that sinceMTL is closed under negation, the
undecidability result holds also for specifications ofundesiredbehaviours). We first en-
sure that theDCM has additional properties which will be useful in our construction,
and then we describe the reduction and give a sketch of proof.

Adding properties to channel machines.Given aDCM S′ = (S′, s′0, s
′
halt,M

′, ∆′), we
can construct (for details see Appendix A) an equivalent oneS = (S, s0, shalt,M,∆)
(w.r.t. reachability of the halting state) such that:

– shalt is the single state with no outgoing transition,
– there is no cycle in(S,∆) in which every edge is labelled by a write action,
– if the unique (maximal) path inG(S) from (s0, ε) is infinite, then the size of the

channel content is unbounded (unbounded channel property).

Encoding computations with timed words.We encode the executions ofS (i.e. the paths
of G(S) from (s0, ε)) [21] by the setLcorrect of timed words(a1, t1)(a2, t2) · · · over
{m?,m! | m ∈M} such that:

(R1) there exists1, s2, · · · such thats1 = s0 and(si, ai, si+1) ∈ ∆ for eachi ≥ 1,
(R2) there is no two actions at the same time:∀i, j, i 6= j ⇒ ti 6= tj ,
(R3) everym! action is matched by am? action one time unit later:

∀i, (ai = m! and∃j tj ≥ ti + 1)⇒ ∃k (ak = m? andtk = ti + 1),
(R4) everym? action is matched by am! action one time unit earlier:

∀i, (ai = m?)⇒ ∃k (ak = m! andtk = ti − 1),

Reduction to the control problem.Let S = (S, s0, shalt,M,∆) be aDCM satisfying the
above-mentioned properties. The idea of the reduction is the following: the plant will
roughly be the channel machineS with all actionsm! andm? being controllable. We

also add two new uncontrollable actionsNil andCheck, a play will consist of an alter-
nance of controllable and uncontrollable actions. When it is his turn the environment
can either play aNil action to continue the simulation or aCheckaction to stop the game
(the use of theCheckaction is explained below). The goal of the controller will be to
simulate a correct execution of the channel machine reaching stateshalt (of course this
is possible iffshalt is reachable inS). If shalt is reached at some point, the controller can
stop performing actions and wins the game (if the execution played so far is correct).

We now have to ensure that the timed wordsσ played by the controller simulate a
valid execution of the channel machine (that isσ ∈ Lcorrect):

– (R1) is satisfied because the plant we consider has the same structure asS,
– (R2)and(R3) can be encoded by anMTL formula in the specification,
– (R4)will be checked by the environment. We add a new sink stateqEnd to the plant;

at any time the environment can decide to stop the game by playing aCheckaction
and going to this new state. In this case, if theCheckaction is played at the same
time than anm? action and there is no matchingm! action one time unit before,
the controller will be declared losing (in theMTL formula). Otherwise, (that is
when there is nom? action or if there is a matchingm! one time unit before), the
controller will be declared winning.
Thus the controller will be forced to simulate a correct execution of S because
if it tries to insert am? which is not matched by am!, then it may lose if the
environment playsCheckat this moment.

Here is the formal definition of the plantPS and theMTL specificationφ. PS =
〈Q, q0,→, F 〉 is defined over a symbolic alphabet based on(ΣC ∪ΣE, X), where

– ΣC = {m!,m? | m ∈M},ΣE = {Nil,Check}, andX = {x};
– Q = S ∪ {qδ | δ ∈ ∆} ∪ {qEnd}, q0 = s0, andF = Q;

– q
true,a,{x}
−−−−−−→ qδ iff δ = (q, a, q′) ∈ ∆,

– qδ
x=0,Nil,{x}
−−−−−−−→ q′ iff δ = (q, a, q′) for someq anda.

– qδ
x=0,Check,{x}
−−−−−−−−−→ qEnd

TheMTL formulaφ is given byφ = φSim∧ φMatch∧ φCheck, where (φC-action stands
for

∨
a∈ΣC

a):

– φSim = �¬(φC-action∧ ♦=0 φC-action)
3 [expresses(R2)]

– φMatch = �
(
(m! ∧ ♦≥1φC-action)⇒ ♦=1m?

)
[expresses(R3)]

– φCheck=
∧

m∈M

((
♦(m? ∧ ♦=0Check)

)
⇒ ♦(m! ∧ ♦=1Check)

)

[ensures that ifCheckis played at the same time than (but right after) anm? action,
then thism? action must be matched by am! one time unit earlier]

Sketch of proof.In our control game, the controller can only win if it simulates the
maximal execution ofS. Now, we show thatshalt is reachable inS if and only if there
exists a controller for the plantPS against the specificationφ of desired behaviours.

3 We use the non-strict version of♦ and�: ♦Iϕ stands forϕ∨♦Iϕ and�Iϕ stands for¬♦I¬ϕ.

If shalt is reachable inS, we consider a controller with one clock (reset after every
transition) which simply plays a correct encoding (with timestamps inQ≥0) of the
execution ofS, reachingshalt and staying idle from here.

Assume now thatshalt is not reachable inS. Two cases may occur: either(1) S may
be blocking at some point, then a controller playing a valid execution will be stuck in a
state different fromshalt, however as it is non-blocking, it will have to play an incorrect
action and so violateφ; or (2) there is an infinite computation inS not reachingshalt. In
this case, sinceS has the unbounded channel property, the channel will be unbounded
on this execution, and a controller will not be able to simulate such a computation (it
would need an infinite number of clocks). ut

The proof for finite words can be adapted toSafety-MTL over infinite words spec-
ifying desiredbehaviours (φSim andφMatch can be rewritten inSafety-MTL by just ex-
panding implications; ForφCheckwe need to consider a more involved formula described
in Appendix B).Safety-MTL is not closed under negation and the technique cannot be
applied toundesiredbehaviours, thus the problem remains open in this case.

Theorem 2. The control problem with unspecified granularity forSafety-MTL speci-
fications over infinite words representingdesiredbehaviours is undecidable.

4 Decidability Results

In this section, we show that for specified granularity, the control problems for both
MTL over finite words andSafety-MTL over infinite words (with respect to both desired
and undesired behaviours) are decidable.

In order to solve these problems, we first recall a notion of “timed game” introduced
in [12]. Given an alphabetΣ, avalidity functionoverΣ is a functionval : 2Σ → 2(2Σ)

such that every set of actionsU ∈ 2Σ is mapped to a nonempty family of subsets
of U . Let T = 〈S, s0,→〉 be a symb-deterministicSTSover a symbolic alphabetΓ
andval be a validity function overΓ . A strategyfor T respectingval is a mapping
f : D ⊆ L∗symb(T) → 2Γ such thatε ∈ D and for allγ ∈ D andb ∈ f(γ), f(γ) ∈
val(enabledT (stateT (γ))) andγ · b ∈ D.

The set of plays off , denoted byplays(f), is the set of words inLsymb(T) that
are consistent with the strategyf . Formally,γ ∈ plays(f) iff for every prefixγ′ · b of
γ, γ′ ∈ D andb ∈ f(γ′). We say thatf is a finite-statestrategy if there is a symb-
deterministic finite-stateSTSTfin such thatLsymb(Tfin) = plays(f) and for every finite
playγ of f , f(γ) is given by the set of symbolic actions enabled atstateTfin(γ).

A timed game over finite (resp. infinite) wordsis a pairG = (A,L) whereA is a
symb-deterministicTA over a symbolic alphabetΓ based on(Σ,X), andL ⊆ TΣ∗

(resp.L ⊆ TΣω) is a timed language over finite (resp. infinite) words. Moreover, we
require thatA is atomic(each clock constraint ofA is atomic w.r.t. the granularity ofA)
and isconsistent(tw(Lω

symb(A)) ⊆ TΣω and for everyγ ∈ Lsymb(T (A)), tw(γ) 6= ∅).
Let val be a validity function overΓ . A strategy respectingval for the timed game

G = (A,L) is a strategy ofT (A) respectingval. A strategyf is winning with respect
to desired behaviours(resp.winning with respect to undesired behaviours) iff for each

accepting playγ ∈ plays(f) ∩ Lsymb(A) with γ finite if L ⊆ TΣ∗ andγ infinite
otherwise, the conditiontw(γ) ⊆ L holds (resp. conditiontw(γ) ∩ L = ∅ holds).

An MTL timed game(resp. aSafety-MTL timed game) is a timed gameG = (A,L)
in whichL is the set of finite or infinite models of anMTL (resp.Safety-MTL) formula.

Let us return to the control problem. Slightly extending a result in [12], we easily
obtain the following result.

Proposition 2. Given a plantP over a symbolic alphabetΓ , a granularityµ finer than
that of the plant, and a timed languageL over finite or infinite words, one can construct
a timed gameG = (A,L) and a validity functionval overΓ s.t.A has granularity
µ and there is a (finite-state)µ-controller C which controlsP for the specification of
desired (resp. undesired) behavioursL iff there is a (finite-state) winning strategy re-
spectingval of G with respect to desired (resp. undesired) behaviours.

By Proposition 2, it follows that for specified granularity,the control problem for
MTL over finite words (resp.Safety-MTL over infinite words) can be reduced to decid-
ing the existence of a winning strategy in anMTL timed game over finite words (resp.
Safety-MTL timed game over infinite words). In the remainder of this section we prove
that these problems are decidable. The correctness of our approach relies on a well
(and even better) quasi-ordering defined over a suitable symb-deterministic countable
infinite-stateSTS. Therefore, we start by recalling some basic results from the theories
of well quasi-orderings and better quasi-orderings.

Assumption: In the following, w.l.o.g. we assume that constants occurring in con-
straints ofTAare integers. For granularityµ = (X, 1,K), we simply writeµ = (X,K).

4.1 Well Quasi-Orderings and Better Quasi-Orderings

A quasi-ordering(qo, for short) is a pair(S,�) where� is a reflexive and transitive
(binary) relation on a setS. A well quasi-ordering(wqo, for short) is aqo (S,�) such
that for any infinite sequencex0, x1, x2, . . . of elements ofS there exist indicesi < j
such thatxi � xj .

Given aqo (S,�), we are interested in the followingqo induced by(S,�):

– the monotone domination orderis theqo (S∗,�∗), whereS∗ is the set of finite
words overS andx1, . . . , xm �∗ y1, . . . , yn iff there is a strictly monotone injec-
tion h : {1, . . . ,m} → {1, . . . , n} such thatxi � yh(i) for all 1 ≤ i ≤ m;

– the powerset orderis theqo (2S,v), where for allS1, S2 ⊆ S, S1 v S2 if and
only if ∀x2 ∈ S2. ∃x1 ∈ S1. x1 � x2.

A better quasi-ordering(bqo, for short) is a stronger relation thanwqo. We do not
recall the (rather technical) definition ofbqo(e.g.see [2]). Instead we recall some prop-
erties ofbqo(see [2, 3]), which will be used in the following.

Proposition 3. 1. Eachbqois a wqo.
2. If S is finite, then(2S ,⊆) is bqo.

3. If (S,�) is bqo, then(S∗,�∗) is bqo.
4. If (S,�) is bqo, then(2S ,v) is bqo.

4.2 Alternating Timed Automata

In this subsection we recall the framework ofalternating timed automatawith a single
clock (ATA, for short) [21, 20]. We usex to denote the single clock of such automata.
For a finite setQ, Φ(Q) denotes the set of formulas:ψ ::= ψ ∧ψ | ψ ∨ψ | q | x ./
k | x.ψ, whereq ∈ Q, k ∈ N, and./∈ {<,≤,=,≥, >}. The expressionx.ψ is a
binding construct corresponding to the operation of resetting the clock to0.

An ATA over an alphabetΣ is a tupleA = 〈Q, q0, δ, F 〉 whereQ, q0, andF are
defined as forTA, andδ : Q×Σ → Φ(Q) is the transition function.

A configurationof A is a finite set of pairs(q, u) whereq ∈ Q is a state and
u ∈ R≥0 is a clock value. Theinitial configurationis {(q0, 0)}. A configurationC is
accepting if for all(q, u) ∈ C, q ∈ F (note that the empty configuration is accepting).

Given a clock valueu, we define a satisfaction relation|=u between configurations
and formulas inΦ(Q) according to the intuition that when the automaton is in state q
with clock valueu, then it can make an instantaneousa-transition to configurationC if4

C |=u δ(q, a). Formally,|=u is defined inductively as follows:C |=u q if (q, u) ∈ C,
C |=u x ./ k if u ./ k,C |=u x.ψ if C |=0 ψ, and the boolean connectives are handled
in the obvious way. We say thatA is completeif for all q ∈ Q, a ∈ Σ, andu ∈ R≥0,
there is a configurationC such thatC |=u δ(q, a).

We say that a configurationM is a minimal modelof ψ ∈ Φ(Q) with respect to
u ∈ R≥0 if M |=u ψ and there is no proper subsetC ⊂M with C |=u ψ.

A single-step runis a triple of the formC
a,t
−−→ C′ wherea ∈ Σ, t ∈ R≥0, C =

{(qi, ui)}i∈I andC′ are configurations, andC′ =
⋃

i∈I{Mi | Mi is a minimal model
of δ(qi, a) with respect toui + t}. A run over a (finite or infinite) timed wordσ =

(a0, τ0)(a1, τ1) . . . is a sequence of the formC0
a0,d0−−−→ C1

a1,d1−−−→ C2 . . . such that each

tripleCi
ai,di
−−−→ Ci+1 is a single-step run anddi = τi − τi−1 (assumingτ−1 = 0).

We say that a finite timed wordσ is acceptedbyA iff there is a finite run ofA over
σ starting from the initial configuration and leading to an accepting configuration. We
denote byL∗(A) the set of finite timed words accepted byA.

4.3 Preliminary Results

In this subsection we recall some results from [21] and consequently, we deduce
some properties which are the basis of the approach we propose to solveMTL and
Safety-MTL timed games.We fix a symb-deterministic, atomicTA A = 〈Q, q0,→
, FA〉 over a symbolic alphabetΓ based on(Σ,X) and with granularity(X,K), and a
completeATAB = 〈P, p0, δ, F

B〉 overΣ whose unique clock isx. We assume thatK
is greater than every constant appearing in a clock constraint ofB.

An A/B-configuration is a pair((q, ν), G), where(q, ν) is configuration ofA (i.e.
q ∈ Q andν is a valuation over the set of clocksX) andG is configuration ofB. For
anA/B-configuration((q, ν), G), t ∈ R≥0, and(a, g, Y) ∈ Γ , define

SuccA((q, ν), t, (a, g, Y)) := {(q′, ν′) | (q, ν)
a,g,Y
−−−→

t
(q′, ν′) is a single-step run ofA}5

SuccB(G, t, a) := {G′ | G
a,t
−−→ G′ is a single-step run ofB}

4 I.e.a simultaneous transition to multiple-copies ofA described by configurationC.

Thesynchronous productof A andB is an uncountable infinite-stateSTSoverΓ ,
denoted byTA/B, representing intuitivelyA andB executing in parallel. Formally,

TA/B = 〈S, s0,�〉, whereS is the set ofA/B-configurations,s0 = ((q0,
−→
0), {p0, 0})

corresponds to the initialA/B-configuration, and

((q1, ν1), G1)
a,g,Y
−−−� ((q2, ν2), G2) iff ∃t ∈ R≥0 s.t.

{
G2 ∈ SuccB(G1, t, a) and
(q2, ν2) ∈ SuccA((q1, ν1), t, (a, g, Y))

Now, we recall the extended region construction presented in [21] to abstract away
precise clock values inA/B-configurations, recording only their values to the nearest
integer and the relative order of their fractional part.

Let REGK be the finite set of one-dimensional regions{r0, r1, . . . , r2K+1} defined
as follows: for0 ≤ i ≤ K, r2i = {i} andr2i+1 = (i, i+1), andr2K+1 = (K,∞). For
u ∈ R≥0, reg(u) denotes the region inREGK containingu.

Define the finite alphabetΛ = 2(Q×X×REGK)∪(P×REGK): the letters it contains are
finite sets of pairs(p, r) and triples(q, y, r), whereq andp are states ofA andB respec-
tively, y ∈ X is a clock ofA, andr is a one-dimensional region inREGK . Moreover,
we denote by(Λ∗,�) the monotone domination order induced by thebqo(Λ,⊆), and
by (2Λ∗

,v) the powerset order induced by(Λ∗,�). Applying Proposition 3,(Λ∗,�)
and(2Λ∗

,v) arebqo(hence, alsowqo).
Now, we associate to anyA/B-configurations = ((q, ν), G) a canonical word

H(s) ∈ Λ∗ as follows. First note thats can be equivalently represented as the set
G′ given byG ∪ {(q, y, ν(y)) | y ∈ X}. We partitionG′ into a sequence of subsets
G1, . . . , Gn, such that for all1 ≤ i ≤ j ≤ n, for every pair(p, u) or triple (q, y, u) in
Gi, and for every pair(p′, v) or triple (q′, y′, v) in Gj , the following holds:i ≤ j iff
fract(u) ≤ fract(v).6 DefineH(s) as the word inΛ∗ given byAbs(G1) . . .Abs(Gn),
where for any1 ≤ i ≤ n, Abs(Gi) = {(p, reg(u)) | (p, u) ∈ Gi} ∪ {(q, y, reg(u)) |
(q, y, u) ∈ Gi}. We say that twoA/B-configurationss ands′ are equivalent, written
s ∼ s′, if H(s) = H(s′).

Proposition 4 ([21]). The relation∼ is a bisimulation overTA/B, i.e. s1 ∼ s′1 and

s1
a,g,Y
−−−� s2 impliess′1

a,g,Y
−−−� s′2 ands2 ∼ s′2 for somes′2.

The discrete quotientinduced by the bisimulation∼ overTA/B is theSTST∼ =
〈W,w0, ↪→〉, defined as follows:

– W = {H(s) | s is anA/B-configuration};
– w0 = H(s0) (i.e. the image underH of the initialA/B-configuration).

– w1
a,g,Y
↪−−−→ w2 iff there existss1 ∈ H−1(w1) ands2 ∈ H−1(w2) s.t.s1

a,g,Y
−−−� s2.

Proposition 5 ([21]).The following properties hold:

1. The set of successors of any wordw in T∼ is finite and effectively computable.

5 I.e.q
a,g,Y
−−−→ q′ is a transition ofA, ν + t ∈ JgK, andν′ = (ν + t)[Y ← 0].

6 fract(u) denotes the fractional part ofu.

2. The transition relation↪→ of T∼ is downward-compatiblewith respect to�, i.e.

w′
1 � w1 andw1

a,g,Y
↪−−−→ w2 impliesw′

1

a,g,Y
↪−−−→ w′

2 for somew′
2 � w2.

We conclude this subsection by stating some simple results on the deterministic
version ofT∼. We associate to every wordw ∈ W the maximal subwordu � w,
denotedregA(w), such thatu does not contain occurrences of states ofB. SinceB is
complete andA is atomic and symb-deterministic, by classical propertiesof regions in
timed automata, it easily follows that for allw1, w2 ∈ W with regA(w1) = regA(w2),

w1
a,g,Y
↪−−−→ w′

1 and w2
a,g,Y
↪−−−→ w′

2 imply that regA(w′
1) = regA(w′

2). Moreover,
enabledT∼

(w1) = enabledT∼
(w2). Motivated by these observations, we denote by

SW the set of nonempty finite word setsC ⊆ W such that for all wordsw,w′ ∈ C,
regA(w) = regA(w′). Moreover, we denote byDT ∼ = 〈SW , {w0}, ↪−→D〉 the re-
striction ofDet(T∼) to the set of statesSW . Note that by the observations above and
Property 1 in Proposition 5,L∗symb(DT ∼) = L∗symb(Det(T∼)).

Proposition 6. 1. If C1 v C2, then enabledDT ∼
(C1) = enabledDT ∼

(C2).
2. The transition relation↪−→D of DT ∼ is downward-compatiblewith respect tov,

i.e.C′
1 v C1 andC1

a,g,Y
↪−−−→D C2 impliesC

′
1

a,g,Y
↪−−−→D C

′
2 for someC′

2 v C2.

4.4 Decidability of MTL Timed Games over Finite Timed Words

The logicMTL is closed under negation, thus we can limit ourselves to consider MTL
timed games against specifications ofundesiredbehaviours. We fix anMTL timed game
over finite wordsG = (A,L∗(ϕ)) and a validity functionval over the symbolic alpha-
betΓ associated withA. Let A = 〈Q, q0,→, FA〉 with granularity(X,K). Apply-
ing [21], one can construct a completeATABϕ = 〈P, p0, δ, F

ϕ〉 s.t.L∗(Bϕ) = L∗(ϕ).
LetTA/ϕ be the synchronous product ofA andBϕ, T∼ = 〈W,w0, ↪−→〉 andDT ∼ =

〈SW , {w0}, ↪−→D〉 be theSTSinduced byTA/ϕ defined in Subsection 4.3.
An A/Bϕ configuration((q, ν), G) is bad if both q is accepting (i.e. q ∈ FA) and

G is accepting (i.e. for all (p, u) ∈ G, p ∈ Fϕ). The notion of badness can be extended
to words inW in a natural way. Moreover, a word setC ∈ SW is bad if C contains
some bad word. Finally, a strategyf of DT ∼

7 is safeiff for every finite playγ of f ,
stateDT ∼

(γ) is not bad.

Lemma 1. There is a (finite-state) winning strategy in the timed gameG with respect
to undesired behavioursiff there is a (finite-state) safe strategy ofDT ∼.

Proof. SinceBϕ is complete andA is consistent, we easily obtain thatL∗symb(T (A)) =
L∗symb(TA/ϕ) (= L∗symb(Det(TA/ϕ) = L∗symb(DT ∼)). This means that for everyf : D ⊆

Γ ∗ → 2Γ , f is a strategy forG iff f is a strategy forDT ∼. If f is a winning strategy
of G w.r.t. undesired behaviours, then we claim thatf is safe forDT ∼. Indeed if for
some finite playγ, stateDT ∼

(γ) was bad, then by definition ofDT ∼ and Proposition
4 there would be a path inTA/ϕ from the initialA/Bϕ configuration to a badA/Bϕ

configuration whose trace isγ. By construction, this impliesγ ∈ L∗symb(A) andtw(γ)∩

7 In the following we omit the reference toval.

L∗(ϕ) 6= ∅, which is a contradiction. Thus, the claim holds. In a similar way, if f is
safe forDT ∼, thenf is a winning strategy ofG w.r.t. undesired behaviours. ut

By Lemma 1, deciding the existence of a winning strategy in the timed gameG
w.r.t. undesired behaviours can be reduced to checking the existence of a safe strategy
f ofDT ∼. Now, we show that this last problem is decidable, by extending the approach
proposed in [1] forA-downward closed games. The correctness and termination ofour
procedure relies on the well quasi-ordering of(SW ,v).

We build a finite portionT of the tree given by the unwinding ofDT ∼ from the
initial state{w0} as follows. We start from the root, labelled with{w0}, and at each
step, we pick a leafx with labelC ∈ SW and perform one of the following operations:

– if C is not badand there is an ancestor ofx in the portion of the tree built so far
with labelC′ whereC

′ v C, then we declare the nodesuccessfuland close the node
(i.e.we will not expand the tree further from the node);

– if C is bad, then we declare the nodeunsuccessfuland close the node;

– otherwise, for any transition inDT ∼ of the formC
a,g,Y
↪−−−→D C

′ we add a new node
y with labelC′ and an edge from the current nodex to y labelled by(a, g, Y). If C

has no successor, then we declare the current nodex asdead.

Note that the procedure is effective. Moreover, termination is guaranteed by König’s
Lemma and by well quasi-ordering of(SW ,v). The resulting finite treeT is re-labelled
in a bottom-up way by elements in{>,⊥} as follows:

– successfulanddeadleaves are labelled> andunsuccessfulleaves are labelled⊥;
– for any internal nodex labelled byC, the{>,⊥}-labelling is defined as follows:

if there is a set of symbolic actionsU ∈ val(enabledDT ∼
(C)) such that for each

(a, g, Y) ∈ U , the edge inT fromx and with label(a, g, Y) leads to a node labelled
by>, then we labelx by>; otherwise, we labelx by⊥.

The algorithm answers “yes” if the root is labelled by>. Otherwise, it answers “no”.

Correctness of the algorithm is stated by Lemma 2. The first point is simple, and the
second point follows from Proposition 6 (a detailed proof isgiven in Appendix D).

Lemma 2. If the algorithm answers “no”, then there isnosafe strategy ofDT ∼.
If the algorithm answers “yes”, then there is afinite-statesafe strategy ofDT ∼ and we
can build it effectively.

Finally, by Lemmata 1 and 2, the fact thatMTL is closed under negation, and Propo-
sition 2, we obtain the main result of this subsection.

Theorem 3. The control problem for specified granularity againstMTL specifications
over finite words representing desired or undesired behaviours is decidable. Moreover,
if there exists a controller, then one can construct a finite-state one.

Remark 1.As the satisfiability problem forMTL can be reduced to anMTL control
problem, the control problem for specified granularity againstMTL specifications over
finite words has non-primitive recursive complexity [21].

Remark 2.Since our algorithm is based on the translation ofMTL over finite words
to ATA, the result above can be extended to specifications given as languages of finite
timed words recognized byATA(note thatATAare closed under complementation [21]).

4.5 Decidability of Safety-MTL Timed Games over Infinite Timed Words

First note thatSafety-MTL is not closed under negation. Thus, we need to distinguish
between specifications representing desired and undesiredbehaviours. Fordesiredbe-
haviours, the construction is not that far from the one for finite timed words, even though
it requires some refinement. On the other hand, forundesiredbehaviours, the algorithm
is much more involved and require techniques inspired by [23]. Due to paper length
constraints, we report the whole construction for both desired and undesired behaviours
in Appendix. The main result can be summarized as follows.

Theorem 4. The control problem for specified granularity againstSafety-MTL speci-
fications over infinite words representing desired or undesired behaviours is decidable.
Moreover, fordesiredbehaviours, if there exists a controller, then one can construct a
finite-state one.

5 Conclusion

In this paper, we have studied the control problem forMTL andSafety-MTL specifica-
tions. Our results are summarized in the following table.

fixed granularity non-fixed granularity
MTL over finite words

(desired or undesired behaviours)
decidable undecidable

Safety-MTL over infinite words
(desired behaviours)

decidable undecidable

Safety-MTL over infinite words
(undesired behaviours)

decidable ?

There are still open problems, for instance the precise complexity of the control problem
for Safety-MTL specifications with fixed granularity, and also the decidability of the
control problem forSafety-MTL specifications representing undesired behaviours with
non-fixed granularity. Finally, forSafety-MTL representing undesired behaviours with
fixed granularity, actually we do not know if the existence ofa strategy in a timed game
implies the existence of a finite-state one. This means that the question to construct a
finite-state controller in this case remains open.

References

1. P. A. Abdulla, A. Bouajjani, and J. d’Orso. Deciding monotonic games. InProc. 17th Int.
Work. Computer Science Logic (CSL’03), vol. 2803 ofLNCS, p. 1–14. Springer, 2003.

2. P. A. Abdulla and A. Nylén. Better is better than well: On efficient verification of infinite-
state systems. InProc. 15th Ann. Symp. Logic in Computer Science (LICS’00), p. 132–140.
IEEE Comp. Soc. Press, 2000.

3. P. A. Abdulla and A. Nylén. Timed Petri nets and bqos. InProc. 22nd Int. Conf. Application
and Theory of Petri Nets (ICATPN’01), vol. 2075 ofLNCS, p. 53–70. Springer, 2001.

4. L. d. Alfaro, M. Faella, Th. A. Henzinger, R. Majumdar, andM. Stoelinga. The element of
surprise in timed games. InProc. 14th Int. Conf. Concurrency Theory (CONCUR’03), vol.
2761 ofLNCS, p. 142–156. Springer, 2003.

5. R. Alur and D. Dill. A theory of timed automata.Theoretical Computer Science, 126(2):183–
235, 1994.

6. R. Alur and Th. A. Henzinger. Real-time logics: Complexity and expressiveness.Information
and Computation, 104(1):35–77, 1993.

7. R. Alur and P. Madhusudan. Decision problems for timed automata: A survey. InProc.
4th Int. School Formal Methods Design of Computer, Communication and Software Systems:
Real Time (SFM-04:RT), vol. 3185 ofLNCS, p. 122–133. Springer, 2004.

8. E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controllersynthesis for timed automata. In
Proc. IFAC Symp. System Structure and Control, p. 469–474. Elsevier Science, 1998.

9. P. Bouyer, F. Chevalier, and N. Markey. On the expressiveness of TPTL and MTL. In
Proc. 25th Conf. Foundations of Software Technology and Theoretical Computer Science
(FST&TCS’05), vol. 3821 ofLNCS, p. 432–443. Springer, 2005.

10. P. Bouyer, D. D’Souza, P. Madhusudan, and A. Petit. Timedcontrol with partial observabil-
ity. In Proc. 15th Int. Conf. Computer Aided Verification (CAV’03), vol. 2725 ofLNCS, p.
180–192. Springer, 2003.

11. D. Brand and P. Zafiropulo. On communicating finite-statemachines.Journal of the ACM,
30(2):323–342, 1983.

12. D. D’Souza and P. Madhusudan. Timed control synthesis for external specifications. InProc.
19th Int. Symp. Theoretical Aspects of Computer Science (STACS’02), vol. 2285 ofLNCS, p.
571–582. Springer, 2002.

13. D. D’Souza and P. Prabhakar. On the expressiveness of MTLin the pointwise and continuous
semantics.Formal Methods Letters, 2006. To appear.

14. M. Faella, S. La Torre, and A. Murano. Automata-theoretic decision of timed games. In
Proc. 3rd Int. Work. Verification, Model Checking, and Abstract Interpretation (VMCAI’02),
vol. 2294 ofLNCS, p. 94–108. Springer, 2002.

15. M. Faella, S. La Torre, and A. Murano. Dense real-time games. InProc. 17th Ann. Symp.
Logic in Computer Science (LICS’02), p. 167–176. IEEE Comp. Soc. Press, 2002.

16. A. Finkel and P. Schnoebelen. Well structured transition systems everywhere!Theoretical
Computer Science, 256(1–2):63–92, 2001.

17. Th. A. Henzinger and P. W. Kopke. Discrete-time control for rectangular hybrid automata.
Theoretical Computer Science, 221:369–392, 1999.

18. R. Koymans. Specifying real-time properties with metric temporal logic.Real-Time Systems,
2(4):255–299, 1990.

19. F. Laroussinie, K. G. Larsen, and C. Weise. From timed automata to logic – and back. In
Proc. 20th Int. Symp. Mathematical Foundations of ComputerScience (MFCS’95), vol. 969
of LNCS, p. 529–539. Springer, 1995.

20. S. Lasota and I. Walukiewicz. Alternating timed automata. InProc. 8th Int. Conf. Founda-
tions of Software Science and Computation Structures (FoSSaCS’05), vol. 3441 ofLNCS, p.
250–265. Springer, 2005.

21. J. Ouaknine and J. B. Worrell. On the decidability of metric temporal logic. InProc. 19th
Ann. Symp. Logic in Computer Science (LICS’05), p. 188–197. IEEE Comp. Soc. Press,
2005.

22. J. Ouaknine and J. B. Worrell. On metric temporal logic and faulty Turing machines. InProc.
9th Int. Conf. Foundations of Software Science and Computation Structures (FoSSaCS’06),
vol. 3921 ofLNCS, p. 217–230. Springer, 2006.

23. J. Ouaknine and J. B. Worrell. Safety metric temporal logic is fully decidable. InProc. 12th
Int. Conf. Tools and Algorithms for the Construction and Analysis of Systems (TACAS’06),
vol. 3920 ofLNCS, p. 411–425. Springer, 2006.

Appendix

A Proof of Theorem 1

Adding properties to channel machines.
Let S = (S, s0, shalt,M,∆) be aDCM. We callwrite cyclea sequences1, · · · sk with
sk = s1 and(si,mi!, si+1) ∈ ∆.

Lemma 3. Given aDCM S′ = (S′, s′0, s
′
halt,M

′, ∆′) we can construct aDCM S =
(S, s0, shalt,M,∆) in which shalt is the single state ofS with no outgoing transition,
which contains no write cycle, satisfies the unbounded channel property, and such that
s′halt is reachable inS′ iff shalt is reachable inS.

Proof. To constructS, we proceed in several steps:

– we first remove all transitions involved in a write cycle. Theidea is that since the
channel system is deterministic, awrite cyclewould just lead the channel machine
to loop forever and never reachs′halt. By removing these transitions, we thus do not
change reachability ofs′halt.

– we remove all outgoing transitions froms′halt. We then remove states different from
s′halt which have no outgoing transition. We repeat this operationuntil there is no
such state. Note that the channel machineS1 = (S′, s′0, s

′
halt,M

′, ∆1) we obtain
has no write cycle and is deterministic.

– we finally transformS1 into S which will satisfy the unbounded channel property.
To do so, we add a new message# toM . The idea is thatS will simulateS1, and
after every step ofS1, a #-message will be added in the channel ofS. In every
control state ofS, a #-message can be read and rewritten immediately (to allow
“cycling” of #-messages). We also allow the channel to be emptied inshalt.

S is formally defined as follows:
• M = M ′ ∪ {#}, s0 = s′0, shalt = s′halt
• S = S′ ∪ S′ ∪ S′

∆1
whereS′ = {s′ | s′ ∈ S′} andS′

∆1
= {s′δ | δ ∈ ∆1}

• ∆ is defined as follows:
∗ for all s′ ∈ S′\{s′halt}, (s′,#?, s′) ∈ ∆ and(s′,#!, s′) ∈ ∆
∗ if δ = (s′1, a, s

′
2) ∈ ∆1, then(s′1, a, s

′
δ) ∈ ∆

′ and(s′δ,#!, s′1) ∈ ∆
′

S satisfies the unbounded channel property because after simulatingn steps ofS1,
the channel contains at leastn #-messages. Note thatS contains no write cycle
and is still deterministic. ut

Reduction to an MTL control problem.
We now prove that the reduction proposed in Section 3 is correct.

1) Proof of ”shalt is reachable⇒ there exists a controller.”
Let w be an encoding (with timestamps inQ≥0) of a finite execution reachingshalt.
The controllerC will simply play the finite timed wordw8; this can be done by a timed

8 Note that according to this controller, the only manner the plant can reachqEnd is the environ-
ment performing theCheckaction.

automaton with one clock which is reset after every transition. It is easy to show that
for everyw′ ∈ L∗(PS ‖ C), w′ |= φ.

2) Proof of “there exists a controller⇒ shalt is reachable.”
We proceed by contradiction: supposeshalt is not reachable inS and that there is a
controllerC for PS satisfyingL∗(PS ‖ C) ⊆ L∗(φ). Let us consider a maximal timed
word w = (a1, t1)(a2, t2) · · · in L(PS ‖ C) not containing theCheckaction (this
corresponds to what the controller does if the environment never playsCheck).

Letπ be the projection on{m!,m? |m ∈M}, we now prove the following lemma.

Lemma 4. π(w) is infinite and belongs toLcorrect.

Proof. – π(w) is infinite asC satisfies the non-blocking property.
– π(w) satisfies(R1) becausePS has the same structure asS.
– (R2)and(R3) are ensured byφSim andφMatch

– π(w) satisfies(R4). If it was not the case then there would exist a prefixw′ =
(a1, t1) · · · (an−1, tn−1)(m?, tn) of π(w) such that for everyi, (ai, ti) 6= (m!, tn−
1). Then,w′′ = (a1, t1) · · · (an−1, tn−1)(m?, tn)(Check, tn) would be inL∗(PS ‖
C). Asw′′ 6|= φCheck, this is not possible. ut

As shalt is not reachable inS andS satisfies the unbounded channel property, in
the unique execution ofS the channel will be unbounded. In particular at some point
there will be too many letters in the channel forC to be able to remember. We will then
consider the corresponding finite prefix ofw and show, using that prefix, thatC is not
a valid controller forφ (this prefix satisfies the specification but we will constructan
other timed word which is inL∗(PS ||C) but not inL∗(φ)).

LetN be the number of regions ofPS ||C (see [5]) andm be the lcm of all denom-
inators of constants appearing inC (every constant inC is then an integral multiple of
1
m). Let (s0, ε)

a0−→ (s1, c1)
a1−→ · · · be the infinite execution ofS. By the unbounded

channel property, there existsn ∈ N such that|cn| > m ∗ N + 1. Moreover, asS
contains no write cycle, there existsn′ > n such that every letter ofcn has been read
aftern′ steps.

Let w′ be the finite prefix ofw of lengthn′. All the letters of the channelcn must
have been sent betweentn − 1 andtn. Then there exists an interval of length1m within
which there are at leastN + 1 “write” actions. Formally there existi0, i1, · · · , iN < n
such thataij

= mij
! andtiN

− ti0 <
1
m .

Asw is inLcorrect, for all 0 ≤ j ≤ N there must be a correspondingmij
? action at

time tij
+ 1. Let i′j the index of the action that occurs at timetij

+ 1.

We now consider the execution ofPS ||C onw′ (q0, ν0)
a0,t0
−−−→ (q1, ν1)

a1,t1
−−−→ · · ·

and more precisely what happens at timestij
+ 1. For alli ≥ 0, letRi be the region of

νi+ti−ti−1 (the region used to “cross” the ith transition). We first prove that the regions
Ri′

0
, Ri′

1
, · · · , Ri′

N
are flat regions (regions where time can not elapse,i.e.where one of

the clock is constant). If it was not the case for someRi′
j

then the actionai′
j

could be
taken slightly later, saytij

+1+ε for someεwhich would yield a timed word belonging
toL∗(P||C) not inL∗(φ).

Now asC hasN regions and there areN + 1 regionsRi′
0
, Ri′

1
, · · · , Ri′

N
, two of

those must be equal, sayRi′
k

= Ri′
l

with k < l. However,(til
+ 1)− (tik

+ 1) < 1
m :

thus, the single way to go from a flat region to the same one in less than1
m time units is

to let no time elapse. We deduce thattik
= tik+1 = · · · = til

which is a contradiction
because it implies that two controllable actions occur at the same time inw′.

B Proof of Theorem 2

The proof of Theorem 2 is a simple adaptation of the proof of Theorem 1. We just
add a new uncontrollable action to extend finite words into infinite words. The con-
struction of the plant is roughly the same, we only we need to write the specification
in Safety-MTL. The formulasφSim andφMatch can be rewritten inSafety-MTL by just
expanding implications. We now explain how to modifyφCheck into aSafety-MTL for-
mula.

We use the classicalnextoperator:Oφ stands for⊥Uφ.

Let us recall thatφCheck=
∧

m∈M

((
♦(m?∧♦=0Check)

)
⇒ ♦(m!∧♦=1Check)

)
.

We considerφ′Check=
∧

m∈M

((
♦(m? ∧ ♦=0Check)

)
⇒ φ0

)
9 where

φ0 =
(
�<1(¬Check)

)
∧
(
¬♦

(
(♦>1Check)∧(O♦<1Check)

))
∧
(
�

(
(♦=1Check)⇒ m!

))

The idea is that we know thatCheckwill appear at most once in an execution of
the plant, so we would like to replace inφCheck the part♦(m! ∧ ♦=1Check) (which is
not in Safety-MTL) by �

(
(♦=1Check)⇒ m!

)
. But we are dealing with the pointwise

semantics ofMTL, so this replacement is only correct if there is an action occuring
one time unit before theCheckaction: we roughly ensure this point by the formula(
�<1(¬Check)

)
∧

(
¬♦

(
(♦>1Check) ∧ (O♦<1Check)

))
.

Note thatφ0 is notMTL-equivalent to♦(m! ∧ ♦=1Check), though one can prove
this easy lemma:

Lemma 5. Letσ ∈ TΣω containing the Check action exactly once.
Thenσ |= ♦(m! ∧ ♦=1Check) iff σ |= φ0.

Corollary 1. Letσ ∈ TΣω containing the Check action at most once.
Thenσ |= φCheckiff σ |= φ′Check.

Corollary 1 shows thatφCheck can be replaced byφ′Check in our reduction asPS

produces timed words with at most oneCheckaction.

C Proof of Proposition 6

Property 1 directly follows from the observation that for all w1 ∈ C1 andw2 ∈ C2,
regA(w1) = regA(w2). Now, we prove Property 2. By Property 1 and the fact that

DT is symb-deterministic, there is exactly oneC
′
2 ∈ SW such thatC′

1

a,g,Y
↪−−−→D C

′
2.

9 To ease understanding we do not writeφ′

Check in Safety-MTL, but it can be obviously written
in Safety-MTL by pushing negations inwards.

It remains to prove thatC′
2 v C2. Let w2 ∈ C2. We show that there isw′

2 ∈ C
′
2

such thatw′
2 � w2. SinceC1

a,g,Y
↪−−−→D C2, there isw1 ∈ C1 such thatw1

a,g,Y
↪−−−→ w2.

SinceC
′
1 v C1, there isw′

1 ∈ C
′
1 such thatw′

1 � w1. By Property 2 in Proposition

5, there exists a wordw′
2 such thatw′

2 � w2 andw′
1

a,g,Y
↪−−−→ w′

2. Sincew′
1 ∈ C

′
1 and

C
′
1

a,g,Y
↪−−−→D C

′
2, it follows thatw′

2 ∈ C
′
2.

D Proof of Lemma 2

If the algorithm answers “no”, then by construction it is clear that there is no safe
strategy forDT ∼. Now, assume that the algorithm answers “yes”. LetT ′ be the tree
obtained fromT by pruning all the nodes labelled by⊥. Without loss of generality we
can assume thatT ′ does not consist of the single root (otherwise, the result isobvious).
For a nodex of T ′, we denote byC(x) the state ofDT ∼ associated withx. Moreover,
let {T i

strat}i∈I be the family of finite trees obtained fromT ′ as follows: ifx is a node of
T i

strat (and it is not a successful leave), then the set of edges inT i
strat from x is a subset

of the set of edges inT ′ from x such that the set of labels of such edges belongs to
val(enabledDT ∼

(C(x))). Note that by construction the family{T i
strat}i∈I is not empty.

In the following, we fix a treeTstrat belonging to this family.
Let Tstrat = 〈X,x0,→〉 be the symb-deterministic finite-stateSTSoverΓ defined as:

– X consist of all and only those nodes ofTstrat that are not successful leaves.
– x0 is the root ofTstrat.

– x
a,g,Y
−−−→ x′ iff one of the following holds:
• there is an edge inTstrat from x to x′ labelled by(a, g, Y).
• there is a successful leavey in Tstrat such thatx is the parent ofy, there is an

edge fromx to y labelled by(a, g, Y), andx′ is the first ancestor ofy such that
C(x′) v C(y) (i.e.we identify nodey with nodex′).

By construction, the following holds:

A. for everyx ∈ X , C(x) is not bad andenabledTstrat(x) ∈ val(enabledDT ∼
(C(x))).

Now, let us consider the mappingf : L∗symb(Tstrat) → 2Γ defined as follows: for each
γ ∈ L∗symb(Tstrat), f(γ) = enabledTstrat(stateTstrat(γ)). We claim thatf is a safe strategy
of DT ∼ respectingval. Evidently, it is sufficient to prove the following:

B. Let π = x0
a1,g1,Y1
−−−−−→ x1 . . .

an,gn,Yn
−−−−−−→ xn be a path inTstrat. Then, there is a path in

DT ∼, C0
a1,g1,Y1

↪−−−−−→D C1 . . .
an,gn,Yn

↪−−−−−→D Cn such thatC0 = C(x0) andCi w C(xi),
Ci is not bad, andenabledTstrat(xi) ∈ val(enabledDT ∼

(Ci)) for all 1 ≤ i ≤ n.

Forn = 0, PropertyB is obvious. Now, assume that PropertyB holds forn ≥ 0 and let

xn
an+1,gn+1,Yn+1

−−−−−−−−−−→ xn+1 be a transition inTstrat. We have to prove that

C. there isCn+1 ∈ SW such thatCn

an+1,gn+1,Yn+1

↪−−−−−−−−−−→D Cn+1, Cn+1 w C(xn+1), Cn+1

is not bad, andenabledTstrat(xn+1) ∈ val(enabledDT ∼
(Cn+1)).

We distinguish two cases in accordance with the definition ofthe transition relation of
Tstrat:

– there is an edge in the treeTstrat from xn to xn+1 labelled by(an+1, gn+1, Yn+1)
(where xn+1 is either an internal node or a dead leave). By construction,

C(xn)
an+1,gn+1,Yn+1

↪−−−−−−−−−−→D C(xn+1). SinceCn w C(xn), by Property 1 of Propo-

sition 6, it follows thatCn

an+1,gn+1,Yn+1

↪−−−−−−−−−−→D Cn+1 for someCn+1. By Properties 1
and 2 of Proposition 6, PropertyA, and the fact theDT ∼ is symb-deterministic, it
follows thatCn+1 w C(xn+1) andenabledTstrat(xn+1) ∈ val(enabledDT ∼

(Cn+1)).
Now, we claim thatCn+1 is not bad. Indeed, assuming the contrary, sinceCn+1 w
C(xn+1), we deduce that there are wordsw ∈ C(xn+1) andw′ ∈ Cn+1 such that
w � w′ andw′ is a bad word. This implies evidently that alsow is a bad word,
henceC(xn+1) is bad, which is a contradiction. Thus, PropertyC holds.

– there is successful leavey in Tstrat, an edge fromxn to y labelled by
(an+1, gn+1, Yn+1), xn+1 is an ancestor ofy, andC(xn+1) v C(y). By construc-

tion, C(xn)
an+1,gn+1,Yn+1

↪−−−−−−−−−−→D C(y). Then, proceeding as in the previous case,

we deduce thatCn

an+1,gn+1,Yn+1

↪−−−−−−−−−−→D Cn+1 for someCn+1 ∈ SW such that
Cn+1 w C(y) w C(xn+1) and enabledTstrat(xn+1) ∈ val(enabledDT ∼

(Cn+1)).
SinceC(xn+1) is not bad, alsoCn+1 is not bad. Thus, PropertyC holds.

E Decidability of Safety-MTL Timed Games over Infinite Timed
Words with Respect toDesired Behaviours

We fix a Safety-MTL timed game over infinite wordsG = (A,Lω(ϕ)) with A =
〈Q, q0,→, FA〉 and a validity functionval over the symbolic alphabetΓ associated
with A. By [21] we can construct a completeATABϕ = 〈P, p0, δ, ∅〉 with no accepting
state such that for allσ ∈ TΣω, σ 6|= ϕ iff σ ∈ L∗(Bϕ) for some prefixσ of σ.

Let TA/ϕ be the synchronous product ofA andBϕ, andT∼ = 〈W,w0, ↪−→〉 and
DT ∼ = 〈SW , {w0}, ↪−→D〉 be theSTSinduced byTA/ϕ defined in Subsection 4.3.

We say that an infinite path((q1, ν1), G1)
a1,g1,Y1
−−−−−→ ((q2, ν2), G2) . . . in TA,ϕ is

bad if the set{i ∈ N | qi ∈ FA} is infinite and there isn ≥ 1 such that for alli ≥ n,
Gi = ∅. We extend the notion of badness to infinite paths inT∼ in a natural way. Since
tw(Lω

symb(A)) ⊆ TΣω, by properties ofBϕ and Proposition 4, it easily follows that for
all γ ∈ Γω, γ ∈ Lω

symb(A) impliestw(γ) ⊆ Lω(ϕ) iff there isno infinite bad path inT∼
starting from the initial wordw0 and whose trace isγ. Motivated by this observation,
for anyC ∈ SW , we say that a strategyf of DT C

∼ (whereDT C

∼ is the sameSTSas
DT ∼ but with initial stateC) respectingval is good iff for every infinite playγ of f ,
there isno infinite bad path inT∼ starting from a wordw ∈ C and whose trace isγ. By
the observation above and following a pattern similar to that of the proof of Lemma 1,
we obtain the following.

Lemma 6. There is a (finite-state) winning strategy w.r.t.desired behavioursin the
Safety-MTL timed gameG iff there is a (finite-state) good strategy ofDT ∼.

We say that a wordw ∈ W is doomedif there is((q, ν), G) ∈ H−1(w) such that
G = ∅. A word setC ∈ SW is doomedif it contains a doomed word.

Proposition 7. For a doomed word setC ∈ SW , checking the existence of a good
strategy ofDT C

∼ respectingval is decidable. Moreover, if there is a good strategy, then
there is a finite-state one which can be built effectively.

Proof. First, assume thatC is a singleton,i.e. C = {w} wherew is a doomed word.
Evidently, any successor ofw in T∼ is still a doomed word. Therefore, we can limit
ourselves to consider the restriction ofT∼ to the set of doomed words, which is finite.
Moreover, sinceA is atomic, this restriction is deterministic. Let us denotethis restric-
tion by Tf (with initial statew), and letAccbe the set of doomed words such that the
associated state inA is accepting. Then, the problem is reduced to check the existence
of a strategy in the finite-stateSTSTf respectingval such that for each infinite playγ,
the unique path ofTf starting fromw and whose trace isγ does not contain infinite oc-
currences of states inAcc (co-Büchi acceptance condition). This problem is decidable
by a trivial reduction to parity-games on finite-state graphs. Moreover, if there is a good
strategy, then there is a finite-state one, which can be builteffectively.

Now, assume thatC is not a singleton, and letw ∈ C such thatw is a doomed
word. Evidently, it is sufficient to show that for any function f : D ⊆ Γ ∗ → 2Γ , f
is a good strategy forDT C

∼ iff f is a good strategy forDT {w}
∼ . First, note that for all

w′, w′′ ∈ C andγ ∈ Γ ∗, sinceregA(w′) = regA(w′′) andBϕ is complete, there is a
path inT∼ fromw′ whose trace isγ iff there is a path inT∼ fromw′′ whose trace isγ.
This means thatL∗symb(DT

C
∼) = L∗symb(DT

{w}
∼). Hence,f is a strategy forDT C

∼ iff f

is a strategy forDT {w}
∼ . It remains to prove thatf is good forDT C

∼ iff f is good for
DT {w}

∼ . Evidently, iff is good forDT C

∼, thenf is good forDT {w}
∼ . Now, assume that

f is good forDT {w}
∼ but not forDT C

∼. This means that there is an infinite playγ of f

and there is a bad infinite path inT∼ of the formπ = w1
a1,g1,Y1

↪−−−−−→D w2 . . . whose trace
is γ and such thatw1 ∈ C. SinceregA(w1) = regA(w) andw is doomed,w1 � w. By

Proposition 5, it follows that there is a path inT∼ of the formπ′ = w′
1

a1,g1,Y1

↪−−−−−→D w′
2 . . .

whose trace isγ and such thatw′
1 = w and for allj ≥ 1, w′

i � wi. Sinceπ is bad, it
easily follows that alsoπ′ is bad. But this is a contradiction, sinceγ is an infinite play
of f andf is good forDT {w}

∼ . ut

The algorithm we propose to decide the existence of a good strategy ofDT ∼ re-
spectingval is similar to that given in Subsection 4.4. We build a finite portionT of the
tree corresponding to the unwinding ofDT ∼ from the initial state{w0} as follows. We
start from the root, which is labelled with{w0}, and at each step, we pick a leafx with
labelC and perform one of the following operations:

– if C is doomed and there doesnot exist (resp. there exists) a good strategy ofDT C

∼

respectingval, then we declare the nodeunsuccessful(resp.successful) and close
the node (i.e.we will not expand the tree further from the node);

– if C is not doomed and there is an ancestor ofx with labelC′ whereC
′ v C, then

we declare the nodesuccessfuland close the node.

– otherwise, for any transition inDT ∼ of the formC
a,g,Y
↪−−−→D C

′ we add a new node
y with labelC′ and an edge from the current nodex to y labelled by(a, g, Y). If C

has no successor, then we declare the current nodex dead.

By Proposition 7 the procedure is effective. Moreover, termination is guaranteed by
Köning’s Lemma and by well-quasi-ordering of(SW ,v). The resulting finite treeT
is re-labelled in a bottom-up way by elements in{>,⊥} in the same way as for the
algorithm in Subsection 4.4. The algorithm answers “yes”iff the root is labelled by>.
Correctness of the algorithm directly follows from the following lemma, which can be
proved by using Proposition 7 and a pattern similar to that used to prove Lemma 2 in
Appendix D. Thus, we omit the details.

Lemma 7. If the algorithm answers “no”, then there is no good strategyofDT ∼.
If the algorithm answers “yes”, then there is a finite-state good strategy ofDT ∼ and
we can build it effectively.

F Decidability of Safety-MTL Timed Games over Infinite Timed
Words with Respect toUndesired Behaviours

First, we recall some basic results from the theory of well quasi-ordering. Given aqo
(S,�), we say thatL ⊆ S is a lower setif x ∈ S, y ∈ L, andx � y impliesx ∈ L.
The notion of anupper setis similarly defined. Theupward closureof S1 ⊆ S, denoted
↑ S1 is the set{x ∈ S | ∃y ∈ S1 : y � x}. A basisof an upper setU is a subsetUb of
U such thatU =↑ Ub. A cobasisof a lower setL is a basis of the upper setS \ L.

Proposition 8 ([16]).Let(S,�) be awqo. Then,(1) each lower setL ⊆ S has a finite
cobasis, and(2) each infinite decreasing sequenceL0 ⊇ L1 ⊇ L2 ⊇ . . . of lower sets
eventually stabilizes, i.e. there existsk ∈ N such thatLn = Lk for all n ≥ k.

We fix aSafety-MTL timed game over infinite wordsG = (A,Lω(ϕ)) with A =
〈Q, q0,→, FA〉 and a validity functionval over the symbolic alphabetΓ associated
with A. By [21, 23], we can construct a complete andlocal ATA10 Bϕ = 〈P, p0, δ, P 〉
andPB ⊆ P such that for allσ ∈ TΣω, σ |= ϕ iff there is an infinite run inBϕ starting
in the initial configuration and visiting only configurations that do not contain states in
PB. Moreover, for allp ∈ PB anda ∈ Σ, δ(p, a) = p.

Let TA/ϕ be the synchronous product ofA andBϕ, andT∼ = 〈W,w0, ↪−→〉 and
DT ∼ = 〈SW , {w0}, ↪−→D〉 be theSTSinduced byTA/ϕ defined in Subsection 4.3.

We say that aninfinite path((q1, ν1), G1) −→ ((q2, ν2), G2) . . . in TA,ϕ is bad if
the set{i ∈ N | qi ∈ FA} is infinite and for alln ≥ 1 and (p, u) ∈ Gn, p /∈
PB. Moreover, we say that afinite path ((q1, ν1), G1) −→ . . . −→ ((qn, νn), Gn) −→
((qn+1, νn+1), Gn+1) is bad if qn ∈ FA and for all1 ≤ j ≤ n + 1 and(p, u) ∈ Gj ,
p /∈ PB . We extend the notion of badness to paths inT∼ in a natural way.

Since for allγ ∈ Lsymb(A), tw(γ) ⊆ TΣω, by properties ofBϕ and Proposition 4,
it easily follows that for allγ ∈ Γω, γ ∈ Lω

symb(A) implies tw(γ) ∩ Lω(ϕ) = ∅ iff

10 An ATA is local if the clockx is reset whenever the automaton changes location.

there isno infinite bad path inT∼ starting from the initial wordw0 and whose trace is
γ. Motivated by this observation, for anyC ∈ SW , we say that a strategyf of DT C

∼

(DT C

∼ is the sameSTSasDT ∼ but with initial stateC) is11 good iff for each infinite
playγ of f there isno infinite bad path inT∼ from a wordw ∈ C and whose trace isγ.

By the observation above and following a pattern similar to that of the proof of
Lemma 1, we easily obtain the following result.

Lemma 8. There is a (finite-state) winning strategy w.r.t.undesired behavioursin the
Safety-MTL timed gameG iff there is a (finite-state) good strategy ofDT ∼.

We denote byΩ the set of word setC ∈ SW such that there isno good strategy of
DT C

∼. Obviously, there is a good strategy ofDT ∼ iff {w0} /∈ Ω. In the following we
show that we can build a finite representation of the setΩ.

Definition 1. For a setL ⊆ SW , we denote byΠ+(L) the set of word setsC ∈ SW

such thatfor each strategyf ofDT C

∼, there is a finite playγ of f andC
′ ∈ L such that

C
′ = stateDT C

∼

(γ) and there isa finite bad pathin T∼ from a wordw ∈ C to a word
w′ ∈ C

′ and whose trace isγ.

The following Lemma gives a greatest fixed-point characterization of the setΩ. The
proof is slightly technical and it is reported in Appendix F.1.

Lemma 9. Ω is the greatest fixed point ofΠ+(−) : 2SW → 2SW with respect to the
set-inclusion order.

Lemma 10. LetL ⊆ SW be a lower set (w.r.t.v). Then,Π+(L) is a lower set.

Proof. First, we note that by Proposition 5, it easily follows that

A. Let w′ � w andp be a bad path inT∼ from w. Then, there is a bad path fromw′

having the same trace asp.

Let C′ ∈ Π+(L) andC v C
′. We prove thatC ∈ Π+(L), i.e. for every strategyf DT C

∼,

B. there isC1 ∈ L and a finite playγ of f such thatC1 ∈ stateDT C
∼

(γ) and there is a
bad path inT from a word inC to a word inC1 whose trace isγ.

SinceC v C
′, by Proposition 6,f is a strategy ofDT C

′

∼ . SinceC
′ ∈ Π+(L), there

is C
′
1 ∈ L and a finite playγ of f such thatC′

1 ∈ stateDT C′

∼

(γ) and there is a finite bad
path inT∼ from a wordw′ ∈ C

′ to a wordw′
1 ∈ C

′
1 whose trace isγ. SinceC v C

′, by
Proposition 6, there is a path inDT ∼ from C to a word setC1 v C

′
1 ∈ L whose trace

is γ. This means thatC1 = stateDT C
∼

(γ). Moreover, sinceL is a lower set,C1 ∈ L.
SinceC v C

′ andw′ ∈ C
′, there is a wordw ∈ C such thatw � w′. Therefore, by

PropertyA, there is a bad path inT∼ from w ∈ C to some wordw1 whose trace isγ.
SinceC1 = stateDT C

∼

(γ), it follows thatw1 ∈ C1. Therefore, PropertyB holds. ut

Proposition 9. Given a finite cobasis of a lower setL ⊆ SW , there is a procedure to
compute a finite cobasis ofΠ+(L).

11 In the following we omit the reference toval.

The detailed proof of Proposition 9 is reported in Appendix F.2. The proof exploits
the technique used to prove Proposition 4 in [23].

Now, we can prove the main result of this section.

Theorem 5. Given aSafety-MTL gameG = (A,L(ϕ)), the existence of a winning
strategy with respect toundesired behavioursis decidable.

Proof. By Lemma 8 and definition ofΩ, there exists a winning strategy inG with re-
spect to undesired behaviours if and only if for the initial wordw0 ∈ W , {w0} /∈ Ω.
Thus, it suffices to show that the condition{w0} /∈ Ω is decidable. Since the operator
Π+ is monotone and maps lower sets to lower sets,SW ⊇ Π+(SW) ⊇ Π2

+(SW) ⊇
. . . is a decreasing sequence of lower sets in(SW ,v). By Proposition 9 we can com-
pute a finite cobasis of each successive iterateΠn

+(SW). Moreover, by Proposition 8
the sequence above stabilizes after a finite number of iterations (the firstk such that
Πk

+(SW) = Πk+1
+ (SW)). The stabilizing value is the greatest fixed point ofΠ+,

which by Lemma 9 is the lower setΩ. Thus, we can compute a finite cobasis ofΩ,
hence we can decide whether{w0} /∈ Ω. ut

F.1 Greatest Fixed Point Characterization ofΩ (Proof of Lemma 9)

In order to prove Lemma 9 we need some preliminary results. Wesay that anA/Bϕ

configuration((q, ν), G) is doomedif there is(p, u) ∈ G such thatp ∈ PB. We extend
this notion to words inW in a natural way. By properties ofBϕ, we obtain:

A. for a doomed wordw ∈W , each successor ofw in T∼ is still a doomed word.
B. A bad finite path inT∼ has the formw1 ↪−→ . . . ↪−→ wn ↪−→ wn+1 such that the state

ofA associated withwn is accepting, and for all1 ≤ i ≤ n+ 1, wi is not doomed.

Lemma 11. LetC0
γ0

↪−→D C1
γ1

↪−→D . . . with C0 ∈ SW be an infinite path inDT ∼ such
that for eachn ∈ N, γi ∈ Γ ∗ and there is a finite bad path inT∼ from some word inCn

to some word inCn+1 whose trace isγi. Then, there exists an infinite bad path inT∼
starting from a word inC0 and whose trace isγ0γ1

Proof. By hypothesis, for eachi ≥ 0, there is a bad finite path inT∼ of the form
wi

1 ↪−→ . . . ↪−→ wi
ni

↪−→ wi
ni+1 with wi

1 ∈ Ci, wi
ni+1 ∈ Ci+1, and whose trace isγi

(with ni = |γi|). Now, for i ≥ 0, let us consider an arbitrary finite path inT∼ of the
formw1 ↪−→ . . . ↪−→ wni

↪−→ wni+1 whose trace isγi and such thatw1 ∈ Ci (note that
wni+1 ∈ Ci+1). SinceCi ∈ SW andA is atomic, by definition ofDT ∼, it follows that
regA(wj) = regA(wi

j) for all 1 ≤ j ≤ ni + 1. Then, by PropertyB above, in order to
prove the current Lemma, it is sufficient to prove: (1) there exists an infinite path inT∼
from a word inC0 visiting only non-doomed words and whose trace isγ0γ1

For eachw ∈ C0, let us consider the finite-branching treeTw obtained from the un-
winding ofT∼ fromw by pruning all the infinite paths whose trace isnotγ0γ1 Also,
let T ′

w obtained fromTw by pruning all the nodes corresponding to doomed words. By
PropertyA above,T ′

w is still a tree (possibly empty). Moreover, by hypothesis (and def-
inition ofDT ∼), the forest(T ′

w)w∈C0
is infinite. SinceC0 is finite, by Köning’s Lemma

there isw ∈ C0 and an infinite path inT ′
w, i.e.Property (1) holds. ut

ForC ∈ SW , f being a strategy ofDT C

∼, andγ being a finite play off , we denote
by f + γ : D ⊆ Γ ∗ → 2Γ∗

the mapping defined as:γ′ ∈ D iff γ · γ′ is a play off , and

(f+γ)(γ′) = f(γ ·γ′). Note thatf+γ is a strategy inDT C

∼, whereC = stateDT C
∼

(γ).

Proof of Lemma 9.
First, we prove that each fixed point ofΠ+(L) is contained inΩ. Let L ⊆ SW such
thatΠ+(L) = L, and letC0 ∈ L. We have to prove thatC0 ∈ Ω. Let us consider an
arbitrary strategyf0 ofDT C0

∼ (respectingval). SinceC0 ∈ Π+(L), there is a finite play
γ0 of f0 such thatC1 = state

DT
C0
∼

(γ0) ∈ L and there is a finite bad path inT∼ from

some word inC0 to some word inC1. Now, let us consider the strategyf1 of DT C1

∼

given byf0 + γ0. SinceC1 ∈ L, we can repeat forf1 andC1 the same argument above.
Therefore, it follows that there is a sequence(Cn)n∈N of elements inL, a sequence of
strategies(fn)n∈N, and a sequence of finite plays(γn)n∈N such that for alln ∈ N:

1. γn is a finite play offn, fn+1 = fn + γn, andCn+1 = stateDT Cn
∼

(γn);
2. there is a finite bad path inT∼ with traceγn from a word inCn to a word inCn+1.

Let γ = γ0γ1 By Properties 1 and 2, and Lemma 11, it follows that there is an
infinite bad path inT∼ from a word inC0 with traceγ. By Property 1,γ is an infinite
play off0. Therefore, sincef0 is an arbitrary strategy ofDT C0

∼ , we obtain thatC0 ∈ Ω.
It remains to prove thatΩ is a fixed point ofΠ+. The inclusionΠ+(Ω) ⊆ Ω is

easy (it easily follows from PropertyA above). Now, let us consider the other inclusion
Ω ⊆ Π+(Ω). Let C ∈ Ω andf be a strategy ofDT C

∼. Let us consider the setBP of
infinite playsγ of f for which there is an infinite bad path inT∼ starting from some
word inC and whose trace isγ. SinceC ∈ Ω, BP is not empty. For each of such plays
γ, we consider a prefixγ′ for which there is a finite bad path inT∼ from some word in
C to some word inC(γ′) = stateDT C

∼

(γ′). Note that such aγ′ always exists. Evidently,
there exists someγ ∈ BP such thatC(γ′) ∈ Ω. Indeed, assuming the contrary, we can
build a strategyf ′ of DT C

∼, such that for any infinite playγ of f , there is no infinite
bad path inT∼ starting from some word inC and whose trace isγ. But this cannot be,
sinceC ∈ Ω. Thus,C ∈ Π+(Ω). This concludes the proof. ut

F.2 Computing the Cobasis ofΠ+(L) (Proof of Proposition 9)

We assume that we are given a finite cobasisB of a lower setL. In the following, we
show that we can compute a finite cobasis ofΠ+(L).

Definition 2 ([23]). Givenn ≥ 1, we denote by�n the preorder overW defined as
follows:w �n w

′ iff for all u ∈W with |u| ≤ n, u � w impliesu � w′.

Note thatw � w′ impliesw �n w′ for all n ≥ 1. Moreover, for eachn ≥ |w|,
w �n w′ impliesw � w′. We also consider the preordervn over SW defined as
follows: C vn C

′ iff ∀w′ ∈ C
′.∃w ∈ C. w �n w

′.
ForC ∈ SW , thelengthof C, written |C|, is the length of the longest word inC.

In the following two Lemmata we assume thatn is greater than the number of clocks
of A. Lemma 12 directly follows from a similar result in [23].

Lemma 12 (Simulation Lemma). The transition relation↪→ of T∼ is downward-

compatible w.r.t.�n: u �n w andw
a,g,Y
↪−−−→ w′ impliesu

a,g,Y
↪−−−→ u′ for someu′ �n w

′.

By Simulation Lemma, definition ofvn, and following a pattern similar to that of
the proof of Proposition 6 (see Appendix C), we obtain the following.

Lemma 13. 1. if C vn C
′, then enabledDT ∼

(C) = enabledDT ∼
(C′).

2. The transition relation↪−→D ofDT ∼ is downward-compatiblewith respect tovn,

i.e.C′
1 vn C1 andC1

a,g,Y
↪−−−→D C2 impliesC

′
1

a,g,Y
↪−−−→D C

′
2 for someC′

2 vn C2.

In the following, we denote byn the length of the longest word occurring in the
word setsC ∈ B (the finite cobasis ofL). Note thatL is a lower set with respect to
vn. This because for allC ∈ SW andC

′ ∈ B, C
′ vn C iff C

′ v C. Without loss of
generality we assume thatn is greater than the number of clocks ofA.

Proposition 10. Π+(L) is a lower set with respect tovn.

Proof. Sincen is greater than the number of clocks ofA, w′ �n w impliesregA(w) =
regA(w′). Moreover, by Simulation Lemma, the existence of a finite badpathp in T∼
fromw implies the existence of a bad pathp′ fromw′ and having the same trace asp.
Then, by Lemma 13 and the fact thatL is a lower set with respect tovn, the present
proposition can be proved by following the same pattern as the proof of Lemma 10. ut

Proposition 11. A basis ofSW \Π+(L) consists of all word setsC ∈ SW \Π+(L)
of length less thann · 2n·|Λ|.

Proof. Let C ∈ SW \ Π+(L). We have to prove that there isC1 ∈ SW \ Π+(L)
such thatC1 v C and |C1| ≤ n · 2n·|Λ|. By Proposition 10,C vn C1 implies C1 ∈
SW \Π+(L). Let us consider a wordu ∈ C. For each subwordu′ � u with |u′| = n,
we record the letter positions of a particular instance ofu′ in u [23]. There aren letter
positions for each subword, and fewer than2n·|Λ| such subwords. Now, letsub(u) be
the word determined by the collection of all letter positions inu recorded as indicated
above. We have thatsub(u) � u andu �n sub(u). Let C1 ∈ SW defined as follows:
C1 = {sub(u) | u ∈ C}. Evidently,C1 v C, |C1| ≤ n · 2n·|Λ|, andC vn C1. ut

Proposition 12. GivenC ∈ SW , it is decidable whetherC ∈ Π+(L).

Proof. The algorithm we propose to check whetherC ∈ Π+(L) is a variant of that
given in Subsection 4.4 and Appendix E. Thus, we omit the details. ut

Corollary 2. A finite cobasis ofΠ+(L) can be computed from the given cobasis ofL.

Proof. By definition, a finite cobasis ofΠ+(L) is a finite basis ofSW \ Π+(L). By
Proposition 11, such a basis consists of all word setsC ∈ SW of length bounded by
n · 2n·|Λ| such thatC /∈ Π+(L) (recall thatn is the length of the longest word occurring
in the word sets belonging to the finite cobasisB of L). Since the set of word sets
C ∈ SW of length bounded byn · 2n·|Λ| is finite, it suffices to show that we can decide
for a givenC ∈ SW whetherC ∈ Π+(L). By Proposition 12 this is decidable. ut

