Inductive proofs by specification transformations

Hubert COMON*

Abstract

We show how to transform equational specifications with relations between constructors {or
without constructors) into order-sorted equational specifications where every function symbol is
either a free constructor or a completely defined function.

This method allows to reduce the problem of inductive proofs in equational theories to Huet
and Hullot’s proofs by consistency [HH82]. In particular, it is no longer necessary to use the so-
called “inductive reducibility test” which is the most expensive part of the Jonannaud and Kounalis
algorithm [JK86).

Introduction

Let F be a set of function symbols together with their profile (for example, F = {0 :—
int2; succ : tnt2 — int2}) and E be a finite set of equational axioms (for example £ =
{succ{succ(0)} = 0}). The problem of inductive proofs in equational theories is to de-
cide whether an equation (whose variables are implicitly universally quantified) is valid in
T(F)}/ =g, the quotient algebra of the terms constructed on F by the congruence generated
by E. (For example, succ{suce(z}) = z is an inductive theorem in the specification (F, E)
but is not an equational consequence of E}.

The “proof by consistency” method [KM87] consists in adding to E the theorem to be
proved and trying to deduce a contradiction (inconsistency) using equational reasoning. This
method has been widely studied. Let us cite among others [Mus80,Gog80,Lan81,HH82,KM87],
[Kuc87,JK86,Fri86,KNZ86,Bac88].

All these works use the Knuth-Bendix completion procedure as a basis for equational
deduction: E is assumed to be oriented into a ground convergent term rewriting system R. If
the completion procedure constructs for RU{s = t} (where s = t is the theorem to be proved)
a (ground) convergent term rewriting system without deriving an inconsistency, then s = ¢
is an inductive theorem®. If an inconsistency is derived, s = ¢ is not an inductive theorem.

The papers cited above essentially differ in the assumptions they make on F, E and in the
way they detect inconsistencies. For example, in Musser’s paper [Mus80] E is assumed to
contain a complete axiomatization of an equality predicate and an inconsistency is derived
simply when the completion procedure generates the equation true = false.

In Huet and Hullot’s method [HHS82|, F is assumed to be split into two disjoint sets C
(constructors) and D {defined operators) with the following conditions :

“Laboratoire d’Informatique fondamentale et d’Intelligence Artificielle, Institut IMAG, 46 Ave. Félix Viallet, 38031
Grenoble cedex, France. E-mail : comon@lifia.imag.fr

'In [Bac88] the requirement for the resulting term rewriting system to be convergent has been weakened.

77

® every term constructed on C only is irreducible by R

s every term in T(F) — T(C}) is reducible by R

Then, an inconsistency is detected when the completion procedure generates an equation
s =t between two “constructor terms” (i.e built without any symbol of D).

This method was generalized in the so-called “inductive completion procedure” by Jouan-
naud and Kounalis [JK86] where the requirement on F to be split into constructors and
defined operators is dropped. They show that the key concept for detecting inconsisten-
cies is the “inductive reducibility test”. A term is said to be inductively reducible when all
its ground instances are reducible. For example, suce(suce(z)) is inductively reducible by
succ(suce(0)) — O (but it is not reducible). Then, an inconsistency is detected when the
completion procedure generates an equation s = t where s > t (for a given simplification
ordering containing —z) and s is not inductively reducible.

Recently Bachmair [Bac88|, refining the equational consequences to be added during the
completion procedure, proved that it is not necessary to orient the equations computed by
the inductive completion procedure. In this case, an inconsistency is detected when a non
inductively reducible equation is derived.

Although inductive reducibility has been shown to be decidable [Pla85,Com88a], Plaisted’s
algorithm as well as others ([KNZ85,KNZ86,JK86| for example) are very complex. Actually,
they are at least twice exponential and (except for [Com88a]) cannot be used in practice.

The aim of this paper is to show that it is possible to reduce the general case handled in
{JK86,Bac88| to Huet and Hullot’s method by transforming the specification. This allows to
avoid the inductive reducibility test since such a test is trivial in Huet and Hullot’s algorithm.

Given a Term Rewriting System (TRS for short) R, it is shown in [CR87,Com88b,Com88a]
how to compute a conditional grammar for the set NF of the ground terms which are ir-
reducible by R. This construction is performed using equational problems simplification
[CLss].

In [Com88b,Com88a] a cleaning algorithm for conditional grammars is given. This pro-
vides a method for deciding inductive reducibility in the general case but can also be used
for computing an order-sorted specification which is equivalent (in some suitable sense) to
the original specification and where F is split into constructors and defined operators. Such
a construction can be extended in order to handle order-sorted specifications as well.

Another specification transformation was already proposed in [Tha85] in a very specific
case. This paper shows that, whenever there are no overlap between left hand sides of the
rules, when the set of function symbols is split into constructors and defined functions, and
when the TRS is left linear, then the signature can be enriched with new constructor symbols
in order to have the additional property that no rule contains “inner” occurrences of a defined
symbol. Such a transformation is similar to ours since we actually add some new constructors.
However we don’t make the above mentioned assumptions and give very different (stronger)
results.

Also, Kapur and Musser [KM86] proposed some specification transformations related to
proofs by consistency. However, they do not address the same problem. Roughly, they as-
sume some information about “what should be” the initial algebra (i.e. what should be the

78

constructors) and then complete the set of axioms (in some consistent way) in order to in-
deed get this initial algebra. At the opposite, we want to preserve the initial algebra (up to
isomorphism) and we allow some relations between constructors (or, more generally, we do
not assume that a set of constructors has been defined at all). Then we show in this paper
how to compute free generators of the initial algebra.

We present the transformation in section 2 and state the basic properties of the resulting
specification. Theorem 4 is the main (new) result of the paper. Then we show in section 3
how to perform inductive proofs in the resulting order-sorted algebra.

1 Many-sorted and Order-sorted Algebras

We recall in this section most of the basic definitions on many-sorted and order-sorted alge-
bras. The reader is referred to [GMB87,SNGMS87| for more details. We also introduce a notion
of equivalent specifications.

1.1 Many-sorted and Order-Sorted Signatures

A Many-Sorted Signature (MSS for short) is a pair (S, F) where S is a set ofsorts names
(which will be denoted s,s,,...} and F is a set of function symbols together with a typing
function r which associates to each f € F a string in S*. When 7(f) = 5,8, ...5,5 we write
f:81 X...X s, — sand say that f has profiles; x...x s, — 8.

An Order-Sorted Signature (0SS for short) is a triple (S, >, F) where S is a set of sort
symbols, > is an ordering on S and F is a set of function symbols together with a typing
function 7 which associates to each f € F a finite non empty subset of S*. All words in T'(F)
have the same length n + 1 and |f| = n is the arity of f.As in the many-sorted case, we say
that f has profile s; X ... x s,, — s when s,...8,5 € 7(f).

In both cases (many-sorted and order-sorted) X is a set of variable symbols. A sort is
assigned to each variable and we write z : s 7(z) = s. We assume that there are infinitely
many variables of each sort.

In both cases, if SIG is a signature, T(SIG, X) (sometimes written T'(F, X) when there is
no ambiguity) is the set of “well formed” terms constructed on SIG and X in the usual way
(cf [GMB8T] for example). When X is empty we write T(SIG) (or T(F)) instead of T'(SIG,0).

In the following, we always assume that, for every s € S, there is at least one t € T(SIG)
such that ¢ has sort s.

A signature is finite when both § and F are finite. An OSS is regular when each term
t € T{SIG,X) has a least sort LS{t). This property can be syntactically characterized for
finite signatures ((GMB87] for example): (S, >, F) is regular iff, for every wy,w;, w; € S* such
that we < wy 2 and wy < w; and every f € F such that f : w; — §; and f : w; — §,, there
exists wg € §* and s; € § such that wy < ws < wy, wy, 83 < 83,8, and wy — 55 € 7{f).

If, in addition, each connected component of {S,>) has a top element, then the regular
signature is called coherent ({GMB7]). All signatures considered here are assumed to be co-
herent and finite {except when the contrary is explicitly stated).

2the ordering on § is extended to S* by comparing the sorts componentwise

79

1.2 Order-Sorted Algebras

Let SIG = (S,>,F) be an OSS. A (SIG-)Order-Sorted Algebra (OSA for short) 4 is (as
defined in [SNGM8T])

e a family (4,),es of non empty sets such that, when s < ¢, then A, C Ay». Let C4 =
UaGS "qi'

¢ for each function symbol f, a mapping f4 from D}‘ C Cl,{l into C4 such that, if f has
the profile w — g, then A, C Df3. and f(4.) C s4.

Given a MSS (S, F), an (S, F)-Many-Sorted Algebra is simply an (S, >, F) OSA where > is
the trivial ordering on § (s > &' iff 3 = §'J. In this way, OSAs strictly generalizes MSAs®.
Therefore, when we speak about substitutions, rewrite rules, ... without any more specific
mention, one should understand “order-sorted substitutions”, “order-sorted rewrite rules”,...

Homomorphisms are defined in the usual way. Then, for any 0S8 SIG, T{SIG) is an
initial OSA.

Let A be a SIG-OSA. An A-assignment ¢ is a morphism from T'(SIG, X) into A which
associates with each x : 3 an element ¢t € 4,.

A substitution ¢ is a T(SIG, X)-assignment such that Dom(o) = {z € X, zo # z} (called
the domain of ¢) is finite. The set of SIG-substitutions is denoted by Zs;¢ (or simply T
when there is no ambiguity}. If X, is a finite subset of X, a Xo-grounding substitution ¢ is a
substitution whose domain includes X, and such that Vz € Xy, zo € T(SIG). Often, we will
omit the Xj prefix, assuming that X, contains the variables occurring in the terms to which
o is applied. The set of all grounding substitutions w.r.t. some understood X, is denoted by
Y516, (or simply L, when there is no ambiguity).

1.3 Equations and Rewrite Rules

An equation is a pair of terms s,t € T(SIG,X) where LS(s) and LS(t) are in the same
connected component of (S,>). A model of a finite set of equations (axioms) E is defined
as usual. The class of models of E is referred to as the equational theory E. In [GM87]
(for example) a complete set of inference rules for equational deduction is given. This means
that every equation which is valid in the equational theory can be derived using these rules.
This allows to construct the congruence relation =g over T(SIG, X) defined by a finite set
of equations E. Then we have the following result:

Theorem 1 [GMB8T] If SIG is a coherent signature and E a set of equations, then T(SIG)/ =g
1s initial in the category of models of E.

*H8,...8, = wESY, Au is the cartesian product A, X ...x A, .

“Because, here, MSS do not allow “overloaded” declarations.

80

An Order-Sorted Specification {OSSpec) is a pair (SIG, E) where SIG is an 0SS and E a
finite set of equations s = ¢t where s,t € T(SIG,X). A Many-Sorted Specification {MSSpec)
is defined in the same way.

A rewrite rule is a couple of terms s,t € T{SIG, X} such that Var(t) C Var(s). It is
written s — ¢. A Term Rewriting System (TRS) is a finite set of rewrite rules. A TRS R is sort
decreasing [KKM88] if, for every rule s — ¢ in R and every substitution o, LS(so) > LS(to)®.
In such a case, the reduction relation — 3 associated with a TRS R is defined as in the many-
sorted case. —}% is the reflexive transitive closure of —z. For every relation —, < is the
symmetric closure of —.

A TRS is noetherian if there are no infinite chaint; —g ...2¢, —g¢ It is confluent (resp.
ground confluent) if, for all s,t;,t; € T(SIG, X) (resp. T(SIG)), s —% t; and s —% ¢, implies
the existence of a term u such that t; —»% v and t; =% u. A TRS R is convergent (resp.
ground convergent) if it is noetherian and confluent (resp. ground confluent). When a TRS
is convergent (resp. ground convergent), for every term t € T(SIG, X) (resp. t € T(SIG))
there is a unique term ¢t |z such that ¢t —% t | and t | is irreducible by R.

A TRS R is canonical if it is convergent and if for every rule l — r in R, ! and r are
irreducible by —2_f1.r}-

=p is the congruence on T(SIG, X) generated by the set of axioms obtained by considering
the rules in R as equations. Then I(R) (or I(E)) is another notation for the initial algebra
T(SIG)/ =g. =1(z) is the congruence relation defined on T(SIG, X) by :

s=rryt & Vo€L;so=xtlo

1.4 Equivalent Specifications

Let SIG =(8,>,F) and 5IG' = (§8',>', F'} be two coherent OSS such that § C §', >C>/,
F C F' and. for each f € F, r(f) C 7'(f). Then T(SIG', X) is {canonically) a SIG-algebra.
Let ¢ be the unique (injective) SIG-homomorphism from T(SIG, X) into T(SIG', X U X")
which is the identity on X. Then, the OSSpec (SIG', E') is said to be equivalent® to (SIG, E)
if
Vs,t € T(SIG, X), (S =re)t & ¢(S) =1(E") lﬁ(t))

This means that, when we only consider the terms built on SIG, the specifications have the
same class of inductive theorems.

Finally, an O8Spec ((S,>,F), E) is said to be decomposed if F can be split into two sets
C and D such that:

* Vs,t € T(C),s #pt
s Vs T(F)-T(C),HteT(Cl,s=xgt

®Note that Rewriting Systems are always sort decreasing in MSA.

$This “equivalence” is not symmetric. This is an abbreviation for (8IG, E) is (SIG, E)-equivalent to {SIG', E'}, the
{SIG, E)-equivalence being indeed symmetric.

81

2 Transformation of Specifications

In this section we show how to transform a MSSpec, the source specification into an equivalent
decomposed OSSpec: the target specificatton. However, as the simplification of equational
problems can be generalized to finite coherent order-sorted signatures [Com88b}, the method
given in this section also applies to (finite coherent} OSSpec.

The source specification will be denoted by (SIGo, Ro) where SIG, = (S;, Fo) and the
target specification by (SIGr, Rr) where SIGr = (Sr, >r, Fr). We assume in the following
that R, is ground convergent. NF will denote the set of ground terms in T(F;) that are
irreducible by R.

2.1 Ground Normal Form Grammars

We don’t give here the full algorithm that produces a conditional grammar for NF. Let us
only sketch on an example the way it is computed.

Example 1

Fo = {s:int2 — int2; 0:— ini2; +:int2 X int2 — ini2}

Ro={0+z—2z 2+0—-z z+z—0 s(s(0))—>0}

The first set of derivation rules only states that a term in N F has a root symbol in Fy:

NF;’MZ — NF { NF:{:) E Nle«I-zz

where N F; denotes both a non terminal and the language it generates: NF; = NFNn{to, o €

.}
Now we compute the derivation rules, say, for N F,(,: 7

t € NFy,) iff t=s(u),t #s(s(0)) and we NF

Solving s{u) # s(s(0)) in T(Fp), using the algorithm described in [CL88, leads to the four
disjoint solutions:

1. dzy, 22, u = 2y + 29
2.u=0
3. 3z, T3, u = s(xy + x3)
4. 3z;, u = s{s(zy))
This can be expressed by the four rules:
NFy — 8(NFpis) | s(NFo) | s(NFiuyu2s) | S(NFoo(ap)

Using again the same method, we compute the derivation rules for the non terminals we
introduced. There would here remain to compute the derivation rules for NFy, NF; ,.,,
NFs(s(z))9 NFa(zr’rzz)‘

"Informally, ¢ is an irreducible ground instance of s(z) iff
1. its root symbol i# s
2. it does not match at the root any left hand side of a rule
3. its proper subterms are irreducible
This characterization of NF,(,) can be generalized to any NF; (see [CR87,Com88a).

82

Theorem 2 This procedure fully described in [Com88a] does always terminate.

In our example, we get the additional grammar rules:

NFQ hae 0

NFute; — NFEGy+NFg,) IF oi#s | NF,.,+NFg
i Nle+zg + NFz3+:u IF z; # T3 | NFa(z) + Nle-i-zg
| NF21+22 + NFz3+z‘ IF T2 7£ T4

NEay = s(NEy)) | $(NFyarran)

s(z1+z3) 8 z1+22

Then the grammar is “cleaned up” using an algorithm described in [Com88b,Com88a).
This algorithm is similar to the usual cleaning algorithm for context free word grammars; the
non terminals from which there is no derivation chain reaching a terminal tree (called useless
non terminals) are removed.

Theorem 3 [Com88b,Com88a] There is an algorithm producing a conditional grammar
of NF which does not contain any useless non-terminal.

The grammar produced in this way will be called the reduced grammar of NF. In our
example, we get the following reduced grammar:

NFp2 — NF | NFyy
NF,;y — s(NF)
NFQ - 0

And, indeed, there are only two terms in NF : 0 and s(0).

Of course, this step (cleaning the grammar) is equivalent to an inductive reducibility test
since we proved simultaneously that z; + z3, s{z; + z2) and s(s(z)) are inductively reducible
(the corresponding set of irreducible ground instances are empty). However, this computa-
tion has to be done only once, whatever inductive completion is performed afterwards.

We give another simple example which illustrates the transformation. This is a specifica-
tion of the integers.

Example 2
F={ s,p:int—int; 0:—int +:intxXint —>int }
R={ s(pz) - =
ps(z) — =
O0+z — =z
s(z)+y — s(z+y)
p(z)+y — p(z+y) }
We get the following reduced grammar for NF:

NF — NF | NFg | NEg
NFO s 0

NFy — s(NF) | s(NFys)

NFys — p(NF) | p(NFpy)

83

In both examples, the reduced grammar of NF is a regular tree grammar. We will assume
this property in the following. Note that such a property is ensured by the left linearity of the
original TRS (see e.g. [GB85]). However this condition is not necessary as shown by example
1.

More precisely, we call N F-grammar any pair § = (NT, P) satisfying

e NT = {NF,s € S} U{NFE|t € Ty} where Ty is a finite subset of linear terms in
T(Fy, X)8.
e P is a set of derivation rules N — f{Ny,...,N;) or N — N’ such that:

N,N',M,...,Ni € NT
fer
. ¥N € NT,N =Uy_yiep N'

. VNF,,NFy, € NT, t is not a variable and ¢ and ¢’ are not equal up to the renaming
of their variables.

5. For each N — f(Ny,...,Ni) € P, N = NF, for some ¢ such that root(t) = f.
6. Foreach N - N' € P, N = NF, for some s € 5,
7. For each N € NT, N £ 0

BN

The reduced grammar of NF is an N F-grammar.

2.2 Counstructing (Sr,>r)

Let § = {NT,P) be an NF-grammar. Sr is the set of non terminals NT. For sake of clarity,
we rename the terms in NT: in example 2, NF,,) is usually denoted by pos (for strictly
positive integers) and N F,(,) is usually denoted by neg.

The ordering >¢ on Sy is defined by:

e Ift,t' e T(F,X), NF, >r NF, iff 30 € L,t' = to.

e NF, >7r NF, when LS(t) <o s

F, is split into the sets Cy and Dy in the following way:

e Cp is the set of function symbols f such that there is a rule NF, — NFy, .,in P
o Dy=F—Cly

Equivalently, Dy is the set of symbols f € F such that f(zy,...,z,) is inductively reducible.
(This is so because of the properties of §).

Now, let Cr be the set Cy where every symbol has been primed. For each production rule
N — f(Ny,...,Ni) we associate with f' € Cr the profile f': Ny x ... x Ny — N. We get
now an O8S (Sr, >r, C’T)9 Let us show how it works on our two examples:

8When NF, ié computed by the algorithm, then ¢ is always a linear term. Thus this is not an additional assumption.
(See [Com88b,Com88al).

?Note that condition 7 in the definition of an N F-grammar ensures that, for every & € Sr, T(Cr),, the set of ground
terms of sort s is not empty (a8 we required in the definition of an OSS)

84

Example 1
We associate with each non terminal a sort in the target specification. In this example, int2
is associated with N Fy,,;3, pos with N F,(;) and zero with NF,. Then, each rule of the reduced
grammar corresponds either to a subsort declaration or a profile declaration. The rules

NF — NF, | NFy)

give the inclusions int2 > pos and int2 > zero.
The rule NF,;) — s(NF) gives s' : zero — pos and the rule NF; — 0 gives 0' :— zero.

Example 2
This leads to the sort structure Sy = {int,pos, neg, zero} with the relations int > neg,
int > pos and int > zero corresponding to the rules

NF — NF, (NFyq) | NFy

The other rules correspond to the profile declarations:

!

s': zero-—pos p: zero— neg

pos —+ pos neg — neg

0 :— zero

Proposition 1 Assume that Ry is ground convergent, then NF is an (Sr,>r,Cr)-algebra

In general (Sr,>7,Cyr) is not coherent. In order to guarantee its coherence, we have to
construct (Sr, >z, Cr) using a suitable N F-grammar:

Proposition 2 Assume that Ry s ground convergent and that there exists an NF-grammar.
Then there exists an NF-grammar § such that {Sy, >7,Cr) is a coherent OSS.

Sketch of the proof: the N F-grammar is constructed starting from any N F-grammar §,
and adding some sorts and some profiles in the following way : for every pair of rules

NFy4y, .ty — f(NF,,...,NF,)
NFf(t'p'"»t:;) - f(NFu;3 M] NFB:;)

such that
¢ for all ¢, u; and u} are unifiable with a most general common instance u; A u!
° NF,;;,\uz € NTy
e Jis.t. u; is not an instance of u} and 35 s.t. u} is not an instance of u;
add the grammar rule
NFgnt,,...tantt) = SN Fuypus- -y NFynat)

and the non terminal f(t; At),...,¢, AtL) (if not already in NTp).

It is not difficult to see that the resulting set of non terminals and production rules constitute
an NF-grammar. (Although some non-terminals may not be reachable). With such an NF-
grammar, (Sr, >r,Cr) is coherent.

85

2.3 Computing the target specification

We take Dy = F and Fr = Dy U Cyp together with the profile declarations f : NF, x...x
NF, — NF,if f € F has the profile 5; x ... x 5, — s.
Then, each term in T'(F,, X,) can be viewed as a term in T(Fr, Xr). In other words:

Lemma 1 T(Fr,Xr) ts a (free} (So, Fo)-algebra.
Indeed, let [-] denote the function defined on T'(Fy, X,) by:
¢ [z:s]==z:NF,
o [7@ss-- s ta)l = F([tls-- -5 [2a])

[-] is an injective (So, Fy)-morphism.
Let R; be the set of rules
flzr:81,. 0 sZn:8,) = (210814005 Z0 2 8n)

for every f € Cj and every profile f' : s; X ... x 5, — s. Such a construction is “well formed”
since, if f: 8} X ... x 8, — ¢ in SIG,, then, for every index 1, s5; >r NFy.

Lemma 2 R; is canonical and sort decreasing.

This is indeed a consequence of proposition 2.

Let R; be the set of rewrite rules [t] [z, — [u] |z, for every rule t — u in Ro.

A decreasing renaming of a term ¢ is a substitution # which associates to each variable a
variable with a lower sort in such a way that there is at least one variable z in ¢ such that
sort(zf) < sort(z).

Rr = Ry U R, U R} where R} is the set of rules {§ |g,—+ rf |5, for each rule l — r € R,
and each decreasing renaming of I. (Such a set of rules is finite as S is finite). Of course,
rules in Ry which are instances of some other rule in Ry can be removed.

Example 1 1©

Ri={ s(z:zero) — s'(z: zero)
00
Re={ s{s'(0) =0
O+z—z
z+0 >z
z+z— 0 }

and Rz = R; U R, (every rule in Rj is an instance of a rule in R;).

1°When the sort of a variable is not mentioned, it must be understood that it has the greatest sort of its connected
component.

86

Example 2

Ri={ s(z:zero) — s'(z:zero) s{z:pos) — s'(z: pos)
plzx : zero) — p'(z: zero) plz : neg) — p'(z : neg)

0—-0
Ry = { s(p(z)) — z o(s(z)) — =z
0+z—=z s(z)+y— s(z+v)

p(z) +v — plz+y)
Ri={ s{p'(z:zero)) > z:2zero s(p'(z:neg)) — z:neg
p(s'(z : zero)} > z:zero p(s'(z: pos)) — z: pos
$(z:zero)+y > s(z+y) s'(z:pos)+y— s(z+y)
p'(z: zero)+y — plz+y) plz:neg)+y—plz+y) }

2.4 Properties of the target specification

There are basically two mappings linking the source and the target specification. [-] has
already been mentioned. Now, for t € T(SIGr, X) let be the term in T(SIG,, X;) obtained
by replacing each variable z by a variable z' whose sort is the greatest sort in the connected
component of sort(z) and replacing each primed function symbol by the unprimed one. (Then

[t}=1).

Our construction using N F-grammars has the following main property:
Lemma 3 u —g v iff u—p, vord —pg ¥
Corollary 1 For every t € T(SIGt), T is irreducible by Ry iff t is irreducible by Ry U R;.
Corollary 2 For every t,u € T(SIGr), T |p,= 5 g, iff t lrp= 5 |2,

By construction, the target OSSpec is coherent!'. The rewrite system Ry has also the
desired properties:

Lemma 4 If Ry ts ground convergent, then so 1s Rr.

Sketch of the proof

When t —g, u, either ¥ —p, @ or 7 = @i. In the latter case t —2, u. This proves that R does
terminate. The ground confluence proof is more involved; assuming that s,t;,t; € T(SIGr)
and s —gz,. t; and s —p,. ty, there are three cases to investigate:

R

1. ¥ = {1 = £3. Then we use lemma 2
2.3=1 # f3. Then we use the construction of Ry
3. f; # 3 # ;. Then we use the ground confluence of Ro.

Lemma 5 Ry is sort-decreasing.

" This is easy to deduce from proposition 2. Note that this proves the existence of the initial algebra, as recalled in
section 1.

87

This can be easily verified. Asshown in [KKM88], when a term rewriting system is convergent
and sort decreasing, for every equational order-sorted deduction of s = ¢, there is a rewrite
proof of s = t. This result easily extends to ground convergent TRS:

Lemma 6 If R is ground convergent and sort decreasing, then s =y(zy t iff, for every ground-
tng substitution o so [p=to |z.

Now what we expect for inductive proofs is the equivalence between the two specifications:
Theorem 4 If Ry s ground convergent, then (SIGr, Rr) is equivalent to (SIG,, Ro).

In other words
s=1g)t & [s] =12y [t}
Sketch of the proof
When o € Zgjq,, Jo] is the substitution whose domain is Dom({c) and such that, for every
z € Dom(o), z[o] = [zo]. In the same way, when 0 € Zgj¢,, & is defined by Dom(5) =
{%,2 € Dom(o)} and, for every z € Dom(o), 5 = £6. Now the theorem follows from the
equivalences:

. HS]] =I(R7) Ht]’ & Vo€ Ys165,9) ST lpo= 10 |,
* s=1Re)t € V0 E Isian [s]lo] lrr= [t])[o] Lrr

Let us show the second equivalence. s =j(z,) t iff for every grounding substitution ¢, so |, =
to lz,- On the other hand, so |g,= ﬁfs;]] iz, and, by corollary 2, [[Ts?]] lro= [[,t\of/ﬂ Iz, iff
[so] lrz= [to] lrr. Now, the equivalence follows from the identity [so] = [s][o]-

For the first equivalence, by lemmas 4 and 6, [s] =;(z,) [t] iff for every grounding substi-
tution o, [s]o |z,= [t]o |z,. Now, following the identity [s]o |g,= [s&] |z., we have the
equivalences

[tlo Lor=[slo trr ¢ [58] lo=[t8] l2r
Ad [[Sb"]] lRo= ﬂtal] lRo
< s& lEo 18 lRo

It is thus possible to perform inductive proofs in the target algebra instead of the source
algebra. As announced, we have also the following property which states that the target
algebra is “simpler” than the source one:

Proposition 3 (SIGyr, R7) is a decomposed OSSpec.

This indeed is a consequence of lemma 3.

3 Inductive Proofs in Order-Sorted Algebras

Now, it remains to show how to perform inductive proofs in decomposed order-sorted algebras.
The aim of this paper is not to give results in this field. Therefore, we only show how to
perform inductive proofs in our target algebra and sketch a general method.

88

The only difficulty with OSA is that equational reasoning may lead to ill formed terms (see
for example [SNGMS87]}. Such a problem does not occur when dealing with sort decreasing
term rewriting systems. And, by lemma 5, our system is sort-decreasing.

However, if we use the order-sorted completion (as in [KKM88]), an equational conse-
quence u = v where neither LS(u) < LS(v) nor LS(v) < LS(u) may be derived. In such a
case, it is not possible to orient the equation and keep the sort-decreasing property.

Let us assume that the source algebra is a MSSpec. In this case, the target specification
has some additional properties which ensure that such a sort problem cannot occur:

Lemma 7 Assume that the source specification 1s a MSSpec. Let s =t be an equation in the
source specification. Then every equational consequence v = v of Ry U {[[s] = [t]} derived
by a completion procedure satisfies either LS(uo) > LS{vc) or LS(vo) > LS(uo) for every
substitution o or u,v € T(Cr, X).

This indeed can easily be proved using the fact that a term whose root symbol is in Dr
has necessarily a sort which is maximal in its connected component'?.

Now three situations can occur when an equation v = v is derived by the {inductive)
completion procedure :

1. u,v € T(Cr,X) and it is possible to derive a contradiction

2. for every substitution o, LS(uo) > LS(vo) (or LS(ve) > LS(uo)) in which case the
equation can be oriented, provided that constructor terms are smaller than non con-
structor ones for the reduction ordering.

3. for every substitution o, LS{uo} = LS{vo)

Therefore, it is possible to use completion procedures (as in [KKMS88]) in this case, without
modifying the sort structure.

When the source specification is an OSSpec there are some more difficulties since an
equation between two non constructor terms with uncomparable sorts can be derived by a
completion procedure.

However, in order to solve complement problems in OSA, it is necessary to transform
the sort structure ([Coms88b]}). In the result of this transformation (which is mainly a tree
automaton determinization}, two distinct sorts have disjoint carriers in T'(F). (But functions
symbols remain “overloaded”). If we assume this additional property of the source specifi-
cation, then lemma 7 holds for order sorted specifications. Therefore, no sort problem can
occur during a completion procedure.

Examples 1 and 2

In examples 1 and 2 (previously defined] it is not possible to use directly the results of
[HH82,Lan81] since there are some relations between constructors. However, using the target
specification {see above}, it is possible to use these methods.

130ur target signature may be compared with the compatible signatures of [SNGM87].

89

For example, in example 1, the commutativity £ +y = y + z is an inductive theorem since
there is no {proper) critical overlap between = + y and a rule in Rp. This is sufficient for
ensuring z +y =y(z,) ¥ + = as shown in [Bac88].

Let us show how it is proved that s{z) + y = y + 0 is not an inductive theorem:

s(r)+y=y+0
- overlapwiththerule z 4+ 0" — z

— overlap with the rule s{z : zero) — s'(z : zero)

s'{z: zero) =0

— since s'(z: zer0),0' € T(Cr, X)
DISPROOF

4 Concluding remarks

For any term rewriting system it is possible to compute a conditional grammar for NF
without useless non-terminals. However, the method presented in this paper requires some
more hypothesis. First, it requires the term rewriting system to be ground convergent (may
be this hypothesis could be weakened to ground confluence). Secondly, it requires the clean
grammar of NF to be a regular one. This means that the language of reducible ground terms
is regular. There is no hope to weaken this hypothesis since the set of well formed ground
terms in a finite OSS is a regular tree language: profile declarations provide a {bottom-up)
finite free automaton for recognizing it. Therefore, our transformation into a decomposed
OS8pec seems to be optimal in some sense: whenever such a transformation exists, then it
is computed!s.

A drawback of the method is that there does not exist any simple check for the regularity of
the language of reducible ground terms. It is known that left linearity is a sufficient condition
(see e.g. [GB85]). However, many examples can be built showing that this condition is not
necessary'®. Of course, it is possible to simply compute the cleaned up grammar and see if it
is regular. But, as shown in this paper, this is not an easy computation. An open question is
to broaden the left linearity condition in order to have some more general (syntactic) sufficient
condition for regularity.

Let us also note that we could not use any regular tree grammar for our transformation
since we actually use additional properties of the grammars produced by our algorithm for
proving a stronger property of the target specification: the equivalence with the source one.
Indeed, the isomorphism T'(F)/ =g ~ T{F'}/ =g does not provide in itself a way for deduc-
ing inductive theorems in T'(F, X) from inductive theorems in T(¥"', X).

Anyway, at least in the left linear case (and others, see above), our method proves that it
is possible to use Huet and Hullot’s algorithm and avoid inductive reducibility checks. This
is very useful since the test set of Plaisted’s inductive reducibility test is always huge. That
is the reason why we think our approach is well suited to the implementation of inductive
proofs in equational theories without constructors.

13This optimality result will be detailed in a forthcoming paper.

4For example F = {a, f,k} and the left hand sides are {h{f(z,2)), f(f(z1,22),2s), F(h(z1),22)}. The language of
reducible ground terms is regular,

90

Also, it must be noted that inductive proofs in order-sorted decomposed specifications is
not harder than in the unsorted case. Indeed, this is the meaning of lemma 7. Therefore, our
method is a real improvement over classical ones.

References

[Bac8g] L. Bachmair. Proof by consistency in equational theories. In Proc. 8rd IEEE Symp. Logic
in Computer Science, Edinburgh, July 1988.

[CL8S] H. Comon and P. Lescanne. Equational Problems and Disunification. Research Report Li-
fia 82 Imag 727, Univ. Grenoble, May 1988. To appear in J. Symbolic Computation.

[Com88a] H. Comon. An effective method for handling initial algebras. In Proc. 1st Workshop on
Algebraic and Logic Programming, Gaussig, 1988.

[Com88b] H. Comon. Unification et Disunification: Théorie et Applications. Thése de Doctorat,
I.N.P. de Grenoble, France, 1988.

[CR87] H. Comon and J.-L. Remy. How to Characterize the Language of Ground Normal Forms.
Research Report 676, INRIA, June 1987.

[Fri86] L. Fribourg. A strong restriction of the inductive completion procedure. In Proc. 1$th
ICALP, Rennes, LNCS 226, pages 105-115, Springer-Verlag, 1986.

|GB85] J. H. Gallier and R. V. Book. Reductions in tree replacement systems. Theoretical Com-
puter Science, 37:123-150, 1985.

[GM87] J. Goguen and J. Meseguer. Order-Sorted Algebra I: Partial and Overloaded Operators,
Errors and Inherstance. Draft, Computer Science Lab., SRI International, 1987.

[Gog80] J. A. Goguen. How to prove inductive hypothesis without induction. In Proc. 5th Conf.
on Automated Deduction, LNCS 87, 1980.

[HH82) G. Huet and J.-M. Hullot. Proofs by induction in equational theories with constructors.
Journal of Computer and System Sciences, 25(2), 1982,

[JK8s] J.-P. Jouannaud and E. Kounalis. Automatic proofs by induction in equational theories
without constructors. In Proc. 1st IEEE Symp. Logic in Computer Science, Cambridge,
Mass., June 1986.

[KKM88] C. Kirchner, H. Kirchner, and J. Meseguer. Operational semantics of obj-3. In Proc. 15tk
Int. Conf on Automata, Languages and Programming, LNCS 817, Springer-Verlag, July
1988.

[KM86] D. Kapur and R. D. Musser. Inductive reasoning with incomplete specifications. In Proc.
1st IEEE Symp. Logic in Computer Science, Cambridge, Mass., June 1986.

(KM87] D. Kapur and D. Musser. Proof by consistency. Artificial Intelligence, 31(2), February
1987.

[KNZ85] D.Kapur, P. Narendran, and H. Zhang. On Sufficient Completeness and Related Properties

of Term Rewriting Systems. Research Report, General Electric Company, October 1985.
Preprint.

[KNZ86)

[Kuc87]

[Lan81]

[Mus80]

[P1a85]

[SNGM87]

[Tha8s)]

91

D. Kapur, P. Narendran, and H. Zhang. Proof by induction using test sets. In Proc. 8th
Conf. on Automated Deduction, Ozford, LNCS 230, Springer-Verlag, July 1986.

W. Kuchlin. Inductive Completion by Ground Proofs Transformation. Research Report,
University of Delaware, February 1987.

D. Lankford. 4 simple explanation of inductionless induction. Technical Report MTP-14,
Mathematics Department, Louisiana Tech. Univ., 1981.

D. Musser. Proving inductive properties of abstract data types. In Proc. 7th ACM Symp.
Principles of Programming Languages, Las Vegas, 1980.

D. Plaisted. Semantic confluence tests and completion methods. Information and Control,
65:182-215, 1985.

G. Smolka, W. Nutt, J. Goguen, and J. Meseguer. Order-Sorted Equational Computation.
SEKI Report SR-87-14, Univ. Kaiserslautern, December 1987.

S. R. Thatte. On the correspondance between two classes of reductions systems. Infor-
mation Processing Letters, 20:83-85, February 1985.

