
Implementation of a complete prefix unfolder for

contextual nets

César Rodŕıguez

Under supervision of Stefan Schwoon

LSV – ENS Cachan

August 2010

General context

In1 the domain of verification techniques for concurrent systems, and particularly
within the approach of state space methods, the state explosion problem refers to the
computational difficulty of exploring a representation of the system’s state space due
to its intractably large size [2].

Unfoldings are mathematical structures that can be used to explore the state space
of the system while being in some cases exponentially smaller than it. Unfoldings were
introduced for Petri nets by Nielsen, Plotkin and Winskel in [7]. While a Petri net
unfolding is usually infinite, McMillan observed that a finite part of it can be effectively
used for verification purposes [6].

In this work, we develop the first implementation of an unfolding tool (unfolder)
for contextual nets, i.e., Petri nets extended with read arcs, following the abstract
approach specified by Baldan et al. in [1].

The problem

The goal of this work was providing the first implementation of the theory of contextual
net unfolding as presented in [1]. For that purpose, we had to first define a concrete
algorithm conforming to the abstract specification provided in that reference. In the
development of the unfolder, the first objective was correction of the tool ; secondarily,
performance.

The main motivation for this work relies on the fact that the last aim of a formal
verification method should be that one of being used within some verification tool.
Frequently, the first implementation of a theoretical method brings new insights to the
theory, that can in turn be used to refine it.

The problem of contextual net unfoldings is not new (see above); the implemen-
tation of the contextual unfolder do is. We believe that our contribution is original
because we provide new algorithms that concretize the abstract ones in [1], as well as
because our tool is, up to our knowledge, the first contextual net unfolder.

1This work was supported by Fundación Caja Madrid under the grant Beca de Postgrado Fundación
Caja Madrid.

The contributions

In the practical arena, our main contribution is a 4700 lines of code tool written from
scratch in C language, that is able to compute a complete prefix of the full unfolding
of a 1-safe contextual net. Additionally, we have filled the gaps left by the abstract
specification of the unfolding algorithm of [1], by providing a concrete algorithm, as
well as data structures for representing the important objects utilized by it.

Concerning the theory, we have integrated adequate unfolding orders [3] in the
framework of contextual unfoldings, proving finiteness of the complete prefix. Re-
maining extensions of the theory presented in this work have been motivated by our
aim to pave the way between theory and implementation. We have characterized the
notion of conflict between configurations of the unfolding in terms of certain relation
that can be efficiently computed. Finally, we have defined the notion of enriched con-
dition and provided a characterization to compute efficiently a concurrency relation
on enriched conditions, in order to speed up the computation of the unfolding.

Validity of the contributions

It is a great asset of any implementation that one of becoming an efficient and reusable
piece of code. Our tool, even if still in need of some optimization, can accomplish the
first target by means of the work on concurrency relations on conditions that we have
started. Concerning reusability, a maximum emphasis has been put in the isolation of
the different objects (events, conditions, histories, asymmetric conflict relation, etc.)
and algorithms operating on them (e.g. conflict between histories, computation of
possible extensions), leading to a very modular implementation. Additionally, our
tool’s input format is an extension of that one of the PEP project [8], enabling certain
compatibility with other tools.

Theoretical contributions have paved the way between theory and practice of con-
textual net unfoldings. For instance, we have suggested that the direct asymmetric
conflict is an interesting notion with regards to the implementation. In the same way,
our characterization of the concurrency relation on enriched conditions (§3.5) is an
starting point for the optimization of our tool.

Evaluation and perspectives

Performance of our tool is still low compared to other unfolders. For instance, on
Petri nets (without read arcs) the Mole unfolder [9] has shown to operate one order
of magnitude faster on certain examples. Profiling of our tool has pointed out that
the bottleneck is located at the computation of the possible extensions to the prefix
(§3.1), in particular due to a certain combinatorial blow up in the search of a possible
extension. At this moment, our effort is focused on the discovery and implementation
of suitable concurrency relations that can alleviate such search procedure. In summary,
the application of the theory in [1] in this work work has provided insights about where
the optimization effort should go.

Our general aim to make of our tool a competitive unfolder, and particularly the
research on concurrency relations commented above, will be the first steps to pursue
in the Ph.D of the author, starting at September 2010.

2

1 Introduction

Petri nets are a formalism that has been fruitfully used for the modeling and verifi-
cation of concurrent systems. They naturally make possible to express notions such
as concurrency, causality or conflict between actions or resources [3]. Verification of
safety problems for finite state Petri nets can be reduced to reachability analysis, an
approach that is feasible in practise whenever we can avoid the state explosion prob-
lem. net unfoldings are a partial-order semantics initially introduced for Petri nets by
Nielsen, Plotkin and Winskel [7].

The unfolding of a Petri net is another particularly simple, acyclic Petri net so
called occurrence net, that is behaviourally equivalent to the first. While the unfolding
is frequently infinite, McMillan noticed [6] that it is still possible to build a finite
prefix of it, containing information enough to be useful for a given application. Such
a prefix is called complete, in the sense that it represents complete information of the
original net according to some criterion, for instance, reachable markings. Finite and
complete prefixes can be exponentially smaller than the full reachability graph of the
original Petri net, while being still adequate for reachability analysis (in particular
coverability). Other uses of unfoldings include planning [4] or deadlock detection [6].

Contextual nets are Petri nets with read arcs, i.e., arcs allowing a transition to read
a place and not consume it. When interested in reachability analysis, a contextual net
can be translated into a Petri net by replacing each read arc by a consume/produce
loop. The resulting net is equivalent in terms of its reachability set, and can be unfolded
through the same procedure as for Petri nets. However, such unfolding would explicitly
enumerate every possible interleaving of all the transitions reading from the same place,
leading frequently to an explosion in size. This blow up can be avoided if we define the
unfolding of a contextual net as another contextual net, whose construction procedure
is a generalization of the one for plain Petri nets.

Baldan et al. have proposed in [1] such a generalization. In particular, they present
an abstract algorithm to compute a complete and finite contextual prefix out of a con-
textual net. In this work, we refine that abstract algorithm and provide the first
implementation of it. Our contextual unfolder consist on a 4700 line of code, C pro-
gram, written from scratch. The main goals for this implementation were, in this
order, correctness and performance.

During the development of our unfolder, some inspiration was taken from the Mole
Petri net (without read arcs) unfolder [9]. However, Petri net unfolding and contextual
net unfolding are two tasks different enough so that our unfolder could not be an
extension of Mole. This is due to the fact that certain fundamental assumptions that
can be done in Mole no longer holds in contextual unfolding. For instance, while each
transition in a Petri net unfolding implicitly represents only one run of the original
net, each transition in a contextual unfolding represents a set of runs, or histories,
in the original net. The existence of only one history per event in the unfolding is a
central assumption of Mole, that prevented us to reuse most of its algorithms and data
structures in our unfolder. Arguments similar to this one lead us to the development
of a new tool from scratch.

Implementation of a contextual unfolder have favoured several other contributions.
First and foremost, we provide a concrete algorithm and implementation for the com-
putation of the possible extensions of the prefix (see §3.1); a data structure for the

3

representation of histories is also provided (§3.3). Concerning the theoretical frame-
work, we generalize (and implement) the notion of adequate order [3] from Petri net
unfoldings to contextual unfoldings and prove that the complete prefix is still finite
(therefore proving termination of our unfolder under this exploration order). We char-
acterize the conflict relation # between configurations (see page 8) in terms of the
direct asymmetric conflict relation ↑ (see §3.2), a result of special relevance from the
point of view of the implementation. Finally, as a mean to speed up the computation
of our unfolder, we define a concurrency relation on enriched conditions (see §3.5).
Subsequently, we characterize this relation in a suitable way that makes possible to
use an efficient construction method. Unfortunately, we had no time to implement this
approach.

The reminder of the document is mainly divided in three sections. In §2, we intro-
duce contextual nets and their unfoldings. In §3, we present the unfolding algorithm,
providing next from subsection §3.1 to §3.5 a detailed description of its auxiliary pro-
cedures and data structures. In §4 we summarize how our unfolder has been tested in
order to guarantee its correctness. Finally, some conclusions and future research lines
are drawn in §5. Due to space constrains, proofs are located in Appendix A.

2 Contextual unfoldings

We introduce in this section the class of contextual nets and its unfoldings. We provide
as well, in §2.4, the motivations that led us to the implementation of a new unfolder
for contextual nets.

2.1 Contextual nets

A contextual net is a tuple N = 〈P, T, F,C,m0〉, where P and T are disjoint sets
respectively called places and transitions, F ⊆ P × T ∪ T × P is the flow relation,
C ⊆ P×T is the context relation and m0 : P → N is the initial marking. For x ∈ P ∪T ,
we denote by •x the preset of x, defined as {y ∈ P ∪ T | (y, x) ∈ F}. Similarly, the
postset of x, written x•, is defined by {y ∈ P ∪ T | (x, y) ∈ F}. Finally, for a
transition t ∈ T we write t to denote the context of t, defined as {p ∈ P | (p, t) ∈ C}.
The same notation is used to denote the context of a place p ∈ P , that is, the set
{t ∈ T | (p, t) ∈ C}.

Note that contextual nets are an extension of traditional Petri nets. Precisely, Petri
nets are the class of contextual nets whose context relation is empty.

A marking m is a function m : P → N that maps every place of P to a natural
number, including 0. If for a marking m and place p, m(p) = n, then we say that m
marks p with n tokens. If {0, . . . , n} is the range of a marking m, we say that m is
n-safe. We will associate, without further comment, every 1-safe marking to a subset
of P .

A transition t ∈ T is said to be enabled at a marking m if m marks every place
of the preset and context of t with at least one token, i.e., if we have m(p) > 0 for
p ∈ •t∪ t. Any transition enabled at a marking can fire (occur or be executed), leading
to a new marking. Specifically, if t is enabled at m, the execution of t at m produces

4

fT : T ′ → T

e1 7→ t1
e2 7→ t2

e3 7→ t3
e′1 7→ t1

e′2 7→ t2

c1 7→ p1
c2 7→ p2
. . .
c′2 7→ p2
. . .

fP : P ′ → P
c4

c3

e1

e3

e2

c2

c′2

e′1

c′3

c1

e′2

c′4
. . .

(b) (c)(a)

p1

p4

p2

p3

t1

t3

t2

Figure 1: (a) A 1-safe contextual net. (b) A prefix of its full unfolding. (c) The folding
morphism.

the new marking

m′(p) =


m(p)− 1 if p ∈ •t \ t•

m(p) + 1 if p ∈ t• \ •t
m(p) otherwise

A sequence of transitions that can fire one after other starting at the initial marking
m0 is called a run. Formally, a finite sequence of transitions σ = t1 . . . tn ∈ T ∗ is a run
if there exist markings m1, . . . ,mn such that t1 is enabled at the initial marking m0

and produces m1 when fired at m0, and for 2 ≤ i ≤ n, transition ti is enabled at mi−1
and produces mi when fired at mi−1. Marking mn is said to be the marking reached
by σ. Conversely, a marking is said to be reachable if there exists some run in the
contextual net that reaches it. The set of reachable markings of any contextual net N
is denoted by Markings(N).

By extension, a contextual net N is said to be n-safe if every reachable marking of
N is n-safe; it is said safe if it is n-safe for some natural number n.

Fig. 1 (a) depicts a contextual net that is 1-safe. Read arcs are represented by
means of undirected lines. For t2, we have that {p1} = •t2, {p3} = t2 and {p4} = t•2.
The initial marking is {p1, p2} and t1, t2, t3 is a run that reaches marking {p2, p4}.
Marking {p3, p4} is reachable because it is the marking reached by the run t1, t2.

General assumptions We restrict our interest to finite 1-safe contextual nets. Pre-
cisely, when discussing the unfolding of some contextual net N = 〈P, T, F,C,m0〉, we
will assume N to be 1-safe and P , T , F and C finite. We make two additional as-
sumptions. First, we assume that no transition in N has an empty preset, i.e., •t 6= ∅
for all t ∈ T . Second, we assume that for any transition t ∈ T , its preset and context
are mutually disjoint, i.e., t ∩ •t = ∅.

5

(a) (b)

a1

d1

b1 c1

a

d

cb

a2

b2 c2

. . .

Figure 2: A directed graph (a) together with an arbitrary prefix of its full unfolding
(b).

2.2 Unfolding contextual nets

In order to provide an intuitive presentation of the unfolding of a contextual net, let
us first introduce the unfolding of a directed graph. Consider a directed graph G and
one node v from G. It is well known that one can unfold G into a labelled tree U
whose paths from the root node are in one to one correspondence to the paths in G
starting from v. A labelling f , associating each node of U to a node of G, implicitly
provides this correspondence. Due to the tree-like structure of U , there is a natural
well founded precedence order on its nodes (a precedes b if so does in some path from
the root).

Construction of the tree is made recursively. We start by appending to U a new
node u and updating f with a new binding f(u) = v. Then we regard all nodes
v1, . . . , vn inG pointed by outgoing edges from v and append to U new nodes u1, . . . , un,
as well as the corresponding edges from u. The mapping f is also updated with new
bindings f(u1) = v1, . . . , f(un) = vn. This construction is next applied recursively to
every new node appended to U in the previous step. For this reason, the unfolding
operation naturally stops when no new node can be unfolded. The resulting tree U
is called the full unfolding of G, and it is usually infinite. The algorithm can also
be stopped at an arbitrary point, yielding a finite prefix of the full unfolding. Fig. 2
illustrates a directed graph (a) and a prefix of its full unfolding (b).

Following the same idea, a contextual net N can also be unfolded into a labelled
contextual occurrence net UN , that is, another contextual net whose runs are in in
one to one correspondence to the runs of the original net. A labelling, or folding
morphism, consist on a pair of functions 〈fT , fP 〉 that associates each transition in UN
to a transition in N (through fT) and each place of UN to a place in N (through fP).
Again, due to the acyclic and rooted structure of the contextual occurrence net, there
is a natural precedence (or causal) order on its transitions and places.

Provided N , construction of UN , as well as fT and fP , proceeds incrementally,
adding a new transition together with the places in its postset at each step. We start
by appending to UN a copy of the initial marking of N , and updating fP to reflect
this copy. Then, we consider any reachable marking m′ of UN and compute its image
m though fP (that is, a marking m in N). If any transition t from N is enabled
at m and no copy of t firing from2 m′ is still present in UN , then a new copy of t

2To be precise, we should say ’firing from the places in UN whose image through fP conforms

6

can be appended, as well as new copies of places in t•. The folding morphisms are
subsequently updated to reflect the new transition and places in UN . Mapping fT is
updated with a binding from the copy of t to t, while mapping fP is updated to reflect
the copy of the postset of t. The same procedure is repeated until no new transition
can be appended. The resulting contextual net UN is called the full unfolding, and it
is usually infinite. Nevertheless, the procedure can be stopped at any point, yielding
a finite prefix of the full unfolding.

The full unfolding UN , or any prefix of it, is a contextual occurrence net, a notion for
which we will shortly give a formal definition. Transitions of any contextual occurrence
net will, from now, be called events, while its places will be called conditions. Fig. 1
illustrates a contextual net (a), an arbitrary prefix of its full unfolding (b) and the
folding morphism (c).

The full unfolding UN is infinite even for trivial examples (see Fig. 1 (b)). For
this reason, we are interested in a prefix of UN large enough to be complete, for some
meaning of completeness. In particular, we are interested in computing a prefix whose
reachable markings are in one to one correspondence to the reachable markings of N .
In order to define this prefix, we need to introduce some technical notions.

For the reminder of this work, we will consider a 1-safe contextual net N =
〈P, T, F,C,m0〉 and its full unfolding UN = 〈P ′, T ′, F ′, C ′,m′0〉, together with the fold-
ing morphism fT : T ′ → T and fP : P ′ → P . We let variable t to range transitions in
T , variable p for places in P , variable e for events in T ′ and variable c for conditions
in P ′.

Definition 1. The causality relation in UN is the least transitive relation < on P ′∪T ′
verifying that, (1) if c ∈ •e, then c < e; (2) if c ∈ e•, then e < c; and (3) if e• ∩ e′,
then e < e′.

Intuitively, relation < captures the notion of what must occur first in any run of
UN that fires or marks some transition or place. For instance, regarding Fig. 1 (b), we
have c3 < e3 since any run firing e3 will first mark c3 (notice that all the runs that fire
e3 are prefixed by e1, e3 and e1, e2, e3). We also have c2 < e1 as well as e1 < e2.

For any condition or event x ∈ P ′ ∪ T ′, we denote by [x] the set of causes of x,
i.e., the set {e ∈ T ′ | e ≤ x}, where ≤ is the reflexive closure of <. For instance,
[c4] = {e1, e2} and [e3] = {e1, e3}.

Consider now events e2 and e3. We cannot say that any run that fires e3 first fires
e2 (as e1, e3 is a run). However, we can assure that if some run fires e2 and e3, then it
will fire e2 before e3 (since once fired e3, condition c3 cannot be read). This situation
arises due to the existence of read arcs and it is the cause of the existence of several
causal histories for certain events. We characterize this relation in the next definition.

Definition 2. We say that two events e, e′ ∈ T ′ are in asymmetric conflict, and write
e↗ e′, iff either (1) e < e′, or (2) e ∩ •e′ 6= ∅, or (3) e 6= e′ ∧ •e ∩ •e′ 6= ∅.

Let us see why the intuition in the previous paragraph holds in the three sub-cases.
If e < e′, clearly any run that fires both events also fires first e. If e ∩ •e′ 6= ∅ (the
case of e2 and e3 in Fig. 1 (b)), then if both e and e′ are present in the same run, e
must read its context before e′ consumes at least one place of it. Finally, observe that

exactly the set •t’ in N , instead of ’firing from m′’.

7

if e 6= e′ and •e ∩ •e′ 6= ∅, then e and e′ cannot be present in the same run, and the
intuition vacuously holds. However, this allows us to capture symmetric conflicts3 by
means of a loop of length two in the asymmetric conflict relation.

For any set of events X ⊆ T ′, we write ↗X to denote the restriction of ↗ to X,
that is, the relation ↗ ∩ X ×X.

A contextual occurrence net is any 1-safe contextual net N ′ verifying (1) |•p| = 1
for any place p of N ′; (2) < is a strict partial order and [t] is finite for any transition t
of N ′; (3) the initial marking of N ′ coincides with the set of places p such that •p = ∅;
and (4) ↗[t] is acyclic for every transition t of N ′. We assume from now that UN is a
contextual occurrence net, enjoying therefore these four properties.

The next important notion is that one of configuration:

Definition 3. A finite set of events C ⊆ T ′ is a configuration of UN iff (1) ↗C is
acyclic and (2) C is causally closed, that is, for all e′ < e with e ∈ C, we have e′ ∈ C.

Configurations characterize (concurrent) runs of UN . A set of events is a configu-
ration iff all its events can be ordered to form a run. Furthermore, any permutation
of the events of a configuration that conforms a run is compatible with the asymmet-
ric conflict relation ↗. In Fig. 1 (b), the set {e1, e2, e3} is a configuration, while the
set {e2} is not, since it is not causally closed. We let Conf(UN) denote the set of all
configurations of UN .

The computational order v between configurations captures the intuition that a
configuration C1 can evolve to a configuration C2 if C1 ⊆ C2 and all events C2 \ C1

can fire after C1. Formally, we define that C1 v C2 holds iff C1 ⊆ C2 and ¬(e2 ↗ e1)
for all e1 ∈ C1 and e2 ∈ C2 \ C1 holds.

Additionally, two configurations are said to be in conflict, written C1#C2, when
either ¬(C1 v C1 ∪ C2) or ¬(C2 v C1 ∪ C2). Intuitively, two configurations are in
conflict when they cannot evolve to a common configuration. Finally, note that if two
configurations are not in conflict, then its union is a configuration. The opposite is not
necessarily true. Still in Fig. 1 (b), it holds that {e1, e2} v {e1, e2, e3}, while it does
not hold that {e1, e3} v {e1, e2, e3}, since e2 ↗ e3. Therefore {e1, e3}#{e1, e2, e3}.

As any configuration C is a run of UN , we can naturally associate to C the marking
reached by that run. We call that marking the cut of C. In turn, any marking in UN
corresponds, via fP , to a marking in N . We call this marking the marking of C. Still
in Fig. 1 (b), the marking of configuration {e1, e2} is {p3, p4}, while its cut is {c3, c4}.

Definition 4. Let C be a configuration of UN . We define the cut of C, written Cut(C),
and the marking of C, written Mark(C) as

Cut(C) =

(
m ∪

⋃
e∈C

e•

)
\
⋃
e∈C

•e Mark(C) =
⋃

c∈Cut(C)

fP (c)

Some configurations are called histories. Intuitively, given a configuration C and
some event e ∈ C, the history of e in C is the subset of C that contains e as well as
all events e′ that must fire before e in C, i.e., those for which e′(↗C)∗e holds.

3In a 1-safe Petri net (without read arcs), two transitions are said to be in symmetric conflict if
they are different and share some place in its respective presets.

8

Definition 5. Let C be a configuration of the UN and e ∈ C some event of C. The
history of e in C, written C[[e]], is the set {e′ ∈ C | e′(↗C)∗e}. Additionally, we define
the set of all histories for any event e ∈ T ′, written Hist(e), as the set {C[[e]] | C ∈
Conf(UN) ∧ e ∈ C}.

We use the notation He to denote any history He ∈ Hist(e) of e. Every history He

is a configuration. To see this, let C be a configuration and e ∈ C some event such
that He = C[[e]]. As He ⊆ C, it is clear that ↗He is acyclic. To show that He is
causally closed, assume that e′ ∈ He is some event of He and that e′′ < e′. Then we
have e′′ ↗ e′(↗C)∗e. As e′′ ∈ C, we have e′′(↗C)∗e and therefore e′′ ∈ He.

In a Petri net unfolding (without read arcs), any event e can only have one history
(the so called local configuration [e], see [6]). The presence of read arcs gives rise to the
existence of multiple histories (or runs) per event, possibly infinite. In Fig. 1 (b), event
e3 have two histories, namely, {e1, e3} (which coincides with [e3]) and {e1, e2, e3}.

2.3 A finite and complete prefix of UN
Due to the fact that UN is frequently infinite, we would like to define, and then con-
struct, a finite prefix of UN that is still useful. A finite prefix of UN is any contextual
occurrence net PN that results from stopping at an arbitrary point the abstract un-
folding algorithm presented at the beginning of §2.2. All the notions introduced so far
in this document for UN are likewise applicable to any prefix PN . Useful, or complete,
will mean in this work that the prefix is large enough to represent exactly the same
reachable markings as N , that is, such that

Markings(N) =
⋃

C∈Conf(PN)

Mark(C)

Other definitions are possible, for instance, we could require in addition that all runs
of N are represented in PN [3]. Under our definition, it is clear that UN is complete
by construction.

Proposition 6. The full unfolding UN is complete.

In order to construct a finite and complete prefix of a Petri net (without read arcs)
unfolding, McMillan suggested to define certain events of the full unfolding as cutoff
events, and let the unfolding algorithm to stop either when no new event can be added
or when any new event is a cutoff [6]. Then he proved that, for a proper definition of
cutoff events, his prefix was finite and complete. Roughly, cutoff events were defined
to be those whose corresponding run (history, causal closure or local configuration)
produces a marking that is reachable by a shorter run (firing less events). His definition
of cutoff relies on the fact each event has only one history and cannot be adapted
without changes to the framework of contextual nets.

The natural generalization of this idea is to consider that cutoffs are, not events,
but enriched events, that is, pairs 〈e,He〉 where e is an event and He ∈ Hist(e) is a
history of e. The unfolding algorithm has also to be modified to compute, not a prefix
of UN , but an enriched prefix, that is, a pair 〈PN , χ〉 such that PN is a prefix of UN
and χ : T ′ → 2Conf(UN) is a function associating to every event e of PN a non empty

9

c4

c3

{{e1, e3}, {e1, e2, e3}} e3

c2

c′2

c1

{{e1}} e1

e2 {{e1, e2}}

(b)

{{e1, e3, e′1}, {e1, e2, e3, e′1}} e′1

c4

c3

c2 c1

{{e1}} e1

(a)

e2 {{e1, e2}}

Figure 3: A complete enriched prefix (b) of Fig. 1 (a), together with an incomplete
one (a).

set of histories of e (that is, ∅ 6= χ(e) ⊆ Hist(e)), additionally verifying4 that H ∈ χ(e)
and e′ ∈ H implies H[[e′]] ∈ χ(e′).

Let us set some additional definitions. Let EN = 〈PN , χ〉 be an enriched prefix.
First, we set that a configuration C of EN is any configuration C ∈ Conf(PN) that
verifies C[[e]] ∈ χ(e) for all e ∈ C. The set of configurations of EN is denoted by
Conf(EN). Second, we consider that, by extension, UN is the enriched prefix 〈UN , χ〉
such that χ(e) = Hist(e) for e ∈ T ′. Finally, we say that 〈e,He〉 is an enriched event
of EN , denoted by ε ∈ EN , if e is an event of PN and He ∈ χ(e). We let variable ε
to range enriched events. Now we can define a suitable generalization of cutoffs for
contextual nets.

Definition 7. An enriched event 〈e,H〉 of UN is called cutoff if either Mark(H) = m0,
the initial marking of N , or there exists another enriched event 〈e′, H ′〉 of UN , so called
the corresponding event, verifying Mark(H) = Mark(H ′) and |H| < |H ′|.

Fig. 3 illustrates two enriched prefixes of the full unfolding of Fig. 1 (a). Histories
associated to each event are depicted as sets near the event. The pair 〈e3, {e1, e3}〉 is a
enriched event of (b), while it is not an enriched event of (a). Regarding the enriched
prefix (b), imagine we remove history {e1, e2} from χ(e2). The resulting prefix would
not conform the definition of enriched prefix, since, setting H = {e1, e2, e3}, we would
have that H ∈ χ(e3) and e2 ∈ H and not H[[e2]] ∈ χ(e2), violating the condition stated
on χ in the definition of enriched prefix. Finally, note that the enriched prefix (b) is
complete, while (a) is not. Indeed, the marking {p2, p4} is reachable in the original
net, reachable in (b) through configuration {e1, e2, e3} but unreachable in (a). The
two enriched events whose event is e′1 (depicted in gray in (b)) are cutoffs. Precisely,
enriched event 〈e′1, {e1, e3, e′1}〉 is a cutoff because its associated marking is the initial

4We impose this constrain on χ to conform the definition of closed occurrence net of [1]. Intuitively,
this constraint forces the enriched prefix to be such that the history of any event e present in the prefix
is the union of the histories associated events e′ in asymmetric conflict to e. Due to space constrains,
we skip providing a detailed motivation of this additional constraint and point the reader to review
Definition 12 of [1].

10

e2

c5

c2

e3

c6

c3

e1

c4

c1

Figure 4: Read arcs can lead to loops of arbitrary length in the ↗ relation.

marking {p1, p2}. Enriched event 〈e′1, {e1, e2, e3, e′1}〉 is a cutoff because its associated
marking {p3, p4} is reachable by means of the smaller history {e1, e2}.

The set of enriched prefixes of the full unfolding UN is naturally equipped with
with an ordering. Intuitively, enriched prefix EN is a prefix of E ′N if the unfolding
algorithm can append enriched events to EN to reach E ′N . Formally, enriched prefix
EN = 〈PN , χ〉 is a prefix of E ′N = 〈P ′N , χ′〉, written EN E E ′N , iff PN is a prefix of P ′N
and for all events e in PN we have χ(e) ⊆ χ′(e).

At this point, we can properly define the truncation of the full unfolding, that is,
the greatest enriched prefix free of cutoffs, and state its finiteness and completeness.

Definition 8. The truncation of the full unfolding, denoted TN , is the greatest enriched
prefix of UN , w.r.t. the E ordering, which does not contain any enriched event that is
a cutoff.

Theorem 9. TN has a finite number of enriched events and is complete.

2.4 Challenging aspects of contextual vs Petri net unfoldings

The main goal of this work is to provide an implementation of the unfolding algorithm
for contextual nets, presented in [1]. The Mole unfolder [9] served as inspiration for the
implementation of our contextual unfolder, but almost5 no code could be reused from
it. In this section, we justify why our implementation is not just an extension of Mole,
but a new 4700 lines of code tool written from scratch, by presenting the challenging
aspects that arises when unfolding contextual nets instead of Petri nets.

Conflict relation on events. A set of events are in conflict iff no configuration (or
run) fires all them together. Hence, determining if a set is a configuration amounts
to check that there is no subset of events in conflict. In Petri net unfoldings, this
can be reduced to a number of pairwise checks of events, relying on the fact that the
(symmetric) conflict relation is binary. In contextual net unfoldings, this is no longer
the case, as we have to check for a loop of any length in the (asymmetric) conflict
relation. Fig. 4 depicts a contextual net that is equal to its own unfolding, in which we
have the loop e1 ↗ e2 ↗ e3 ↗ e1. Events e1, e2 and e3 are hence in conflict, while any

5Only the routines to read the description of the contextual net from a file could be reused, as the
contextual unfolder uses almost the same input format than Mole.

11

set of two events is free of conflict (and conforms a configuration). Checking whether
a set of events is a configuration is a central task of the unfolding algorithm (see §3.1)
and can no longer be made by checking for binary conflicts, as it is done in Mole.

Management of histories. While in the unfolding of a Petri net, each event con-
ceptually represents only one run (or history) of the original net, in the unfolding of
a contextual net, events correspond to more than one run in the original net. As the
unfolding algorithm used in this work explicitly keeps track of the set of histories as-
sociated to each event, we need to implement data structures an algorithms to deal
with certain operations performed on histories (for instance duplicate test, or conflict
test). There is no explicit notion (data structure or algorithm) of history in Mole that
we could reuse or extend.

Concurrency relation on conditions. In the unfolding of a Petri net, each pair
of conditions is either in causal or concurrent or conflict relation (see §3.1 at [3])
but never in two of these relations at the same time. In a contextual net unfolding,
two conditions can be in (asymmetric) conflict and still be marked by some marking
(be concurrent). Conceptually, this prevents us from defining a concurrency relation
between conditions. Existence of such relation is successfully exploited in Mole to
speed up the computation. For contextual unfoldings, we can still define a concurrency
relation on enriched conditions (see §3.5), but again, we have to renounce to make an
extension of Mole and rather implement such relation from scratch.

Computational order v and asymmetric conflicts. The computational order
v is remarkably not only set inclusion between configurations, but also requires to

check certain conditions regarding the asymmetric conflict relation (see definition in
page 8). Our current implementation needs to compute the relation v between
histories each time it extends the unfolding by one enriched event. This requires to
explicitly store (a simplified version of) the asymmetric conflict relation between events
(see §3.2). No need to store the conflict relation is present in Mole.

3 Computing the unfolding

In the previous section we presented a finite and complete enriched prefix TN of the full
unfolding UN for a 1-safe contextual net N . In this section, we provide an algorithm
to compute a possibly larger enriched prefix FN that is still finite and complete.

Baldan et al. provide in [1] an abstract algorithm to compute FN . In the sequel,
we detail the data structures and algorithms used to transform this abstract algorithm
into a concrete one that can be directly implemented. Let us first introduce the data
structure used to store FN . The unfolding procedure at Algorithm 1 outputs an

enriched prefix FN = 〈PN , χ〉, with PN = 〈P ′, T ′, F ′, C ′,m′0〉 and χ : T ′ → 22
T ′

, by
encoding the flow and context relations F ′ and C ′ in the data structures used for P ′

and T ′. Each event e is represented by means of a tuple 〈Mp,Mc, t〉, with Mp,Mc ⊆ P ′
and t ∈ T . Set Mp is the preset of e, set Mc is the context of e and t is the transition
of N to which e corresponds. Each condition c is stored by means of a tuple 〈e, p〉,
with e ∈ T ′ being an event of PN and p ∈ P the place of N to which c corresponds.

12

Note that the folding morphisms fP and fT are also implicitly encoded in this data
structure, and will be assumed to be defined for the conditions and events currently
present in the prefix as the algorithm advances. Finally, notice that in order to simplify
the algorithm, we make use of a special event ⊥ whose postset is the initial marking
m′0. Event ⊥ is not mapped through fT to N and is removed from FN at the end of
the algorithm.

In Algorithm 1, one realizes that two procedures remain undefined, namely pe update
and is cutoff. We provide a declarative definition of pe update in §3.1, while is cutoff
is described here. Procedure is cutoff(e,H) takes an enriched event as argument and
returns true if 〈e,H〉 is a cutoff, false otherwise. Precisely, is cutoff(e,H) returns true
if it can find an event e′ of FN and H ′ ∈ χ(e′) such that Mark(H ′) = Mark(H) and
|H ′| < |H|, false otherwise6. It can be implemented by means of an exhaustive search7

of such H ′ in the image of χ.
For the rest of this section, we let FN be the enriched prefix computed by Algo-

rithm 1. We let also EN = 〈PN , χ〉, with PN = 〈P ′, T ′, F ′, C ′,m′0〉 and χ : T ′ → 22
T ′

,
be the enriched prefix that results from stopping Algorithm 1 at any arbitrary point.
That is, EN is any intermediate state of the construction of FN , and verifies EN EFN .

3.1 Computation of the possible extensions

Algorithm 1 builds FN by starting from an empty enriched prefix EN and appending
new enriched events to it, one at each iteration of its unique loop. Each enriched event
that is a candidate to be appended to EN at any point in the construction of EN is
called a possible extension. Intuitively, possible extensions are enriched events of UN ,
currently not present in EN , that are enabled at the cut of some configuration of EN .

Definition 10. Given an enriched event ε = 〈e,H〉 of UN that is not an enriched event
of EN , we call ε a possible extension of EN if e = 〈Mp,Mc, t〉, and •t = fP (Mp), and
t = fP (Mc), and there is a configuration C ∈ Conf(EN) verifying Mp ∪Mc ⊆ Cut(C)
and H = (C ∪ {e})[[e]].

Additionally, given an enriched event ε = 〈e,H〉 of EN , a possible extension ε′ =
〈e′, H ′〉 of EN is said to be induced by ε if e↗ e′ and H ⊆ H ′.

In Algorithm 1, the set E stores the possible extensions of EN . Every new enriched
event ε appended to EN inserts at least one new configuration in EN , possibly rendering
E out of date, as new enriched events may now be possible extensions enabled at the
cut of such configuration. It is easy to see that any such event is a possible extension
induced by ε. Procedure pe update returns the set of possible extensions to EN induced
by the enriched event that it takes as argument, and it is used to update E after the
addition of every new enriched event. Due to the space constraints, we present here a

6Note that Definition 7 declares 〈e,H〉 as a cutoff if it has a corresponding event 〈e′, H ′〉 in UN , not
necessarily in FN . Our approach works because we use a precise order when appending new enriched
events to FN . In particular, this order assures that when we append an enriched event 〈e,H〉, all
enriched events 〈e′, H ′〉 of UN with |H ′| < |H| have already been appended to FN . For this reason, if
〈e,H〉 has a corresponding event in UN , then that event is already present in FN .

7However, we didn’t implement it like that. A more elaborated version of it can be as follows: we
store a hash table mapping Mark(He) to ε = 〈e,He〉 for every ε of FN . When is cutoff(e,H) is called,
we access the hash table with Mark(H). If no entry can be found, we return false. Otherwise, if 〈e′, H ′〉
is found, we return H ′ < H.

13

Algorithm 1 Unfolding procedure, see the text.

Require: A 1-safe contextual net N = 〈P, T, F,C,m0〉.
Ensure: A finite and complete enriched prefix EN = 〈PN , χ〉 of the full unfolding of

N , with PN = 〈P ′, T ′, F ′, C ′,m′0〉 and χ : T ′ → 22
T ′

.

T ′ = {⊥}
χ(⊥) = {{⊥}}
m′0 = ∅
m′0 = m′0 ∪ {〈⊥, p〉} for each p ∈ m0

P ′ = m′0
E = pe update(⊥, {⊥})
while E 6= ∅ do

Remove from E some 〈e,H〉 minimal w.r.t |H|, and assume that e is 〈Mp,Mc, t〉
if not is cutoff(e,H) then
T ′ = T ′ ∪ {e}
χ(e) = χ(e) ∪ {H}
P ′ = P ′ ∪ {〈e, p〉} for each p ∈ t•
E = E ∪ pe update(e,H)

end if
end while
Remove ⊥ from T ′ and remove the binding χ(⊥) = {{⊥}}.

declarative definition of pe update. A pseudocode version of the procedure is presented
in Appendix B.

In order to compute the possible extensions induced by a given enriched event
〈e,H〉, we consider enriched events 〈e′, H ′〉 with e ↗ e′ (see Fig. 5 (a)). For such e′,
we compute a history H ′ as the union of {e′} and a family of histories already present
in EN . That family, denoted by FS , will be a set of histories whose union defines a
configuration such that the cut associated to that configuration marks the preset and
context of e′.

More precisely, we enumerate all the tuples e′ = 〈Mp,Mc, t〉 verifying that fP (Mp) =
•t, and fP (Mc) = t, and either e ∩Mp 6= ∅ or e• ∩ (Mp ∪Mc) 6= ∅. For each e′, we
compute the sets of events X = •(Mp ∪Mc) and Y = Mp (see Fig. 5 (b)). Now, we
enumerate all subsets S ⊆ Y , and for each one we compute the set FS , defined as the

(a)

〈e′3, H′3〉
〈e′1, H′1〉

〈e′2, H′2〉

〈e,H〉

.

e′′′′xe′′xe′x e′′′x

e′y e′′y

〈e′, H′S〉

Mc Mp

(b)

Figure 5: (a) Possible extensions induced by 〈e,H〉. (b) Computation of new histories
for e′.

14

only family of histories of the events X ∪ S ∪ {e} that verifies

{H} ⊆ FS ⊆
⋃

e′′∈X∪S∪{e}

χ(e′′) and |FS ∩ χ(e′′)| = 1 for all e′′ ∈ X ∪ S ∪ {e}

In other words, FS is a set of histories containing history H, one history of each ex ∈ X
and one history of each ey ∈ S (or, in other words, one history of some ey ∈ Y). Finally,
for each FS , we generate the enriched event 〈e′, H ′S〉, with

H ′S = {e′} ∪
⋃

H′′∈FS

H ′′ if ¬(H1#H2) for all H1, H2 ∈ FS and Conc(Mp ∪Mc)

The fist condition, ¬(H1#H2) for all H1, H2, assures that H ′S \ {e′} is a configuration.
The second condition, Conc(Mp ∪Mc), verifies that e′ is enabled at Cut(H ′S \ {e′}),
and can be easily computed by checking that no history H ′′ ∈ FS consumes8 any
condition of Mp ∪Mc.

The abstract presentation of [1] subtly omitted to specify explicitly the second
condition. Led by this specification, our first version of the contextual unfolder was
incorrect. Only exhaustive testing discovered the bug in the pe update algorithm and
led to a modification of the conditions being computed by that procedure, resulting in
the addition of the test Conc(Mp ∪Mc).

3.2 Direct asymmetric conflict

According to Definition 2, any two events e, e′ of PN in causal relation, e < e′, are
also in asymmetric conflict relation, e ↗ e′. Transitivity of < would lead to some
difficulties if we were interested in storing the ↗ relation. Furthermore, our current
implementation of pe update uses the relation ↗ to compute the relation # between
histories. We show in the sequel how we can define, store and use a simplified version of
the asymmetric conflict relation that provides, for our purposes, as much information
as ↗.

Definition 11. Given events e, e′ of UN , we say that e is in direct asymmetric conflict
to e′, and write e ↑ e′, iff either e ∩ •e′ 6= ∅, or e 6= e′ ∧ •e ∩ •e′ 6= ∅, or e• ∩ •e′ 6= ∅ or
e• ∩ e′ 6= ∅

Fig. 6 (a) illustrates all cases of Definition 11: for any depicted e′, we have e ↑ e′.
Observe also that, regarding Fig. 5 (a), we have e ↑ e′ for all depicted e′. Another
characterization of ↑ is to say that e ↑ e′ iff e↗ e′ and e < e′ =⇒ e• ∩ (•e′ ∪ e′) 6= ∅.
This means that relation ↑ is a subset of ↗ that excludes the full relation <. This
is interesting from the point of view of the implementation because computing and
storing ↑ is easier than ↗, while ↑ is still useful for our purposes, as we see now. Let
us define C1 v↑ C2 as C1 ⊆ C2 and ¬(e2 ↑ e1) for all e1 ∈ C1 and all e2 ∈ C2 \ C1.
Relation v↑ uses ↑ instead of ↗ (see definition of v at page 8), but it is equivalent
to v :

Proposition 12. For any pair of configurations C1, C2 ∈ Conf(UN), we have C1 v C2

iff C1 v↑ C2.

8We can say that a configuration (in particular, a history) consumes a condition if any run associated
to the configuration so does.

15

e1 e2

e3

e′1

(b)

e1

e′1

(c)

e′2

e′1

e′3

e′4

(a)

e
e3

e′1

e3

e2

Figure 6: (a) All possible cases of e ↑ e′ in Definition 11. (b) The graph AN and (c)
the graph HN for the (enriched) prefix of Fig. 3 (b).

We store the relation ↑ on events of PN by means of a directed graph AN , whose set
of nodes coincides with the set of events of PN and whose set of edges contains a pair
(e, e′) iff e ↑ e′ (see Fig. 6 (b) for an example). Whenever a new event e is appended
to PN , we use Definition 11 to update AN . This can be done easily by considering the
events reading or consuming •e and e.

3.3 History graph

Algorithm 1 needs to deal with enriched events 〈e,H〉 of EN . We now describe a data
structure to store the history H of such enriched events, as well as the mapping χ.

A naive implementation could represent every history by means of the list of events
contained in it. Naturally, this would lead to a bottleneck as the prefix EN grows and
histories are larger. We take advantage of the fact that each history H is the union of
{e} with a set of histories He′ for events e′ ↑ e, as explained in §3.1. We represent H
by means of a node in the so called history graph.

Definition 13. For a given enriched prefix EN , we define the history graph HN =
(V,→) as the directed graph whose set of nodes V coincides with the set {〈e,H〉 | e ∈
T ′ ∧H ∈ χ(e)} of enriched events of EN , and whose edges are pairs 〈e,H〉 → 〈e′, H ′〉
iff e′ ∈ H, and e′ ↑ e and H ′ = H[[e′]].

Graph HN stores one node for every enriched event of EN . The edge relation → is
closely related to the way in which possible extensions are computed. Regarding again
Fig. 5 (b), each (new) history H ′S is the union of {e′} with one history Hex ∈ χ(ex)
for each ex ∈ X and one history Hey ∈ χ(ey) for each ey ∈ S. Grabbing the same
structure, HN keeps one edge 〈e′, H ′S〉 → 〈ex, Hex〉 for each ex ∈ X and one edge
〈e′, H ′S〉 → 〈ey, Hey〉 for each ey ∈ S. This gives rise to the next lemma.

Lemma 14. Given HN = (V,→) and ε = 〈e,H〉 ∈ V , we have H = {e′ ∈ T ′ | ε →∗
〈e′, H ′〉}.

Lemma 14 basically says that, given any node ε ofHN , we can build the history that
it represents by computing the set of events e′ such that ε→∗ 〈e′, H ′〉. Let r : V → 2T

′

be the function that maps each node ε ofHN to the set r(ε) = {e′ ∈ T ′ | ε→∗ 〈e′, H ′〉}.
Function r can be be easily implemented by means of a search procedure on HN .

Our unfolder implements the mapping χ by means of the graph HN and a list le of
nodes of HN associated to each event e ∈ T ′. In order to enumerate χ(e), it suffices to

16

enumerate le. In order to enumerate the events in the history of some node ε of HN ,
we return the set r(ε).

3.4 Cutoff criterion and adequate orders

The cutoff criterion (Definition 7) is the key factor that makes the truncation TN a
finite and complete prefix. Other cutoff criteria are possible, still leading to a finite
and complete prefix. Esparza et al. proposed in [3] the notion of adequate order
on configurations of UN , that is, a characterization of the orders for which we can
reformulate the definition of cutoff in such a way that the proof of finiteness and
completeness of TN still works. We provide now a generalization for contextual nets:

Definition 15. A partial order ≺ on Conf(UN) is called adequate iff (1) ≺ is well
founded, and (2) C1 @ C2 implies C1 ≺ C2, and (3) ≺ is preserved by finite extensions,
that is, if C1 ≺ C2, and Mark(C1) = Mark(C2), and C1 @ C1∪E for some extension E
of C1, and C2 @ C2∪E′ for some extension E′ isomorphic to E, then C1∪E ≺ C2∪E′.

In [3], adequate orders are defined for Petri nets. Every adequate order as defined
in [3] is an adequate order as defined in Definition 15, which intuitively means that
our definition is more general. Briefly, this holds because C1 @ C2 implies C1 ⊂ C2.

We can redefine now the notion of cutoff according to any order on Conf(UN)
that is adequate. We call adequate cutoff to any enriched event 〈e,H〉 of UN if either
Mark(H) = m0, the initial marking of N , or there exists another enriched event 〈e′, H ′〉
of UN verifying Mark(H) = Mark(H ′) and H ≺ H ′ for some adequate order ≺. In the
same way, we can redefine the truncation of the full unfolding. The adequate truncation,
denoted by T̂N , is the greatest enriched prefix of UN , w.r.t. the E ordering, free of
adequate cutoffs. Under this notion of cutoff, we can still prove the finiteness and
completeness of T̂N :

Theorem 16. T̂N has a finite number of enriched events and is complete.

The so called McMillan order (C1 ≺ C2 iff |C1| < |C2|) is adequate. This is the
order used in [1] as well as on Algorithm 1 and the definition of is cutoff. For our
unfolder, we also implemented the order ≺F of [3], which, due to space constraints we
cannot present here.

3.5 Optimizations

Experimental verification has shown that the bottleneck in Algorithm 1 is located in
the computation of the possible extensions to EN , in particular in the computation of
the # relation. Roughly speaking, code profiling has pointed out that our tool spends
in average 85% of the time computing the relation #. We propose now an optimization
of procedure pe update that could speed up the unfolding algorithm.

In a Petri net unfolding, it is possible to define a binary concurrency relation R on
the unfolding conditions. Then, it is possible to determine if a number of conditions
are concurrent by checking whether every pair of conditions is in R. Such approach is
successfully exploited by Mole to speed up the computation of the unfolding. Unfortu-
nately, this idea cannot be used without modifications in the framework of contextual

17

unfoldings. We can nevertheless define a concurrency relation, not on conditions, but
on enriched conditions.

An enriched condition of EN is a pair ρ = 〈c,H〉 such that either H = ∅ and c ∈ m′0,
the initial marking of EN , or there is an enriched event 〈e,H〉 of EN verifying c ∈ e•∪e.
We denote by ρ ∈ EN the fact that ρ is an enriched condition of EN . We need some
notation to work with enriched conditions and events. We define the preset •ρ of an
enriched condition ρ = 〈c,H〉 ∈ EN as the set {〈e,H ′〉 ∈ EN | H ′ ∈ χ(e) ∧H ′ = H}.
Additionally, we define the preset •ε and context ε for an enriched event ε = 〈e,H〉 ∈
EN as, respectively, the sets {〈c,H ′〉 ∈ EN | c ∈ •e ∧ ∃e′ ∈ H maximal w.r.t. ↗H

∧H ′ = H[[e′]]} and {〈c,H ′〉 ∈ EN | c ∈ e ∧ ∃e′ ∈ H maximal w.r.t.↗H ∧H ′ = H[[e′]]}.
We define now the binary concurrency relation on enriched conditions ρ = 〈c,H〉,

ρ′ = 〈c′, H ′〉 of EN as

ρ ‖ ρ′ def⇐⇒ ¬(H#H ′) ∧ {c, c′} ⊆ Cut(H ∪H ′)

That is, ρ is concurrent to ρ′ if its histories are not in conflict, and H does not consume
c′ and H ′ does not consume c. Relation ‖ enjoy the property that any set of conditions
{c1, . . . , cn} is concurrent iff there exist enriched conditions 〈c1, H1〉, . . . , 〈cn, Hn〉 ver-
ifying 〈ci, Hi〉 ‖ 〈cj , Hj〉 for 1 ≤ i < j ≤ n. We believe that is remarkably interesting
from the point of view of the implementation, since we conjecture that can use ‖ to
speed up the computation of pe update in the same way as it is done in Mole.

In order to use ‖ for the computation of pe update, one alternative is to store ‖ for
every pair of enriched conditions currently present in EN and to update the relation
whenever new enriched conditions ρ are appended to EN . Furthermore, it is possible
to compute the update of ‖ by computing ρ ‖ ρ′ for each ρ newly appended to EN and
every ρ′ already present in EN without computing H#H ′. This can be done by means
of the next equivalence.

Theorem 17. Let ρ = 〈H, c〉, ρ′ = 〈H ′, c′〉 be two different enriched conditions of EN
such that H ∈ χ(e), H ′ ∈ χ(e′) and H ′ ≺ H for an adequate order ≺. We have the
equivalence

ρ ‖ ρ′ ⇐⇒
∧

ρi∈••ρ
ρi ‖ ρ′ ∧

∧
σj∈•ρ

σj ‖ ρ′ ∧ (ρ′ /∈ ••ρ) ∧ ¬∃e′′ ∈ H ′ \H, e′′ ∩ •e 6= ∅

To understand the practical utility of this equivalence, assume that 〈e,H〉 is the last
possible extensions appended to EN . This triggered the addition of enriched conditions
ρ = 〈c,H〉 with c ∈ e• ∪ e. At this point, we use Theorem 17 to compute and
subsequently store ρ ‖ ρ′ for every ρ′ already present in EN . We compute ρ ‖ ρ′ by
means of a boolean conjunction that regards the previously computed results of ρi ‖ ρ′
and σj ‖ ρ′ for certain enriched conditions ρi and σj , as well as other logical conditions,
that are also easy to compute, considering the internal data structures of our unfolder.

The ability to use the relation ‖ to compute sets of concurrent conditions as well as
the fact that it can be computed incrementally as EN grows make from ‖ an interesting
optimization that has not been, for the time being, implemented into our unfolder due
to time constraints.

18

4 Implementation testing

As stated in the introduction, our first priority while implementing the unfolding al-
gorithm was correction. The second, performance. We present here some of the tests
that have been performed to the tool.

One of our problems was to know if the unfolding prefix generated after the com-
putation was complete or not. When testing under toy examples, this can be check
by hand, but this is no longer the case when the examples are big. We addressed this
problem in two different ways.

We made profit of the existence of the Petri net unfolder Mole. Mole is able to
compute a compete unfolding prefix for a Petri net, without read arcs. We developed
a small tool to check whether two given Petri nets are isomorphic, and compared the
resulting prefixes when unfolding the same Petri net with both unfolders. We can
assure that for all the (trivial and non trivial) examples provided by the PEP Project
[8], the output of our unfolder is a prefix isomorphic to the prefix generated by Mole.

Of course, Mole cannot unfold contextual nets. In order to check our unfolder on
Petri nets with read arcs, we developed another tool able to compute the reachability
set of any 1-safe net. We then applied it to a set of examples and its unfoldings
obtained through our tool. In all the cases the reachability set of the example and its
unfolding was the same.

5 Conclusions and future work

In this work, we address the problem of unfolding 1-safe contextual nets. In particular,
we tackle the implementation of an unfolder that generates a complete and finite prefix
following the abstract unfolding method specified in [1]. Our work constitutes the first
implementation of such method, and its development required attention to practical
as well as theoretical matters.

On the practical side, we have developed a working contextual unfolder. We have
proposed data structures to support the manipulation of the notions involved in the
unfolding procedure, such as the history graph or the direct asymmetric conflict graph.

On the theoretical arena, we have also provided several contributions. We have sug-
gested a generalization of adequate orders for contextual unfoldings, and subsequently
proved how we can still use them to build a finite and complete prefix. A concurrency
relation on enriched conditions has also been suggested, but not implemented. This
relation has subsequently been characterized so as to allow the relation itself to be
updated as the unfolding grows. Similar ideas have successfully been used in Mole, a
Petri net (without read arcs) unfolder, which suggests that this could be an interesting
avenue.

The implementation of the contextual unfolder showed to be non trivial (4700
lines of C code). With the goal of soundness in mind, and whenever possible, several
theoretical notions were translated into an implementation by turning the theoretical
notion as is into an algorithm. This is remarkably the case of the conflict relation #
between histories, where the unfolder spends in average more than 85% of the time.
Consequently, we do not reach still the performance of Mole. Further work is required
to review certain data structures and algorithms, such as the relation #. We hope

19

that this will allow our unfolder to treat moderately larger examples than the current
ones.

Concerning the applications, Mole has been applied in the domains of model check-
ing and planning [4]. We plan to pursue similar lines of application with our tool.

References

[1] Paolo Baldan, Andrea Corradini, Barbara König, and Stefan Schwoon. McMillan’s
complete prefix for contextual nets. In Transactions on Petri Nets and Other
Models of Concurrency I, pages 199–220, Berlin, Heidelberg, 2008. Springer-Verlag.

[2] Javier Esparza and Keijo Heljanko. Unfoldings – A Partial-Order Approach to
Model Checking. EATCS Monographs in Theoretical Computer Science. Springer-
Verlag, March 2008.

[3] Javier Esparza, Stefan Römer, and Walter Vogler. An improvement of McMillan’s
unfolding algorithm. In Formal Methods in System Design, pages 87–106. Springer-
Verlag, 1996.

[4] Sarah Hickmott, Jussi Rintanen, Sylvie Thiébaux, and Lang White. Planning
via petri net unfolding. In IJCAI’07: Proceedings of the 20th international joint
conference on Artifical intelligence, pages 1904–1911, San Francisco, CA, USA,
2007. Morgan Kaufmann Publishers Inc.

[5] K. L. McMillan. A technique of state space search based on unfolding. Form.
Methods Syst. Des., 6(1):45–65, 1995.

[6] Kenneth L. McMillan. Using unfoldings to avoid the state explosion problem in
the verification of asynchronous circuits. In CAV ’92: Proceedings of the Fourth
International Workshop on Computer Aided Verification, pages 164–177, London,
UK, 1993. Springer-Verlag.

[7] Mogens Nielsen, Gordon D. Plotkin, and Glynn Winskel. Petri nets, event struc-
tures and domains. In Proceedings of the International Sympoisum on Semantics
of Concurrent Computation, pages 266–284, London, UK, 1979. Springer-Verlag.

[8] PEP Project. PEP homepage. [Online; accessed 15-August-2010]: http://

theoretica.informatik.uni-oldenburg.de/~pep/.

[9] Stefan Schwoon. Mole – an unfolder for Petri Nets. [Online; accessed 15-August-
2010]: http://www.lsv.ens-cachan.fr/~schwoon/tools/mole/.

20

A Proofs

We provide in this Appendix proofs of the statements presented in previous sections.
For each proof, we first formulate the statement and then present its proof by mak-
ing the same assumptions as those made in the section where the statement initially
appears.

Let us present here some notation whose presentation we had to skip due to the
space constraints of this document. We say that a configuration C of the full unfolding
UN (or enriched prefix EN of it), contains an enriched event 〈e,H〉 if e ∈ C and
H = C[[e]].

For any enriched event ε = 〈e,H〉 of UN (or enriched prefix EN of it), we will write
εH to denote H and εe to denote e. In a similar way, for enriched conditions ρ = 〈c,H〉
of UN , we will write ρH to denote H and ρc to denote c.

A.1 A finite and complete prefix of UN
Theorem 9. TN has a finite number of enriched events and is complete.

Proof. (Sketch, see Theorems 1 and 2 of [1].) By assumption, N is finite and 1-safe
net, and has a finite number of reachable markings. Observe that the number of
configurations of TN must be finite, since if it were infinite, considering the fact that
every configuration is associated to one marking in N , we would have infinite cutoffs in
TN , a contradiction. As the number of configurations is finite, the number of enriched
events must be finite.

We say that a configuration C contains an enriched event 〈e,He〉 if e ∈ C and He =
C[[e]]. According to this definition, it is possible to prove that, for any configuration of
UN we can find a configuration free of cutoffs. That configuration must be present in
TN . Since UN is complete, we can conclude that TN is also complete.

A.2 Direct asymmetric conflict

Proposition 12. For any pair of configurations C1, C2 ∈ Conf(UN), we have C1 v C2

iff C1 v↑ C2.

Proof. Assume ¬(C1 v C2). We prove that ¬(C1 v↑ C2). As ¬(C1 v C2), then either
C1 6⊆ C2 or there exist some e1 ∈ C1 and some e2 ∈ C2 \ C1 verifying e2 ↗ e1. In
the first case, we have ¬(C1 v↑ C2) by definition. In the second, notice that e2 ↑ e1
also holds, since if it were the case that e2 < e1, the fact that e1 ∈ C1 and that C1

is a configuration (and thus, causally closed), would imply that e2 ∈ C1, which is a
contradiction to e2 ∈ C2 \ C1. As e2 ↗ e1 and e2 6< e1, we have e2 ↑ e1. Therefore,
¬(C1 v↑ C2).

Assume now that ¬(C1 v↑ C2). We prove that ¬(C1 v C2). If ¬(C1 v↑ C2), then
either C1 6⊆ C2 or there exist some e1 ∈ C1 and some e2 ∈ C2 \C1 verifying e2 ↑ e1. In
the first case, we have ¬(C1 v C2) by definition. In the second, since e2 ↑ e1 implies
e2 ↗ e1, we also have ¬(C1 v C2).

21

A.3 History graph

In order to prove Lemma 14 we need to first prove that the edge relation of HN is
acyclic:

Lemma 18. The edge relation → of any given history graph HN = (V,→) is acyclic.

Proof. For an argument by contradiction, assume that we can find a loop in the relation
→ using enriched events of V . Let 〈e1, H1〉 → 〈e2, H2〉 → . . . → 〈en, Hn〉 be n − 1
enriched events of V such that 〈e1, H1〉 = 〈en, Hn〉. The definition of → assures that
for any 〈ei, Hi〉, with 1 ≤ i < n it holds that ei+1 ∈ Hi, and that Hi+1 ⊆ Hi, and that
ei+1 ↑ ei. This implies that we have a cycle in the relation ↑ using events e1, . . . , en−1.
It also implies that ei ∈ H1 for 1 ≤ i < n. These two facts together say that we can
find a cycle of the relation ↑ restricted to H1, which is a contradiction, since this means
that we can find a loop in the relation ↗ restricted to H1.

Therefore, relation such cycle in relation→ cannot be found, and→ is acyclic.

Lemma 14. Given HN = (V,→) and ε = 〈e,H〉 ∈ V , we have H = {e′ ∈ T ′ | ε →∗
〈e′, H ′〉}.

Proof. Due to the fact thatHN is acyclic (Lemma 18), we know that→ is well founded.
We prove the statement by structural induction on the edge relation →.

Base Node ε has no outgoing edge. We have to prove that H = {e}. For an argument
by contradiction, assume that there is at least one enriched event e1 ∈ H \ {e}. As
e1 ∈ H and e1 6= e, we have e1 ↗+

H e. This implies that we can find some event e2 ∈ H
that is in asymmetric conflict to e, e2 ↗ e and such that e2 6= e. Now we claim that
we can find some other event e3 ∈ H verifying e3 ↑ e and e3 6= e. Indeed, if e2 ↑ e,
we can take e2 as such e3. Otherwise, if ¬(e2 ↑ e), we know that e2 < e and, since H
is causally closed, we can find some e3 ∈ H verifying e2 < e3 < e and e3 ↑ e. From
the definition of enriched prefix, and due to the fact that H is a configuration of EN ,
it must hold H[[e3]] ∈ χ(e3). For this reason, 〈e3, H[[e3]]〉 must be a node of HN , that
is, 〈e3, H[[e3]]〉 ∈ V . Since, by construction, e3 ∈ H, and e3 ↑ e, it must hold that
ε = 〈e,H〉 → 〈e3, H[[e3]]〉. This is a contradiction to the assumption that node ε has
no outgoing edge. Therefore, H = {e}.

Step Assume that the statement holds for any ε′ = 〈e′, H ′〉 such that ε → ε′. We
can write the next development:

{e′ ∈ T ′ | ε→∗ 〈e′, H ′〉} = {e} ∪ {e′ ∈ T ′ | ε→+ 〈e′, H ′〉}

Now, consider the set D
def
= {e′ ∈ H | e′ ↑ e}. By the definition of HN , we can see

that if ε→ 〈e′, H[[e′]]〉 is an edge of HN , then e′ ∈ D holds. This let us write the next
development:

{e} ∪ {e′ ∈ T ′ | ε→+ 〈e′, H ′〉} = {e} ∪
⋃
e′∈D
{e′′ ∈ T ′ | 〈e′, H[[e′]]〉 →∗ 〈e′′, H ′′〉}

22

By induction hypothesis, we know that the lemma holds for all nodes ε′ = 〈e′, H ′〉 such
that ε→ ε′. In other words, we know that for any e′ ∈ D, we have H[[e′]] = {e′′ ∈ T ′ |
〈e′, H[[e′]]〉 →∗ 〈e′′, H ′′〉}. Again, this allows us to write

{e} ∪
⋃
e′∈D
{e′′ ∈ T ′ | 〈e′, H[[e′]]〉 →∗ 〈e′′, H ′′〉} = {e} ∪

⋃
e′∈D

H[[e′]]

Finally, it is easy to see that

{e} ∪
⋃
e′∈D

H[[e′]] = H

by means of a subset inclusion in both directions. Direction ⊆ is trivial. Direction
⊇ can be proved by regarding a partition of H in three sets, namely {e}, D and
(H \ {e}) \ D. For events in the first two sets, it is trivial to see that the inclusion
holds. For any event e′′ ∈ (H \ {e}) \D, it is not difficult to see that e′′ ∈ H[[e′]] for
some e′ ∈ D.

A.4 Cutoff criterion and adequate orders

In order to provide a proof for Theorem 16, we need to first provide some two new
lemmas: Lemma 19 and Lemma 20.

Lemma 19. T̂N has a finite number of enriched events

Proof. By contradiction, assume that T̂N has infinite enriched events. As any history
of an enriched event is a configuration, and, in particular, a finite configuration, we
also know that the number of finite configurations of TN is infinite. In the sequel,
we see that under these assumptions we can use König’s lemma to find an infinite
sequence of configurations C1, C2, . . . with Ci @ Ci+1 and Mark(C1) = Mark(Ci) for
i ≥ 1, yielding to the fact that C2 is a cutoff, which is a contradiction to the definition
of TN .

We define a graph G = (V,E) whose set of vertices V is the set of finite configura-
tions of TN plus the empty configuration ∅, and whose set of edges is a subset of the
computational order relation v :

• V = Conf(TN) ∪ {∅}

• E = {(C1, C2) ∈ V × V | C1 v C2 and |C1|+ 1 = |C2|}

We write C1 → C2 for (C1, C2) ∈ E. We now prove three properties of G:

G has finite degree. We show that for any C1 there is only a finite number of config-
urations C2 such that C1 → C2.

Consider any pair of configurations C1, C2 with C1 → C2. Then C1 v C2 and
|C1| + 1 = |C2|. By definition, C1 v C2 implies C1 ⊆ C2. Then we can write
C2 = C1 ∪ {e} for some e /∈ C1. From the fact that C1 v C2 we also know that
¬(e2 ↗ e1) for all e1 ∈ C1 and all e2 ∈ C2 \ C1. In particular ¬(e ↗ e1) for
all e1 ∈ C1, so e can fire after any event e1 of C1. This, together with the fact

23

that C2 is a configuration, implies that •e ⊆ Cut(C1). From this, it follows that
e ∈ Cut(C1)

•.

Now notice that Cut(C1)
• is finite, because C1 is finite and the preset and postset

of each event in UN is finite (due to our initial assumption about the finiteness
of N). So there is, at most, a finite number of different events e ∈ Cut(C1)

• and
hence a finite number of different sets C1 ∪ {e}. As we saw previously, any C2

such that C1 → C2 is one of these C1 ∪ {e} for e ∈ Cut(C1)
•. Hence, for a given

C1, there is at most a finite number of different edges C1 → C2 in G.

G is connected. We show by induction on the size of a configuration C that there
exists a path from the empty configuration ∅ to C. In the base case, |C| = 0 and
consequently C = ∅. The statement is trivially true. For the step case, assume
that we can find a path for configurations of up to size n, or more formally, that
∅ →∗ C if |C| ≤ n and let C ′ be a configuration of size n + 1. From C ′ we
can extract a event e maximal w.r.t. the relation ↗. This is always possible
because C ′ is finite and there is no loops in ↗ restricted to C ′. As there exists
no other e′ ∈ C ′ with e ↗ e′, we can assure that C ′ \ {e} is a configuration.
Furthermore, it is a configuration of size n for which the induction hypothesis
applies. Finally, notice that C ′ \ {e} v C ′, because C ′ \ {e} ⊆ C ′ and the
maximality of e. Consequently, C ′ \ {e} → C ′.

G has an infinite number of vertices. By hypothesis, we know that there is an infinite
number of configurations in TN . Each configuration is a vertex in G.

In the light of these properties, König’s lemma guarantees the existence in G of
an infinite sequence of configurations (Ci)i≥1 such that C1 = ∅ and Ci → Ci+1. By
hypothesis, N is n-bounded, so the number of reachable markings in N is finite. As
each configuration Ci has an associated marking Mark(Ci), this implies that from
(Ci)i≥1 we can extract an infinite subsequence of configurations Ci1 , Ci2 , . . . marked
with the same marking, that is, verifying:

• (subsequence) ij < ij+1 for j ≥ 1, and

• (same marking) Mark(Ci1) = Mark(Cij) for j ≥ 2, and

Consider now the configurations Ci1 and Ci2 . By construction, we know that
Ci1 →∗ Ci2 . This, together with the fact that relation v is transitive, implies that
Ci1 v Ci2 and by Definition 15, that Ci1 ≺ Ci2 . But, by construction, we know that
Mark(Ci1) = Mark(Ci2), so Ci2 is a cutoff. This is a contradiction to the fact that TN
is free of cutoffs.

Hence, the number of enriched events in TN is finite.

Lemma 20. If a finite configuration C of UN contains at least one adequate cutoff,
then there exists another configuration C ′ such that Mark(C) = Mark(C ′) and C ′ ≺ C.

Proof. Assume that C contains the adequate cutoff 〈e,He〉, for some e ∈ C and He =
C[[e]]. Then, by definition, we know that either Mark(He) = m′, with m′ the initial
marking of UN , or there exists another enriched event 〈e′, He′〉 such that Mark(He) =

24

Mark(He′) and He′ ≺ He. In both cases, we regard history H defined as H
def
= ∅ in

the first case and H
def
= He′ in the second case. Notice that in any case, H ≺ He (if

H = ∅, then H @ He and by definition, H ≺ He).
As Mark(He) = Mark(H), it is possible to find an extension of H firing exactly the

same transitions as those labeling the set C \He. In other words, it must be possible
to find an extension E of H isomorphic to C \He, such that Mark(He ∪ (C \He)) =
Mark(H ∪ E). This follows from the fact that UN unfolds as much as possible and can
be proved by induction on the size of the set C \He:

Base |C \He| = 1. Assume that C \He = {e′}. As Mark(He) = Mark(H), then the
transition t labeling e′ is enabled at Mark(H) and, by the definition of full unfolding,
there exists an event e′′ labeled by t such that H ∪{e′′} is a configuration. Hence, {e′′}
is an extension of H isomorphic to C \He.

Step Assume we can find extensions of H isomorphic to C\He up to size n. We show
that it is also possible for size n+ 1. Assume that |C \He| = n+ 1 and consider any
maximal event e′ of C \He w.r.t. the relation ↗ (it must exists because ↗ is acyclic
in C). As e′ can fire after any event in C \He, and therefore any event in C, we know
that C \ {e′} is a configuration and that the set (C \He) \ {e′} is an extension of He of
size n. Then, the induction hypothesis applies and says that we can find an extension
E of H, isomorphic to (C \He) \ {e′} such that Mark(C \ {e′}) = Mark(H ∪ E). But
now notice that the transition t labeling e′ is enabled at Mark(H ∪ E) and, therefore
there exists an event e′′ labeled by t such that H ∪ E ∪ {e′′} is a configuration and
E ∪ {e′′} is an extension of H isomorphic to C \He.

We claim now that C ′
def
= H ∪ E is the configuration we are searching for. To

see this, we just have to verify that C ′ ≺ C. We do it using the third condition
of Definition 15. Indeed, He and H are configurations with the same marking; by
hypothesis He @ C and by construction H @ H ∪ E and E is isomorphic to C \He.
Hence H ∪ E ≺ C.

Theorem 16. T̂N has a finite number of enriched events and is complete.

Proof. That T̂N has a finite number of enriched events is proved by Lemma 19. We
prove now that, making use of Lemma 20, that we can show completeness of T̂N .

We know after Proposition 6 that UN is a complete enriched prefix. Therefore, for
any marking m of N we can find a configuration C ∈ Conf(UN) with Mark(C) = m.
We show now that for such configuration C we can find another configuration C ′ with
the same marking and free of adequate cutoffs that, consequently, belongs to TN .

Let C ∈ Conf(UN) be a configuration of the full unfolding. If C is free of cut-
offs, then all enriched events 〈e, C[[e]]〉 are enriched events of T̂N and therefore C is a
configuration of T̂N .

So, let us assume that C contains a cutoff. By Lemma 20 we can find another
configuration C1 ∈ Conf(UN) with Mark(C) = Mark(C1) and C1 ≺ C. If C1 still
contains cutoffs, we can apply again Lemma 20 and find another configuration C2 ≺ C1

with Mark(C2) = Mark(C). Furthermore, as ≺ is well founded, the number of times
we have to apply Lemma 20 in order to find a configuration Cn free of cutoffs is finite,

25

otherwise we would either have an infinite decreasing sequence of configurations w.r.t.
the order ≺, or a counterexample for Lemma 20.

A.5 Optimizations

The goal of this section is providing a proof for Theorem 17. For the sake of simplicity
in the following developments, we first characterize the concurrency relation in terms
of the ↗ relation.

Remark 21. The statement 〈H, c〉 ‖ 〈H ′, c′〉 is equivalent to the conjunction of the
next four statements:

1. ¬(∃e1 ∈ H, ∃e2 ∈ H ′ \H, e2 ↗ e1)

2. ¬(∃e1 ∈ H ′, ∃e2 ∈ H \H ′, e2 ↗ e1)

3. ¬(∃e1 ∈ H, c′ ∈ •e1)

4. ¬(∃e1 ∈ H ′, c ∈ •e1)

More intuitively, Remark 21 says that 〈H, c〉 ‖ 〈H ′, c′〉 holds if and only if H can
evolve to H ∪H ′ (1), H ′ can evolve to H ∪H ′ (2) and none of any histories consumes
the condition generated by the other history (3 and 4). Note that the conjunction of
conditions 1 and 2 is equivalent to ¬(H#H ′) while the conjunction of conditions 3 and
4 is equivalent to c, c′ ∈ Cut(H ∪H ′).

Let us now provide the technical lemmas Lemma 22 and Lemma 23.

Lemma 22. Let EN = 〈PN , χ〉 be an enriched prefix and H,H ′ ∈ χ(e) be two histories
of some event e of PN . If H 6= H ′, then H#H ′.

Proof. As both histories are histories for event e, it holds that e ∈ H and e ∈ H ′. As
H 6= H ′, it holds that H \H ′ 6= ∅. This means that we can find some event e1 ∈ H \H ′
in H and not in H ′. Due to the fact that H is a history of e, we can assure that
e1 ↗∗H e. Taking into account that e1 /∈ H ′ and that e ∈ H ′, we can be sure that
e1 6= e, which entails that e1 ↗+

H e holds. In turn, this implies that we can find events
e2, . . . , en ∈ H such that n ≥ 2, and e = en, and e1 ↗ e2 ↗ . . . ↗ en−1 ↗ en.
Additionally, e1 ∈ H \H ′ and en ∈ H ′. It is now easy to see that there exists some ei,
with 1 ≤ i < n, verifying ei ∈ H \H ′ and ei+1 ∈ H ′. This implies that H#H ′

Lemma 23. Let H,H ′ be two histories of EN = 〈PN , χ〉, with H ′ ≺ H, and H ∈ χ(e)
and e ∈ H ′. Then H#H ′.

Proof. We claim that H 6v H ′. Indeed, if it were the case that H v H ′, and provided
that any adequate order ≺ is antisymmetric, we would have H ≺ H ′, a contradiction
to the hypothesis H ′ ≺ H. So H 6v H ′ holds. Making use of the definition of v
(page 8), one can write the next equivalence:

H 6v H ′ ⇐⇒ H 6⊆ H ′ ∨ ∃e1 ∈ H, ∃e2 ∈ H ′ \H, e2 ↗ e1

As H 6v H ′ holds, the right-hand side also holds. We show that both sides of the
disjunction in the right-hand size implies H#H ′.

26

Clearly, ∃e1 ∈ H, ∃e2 ∈ H ′ \ H, e2 ↗ e1 implies H#H ′. On the other hand,
H 6⊆ H ′ implies that we can find some event e′′ ∈ H \H ′. Now notice that, as e′′ ∈ H,
it holds that e′′ ↗∗H e. Event e and e′′ must be different because e ∈ H ′ by hypothesis
and e′′ /∈ H ′. Consequently it also holds that e′′ ↗+

H e. This means that we can find
a finite number of events e1, . . . , en ∈ H with e′′ = e1 ↗ e2 ↗ . . . ↗ en = e. It is
easy to see that there must exist some pair of events el, el+1 for some 1 ≤ l < k with
el ∈ H \H ′ and el+1 ∈ H ′. By construction, el ↗ el+1 and hence H#H ′.

Theorem 17. Let ρ = 〈H, c〉, ρ′ = 〈H ′, c′〉 be two different enriched conditions of EN
such that H ∈ χ(e), H ′ ∈ χ(e′) and H ′ ≺ H for an adequate order ≺. We have the
equivalence

ρ ‖ ρ′ ⇐⇒
∧

ρi∈••ρ
ρi ‖ ρ′ ∧

∧
σj∈•ρ

σj ‖ ρ′ ∧ (ρ′ /∈ ••ρ) ∧ ¬∃e′′ ∈ H ′ \H, e′′ ∩ •e 6= ∅

Proof. Let ••ρ = {ρ1, . . . , ρn} and •ρ = {σ1, . . . , σm}. We let variable ρi = 〈Hi, ci〉
to range the set ••ρ and variable σj = 〈Hj , cj〉 to range the set •ρ, with 1 ≤ i ≤ n
and 1 ≤ j ≤ m. For any ρi and σj , we let Hi ∈ χ(ei) and Hj ∈ χ(ej). Note also
that, by definition, Hi = H[[ei]] and that Hj = H[[ej]]. It is easy also to see that for
any pair ρ1, ρ2 ∈ ••ρ ∪ •ρ we have ρ1 ‖ ρ2. Finally note that, also by construction,

H = {e} ∪
⋃
ρi∈••ρ ρ

H
i ∪

⋃
σj∈•ρ σ

H
j .

We prove in the sequel both directions of the co-implication. From left to right, we
prove that the hypothesis implies each one of the conjunctions.

(a) ρ ‖ ρ′ =⇒
∧
ρi∈••ρ ρi ‖ ρ

′ It is enough to prove that ρ ‖ ρ′ =⇒ ρi ‖ ρ′ for some
ρi. As we do not make any assumption on ρi, the proof will be valid for all ρi.

Assume that ρ ‖ ρ′ and that, for a proof by contradiction, ¬(ρi ‖ ρ′) for some
ρi ∈ ••ρ. Then we know that at least one of the four statements in Remark 21
must be false when regarding ρi and ρ′. We proceed by cases:

1. Assume that there exist events e1 ∈ Hi and e2 ∈ H ′ \ Hi with e2 ↗ e1. Two
cases are possible: either e2 ∈ H or e2 /∈ H. If e2 /∈ H, as Hi ⊆ H, we have that
e1 ∈ H, e2 ∈ H ′ \H and e2 ↗ e1, which implies H#H ′. This is a contradiction
to ρ ‖ ρ′. So, let us assume that e2 ∈ H. As H = {e}∪

⋃
ρi∈••ρ ρ

H
i ∪

⋃
ρj∈•ρ ρ

H
j ,

several sub-cases are possible:

• e2 ∈ ρHi′ for some ρi′ ∈ ••ρ with i′ 6= i. Again, we have e1 ∈ Hi, e2 ∈ ρHi′ \Hi

and e2 ↗ e1. This implies ρHi′ #Hi, which is a contradiction to ρi ‖ ρi′ .
• e2 ∈ σHj for some σj ∈ •ρ. Likewise, we have e1 ∈ Hi, e2 ∈ σHj \Hi, e2 ↗ e1

and σHj #Hi, which is a contradiction to ρi ‖ σj .
• e2 = e. By definition Definition 5, we have e1 ↗∗Hi

ei (recall that Hi ∈
χ(ei)). By construction of H, we have ei ↗ e. By hypothesis, we have
e2 = e and also by hypothesis we have e2 ↗ e1. This leads to the cycle
e1 ↗∗Hi

ei ↗ e = e2 ↗ e1 in the asymmetric conflict relation. Now
notice that e1, ei, e ∈ H, and that Hi ⊆ H. Therefore, we have a loop
in the asymmetric conflict relation restricted to the history H, which is a
contradiction to the fact that H is a history.

27

2. Assume that there exist e1 ∈ H ′ and e2 ∈ Hi \ H ′ with e2 ↗ e1. Then, as
Hi ⊆ H, we have that e2 ∈ H \ H ′. This together with e1 ∈ H ′ and e2 ↗ e1
implies H#H ′, which is a contradiction to ρ ‖ ρ′.

3. Assume that there exists e1 ∈ Hi such that c′ ∈ •e1. Intuitively, this means that
Hi consumes c′. As Hi ⊆ H, also H consumes c′, which leads to a contradiction
of ρ ‖ ρ′.

4. Assume that there exists e1 ∈ H ′ such that ci ∈ •e1. We have two cases, either
e1 = e or e1 6= e. If we assume that e1 6= e, then we have that •e∩ •e1 6= ∅. This
implies that e↗ e1 and that e1 ↗ e. In turn, it implies that e1 /∈ H (otherwise
we would have a loop in the relation ↗ restricted to H). So assuming that
e1 6= e would lead to conclude that e1 ∈ H ′ \H and that e1 ↗ e, with e ∈ H,
which implies that H#H ′, a contradiction to ρ ‖ ρ′.
Therefore, let us assume that e1 = e and, consequently, that e ∈ H ′. As,
by hypothesis H ′ ≺ H, we can apply Lemma 23 and conclude that H#H ′, a
contradiction to ρ ‖ ρ′.

(b) ρ ‖ ρ′ =⇒
∧
σj∈•ρ σj ‖ ρ

′ As in (a), it is still enough to prove that the statement

holds for just one σj . In particular, we will prove that ρ ‖ ρ′ =⇒ σj ‖ ρ′ for some
ρj ∈ •ρ. As we make no assumption about σj , the argument will be valid for all
σj .

We reason by contradiction. Assume that both ρ ‖ ρ′ and ¬(σj ‖ ρ′) hold, for
some σj ∈ •ρ. As ¬(σj ‖ ρ′), we know that at least one of the four statements in
Remark 21 must not hold. In the following, we see that we can find a contradiction
in each case.

1. Assume that there exist events e1 ∈ Hj and e2 ∈ H ′ \ Hj with e2 ↗ e1. As
in (a.1), two cases are possible: either e2 ∈ H or e2 /∈ H. If e2 /∈ H, as
Hj ⊆ H, we have that e1 ∈ H, e2 ∈ H ′ \ H and e2 ↗ e1, which implies
H#H ′. This is a contradiction to ρ ‖ ρ′. So, let us assume that e2 ∈ H. As
H = {e} ∪

⋃
ρi∈••ρ ρ

H
i ∪

⋃
σj∈•ρ σ

H
j , several sub-cases are possible:

i. e2 ∈ σHj′ for some σj′ ∈ •ρ with j′ 6= j. Again, we have e1 ∈ Hj , e2 ∈ σHj′ \Hj

and e2 ↗ e1. This implies σHj′#Hj , which is a contradiction to σj ‖ σj′ .
ii. e2 ∈ ρHi for some ρi ∈ ••ρ. Likewise, we have e1 ∈ Hj , e2 ∈ ρHi \ Hj ,

e2 ↗ e1 and ρHi #Hj , which is a contradiction to σj ‖ ρi.
iii. e2 = e. Recall that Hj ∈ χ(ej). By definition Definition 5, we have

e1 ↗∗Hj
ej . By construction of H, we have ej ↗ e. By hypothesis, we

have e2 = e and also by hypothesis we have e2 ↗ e1. This leads to the
cycle e1 ↗∗Hj

ej ↗ e = e2 ↗ e1 in the asymmetric conflict relation. Now
notice that e1, ej , e ∈ H, and that Hj ⊆ H. Therefore, we have a loop
in the asymmetric conflict relation restricted to the history H, which is a
contradiction to the fact that H is a history.

2. Assume that there exist e1 ∈ H ′ and e2 ∈ Hj \ H ′ with e2 ↗ e1. The same
argument as in (a.2) is still applicable here, changing Hi by Hj .

3. Assume that there exists e1 ∈ Hj such that c′ ∈ •e1. Same argument as in
(a.3), substituting Hi by Hj .

28

4. Assume that there exists e1 ∈ H ′ such that cj ∈ •e1. We then know that
e ∩ •e1 6= ∅. As we deal with nets in which for any event e′′ it is not the case
that e′′ ∩ •e′′ 6= ∅, we have to assume that e 6= e1. Notice also that e↗ e1. We
claim now that e ∈ H ′. By contradiction, if it were the case that e /∈ H ′, we
would have that e ∈ H \H ′, e1 ∈ H ′ and e↗ e1, and consequently H#H ′.

Therefore we know that e ∈ H ′. By hypothesis we also know that H ′ ≺ H.
Under this assumptions we can apply Lemma 23 and conclude that H#H ′, a
contradiction to ρ ‖ ρ′.

(c) ρ ‖ ρ′ =⇒ ρ′ /∈ ••ρ It is easy to see that it cannot be the case that ρ′ ∈ ••ρ holds
if we assume ρ ‖ ρ′. Indeed, if ρ′ ∈ ••ρ we have that ρ′ = ρi = (Hi, ci) for some
ρi ∈ ••ρ. But notice that event ci ∈ •e, that is, event e consumes ci. This implies
that the third statement of Remark 21 doesn’t hold with regard to ρ and ρ′ and
we have ¬(ρ ‖ ρ′), a contradiction.

(d) ρ ‖ ρ′ =⇒ ¬∃e′′ ∈ H ′ \H, e′′ ∩ •e 6= ∅ Assume, for an argument by contradiction,
that it is the case that there exists e′′ ∈ H ′\H such that e′′∩•e 6= ∅. In consequence,
we have e′′ ↗ e, with e ∈ H and e′′ ∈ H ′\H, which implies H#H ′, a contradiction
to ρ ‖ ρ′.

(e) ρ ‖ ρ′ ⇐=
∧
ρi∈••ρ ρi ‖ ρ

′ ∧
∧
ρj∈•ρ ρj ‖ ρ

′ ∧ (ρ′ /∈ ••ρ) ∧ ¬∃e′′ ∈ H ′ \H, e′′ ∩ •e 6= ∅
We prove now the opposite direction of the theorem. We assume the right-hand
side of the implication and the negation of the left-hand side. As ¬(ρ ‖ ρ′), one of
the statements of Remark 21 must be false:

1. Assume that there exist events e1 ∈ H and e2 ∈ H ′ \H with e2 ↗ e1. Recall
that H = {e} ∪

⋃
ρi∈••ρ ρ

H
i ∪

⋃
σj∈•ρ σ

H
j . We regard e1 and reason by cases:

• Assume that e1 ∈ Hi for some ρi ∈ ••ρ. As Hi ⊆ H, we still have e2 ∈
H ′ \Hi, and hence Hi#H

′, a contradiction to ρi ‖ ρ′.
• Assume that e1 ∈ Hj for some σj ∈ •ρ. In the same way, we can see that
Hj#H

′, a contradiction.

• Finally, assume that e1 = e and, consequently, e2 ↗ e. Definition 2 provides
us three cases:

– Assume that •e2 ∩ •e 6= ∅. Under this assumption, e2 ∈ H ′ clearly con-
sumes ci for one ρi ∈ ••ρ, which implies that ¬(ρ′ ‖ ρi), a contradiction.

– Assume that e2 < e. We know that H is a history, and by definition
contains all events e′′ < e. As e2 is one such event, we have e2 ∈ H,
which is a contradiction to the assumption e2 ∈ H ′ \H.

– Assume that e2∩ •e 6= ∅. This is a contradiction to the last conjunction
in hypothesis of the statement that we are proving.

2. Assume that there exist events e1 ∈ H ′ and e2 ∈ H \H ′ with e2 ↗ e1. Using
the same arguments as in (e.1), we can immediately discard the cases where
e2 ∈ Hi for some ρi ∈ ••ρ or e2 ∈ Hj for some σj ∈ •ρ. We assume, hence, that
e2 = e. Definition 2 gives us three cases to examine in the relation e↗ e1:

• Assume that •e ∩ •e1 6= ∅. Then event e1 ∈ H ′ consumes ci for some
ρi ∈ ••ρ, which leads to the contradiction ¬(ρi ‖ ρ).

29

• Assume that e < e1. As e1 ∈ H ′ and H ′ is a history, we should have e ∈ H ′,
while by hypothesis e = e2 ∈ H \H ′ and hence e /∈ H ′.
• Assume that e ∩ •e1 6= ∅. Then cj ∈ •e1 for some σj ∈ •ρ. As e1 ∈ H ′, we

have that ¬(σj ‖ ρ′). This is a contradiction.

3. Assume that there exists e1 ∈ H such that c′ ∈ •e1. If we assume e1 ∈ Hi for
some ρi ∈ ••ρ, we will find the contradiction ¬(ρi ‖ ρ′). Similarly, if we assume
e1 ∈ Hj for some σj ∈ •ρ we will reach the contradiction ¬(σj ‖ ρ′). So the
only case that we examine is when e1 = e. If c′ ∈ •e, we have that c′ = ci for
some ρi ∈ ••ρ. As |•c′′| = 1 for any c′′, we have that Hi ∈ χ(e′′) iff H ′ ∈ χ(e′′)
for some e′′. Intuitively, this means that Hi and H ′ are histories for the same
event. Furthermore, they are different by hypothesis (ρ′ /∈ ••ρ is one of the
hypothesis). Under this assumptions, we can apply Lemma 22 and conclude
that H ′#Hi, which is a contradiction.

4. Assume that there exists e1 ∈ H ′ such that c ∈ •e1. Then e ∈ H ′, and H ′

consumes any ci for ρi ∈ ••ρ, which is a contradiction.

B Algorithms

In this section we present the pseudocode of the algorithms used to compute the pro-
cedure pe update of Algorithm 1. Algorithm 2 presents this procedure. As the reader
can see, its operation is divided in three steps, namely, procedures pe update context,
pe update existing and pe update new, presented respectively in Algorithm 3, Algo-
rithm 5 and Algorithm 4. What follows is a brief intuitive description of the rationale
for this division.

Procedure pe update context, when called on the argument 〈e,H〉 returns the set of
all possible extensions of 〈e′, H ′〉 induced by 〈e,H〉 such that e′ consumes a condition in
the context of e. All the possible enriched events that it can return are built on the base
of events e′ that are already present in EN (in T ′). No new occurrence of a transition
from N is returned. To compute new histories for such events e′, pe update context
uses the histories already present in EN for e′ and tries to extend each one of them with
H. This already provides a gain in performance over the general method presented in
§3.1, since we can avoid here a systematic enumeration of all the histories generating
conditions •e′ ∪ e′.

On the other hand, procedure pe update existing computes new histories for events
e′ already present in EN and consuming (or reading) conditions generated by e. For
each one of them, procedure in pe update gen hist (Algorithm 6) generates all the
possible histories that e′ currently have in EN .

Finally, pe update new examines the original net N and searches for all the events
e′ = 〈Mp,Mc, t〉 that can be appended to EN due to the fact that they now have at
least one history thanks to the addition of 〈e,H〉 to EN . Algorithm 4 generates, thus,
enriched events such that event part is new in EN (of course, also the history part).

The rationale behind this division division might be understood in the following
way. Each new possible extension induced by the addition of 〈e,H〉 to EN is an enriched
event 〈e′, H ′〉 such that either e′ is already present in EN (in T ′) or not. If e′ is present

30

in EN , it must be one e′ for which e ↑ e′ holds. All the cases for such e′ are covered
by pe update context and pe update existing. If e′ is still not in EN , it must be one e′

from UN such that e ↑ e′ holds in UN . Procedure pe update new enumerates all such
e′ and, with the help of pe update gen hist, filters out those which either are already
present in EN or do not have a history (in EN).

Algorithm 2 Procedure pe update

Require: 〈e,H〉, the last possible extension appended to EN
Ensure: The set U contains all the possible extensions induced by 〈e,H〉
U = pe update context(e,H)
U = U ∪ pe update existing(e,H)
U = U ∪ pe update new(e,H)
return U

Algorithm 3 Procedure pe update context

Require: 〈e,H〉, the last possible extension appended to EN
Ensure: The set U contains all the possible extensions 〈e′, H ′〉 induced by 〈e,H〉 such

that e ∩ •e′ 6= ∅ and e• ∩ •e′ = ∅
U = ∅
for all e′ ∈ T ′ such that e ∩ •e′ 6= ∅ and e• ∩ •e′ = ∅ do

for all H ′ ∈ χ(e′) do
f = true
for all H ′′ such that 〈e′, H ′〉 → 〈e′′, H ′′〉 is an edge of HN and e 6= e′′ do
f = f ∧ ¬H#H ′′

f = f ∧H does not consume conditions (e′′• ∪ e′′) ∩ (•e′ ∪ e′)
f = f ∧H ′ does not consume conditions e ∩ •e′

end for
Ĥ = H ∪H ′
if f and not Ĥ ∈ χ(e′) then
U = U ∪ {〈e′, Ĥ〉}

end if
end for

end for
return U

31

Algorithm 4 Procedure pe update new

Require: 〈e,H〉, the last possible extension appended to EN
Ensure: The set U contains all the possible extensions 〈e′, H ′〉 induced by 〈e,H〉 such

that e′ is still not present in T ′, and e• ∩ (•e′ ∪ e′) 6= ∅.
U = ∅
for all c ∈ e• do

Let p = fP (c)
for all t such that p ∈ •t ∪ t do

Let {p1, . . . , pn} = •t
Let {q1, . . . , qm} = t
for all Mp = {c1, . . . , cn} such that fP (ci) = pi for 1 ≤ i ≤ n do

for all Mc = {d1, . . . , dm} such that fP (di) = qi for 1 ≤ i ≤ m do
if not 〈Mp,Mc, t〉 ∈ T ′ then
U = U ∪ pe update gen hist(〈Mp,Mc, t〉)

end if
end for

end for
end for

end for
return U

Algorithm 5 Procedure pe update existing

Require: 〈e,H〉, the last possible extension appended to EN
Ensure: The set U contains all the possible extensions 〈e′, H ′〉 induced by 〈e,H〉 such

that e′ is already present in T ′, and e• ∩ (•e′ ∪ e′) 6= ∅.
U = ∅
for all e′ such that e• ∩ (•e′ ∪ e′) 6= ∅ do
U = U ∪ pe update gen hist(e′)

end for
return U

32

Algorithm 6 Procedure pe update gen hist

Require: An event e = 〈Mp,Mc, t〉.
Ensure: The set A contains all pairs (e,H) such that H ∈ Hist(e) in UN , and H \ {e}

is a configuration of EN , and 〈e,H〉 is not an enriched event of EN .
Let {e1, . . . , en} = •Mp ∪ •Mc

for all histories H1, . . . ,Hn such that H1 ∈ χ(e1) and . . . and Hn ∈ χ(en) do
f = true
for i = 1 to n do
f = f ∧Hi does not consume any condition from Mp ∪Mc

for j = 1 to i− 1 do
f = f ∧ ¬Hj#Hi

end for
end for
Ĥ = {e} ∪H1 ∪ . . . ∪Hn

if f and not Ĥ ∈ χ(e) then
A = A ∪ {(e, Ĥ)}

end if
end for
return A

33

