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Abstract 

We show how to transform equational specifications with relations between constructors {or 
without constructors) into order-sorted equational specifications where every function symbol is 
either a free constructor or a completely defined function. 

This method allows to reduce the problem of inductive proofs in equational theories to Huet 
and Hullot's proofs by consistency IIIH82]. In particular, it is no longer necessary to use the so- 
called ~inductive reducibility test ~ which is the most expensive part of the Joua~nand and Kounalis 
algorithm [JK86]. 

In troduct ion  

Let F be a set of function symbols together with their profile (for example, F -- (0 :-+ 
int2; s u c c :  in t2  --~ in t2} )  and E be a finite set of equational axioms (for example E = 
(succ(succ(O))  = 0}). The problem of inductive proofs in equational theories is to de- 
cide whether an equation (whose variables are implicitly universally quantified) is valid in 
T ( F ) / = E ,  the quotient algebra of the terms constructed on F by the congruence generated 
by E.  (For example, suec ( succ (x ) )  = x is an inductive theorem in the specification (F, E) 
but  is not  an equational consequence of E).  

The "proof by consistency" method [KM87] consists in adding to E the theorem to be 
proved and trying to deduce a contradiction (inconsistency) using equational reasoning. This 
method has been widely studied. Let us cite among others [MusS0,GogS0,LanS1,HH82,KM87], 
[Kuc87,JK86,Fri86,KNZ86,Bac88]. 

All these works use the Knuth-Bendix completion procedure as a basis for equational 
deduction: E is assumed to be oriented into a ground convergent term rewriting system ~. If 
the completion procedure constructs for )~ tA (s -- t} (where s = t is the theorem to be proved) 
a (ground) convergent term rewriting system without deriving an inconsistency, then s -- t 
is an inductive theorem 1. If an inconsistency is derived, s = t is not an inductive theorem. 

The papers cited above essentially differ in the assumptions they make on F, E and in the 
way they detect inconsistencies. For example, in Musser's paper [MusS0] E is assumed to 
contain a complete axiomatization of an equality predicate and an inconsistency is derived 
simply when the completion procedure generates the equation t rue  = f a l s e .  

In Huet and Hullot 's method [HH82], F is assumed to be split into two disjoint sets C 
(constructors) and D (defined operators) with the following conditions : 
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lIn [Ba~88] the requirement for the resulting term rewriting system to be convergent has been weakened. 
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• every term constructed on C only is irreducible by )~ 

• every term in T(F)  - T (C)  is reducible by 

Then, an inconsistency is detected when the completion procedure generates an equation 
s = t between two ~constructor terms" (i.e built without any symbol of D). 

This method was generalized in the so-called "inductive completion procedure" by Jouan- 
naud and Kounalis [JK86] where the requirement on F to be split into constructors and 
defined operators is dropped. They show that the key concept for detecting inconsisten- 
cies is the "inductive reducibility test". A term is said to be inductively reducible when all 
its ground instances are reducible. For example, succ(suce(x)) is inductively reducible by 
suec(suce(O)) --~ 0 (but it is not reducible). Then, an inconsistency is detected when the 
completion procedure generates an equation s = t where s > t (for a given simplification 
ordering containing --+~) and s is not inductively reducible. 

Recently Bachmair [Bac88], refining the equational consequences to be added during the 
completion procedure, proved that it is not necessary to orient the equations computed by 
the inductive completion procedure. In this case, an inconsistency is detected when a non 
inductively reducible equation is derived. 

Although inductive reducibility has been shown to be decidable [Pla85,Com88a], Plaisted's 
algorithm as well as others ([KNZ85,KNZ86,JK86] for example) are very complex. Actually, 
they are at least twice exponential and (except for [Com88a]) cannot be used in practice. 

The aim of this paper is to show that it is possible to reduce the general case handled in 
[JK86,Bac88] to Huet and Hullot's method by transforming the specification. This allows to 
avoid the inductive reducibility test since such a test is trivial in Huet and Hullot's algorithm. 

Given a Term Rewriting System (TRS for short) ~, it is shown in [CRST,Com88b,Com88a] 
how to compute a conditional grammar for the set N F  of the ground terms which are ir- 
reducible by )~. This construction is performed using equational problems simplification 
[CL88]. 

In [Com88b,Com88a] a cleaning algorithm for conditional grammars is given. This pro- 
vides a method for deciding inductive reducibility in the general case but can also be used 
for computing an order-sorted specification which is equivalent (in some suitable sense) to 
the original specification and where F is split into constructors and defined operators. Such 
a construction can be extended in order to handle order-sorted specifications as well. 

Another specification transformation was already proposed in [Tha851 in a very specific 
case. This paper shows that, whenever there are no overlap between left hand sides of the 
rules, when the set of function symbols is split into constructors and defined functions, and 
when the TRS is left linear, then the signature can be enriched with new constructor symbols 
in order to have the additional property that no rule contains "inner" occurrences of a defined 
symbol. Such a transformation is similar to ours since we actually add some new constructors. 
However we don't make the above mentioned assumptions and give very different (stronger) 
results. 

Also, Kapur and Musser [KM86] proposed some specification transformations related to 
proofs by consistency. However, they do not address the same problem. Roughly, they as- 
sume some information about "what should be" the initial algebra (i.e. what should be the 
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constructors)  and  then  complete  the set of axioms (in some consistent way) in order  to  in- 
deed get this init ial  algebra.  At  the  opposi te ,  we want  to preserve the initial  a lgebra (up to 
isomorphism) and we allow some relat ions between constructors  (or, more generally, we do 
not  assume tha t  a set of constructors  has been defined at  all). Then we show in this paper  
how to compute  free generators  of the initial  algebra. 

We present  the  t ransformat ion  in section 2 and  s ta te  the  basic proper t ies  of the  result ing 
specification. Theorem 4 is the  main  (new) result  of the  paper .  Then we show in section 3 
how to per form inductive proofs in the  result ing order-sor ted algebra.  

1 M a n y - s o r t e d  a n d  O r d e r - s o r t e d  A l g e b r a s  

We recall  in this  section most  of the basic definitions on many-sor ted  and order-sor ted alge- 
bras.  The  reader  is referred to [GM87,SNGM87] for more details .  We also introduce a not ion 
of equivalent specifications. 

1 .1  M a n y - s o r t e d  a n d  O r d e r - S o r t e d  S i g n a t u r e s  

A Many-Sor ted  Signature  (MSS for short) is a pair  (S, F )  where S is a set ofsorts names 
(which will be denoted  s ,_s l , . . . )  and F is a set of function symbols  together  with a typing  
funct ion ~- which associates to each f E F a s tr ing in S +. When v( f )  = _Sl_S2..._s,_s we write 
f : _s 1 × . . .  × s__,, --+ _s and say tha t  f has profile s 1 × . . .  x s ,  --* s_. 

An Order-Sor ted  Signature  (OSS for short) is a t r iple  (S, > , F )  where S is a set of sort 
symbols,  > is an ordering on S and F is a set of function symbols  together  with a typing 
function r which associates to each f E F a finite non empty  subset  of S +. All words in T(F) 
have the same length n + i and If] = n is the  arity of f . A s  in the many-sor ted  case, we say 
tha t  f has profile _s 1 × . . .  x _s,, ~ _s when S _ l . . . s , s  E r ( f ) .  

In bo th  cases (many-sor ted  and order-sorted)  X is a set of variable symbols.  A sort is 
assigned to  each variable and we write x : _s r(x)  = _s. We assume tha t  there  are infinitely 
many  variables of each sort.  

In bo th  cases, if S I G  is a signature,  T(S IG ,  X)  (sometimes wr i t ten  T(F, X)  when there is 
no ambigui ty)  is the set of "well formed" terms const ructed on S I G  and X in the usual way 
(cf [GM87] for example) .  When X is empty  we wri te  T(SIG)  (or T(F))  instead of T(SIG,  9). 

In the  following, we always assume tha t ,  for every s_ C S,  there  is at  least one t E T(SIG)  
such tha t  t has sort  _s. 

A s ignature  is finite when bo th  S and F are finite. An OSS is regular when each te rm 
t E T ( S I G ,  X)  has a least sort  LS(t) .  This  p roper ty  can be  syntact ical ly  character ized for 
finite s ignatures  ([GM87] for example):  (S, > ,  F )  is regular  iff, for every w0, wi,  w~ e S* such 
tha t  w0 < Wx 2 and  w0 < w2 and every f E F such tha t  f : wl ~ _Sl and  f : w2 ~ _s2, there  
exists w3 E S* and  ~ E S such tha t  Wo < w3 <<_ wl,w2, ~ <_ sl,s__2 and w3 ~ s_3 E r( f ) .  

If, in addi t ion,  each connected component  of (S, >)  has a top  element,  then the regular  
s ignature  is called coherent ([GM87]). All signatures considered here are assumed to be co- 
herent and finite (except when the cont ra ry  is explici t ly s ta ted) .  

2the ordering on S is extended ¢o S* by comparing the sorts componentwise 
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1 . 2  O r d e r - S o r t e d  A l g e b r a s  

Let SIG = (S,>_,F) be an OSS. A (SIG-)Order-Sorted Algebra (OSA for short) ~ is (as 
defined in [SNGM87]) 

• a family ( J / ~ c s  of non empty sets such that ,  when s < _s t, then ~_, _C_ ~ , .  Let C~ = 

U,es 4_,. 

* for each function symbol f ,  a mapping f~ from D~ C C/fl into Ca such that ,  if f has 
the profile w --* s, then , ~  C D~ s. and f ( ~ )  C _s~. 

Given a MSS (S, F ) ,  an (S, F)-Many-Sorted Algebra is simply an (S, > ,  F)  OSA where > is 
the trivial ordering on S (s. > s r iff  s = _s~). In this way, OSAs strictly generalizes MSAs 4. 
Therefore, when we speak about substitutions, rewrite rules, ... without  any more specific 
mention, one should unders tand ~order-sorted substitutions", "order-sorted rewrite rules",... 

Homomorphisms are defined in the usual way. Then, for any OSS SIG, T(SIG) is an 
initial OSA. 

Let ~ be a SIG-OSA. An ,4-assignment a is a morphism from T(SIG,  X) into ~ which 
associates with each x : s_ an element t E ~ .  

A substitution a is a T(SIG, Z)-assignment such that  Dora(a) = {x E X, xa ~ x} (called 
the domain of a) is finite. The set of SIG-substitutions is denoted by ~sxc (or simply E 
when there is no ambiguity). If Xo is a finite subset of X,  a X0-grounding substitution a is a 
substi tution whose domain includes X0 and such that  Vx E Xo, xa E T(SIG).  Often, we will 
omit the X0 prefix, assuming that  X0 contains the variables occurring in the terms to which 
a is applied. The set of all grounding substitutions w.r.t, some understood X0 is denoted by 
~Sla,o (or simply ~a when there is no ambiguity). 

1.3 E q u a t i o n s  a n d  R e w r i t e  R u l e s  

An equation is a pair of terms s,t C T(SIG,  X) where LS(s) and LS(t) are in the same 
connected component of (S, >).  A model of a finite set of equations (axioms) E is defined 
as usual. The class of models of E is referred to as the equational theory E.  In [GM87] 
(for example) a complete set of inference rules for equational deduction is given. This means 
tha t  every equation which is valid in the equational theory can be derived using these rules. 
This allows to construct the congruence relation =6  over T(SIG,  X) defined by a finite set 
of equations E. Then we have the following result: 

T h e o r e m  1 [ G M 8 7 ]  If S IG is a coherent signature and E a set of equations, then T( S I G) / =E 
is initial in the category of models of E. 

nIf_sl ...s~ = w E S +, ~ is the cartesian product "~-~x × "'" × "~-'~" 
4Because, here, MSS do not allow ~overloaded ~ declarations. 
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An Order-Sor ted  Specification (OSSpec) is a pair  (SIG, E) where SIG is an OSS and E a 
finite set of equat ions s = t where s, t C T(SIG,  X).  A Many-Sor ted  Specification (MSSpec) 
is defined in the  same way. 

A rewrite rule is a couple of terms s, t E T(SIG, X) such tha t  Vat(t) C_ Vat(s). It  is 
w r i t t e n ,  --* t.  A Term Rewri t ing System (TRS) is a finite set of rewri te  rules. A TRS ,~ is sort 
decreasing [KKM88] if, for every rule s -*  t in ~ and every subs t i tu t ion  a, LS(sa) > LS(to) 5. 
In such a case, the reduct ion relat ion - * l  associated with  a TRS ~ is defined as in the  many-  
sor ted  case. - - ~  is the  reflexive t ransi t ive  closure of --*l. For every re la t ion -% +-~ is the 
symmetr ic  closure of -~. 

A TRS is noetherian if there are no infinite chain t l  --*l . . .  tn - + l  . . . .  I t  is confluent (resp. 
ground confluent) if, for all s, tl, t2 E T(SIG, X) (resp. T(SIG)), , -**~ tl and s --+~ t2 implies 
the  existence of a t e rm u such tha t  t l  ---+~ u and t2 ~ u. A TRS ~ is convergent (resp. 
ground convergent) if it is noether ian and confluent (resp. ground confluent).  When a TRS 
is convergent (resp. ground convergent),  for every te rm t E T(SIG, X) (resp. t E T(SIG)) 
there  is a unique t e rm t J~ such tha t  t --*~ t +£ and t +~ is irreducible by ~ .  

A TRS R is canonical if it  is convergent and if for every rule I -~ r in ~ ,  l and r are 
irreducible by ~ - ( l - ~ r } .  

=~ is the  congruence on T(SIG, X) generated by  the set of axioms obta ined by considering 
the rules in J~ as equations.  Then I ( ~ )  (or I ( E ) )  is another  no ta t ion  for the  initial  algebra 
T(SIG)/=~z- =z(~) is the  congruence relat ion defined on T(SIG, X) by : 

S = I ( ~ ) t  ¢* V a E E g ,  s a - - - -~ t a  

1 .4  E q u i v a l e n t  S p e c i f i c a t i o n s  

Let SIG = (S, >_, F) and SIC' = (S', >', F') be two coherent  OSS such tha t  S c S', >_C_>', 
F C F '  and. for each f E F ,  r ( f )  C r'(f). Then T(SIG', X) is (canonically) a SIG-algebra. 
Let ¢ be  the unique (injective) SIG-homomorphism from T(SIG, X) into T(SIC',  X u X') 
which is the ident i ty  on X. Then,  the OSSpec (SIG', E') is said to be equivalent 6 to (SIG, E) 
if 

Vs,t E T(SIG, X), (s =z(~) t ¢~ ¢(s) =Z(E') ¢(t))  

This means tha t ,  when we only consider the terms built  on SIC, the specifications have the 
same class of inductive theorems.  

Finally,  an OSSpec ((S, >,F),E) is said to be decomposed if F can be spli t  into two sets 
C and D such tha t :  

• v s ,  t • T(C),s ¢~ t 

• Vs  C T ( F )  - T(C), 3t C T ( C ) ,  s = E  t 

• Note that Rewriting Systems are always sort decreasing in MSA. 

~This ~equivalence ~ is not symmetric. This is an abbreviation for (SIG, E) is (SIG, E)-equivMent to (SIG', E'), the 
(SIG, E)-equivalence being indeed symmetric. 
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2 T r a n s f o r m a t i o n  o f  S p e c i f i c a t i o n s  

In this section we show how to transform a MSSpec, the source specification into an equivalent 
decomposed OSSpec: the target specification. However, as the simplification of equational 
problems can be generalized to finite coherent order-sorted signatures [Com88b], the method 
given in this section also applies to (finite coherent) OSSpec. 

The source specification will be denoted by (SIGo, R0) where SIGo --- (So, Fo) and the 
target specification by (SIGT,)~T) where SIGT = (ST, >_T, FT). We assume in the following 
that R0 is ground convergent. N F  will denote the set of ground terms in T(Fo) that are 
irreducible by R0. 

2.1 G r o u n d  N o r m a l  F o r m  G r a m m a r s  

We don't give here the full algorithm that produces a conditional grammar for N F .  Let us 
only sketch on an example the way it is computed. 

E x a m p l e  1 
Fo = {s : int2 --* int2; 0 : --+ int2; + : int2 × int2 --* int2} 

The first set of derivation rules only states that a term in N F  has a root symbol in Fo: 

NFi,,2 -~ YFo I YF~(z) t NF~,+~ 

where NFt denotes both a non terminal and the language it generates: NF,  = N F  N {ta, a E 

Now we compute the derivation rules, say, for NF,(,): ~ 

t E N F , ( , )  iff t = s ( u ) , t ¢ s ( s ( 0 ) )  and u E g F  

Solving s(u) ~ s(s(O)) in T(Fo), using the algorithm described in [CL88], leads to the four 
disjoint solutions: 

1. 3 X l ,  x2 ,  u ---- Xl  + x2 

2. u = 0  

3.  ~ Z l , I g 2 ,  U = S (Z  1 + if:2) 

4 .  u = 

This can be expressed by the four rules: 

NF,(.)  -* s(NF,.+,2 ) I s(NFo) t s(NFs(~+~)) I s(NFo(, ) ) )  

Using again the same method, we compute the derivation rules for the non terminals we 
introduced. There would here remain to compute the derivation rules for NFo, NF~+~ 2, 
NFo( , ) ) ,  NFs(,~+,2). 

7Informally, t is an irreducible ground instance of s(z)  iff 

1. its root symbol i a s  

2. it does not match at the root any left hand side of a rule 

3. its proper 8ubterms are irreducible 

This characterization of NF,(,) can be generalized to any NF, (see [CR87,Com88a]), 
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T h e o r e m  2 This procedure fully described in [Com88a] does always terminate. 

In our example, we get the additional grammar rules: 

NFo -~ 0 
N F z , + ~  -* NFo(~,) + NFo(~2) IF Xl ~ x2 NF~,+~2 + NF~(~) 

I NF~I+~ 2 + NF~3+~ , IF xl  # x3 NF,(~) + NF~+~ 2 
I NF~,+~ 2 +NF~3+~ , IF x2 :~ x4 

N F o ( . )  ) --* sCNF, c,c~))) s ( N F ,  cz,+z2)) 
NF.(~,+~2 ) -* s(NF~+~2) 

Then the grammar is "cleaned up" using an algorithm described in [Com88b,Com88a]. 
This algorithm is similar to the usual cleaning algorithm for context free word grammars; the 
non terminals from which there is no derivation chain reaching a terminal tree (called useless 
non terminals) are removed. 

T h e o r e m  3 [ C o m 8 8 b , C o m 8 8 a ]  There is an algorithm producing a conditional grammar 
of  N F  which does not contain any useless non-terminal. 

The grammar produced in this way will be called the reduced grammar of N F .  In our 
example, we get the following reduced grammar: 

NF~m2 ~ NFo I NF,(~) 
NF~(~) --* s(NFo) 
NFo -* 0 

And, indeed, there axe only two terms in N F  : 0 and s(0). 
Of course, this step (cleaning the grammar) is equivalent to an inductive reducibility test 

since we proved simultaneously that Xl + x2, six1 + x2) and s is (x) )  are inductively reducible 
(the corresponding set of irreducible ground instances are empty). However, this computa- 
tion has to be done only once, whatever inductive completion is performed afterwards. 

We give another simple example which illustrates the transformation. This is a specifica- 
tion of the integers. 

E x a m p l e  2 
F = { s ,p  : in t  --~ int; O : --~ int  + :  int  x in t  -~ int  

= { s ip (x ) )  

0 + x  -+ x 
s(x)+y -~ s i x + Y )  
P(~) + Y -~ p(~ + Y) } 

We get the following reduced grammar for N F :  

N F --. N Fo 
NFo --+ 0 

s(NFo) 
NF,(~) ~ p(NFo) 

N F.cz) 

s(NF.(~)) 
p( N Fp(~) ) 

NFp(=) 
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In bo th  examples ,  the  reduced g rammar  of N F  is a regular  t ree g rammar .  We will assume 
this property in the following. Note tha t  such a p rope r ty  is ensured by  the left l inear i ty  of the  
original TRS (see e.g. [GB85]). However this  condi t ion is not  necessary as shown by  example  
1. 

More precisely, we call N F - g r a m m a r  any pair  ~ = (NT ,  P)  satisfying 

• N T  = {NF~[8_ 6 S }  U {NFtl  t 6 To} where T0 is a finite subset  of l inear terms in 
T(Fo, X) s. 

• P is a set of der ivat ion rules N --* f ( N 1 , . . .  ,Nk)  or N --~ N '  such tha t :  

1. N , N ' , N 1 , . . . , N k  6 N T  

2. y 6 F o  

3. V N  6 N T ,  N = UN-~N'eP N' 

4. VNF, ,  NFt,  E N T ,  t is not a variable and t and t ~ are not  equal  up to the  renaming 
of thei r  variables.  

5. For  each g ---* f ( N l , . . . , N k )  E P ,  N = N F t  for some t such tha t  root(t) = f . 

6. For  each N --~ N t C P ,  N = N F ,  for some _s 6 So 

7. For e a c h N E N T ,  N ¢ 0  

The reduced g rammar  of N F  is an N F - g r a m m a r .  

2.2 C o n s t r u c t i n g  (ST, >_r) 

Let ~ = ( N T ,  P)  be an N F - g r a m m a r .  ST is the  set of non terminals  N T .  For sake of clarity, 
we rename the terms in N T :  in example 2, NF,(z) is usual ly  denoted  by pos (for s t r ic t ly  
posit ive integers) and  NFp(z) is usually denoted  by neg. 

The ordering -->T on ST is defined by: 

• I f t ,  t' E T ( F o , X ) ,  NFt  >_r NF~, i f f 3 a  E ~,,t' = ta. 

• NF~ >_T N F ,  when LS( t )  <_o s_ 

F0 is spli t  into the sets Co and Do in the following way: 

• Co is the  set of function symbols f such tha t  there  is a rule NF~ --* NFI(zl  ....... ) in P 

•Do=F-Co 

Equivalently,  D0 is the  set of symbols  f 6 F such tha t  f ( x l  . . . .  , x , )  is induct ively reducible.  
(This is so because of the  proper t ies  of 8 ) .  

Now, let CT be the set Co where every symbol  has been pr imed.  For  each product ion  rule 
N --+ f ( N 1 , . . . , N ~ )  we associate  with f '  E CT the profile f '  : N1 x . . .  x Nk ~ N .  We get 
now an OSS (ST, _>r, Cr)  9 Let us show how it works on our two examples:  

SWhen NFt i~ computed by the algorithm, then t is always a linear term. Thus this is not an additional assumption. 
(See [Com88b,ComSSa]). 

9Note that condition 7 in the definition of an NF-grammar ensures that, for ever./8 6 gT, T(CT)_,, the set of ground 
terms of sort 8 is not empty (~ we required in the definition of an OSS) 
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E x a m p l e  1 
We associate  wi th  each non te rmina l  a sort in the  ta rge t  specification. In this  example,  int2 
is associa ted  wi th  NF/m2 , pos with  NFs(,) and zero with  NFo. Then,  each rule of the  reduced 
g r a m m a r  corresponds ei ther  to a subsort  declarat ion or a profile declarat ion.  The  rules 

N F - - *  NFo I NF,( , )  

give the  inclusions int2 > pos and int2 > zero. 
The rule NF,( , )  --~ s(NFo)  gives s W : zero --~ pos and the  rule NFo --+ 0 gives ff :--+ zero. 

E x a m p l e  2 
This leads to the  sort s t ruc ture  ST = {int ,pos,  neg, zero} with the  relat ions int  > ned, 
int  > pos and int  > zero corresponding to the rules 

W E  ~ g F o  I NF~(,) I NFp(,) 

The  o ther  rules correspond to the  profile declarat ions:  

s ~: zero- -*pos  p~ : zero- -~neg  
0 ~ :--~ zero 

pos --~ pos ned ~ neg 

P r o p o s i t i o n  1 Assume that ~o is ground convergent, then N F  is an (ST, >--T, CT)-algebra 

In general  (ST, >--T, CT) is not coherent.  In order  to guarantee  its coherence, we have to 
construct  (ST, >--T, Cr)  using a sui table  N F - g r a m m a r :  

P r o p o s i t i o n  2 Assume that )~o is ground convergent and that there exists an NF-grammar .  
Then there exists an N F - g r a m m a r  ~ such that (ST, >_T,CT) is a coherent OSS. 

Sketch of the proof: the  N F - g r a r n m a r  is cons t ruc ted  s ta r t ing  from any N F - g r a r n m a r  ~0 
and  adding  some sorts  and  some profiles in the following way : for every pair  of rules 

NFf(t,,...,t.) -+ f ( N F m , . . . , N F ~ . )  
NFf(e....,e,,) -.* f ( g F u , , . . . ,  N f , ; )  

such t ha t  

• for all i ,  ul and  u~ are unifiable wi th  a most  general  common instance u~ A u~ 

• N F ~ ^ ~  E NTo 

• 3i  s.t .  u~ is not  an instance of u[ and 33" s.t.  u~ is not  an instance of u i 

add  the g r ammar  rule 

NFf(t,^t,~,...,t.^t,~)--* I (NFm^~,~ , . . . ,  g F , . ^ u ,  ) 

and the non te rminal  f ( t x  A t~ . . . .  , tn A tin) (if not  a l ready in NTo). 
It  is not  difficult to see tha t  the  result ing set of non terminals  and product ion  rules const i tute  
an N F - g r a m m a r .  (Al though some non-terminals  may  not  be reachable) .  Wi th  such an N F -  
grammar ,  (ST, >--r , CT ) is coherent.  
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2.3 C o m p u t i n g  t h e  t a r g e t  s p e c i f i c a t i o n  

We take DT = F and FT = DT tA C T together with the profile declarations f : N F ~  × . . .  × 
NF~ --* NF~ if f E F has the profile 8_ 1 × . . .  × _s, --* _s. 

Then,  each term in T(Fo, Xo) can be viewed as a te rm in T(FT, XT). In other words: 

L e m m a  1 T(Fr, XT) is a (free) (So, Fo)-algebra. 

Indeed, let H denote the function defined on T(Fo, Xo) by: 

• ~ x : s _ ~ = x : N F ~  

• ~ f ( t l , . . . , t , ) ~  = f ( ~ t l ] , . . . , ~ t n ~ )  

I.] is an injective (So, F0)-morphism. 

Let £1 be the set of rules 

f ( x l : _ S l , . . . , x , , :  _s,) --+ f ' ( x l  : _ s l , . . . , x ,  :_s,) 

for every f E Co and every profile f '  : s_ 1 × . . .  x _s n --* _s. Such a construct ion is "well formed" 
since, if f : _s~ × . . .  x _s" --* s' in SIGo, then, for every index i, s~ >_T NFs,. 

L e m m a  2 £1 is canonical and sort decreasing. 

This is indeed a consequence of proposition 2. 

Let £2 be the set of rewrite rules ~tl .[~1 -* lu] ~ ,  for every rule t --* u in £0- 
A decreasing renaming of a term t is a subst i tu t ion 0 which associates to each variable a 

variable with a lower sort in such a way that  there is at least one variable x in t such that  
sort(xO) < sort(x). 

£T = £1 U £2 t.J £~ where £~ is the set of rules 10 ~ ---r r0 ~ ,  for each rule l --+ r E £2 
and each decreasing renaming of I. (Such a set of rules is finite as S is finite). Of course, 
rules in £T which are instances of some other rule in £T can be removed. 

E x a m p l e  1 lo 

~ 1  = { 5(2; :  zero)  ~ s t ( x  : z e r o )  

o ~ o '  } 
~ = { ~( , ' (o ' ) )  ~ o' 

O ' + x ~ x  
z + O' --* x 
z + z - - ,  O' } 

and £T = £1 U £2 (every rule in £~ is an instance of a rule in £2). 

1°When the sort of a variable is not mentioned, it must be understood that it has the greatest sort of its connected 
component. 
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E x a m p l e  2 

~ = { s (x  : zero) --+ s'Cx : zero) 
p(~:  zero) -* P'Cx: zero) 

0 4 0 '  

~2 = { sCpCx)) - ,  x 
0' + x - - .  x 

p(x) + y -~ p(x + y) 

) ~  = { s (p ' (x  : zero)) --+ x :  zero 
p(s'(x : zero)) --~ x : zero 

s'Cx: zero) + y -~ sCx + y) 
p'Cx : zero) + y - ,  PCx + y) 

sCx: pos) -~ ,~(~:  pos) 
p(~:  ,~eg) --, p ' (~:  neg) 

p(s(x))  --+ x 
s(x) + ~ -~ s(x + y) 

} 

s(p'(x : ~eg)) -* x :  ~eg 
p(~'(~ : pos)) -~ ~ :  pos 

s ' (x:  pos) + y -~ s(x + y) 
p' (x:  ~eg) + y -~ p(~ + y) 

2.4 P r o p e r t i e s  o f  t h e  t a r g e t  s p e c i f i c a t i o n  

There  are basical ly two mappings  linking the  source and the t a rge t  specification. H has 
a l ready been ment ioned.  Now, for t E T ( S I G T ,  X )  let t" be the  t e rm in T ( S I G o ,  Xo) obta ined  
by replacing each variable  x by a variable x' whose sort  is the greatest  sort  in the connected 
component  of sort(x)  and replacing each pr imed function symbol  by the unpr imed one. (Then 
~tl = t). 

Our const ruct ion using N F - g r a m m a r s  has the  following main  p roper ty :  

L e m m a  3 u - - ~ r  v iff  u ~ v or ~ ~ e  ~" 

C o r o l l a r y  1 For every t E T ( S I G T ) ,  ~ is irreducible by ]~o iff t is irreducible by ]~2 u ]~. 

C o r o l l a r y  2 For every t , u  C T ( S I G T ) ,  "t ~ge = "~ ~ o  iff t ~ga.= s ~ r  

By construct ion,  the  ta rge t  OSSpec is coherent  n .  The  rewri te  sys tem R r  has also the 
desired proper t ies :  

L e m m a  4 I f  1~o is ground convergent, then so is ]~r. 

Sketch of the proof 
When t --*~r u, e i ther  t" - -~o ~ or t" = ~. In the  la t te r  case t -'*~1 u. This proves tha t  ~T does 
te rmina te .  The  ground confluence proof  is more involved; assuming tha t  s, tl, t~ E T ( S I G T )  
and s --*~r Q and s ---~r t2, there  are three cases to investigate:  

1. ~ = t~ = ~ .  Then we use lemma 2 

2. ~ = t~ ¢ ~ .  Then we use the  construct ion of )~T 

3. Q ¢ ~ ¢ ~ .  Then  we use the  ground confluence of )~0. 

L e m m a  5 ~ r  is sort-decreasing. 

llThls is easy to deduce from proposition 2. Note that this proves the existence of the initial algebra, as recalled in 
section 1. 
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This can be easily verified. As shown in [KKM88], when a term rewriting system is convergent 
and sort decreasing, for every equational order-sorted deduction of s = t, there is a rewrite 
proof of s = t. This result easily extends to ground convergent TRS: 

L e m m a  6 If g is ground convergent and sort decreasing, then s =1(~) t iff, for every ground- 
ing substitution a sa ~ =  ta ~ .  

Now what we expect for inductive proofs is the equivalence between the two specifications: 

T h e o r e m  4 If go is ground convergent, then (SIGr, dr) is equivalent to (SIGo, go). 

In other words 
s =Zero) t ¢~ lsl = z ( ~ )  Ill 

Sketch of the proof 
When a E Estao, lal is the substitution whose domain is Dorn(a) and such that, for every 
x E Dora(a), x la  ] = lxa]. In the same way, when a 6 Es,ar,  ff is defined by Dom(~) = 
{~,x E Dom(a)}  and, for every x E Dom(a),  ~ : ~'6. Now the theorem follows from the 
equivalences: 

• s =~l~olt .~ v o e  r,S,~o,,, l s l [ol  ~ . :  It]Io] ~ .  

Let us show the second equivalence, s =z(_~o) t i f f  for every grounding substitution a, sa ~ 0  = 

ta $~o" On the other hand, sa j.jz0= [sa~ $~o and, by corollary 2, lsa'-~'~ $~o:  l~al J.go iff 
lsal ~gr = ltal $~v. Now, the equivalence follows from the identity lsal = fs]lal. 

For the first equivalence, by lemmas 4 and 6, ls~ : z (g r )  It] iff for every grounding substi- 
tution a, ls~a ~ r :  Ill a ~zr- Now, following the identity ls la ~ g r :  l sa l  .[gr, we have the 
equivalences 

<* ls~l ~ 0  = lt~l ~ o  
¢~ s~ J,~o t~ ~ o  

[] 

It  is thus possible to perform inductive proofs in the target algebra instead of the source 
algebra. As announced, we have also the following property which states that the target 
algebra is "simpler" than the source one: 

P r o p o s i t i o n  3 (S IGr ,  gT) is a decomposed OSSpec. 

This indeed is a consequence of lemma 3. 

3 I n d u c t i v e  P r o o f s  in  O r d e r - S o r t e d  A l g e b r a s  

Now, it remains to show how to perform inductive proofs in decomposed order-sorted algebras. 
The aim of this paper is not to give results in this field. Therefore, we only show how to 
perform inductive proofs in our target algebra and sketch a general method. 
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The  only difficulty wi th  OSA is tha t  equat ional  reasoning m a y  lead to  ill formed terms (see 
for example  {SNGM87]). Such a problem does not  occur when dealing with  sort  decreasing 
t e rm rewri t ing systems. And,  by lemma 5, our system is sort-decreasing.  

However, if we use the  order-sor ted complet ion (as in [KKM88]), an equat ional  conse- 
quence u = v where nei ther  LS(u) < LS(v)  nor LS(v)  <_ LS(u)  may be derived. In such a 
case, it  is not  possible to orient  the  equation and keep the sor t -decreasing proper ty .  

Let us assume tha t  the  source a lgebra  is a MSSpec.  In this  case, the  ta rge t  specification 
has some addi t ional  proper t ies  which ensure tha t  such a sort  p rob lem cannot  occur: 

L e m m a  7 Assume that the source specification is a MSSpcc. Let s = t be an equation in the 
source specification. Then every equational consequence u = v of ]~T U {~S] : ~t~) derived 
by a completion procedure satisfies either LS(ua)  >_ LS(va)  or LS(va)  > LS(ua)  for every 
substitution a or u,v E T(CT, X) .  

This indeed can easily be proved using the fact tha t  a t e rm whose root  symbol  is in DT 
has necessari ly a sort which is maximal  in its connected component  12. 

Now three  s i tuat ions can occur when an equat ion u = v is derived by the (inductive) 
complet ion  procedure  : 

1. u,v  C T(CT,X)  and it is possible to derive a contradic t ion 

2. for every subs t i tu t ion  a, LS(ua) > LS(va)  (or LS(va)  > LS(ua))  in which case the 
equat ion can be oriented,  provided tha t  constructor  te rms are smaller  than non con- 
s t ruc tor  ones for the  reduct ion ordering. 

3. for every subs t i tu t ion  a, LS(ua)  = LS(va)  

Therefore,  it is possible to  use complet ion procedures (as in [KKM88]) in this case, without  
modifying the sort  s t ructure .  

When  the source specification is an OSSpec there are some more difficulties since an 
equat ion between two non const ructor  terms with uncomparable  sorts can be derived by a 
complet ion  procedure.  

However, in order  to solve complement  problems in OSA, it is necessary to t ransform 
the  sort  s t ruc ture  ([Com88b]). In the  result  of this t ransformat ion  (which is mainly a tree 
au toma ton  determinizat ion) ,  two dis t inct  sorts have disjoint  carr iers  in T(F) .  (But functions 
symbols  remain  "overloaded") .  If we assume this addi t ional  p rope r ty  of the  source specifi- 
cat ion,  then lemma 7 holds for order sor ted specifications. Therefore,  no sort problem can 
occur during a complet ion procedure.  

E x a m p l e s  1 a n d  2 
In examples  1 and 2 (previously defined) it is not  possible to use direct ly  the results of 

[HH82,LanSl] since there  are some relat ions between constructors .  However, using the target  
specification (see above),  it is possible to use these methods.  

12Our target signature may be compared with the compatible signature~ of [SNGM87]. 
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For example,  in example  1, the commuta t iv i ty  x + y -- y + x is an inductive theorem since 
there  is no (proper)  cri t ical  overlap between x + y and a rule in RT- This  is sufficient for 
ensuring x + y = I (~ r )  Y + x as shown in [Bac88]. 

Let us show how it is proved tha t  s(x) + y = y + 0 is not  an inductive theorem: 

= o'  

: z e r o )  = O' 

D I S P R O O F  

overlap wi th  the  rule x + O' ~ x 

overlap wi th  the rule 8 ( x :  zero) --~ 8 ' ( x :  zero) 

since s'(x : zero),O' 6 T(CT,X)  

4 Conc luding  remarks 

For any te rm rewri t ing sys tem it is possible to  compute  a condi t ional  g r a mma r  for N F  
without  useless non-terminals .  However, the  me thod  presented in this  paper  requires some 
more hypothesis .  F i rs t ,  it requires the t e rm rewrit ing sys tem to be ground convergent (may 
be this hypothesis  could be weakened to ground confluence). Secondly, it requires the clean 
g rammar  of N F  to be a regular  one. This means tha t  the  language of reducible ground terms 
is regular.  There  is no hope to weaken this hypothesis  since the  set of well formed ground 
terms in a finite OSS is a regular  tree language: profile declarat ions  provide a (bo t tom-up)  
finite t ree au toma ton  for recognizing it. Therefore,  our t ransformat ion  into a decomposed 
OSSpec seems to be op t imal  in some sense: whenever such a t ransformat ion  exists,  then it 
is computed  13. 

A drawback of the  method  is tha t  there  does not  exist any simple check for the regular i ty  of 
the  language of reducible ground terms. I t  is known tha t  left l inear i ty  is a sufficient condit ion 
(see e.g. [GB85]). However, many examples can be buil t  showing tha t  this condi t ion is not 
necessary 14. Of course, it is possible to s imply compute  the cleaned up g r a m m a r  and see if it 
is regular.  But ,  as shown in this paper ,  this  is not  an easy computa t ion .  An open question is 
to broaden the  left l inear i ty  condit ion in order  to have some more general  (syntact ic)  sufficient 
condit ion for regulari ty.  

Let us also note tha t  we could not use any regular  tree g r a mma r  for our t ransformat ion 
since we actual ly use addi t ional  propert ies  of the  g rammars  produced  by our a lgor i thm for 
proving a s t ronger  p roper ty  of the target  specification: the equivalence with the  source one. 
Indeed,  the i somorphism T ( F ) / = E  ~ T(F ' ) /  =E' does not  provide  in itself a way for deduc- 
ing inductive theorems in T(F, X)  from inductive theorems in T(F' ,  X) .  

Anyway, at  least in the  left linear case (and others,  see above),  our method  proves tha t  it 
is possible to use Huet  and Hullot 's  a lgor i thm and avoid induct ive reducibi l i ty  checks. This 
is very useful since the test  set of Pla is ted ' s  inductive reducibi l i ty  test  is always huge. That  
is the  reason why we think our approach is well sui ted to the  implementa t ion  of inductive 
proofs in equat ional  theories wi thout  constructors .  

lSThis optimality result will be detailed in a forthcoming paper. 

1'For example f = {a,f,h} and the left hand sides are {h(f(z,x)),f(f(z,,z2),za),f(h(x,),z2)}. The language of 
reducible ground terms is regular. 
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Also, it must  be noted that  inductive proofs in order-sorted decomposed specifications is 
not  harder than in the unsorted case. Indeed~ this is the meaning of lemma 7. Therefore, our 
method is a real improvement over classical ones. 
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