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École Normale Supérieure de Cachan
61, avenue du Président Wilson
94235 Cachan Cedex France

Verification of Petri Nets with
Read Arcs

César Rodŕıguez and Stefan Schwoon

LSV (ENS Cachan & CNRS & INRIA), France

June 20, 2012

Research report LSV-12-12





Verification of Petri Nets with Read Arcs
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Abstract

Recent work studied the unfolding construction for contextual nets, i.e. nets with read
arcs. Such unfoldings are more concise and can usually be constructed more efficiently than
for Petri nets. However, concrete verification algorithms exploiting these advantages were
lacking so far. We address this question and propose SAT-based verification algorithms for
deadlock and reachability of contextual nets. Moreover, we study optimizations of the SAT
encoding and report on experiments.

1 Introduction

Petri nets are a well-known model for concurrent systems. McMillan [17] introduced unfoldings
as a tool for verifying properties of such nets. Roughly speaking, the unfolding of a net N is an
acyclic net bisimilar to N . McMillan showed that for bounded nets one can use a finite prefix
P of the unfolding to check certain properties of N , e.g. reachability of markings or deadlock-
freeness; McMillan himself proposed a deadlock-checking algorithm based on this idea.

The interest of unfoldings lies in the fact that, while P is in general larger than N , it
is smaller than the full reachability graph. Moreover, deadlock or reachability checking are
NP-complete for P but PSPACE-complete for N . Thus, the unfolding technique represents a
time/space tradeoff for verifying Petri nets. This tradeoff is particularly attractive when testing
multiple properties of the same net because P needs to be constructed only once.

The publication of [17] triggered a large body of research. To name a few items, the necessary
size of P has been reduced [9], efficient tools for generating P have been implemented [16, 24],
and unfoldings-based verification algorithms have been developed [7,10,11,14,18]. An extensive
survey can be found in [8].

Recently, unfoldings of contextual nets (c-nets) have been studied, i.e. nets with read arcs
that check for the presence of tokens without consuming them. Their unfoldings can be expo-
nentially more compact than for Petri nets. It is thus natural to base verification on unfoldings
of c-nets rather than Petri nets.

Previous work on c-net unfoldings has concentrated on their construction: [2] gave an ab-
stract algorithm, and [1, 22] provided efficient construction methods. However, concrete veri-
fication algorithms making use of them are still missing. In this paper, we aim to close this
gap. Our contributions are twofold: we investigate SAT-encodings of unfoldings, and we extend
them to c-nets.

Concerning the first point, recall that given a finite complete prefix P of a bounded Petri
net N , deciding deadlock-freeness, reachability, or coverability on N is NP-complete. Thus,
previous works consisted in reductions to different NP-complete problems: McMillan [17] em-
ployed a branch-and-bound technique, Heljanko [11] a stable-models encoding, and Melzer
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and Römer [18] used mixed integer linear programming, later improved by Khomenko and
Koutny [14,15]. The technique used by Esparza and Schröter [10] is an ad-hoc algorithm based
on additional information obtained while computing the unfolding.

The previous decade has seen the emergence of powerful SAT solvers. Programs like Min-
iSat [6] employ advanced techniques such as clause learning, 2-watch propagation schemes, etc.
It is natural to profit from these advances and reduce to SAT instead; all the more so because
unfoldings are 1-safe nets, so the marking of a place naturally translates to a boolean vari-
able. Indeed, SAT solving has already been proposed for the similar problem of model-checking
merged processes [13], and [8] gives an explicit SAT encoding for Petri net unfoldings. However,
we are not aware of a publicly available tool that uses this idea. We examine the performance
of the encoding and propose some optimizations.

Our principal contribution consists in extending the techniques for deadlock checking and
reachability to unfoldings of c-nets. Thus, we intend to leverage their advantages w.r.t. ordinary
unfoldings, i.e. faster construction and smaller size. It is worth noting that the smaller size of
c-net unfoldings does not automatically translate to an easier SAT problem, for the following
reasons: First, the presence of read arcs may cause so-called cycles of asymmetric conflict.
Thus, a SAT encoding requires acyclicity constraints, which are not necessary for conventional
unfoldings. Secondly, an event in a c-net unfolding can occur in multiple different execution
contexts, called histories, and the constructions proposed in [1,2,22] require to annotate events
with potentially many such histories. In contrast, every event in a Petri net unfolding has only
one history. Some verification algorithms for Petri nets rely on this fact and do not easily adapt
to c-nets. We propose solutions for both problems. Our encoding does not refer to the histories
at all, and the effect of the acyclicty constraints can be palliated by several strategies. We add
that the SAT-encoding for c-net unfoldings was already briefly sketched in [25], but without
considering these problems.

To our knowledge, this is the first paper proposing practical verification algorithms using
unfoldings of c-nets. These algorithms are provided as an add-on to the tool Cunf, which is
freely available [20]. The tool is more efficient than previous approaches when applied to Petri
net unfoldings, and even more efficient than that when used on c-net unfoldings.

The paper is structured as follows: In Section 2, we recall notation and previous results. In
Section 3 we explain how unfoldings can be used to check for deadlock and reachability, and
in Section 4, we discuss the reduction of the problem to SAT. We report on experiments in
Section 5 and conclude in Section 6. An abridged version of this paper was published at the
23rd International Conference on Concurrency Theory (Concur 2012) [21].

2 Basic notions

In this section, we establish our basic definitions and recall previous results. See [2, 22] for a
wider background.

2.1 Contextual nets

A contextual net (c-net) is a tuple N = 〈P, T, F,C,m0〉, where P and T are disjoint sets of
places and transitions, F ⊆ (P × T ) ∪ (T × P ) is the flow relation, C ⊆ P × T is the context
relation and m0 : P → N is the initial marking. A pair (p, t) ∈ C is called read arc. A Petri net
is a c-net without read arcs. N is called finite if P and T are finite sets. Fig. 1 (a) depicts a
c-net. Read arcs are drawn as undirected lines, here between p and C.

For x ∈ P ∪ T , let •x := { y ∈ P ∪ T | (y, x) ∈ F } the preset of x and x• := { y ∈ P ∪ T |
(x, y) ∈ F } the postset of x. The context of a place p is defined as p := { t ∈ T | (p, t) ∈ C },
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Figure 1: (a) A safe c-net N ; and (b) an unfolding prefix P for N .

and the context of a transition t as t := { p ∈ P | (p, t) ∈ C }. These notions extend to sets in
the usual fashion. For the sake of simplicity, we assume for any transition t that its context is
disjoint from its preset and its postset, i.e. •t ∩ t = ∅ and t• ∩ t = ∅.

A function m : P → N is called marking of N , and assigns tokens to the places of P . A
transition t is enabled at m if m(p) ≥ 1 for all all p ∈ t∪ •t. Such, t can fire, leading to marking
m′, where m′(p) = m(p) − |{p} ∩ •t| + |{p} ∩ t•| for all p ∈ P . We say that some marking m
is reachable if it can be obtained by a finite sequence of firings starting at m0. A marking m is
deadlocked if it does not enable any transition.

N is called k-bounded if m(p) ≤ k for all reachable m and p ∈ P , and safe if it is 1-bounded.
For safe nets, we treat markings as sets of places carrying tokens.

2.2 Occurrence nets

Let N = 〈P, T, F,C,m0〉 be a c-net. For t, t′ ∈ T , we write t <· t′ if t• ∩ (•t′ ∪ t′) 6= ∅. We write
< for the transitive closure of F ∪ <·, and ≤ for the reflexive closure of <. For x ∈ P ∪ T , we
write [x] for the set of causes of x, defined as {t ∈ T | t ≤ x}. A set X ⊆ T is causally closed if
[t] ⊆ X for all t ∈ X.

Two transitions t, t′ are in symmetric conflict, denoted t # t′, iff •t ∩ •t′ 6= ∅, and in
asymmetric conflict, written t ↗ t′, iff (i) t <· t′, or (ii) t ∩ •t′ 6= ∅, or (iii) t 6= t′ and t # t′.
In case (ii) we also speak of a proper asymmetric conflict and write t↗↗ t′. For a set of events
X ⊆ T , we write ↗X to denote the relation ↗∩ (X ×X).

A c-net O = 〈B,E,G,D, m̂0〉 is called an occurrence net iff (i) O is safe and for any b ∈ B,
we have |•b| ≤ 1; (ii) < is a strict partial order for O; (iii) for all e ∈ E, [e] is finite and ↗[e]

acyclic; (iv) m̂0 = { b ∈ B | •b = ∅ }.
Let O be such an occurrence net. As per tradition, we call the elements of B conditions,

and those of E events. A configuration of O is a finite, causally closed set of events C such that
↗C is acyclic. Conf (O) denotes the set of all such configurations. For a configuration C, let
cut(C) := (m̂0 ∪ C•) \ •C.

The notion of history of an event can be seen as the suitable way to adapt the notion of local
configuration [17] to contextual unfoldings. Given a configuration C, and some event e ∈ C, the
history of e in C is the configuration H := {e′ ∈ C | e′ ↗C e}. In Fig. 1 (b), for instance, the
sets H1 := {e1} and H2 := {e3, e1} are histories of e1 in, respectively, the configurations {e1}
and {e3, e1}. A configuration H is a history of e if it is the history of e in some configuration
of O. Again in Fig. 1 (b), H1 and H2 are all the histories of e1. Notice, in particular, that e1
has more than one history. For any history H of e, the pair 〈e,H〉 is called extended event.

Finally, a prefix of O is a net P = 〈B′, E′, G′, D′, m̂0〉 such that E′ ⊆ E is causally closed,
B′ = m̂0 ∪ (E′)•, and G′, D′ are the restrictions of G,D to (B′ ∪ E′).
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2.3 Unfoldings

Let N = 〈P, T, F,C,m0〉 be a bounded c-net. It is possible [2, 22] to produce a labelled oc-
currence net UN = 〈B,E,G,D, m̂0〉, called the unfolding of N , equipped with a mapping
f : (B ∪ E)→ (P ∪ T ), that has the following properties:

• f maps conditions to places and events to transitions. We extend f to sets, multisets, and
sequences in the usual way; f applied to a marking of UN (a set) will yield a marking of
N (a multiset).

• UN is an acyclic version of N , i.e. the firing sequences and reachable markings of UN ,
modulo the mapping f , are exactly the same as in N .

We now give an inductive definition of UN . Conditions of will take the form 〈p, e′〉, where
p ∈ P and e′ ∈ E ∪ {⊥}, and events will take the form 〈t,M〉, where t ∈ T and M ⊆ B. We
shall assume f(〈p, e′〉) = p and f(〈t,M〉) = t, respectively. A set M of conditions is called
concurrent, written conc(M), when UN has a reachable marking M ′ s.t. M ′ ⊇M .

Then UN is the smallest net containing the following elements:

• if p ∈ m0, then 〈p,⊥〉 ∈ B and 〈p,⊥〉 ∈ m̂0;

• for any t ∈ T and disjoint pair of sets M1,M2 ⊆ B such that conc(M1 ∪M2), f(M1) = •t,
f(M2) = t, we have e := 〈t,M1 ∪ M2〉 ∈ E, and for all p ∈ t•, we have 〈p, e〉 ∈ B.
Moreover, G and D are such that •e = M1, e = M2, and e• = { 〈p, e〉 | p ∈ t• }.

In general, UN is infinite and therefore useless for verification pourposes. We focus our
attention on the so-called marking-complete finite prefixes P of UN . Naturally, all markings
reachable in P are also reachable in UN , and thus also in N . However, a prefix P is called
marking-complete when additionally for any marking m reachable in N , there exists a marking
m̂ reachable in P with f(m̂) = m. Fig. 1 (b) depicts a marking-complete prefix of the c-net
shown in Fig. 1 (a), where f is given in parentheses.

Finally, we mention that any c-net can be converted into a Petri net with the same reachable
markings, see [22]. For instance, the so-called plain encoding of a c-net is the Petri net resulting
from replacing read arcs with two directed arcs. However, as shown in [22], the unfolding of
such a Petri net is in general larger and often takes more time to construct. We come back to
this point in Section 5.

3 Using unfoldings for verification

In this section, we illustrate why some existing verification approaches for Petri net unfoldings
do not adapt well to c-net unfoldings. This justifies the choice of marking-completeness in
Section 2.3 and is related to the notion of cutoff.

For Petri nets (i.e., without read arcs), existing algorithms such as [9, 17] produce a finite
prefix P by truncating the unfolding at so-called cutoff events. Essentially, for a cutoff event e
there exists another event e′ in P such that f(cut([e])) = f(cut([e′])). Intuitively, e does not
contribute a new marking to the unfolding, and therefore e and its successors can be omitted
from P.

Certain deadlock-checking algorithms for Petri nets depend on a notion more strict than
marking-completeness, which we call cutoff-completeness: a prefix is called cutoff-complete if is
marking-complete and additionally includes such cutoffs in P.
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Remark 1 If P is cutoff-complete, then N contains a deadlock iff P contains a cutoff-free
configuration C such that cut(C) is deadlocked in P.

This reduction is directly employed in [14,18] and indirectly in [17]. Seeing as the algorithm
in [14] performs very well, it would be tempting to adapt it to c-nets. However, we show that
this is problematic.

First, recall that the unfolding construction for c-nets given in [1, 2, 22] lifts the notion of
cutoff to extended events. In analogy to Petri nets, some extended events will be marked as
cutoffs when another extended event 〈e′, H ′〉 exists such that f(cut(H)) = f(cut(H ′)). As we
said, an event may have multiple histories, some of which are cutoffs while others are not.

Under this notion of cutoff, Remark 1 is still a correct reduction for checking deadlock-
freeness in c-nets, which however, requires reasoning about cutoff-free configurations, and there-
fore about histories. Crucially, a polynomially-sized prefix could have an exponential number
of histories. Producing SAT encodings that reason about histories is therefore of little interest
unless one finds a suitable compact representation for them. We provide, however, an example
showing that this is difficult, due to the existence of events with cutoff and non-cutoff histories.

The net shown in Fig. 1 (a) is free of deadlocks. An unfolding prefix P is shown in Fig. 1 (b),
the mapping f is given in parentheses. As we said, event e1 has two histories: H1 = {e1} and
H2 = {e3, e1}. The unfolding algorithm will make 〈e1, H2〉 a cutoff but not 〈e1, H1〉; indeed H2

leads to the same marking {r, s} as 〈e2, {e2}〉.1 An event is shown in black if all its histories are
cutoffs. The prefix in Fig. 1 (b) is marking-complete and also cutoff-complete, when the latter
notion is lifted to enriched events.

Consider the marking m′ = {c3, c6}, which is deadlocked in P. The configuration leading to
m′ contains a cutoff (namely, 〈e1, H2〉), so m′ cannot be interpreted, in the sense of Remark 1,
as representing a deadlock of N – indeed f(m′) = {r, s} enables transition E in N . Note that
the history H1 of e1 is not a cutoff. This example demonstrates that checking whether a given
configuration is cutoff-free requires to reason about histories and not just about events. This
is undesirable because forbidding certain histories would result in a rather more complex SAT
formula. We therefore use another solution that is completely event-based and requires only
marking-completeness:

Remark 2 Let N be a bounded c-net and P a marking-complete prefix for N . Then N contains
a deadlock iff P has a reachable marking m′ such that f(m′) is deadlocked. Moreover, m is
reachable in N iff P has a reachable marking m′ such that f(m′) = m.

In the following, we assume that every event in a marking-complete prefix has at least one
non-cutoff history; the unfolding tool Cunf [20] can be instructed to remove the others at no
extra cost.

4 SAT-encodings of c-nets

The SAT problem is as follows: given a formula φ of propositional logic, find whether there
exists a satisfying assignment that makes φ true. SAT solving has taken a quantum leap during
the last decade, and many efficient solvers for this problem exist. Here, we encode the deadlock-
checking and reachability problem for c-nets in SAT, based on Remark 2. For Petri nets, such
an encoding was given in [8]; we generalize it to c-nets and enrich it with optimizations. Notice
that most constraints that we give translate directly into CNF.

1It is not important to understand why the unfolding construction prefers to declare 〈e1, H2〉 a cutoff rather
than 〈e2, {e2}〉, and our point is independent of this choice; what matters is that some events may have cutoff
and non-cutoff histories.
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For the rest of this section, let N = 〈P, T, F,C,m0〉 be a finite safe c-net and P =
〈B,E,G,D, m̂0〉 a finite marking-complete prefix of N . We first construct a propositional
formula φdeadP that is unsatisfiable iff N is deadlock-free. Section 4.4 explains the modifications
needed to implement reachability checking, and Section 4.5 explains how the encoding can be
generalized to bounded nets.

The formula φdeadP is defined over variables e for e ∈ E and p for p ∈ P as:

φdeadP := φcausalP ∧ φsymP ∧ φasymP ∧ φmark
P ∧ φdisP

The first three constraints enforce that any satisfying assignment represents a configuration C,
and φmark

P defines the marking m := f(cut(C)), which φdisP verifies to be deadlocked.
Recall that a configuration is a causally closed set of events free of loops in the ↗ relation.

Subformulae φcausalP and φsymP request C to be a causally closed set of events that has no pair of
events in symmetric conflict:

φcausalP :=
∧

e∈E
e′∈•(•e∪e)

(e→ e′) φsymP :=
∧

c∈C AMO(c•),

where AMO(x1, . . . , xn) is satisfied iff at most one of x1, . . . , xn is satisfied2 (see Section 5.1.2).
φasymP ensures that C is free of ↗-cycles; the details come in Section 4.1. φmark

P characterizes
supersets of the marking m reached by C:

φmark
P :=

∧
c∈B

p=f(c)
{e}=•c

((
e ∧
∧

e′∈c• ¬e′
)
→ p

)

Finally, φdisP ensures that m is indeed deadlocked in N : 3

φdisP :=
∧

t∈T
∨

p∈•t∪t ¬p

Notice that a variable p may be true even if p /∈ m. However, such an assignment can only serve
to hide a deadlock, so this encoding is safe.

4.1 Asymmetric conflict loops

We now explain φasymP , which ensures that ↗C is acyclic (for convenience, we equate a relation
with a directed graph in the natural way). Symmetric conflicts form cycles of length 2 in ↗
and are efficiently handled by the AMO constraints of φsymP . In a Petri net, these are the only
cycles that can occur. However, in a c-net there may also be cycles in the relation R := <· ∪↗↗.
We show now that they occur naturally in well-known examples:

Consider Fig. 2, which shows the beginning of an unfolding of Dekker’s mutual-exclusion
algorithm [19] (only some events of interest are shown). In the beginning, both processes
indicate their interest to enter the critical section by raising their flag (events e1, f1). They then
check whether the flag of the other process is low (events e2, f2) and if so, proceed (e3) and
possibly repeat (e4, e5). If both processes want to enter the critical section (f ′2), some arbitration
happens (not displayed). Two conflict cycles in this example are e1 <· e2 ↗↗ f1 <· f2 ↗↗ e1 and
f1 <· f ′2 ↗↗ e3 <· e4 <· e5 ↗↗ f1.

Several encodings have been proposed in the literature for acyclicity constraints, including
transitive closure and ranks (see, e.g., [4]). In the ranking method, one introduces for each

2Note that quite frequently, the actual implementation of the AMO constraint will introduce new auxiliar
variables in φdead

P , as it is the case of the k-trees proposed in Section 5.1.2.
3Alternatively, if N is a Petri net and P a cutoff-complete prefix (cf. Section 3), then Remark 1 can be

employed: no variables are needed for the places, and φdis
P can be replaced by

∧
e∈E

(∨
f∈••e ¬f

)
∨
(∨

g∈(•e)• g
)
.
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Figure 2: Partial unfolding of Dekker’s algorithm algorithm with asymmetric cycles.

event e additional boolean variables that represent an integer up to r (the so-called rank of
e), where r is a large enough number. Then, for each pair (e, f) ∈ R, one introduces a clause
(e ∧ f) → [[e < f]], where [[e < f]] is an additional variable that, if true, forces the rank of e to
be less than the rank of f . Naturally, this clause is only necessary if e and f are in the same
strongly connected component (SCC) of R.

A lower bound for r is the length of the longest chain in ↗ that does not contain a cycle;
however, finding the latter is itself an NP-complete problem. A simple upper bound for r is
the size of the largest SCC of R. To further reduce this upper bound, one can exploit the fact
that C is causally closed and that every cycle in R contains at least two edges stemming from
↗↗. Consider the relation R′ := { (e, g) | ∃f, h : e ↗↗ f ≤ g ↗↗ h }. One can easily see that
any causally closed set of events contains a cycle in R iff it contains a cycle in R′, so r can be
bounded by the largest SCC of R′ instead.

On the other hand, R′ may actually contain more pairs than R, and computing R′ may take
quadratic time in |E|. So instead, we reduce the size of R by a less drastic method that can
run in linear time: An event e is eliminated from R by fusing its incoming and outgoing edges
in R only if (i) e is not the source of a ↗↗-edge and (ii) fusing the edges and eliminating e will
not increase the number of edges in R.

Fig. 2 demonstrates another important point. The figure contains two different cycles, both
of which contain f1. Thus, all events in Fig. 2 belong to the same SCC in R. Indeed, we observe
in our experiments that the SCCs of R tend to be large, often composed of thousands of events,
but consist of many short, interlocking cycles. This suggests that an upper bound for r better
than the size of R, even after reduction, may still be feasible. We therefore suggest another
trick: first, check for deadlock while omitting φasymP from φdeadP altogether. This may result in
false positives, i.e. a set of events leading to a deadlocked marking that is not actually reachable
because it contains a cycle in ↗. If the SAT solver comes up with such a spurious deadlock,
repeat with φasymP properly included. The experiments concerning these points are discussed in
Section 5.1.3.

4.2 Reduction of stubborn events

In SAT solving, the value of a variable that is either known or has been tentatively decided is
propagated to simplify other clauses, see [6, 26]. This process is referred as propagation or unit
propagation. In this section, we discuss an optimization that palliates a propagation problem
of SAT checkers when solving formulas produced by the encoding presented in Section 4.
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Figure 3: Stubborn events.

Consider the occurrence net shown in Fig. 3. If event e1 fires, then nothing can prevent e2,
e3, e4, and e5 from firing. Thus, any configuration leading to a deadlock must either contain all
five events or none of them. However, e1 is not guaranteed to fire due to the white event that
consumes from its context.

The SAT encoding of Section 4 will generate the following clauses for the named events and
conditions in Fig. 3; we assume that the black event at the right is a cutoff (has no non-cutoff
histories). For φcausalP , we have the clauses ¬ej ∨ ei for 1 ≤ i < j ≤ 4 and ¬e5 ∨ e3 and ¬e5 ∨ e4.
For φsymP and φasymP , no clauses will be generated. For φmark

P we have:

¬e1 ∨ e2 ∨ p1 ¬e2 ∨ e4 ∨ q1 ¬e3 ∨ e5 ∨ r1
¬e1 ∨ e3 ∨ p2 ¬e2 ∨ e3 ∨ q2 ¬e3 ∨ e4 ∨ r2
¬e1 ∨ e4 ∨ p3 ¬e4 ∨ e5 ∨ s ¬e5 ∨ t

The clauses for φdisP are:

¬p1 ¬q2 ∨ ¬p2 ¬q1 ∨ ¬r2 ∨ ¬p3 ¬r1 ∨ ¬s ¬t

When this formula is presented to a SAT solver like MiniSat, the unit clauses ¬p1 and ¬t
lead to some immediate simplifications. This propagation is handled very efficiently by modern
solvers, and there is no gain in emulating this behaviour while generating the SAT encoding.

Suppose that the solver then tries to set e1 to true and propagates this decision. The
remaining simplified clauses are shown below. Note that e2 and ¬e5 are implied as consequence
of e1 and the other simplifications.

¬e4 ∨ e3 e3 ∨ p2 e4 ∨ p3 e4 ∨ q1
e3 ∨ q2 ¬e4 ∨ s ¬e3 ∨ r1 ¬e3 ∨ e4 ∨ r2
¬q2 ∨ ¬p2 ¬q1 ∨ ¬r2 ∨ ¬p3 ¬r1 ∨ ¬s

In the remaining clauses, all variables appear both positively and negatively; the formula
cannot be simplified any further. Notice, more importantly, that the solver is unable to find a
conflict after tentatively setting e1 to true when e5 is set to false.

This happens because unit propagation in the proposed encoding is unable to detect that
e3, e4, and e5 are logical implications of e1. Even when a solver tentatively sets e1 to true, unit
propagation only infers that e2 must also be true, but not e3 or e4. It takes another decision,
e.g. for e3 or e4, to derive a contradiction and, depending on the solver, possibly multiple steps
to decide that e1 must necessarily be false.

On the other hand, such information is easy to detect on the unfolding structure, and we shall
modify the proposed SAT encoding in these cases. Let us call stubborn any event e satisfying
(•e ∪ e)• = {e}. Intuitively, once all events preceding e have fired, then firing e is unavoidable
to find a deadlock. In Fig. 3, events e2, e3, e4, e5 are all stubborn.

Indeed, consider any deadlocked configuration C of P, and let e be any stubborn event
verifying •(•e ∪ e) ⊆ C. Then either e is in C or it is enabled at cut(C), since C contains all
events preceding e. But the latter is not possible because C is a deadlock, so e must be in C,
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which proves that e ∈ C iff •(•e ∪ e) ⊆ C (the other direction follows from the fact that C is
causally closed).

This suggests that we could substitute every occurrence of e by a conjunction of the variables
associated to the predecessors of e. We denote by Es the set of stubborn events, and define
inductively the set of predecessors of any event e as

pred(e) := •(•e ∪ e) \ Es ∪
⋃

e′∈•(•e∪e)∩Es

pred(e′)

.

Proposition 1 If e is stubborn, then any deadlocked configuration C of P verifies that e ∈ C
iff pred(e) ⊆ C.

Proof Notice that pred(e) ⊆ [e]. If e ∈ C, then obviously pred(e) ⊆ C. We prove the opposite
direction by induction on the size of [e].

Base. Let e be such that |[e]| = 1. Since C deadlocks, •e ∪ e 6⊆ cut(C) holds. Some event in C
has thus consumed some condition of •e ∪ e ⊆ m̂0, and it can only be e because it is stubborn.

Step. Let k ∈ N be k ≥ 2 and assume the statement to be true if |[e]| < k. Let now e be such
that |[e]| = k. Again, since C deadlocks, •e ∪ e 6⊆ cut(C) holds. Since no event different than
e can consume •e ∪ e, either e ∈ C or there exist e′ ∈ •(•e ∪ e) such that e′ /∈ C. In the first
case we are done. In the second we reach a contradiction, as we see now. First notice than e′

has to be stubborn, since otherwise e′ ∈ pred(e) and pred(e) 6⊆ C, a contradiction. Because e′

is stubborn and such that |[e′]| < k (since e′ < e) and pred(e′) ⊆ pred(e) ⊆ C, the induction
hypothesis applies, implying that e′ ∈ C. But this is a contradiction.

Corollary 1 φdead
P ≡ φdead

P ∧
∧

e∈Es
(e↔

∧
e′∈pred(e) e

′)

Corollary 1 can be exploited to modify φdeadP in two ways: for every stubborn event e, (i)
add a clause

∧
e′∈•(e∪•e) e

′ → e, or (ii) substitute e by
∧

e′∈pred(e) e
′. Method (i), when applied

to Fig. 3, will allow to derive a contradiction when e1 is made true. On the other hand, when
the solver sets e4 to false, no information about the other events can be obtained through
unit propagation. Method (ii) will eliminate the stubborn events from the encoding altogether.
The resulting formula, after an initial unit propagation phase by the SAT solver, allows to
immediately derive ¬e1.

We briefly explain the changes to φdeadP motivated by method (ii): φsymP is not affected
because no stubborn event appears in any symmetric conflict, and neither is φdisP , which is only
over variables for places. In φcausalP , however, clauses e → e′ are discarded if e is stubborn or
replaced by e→ e′′ for every e′′ ∈ pred(e) if e is not stubborn. In a clause

(
e ∧
∧

e′∈c• ¬e′
)
→ p

of φmark
P , we need to replace e by a conjunction over pred(e) if e is stubborn. In principle, the

same needs to be done for e′. However, if |c•| ≥ 2, then no event in c• is stubborn, and nothing
changes; but if c• = {e′} is a singleton, and e′ is stubborn, then the clause is split into |pred(e′)|
different clauses. For φasymP , in a clause of the form e ∧ f → [[e < f]], both e and f are replaced
by conjunctions, if applicable; thus, the formula will still require ranks for e and f even if e or
f are not present.

Method (ii) reduces the number of variables and either reduces (up to a linear factor) or
increases (up to a quadratic factor) the number of clauses, as shown in Fig. 4. In (a), part of an
occurence net is shown. Without optimizations, n clauses of the form e→ ei and n of the form

9
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Figure 4: Good (a) and bad (b) cases for the stubborn event optimization

ei → f are generated in φcausalP . Assuming that e1, . . . , en are stubborn, Method (ii) replaces
these 2n clauses by one clause e→ f. Similar reductions occur in φdisP and φmark

P . On the other
hand, φcausalP for (the fragment of) the occurrence net (b) has, when no optimization is used, n
clauses of the form ei → e and n of the form e → fi, but n2 clauses of the form ei → fj when
Method (ii) is used. Nonetheless, in our experiments we used Method (ii) due to the better
behaviour of unit propagation in the resulting encodings, as explained above.

We remark that stubborn events are also treated specially in the stable-models encoding
of [11]. While stable models are similar to SAT, the treatment in [11] is simpler; its analogue in
propositional logic would not eliminate stubborn events from the formula nor allow to directly
conclude that e1 cannot be fired.

4.3 Additional simplification

We briefly mention some possible simplifications of the formula. First, for a place p, if p•∪p = ∅,
then p does not appear in φdisP and can be omitted from φmark

P .
Secondly, a potentially more interesting simplification concerns subset checking. For two

conditions c, d, if c• ⊆ d•, then AMO(c•) is implied by AMO(d•) and can be omitted from φsymP .
Similarly, for two transition t, u where •t ⊆ •u, disabledness of t implies disabledness of u, so u
can be omitted from φdisP . We return to this point in Section 5.1.1.

4.4 Reachability and Coverability

The SAT encoding can be easily modified to check reachability or coverability of a marking.
For simplicity, the formulas given here are not directly in CNF.

For coverability, we want to check whether N has a reachable marking m such that PM ⊆ m,
where PM ⊆ P . This requires the following modifications: φmark

P still has the same intention but
the sense of the implication is reversed; if a variable p is true we need to ensure that indeed some
condition labelled by p is marked in C. We introduce additional variables c for some conditions
c:

φmark
P :=

∧
p∈PM

(
p→

∨
f(c)=p c

)
∧
∧

f(c)∈PM

(
c→

(∧
e∈•c e ∧

∧
e∈c• ¬e

))
Moreover, φdisP specifies reachability of PM : φdisP :=

∧
p∈PM

p
For reachability, we want to check whether a given marking m is reachable. Then, the

variables representing the places must contain the exact marking reached by the event, which is
achieved by replacing the one-sided implications of φmark

P by equivalences. Moreover, φdisP needs
to be changed to

∧
p∈m p ∧

∧
p/∈m ¬p.
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4.5 Bounded nets

We briefly sketch an extension to k-bounded nets. For deadlock checking, actually no modi-
fications are needed because we require the preset and context of each transition to be a set.
This is in the tradition of [1, 2, 22], where it helps to ease the presentation. However, if presets
and contexts could be general multisets, then, for p ∈ P , one could replace the variable p by
variables pi, where 1 ≤ i ≤ k, with the meaning “p carries at least i tokens”. Then one would
modify φmark

P to make pi true if at least i conditions with label p are marked in C, and φdisP
requires that for each transition t there exists some p ∈ •t ∪ t such that pi is false, where i is
the number of tokens in p required by t. The extension for reachability is analogous, modulo
the sense of the implication (cf. Section 4.4).

5 Experimental evaluation

In this section, we evaluate the SAT-based reduction proposed in Section 4. For this, we
wrote a program that reads an unfolding prefix P generated by Cunf [20] and outputs the
associated formula φdeadP in DIMACS CNF format. As a SAT solver, we used the well-known
tool MiniSat [6].

This section is comprised of two parts. In Section 5.1, we first report on the effect of certain
encoding variants and optimizations like those in Sections 4.1 to 4.3. In Section 5.2, we then
compare against other unfolding-based methods, and we evaluate the effect of using c-nets
rather than Petri nets. We concentrate on the aspect of deadlock checking; as pointed out in
Section 4.4, the encoding for reachability is very similar.

5.1 Optimizations

Section 4 proposed several optimizations of the encoding. We now empirically evaluate their
impact on the solving time. We employed as benchmarks the same set of safe nets that has
previously been used in other papers of the literature on Petri net unfoldings, e.g. [11,12,22,23].
For each Petri net N in the set, we obtained a c-net N ′ by substituting pairs of arcs (p, t) and
(t, p) in N by read arcs; we thus have a set of Petri nets and an alternative set of c-nets.

5.1.1 Stubborn event elimination and subset reduction

Over the set of Petri nets shown in Table 2, we found that removing stubborn events reduces the
accumulated SAT solving time by 27%. When applied together with the subset optimization
from Section 4.3, this grows to 30%. For c-nets, we measured a 14% reduction when stubborn
events are removed from the encoding without acyclicity constraints but only a 6% reduction if
additionally the subset optimizations are applied. Experiments over the encoding with acyclicity
were similar.

These experiments suggest that removal of stubborn events has a positive impact on per-
formance, while subset optimization has very limited, even negative impact. For the following,
we applied only the stubborn event optimization.

5.1.2 AMO constraint

We briefly discuss the constraint AMO(x1, . . . , xn) in φsymP . The constraint AMO(x1, . . . , xn)
in φsymP can be trivially encoded by

∧
1≤i<j≤n(¬xi ∨ ¬xj). However, this pairwise encoding is

quadratic, and the SAT performance suffered for examples with large conflict sets when this
was used.
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Before reduction After reduction Ratio after/before
Net Nodes Edges Nodes Edges Nodes Edges

bds 1.sync 192 271 27 52 0.14 0.19
byzagr4 1b 3197 64501 2348 61088 0.73 0.95
q 1.sync 189 4095 126 4032 0.67 0.98
bds 1.fsa 66 89 9 16 0.14 0.18
dme11 8745 44968 4918 40301 0.56 0.90
rw 2w1r 1766 8877 915 7447 0.52 0.84

Table 1: Reduction of the asymmetric-conflict relation.

A survey of better encodings can be found in [3]. Our tool uses a k-tree encoding, that
introduces O(n) additional variables and adds O(n) clauses. The k-tree encoding on variables
x1, . . . , xn is an AMO constraint denoted by T k

y (x1, . . . , xn) that we specify here for k = 2:

T 2
y (x1, . . . , xn) :=


x1 → y if n = 1

T 2
y1(x1, . . . , xdn

2
e) ∧ T 2

y2(xdn
2
e+1, . . . , xn) ∧ otherwise

(¬y1 ∨ ¬y2) ∧ (y1 → y) ∧ (y2 → y)

Here, y, y1, and y2 are new variables. The k-tree constraint T k
y (x1, . . . , xn) is satisfied by

assignments that either satisfy no xi or satisfy one xi and also y, for 1 ≤ i ≤ n. It (1) partitions
the n variables in k groups, (2) constrains recursively each group, (3) ensures that at most one
group has one satisfied variable (by means of the associated new yi variables, for 1 ≤ i ≤ k)
and (4) sets y if any group has one satisfied variable. Constraining the k new variables yi can
be done by means of the pairwaise encoding or by a new k′-tree encoding (with k′ < k). For
k = 2, this encoding can be optimized to yield 3n− 5 clauses and n− 1 new variables.

We observed an overall improvement when replacing the pairwise with the k-tree encoding.
The accumulated SAT solving time on our benchmarks under values of k = 2, . . . , 8 was minimal
for k = 4. Experiments over c-nets on the encoding suggested k = 4 as a good candidate, as
well. We therefore used 4-tree encodings in φsymP for the following experiments.

5.1.3 Acyclicity checking

Section 4.1 explained that φasymP encodes cycle-freeness of configuration C w.r.t. the relation
R = <· ∪ ↗↗. We investigated three encodings suggested in [4]: transitive closure, unary ranks,
and binary ranks. The latter clearly outperformed the others. In the binary rank encoding,
every event is associated with a rank, i.e. an integer up to some bound r, that is represented
by dlog2 re boolean variables. Constraints of the form [[e < f]] ensure that the rank of event e is
less than the rank of event f if (e, f) ∈ R. If n is the number of events in P, the resulting SAT
encoding is of size O(n2 log n).

Moreover, Section 4.1 proposed a method to reduce the size of R. Table 1 shows the
size of the direct asymmetric conflict relation before and after this reduction for some c-nets
unfoldings with at least one cycle in R. More precisely, we show the size of the largest SCC
(in most examples there is in fact only one non-trivial SCC). In average, the method proposed
eliminates 66% of the nodes and 26% of the edges, seeming thus to be more effective at reducing
the number of nodes rather than the number of edges, wich in turn becomes a reduction in the
number of variables rather than the number of clauses of the encoding.
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However, in some examples, the remaining SCCs are still rather large, on the order of tens
of thousands of events, and in these cases φasymP negatively impacts the running time. We
therefore implemented a two-stage approach, in which the first stage simply omits φasymP from
the formula. Only when this first stage yields a false positive, a second stage with φasymP is
used to obtain a definitive result. This approach was very successful: in over 100 different nets
from various sources that we tried, only 2 (small) nets yielded a false positive. The experiments
presented in the following use this two-stage approach.

5.1.4 SAT-solver settings

MiniSat allows the user to tweak certain aspects of the SAT-solving algorithm. It is tempting
to do so in order to exploit knowledge about the problem domain.

In φdeadP for instance, the chosen configuration C determines the marking m. MiniSat can
be instructed to search a solution by actively choosing values only for a subset of variables, the
so-called decision variables. By default, all variables are decision variables. We tried removing
places from the decision variables, however the effect on the running time was negative overall.

Similarly, we tried to exploit the causal structure of P by instructing MiniSat to prefer
deciding the values of events with few (resp. many) causal predecessors first. This, too, tended
to impact the solving time negatively.

Thirdly, we measured the impact of choosing the polarity of the variables (i.e., whether
MiniSat first tries setting them to true or false). While this had a positive impact on certain
examples, other examples were very negatively affected. Overall, the default settings of MiniSat
proved to be very good and did not benefit from our adjustments.

5.2 Comparisons

In [15], Khomenko and Koutny compared three versions of their deadlock checking method,
implemented in the tool clp, against the methods by McMillan [17], Melzer and Römer [18],
and Heljanko [11]. In their benchmarks, the first version of their algorithm4 outperformed the
other methods on almost all examples. We experimentally confirmed this conclusion. Moreover,
we learnt of an unpublished SAT-based tool by Khomenko which is said to be slower than clp.5

We therefore compare our technique with the first method of clp.6

We discuss two families of examples: a standard suite of benchmarks known from the un-
folding literature (see Section 5.1), and another family encoding networks of logic gates. The
first family does not specifically exploit the features of c-nets; here the savings are not dramatic
but still significant. In the second family, c-nets lead to large time savings.

Table 2 presents the results on the aforementioned standard suite. We used Mole [24] to
produce finite complete prefixes of the Petri nets and Cunf [20] to do the same for c-nets.7 The
running times for Mole and Cunf are given in the respective columns, the number of events
and conditions of the two prefixes is indicated in the columns |E| and |B|. For Petri nets, we
also give the running times of clp, and the running time of MiniSat in our encoding on the
Petri net. For c-nets we provide the running times of MiniSat with the settings discussed in
Section 5.1. Times are given in seconds and represent averages over 10 runs.

4Column std in Tables 1 and 2 in [15].
5According to the author, V. Khomenko.
6All experiments have been performed using Cunf v1.4, Mole v1.0.6, both compiled with gcc 4.4.5, ver-

sion 301 of clp, and MiniSat v2.2.0. Our machine has twelve 64bit Intel Xeon CPUs, running at 2.67GHz,
50GB RAM and executes Linux 2.6.32-5.

7The running times of Mole and Cunf are comparable on Petri nets, but Mole produces prefixes in a format
suitable for clp.
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Petri net unfolding c-net unfolding

Mole clp SAT Cunf SAT

Net Res. Time |E| |B| Time Time Time |E| |B| Time

bds 1.sync L 0.58 12900 37306 0.04 0.01 0.14 1830 2771 <0.01
byzagr4 1b L 3.71 14724 42276 0.53 0.26 3.25 8044 17603 0.19
dme11 L 6.56 9185 31186 0.60 0.28 10.86 9185 16710 0.25
dpd 7.sync L 1.21 10354 29939 0.10 0.18 1.09 10354 21359 0.02

ftp 1.sync L 45.37 91730 275099 1.13 0.38 26.85 50928 96617 0.05
furnace 4 L 37.44 114477 264823 1.29 0.19 19.11 94413 147438 0.12
rw 12.sync L 3.95 98361 295152 0.08 0.02 3.96 98361 196796 0.02
rw 1w3r L 0.30 15432 28207 0.11 0.22 0.36 14521 24174 0.40
rw 2w1r L 0.22 9363 18575 0.04 0.34 0.32 9363 15304 0.58

elevator 4 D 2.58 16856 47743 0.24 0.03 1.51 16856 28593 0.06
key 4 D 1.68 69600 139206 0.07 0.08 2.07 4754 7862 <0.01
mmgt 4.fsa D 1.16 46902 92940 0.02 0.04 1.17 46902 92076 0.05
q 1.sync D 1.76 10716 30087 <0.01 0.02 1.54 10716 20567 0.01∑

106.52 4.25 2.05 72.23 1.75

Table 2: Comparison of deadlock-checking methods; the Res(ult) is L(ive) or D(ead)

We do not provide the translation times to generate linear equation systems (for clp) or SAT
formulas (for MiniSat). Those times would not be very representative since both translators
are suboptimal; our own translator to SAT is in a preliminary stage. Also, there is no reason
to suspect that the translation times for the linear equations of [15] and SAT, when optimized,
would be very different, and we expect such optimized times to be fractions of a second.

Compared to clp, SAT checking performs well over Petri nets, solving the problems twice
as fast on aggregate. Concerning the comparison of SAT checking between Petri nets and c-
nets, we obtain another advantage of 13% for deadlock verification. More significantly, the time
for generating c-net unfoldings is 30% less than for Petri nets. This advantage is not huge,
but recall that these benchmarks are already favourable examples for Petri net unfoldings and
were not specifically designed to exploit the advantages of c-nets. The two-stage approach was
essential for performance: while the acyclic constraints had a big impact only on a few examples
(notably byzagr4 1b,dme,rw*), that effect would have more than nullified the advantage of
faster unfolding times.

We now present a class of nets in which read arcs have natural advantages: the encoding of
asynchronous circuits of logic gates as Petri nets, one of the motivations originally mentioned
by McMillan [17]. In this encoding, the signals, i.e. the inputs and outputs of each gate, are
modelled with two places for indicating whether the signal is high (1) or low (0). The outputs
change as a function of reading the inputs. Fig. 5 (a) shows an AND-gate and its encoding as
a c-net fragment.

To illustrate the benefits that c-nets enjoy here, we discuss a simple experiment. We consider
a grid of n := k × k AND-gates, shown in Fig. 5 (b) for k = 3. The inputs for the AND-gates
are at the left and top of the figure, and outputs propagate to the right and towards the
bottom. Inputs may switch freely between high and low. We encoded such grids into c-nets;
additionally, we replaced read arcs with arrow loops to obtain equivalent Petri nets (so called
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plain encodings). We then used Cunf to construct complete unfolding prefixes of the c-nets
and their plain encodings, and observed that signal changes may be propagated to the bottom
right in many different orders, which are distinguished by Petri-net unfoldings but not by c-
net unfoldings. Hence, unfoldings of the plain nets were of exponential size in n, while the
contextual ones were linear. Moreover, Cunf built the latter ones in time O(n3), see Fig. 5 (c).
The verification method for c-nets herein presented allows to profit from the reduced unfolding
time.
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Figure 5: (a) Encoding of a logical AND-gate; (b) grid of AND-gates; (c) unfolding times

6 Conclusions

We presented verification algorithms based on c-net unfoldings. The twofold advantages over
previous work are the overall performance of the SAT encoding, and that c-nets allow to profit
from faster unfolding procedures and/or faster verification on the resulting unfolding prefixes.
The latter result was not a foregone conclusion due to the richer structure of c-net unfoldings,
in particular the presence of cycles and histories.

We studied optimizations of the encoding, concentrating on optimizations on the net level,
while leaving optimizations on the logical level to the SAT solver.

An interesting future direction of work would be to extend the verification algorithms to a
richer set of properties. E.g., LTL model-checking for Petri nets has been investigated in [7],
but the trace logics investigated by Diekert and Gastin [5] and others seem like another natural
choice.

Acknowledgements: The authors would like to thank Keijo Heljanko, Victor Khomenko,
Paolo Baldan, and the referees of [21] for helpful hints and discussions.
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