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Abstract. Weighted automata are used to describe quantitative prop-
erties in various areas such as probabilistic systems, image compression,
speech-to-text processing. The behaviour of such an automaton is a map-
ping, called a formal power series, assigning to each word a weight in some
semiring. We generalize Büchi’s and Elgot’s fundamental theorems to this
quantitative setting. We introduce a weighted version of MSO logic and
prove that, for commutative semirings, the behaviours of weighted au-
tomata are precisely the formal power series definable with our weighted
logic. We also consider weighted first-order logic and show that aperi-
odic series coincide with the first-order definable ones, if the semiring is
locally finite, commutative and has some aperiodicity property.

1 Introduction

Büchi’s and Elgot’s fundamental theorems [3, 9] established the coincidence of
regular languages with languages definable in monadic second-order logic. At
the same time, Schützenberger [22] investigated finite automata with weights
and characterized their behaviours as rational formal power series. Both of these
results have inspired a wealth of extensions and further research, cf. [24, 21, 15, 2]
for surveys and monographs, and also led to recent practical applications, e.g. in
verification of finite-state programs (model checking, [17, 1, 16]), in digital image
compression [5, 11, 13, 12] and in speech-to-text processing [19, 20, 4].

It is the goal of this paper to introduce a logic with weights and to show that
the behaviours of weighted finite automata are precisely the series definable in
our weighted monadic second-order logic. This can be viewed as a quantitative
version of Büchi’s and Elgot’s classical (qualitative) results.

The syntax of our weighted logics incorporates weights taken from a semiring
K, just as done for weighted automata in order to model a variety of applications
and situations. The semantics of a weighted logic formula will be a formal power
series with values in K. We restrict negation to atomic formulas since in gen-
eral there is no natural complement operation in the semiring that would allow
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us to define the semantics of negation elementwise. In comparison to classical
MSO-logic, this is not a restriction, since we include disjunction, conjunction,
existential and universal quantifications in our syntax. Thus, we obtain the clas-
sical MSO-logics by letting K = B, the 2-element Boolean algebra.

Even for the semiring of natural numbers or the tropical semiring it turns
out that neither universal first-order nor universal second-order quantification of
formulas preserve recognizability. Therefore, for the syntax of restricted MSO-
logic we exclude universal second-order quantification, and we permit universal
first-order quantification only for formulas whose semantics takes finitely many
values in K. Moreover, if we allow existential set quantifications only to occur
at the beginning of a fomula, we arrive at restricted existential MSO-logic.

Now we give a summary of our results. First we show for any commuta-
tive semiring K that the behaviours of weighted automata with values in K
are precisely the series definable by sentences of our restricted MSO-logic, or,
equivalently, of our restricted existential MSO-logic. Second, if the semiring K
is locally finite, we obtain that the semantics of all sentences of our full weighted
MSO-logic are representable by weighted automata. Locally finite semirings were
investigated in [6]; they form a large class of semirings including e.g. all finite
semirings, the max-min-semiring employed for capacity problems of networks,
and all Boolean algebras. Thus we obtain Büchi’s and Elgot’s theorems as a
particular consequence. Moreover, if the semiring K is a field or locally finite
and is given in some effective way, then the constructions in our proofs yield
effective conversions of sentences of our weighted logics to weighted automata,
and viceversa, and we obtain also decision procedures.

Finally, we investigate weighted first-order logic. As is well-known, the first-
order definable languages are precisely the starfree languages which in turn co-
incide with the the aperiodic ones [23, 18]. Aperiodic and starfree formal power
series were introduced and investigated in [6]. Easy examples show that even if
the semiring K is finite, series definable in our weighted first-order logic need
not be aperiodic. However, we obtain that the aperiodic series coincide with
the first-order definable ones, if the semiring is locally finite, commutative and
both addition and multiplication satisfy a certain aperiodicity property. Such
semirings include again all Boolean algebras, but also quite different ones like
the truncated max-plus semiring.

We believe that the present paper opens a new research road. Obviously,
one could try to extend our results to other structures such as trees or traces.
One could also try to define weighted temporal logics and study not only ex-
pressiveness but also decidability and complexity of natural problems such as
quantitative model checking.

Full proofs are available in the technical report [7].

2 Weighted automata

We give basic definitions and properties of semirings, formal power series and
weighted automata. For background, we refer the reader to [2, 15, 21].
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A semiring is a structure (K,+, ·, 0, 1) where (K,+, 0) is a commutative
monoid, (K, ·, 1) is a monoid, multiplication distributes over addition, and 0 ·x =
x · 0 = 0 for each x ∈ K. If the multiplication is commutative, we say that
K is commutative. If the addition is idempotent, then the semiring is called
idempotent. Important examples include

– the natural numbers (N,+, ·, 0, 1) with the usual addition and multiplication,
– the Boolean semiring B = ({0, 1},∨,∧, 0, 1),
– the tropical semiring Trop = (N∪{∞},min,+,∞, 0) (also known as min-

plus semiring), with min and + extended to N∪{∞} in the natural way,
– the arctical semiring Arc = (N∪{−∞},max,+,−∞, 0),
– the semiring ([0, 1],max, ·, 0, 1) which can be used to compute probabilities,
– the semiring of languages (P(A∗),∪,∩, ∅, A∗).

If K is a semiring and n ∈ N, then Kn×n comprises all (n×n)-matrices over K.
With usual matrix multiplication (Kn×n, ·) is a monoid.

A formal power series is a mapping S : A∗ → K. It is usual to write (S,w)
for S(w). The set Supp(S) := {w ∈ A∗ | (S,w) 6= 0} is called the support of S,
and Im(S) = {(S,w) | w ∈ A∗} is the image of S. The set of all formal power
series over K and A is denoted by K〈〈A∗〉〉. Now let S, T ∈ K〈〈A∗〉〉. The sum
S + T and the Hadamard product S � T are both defined pointwise:

(S + T,w) := (S,w) + (T,w) and (S � T,w) := (S,w) · (T,w) (w ∈ A∗).

For L ⊆ A∗, we define the characteristic series 1L : A∗ → K by (1L, w) = 1
if w ∈ L, and (1L, w) = 0 otherwise.

Now we turn to weighted automata. We fix a semiring K and an alphabet A.
A weighted finite automaton over K and A is a quadruple A = (Q, λ, µ, γ) where
Q is a finite set of states, µ : A → KQ×Q is the transition weight function and
λ, γ : Q→ K are weight functions for entering and leaving a state, respectively.
Here µ(a) is a (Q×Q)-matrix whose (p, q)-entry µ(a)p,q ∈ K indicates the weight

of the transition p
a

−→ q. Then µ extends uniquely to a monoid homomorphism
(also denoted by µ) from A∗ into (KQ×Q, ·).

The weight of a path P : q0
a1−→ q1 −→ . . . −→ qn−1

an−→ qn in A is the
product weight(P ) := λ(q0) · µ(a1)q0,q1

· · ·µ(an)qn−1,qn
· γ(qn). This path has

label a1 . . . an. The weight of a word w = a1 . . . an ∈ A∗ in A, denoted (|| A ||, w),
is the sum of weight(P ) over all paths P with label w. One can check that
(|| A ||, w) = λ · µ(w) · γ with usual matrix multiplication, considering λ as a
row vector and γ as a column vector. If w = ε, we have (|| A ||, ε) = λ · γ.
This defines a formal power series || A || : A∗ → K called the behavior of A. A
formal power series S ∈ K〈〈A∗〉〉 is called recognizable, if there exists a weighted
finite automaton A such that S = || A ||. Then we also call A or (λ, µ, γ) a
representation of S. We let Krec〈〈A∗〉〉 be the collection of all recognizable formal
power series over K and A.

Now let h : A∗ → B∗ be a homomorphism. If T ∈ K〈〈B∗〉〉, then h−1(T ) :=
T ◦ h ∈ K〈〈A∗〉〉. That is, (h−1(T ), w) = (T, h(w)) for each w ∈ A∗. We say that
h is non-erasing, if h(a) 6= ε for any a ∈ A. In this case, for S ∈ K〈〈A∗〉〉, define
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h(S) : B∗ → K by (h(S), v) :=
∑

w∈h−1(v)(S,w) (v ∈ B∗), noting that the sum
is finite since h is non-erasing. Recognizability is preserved by inverse morphisms
and non-erasing morphisms [8, 2].

We say S : A∗ → K is a recognizable step function, if S =
∑n

i=1 ki · 1Li
for

some n ∈ N, ki ∈ K and recognizable languages Li ⊆ A∗ (i = 1, . . . , n). As is
well-known, any recognizable step function is a recognizable power series.

3 Weighted logics

In this section, we introduce our weighted logics and study its first properties.
We fix a semiring K and an alphabet A. For each a ∈ A, Pa denotes a unary
predicate symbol. The syntax of formulas of the weighted MSO-logic is given by

ϕ ::= k | Pa(x) | ¬Pa(x) | x ≤ y | ¬(x ≤ y) | x ∈ X | ¬(x ∈ X)

| ϕ ∨ ψ | ϕ ∧ ψ | ∃x.ϕ | ∃X.ϕ | ∀x.ϕ | ∀X.ϕ

where k ∈ K and a ∈ A. We denote by MSO(K,A) the collection of all such
weighted MSO-formulas ϕ.

Now we turn to the definition of the semantics of formulas ϕ ∈ MSO(K,A).
We let Free(ϕ) be the set of all free variables of ϕ. Let w = a1 . . . an ∈ A∗ with
ai ∈ A. We also write w(i) = ai (1 ≤ i ≤ n). The length of w is |w| = n.

Let V be a finite set of first-order and second-order variables. A (V , w)-
assignment σ is a function mapping first-order variables in V to elements of
{1, . . . , |w|} and second-order variables in V to subsets of {1, . . . , |w|}. If x is
a first-order variable and i ∈ {1, . . . , |w|} then σ[x → i] is the (V ∪ {x}, w)-
assignment which assigns x to i and acts like σ on all other variables. Similarly,
σ[X → I] is defined for I ⊆ {1, . . . , |w|}.

As usual, a pair (w, σ) where σ is a (V , w)-assignment will be encoded using
an extended alphabet AV = A × {0, 1}V . More precisely, we will write a word
over AV as a pair (w, σ) where w is the projection over A and σ is the projection
over {0, 1}V . Now, σ represents a valid assignment over V if for each first-order
variable x ∈ V , the x-row of σ contains exactly one 1. In this case, we identify
σ with the (V , w)-assignment such that for each first-order variable x ∈ V , σ(x)
is the position of the 1 on the x-row, and for each second-order variable X ∈ V ,
σ(X) is the set of positions carrying a 1 on the X-row. Clearly, the language
NV = {(w, σ) ∈ A∗

V | σ is a valid V-assignment} is recognizable. We simply
write Aϕ = AFree(ϕ) and Nϕ = NFree(ϕ).

Definition 3.1. Let ϕ ∈ MSO(K,A) and V be a finite set of variables contain-
ing Free(ϕ). The semantics of ϕ is a formal power series [[ϕ]]V ∈ K〈〈A∗

V〉〉. Let
(w, σ) ∈ A∗

V . If σ is not a valid V-assignment, then we put [[ϕ]]V(w, σ) = 0.
Otherwise, we define [[ϕ]]V(w, σ) ∈ K inductively as follows:

[[k]]V (w, σ) = k [[Pa(x)]]V (w, σ) =

{
1 if w(σ(x)) = a

0 otherwise
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[[x ≤ y]]V(w, σ) =

{
1 if σ(x) ≤ σ(y)

0 otherwise
[[x ∈ X ]]V(w, σ) =

{
1 if σ(x) ∈ σ(X)

0 otherwise

[[¬ϕ]]V (w, σ) =

{
1 if [[ϕ]]V (w, σ) = 0

0 if [[ϕ]]V (w, σ) = 1

if ϕ is of the form Pa(x), (x ≤ y)
or (x ∈ X).

[[ϕ ∨ ψ]]V (w, σ) = [[ϕ]]V(w, σ) + [[ψ]]V (w, σ)

[[ϕ ∧ ψ]]V (w, σ) = [[ϕ]]V(w, σ) · [[ψ]]V(w, σ)

[[∃x.ϕ]]V (w, σ) =
∑

1≤i≤|w|

[[ϕ]]V∪{x}(w, σ[x → i])

[[∃X.ϕ]]V (w, σ) =
∑

I⊆{1,...,|w|}

[[ϕ]]V∪{X}(w, σ[X → I])

[[∀x.ϕ]]V (w, σ) =
∏

1≤i≤|w|

[[ϕ]]V∪{x}(w, σ[x → i])

[[∀X.ϕ]]V (w, σ) =
∏

I⊆{1,...,|w|}

[[ϕ]]V∪{X}(w, σ[X → I])

where we fix some order on the power set of {1, . . . , |w|} so that the last product
is defined even if K is not commutative. We simply write [[ϕ]] for [[ϕ]]Free(ϕ).

Note that if ϕ is a sentence, i.e. has no free variables, then [[ϕ]] ∈ K〈〈A∗〉〉.
We give several examples of possible interpretations for weighted formulas:

I. Let K = (N,+, ·, 0, 1) and assume ϕ does not contain constants k ∈ N.
We may interpret [[ϕ]](w, σ) as the number of proofs we have that (w, σ)
satisfies formula ϕ. Indeed, for atomic formulas the number of proofs is
clearly 0 or 1, depending on whether ϕ holds for (w, σ) or not. Now if e.g.
[[ϕ]](w, σ) = m and [[ψ]](w, σ) = n, the number of proofs that (w, σ) satisfies
ϕ∨ψ should be m+n (since any proof suffices), and for ϕ∧ψ it should be
m · n (since we may pair the proofs of ϕ and ψ arbitrarily). Similarly, the
semantics of the existential and universal quantifiers can be interpreted.

II. The formula ∃x.Pa(x) counts how often a occurs in the word. Here how
often depends on the semiring: e.g. Boolean semiring, natural numbers,
integers modulo 3, . . .

III. Consider the probability semiring K = ([0, 1],max, ·, 0, 1) and the alphabet
A = {a1, . . . , an}. Assume that each letter ai has a reliability ki. Then,
the series assigning to a word its reliability can be given by the first-order
formula ∀x.

∨
1≤i≤n(Pai

(x) ∧ ki).

IV. Let K be an arbitrary Boolean algebra (B,∨,∧, , 0, 1). In this case, sums
correspond to suprema, and products to infima. Here we can define the
semantics of ¬ϕ for an arbitrary formula ϕ by [[¬ϕ]](w, σ) := [[ϕ]](w, σ).
Then clearly [[ϕ ∧ ψ]] = [[¬(¬ϕ ∨ ¬ψ)]], [[∀x.ϕ]] = [[¬(∃x.¬ϕ)]] and [[∀X.ϕ]] =
[[¬(∃X.¬ϕ)]]. This may be interpreted as a multi-valued logics. In particu-
lar, if K = B, the 2-valued Boolean algebra, our semantics coincides with
the usual semantics of unweighted MSO-formulas, identifying characteristic
series with their supports.
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Let K be a semiring and A an alphabet. Observe that if ϕ ∈ MSO(K,A),
we have defined a semantics [[ϕ]]V for each finite set of variables V containing
Free(ϕ). Now we show that these semantics’ are consistent with each other.

Proposition 3.2. Let ϕ ∈ MSO(K,A) and V a finite set of variables containing
Free(ϕ). Then [[ϕ]]V (w, σ) = [[ϕ]](w, σ| Free(ϕ)) for each (w, σ) ∈ A∗

V such that σ is
a valid V-assignment. In particular, [[ϕ]] is recognizable iff [[ϕ]]V is recognizable.

Proof (sketch). The first claim can be shown by induction on ϕ. For the final
claim, let [[ϕ]] be recognizable, and consider the projection π : AV → Aϕ. For
(w, σ) ∈ A∗

V , we have π(w, σ) = (w, σ| Free(ϕ)). Hence, [[ϕ]]V = π−1([[ϕ]]) � 1NV is
recognizable by standard preservation results, cf. [2]. The converse can be shown
similarly. ut

Now let Z ⊆ MSO(K,A). A series S : A∗ → K is called Z-definable, if
there is a sentence ϕ ∈ Z such that S = [[ϕ]]. The main goal of this paper is
the comparison of Z-definable with recognizable series, for suitable fragments Z
of MSO(K,A). Crucial for this will be closure properties of recognizable series
under the constructs of our weighted logic. However, first we will show that
Krec〈〈A∗〉〉 is in general not closed under universal quantification.

Example 3.3. Let K = (N,+, ·, 0, 1). Then [[∀x.2]](w) = 2|w| and [[∀y∀x.2]](w) =

(2|w|)|w| = 2|w|2. Clearly, the series [[∀x.2]] is recognizable by the weighted au-
tomaton (Q, λ, µ, γ) with Q = {1}, λ1 = γ1 = 1 and µ1,1(a) = 2 for all
a ∈ A. However, [[∀y∀x.2]] is not recognizable. Suppose there was an automaton
A′ = (Q′, λ′, µ′, γ′) with behavior [[∀y∀x.2]]. Let M = max{|λ′p|, |γ

′
p|, |µ

′(a)p,q| |

p, q ∈ Q′, a ∈ A}. Then (|| A′ ||, w) ≤ |Q′||w|+1 · M |w|+2 for any w ∈ A∗, a

contradiction with (|| A′ ||, w) = 2|w|2.
A similar argument applies also for the tropical and the arctical semirings.

Observe that in all these cases, [[∀x.2]] has infinite image.

Example 3.4. Let K = (N,+, ·, 0, 1). Then [[∀X.2]](w) = 22|w|

for any w ∈ A∗,
and as above [[∀X.2]] is not recognizable due to its growth. Again, this coun-
terexample also works for the tropical and the arctical semirings.

The examples show that unrestricted universal quantification is too strong to
preserve recognizability. This motivates the following definition. We will call a
formula ϕ ∈ MSO(K,A) restricted, if it contains no universal set quantification
of the form ∀X.ψ, and whenever ϕ contains a universal first-order quantification
∀x.ψ, then [[ψ]] is a recognizable step function. We let RMSO(K,A) comprise all
restricted formulas of MSO(K,A). Furthermore, let REMSO(K,A) contain all
restricted existential MSO-formulas ϕ, i.e. ϕ is of the form ϕ = ∃X1, . . . , Xn.ψ
with ψ ∈ RMSO(K,A) containing no set quantification.

We let Krmso〈〈A∗〉〉 (resp. Kremso〈〈A∗〉〉) contain all series S ∈ K〈〈A∗〉〉 which
are definable by some sentence in RMSO(K,A) (resp. in REMSO(K,A)). The
main result of this paper is the following theorem. It will be proved in sections 4
and 5.
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Theorem 3.5. Let K be a commutative semiring and A an alphabet. Then

Krec〈〈A∗〉〉 = Krmso〈〈A∗〉〉 = Kremso〈〈A∗〉〉.

4 Definable series are recognizable

In all of this section, let K be a semiring and A an alphabet. We wish to show
that if K is commutative, then all RMSO-definable series [[ϕ]] over K and A are
recognizable. We proceed by induction over the structure of RMSO-formulas.

Lemma 4.1. Let ϕ, ψ ∈ MSO(K,A).

(a) If ϕ is atomic or the negation of an atomic formula, then [[ϕ]] is recognizable.
(b) If [[ϕ]] and [[ψ]] are recognizable, then [[ϕ ∨ ψ]] is recognizable. If in addition

K is commutative, then [[ϕ ∧ ψ]] is also recognizable.
(c) If [[ϕ]] is recognizable, then [[∃x.ϕ]] and [[∃X.ϕ]] are recognizable series.

Proof (sketch). (a) Automata with behavior [[ϕ]] can easily be given explicitly.
(b) Let V = Free(ϕ)∪Free(ψ). By definition, we have [[ϕ∨ψ]] = [[ϕ]]V + [[ψ]]V

and [[ϕ ∧ ψ]] = [[ϕ]]V � [[ψ]]V . Hence the result follows from Proposition 3.2 and
since sum and Hadamard product preserve recognizability of series [8, 2].

(c) Let V = Free(∃X.ϕ) and consider the projection π : A∗
V∪{X} → A∗

V . We

can show that [[∃X.ϕ]](w, σ) = π([[ϕ]]V∪{X})(w, σ). Now, [[ϕ]]V∪{X} is recogniz-
able by Proposition 3.2 and since non-erasing projections preserve recognizability
we get [[∃X.ϕ]] recognizable. The case ∃x.ϕ can be dealt with similarly. ut

The most interesting and new case here arises from universal quantification.

Lemma 4.2. Let K be commutative and ϕ ∈ MSO(K,A) such that [[ϕ]] is a
recognizable step function. Then [[∀x.ϕ]] is recognizable.

Proof. Let W = Free(ϕ) and V = Free(∀x.ϕ) = W \ {x}. We may write [[ϕ]] =∑
j=1,...,n kj · 1Lj

with n ∈ N, kj ∈ K and recognizable languages Lj ⊆ A∗
W

(j = 1, . . . , n) forming a partition of A∗
W .

First, we assume that x ∈ W . Let Ã = A × {1, . . . , n}. A word in (ÃV)∗

will be written (w, ν, σ) where (w, σ) ∈ A∗
V and ν ∈ {1, . . . , n}∗ is interpreted

as a mapping from {1, . . . , |w|} to {1, . . . , n}. Let L̃ be the set of (w, ν, σ) ∈

(ÃV)∗ such that for all i ∈ {1, . . . , |w|} and j ∈ {1, . . . , n} we have ν(i) =
j implies (w, σ[x → i]) ∈ Lj. Observe that for each (w, σ) ∈ A∗

V there is a

unique ν such that (w, ν, σ) ∈ L̃ since the Lj form a partition of A∗
W .

It can be shown that L̃ is a recognizable word language. Hence there is
a deterministic automaton Ã, with state set Q, say, recognizing L̃. Now we
obtain a weighted automaton A with the same state set by adding weights to
the transitions of Ã as follows: If (p, (a, j, s), q) is a transition in Ã with p, q ∈ Q,
(a, s) ∈ AV and 1 ≤ j ≤ n, we let this transition in A have weight kj , i.e.

µA(a, j, s)p,q = kj . All triples which are not transitions in Ã get weight 0. Also,
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the initial state of Ã gets initial weight 1 in A, all non-initial states of Ã get
initial weight 0, and similarly for the final states and final weights.

Clearly, since Ã is deterministic and accepts L̃, the weight of (w, ν, σ) ∈ L̃

in A is
∏

1≤j≤n k
|ν−1(j)|
j , and the weight of (w, ν, σ) ∈ Ã∗ \ L̃ in A is 0. Now

let h : (ÃV )∗ → A∗
V be the projection mapping (w, ν, σ) to (w, σ). Then for any

(w, σ) ∈ A∗
V and the unique ν such that (w, ν, σ) ∈ L̃ we obtain

h(|| A ||)(w, σ) =
∑

ρ

|| A ||(w, ρ, σ) = || A ||(w, ν, σ) =
∏

1≤j≤n

k
|ν−1(j)|
j .

Now we have

[[∀x.ϕ]](w, σ) =
∏

1≤i≤|w|

[[ϕ]](w, σ[x → i]) =
∏

1≤j≤n

k
|ν−1(j)|
j

where the last equality holds due to the form of ϕ. Hence [[∀x.ϕ]] = h(|| A ||)
which is recognizable [8, 2].

Now assume that x /∈ W , so that V = W . Let ϕ′ = ϕ ∧ (x ≤ x). So [[ϕ′]] is
recognizable by Lemma 4.1, and clearly [[ϕ]]V∪{x} = [[ϕ′]]V∪{x}. Thus [[∀x.ϕ]]V =
[[∀x.ϕ′]]V which is recognizable by what we showed above. ut

Now the following result is immediate by Lemmata 4.1 and 4.2.

Theorem 4.3. Let K be a commutative semiring, A an alphabet and ϕ ∈
RMSO(K,A). Then [[ϕ]] ∈ Krec〈〈A∗〉〉 is recognizable.

Next we turn to decidability questions. Employing decidability results from
the theory of formal power series and our previous constructions, we can show:

Proposition 4.4. Let K be a computable field, and let ϕ ∈ MSO(K,A). It is
decidable whether ϕ is restricted, and in this case one can effectively compute a
weighted automaton Aϕ for [[ϕ]].

Corollary 4.5. Let K be a computable field, and let ϕ, ψ ∈ RMSO(K,A). Then
it is decidable whether [[ϕ]] = [[ψ]]. It is also decidable whether [[ϕ]] and [[ψ]] differ
only for finitely many words.

Proof. By Proposition 4.4, the series [[ϕ]], [[ψ]] and hence also [[ϕ]] − [[ψ]] = [[ϕ]] +
(−1) · [[ψ]] are effectively recognizable. By [2, Propositions VI.1.1, VI.1.2], it is
decidable whether such a series equals 0, or whether its support is finite. ut

5 Recognizable series are definable

In all of this section let K be a semiring and A an alphabet. We wish to show
that if K is commutative, then all recognizable series are REMSO-definable.
For this, the concept of an unambiguous MSO-formula will be useful. The class
of unambiguous formulas in MSO(K,A) is defined inductively as follows: All
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atomic formulas of the form Pa(x), x ≤ y or (x ∈ X), and their negations
are unambiguous. If ϕ, ψ are unambiguous, then ϕ ∧ ψ, ∀x.ϕ and ∀X.ϕ are also
unambiguous. If ϕ, ψ are unambiguous and Supp([[ϕ]])∩Supp([[ψ]]) = ∅, then ϕ∨ψ
is unambiguous. Let ϕ be unambiguous and V = Free(ϕ). If for any (w, σ) ∈ A∗

V

there is at most one element i ∈ {1, . . . , |w|} such that [[ϕ]]V∪{x}(w, σ[x → i]) 6= 0,
then ∃x.ϕ is unambiguous. If for any (w, σ) ∈ A∗

V there is at most one subset I ⊆
{1, . . . , |w|} such that [[ϕ]]V∪{X}(w, σ[X → I]) 6= 0, then ∃X.ϕ is unambiguous.

Proposition 5.1. Let ϕ ∈ MSO(K,A) be unambiguous. We may also regard ϕ
as a classical MSO-formula defining the language L(ϕ) ⊆ A∗

ϕ. Then, [[ϕ]] = 1L(ϕ)

is a recognizable step function.

Next we show that, conversely, classical MSO-formulas can be transformed
into unambiguous formulas.

Lemma 5.2. For each classical MSO-formula ϕ not containing set quantifica-
tions (but possibly including atomic formulas of the form (x ∈ X)) we can ef-
fectively construct two unambiguous MSO(K,A)-formula ϕ+ and ϕ− such that
[[ϕ+]] = 1L(ϕ) and [[ϕ−]] = 1L(¬ϕ).

Proof (sketch). We may assume (using also conjunction and universal quantifi-
cation in our syntax or as abbreviations) that in ϕ negations are applied only
to atomic formulas. Now we proceed by induction, giving only the formulas for
some cases: (ϕ∨ψ)− = ϕ− ∧ψ−, (ϕ∨ψ)+ = ϕ+ ∨ (ϕ− ∧ψ+), (∃x.ϕ)− = ∀x.ϕ−

and (∃x.ϕ)+ = ∃x.(ϕ+(x) ∧ ∀y.((x ≤ y) ∨ (¬(x ≤ y) ∧ ϕ−(y)))). ut

Theorem 5.3. Let K be commutative. Then Krec〈〈A∗〉〉 ⊆ Kremso〈〈A∗〉〉.

Proof (sketch). Let A = (Q, λ, µ, γ) be a weighted automaton over A. For each
triple (p, a, q) ∈ Q × A × Q choose a set variable Xp,a,q, and let V = {Xp,a,q |
p, q ∈ Q, a ∈ A}. We choose an enumerationX1, . . . , Xm of V with m = |Q|2 ·|A|.
In the formulas below we use classical macros such as partition(X1, . . . , Xm),
(y = x+ 1), min(y) and max(y). Define the unambiguous formula

ψ(X1, . . . , Xm) := partition(X1, . . . , Xm)+ ∧
∧

p,a,q

∀x.((x ∈ Xp,a,q) → Pa(x))+

∧ ∀x∀y.
(
(y = x+ 1) →

∨

p,q,r∈Q,a,b∈A

(x ∈ Xp,a,q) ∧ (y ∈ Xq,b,r)
)+

.

Let w = a1 . . . an ∈ A+. One can show that there is a bijection between the set
of paths in A over w and the set of (w,V)-assignments σ satisfying ψ. Consider
now the formula ϕ(X1, . . . , Xm) defined by

ψ(X1, . . . , Xm) ∧
( ∧

p,a,q

∀x.
(
¬(x ∈ Xp,a,q) ∨ ((x ∈ Xp,a,q) ∧ µ(a)p,q)

))
∧

∃y.
(
min(y) ∧

∨

p,a,q

(y ∈ Xp,a,q) ∧ λp

)
∧ ∃z.

(
max(z) ∧

∨

p,a,q

(z ∈ Xp,a,q) ∧ γq

)
.
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Let ρ be a path in A over w and let σρ be the associated (w,V)-assignment. We
can show that [[ϕ]]V (w, σρ) = weight(ρ). Let ξ = ∃X1 · · · ∃Xm.ϕ(X1, . . . , Xm).
For w ∈ A+ we can show that ([[ξ]], w) = (|| A ||, w). Let ζ = (λ·γ)∧∀x.¬(x ≤ x).
Then, || A || = [[ζ ∨ ξ]] ∈ Kremso〈〈A∗〉〉. ut

Now Theorem 3.5 is immediate by Theorems 4.3 and 5.3.
Observe that the proof of Theorem 5.3 is constructive, i.e. given a weighted

automaton A, we effectively obtain an REMSO(K,A)-sentence ϕ with [[ϕ]] =
‖A‖. Using this, from the theory of formal power series (cf. [21, 15, 2]) we
immediately obtain undecidablilty results for the semantics of weighted MSO-
sentences. For instance, it is undecidable whether a given REMSO-sentence ϕ
over Q, the field of rational numbers, and an alphabet A, satisfies Supp([[ϕ]]) =
A∗. Also, by a result of Krob [14], the equality of given recognizable series
over the tropical semiring is undecidable. Hence, the equality of two given
REMSO(Trop, A)-sentences is also undecidable.

6 Locally finite semirings

In section 3 we gave examples of semirings K showing that the results of The-
orem 3.5 and 4.3 in general do not hold for arbitrary MSO(K,A)-sentences.
In contrast, here we wish to show that for a large class of semirings K, all
MSO(K,A)-formulas have a recognizable semantics.

A semiring K is called locally finite, if each finitely generated subsemiring of
K is finite. For example, any Boolean algebra (B,∨,∧, 0, 1) is locally finite. The
max-min semiring Rmax,min = (R+ ∪{∞},max,min, 0,∞) of positive reals, used
in operations research for maximum capacity problems of networks, is locally
finite. In fact, more generally, any distributive lattice (L,∨,∧, 0, 1) with smallest
element 0 and largest element 1 is a locally finite semiring, cf. [6] for further
basic properties. Examples of infinite but locally finite fields are provided by the
algebraic closures of the finite fields Z/pZ for any prime p. We can show (see [7]):

Theorem 6.1. Let K be a locally finite commutative semiring and A an alpha-
bet. Then Krec〈〈A∗〉〉 = Kmso〈〈A∗〉〉.

Again, given an MSO(K,A)-formula ϕ, we can effectively construct a weighted
automaton A over K and Aϕ such that ‖A‖ = [[ϕ]]. As a consequence of this
and of corresponding decidability results given in the full version of [6] for rec-
ognizable series over locally finite semirings, we immediately obtain:

Corollary 6.2. Let K be a locally finite commutative semiring and A an al-
phabet. It is decidable whether two given MSO(K,A)-formulas ϕ and ψ satisfy
[[ϕ]] = [[ψ]]; whether a given MSO(K,A)-formula ϕ satisfies Supp([[ϕ]]) = A∗

ϕ.

7 Weighted first-order logic

In this section, we investigate weighted first-order logic and the relationship to
aperiodic series. Most of our results will require additional assumptions on the
semiring K.
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Let K be a semiring and A an alphabet. A formula ϕ ∈ MSO(K,A) is
called a (weighted) first-order formula, if ϕ does not contain any set variable.
We let FO(K,A) contain all first-order formulas and RFO(K,A) all restricted
first-order formulas over K and A. The collections of series definable by these
formulas are denoted Kfo〈〈A∗〉〉 and Krfo〈〈A∗〉〉, respectively.

As is well-known, the first-order definable languages are precisely the starfree
languages which in turn coincide with the the aperiodic ones [23, 18]. Aperiodic
and starfree formal power series were introduced and investigated in [6]. Recall
that a monoid M is said to be aperiodic, if there exists some m ≥ 0 such that
xm = xm+1 for all x ∈ M . We call a monoid M weakly aperiodic, if for each
x ∈ M there exists m ≥ 0 such that xm = xm+1. Clearly, a finite monoid is
aperiodic iff it is weakly aperiodic.

A series S : A∗ → K is called aperiodic, if there exists a representation S =
(Q, λ, µ, γ) with µ(A∗) aperiodic. Observe that then there exists somem ≥ 0 such
that for all w ∈ A∗ we have µ(wm) = µ(wm+1) and hence (S,wm) = (S,wm+1).
The collection of all aperiodic series over K and A will be denoted Kaper〈〈A∗〉〉.

Now we turn to the relationship between aperiodic and FO-definable series.
First we show that even if K is finite and commutative, in general we do not
have Kaper〈〈A∗〉〉 = Kfo〈〈A∗〉〉.

Example 7.1. LetK = Z /2 Z , the field with two elements, and S = [[∃x.1]]. Then
S(w) = |w| mod 2 for any w ∈ A∗. Hence S is not aperiodic since otherwise we
would obtain some m ≥ 1 such that S(am) = S(am+1) (a ∈ A), a contradiction.
Note that here the monoid (K, ·) is idempotent, and (K,+) is not aperiodic.

Example 7.2. Let K be the tropical semiring and T = [[∀x.1]]. Then T (w) = |w|
for all w ∈ A∗, so T is not aperiodic. Note that (N∪{−∞},max) is idempotent,
but (N∪{−∞},+) is not weakly aperiodic.

These examples indicate that in order to achieve the inclusion Kfo〈〈A∗〉〉 ⊆
Kaper〈〈A∗〉〉, we need some aperiodicity assumption both for (K,+) and (K, ·).

We call a semiring K weakly bi-aperiodic, if both (K,+) and (K, ·) are weakly
aperiodic. If K is also commutative, then in particularK is locally finite. Clearly,
any idempotent monoid is weakly aperiodic. Thus the weakly bi-aperiodic semi-
rings include all semirings in which both addition and multiplication are idem-
potent, and this class of semirings properly contains (cf. [10]) the class of all
distributive lattices (L,∨,∧, 0, 1) with smallest element 0 and greatest element
1. There are further examples:

Example 7.3. Let 0 < d ∈ R. We let Rd
max be the real max−plus semiring

truncated at d, i.e. Rd
max = ([0, d]∪{−∞},max,+d,−∞, 0) with x+d y := x+ y

if x+ y ≤ d, and x+d y := d if x+ y ≥ d. This semiring is weakly bi-aperiodic,
and (Rd

max,+d) is weakly aperiodic but not aperiodic.

We can show (see [7]):

Theorem 7.4. Let K be a commutative weakly bi-aperiodic semiring, and A an
alphabet. Then Kaper〈〈A∗〉〉 = Kfo〈〈A∗〉〉 = Krfo〈〈A∗〉〉.
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