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Abstract. We consider the control problem for timed automata agaipstis
fications given aMTL formulas. The logidMTL is a linear-time timed tempo-
ral logic which extend4.TL with timing constraints on modalities, and recently,
its model-checking has been proved decidable in severakc&¥e investigate
these decidable fragments MITL (full MTL when interpreted over finite timed
words, andSafety-MTL when interpreted over infinite timed words), and prove
two kinds of results(1) We first prove that, contrary to model-checking, the con-
trol problem is undecidable. Roughly, the computation afssy channel system
could be encoded as a model-checking problem, and we progeta a perfect
channel system can be encoded as a control prol§®ri/e then prove that if we
fix the resources of the controller (by resources we mearkslaied constants that
the controller can use), the control problem becomes delg@d@his decidability
result relies on properties of well (and better) quasi-orndgs.

1 Introduction

Control of timed systemsTimed automata are a well-established and widely used
model for representing real-time systems. Since their iiefinin the 90’s [5], many
works have investigated this model, and several tools haee beveloped for model-
checking timed automata and have been used for verifyingnéastrial case studies.

To deal withopensystemsij.e. systems interacting with an environment (which is
the case for most embedded systems), model-checking magttsufficient, and we
need tocontrol (or guide) the system so that it satisfies the specificatidratever the
environment does. More formally, trentrol problemasks, given a systei& and a
specificationp, whether there exists a controli@rsuch thatS guided byC satisfiesp.
Since the mid-90’s, the control of real-time systems haslbged a lot [8,17,12,15,
14,10, 4], and several kinds of properties have been imegstil, for instance properties
based on states of the system [8,17, 4], or expresskdlLirf14], or in the branching-
time timed temporal logi@ CTL [15], or even expressed by timed automata [12]. How-
ever, to our knowledge no work has investigated the contialem against properties
expressed in a linear-time timed temporal logic.

The logicMTL. The logicMTL [18] is a linear-time timed temporal logic which extends
LTL with timing constraints on Until modalities. For instanees can write a formula
¥ =0 (p — O=1q), which expresses that a requgs$ always followed one time unit
later by a responsg The interest in this logic has encountered a great soakitatt

* Work supported by the ACI Cortos, a program of the French shiyiof research.



year, since Ouaknine and Worrell proved that the modelddhg@and the satisfiability
problems for this logic are decidable [21] (though non-ptie recursive), as soon
as they are interpreted usingpaintwise semanticgver finite timed words. It is worth
noticing thatMTL, like most real-time logics, can be interpreted eithergsipointwise
semantics (the system is observed through events), or asiogtinuous semantics (the
system is observed at any pointin time). These two pointgwf iead to pretty different
decidability properties: for instance, while the first seties makes model-checking
decidable, the second semantics leads to undecidabi)it@iiéce this new insight into
decidability of linear-time timed temporal logics, works B TL are flourishing [9, 13,
22,23]. Let us for instance point out the result of [23], isigtthat the fragment of
MTL calledSafety-MTL (which roughly imposes upper bounds on Until modalities) is
decidable for the pointwise semantics when interpretediafieite timed words, while
model-checking fulMTL is undecidable in this case [22].

Our contributions. In this paper, we consider the control problem for propentiizen
asMTL or Safety-MTL formulas. We prove the following results:

— The control problem foMTL is undecidable for the pointwise semantics, even
when considering finite timed words. In addition, if redirig to Safety-MTL, the
control problem is also undecidable when interpreted ownite timed words.
These undecidability results rely on an elegant conswuaatihich (roughly) uses
(un)controllable actions and strategies to check thatyevexction is preceded one
time unit earlier by & action: this property cannot be expressedvmL, but is
somehow sufficient to lead to undecidability [13].

— When bounding resources of the controller (its set of clpaeks constants it can
use in its constraints), the control problem becomes dbgdar MTL specifica-
tions interpreted over finite timed words, and 8afety-MTL specifications inter-
preted over infinite timed words. Note that such a restrictmbounded resources
is quite common in the framework of synthesis of timed syst§8, 12, 10]. How-
ever, the construction proposed here is much more invohal those done in pre-
vious papers, and requires well (and better) quasi-orderiguments for proving
correctness and termination of the construction.

For lack of space, some proofs are omitted but they can belfouthe appendix.

2 Preliminaries

Time, granularity, and symbolic alphabet. Let R>, be the set of non-negative reals
andQx( be the set of non-negative rational numbers. Eebe an alphabet. Amed
word over X is a wordo = (a1, 71)(az,72) ... overX x R>q such that; = 0 and

7; < 1341 for everyl < i < |o| (Where|o| denotes the (possibly infinite) length f.*

If o is infinite, it is non-Zendf the sequencér; };cn is unbounded. LeT’X* be the
set of finite timed words oveX’, and7' X“ be the set of infinite non-Zeno timed words
overX.

1 We force timed words to satisfyi = 0 in order to have a natural way to define intial satisfia-
bility in the semantics oMTL.



Let X be a finite set of variables (callefocksin our context). The sef(X) of
clock constraintgy over X is defined by the grammag: ::= g A g | « > ¢, where
e {<,<,=,>,>},z € X, ande € Q. A valuationover X is a mapping :
X — Rso. Whether a valuatiow satisfies a constraint (written v = ¢) is defined
naturally, and we sdy] = {v | v = g}. Fort € R, the valuatior + ¢ is defined as
(v +1t)(z) =v(z)+tforallz € X. ForY C X, the valuationv[Y « 0] is defined
asv[Y < 0](z) =0if z € Y andv[Y « 0](x) = v(z) otherwise. Also, we us® to
denote the valuation which maps everyg X to 0.

We define a measure of the clocks and constants used in a setsifaints, called
its granularity. A granularity is specified by a tripleX, m, K') whereX is a finite set
of clocks,m € Nyo, and K € N. A constraintg is u-granular if the clocks it uses
belong toX and each constant occurri nggns an integral multiple with o < K. A
granularityy is finerthany' if all /-granular constraints are algsgranular. Also, we
say thaty = (X, m, K) is thegranularity of a finite set of constraints ifX (resp.m,
resp.%) is the exact set of clocks (resp. the Icm of all denominatbronstants, resp.
the largest constant) mentioned in the constraintg-gkanular constrainf is y-atomic
if for every p-granular constrairy’, either[g]] C [¢'], or [g] N [¢'] = 0.

For an alphabeX’ and a set of clockX', asymbolic alphabef’ based o X, X) is
a finite subset of2 x G(X) x 2X. A (symbolic) wordy = (a1, g1, Y1)(a2, 92, Y2) ...
over I" gives rise to a set of timed words ove&l, denotediw(+y). We interpret the
symbolic actior(a, g, Y) to mean that actiom can happen if the constraints satisfied,
with the clocks inY” being reset after the action. Formally,c tw(y) iff |o| = |v],
o = (a1,7)(az,72) ..., and there is a sequence of valuatiogsv, va, ... over X
such thatvy = 0 and for allo < i< |yyvi+ Tit1 — 7 € [giv1] andy =
(Vi + Ti41 — 71)[Yig1 < 0] (assumingy = 0).

Symbolic transition systems and timed automata. A symbolic transition systegsTS
over a symbolic alphabdt based on X, X) is a tuple7 = (S, so, —, F) whereS
is a (possibly infinite) set of stateg, € S is the initial state—~ CS x I' x S is the
transition relation, and” C S is a set of accepting statég\n STSwith finitely many
states is dimed automatoTA, for short) [5]. In the sequel, id is a TA, then we will

write 7 (.A) for the STScorresponding tod where all states are considered accepting.

For a finite or infinite pathr = s, b, S b2 of 7T, thetraceof 7 is the word

over I" given byb;b,.... Such a finite (resp. infinite) path is accepting if it ends in
(resp. visits infinitely often) an accepting state. We detgtCy,.(7) (resp.Lgnd 7))
the set of finite (resp. infinite) symbolic words ovErthat are traces of finite (resp.

infinite) accepting paths starting from the initial stajeWe setCsymf7) = L§md 7 )V
L&mdT). The STST is symb-deterministivhenevers L osiands & sy implies
s1 = so. For each state € S, we denote byenabled-(s) the set of symbolic actions
b € I' such thats 2, ' for somes’ € S.If 7 is symb-deterministic, then for each word
v € Lsymd T ), there is at most one path starting fregwhose trace ig. In this case

and assuming that is finite, we denote bgtater (), the last state of such a path. Let
T = (S, sgp,—) be anSTS Thedeterministic versiornf 7 is the symb-deterministic

2 \We may omitF” in the tuple if all states are accepting.



STS DeT) = (25, {so}, —p), whereS; % Sy iff Sy = {sy € S| 3s; € Sy. 51 =
sz} andS, # (). Note thatlg, (Det(7)) = LgyndT).

Let 7 be anSTS It also recognizes timed words.Thiened languagever finite
words accepted by, denotedC*(7), is defined byL*(T) = tw(Lgn{7)), while
the timed language over infinite words accepted/hydenotedC® (T) is deflned by
LUT) = tw(LymdT)) NTX. TheSTST is saidtime-deterministidf there are no
distinct transitiong 2% ¢, andg %22, ¢, with g1l N [g2] # ©. This notion is
stronger than symb-determinism.

LetT; = (Q1,q3, —1, F1) andTs = (Q2, ¢3, —2) be twoSTSover an alphabel’

based on(Y, X). Theparallel compositiorof 7; and 75, denotedZ; || 7z, is theSTS

a,qg,Y
<Q7q0’_>7F> WhereQ = Ql X Q25 qdo = (qévq(%)r F = Fl X QQ: and(plvPQ) g—>

. 91, ,92,Y" ;
(q1,q2) iff p1 2275 ¢r andpy 22725 go with g = g1 A g2 andY =Y, U Ya.

2.1 Metric Temporal Logic (MTL)

The logicMTL [18] is a linear-time timed temporal logic which extendd. with time
constraints on Until modalities. The setMdTL formulae over a seX’ of atomic actions
is defined inductively as follows:

pu=Tlal| | eNe | eUre

whereT denotes “true’q € X, andl C Rx( is aninterval with bounds iNU{co}. We
will use some classical shortcuts; o stands forT U; ¢ (the constrained eventually
operator),[d;¢ stands for-0;—¢ (the constrained alway®perator), andp; U; 2
stands for-((—p1) Ur (—p2)) (thedual-untiloperator). We also use pseudo-arithmetic
expressions (like> 1’ or * = 1’) to denote intervals. We may omit the subsctipthen

it is equal toR > .

In this paper we consider the so-calfgaintwise semanticand thus interpreéviTL
over timed words [21]. Given a (finite or infinite) timed wasd= (a1, 71)(az, 72) . ..
and anMTL formula ¢, for eachl < i < |g|, the satisfaction relatiofp, i) = ¢
(which reads asd' satisfiesy at positioni”) is defined by induction. The rules for
atoms, negation, and conjunction are standard. For theraatality, following [21],
we give astrict-futureinterpretation as follows:

(0,7) = @1 Ur o iff thereisj > ¢ such that(o, j) = @2, 7, — 7 € I, and
(0,k) Epiforall kwithi <k < j

We say that satisfiesp, denotedr |= ¢, if (0, 1) = . The set of finite models of
pisgivenbyL*(p) = {oc € TY* | o = ¢}. The set of infinite models af is given
by £(p) ={o € TI* | 0 = ¢}

Using the dual-until operator and the disjunction we carriteveveryMTL formula
into an equivalent formula ipositive normal formi.e. where negation is only applied
to actionsa € X. We then define the fragment MTL, called Safety-MTL [21],
consisting of thos®TL formulas in positive normal form that only include instasce
of the constrained until operatdf; in which intervall has bounded length. Note that
no restriction is placed on the dual-until operator.



Example 1.We give an example ofiTL formula such that theuntimedof £*(y)
(i.e.the projection of£* () over X)), writtenUntimed £*(¢)), is not regular. Lef’ =
{a,b} andy; := O(a — ¢—1b) requiring that each-event is followed one time unit
later by ab-event. Also, letC be the language consisting of finite timed woedsuch
that the untimed of is in a*b* and two different events do not happen at the same
time. It is clear thaiC can be specified by sonMTL formulap,. Now, we note that
Untimed £*(p1 A ¢2)) = {a™™ | m > n}, which is a non-regular language [7].

2.2 Control Problem for MTL Specifications

Let ¥ = Y¢ U X' be an alphabet partitioned into a setohtrollableactionsX’~ and
a set ofenvironmengactionsX'g. A plant? over X' is a time-deterministi@TA. Let the
clocks used irP be Xp, andy = (Xp U X¢,m, K) be a granularity finer than that
of the plant. Then, a-controller for P is a time-deterministiSTSC over a symbolic
alphabet based oY, X» U X¢) having granularity: and satisfying:

(C1) C does not reset the clocks of the plaqttzﬂ gz in CimpliesY C Xc.

(C2) C does not restrict environment action(-restricting: if o € £L*(7(P||C))
ando - (e,t) € L*(T(P)) withe € X', theno - (e, t) € L*(T (P]|C)).

(C3) Cisnon-blockingif o € £*(7 (P||C)) ando-(a,t) € L*(T (P)), theno-(b,t') €
L*(T(P]|C)) for someb € X andt’ € Rxo.

(C4) all states ofC are acceptingféirness.

For a timed languag€ C TX*, we say that a:-controllerC controlsP against
the specification of desired (resp. undesired) behavigui £*(P|C) C L (resp.
L*(P||IC)n L = (). Asimilar notion is defined for timed languages over inénitords.

Problem 1. Thecontrol problem for specified granularity against desired ¢esp. un-
desired) behavioursis to decide, given a plar, a specificatior, and a granularity
u finer than that ofP, whether there exists @controllerC which controlsP against
the specification of desired (resp. undesired) behaviBurs

Problem 2. Thecontrol problem for unspecified granularity is analogous to the pre-
vious one with the important difference that the granwaot the controller is not
specifieda priori.

In this paper we study the decidability of these problemsparcifications given as
MTL formulas {(.e. £ = L¥(yp) or L = L*(¢) for a givenMTL formulay). However,
for MTL specifications over infinite words, it is easy to show thatdabmetrol problem
is undecidable (also for specified granularity) by a triveduction from théVITL satis-
fiability problem over infinite words that is known to be uniable [22]. Thus, in the
following we consider the cases in which eith&is the set ofinite models of arMTL
formula or the set of infinite models of%afety-MTL formula.

3 Undecidability Results

In this section we show that for unspecified granularity,¢betrol problems for both
MTL over finite words an&afety-MTL over infinite words againstesiredbehaviours



are undecidable. We obtain these undecidability resulsiegluction from the reacha-
bility problem of channel machines, which is known to be widable [11].

A deterministic channel machin®CM, for short)S = (S, s, shar, M, 4) is a
finite-state automaton acting on an unbounded fifo chanreyes is a finite set of
(control) statessy € S is the initial statesnar € S is the halting state)/ is a finite set
of messages, and C S x {m!,m? | m € M} x S is the transition relation satisfying
the following determinismmhypothesis(1) (s,a,s1) € A and(s,qa, s2) € A implies
s1 = s9; and(2) (s,m!,s1) € Aand(s,a, s2) € Aimpliesa = m! ands; = ss.

The semantics is described by a labelled gr&jlf), whose set of vertices (global
states) is the set of paifs,z) with s € S andx € M* (representing the channel
content), and whose edge relation is defined as follgws:) = (s, y) iff (s,a,s’) €
A and eithers = m! andy = x - m, ora = m? andx = m - y. We say thak;,,; is
reachablen S iff there is path inG(S) from (s, €) t0 (Shaut, ) for somez € M*.

Thehalting problem foDCMs asks whether, givenRCM S, s, is reachable its.
Proposition 1 ([11]). The halting problem foDCMs is undecidable.

Theorem 1. The control problem with unspecified granularity ¥TL specifications
overfinite words representing desired or undesired behaviours is ciddéle.

Proof. We reduce the halting problem f&xCMs to the control problem fdvTL spec-
ifications againstlesiredbehaviours (note that sind4TL is closed under negation, the
undecidability result holds also for specificationsioflesirecbehaviours). We first en-
sure that thdCM has additional properties which will be useful in our couastion,
and then we describe the reduction and give a sketch of proof.

Adding properties to channel machin€&ven aDCM &’ = (57, s(), spap M', A"), we
can construct (for details see Appendix A) an equivalent®ne (S, sg, Shai, M, A)
(w.r.t. reachability of the halting state) such that:

— shalt IS the single state with no outgoing transition,

— there is no cycle i{S, A) in which every edge is labelled by a write action,

— if the unique (maximal) path i67(S) from (s, €) is infinite, then the size of the
channel content is unboundathpounded channel propejty

Encoding computations with timed wordfde encode the executions$f(i.e. the paths
of G(S) from (s, ¢)) [21] by the setLcorrect Of timed words(ay, t1)(ag, t2) - - - over
{m?,m!| m € M} such that:

(R1) there existy, so, - - - such thats; = so and(s;, a;, s;+1) € A foreachi > 1,
(R2) there is no two actions at the same tive:j, i # j = t; # ¢,
(R3) everym! action is matched by &? action one time unit later:
Vi, (ai =m! andﬂj tj >t + 1) = dk (ak =m? andtk =t + 1),
(R4) everym? action is matched by &! action one time unit earlier:
Vi, (a; =m?) = 3k (ap =m!andt, =t¢; — 1),

Reduction to the control problerhet S = (S, sg, shat, M, A) be aDCM satisfying the
above-mentioned properties. The idea of the reductioneddtiowing: the plant will
roughly be the channel machigewith all actionsm! andm? being controllable. We



also add two new uncontrollable actioN8 andCheck a play will consist of an alter-
nance of controllable and uncontrollable actions. Whes his turn the environment
can either play &lil action to continue the simulation oGheckaction to stop the game
(the use of theCheckaction is explained below). The goal of the controller witl to
simulate a correct execution of the channel machine regdiatesy,; (of course this
is possible iffsha is reachable itf). If spais reached at some point, the controller can
stop performing actions and wins the game (if the executiaygul so far is correct).

We now have to ensure that the timed wosdplayed by the controller simulate a
valid execution of the channel machine (thatis Lcorrecy):

— (R1)is satisfied because the plant we consider has the sameustrast,

— (R2)and(R3) can be encoded by a4TL formula in the specification,

— (R4)will be checked by the environment. We add a new sink giaigto the plant;
at any time the environment can decide to stop the game bynglafCheckaction
and going to this new state. In this case, if leeckaction is played at the same
time than ann? action and there is no matchimg! action one time unit before,
the controller will be declared losing (in tHdTL formula). Otherwise (that is
when there is nen? action or if there is a matching! one time unit before), the
controller will be declared winning.

Thus the controller will be forced to simulate a correct exem of S because
if it tries to insert am? which is not matched by a!, then it may lose if the
environment play€heckat this moment.

Here is the formal definition of the plafs and theMTL specificationp. Ps =
(@, g0, —, F') is defined over a symbolic alphabet based b U X', X), where

- Yo ={m!,m? | me M}, ¥g = {Nil,Checl, andX = {z};
- Q=S5U{gs |6 € A} U{gend}, g0 = so, andF" = @Q;

true,a,{x}

—qg——— ¢ iff d=(q,a,¢) € A,

_ g5 EONMEE it 5 — (g, a, ') for someg anda.

2=0,Check{z}
— ¢ — Qend
The MTL formula¢ is given byp = ¢sim A dmatch A Pcheck Where ¢c-action Stands

for Vaezc a):

- ¢Sim = E_‘((ﬁ(:—action A <>=O ¢C-action) s [expresse$R2)]

— PMatch = ﬁ((m' A <>21¢C-action) = <>=1m?) [expresse$R3)]
= dcneck= Amear ((O(m? A 0—oCheck) = B(m! A 0= Check)
[ensures that i€heckis played at the same time than (but right afterpahaction,
then thism? action must be matched byral one time unit earlier]

Sketch of proofln our control game, the controller can only win if it simwdatthe
maximal execution of. Now, we show thatn,; is reachable ir§ if and only if there
exists a controller for the plafls against the specificatiop of desired behaviours.

3 We use the non-strict version 6fandl: § ;¢ stands forpV ¢ ¢ and; ¢ stands ford ;.



If shait is reachable ir5, we consider a controller with one clock (reset after every
transition) which simply plays a correct encoding (with ¢istamps inQ>,) of the
execution ofS, reachingshat and staying idle from here.

Assume now thatnay is not reachable i&s. Two cases may occur: eith@r) S may
be blocking at some point, then a controller playing a vakeoaition will be stuck in a
state different fromsnar, however as it is non-blocking, it will have to play an inceot
action and so violate; or (2) there is an infinite computation i not reachingna. In
this case, sincé has the unbounded channel property, the channel will bewrdex
on this execution, and a controller will not be able to sineilsuch a computation (it
would need an infinite number of clocks). O

The proof for finite words can be adapted3afety-MTL over infinite words spec-
ifying desiredbehaviours ¢sim and¢match can be rewritten irsafety-MTL by just ex-
panding implications; FapcheckWe Need to consider a more involved formula described
in Appendix B).Safety-MTL is not closed under negation and the technique cannot be
applied toundesirecbehaviours, thus the problem remains open in this case.

Theorem 2. The control problem with unspecified granularity ®afety-MTL speci-
fications over infinite words representidgsiredoehaviours is undecidable.

4 Decidability Results

In this section, we show that for specified granularity, tbatol problems for both
MTL over finite words an&afety-MTL over infinite words (with respect to both desired
and undesired behaviours) are decidable.

In order to solve these problems, we first recall a notioniaféd game” introduced
in [12]. Given an alphabe¥, avalidity functionover X is a functiorval : 2* — 2(2%)
such that every set of actiorid ¢ 2* is mapped to a nonempty family of subsets
of U. LetT = (S, sp,—) be a symb-deterministi§TSover a symbolic alphabdt
andval be a validity function oveld". A strategyfor 7 respectingval is a mapping
f:DC Ly fT) — 2" suchthat € D and forally € D andb € f(v), f(7) €
val(enabled-(stater (v))) andy - b € D.

The set of plays off, denoted byplayq f), is the set of words ilCsymy7) that
are consistent with the stratedgy Formally,y € playq f) iff for every prefix+’ - b of
~v,v € Dandb € f(v'). We say thatf is afinite-statestrategy if there is a symb-
deterministic finite-stat&TS75, such thatCsymy Zrin) = playg f) and for every finite
play~ of f, f(~) is given by the set of symbolic actions enabledtater;, (7).

A timed game over finite (resp. infinite) wondsa pairG = (A, £) whereA is a
symb-deterministi@A over a symbolic alphabdt based on X', X), andL C TX*
(resp.£ C T X*) is a timed language over finite (resp. infinite) words. Meerpowe
require that4 is atomic(each clock constraint o4 is atomic w.r.t. the granularity ofl)
and isconsisten{tw(Lg g A)) € T2« and for everyy € Loymd 7 (A)), tw(y) # 0).

Let val be a validity function over". A strategy respectingal for the timed game
G = (A, L) is a strategy off (A) respectingral. A strategyf is winning with respect
to desired behaviourgesp.winning with respect to undesired behavioufsfor each



accepting playy € playsf) N LsymyA) with ~ finite if £ C TX* and~ infinite
otherwise, the conditiotw(v) C £ holds (resp. conditiotw () N £ = § holds).

An MTL timed gaméresp. éSafety-MTL timed gamgis a timed gamé& = (A, £)
in which £ is the set of finite or infinite models of MTL (resp.Safety-MTL) formula.

Let us return to the control problem. Slightly extending sutein [12], we easily
obtain the following result.

Proposition 2. Given a plantP over a symbolic alphabéft, a granularityx finer than
that of the plant, and a timed languageover finite or infinite words, one can construct
a timed gaméz = (A, £) and a validity functiorval over I s.t. A has granularity

w1 and there is a (finite-state)-controller C which controlsP for the specification of
desired (resp. undesired) behaviowtsff there is a (finite-state) winning strategy re-
spectingval of G with respect to desired (resp. undesired) behaviours.

By Proposition 2, it follows that for specified granularitige control problem for
MTL over finite words (resgafety-MTL over infinite words) can be reduced to decid-
ing the existence of a winning strategy in BTL timed game over finite words (resp.
Safety-MTL timed game over infinite words). In the remainder of thisisecilve prove
that these problems are decidable. The correctness of quoagh relies on a well
(and even better) quasi-ordering defined over a suitablésyeterministic countable
infinite-stateSTS Therefore, we start by recalling some basic results fragrtlleories
of well quasi-orderings and better quasi-orderings.

Assumption: In the following, w.l.0.g. we assume that constants ocogrin con-
straints ofTAare integers. For granularity= (X, 1, K), we simply writey, = (X, K).

4.1  Well Quasi-Orderings and Better Quasi-Orderings

A quasi-ordering(qo, for short) is a paifS, <) where= is a reflexive and transitive
(binary) relation on a sef. A well quasi-orderingwqo, for short) is ago (.5, <) such
that for any infinite sequenc®), z1, 22, . . . of elements ofS there exist indices < j
such thate; < z;.

Given aqgo (S, <), we are interested in the followirgp induced by(S, <):

— the monotone domination ordes theqgo (S*, <*), whereS* is the set of finite
words overS andzy, ..., T, <* y1,...,y, iff there is a strictly monotone injec-
tionh:{1,...,m} — {1,...,n} such thate; <y, forall1 <i <m;

— the powerset ordeis theqo (2%, C), where for allS;, S, € S, S; C S, if and
onIy if Voo € So. Jz1 € S1. 71 =X 9.

A better quasi-orderingbqa for short) is a stronger relation thawo We do not
recall the (rather technical) definition bfo(e.g.see [2]). Instead we recall some prop-
erties ofbqo(see [2, 3]), which will be used in the following.

Proposition 3. 1. Eachbqois awqo. 3. If (S, <) isbqa then(S*, <*) isbqa
2. If Sis finite, then(2%, C) is bgo. 4. 1f (S, =) isbqo then(2%,C) is bgo



4.2 Alternating Timed Automata

In this subsection we recall the frameworkaidfernating timed automataith a single
clock (ATA for short) [21, 20]. We use to denote the single clock of such automata.
For a finite set), #(Q) denotes the set of formulag: := Y Ay | YV | ¢ | x>
k | x4, whereq € Q, k € N, and<e {<,<,=,>,>}. The expression.¢ is a
binding construct corresponding to the operation of raggthe clock ta0.

An ATAover an alphabel is a tupleA = (Q, qo, J, F') whereQ, qo, andF' are
defined as folfA, andd : Q@ x X' — @(Q) is the transition function.

A configurationof A is a finite set of pairgq,u) whereq € @ is a state and
u € Rxg is a clock value. Thénitial configurationis {(go,0)}. A configurationC is
accepting if for all(¢, u) € C, ¢ € F (note that the empty configuration is accepting).

Given a clock value:, we define a satisfaction relati¢a, between configurations
and formulas inP(Q) according to the intuition that when the automaton is inesjat
with clock valueu, then it can make an instantaneausansition to configuratiot” if 4
C E. (g, a). Formally,|=,, is defined inductively as follows? =, q if (¢,u) € C,
CE,rexkifuxk, C =, x4 if C = 9, and the boolean connectives are handled
in the obvious way. We say that is completef for all ¢ € @, a € X, andu € R>o,
there is a configuratio@ such thatC' =, d(q, a).

We say that a configuratioh/ is aminimal modelof ¢y € &(Q) with respect to
u € R>q if M =, ¢ and there is no proper subsgtc M with C' =, .

A single-step runs a triple of the form”' S8 O wherea € 2, t e Ry, C =
{(gi,ui) }ier andC” are configurations, an@’ = (J,.,{M; | M; is a minimal model
of (gi, a) with respect tou; + t}. A run over a (finite or infinite) timed word =

(a0, 70)(a1,71) ... Iis a sequence of the fora ao.do, 1 ouds, C5...suchthat each

triple C; 2idi, Ci+1 is asingle-step run antf = 7, — 7,1 (assuming—; = 0).

We say that a finite timed wordl is acceptedy A iff there is a finite run of4 over
o starting from the initial configuration and leading to aneging configuration. We
denote byL*(A) the set of finite timed words accepted Hy

4.3 Preliminary Results

In this subsection we recall some results from [21] and cgueetly, we deduce
some properties which are the basis of the approach we pedposolveMTL and
Safety-MTL timed games.We fix a symb-deterministic, atoris A = (Q, g0, —
, ) over a symbolic alphabét based or{ X, X) and with granularity X, K), and a
completeATA B = (P, pg, §, FB) over X whose unique clock is. We assume thakt’
is greater than every constant appearing in a clock conswab.

An A/B-configuration is a paif(q, v), G), where(q, v) is configuration of4 (i.e.
q € @ andwv is a valuation over the set of clocks) andG is configuration of3. For
an.A/B-configuration((q,v), G), t € R>o, and(a,g,Y) € I', define

suce!((q,v),t, (a9, Y)) := {(d,¥') | (g,v) =25 (¢',/) is asingle-step run aft}®

sucé(G,t,a) == {G' | G £5 G’ is a single-step run df}

4 1.e.a simultaneous transition to multiple-copies4tescribed by configuratioft’



The synchronous produgif .4 andB is an uncountable infinite-sta&T Sover I,
denoted by7,,, representing intuitivelyd and B executing in parallel. Formally,

Ta/8 = (S, 50, ), whereS is the set ofd/B-configurationss, = ((qo, 6))7 {po,0})
corresponds to the initiadl / B-configuration, and

a,9,Y . Gy € Suc (G, t,a) and
v),Gp) —» ), Go)iff 3t € Ryqs.t. A
((ql l/l) 1) ((q2 VQ) 2) =0 {(QQ7V2) € SUCCA((q17V1)7t7 (a,g7Y))

Now, we recall the extended region construction presemt§2ili] to abstract away
precise clock values inl/B-configurations, recording only their values to the nearest
integer and the relative order of their fractional part.

Let REGk be the finite set of one-dimensional regidms, 1, . . . , 72k +1} defined
as follows: for0 <i < K, ro; = {i} andry;11 = (4,4 + 1), andragx 11 = (K, 00). For
u € R>q, reg(u) denotes the region iREGx containingu.

Define the finite alphabet = 2(Q*XxREG)U(PXREGK): the |etters it contains are
finite sets of pairgp, r) and triples(q, y, r), whereg andp are states afl and3 respec-
tively, y € X is a clock of A, andr is a one-dimensional region REG¢. Moreover,
we denote byA*, <) the monotone domination order induced by by (A4, C), and
by (247, C) the powerset order induced loyt*, <). Applying Proposition 3(A*, <)
and(24", C) arebgo(hence, alswqo).

Now, we associate to anyl/B-configurations = ((¢,v),G) a canonical word
H(s) € A* as follows. First note that can be equivalently represented as the set
G’ given byG U {(q,y,v(y)) | y € X}. We partitionG’ into a sequence of subsets
G1,...,Gy, suchthatfor alll < i < j < n, for every pair(p, u) or triple (¢, y, u) in
G, and for every pai(p’, v) or triple (¢’,3',v) in G;, the following holdsz < j iff
fract(u) < fract(v).® Define H(s) as the word inA* given byAbgG1) ... AbgG,,),
where for anyl < i < n, AbSG;) = {(p,reg(u)) | (p,u) € G} U {(q,y,reg(u)) |
(¢,y,u) € G;}. We say that two4/B-configurationss ands’ are equivalent, written
s~ s if H(s) = H(s).

Proposition 4 ([21]). The relation~ is a bisimulation overZ 4,3, i.e. s; ~ s7 and
a,9,Y’ . L, wgY , ,
s1 —» so impliess) —— s}, ands, ~ s, for somess,.

The discrete quotieninduced by the bisimulatior over7,, is the STST, =
(W, wp, —), defined as follows:

— W = {H(s) | sis and/B-configuration;
— wo = H(sp) (i.e.the image undeH of the initial 4/B-configuration).

a,g,Y . . 1 1 a,q,Y
— wy —— wq iff there existss; € H~ ! (w;) andse € H™H(ws) S.t.s; — sa.
Proposition 5 ([21]). The following properties hold:

1. The set of successors of any warih 7, is finite and effectively computable.

51e.q 2%, ¢ is a transition ofd, v + t € lgl, andv’ = (v + t)[Y « 0].
® fract(u) denotes the fractional part of



2. The transition relation— of 7 is downward-compatiblevith respect to=, i.e.

, a,g,Y : . , wgY ’
w] X w; andw; ——— wy impliesw] —— w}, for somew), < ws.

We conclude this subsection by stating some simple resultthe deterministic
version of7_.. We associate to every word € W the maximal subword: < w,
denotedeg, (w), such that: does not contain occurrences of stategSoinceB is
complete and4 is atomic and symb-deterministic, by classical propedfeggions in
timed automata, it easily follows that for all, w, € W with reg, (w;) = reg,(w2),

a.9,Y / a.9,Y /i / /
w; —— w) andwy —— wj, imply thatreg,(w)) = reg,(ws). Moreover,
enableg-_(w;) = enabled-_(w2). Motivated by these observations, we denote by
SW the set of nonempty finite word sefsC W such that for all wordsv, w’ € C,
reg,(w) = regy(w’). Moreover, we denote b7 . = (SW,{wy},—p) the re-
striction of Det(7..) to the set of state§W. Note that by the observations above and
Property 1 in Proposition %¢, (D7 ) = L n{Det(7.)).

sym

Proposition 6. 1. If ¢; C Gy, then enablegr_(C1) = enabledr_(C2).
2. The transition relation—p of D7 . is downward-compatiblevith respect ta_,

. a,q,Y . . a,q,Y
i.e.C¢] C ¢ andC; ——p CyimpliesC; ——p €} for someC;, C C,.

4.4 Decidability of MTL Timed Games over Finite Timed Words

The logicMTL is closed under negation, thus we can limit ourselves toidenMTL
timed games against specificationsioflesiredbehaviours. We fix aMTL timed game
over finite wordsG = (A, L*(y)) and a validity functionyal over the symbolic alpha-
bet I" associated with4. Let A = (Q, qo, —, FA) with granularity(X, K). Apply-
ing [21], one can construct a compl&@A B, = (P, po, 0, F¥) s.t. L*(B,) = L*(¢).

Let7,, be the synchronous productdfandB,, 7. = (W, wo, —) andDT .. =
(SW,{wo}, —p) be theSTSinduced byT,,, defined in Subsection 4.3.

An A/B, configuration((¢, v), G) is badif both ¢ is acceptingi(e. ¢ € F*) and
G is acceptingi(e. for all (p, u) € G, p € F¥). The notion of badness can be extended
to words inW in a natural way. Moreover, a word séte SW is badif C contains
some bad word. Finally, a strategyof D7 .7 is safeiff for every finite play~y of f,
stater7_ () is notbad.

Lemma 1. There is a (finite-state) winning strategy in the timed g&with respect
to undesired behaviouif§ there is a (finite-state) safe strategy®f ..

Proof. SinceB,, is complete andd is consistent, we easily obtain thed,,{7 (A)) =
LimdTase) (= LymdDeUT /) = LEmd DT ). This means that for everfy: D C
I — 27 fis a strategy foG iff f is a strategy fo7 ... If f is a winning strategy
of G w.r.t. undesired behaviours, then we claim tlias safe forD7 ... Indeed if for
some finite playy, statep7__ () was bad, then by definition @7 .. and Proposition
4 there would be a path ifi4,,, from the initial A/B,, configuration to a badi/B,

configuration whose trace is By construction, this implies € £5,,f.A) andtw(y) N

7 In the following we omit the reference tal.



L*(p) # 0, which is a contradiction. Thus, the claim holds. In a similay, if f is
safe forD7 ., thenf is a winning strategy o w.r.t. undesired behaviours. O

By Lemma 1, deciding the existence of a winning strategy attmed gameG
w.r.t. undesired behaviours can be reduced to checkingxisteace of a safe strategy
fof DT . Now, we show that this last problem is decidable, by extegthie approach
proposed in [1] forA-downward closed games. The correctness and terminatioarof
procedure relies on the well quasi-ordering 81/, C).

We build a finite portionil” of the tree given by the unwinding @7 . from the
initial state{wy} as follows. We start from the root, labelled wiflw, }, and at each
step, we pick a leaf with labelC € SW and perform one of the following operations:

— if € is not badand there is an ancestor ofin the portion of the tree built so far
with label @’ where€’ C €, then we declare the nodeccessfuind close the node

(i.e.we will not expand the tree further from the node);

— if Cis bad then we declare the nodesuccessfidnd close the node;

— otherwise, for any transition i7 ., of the formC MD €’ we add a new node
y with label ¢’ and an edge from the current nadéo y labelled by(a, g,Y). If €
has no successor, then we declare the current nedelead

Note that the procedure is effective. Moreover, termimaisgguaranteed by Konig’s
Lemma and by well quasi-ordering 0§ W, C). The resulting finite tre@' is re-labelled
in a bottom-up way by elements {7, L} as follows:

— successfuhnddeadleaves are labelled andunsuccessfueaves are labelled ;

— for any internal node: labelled by, the{T, L }-labelling is defined as follows:
if there is a set of symbolic actiori$ € val(enablegr_(€)) such that for each
(a,9,Y) € U, the edge il fromz and with labelq, g, Y) leads to a node labelled
by T, then we labek by T; otherwise we labelz by L.

The algorithm answers “yes” if the root is labelled by Otherwise, it answers “no”.

Correctness of the algorithm is stated by Lemma 2. The firisit osimple, and the
second point follows from Proposition 6 (a detailed prodfiigen in Appendix D).

Lemma 2. If the algorithm answers “no”, then there iso safe strategy 0D7 ...
If the algorithm answers “yes”, then there isfimite-statesafe strategy D7 . and we
can build it effectively.

Finally, by Lemmata 1 and 2, the fact tHdT L is closed under negation, and Propo-
sition 2, we obtain the main result of this subsection.

Theorem 3. The control problem for specified granularity agaihdTL specifications
over finite words representing desired or undesired behasits decidable. Moreover,
if there exists a controller, then one can construct a fisii#te one.

Remark 1.As the satisfiability problem foMTL can be reduced to aMTL control
problem, the control problem for specified granularity ageTL specifications over
finite words has non-primitive recursive complexity [21].

Remark 2.Since our algorithm is based on the translationVidfiL over finite words
to ATA the result above can be extended to specifications giveengsidges of finite
timed words recognized BATA(note thatATAare closed under complementation [21]).



4.5 Decidability of Safety-MTL Timed Games over Infinite Timed Words

First note thaSafety-MTL is not closed under negation. Thus, we need to distinguish
between specifications representing desired and unddsdealiours. Fodesiredbe-
haviours, the construction is not that far from the one fatditimed words, even though

it requires some refinement. On the other handyfatesirecbehaviours, the algorithm

is much more involved and require techniques inspired by. [28e to paper length
constraints, we report the whole construction for bothr@elsaind undesired behaviours
in Appendix. The main result can be summarized as follows.

Theorem 4. The control problem for specified granularity agaifssfety-MTL speci-
fications over infinite words representing desired or unesbehaviours is decidable.
Moreover, fordesiredbehaviours, if there exists a controller, then one can coiesia
finite-state one.

5 Conclusion

In this paper, we have studied the control problenMdiL andSafety-MTL specifica-
tions. Our results are summarized in the following table.

- fixed granularity | non-fixed granularity
(da'\rﬂ;lgrol}/:(;;?gjbvgggiurs) decidable undecidable
Safewizglr‘eg\gggﬂg words decidable undecidable
<>

There are still open problems, for instance the precise @®xtp of the control problem

for Safety-MTL specifications with fixed granularity, and also the decilitgbdf the
control problem folSafety-MTL specifications representing undesired behaviours with
non-fixed granularity. Finally, foBafety-MTL representing undesired behaviours with
fixed granularity, actually we do not know if the existencaatrategy in a timed game
implies the existence of a finite-state one. This means Heagtiestion to construct a
finite-state controller in this case remains open.
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Appendix

A Proof of Theorem 1

Adding properties to channel machines.
LetS = (S, so, sha, M, A) be aDCM. We callwrite cyclea sequence;, - - - s, with
Sk = S1 and(si7m,-!, SZ‘+1) € A.

Lemma 3. Given aDCM S’ = (5, s, shaw M', A’) we can construct HDCM S =
(S, 50, Shai, M, A) in which spai is the single state of with no outgoing transition,
which contains no write cycle, satisfies the unbounded oblgzmperty, and such that
Shait IS reachable inS” iff spai is reachable inS.

Proof. To constructS, we proceed in several steps:

— we first remove all transitions involved in a write cycle. Tilea is that since the
channel system is deterministicyaite cyclewould just lead the channel machine
to loop forever and never reagsf,. By removing these transitions, we thus do not
change reachability of; .

— we remove all outgoing transitions frosfy,,. We then remove states different from
shait Which have no outgoing transition. We repeat this operatiatil there is no
such state. Note that the channel mact$he= (5’, s{,, s, M’, A1) we obtain
has no write cycle and is deterministic.

— we finally transformS; into S which will satisfy the unbounded channel property.
To do so, we add a new messagdo M. The idea is thaf will simulate Sy, and
after every step o8, a #-message will be added in the channelSfln every
control state ofS, a #-message can be read and rewritten immediately (to allow
“cycling” of #-messages). We also allow the channel to be emptigghin

S is formally defined as follows:
o M = M"U{3#}, 50 = 0y Shalt = Shan
e S=S5"US'US), whereS’={s'|s' € S'}andS), = {s5|de A}
e Ais defined as follows:
x forall s € S'\{sha}, (5", #7,5') € Aand(s’, #!,5s') € A
x if 6 = (s],a,sh) € Ay, then(sy, a, s§) € A and(sf, #!,s7) € A
S satisfies the unbounded channel property because aftelasingn steps ofSy,
the channel contains at least#-messages. Note th&t contains no write cycle
and is still deterministic. O

Reduction to an MTL control problem.
We now prove that the reduction proposed in Section 3 is cborre

1) Proof of "spait is reachable=- there exists a controller”
Let w be an encoding (with timestamps @) of a finite execution reachinghar.
The controlleiC will simply play the finite timed wordy®; this can be done by a timed

8 Note that according to this controller, the only manner tlamipcan reaclyend is the environ-
ment performing th€heckaction.



automaton with one clock which is reset after every tramsitit is easy to show that
for everyw’ € L*(Ps || C), v’ = ¢.

2) Proof of “there exists a controllet> shay is reachable.”
We proceed by contradiction: suppaosg; is not reachable it§ and that there is a
controllerC for Pg satisfyingL*(Ps || C) C L*(¢). Let us consider a maximal timed
word w = (a1,t1)(az,t2)--- in L(Ps || C) not containing theCheckaction (this
corresponds to what the controller does if the environmewtnplaysChech.

Letn be the projection ofm!, m? | m € M}, we now prove the following lemma.

Lemma 4. w(w) is infinite and belongs t@.corect

Proof. — m(w) is infinite asC satisfies the non-blocking property.
— m(w) satisfiedR1) becauséPs has the same structure &8s
— (R2)and(R3) are ensured b¥sim anddmatch
— w(w) satisfies(R4). If it was not the case then there would exist a prefix=
(a1,t1) -+ (an—1,tn—1)(m?, t,) of w(w) such that for every, (a;,t;) # (m!, t,—
1). Thenw” = (a1,t1) -+ (ap—1,tn—1)(m?,t,)(Checkt, ) would be inL*(Ps ||
C). Asw” [~ deneck this is not possible. o

AS shart is Not reachable it and S satisfies the unbounded channel property, in
the unique execution af the channel will be unbounded. In particular at some point
there will be too many letters in the channel ébto be able to remember. We will then
consider the corresponding finite prefixwfand show, using that prefix, thétis not
a valid controller forg (this prefix satisfies the specification but we will constrat
other timed word which is il*(Ps||C) but notinL*(¢)).

Let N be the number of regions @s||C (see [5]) andn be the Icm of all denom-
inators of constants appearingdn(every constant il is then an integral multiple of
L1). Let(so,e) =% (s1,¢1) =5 -+ be the infinite execution a$. By the unbounded
channel property, there exists € N such that/c,,| > m « N + 1. Moreover, asS
contains no write cycle, there exist$ > n such that every letter af, has been read
aftern’ steps.

Letw’ be the finite prefix ofw of lengthn’. All the letters of the channel, must
have been sent betwegn— 1 andt,,. Then there exists an interval of lengthwithin
which there are at leag{ + 1 “write” actions. Formally there exish, i1, -+ ,ixy <n
such thatr;, = m;,! andt;, — t;, < L.

Asw is in Leorecs for all 0 < j < N there must be a corresponding, 7 action at
timet;, + 1. Leti’; the index of the action that occurs at time + 1.

ai,t1

We now consider the execution &s||C onw’ (o, vo) Sot, (q1,1n) —— -
and more precisely what happens at timest 1. For alli > 0, let R; be the region of
vi+t;—t;_1 (the region used to “cross” thé transition). We first prove that the regions
Ri;, Ry, , Ry, areflatregions (regions where time can not elapsayhere one of
the clock is constant). If it was not the case for soRye then the actiom,;; could be
taken slightly later, say;, +14-¢ for somes which would yield a timed word belonging
to L*(P||C) notin L*(¢).

Now asC hasN regions and there ar& + 1 regionsRi/U., Rij,-++, Ry, two of
those must be equal, sd;, = R;; with k < [. However,(t; +1) — (t;, +1) < L



thus, the single way to go from a flat region to the same ones'mtlmn}n time units is
to let no time elapse. We deduce that= t;, .1 = --- = t;, which is a contradiction
because it implies that two controllable actions occur atstiime time inv’.

B Proof of Theorem 2

The proof of Theorem 2 is a simple adaptation of the proof oédrem 1. We just
add a new uncontrollable action to extend finite words infonite words. The con-
struction of the plant is roughly the same, we only we needritevthe specification
in Safety-MTL. The formulasssin and ¢match Can be rewritten irsafety-MTL by just
expanding implications. We now explain how to modifyheckinto aSafety-MTL for-
mula.

We use the classicalextoperatorO¢ stands forl.i/¢.

Let us recall thabcheck= A,c 1s ((5(m? AQ=oChecR) = O(m!A ozlcheca) .
We considetseq= Amens ((5(m? A O—oChecR) = ¢0) % where

bo = <ﬁ<1(ﬂChecl§)/\(ﬂ5((<>>1Checlf;A(O<><1Checlg))/\(ﬁ((ozlchecg - m!)>

The idea is that we know th&heckwill appear at most once in an execution of
the plant, so we would like to replace ieneckthe part®(m! A ¢, Check (which is
not in Safety-MTL) by 0((¢—1Check = m!). But we are dealing with the pointwise
semantics oMTL, so this replacement is only correct if there is an actiorudog
one time unit before th€heckaction: we roughly ensure this point by the formula
(D<1(ﬂChecI§) A (ﬂo((<>>1ChecI§ A (o<><10hec@)).

Note thateg, is notMTL-equivalent tod(m! A ¢—;Check, though one can prove
this easy lemma:

Lemma 5. Leto € T'X* containing the Check action exactly once.
Theno ): <>(m' A <>:1CheC|§ iff o ): (b().

Corollary 1. Leto € T X containing the Check action at most once.
Theno = ¢checiff o = ¢’/Check

Corollary 1 shows thabcheck can be replaced by, .. in our reduction asPs
produces timed words with at most oGeeckaction.

C Proof of Proposition 6

Property 1 directly follows from the observation that fokral € C; andws € Gy,
reg,(wi) = reg,(wz). Now, we prove Property 2. By Property 1 and the fact that
DT is symb-deterministic, there is exactly ofie¢ € SW such that®] MD C5.

® To ease understanding we do not wijtg,..«in Safety-MTL, but it can be obviously written
in Safety-MTL by pushing negations inwards.



It remains to prove tha®, C C,. Let ws € Cy. We show that there is), € C)

a,9,Y

. a,g,Y .
such thatw), < w,. SinceC; LD @y, there isw; € C; such thatw; ——— w».
SinceC} C €y, there isw] € €} such thatw] =< ws. By Property 2 in Proposition

. a,g,Y .
5, there exists a word?, such thatw}, < w, andw] —— w}. Sincew}] € €} and

a,9,Y .
e} L2 5 @), it follows thatw), € C5.

D Proof of Lemma 2

If the algorithm answers “no”, then by construction it is alehat there is no safe
strategy forD7 .. Now, assume that the algorithm answers “yes”. Tébe the tree
obtained froml" by pruning all the nodes labelled hy. Without loss of generality we
can assume th&8t’ does not consist of the single root (otherwise, the resolbigous).
For a noder of 77, we denote bye(z) the state ofD7 .. associated witl:. Moreover,
let {T¢atticr be the family of finite trees obtained frofff as follows: ifx is a node of
Téwae (@nd it is not a successful leave), then the set of edg@¥,ipfrom x is a subset
of the set of edges ifi” from z such that the set of labels of such edges belongs to
val(enabledb7_ (€(z))). Note that by construction the famifyT,..}:c1 is not empty.
In the following, we fix a tred sy belonging to this family.

Let Zsyrat = (X, 29, —) be the symb-deterministic finite-sted Sover I defined as:

— X consist of all and only those nodesB 4 that are not successful leaves.

— 1z is the root ofTgyat.

— 2 “2Y, 47 iff one of the following holds:

e there is an edge ifisy: from z to 2’ labelled by(a, g,Y).

e there is a successful leayen Tsya: SUch thate is the parent ofy, there is an
edge fromz to y labelled by(a, g, Y'), andz’ is the first ancestor af such that
C(z") C C(y) (i.e.we identify nodey with nodex’).

By construction, the following holds:
A. foreveryz € X, C(x) isnotbad ancenabled,,  (z) € val(enablegr_(C(x))).

Now, let us consider the mapping: [,;‘ym,{Tstrat) — 27" defined as follows: for each
Y € LiymfTsvar), f(7v) = enabled,, (stater,,(v)). We claim thatf is a safe strategy
of DT .. respectingral. Evidently, it is sufficient to prove the following:

,91,Y nsgn,Yn . . .
B. Letm = zq 29171, oy L. 28 z,, be a path iffgya. Then, there is a path in
ai,g1,Y1

DT ., 6’0 ——p C... ‘M’D Gn such tha’(?o = G(mo) and@i 3 e($1),
C; isnotbad, ancenabled:, . (z;) € val(enabledr_(C;)) forall1 < i < n.

Forn = 0, PropertyB is obvious. Now, assume that PropeBtjolds forn > 0 and let

nt1,9n41,Yn L
@y, b Int b Int o 1 be a transition irfgya. We have to prove that

Ant1,9n+1,Yn+1

C. thereisC,t; € SW suchthat,, ——— p Cpt1, Crt1 3 C(pnt1), Crta
is not bad, an@énabled, (r,+1) € val(enablegr_(C,41)).



We distinguish two cases in accordance with the definitiotheftransition relation of
Ztrat:

— there is an edge in the tr&@,: from z,, to x,,11 labelled by(a, 41, gnt1, Ynt1)
(where z,,41 is either an internal node or a dead leave). By construction,

e( ) An41:9n+1,Yn41
Tp) —
An+41,9n+1,Yn41

sition 6, it follows thatC,, ——— p C,,4+1 for someC,, ;. By Properties 1
and 2 of Proposition 6, Properdy, and the fact th®7 . is symb-deterministic, it
follows thatC,,+1 J €(z,+1) andenabled;,, (z,+1) € val(enablethr_ (Cp11)).
Now, we claim that2,, 1 is notbad. Indeed, assuming the contrary, sifige; J
C(zn+1), we deduce that there are wordse C(x,+1) andw’ € C,1 such that
w =< w’' andw’ is a bad word. This implies evidently that algois a bad word,
henceC(z,,+1) is bad, which is a contradiction. Thus, Propettyiolds.

— there is successful leavg in Tsra, an edge fromz, to y labelled by
(@n+t1s Gnt1, Ynt1), Tni1 iS @n ancestor of, andC(z,+1) C C(y). By construc-
tion, C(z,) (Mm C(y). Then, proceeding as in the previous case,
we deduce that,, Mm Cp41 for someC,+1 € SW such that
Crt1 I C(y) I C(xzn+1) andenabled,, (zny1) € val(enablegs (Chiy1)).
SinceC(z,,+1) is not bad, als®,, ;1 is not bad. Thus, Property holds.

p C(zp41). SinceC, I C(z,), by Property 1 of Propo-

E Decidability of Safety-MTL Timed Games over Infinite Timed
Words with Respect toDesired Behaviours

We fix a Safety-MTL timed game over infinite word& = (A, L¥(¢)) with A =
(Q, g0, —, F*) and a validity functiorval over the symbolic alphabdt associated
with A. By [21] we can construct a comple?dAB,, = (P, po, 6, #) with no accepting
state such that for at € TX¥, o [~ ¢ iff 7 € L*(B,,) for some prefix of o.

Let 74, be the synchronous product gf andB,,, and7. = (W, wg, —) and
DT . = (SW,{wo}, —p) be theSTSnduced by, defined in Subsection 4.3.

We say that an infinite patt(g:, 1), G1) 220 ((go, 1), Ga) ... in Ty is
badif the set{i € N | ¢; € F} is infinite and there is. > 1 such that for ali > n,
G, = ). We extend the notion of badness to infinite pathinn a natural way. Since
tw(LemdA)) € TX<, by properties o3, and Proposition 4, it easily follows that for
ally € I'*, v € Lgmd A) impliestw(y) C L () iff there isnoinfinite bad path irZ.
starting from the initial worduy and whose trace is. Motivated by this observation,
for any @ € SW, we say that a strategf of DTS (whereDT ¢ is the sameSTSas
DT .. but with initial stateC) respectingval is goodiff for every infinite play~ of f,
there isnoinfinite bad path irZ_. starting from a wordv € € and whose trace ig. By
the observation above and following a pattern similar ta tfiahe proof of Lemma 1,
we obtain the following.

Lemma 6. There is a (finite-state) winning strategy w.desired behaviours the
Safety-MTL timed gamé iff there is a (finite-state) good strategyDiT ...



We say that a wordh € W is doomedf there is((q,v),G) € H~!(w) such that
G = (. Aword setC € SW is doomedf it contains a doomed word.

Proposition 7. For a doomed word se€ € SW, checking the existence of a good
strategy ofD7 ¢ respectingval is decidable. Moreover, if there is a good strategy, then
there is a finite-state one which can be built effectively.

Proof. First, assume that is a singletonj.e. ¢ = {w} wherew is a doomed word.
Evidently, any successor af in 7., is still a doomed word. Therefore, we can limit
ourselves to consider the restrictiondf to the set of doomed words, which is finite.
Moreover, sinced is atomic, this restriction is deterministic. Let us denibiis restric-
tion by 7; (with initial statew), and letAccbe the set of doomed words such that the
associated state id is accepting. Then, the problem is reduced to check theesdst
of a strategy in the finite-stat8TS7; respectingsal such that for each infinite play,
the unique path of ; starting fromw and whose trace ig does not contain infinite oc-
currences of states ificc (co-Bichi acceptance condition). This problem is dedielab
by a trivial reduction to parity-games on finite-state gmpWoreover, if there is a good
strategy, then there is a finite-state one, which can be &fféttively.

Now, assume that is not a singleton, and lat € C such thatw is a doomed
word. Evidently, it is sufficient to show that for any funaiig : D C I'* — 27, f
is a good strategy foP7 © iff f is a good strategy foP7 ("}, First, note that for all
w',w” € Candy € I'*, sincereg,(w') = reg,(w”) andB,, is complete, there is a
path inZ_, from w’ whose trace ig iff there is a path ir7. from w” whose trace is.
This means thaty, ( DTS) = L3, DT{"}). Hence.f is a strategy foD7 S iff f
is a strategy fo7 {1} It remains to prove thaf is good forD7 ¢ iff f is good for
DT} Evidently, if f is good forDT €, thenf is good forD7 {}. Now, assume that

f is good forpT 1} but not forpT €. This means that there is an infinite ptayf f

. C e a1,91,Y]
and there is a bad infinite pathf. of the formr = w; ‘LD wy . .. whose trace

is v and such thaty; € €. Sincereg, (w;) = reg,(w) andw is doomedw; = w. By

. . . a1,91,Y]
Proposition 5, it follows that there is a pathin of the formz’ = w/ <257 w) . ..

whose trace i3y and such thatj = w and for allj > 1, w, < w;. Sincer is bad, it
easily follows that alsa’ is bad. But this is a contradiction, singgs an infinite play
of f andf is good forD7 ("}, O

The algorithm we propose to decide the existence of a goategly of D7 . re-
spectingval is similar to that given in Subsection 4.4. We build a finitetjpm 7" of the
tree corresponding to the unwinding®f .. from the initial state{w } as follows. We
start from the root, which is labelled withu, }, and at each step, we pick a leafvith
label € and perform one of the following operations:

— if @ is doomed and there doestexist (resp. there exists) a good strategPaf
respectingval, then we declare the nodmsuccessfulresp.successfiland close
the node i(e. we will not expand the tree further from the node);

— if € is notdoomed and there is an ancestorcofith label @’ whereC’ C €, then
we declare the nodsuccessfuind close the node.



,9,Y
— otherwiseg for any transition irD7 ., of the formC (L@ ¢’ we add a new node
y with label€” and an edge from the current nadéo y labelled by(a, g,Y). If €
has no successor, then we declare the current natbad

By Proposition 7 the procedure is effective. Moreover, ieation is guaranteed by
Koning’'s Lemma and by well-quasi-ordering @8 W, C). The resulting finite tre§”
is re-labelled in a bottom-up way by elements{ii, L } in the same way as for the
algorithm in Subsection 4.4. The algorithm answers “yiffsthe root is labelled by .
Correctness of the algorithm directly follows from the &vlling lemma, which can be
proved by using Proposition 7 and a pattern similar to thatlus prove Lemma 2 in
Appendix D. Thus, we omit the details.

Lemma 7. If the algorithm answers “no”, then there is no good strateffyD7 ..
If the algorithm answers “yes”, then there is a finite-statsog strategy ofD7 .. and
we can build it effectively.

F Decidability of Safety-MTL Timed Games over Infinite Timed
Words with Respect toUndesired Behaviours

First, we recall some basic results from the theory of welgjordering. Given go

(S, <), we say that, C S is alower setif x € S,y € L, andz < y impliesz € L.

The notion of arupper seis similarly defined. Theipward closureof S; C S, denoted
1 Syisthesef{x € S| 3y €S, : y < z}. Abasisof an upper set/ is a subset/;, of

U such thaty =1 U,. A cobasisof a lower setl is a basis of the upper s8t\ L.

Proposition 8 ([16]).Let(S, <) be awgo. Then,(1) each lower sel. C S has a finite
cobasis, and?2) each infinite decreasing sequenkg 2 L1 O Lo D ... of lower sets
eventually stabilizes, i.e. there exigts N such thatl.,, = L forall n > k.

We fix a Safety-MTL timed game over infinite word& = (A, £¢(¢)) with A =
(Q, qo, —, F*) and a validity functiorval over the symbolic alphabdt associated
with A. By [21, 23], we can construct a complete dadal ATA B, = (P, po, §, P)
andPp C P such thatforalb € TX¥, o |= ¢ iff there is an infinite run i3, starting
in the initial configuration and visiting only configuratithat do not contain states in
Pg. Moreover, for allp € Pg anda € X, §(p,a) = p.

Let 74, be the synchronous product gf and B, and7. = (W, wp,—) and
DT . = (SW,{wo}, —p) be theSTSnduced by, defined in Subsection 4.3.

We say that arinfinite path ((q1,1),G1) — ((g2,12),G2) ... In T4, is badif
the set{i € N | ¢ € F*} is infinite and for alln > 1 and(p,u) € G, p ¢
Pg. Moreover, we say that finite path ((¢1,21),G1) — ... — ((gnsVn),Gn) —
((@n+1,Vn+1), Gny1) is badif ¢, € F4and foralll < j < n+ 1and(p,u) € Gj,
p ¢ Pp. We extend the notion of badness to pathZinin a natural way.

Since for ally € Lsymd A), tw(y) € T X%, by properties o3, and Proposition 4,
it easily follows that for aly € I'?, v € £ (A) impliestw(y) N L(¢) = 0 iff

sym|

10 An ATAis local if the clockz is reset whenever the automaton changes location.



there isnoinfinite bad path irZ. starting from the initial wordvy and whose trace is
~. Motivated by this observation, for ar§y € S, we say that a strategf of DT
(DTC is the same&STSas DT .. but with initial stateC) is'* goodiff for each infinite
play~ of f there isnoinfinite bad path ir7-. from a wordw € € and whose trace is.

By the observation above and following a pattern similarhat tof the proof of
Lemma 1, we easily obtain the following result.

Lemma 8. There is a (finite-state) winning strategy w.undesired behaviouin the
Safety-MTL timed gamés iff there is a (finite-state) good strategyDiT ...

We denote by? the set of word se€ € S such that there ino good strategy of
DTE. Obviously, there is a good strategy BT . iff {wo} ¢ (2. In the following we
show that we can build a finite representation of thefaet

Definition 1. For a setL C SW, we denote byl (L) the set of word set§ € SW

such thaffor each strategy of DT ¢, there is a finite play of f and€’ € L such that
€' = statg, 7 () and there isa finite bad pattin 7. from a wordw € C to a word
w’' € € and whose trace is.

The following Lemma gives a greatest fixed-point charazégion of the sef2. The
proof is slightly technical and it is reported in Appendig F.

Lemma 9. 2 is the greatest fixed point @1, (—) : 25V — 25W with respect to the
set-inclusion order.

Lemma 10. Let L C SW be a lower set (w.r.t=). Then,lI, (L) is a lower set.

Proof. First, we note that by Proposition 5, it easily follows that

A. Letw’ < w andp be a bad path i from w. Then, there is a bad path froaf
having the same trace as

Let® e IT, (L) andC C €. We prove tha€ € IT, (L), i.e.for every strategy DT °,

B. there isC; € L and a finite playy of f such that®; ¢ state, ¢ () and there is a
bad path inZ from a word inC to a word inC; whose trace is.

SinceC C €, by Proposition 6 is a strategy oDT? . Since€’ € II, (L), there
is €} € L and a finite playy of f such that; € state, ¢ (v) and there is a finite bad
path in7_ from a wordw’ € € to a wordw) € €} whose trace is. SinceC C €', by
Proposition 6, there is a path A7 .. from € to a word se; C C} € L whose trace
is v. This means tha€; = state,;c (7). Moreover, sincd. is a lower setC; € L.
SinceC C € andw’ € €, there is a wordv € € such thatw < w’. Therefore, by
PropertyA, there is a bad path i from w € C to some wordw; whose trace is.
SinceC; = statey7e (), it follows thatw, € €;. Therefore, Propert holds. O

Proposition 9. Given a finite cobasis of a lower setC SW, there is a procedure to
compute a finite cobasis éf (L).

1 |n the following we omit the reference tal.



The detailed proof of Proposition 9 is reported in AppendiX Fhe proof exploits
the technique used to prove Proposition 4 in [23].
Now, we can prove the main result of this section.

Theorem 5. Given aSafety-MTL gameG = (A, L(y)), the existence of a winning
strategy with respect tondesired behaviours decidable.

Proof. By Lemma 8 and definition of?, there exists a winning strategy @ with re-
spect to undesired behaviours if and only if for the initiardiwy, € W, {wo} ¢ £2.
Thus, it suffices to show that the conditi¢m, } ¢ {2 is decidable. Since the operator
I is monotone and maps lower sets to lower s&t§, D 17, (SW) D II2(SW) 2

.. is a decreasing sequence of lower set69#/, C). By Proposition 9 we can com-
pute a finite cobasis of each successive itefdfd S1W). Moreover, by Proposition 8
the sequence above stabilizes after a finite number of ibasa{the firstt such that
1% (SW) = IT%T'(SW)). The stabilizing value is the greatest fixed point/af,
which by Lemma 9 is the lower sé2. Thus, we can compute a finite cobasis(af
hence we can decide whethigr, } ¢ (2. O

F.1 Greatest Fixed Point Characterization off2 (Proof of Lemma 9)

In order to prove Lemma 9 we need some preliminary resultssayethat and/B,,
configuration((¢, v), G) is doomedf there is(p, u) € G such thap € Pp. We extend
this notion to words irfV in a natural way. By properties &, we obtain:

A. for adoomed wordy € W, each successor of in 7 is still a doomed word.
B. A bad finite path inZ_. has the formv; — ... — w, — w,1 such that the state
of A associated withw,, is accepting, and for all <i < n + 1, w; isnotdoomed.

Lemma 11. Let G, ‘373 G i@ ... with Gy € SW be an infinite path irD7 .. such
that for eachn € N, ~; € I'* and there is a finite bad path i, from some word iI€,,
to some word irC,, 11 whose trace isy;. Then, there exists an infinite bad pathZn
starting from a word inCy and whose trace isg7y; . . ..

Proof. By hypothesis, for each > 0, there is a bad finite path ii. of the form
wi — ... = w), — w, , withw] € €, w} ., € €1, and whose trace is;
(with n; = |y4)- Now fori > 0, let us consider an arbitrary finite path7a of the
formw; — ... — w,, — w,,+1 Whose trace ig; and such that; € C; (note that
Wp,+1 € Cit1). SinceC; € SW and.A is atomic, by definition o7 ., it follows that
reg (w;) = regA(w;'.) forall1 < j < n; + 1. Then, by Propertyd above, in order to
prove the current Lemma, it is sufficient to prove: (1) thedists an infinite path iry..
from a word inCy visiting only non-doomed words and whose tracegs; . . ..

For eachw € @y, let us consider the finite-branching trég obtained from the un-
winding of 7. fromw by pruning all the infinite paths whose tracest 7 . . .. Also,
let 7", obtained frondl’, by pruning all the nodes corresponding to doomed words. By
PropertyA above T, is still a tree (possibly empty). Moreover, by hypothesieldef-
inition of DT ), the fores(T, ) wce, is infinite. Sincely, is finite, by Kéning's Lemma
there isw € €y and an infinite path i/, i.e. Property (1) holds. a



For@ e SW, f being a strategy b7 ©, and~ being a finite play off, we denote
by f +~: D C I'* — 2T the mapping defined as‘ € Diff v-~"is a play off, and
(f+79)(") = f(v-v"). Note thatf + ~ is a strategy irDT ¢, whereC€ = statepze (7).

Proof of Lemma 9.

First, we prove that each fixed point &f, (L) is contained inf2. Let L. C SW such
thatII (L) = L, and letCy € L. We have to prove tha®, € (2. Let us consider an
arbitrary strategy, of D7 %° (respectingal). SinceC, € I1, (L), there s afinite play
Yo Of fo such that®; = state, ¢, (70) € L and there is a finite bad path . from

some word inCy to some word inC;. Now, let us consider the stratedgy of DTS
given by fo + 0. SinceC; € L, we can repeat fof; andC; the same argument above.
Therefore, it follows that there is a sequeri€g),.cn of elements inL, a sequence of
strategies /. )nen, and a sequence of finite plays, ).y such that for alh € N:

1. v, is afinite play off,, fn+1 = fn + Vn, @andC, 11 = state, ;e (Yn);
2. there is a finite bad path . with trace~,, from a word inC,, to a word inC,, .

Lety = ~o7v1.... By Properties 1 and 2, and Lemma 11, it follows that therenis a
infinite bad path irZ.. from a word inCy with trace~. By Property 1,y is an infinite
play of fy. Therefore, sincé, is an arbitrary strategy a7 *°, we obtain tha€, € (2.

It remains to prove tha€ is a fixed point of[. The inclusion/I(£2) C 2 is
easy (it easily follows from Proper#y above). Now, let us consider the other inclusion
2 C I (2). LetC € 2 andf be a strategy oDT°. Let us consider the st P of
infinite plays~ of f for which there is an infinite bad path ifi. starting from some
word in € and whose trace ig. SinceC € (2, BP is not empty. For each of such plays
~, we consider a prefix’ for which there is a finite bad path ih. from some word in
C to some word ir€(y’) = state,sc (y'). Note that such &’ always exists. Evidently,
there exists some € BP such th&lN'ﬁ(’y’) € (2. Indeed, assuming the contrary, we can
build a strategyf’ of DT, such that for any infinite play of f, there is no infinite
bad path inZ. starting from some word i€ and whose trace is. But this cannot be,
sinceC € (2. Thus,C € I (£2). This concludes the proof. O

F.2 Computing the Cobasis offT (L) (Proof of Proposition 9)

We assume that we are given a finite cobdsisf a lower setZ. In the following, we
show that we can compute a finite cobasigiof(L).

Definition 2 ([23]). Givenn > 1, we denote by, the preorder oveiV defined as
follows: w <, w’ iff for all w € W with |u| < n, u < wimpliesu < w'.

Note thatw < w’ impliesw =<, w’ for all n > 1. Moreover, for eactn > |w],
w =<, w impliesw =< w’. We also consider the preorder, over SW defined as
follows: € C,, €' iff Vo’ € €'.Fw € C. w <, w'.

ForC € SW, thelengthof €, written|C|, is the length of the longest word &
In the following two Lemmata we assume thats greater than the number of clocks
of A. Lemma 12 directly follows from a similar result in [23].



Lemma 12 (Simulation Lemma). The transition relation— of 7. is downward-
. a,9,Y . a,9,Y / ’
compatible w.r.t=,,: u <, wandw —— w’ impliesu —— «' for someu’ <, w’.

By Simulation Lemma, definition df,,, and following a pattern similar to that of
the proof of Proposition 6 (see Appendix C), we obtain thefeing.

Lemma13. 1. ifCC, ¢, thenenablegr_(C) = enabledr_(C').
2. The transition relation—p of D7 .. is downward-compatiblevith respect to—,,,

. a,g,Y . . a,g,Y
i.e.C) C, € andC, ——p €3 impliesC] ——p €} for someC), C,, Cs.

In the following, we denote by the length of the longest word occurring in the
word setsC € B (the finite cobasis of.). Note thatL is a lower set with respect to
C,,. This because for alt € SW and® € B, ¢ C,, Ciff ¢’ C €. Without loss of
generality we assume thatis greater than the number of clocks.4f

Proposition 10. I7, (L) is a lower set with respect tQ.,.

Proof. Sincen is greater than the number of clocks4fw’ =<,, w impliesreg, (w) =
reg, (w'). Moreover, by Simulation Lemma, the existence of a finite pathp in 7.
from w implies the existence of a bad pathfrom w’ and having the same traceas
Then, by Lemma 13 and the fact thatis a lower set with respect ta,,, the present
proposition can be proved by following the same patternagtbof of Lemma 10. O

Proposition 11. A basis ofSW \ I, (L) consists of all word set€ € SW \ I1(L)
of length less than - 2141,

Proof. Let € € SW \ II;(L). We have to prove that there & € SW \ I1(L)
such thate; C € and|@€;| < n - 2™4l. By Proposition 10€ C,, €, implies@; €
SW\ II.(L). Let us consider a word € C. For each subword’ < u with |[u/| = n,
we record the letter positions of a particular instance’ah « [23]. There are letter
positions for each subword, and fewer tin 4l such subwords. Now, letub(u) be
the word determined by the collection of all letter posi#on« recorded as indicated
above. We have thatub(u) < v andu =<, sub(u). LetC; € SW defined as follows:
C1 = {sub(u) | u € C}. Evidently,C; C C, |C1]| < n - 2714l and@ C,, €. O

Proposition 12. GivenC € SW, itis decidable whethe@ € II (L).

Proof. The algorithm we propose to check whetlere 17, (L) is a variant of that
given in Subsection 4.4 and Appendix E. Thus, we omit theildeta a

Corollary 2. A finite cobasis of7, (L) can be computed from the given cobasid.of

Proof. By definition, a finite cobasis o7 (L) is a finite basis ofSW \ I1,(L). By
Proposition 11, such a basis consists of all word Sets SW of length bounded by
n-2"14 such tha ¢ IT, (L) (recall thatn is the length of the longest word occurring
in the word sets belonging to the finite cobasisof L). Since the set of word sets
@ € SW of length bounded by - 27141 is finite, it suffices to show that we can decide
for a givenC € SW whetherC € 7, (L). By Proposition 12 this is decidable. O



