Phd Thesis in Computer Science
Static Analysis of Embedded Multithreaded Programs

Jean-Loup Carré

Mai 2010

EADS+ CNVS

C A C H A N

Jury

e Prof. HALBWACHS Nicolas (president)

e Prof. SEIDL Helmut (reviewer)

e Reviewer : Prof. BOUAJJANI Ahmed (reviewer)
e Dr. JEANNET Bertrand

e Dr. KUNCAK Viktor

e Dr. HYMANS Charles

e Pr. GOUBAULT-LARRECQ Jean (Phd Advisor)

Table

of Contents

I Introduction

1 Introduction

1.1 Multithreading
1.2 Program Verification

2 Mathematical Basis

2.1 Classical Notations
2.1.1 Logical Symbols
2.1.2 Sets
2.1.3 Functions

2.2 Binary Relations

2.3 Ordering
231 Bounds,
2.3.2 Lattices
2.3.3 Construction of Lattices

2.4 Words
241 FIFO.

3 Abstract Interpretation

3.1 Basic Principles,
3.2 Galois Connections
3.3 Widening and Narrowing
3.4 Reduced Product
3.5 Conditional Soundness/Blocking semantics

3

4 TABLE OF CONTENTS
4 Existing analyses 43
4.1 Introduction 43
4.2 Control Flow Graph 43
4.3 Location Set e 45
4.4 R. Rugina and M. C. Rinard Analysis 47
4.4.1 Points-to Graph 47

442 Gen/Kill00 o 47

4.4.3 Multithreading Lo 47

4.5 Thread-Modular Model-Checking 50
4.5.1 Model Checking 50

4.5.2 Abstract Interpretationo 50

4.5.3 Mutexeso o1

4.6 Pure Gen/Kill Analyses o 53
4.7 Data-races e 54
4.7 1 Types . . . o 95

4.7.2 The Goblint Tool o 55

4.7.3 Reentrant Monitors Lo o6

5 Semantics Hierarchy 59
II Concrete Models 61
6 Language 63
7 Operational Semantics 67
7.1 Introduction 67
7.2 Description of the System. Lo 67
7.2.1 Program execution Lo 70

7.3 Descendants Lo 72
7.4 Properties of the language 75
7.4.1 Labels 75

7.5 Conclusion L 76

8 Interleaving Semantics 79
8.1 Maps e 79
82 Gen/Kill 81
821 Pure Gen/Kill 81

8.2.2 Points-to Graph 82

8.2.3 General Gen/Kill Analysis 82

TABLE OF CONTENTS 5

9 Weak Memory Model 83
9.1 Introduction 83
9.2 TSSO . . . s 84

9.2.1 Examples 86
9.3 PSO . . . 87

IIT From Single-threaded to Multithreaded: Core Model 89

10 Intermediate Semantics 91
10.1 Basic Concepts o oo 91
10.2 Definition of the G-collecting Semantics 94
10.3 Properties of the G-collecting Semantics 100

11 Overapproximation of the Intermediate Semantics 105
11.1 Basic Statements 106
11.2 Composition 108
11.3 4f Statements L 113
11.4 While loops o o o 116
11.5 Thread Creation 0 v o i 120

12 Denotational Intermediate Semantics 127
12.1 Definition e 127
12.2 Connection Between Semantics 128

12.2.1 Soundness e 128
12.2.2 Completeness 129
12.2.3 Conclusion e 131

IV Abstract Semantics 133

13 Generic Abstraction for Interleaving Semantics 135
13.1 Abstraction 135
13.2 Semantics of Commands 138

14 Abstract Domains for Sequential Consistency 143
14.1 Maps e e 143

14.1.1 Main Abstractiono 143
14.1.2 Errors e 145
14.1.3 Example 145
14.2 Cartesian Abstraction 145
14.3 Gen/Kill Analyses 147

15 Abstraction for Weak Memory Models 149

16 Abstract Domains for Weak Memory Models

16.1 Maps oo
16.2 Protected Variables
16.2.1 Lattice of Abstract States
16.2.2 Lattice of Abstract Transitions
16.2.3 Reduced Product
16.3 Set of Locks and Acquisition Histories
16.3.1 Lattice of Abstract States
16.3.2 Lattice of Abstract Transitions
16.3.3 Anti-Chains of Acquisition Histories

17 Language Extensions

17.1 Conditions and Actions
17.2 Par Constructor
17.2.1 Concrete Semantics
17.2.2 Intermediate Denotational Semantics
17.2.3 Abstract Semantics
17.3 Function Calls
17.3.1 Examples of Abstract Domains
17.3.2 Acquisition Histories
17.3.3 Partial Functions
174 Conclusion

V A Complete Static Analyzer: MT-Penjili

18 Implementation

18.1 Penjili: The EADS Tool
18.2 Practical Results
18.3 Complexity
18.3.1 Complexity of Operationson K
18.3.2 Complexity of Widening

VI Conclusion

19 Conclusion

19.1 Conclusion
19.2 Perspectives

20 Index

21 List of Figures

TABLE OF CONTENTS

22 Bibliography 193

Part |

Introduction

CHAPTER 1

Introduction

1.1 Multithreading

The main feature of multithreading is to allow several threads to be executed concur-
rently. This enables the implementation of new features and improved speed. This is why
multithreading is frequently used in practice, even in embedded software.

In sequential programs, some run-time errors may happen, e.g. array overflows (at-
tempt to access in an array outside of its range), integer overflows (computes an integer
greater that INT_MAX), invalid pointer dereferences, notably. These bugs can also happen
in multithreaded programs. Worse than that, they are harder to detect due to possible
interferences between threads.

In addition to this, multithreading comes with new kinds of bugs, e.g, data-races or
deadlocks. A data-race occurs when two different threads attempt to access the same
variable at the same time and at least one of these accesses is a “write”. Data-race may
lead to an unspecified behavior of the program, e.g., in C norm [ISO99].

A large variety of parallel execution models exists, some easier than others to ana-
lyze. The simplest kind of parallelisms has been well studied [FQ03, MPR06b, MPRO6a,
MPRO7|: threads exist at the beginning of the execution of the program, and no new
thread is even created.

11

12 CHAPTER 1. INTRODUCTION

Time code; codes

Figure 1.1: par{{ code; }{ codey }}

Timme parent ode;

Figure 1.2: create{code;}

A more general kind of parallelisms is thread creation using a par statement. The par
statement [KSV96, RR99, RR03, SS00] executes in parallel two pieces of code: par(fi, fo)
executes fi and fy in parallel and then returns. This kind of parallelisms is used in some
API [Boa08]|. It is illustrated in Figure 1.1 : the execution begins at the top of the figure,
the main thread spawns two threads and waits until their termination. Using the par
statement, we can encode a program where all threads are created at the beginning: e.g.,
a program where two threads execute in parallel f; and f, can be modeled by par(fi, f2).

The create statement has been less studied [LMO08, GBCT07, BMOTO05]|, but is more
used in practice. E.g., it is used in Java [GJSBO05], in POSIX [IT04] and in Cilk|[fCS98|.
The create constructor spawns a new thread and immediately returns. The Figure 1.2
shows an execution of create statements. The create statement is known [LMOO08| to be
more complex to analyze than par. Furthermore, as explained by A. Bouajjani, M. Miiller-
Olm, and T. Touili [BMOTO05|, parallel calls cannot adequately model a command that
spawns another thread and immediately returns.

Defining a semantics for multithreaded programs is not so easy. What is the meaning
of par(x = 1,2 = x) 7 Multithreaded programs should ideally be executed with sequential
consistency, i.e., any run would be an interleaving of sequential runs. In the name of
simplicity, a large number of analyses [FQ03, MPR06b, MPR06a, MPR0O7, KSV96, LMOO08,

1.2. PROGRAM VERIFICATION 13

RR99, RR03, SS00| assume sequential consistency.

Nevertheless, as Lamport said [Lam79| : “For some applications, achieving sequential
consistency may not be worth the price of slowing down the processors.” Memory models
without sequential consistency, a.k.a. weak memory models, allow for speed increases in two
ways: first, as in Lamport’s quote, by lifting the constraints that multi-processors should
ensure sequential consistency, and second, by allowing compilers to apply more aggressive
optimizations, e.g., by reordering instructions as explicitly mandated in Java [GJSBO05],
and done in practice in any reasonable C compiler.

In a weak memory model, each thread has a temporary view of the memory. The shared
memory and the temporary view of a thread are not necessarily consistent with each other:
two threads that read the same variable simultaneously may obtain different values.

To our knowledge, in most standard thread models, e.g., Posix [IT04] or OpenMP
[Boa08|, the memory model is not specified accurately. In practice, their weak memory
model is a combination of the processor’s memory model and the need to allow for specific
families of optimizations.

1.2 Program Verification

We do not recall here the well-known definition of Turing machines. Intuitively, a Turing
machine is an abstract computer, which can use an arbitrary large amount of memory!
and can run for an arbitrary long amount of time.

A set X is decidable, if there exists a Turing machine that, given an entry, answers?
whether this entry is in X or not.

We recall the well-known Rice Theorem:

Theorem 1.1 (Rice Theorem). Given a non-constant predicate P :
{M | M is a Turing machine A P(L(M))} is undecidable.

where L(M) is the language recognized by the Turing machine M.

The Rice theorem means that it is impossible to decide if the language recognized by
a Turing machine satisfies a non-trivial predicate®.

Most used programming languages are Turing powerful, i.e., all functions computable
by a Turing machine may be written in these languages*. Moreover, these languages can
simulate the execution of a Turing machine®. Therefore, most interesting properties are
undecidable.

INo “Out of memory” will stop a Turing machine.

2In particular, this Turing machine always terminates.

3Obvioulsy, the problem is decidable if P(X) = true for all X. Symmetrically, the problem is decidable
if P(X) = false for all X.

4Notice that, in practice, a computer have a finite memory. Therefore, it may raise an “Out of memory”
when it computes some complex Turing-computable functions.

%“To be able to simulate the execution of a Turing machine” is a stronger property than “to be Turing-
powerful”, since we can define a Turing-powerful machine that is not able to simulate an arbitrary Turing

14 CHAPTER 1. INTRODUCTION

1 int v[3];

2

3 int £ (void) {
4 int i;

>

6

7

8

9

10 return ij;
11}

12

13 int main (void)
14 {

15 int 1 = £();
16 v|i]|=5;

17

18 }

Figure 1.3: Presence of an Array Overflow is Undecidable

For instance, let us consider the following problem:

ENTRY: A program P
QUESTION: TIs the program P free of array overflows ?

Detecting array overflows has two main interests:

e For compilers, it allows them not to check during the execution, and therefore allows
compilers to enhance execution speed significantly.

e It allows one to prove the absence of unwanted array overflows during runtime. An
array overflow at run-time may corrupt silently corrupt the memory and lead to
unwanted results.

An array overflow occurs when the program attempts to access an array out of its
range. E.g., in Figure 1.3, if the function f returns a value that is not in [0, 2], an array

machine. Let us define the n-small word machines. Such a machine is a pair (X, M) where X is a finite
set of words and M a Turing machine. When we launch a n-small word machine T' = (X, M) on a word
w, if w is length smaller or equal than n, then, T' accepts w if and only if w € X, else, T launches the
Turing machine M on w, and recognizes w if and only if M recognizes w.

Obviously, n-small word machines are Turing powerful. Nevertheless, Rice theorem is false for n-small
word machines, since given a n-small word machine 7', the problem “Does T recognize the empty word ?”
is decidable.

1.2. PROGRAM VERIFICATION 15

overflow occurs at line 16, because the array v only has three cells : v[0], v[1] and v[2].
Attempting to access v[42] causes an array overflow.

Since the function f may simulate a Turing machine M on a random entry and return
0 if the word is rejected by M and 42 otherwise, therefore, deciding the absence of array
overflow can be reduced to the problem of deciding if the language of a Turing machine
contains an integer that is not in the array bounds. According to the Rice Theorem
(Theorem 1.1), the problem to know whether the language of a Turing machine is a subset
of {0,...,n} is undecidable. Hence, the problem of detecting array overflows is undecidable.

Due to Rice Theorem (Theorem 1.1), all interesting safety properties are undecidable,
e.g., to detect array overflows, integer overflows, divisions by zero or data-races.

We may consider that, “in a computer, everything is finite, therefore everything is
decidable” [Hym06]. Indeed, a computer has a finite memory, a finite hard disk, etc.
Hence a computer is a finite machine. Nevertheless, a basic program, that uses 4 Mbytes
(= 8x4x2% bits) of memory will lead to a large number ¢ of configurations: ¢ = 28%4x2* ~
101, i.e, a one followed by one million zeroes.

It is physically impossible to explore the whole state space. Imagine a modern computer
of 4GH~z that computes a new state in only one clock cycle. If this computer started
during the Big Bang (14 billions years ago), it would have explored only 10% states. Space
complexity is worse: the number of possible configurations, c, is larger than the number of
atoms in the Universe (=~ 10%Y). Obviously, analyses [FQ03, MPR06b, MPR0Ga, MPRO7|
that are polynomial in time (or worse, in space) in the size of the state space will not scale
up.

Hence, we need another approach. Instead of checking exactly whether there is an
array overflow, we can instead design an approximation. This approximation should be
computable with a low complexity.

e Under-approximations allow one to find errors, and, then, to enhance code quality.
e Over-approximations allow one to prove that some errors will never happen.

In an under-approximation, we have false negatives: the analysis may fail to detect an
error than can happen in practice. In an over-approximation, we have false positives: the
analysis may pretend that some bugs may happen although the program is correct.

In this thesis, we focus on over-approximations: our aim is to prove automatically that
some embedded programs do not make errors at run-time.

16

CHAPTER 1. INTRODUCTION

CHAPTER 2

Mathematical Basis

2.1 Classical Notations

In this section, we recall classical notations. These notations are needed to understand the
other chapters.

2.1.1 Logical Symbols

We use the classical notations for logical symbols:

e A represents conjunction “and”.
e v represents disjunction “or”.
e < represents equivalence.

e = is implication. A = B means “if A then B”.

2.1.2 Sets

We assume the set theory, and recall here some classical notations that are used in this
thesis:

17

18 CHAPTER 2. MATHEMATICAL BASIS

e The empty set is written (.

e {x | ¢(x)} represents the set of all elements x such that ¢(x) holds (if such a set
exists).

e The inclusion of two sets X and Y is written X € Y or Y 2 X. Formally:

XcY&vreXzeY.

e The set of subsets of X is written P(X). Formally:
PX)={Y|Y c X}.

e The intersection of two sets is written N. Formally:

XNnY={z|lzeXAryeY}

e The union is written U. When the two sets are disjoint®, we may stress this by using
w instead of U.

e The Cartesian product between a set X and a set Y is written X x Y.

e The set of functions from I to X is written X’. To say that the function f is in X,
we will write [: I — X.

2.1.3 Functions

We use the lambda notation to define functions: Az.f(z) is the function that maps x to
f(z).
The composition of two functions f and g is written: g o f. Formally:
ef
go = Aeg(f(x)).
We can then define by induction the iteration of a function:
O d E \ax
frE frof ¥ fofn
Given a partial function f, we write Dom(f) the domain of f.
E.g, to define assignment, we need to modify a function on only one element. To this

aim, we introduce the following notation. Given a partial function f, let f|xo — v] be the
partial function defined by

v if x =29
flz) < f(zx) if x € Dom(f) Az # xg
undefined otherwise.

6X and Y are disjoint if and only if X NY =0

2.2. BINARY RELATIONS 19

To handle fixpoints, we need the concept of stationary sequence. A sequence $q, Sa, . ..
is stationary if and only if there exists N € N such that Yn > N,s, = sy. This means
that the sequence s1, o, ... reaches its limit after a finite number of steps.

2.2 Binary Relations

A binary relation R on a set X is a set of pairs of elements of ¥: RS ¥ x X.

Notations. For a binary relation R, there exists three well-known and equivalent notations:
* zRy,
e R(z,y) (Predicate Notation),
e (z,y) € R (Set Notation).

Relations are, in some way, similar to functions. A relation on a set > can be applied
to a subset of X:

Definition 2.1. R(S) = {s'|Is € S : (s,5") € R} be the application of R on S.

This definition means that a relation R on ¥ induce a canonical function fr : P(X) —
P(X) such that:

fr(S) < R(S).

Notice that each relation R defines a unique function on P(X), and, reversely, two distinct
relations define to distinct functions. These functions may be composed:

Definition 2.2. Given two binary relations R and R’ on a set ¥, R; R’ = {(s,s") | 3¢’ €
Y:(s,8') € Rna(s,s") € R'} is the composition of R and R’

The composition of R and R’ corresponds to the composition of their functions:
frir = fr o [r
As for function, a relation may be iterated, given a relation R on a set > we define:

R' = {(s,8)|s€X}
Re+1 & R,Rk

There is a simple correspondence between function iterations and relation iterations:

frr = fre

Now, we introduce a concept specific to relations, the reflexive-transitive closure:

20 CHAPTER 2. MATHEMATICAL BASIS

Definition 2.3. Given a relation R on X, let R* = |J, .y R* where R = {(s,s) | s € 3}
and R**' = R; RF. R* is called the reflexive-transitive closure of R.

On functions, the reflexive-transitive closure corresponds to:

fre = AS. U (9).

neN

Now, we introduce the concept of restriction. There also exists a concept of restriction
on functions, but we will not use it. Notice that a restriction of R has no link with any
restriction of fg.

Definition 2.4. Given a binary relation R on a set 3 and S € X, let Rjg = {(s,5") € R |
s € S} be the restriction of R to S.

The corresponding concept on function is:

fris(X) = RX N S).

2.3 Ordering

In this subsection we will study binary relations that have some interesting properties, e.g.,
that may be used to order a set.

Definition 2.5. A binary relation R on a set X is a pre-ordering if and only if:
(Reflexivity) Vz, xRz,

(Transitivity) VaVy,Vz, 2Ry A yRz = zRz.

Definition 2.6. A binary relation R on a set X is an ordering if and only if:
(Pre-ordering) R is a pre-ordering,

(Antisymmetry) Yz, Yy, xRy A yRx < x = y.

An ordering < on ¥ is total if and only if Vo,y € ¥,z <y v y < x. A great majority
of orderings used in this thesis are partial, i.e., not total.

Definition 2.7. A binary relation R on a set X is a strict ordering if and only if:
(Anti-Reflexivity) Va, —(xRz),
(Transitivity) VaVy,Vz, 2Ry A yRz = zRz.

Orderings are often written < and strict orderings <. There exists a link between
orderings and strict orderings:

2.3. ORDERING 21

Claim 2.1.

o [f < is an ordering, then the relation < defined by v <y < Y AT FEY 1S a strict
ordering.

o If < 1s a strict ordering, then the relation < defined by x <y o< Yyvar=1yisan
ordering.

Definition 2.8. Given an ordering <, we define the reverse ordering > by:

def
a=2bab<

Whenever an ordering is written < we will write > for the reverse ordering.

Examples. Let us give some examples of binary relations:
e The relation > x Y is a preordering on Y but is not an ordering.
e The relation “equal” (i.e, the relation {(z,x) | x € X}) is an ordering on X.
e The reflexive-transitive closure R* of a binary relation R is a pre-ordering.
e The inclusion € on the set P(X) is an ordering.

An ordered set (also called poset”) (X, <) is a pair composed of a set 3 and an ordering
< on Y. The reversed ordered set of (2, <) is (X, =).

Definition 2.9 (Product Ordering). If <; and <5 are two orderings on ¥; and X, respec-
tively. The product ordering <, on ¥; x X is defined by:

(z,y) <12 (xlay)®<1 ANy <o Y/
Claim 2.2. The product ordering is an ordering.

The definition of product ordering is given only for a product of two sets. It is straight-
forward to generalize this definition to a product of an arbitrary number of sets. The
pointwise ordering (defined below) is a product ordering on a potentially infinite product:

Definition 2.10 (Pointwise Ordering). Given an ordered set (3, <) and an arbitrary set
Y, we define as follow the pointwise ordering <sx on the set X%:

def

[<sx g= Yz, f(2) < g(2).
Claim 2.3. The pointwise ordering is an ordering.

Let us define two interesting properties for functions in a poset:

"Poset means “partially ordered set”.

22 CHAPTER 2. MATHEMATICAL BASIS

Definition 2.11. A function f on a poset (X, <) is monotone if and only if:
Vo,y € Sz <y= f(z) < f(y)
We write Mon(X) the set of monotone functions from X to X.

Recall that, for a relation R, we have defined the reflexive-transitive closure R*. We
define the corresponding concept, called w-iteration, for functions:

10 2 10

neN

Definition 2.12. A function f on a poset (3, <) is reductive if and only if:

VeeX flx)<x

2.3.1 Bounds

Definition 2.13. Given a subset X of a poset (X, <), a lower bound of X is an element
b € ¥ such that:
Vee X,b<x

Definition 2.14. Given a subset X of a poset (3, <), an upper bound of X is a lower
bound of X in the reversed ordered set (¥, >).

Definition 2.15. The least element of a subset X of a poset (X, <) is a lower bound b of
X such that b € X.

Symmetrically, we define a greatest element:

Definition 2.16. The greatest element of a subset X of a poset (X, <) is a least element
for the reverse ordered set (X, >).

Definition 2.17. The greatest lower bound (glb) of a subset X of a poset (3, <) is, if it
exists, the one greatest element of the set {y € X|Vz € X,z < y} of the lower bounds of X

Definition 2.18. The least upper bound (lup) of a subset X of a poset (X, <) is, if it
exists, the greatest upper bound of X for the reverse ordering.

For convenience, in any poset (2, <), we write z; M x5 the greatest lower bound of the
set {x1, 2o} if it exists. Furthermore, we write [],.; z; the greatest lower bound of the set
{z; | i € I}. Symmetrically, we write z1 U o the least upper bound of the set {x,x2} and
| l;c; zi the least upper bound of the set {z; | ¢ € I}.

2.3. ORDERING 23

ONNORS O
OO

Figure 2.1: Example of Lattice

2.3.2 Lattices

2.3.2.a Definition and Examples

Definition 2.19. A lattice L is a poset such that for all z and y in L:
e z and y have a greatest lower bound,
e z and y have a least upper bound
Lattices arise frequently in practice. Let us give some examples:

e The most current example of lattices is the set of subsets P(X) of a set X for the
inclusion € ordering.

The set R of reals is a lattice without greatest element.

The set R = RU {—c0, +00} is a lattice.

The set Z = 7 U {—o0, +o0} is a lattice.

The set I = {x € R| 0 < 1} of real numbers between 0 and 1 is a lattice.

Figure 2.1 gives an example of lattice.
Consider the relation —-:

ol —ux,

o v—Y,

o etc.

24 CHAPTER 2. MATHEMATICAL BASIS

1

Figure 2.2: A Flat Lattice

It is straightforward to check® that < is an ordering on the set L = {1, z, vy, 2,u,v, T}.
(L, <) is a finite lattice. The lower bound of y and z is: yMz =0

e The lattice Ranges of integer ranges [CC04, CC77| is a sublattice of P(Z). It is the
set of intervals of Z and is formally defined by:

Ranges = {X CZ|Va,be X,Vz €Z,a <

r<b=uz¢e X}
= {X|3a,beZ: X={x€Z|a<z

< b}

We write [a, b] the interval of integers® between a and b; formally: [a,b] < {z € Z |
a < x < b}. Hence, we have a simpler definition of Ranges:

Ranges < {[a,b] | a,b € Z}.

e Another classical lattice is the flat lattice on X. This lattice is the set ¥ = X w{l}w
{T} ordered by the ordering R defined by:

R=({L} xX)uE x{THU{(L, T}

Figure 2.2 represents such a lattice with the same conventions than Figure 2.1.

2.3.2.b Main Properties

8The reflexive-transitive closure of a relation is always a preordering, but it may not be an ordering.
E.g., the reflexive-transitive closure of ¥ x ¥ is ¥ x ¥ and is not an ordering, since the “antisymmetry”
property of Definition 2.6 is not satisfied.

Notice that, in our definition, [0, +o0] ={n € Z |0 < n < +o} = N # NU {+0w}.

2.3. ORDERING 25

Definition 2.20. A bounded lattice is a lattice with a greatest element and a smallest
element.

In the name of simplicity, when it is clear due to the context, we write | for the smallest
element (bottom) of a bounded lattice and T for the greatest element (top) of a bounded
lattice. Notice that some authors [GHK*98, GHK'03] call lattices what we call bounded
lattices.

Let us gives some examples:

e R is a lattice but not a bounded lattice

e Ranges, the interval I of real numbers between 0 and 1, and the lattice of Figure
2.1 are bounded lattices.

Definition 2.21. A complete lattice L is a lattice such that for any subset X < L, X has
a least upper bound and a greatest lower bound.

As a consequence, all complete lattices are bounded lattices; and all finite non-empty
lattices are complete lattices. For instance, Ranges and P(X) are complete lattices.

Definition 2.22. A distributive lattice is a lattice for which the operations of join and
meet distribute over each other. Formally:

VaVyVz,x U (yMz) = (zUy)N(zUz) AzM(yUz) = (zNy) U (zMz).

All lattices are not distributive, e.g, the lattice of Figure 2.1 is not distributive since
zU(@Nz)=vwand (zUy)N(zUz)=T.

Definition 2.23. A complemented lattice is a bounded lattice L such that each element
x € L has a complement, i.e.:

Vee L,dye L:zNy=1LArzUy=T.

Notice that, in a distributed and complemented lattice, each element has a unique
complement.

Definition 2.24. The height of a lattice (3, <) is the largest n € N such that there exists
a sequence xg € X, ..., x, € ¥ such that for every k € {0,...,n}, xp < xp.1.
If no such n exists'?, then we say that the lattice has infinite height.

In other words, the height of a lattice, is the length (minus 1) of the greatest strictly
increasing chain. For instance, a flat lattice has height 2, the lattice of Figure 2.1 has
height 3, and the lattice Ranges has infinite height.

1We should have defined the height as an ordinal or a cardinal. In this case, a lattice has an infinite
height whenever its height is an infinite ordinal or cardinal.

26 CHAPTER 2. MATHEMATICAL BASIS

2.3.3 Construction of Lattices

In this section, we give some ways to construct new lattices. Given two lattices (L1, <1),
(L, <3) we can define their product:

Definition 2.25. The Cartesian product of two lattices (L, <) and (Ls, <o) is the set
Ly x Ly ordered by the product ordering.

In a similar way, we can construct a lattice of functions from a set X. This lattice may
be seen as the product of card(X) times the same lattice:

Definition 2.26. Given a lattice (L, <) and an arbitrary set X, the lattice of functions
from X to L is the set LX ordered by the pointwise ordering.

Obviously, they are lattices:

Claim 2.4. The Cartesian product of two lattices is a lattice.
The lattice of functions from a set X to a lattice L is a lattice.

Another way to construct lattices is to consider the set of subsets P(X) of some set X.
Here we consider a sublattice of the set of subsets of a poset:

Definition 2.27. A subset X of an poset L, < is upper-closed if and only if
Veex,Vye Lx <y—yeX.
The set of upper closed subset of L is written PT(L).
Claim 2.5. If L, < is a poset, P1(L) is a complete lattice for the inclusion ordering.

Notice that, given a finite lattice L, <, any element X of PT(L) can be represented a
sequence sy, . .., s, of elements of L such that X = J,c; ,,{z € L | s, <x}. There exist
several sequences that gives the same set. Let us consider antichains:

Definition 2.28. An antichain is a set X such that Yo,y € X,z #y = —(z <y) A ~(y <

An antichain is a set such that two distinct elements are uncomparable. Given a finite
lattice L, <, each element of PT(L) can be represented by a finite antichain. This antichain
is unique, i.e., two distinct antichains represents two distinct subsets of L.

2.4 Words

Given an alphabet X, the elements of Y are called letters, and a word is a finite sequence
of letters. E.g., aaabab is a word on the alphabet {a,b}. We write w = a; ... a, to say that
w is the finite sequence of letters aq, ..., a,.

2.4. WORDS 27

tail head

Figure 2.3: Example of FTFO

The concatenation of two wordsu = a;...a, and v = by ...b,, is u-v = ai...apby ... b,
The empty word, i.e., the word with zero letters, is written e.

A word u = ay...a, is a subword of a word v if there exists a sequence wy, ..., Wy41
such that v = wy -ay - wse - ... a, - w,41. In other words, a word u is a subword of v is we
can reach u by erasing letters in v. K.g., aa and bb are subwords of baab but aba is not a
subword of baab.

A word u is a prefiz of a word v if there exists a word w such that w - w = v. The
relation <preix is defined by © <prefix v E3wu-w=o.

The concatenation by an inverse word is defined by : u ™'+ (u-v) = v. v 'w is undefined
if u is not a prefix of w.

Claim 2.6. The relation <pep, 15 an ordering on words.
This relation is a total ordering on some set of words:

Claim 2.7. Given a word w, the relation <pn.p, @5 a total ordering on the set of prefizes
of w.

2.4.1 FIFO

First-in first-out queues (FIFO) are an abstract data structure. In a FIFO, we can add
some elements. The first element pushed on a FIFO will be the first element that will
be extracted. Figure 2.3 gives an example of a FIFO containing datay, ..., datag. If we
want to add datay, it will be added to the tail, after datag. The first element that will be
extracted from the FIFO is data;.

Formally, we model FIFO as words: A FIFO on the alphabet Y is represented by a
word on X. Let FIFOg be the set of FIFOs on the alphabet 3.

We define on words the standard FIFO operations:

o fst: FIFOy — X
e deq : FIFOy — FIFOy
e cng: X x FIFOy, — FIFOgy

The partial function fst reads the first element of the FIFO; the partial function deq
discards the first element of the FIFO, and the function enq adds an element at the end
of a FIFO and € is the empty FIFO.

28

CHAPTER 2. MATHEMATICAL BASIS

Formally, for any letter a and any word wu:

fst(u-a) £ a
deq(u-a) = wu
a .

eng(a,u) = u

In Figure 2.3, the function fst will return data;, and the function deq will erase data;.
FIFO will be used in Chapter 9 to define buffers.

CHAPTER 3

Abstract Interpretation

3.1 Basic Principles

A semantics [-] : Programs — S associates to each program a value, in a set S.

For instance, a semantics can associate to each program a transition system. The
transition system represents the possible behaviors of the program during an execution.
This kind of semantics is called small-step semantics, because it describes each step of the
execution of a program. In Part II we give a such semantics for our programs.

A semantics may be hard to compute, or even may be unrepresentable or uncomputable.
To study the properties of a semantics [[-], an approach to abstract interpretation [Cou96]
is to give an alternative semantics () to programs. Given an abstract domain ., an
abstract semantics () : Programs — S maps programs to .. Programs then have two
semantics, a semantics [-], called concrete semantics and an abstract semantics (-).

An abstract semantics may be anything. Nevertheless, the main interest of an abstract
semantics is its link with the concrete semantics. This is modeled by a soundness property
o that is hold for all programs. Formally, we want:

Vp € Programs, o([[p], (p))-

29

30 CHAPTER 3. ABSTRACT INTERPRETATION

Figure 3.1: Overapproximation

3.2 Galois Connections

Here, we use abstract interpretation to overapproximate |[CCO04| the possible behaviors of
a program. The abstract semantics () will overapproximate (in some sense) the concrete
semantics [-]. To formally define “overapproximate”, we use Galois connections:

Definition 3.1. A Galois connection |GHK*03, CC91, CC04| between a poset X and a
poset Y is a pair of monotone functions o : X — Y and v :Y — X such that:

Vz e X,Vy € Y,a(z) <y <z <y(y).

Definition 3.2. A domain on a concrete complete lattice D is a tuple (2, a,y) where
is an abstract lattice, and «,~ is a Galois connection between D and Z.

The function «, called abstraction function, lose information. It overapproximates a
complex concrete object by a simpler abstract one. In Figure 3.1, the green object, at the
left, can be approximated by the rectangle (at the right). The function « is called the
abstraction function and ~ is the concretization function.

We use a particular instance of Galois connections. Let us consider two lattices D
and . A concrete semantics [-] : Programs — (D — D) associates to each program, a
monotone function (called “transfer function”) from the concrete lattice to itself. Similarly,
the abstract semantics [-] : Programs — (2 — &) associates to each program a monotone
function from the abstract lattice to itself. The soundness property is:

Vp € Programs,VX € D,a o [p] o y(X) < (p)(X).

This means that the abstract semantics is an abstraction of the concrete semantics.
Formally:

3.2. GALOIS CONNECTIONS 31

Definition 3.3. Given a Galois connection «, . A monotone function f*is an abstraction
of a monotone function f if and only if a0 ff o~ < f*.

There exists several equivalent definitions of abstractions:

Claim 3.1. Given a Galois connection o, between D and & and two monotone functions
ff:D—>Dand ft: 2 — D, the following properties are equivalent:

1. f* is an abstraction of f¥,
2. ao floy < ff
3. floy<~vo ft
4. ao fr< ffoa,
5. fi<vyofloa.

Proof. The equivalence between Points 1 and 2 is given by Definition 3.3.

Definition 3.1 gives the equivalence between Points 3 and 2 and the equivalence between
Points 4 and 5.

IfVY € 2, ffory(Y) < vo fHY), then VX € D, ff o y(a(X)) < v o f¥(a(X)), then,
because VX € D, X < yoa(X), VX €D, fi(X) <o ffoa(X). The reverse inclusion is
proven similarly using the fact that VY € 2,a0~(Y) <Y. O

We give as example a Galois connection dRanges: YRanges between P(Z) and Ranges:

aRanges (X) d:ef [glb(X)7 lup(X)]7
’yRanges (X) g X

This Galois connection allows us to abstract the value of one integer variable. Let us give
a second example, which allows us to represent several variables. Let %ar be the set of
variables, the concrete lattice is P(Z"") and the abstract lattice is Ranges”™, ordered by
the pointwise ordering!!. The Galois connection is then:

def
04(0') = (Ranges © 0,

’y(aﬁ) & {o € AL | Vo € Var,0(x) € YRanges © ot (x)}.

Our semantics will be defined by induction on programs. Typically, a semantics is
defined using function composition (e.g, for sequences), w-iterations (e.g., for while loops),
union etc.

For instance, let us consider the program!? of Figure 3.2. We use for this example the
concrete lattice D = P(Z) (a set X € D represents all possible values of) and the abstract
lattice Ranges. The transfer function [i := 1] associated to the “i := 1 ;” statement is:

1This ordering is defined in Definition 2.10.
12This program was given as an example by P. Cousot and R. Cousot [CC92].

32 CHAPTER 3. ABSTRACT INTERPRETATION

1 i := 1;
2 while(i < 100)
3 { i:=i+1; };

Figure 3.2: Program Example

AX.{i}. The function transfer [i := ¢+ 1] is defined by [i := i+ 1|(X) ={n+1|n € X}.
The transfer function of the guard “i< 1007 is [¢ < 100](X) = X N[—o0,100]. The transfer
function of the while loop is then defined using composition and w-iteration:

[while(i < 100){i := i+ 1}] = [i > 100] o ([i := i + 1] o [i < 100])™.
Fortunately, abstractions can be composed, iterated, etc.

Proposition 3.1. Let o,y be a Galois connection between two complete lattices D and

9. Let us consider two monotone functions f* : D — D, g% : D — D and their respective
abstractions f*: 9 — 9, ¢* :: 9 — 9.

o g' o f is an abstraction of ¢° o f5.
o (Y is an abstraction of (f%)1¥
o \z.f*(x) U g*(x) is an abstraction of A\x.f%(z) U ¢*(x).

Hence, in the example of Figure 3.2, we only need to give an abstraction of basic
statements. The abstract semantics of the while loop may be defined by:

(while(i < 100){i := 4 + 1}) = (i > 100) o ((i := i + 1) o (i < 100))™.
(Galois connections satisfy properties that simplify their definition.

Proposition 3.2. Let o, be a Galois connection between two complete lattices D and 9.
Therefore:

1. YF e D a(e, F()) = Le, a(F(i),
2. VG € 7', 9([er G(0) = [ier 7(G0)),
3. VX €D,a(X) =T lyegxeyr) Y
4. VY € 2.9(Y) = Uxepracx)zy X-

Point 1 allows us to simplify the definition of an abstraction function. Let us consider
a subset S of D that generates D, ie., such that: VX € D,35' < S : X = | | .o X"
The values of a on elements of S uniquely determine . Hence, to define o, we may give

3.3. WIDENING AND NARROWING 33

the definition of a only on S. For instance, if D = P(X), then, we may define o only on
singletons. The definition of aranges is then simplified:

afa}) = {a}.

Indeed, if a({z}) = {z}, therefore, a(X) = | |,.x a({z}) = Ll,cx{z}. Notice that LI on
Ranges is distinct from the union U, since {0} LI {2} = {0, 1,2} and {0} U{2} = {0,2}. If X
is finite non-empty, a(X) = {glb(X)}U{lub(X)}U| |, . y{z} = [glb(X), lup(X)]U[|, {7}
Since Ranges are ordered by inclusion, a(X) = [glb(X),lub(X)]. The case where X is
infinite is similar. The case X = () is trivial: a(0) =) = [+o0, —o0] = [glb(0), lub(0)].
The Points 3 and 4 mean that the abstraction function uniquely determines the con-
cretization function and reciprocally. Hence, to define a Galois connection «, v we just have
to give a or to define . Finally, the Galois connection 'Ranges; YRanges Mmay be defined by

the simple following equation: a({z}) = {x}.

Definition 3.4. Product of domains. We consider two concrete lattices D; and Dy and two
abstract lattices %;, %. Let us assume two Galois connections aq,7; and aw, v, from Dy
to 2, and from Dy to %, respectively.

The separate product of domains is the domain %3, ayj2, 712 Where:

® 22 is the Cartesian product of &, and %,, ordered by the product ordering.

® ayp2, 712 is a Galois connection between D; x D, (ordered by the product ordering)
and 23 defined by:

arp(ar,22) = (a1(z1), az(z2)) (3.1)

T, y2) = (1), 712(y2))

3.3 Widening and Narrowing

As seen before, if f* is an abstraction of f, then (f*)™“ is an abstraction of (f%)'“. Nev-

ertheless, even though f* is computable, (f*)™ may be uncomputable or may be hard to

compute. In the example of Figure 3.2, computing ((i := i + 1)) o (i < 100))™({1}) need

100 iterations! We need a new method to find an easily computable abstraction of (f*)™.
P. Cousot and R. Cousot introduce the concept of widening [CC92, CC91].

Definition 3.5. A simple widening operator on an abstract lattice & is a binary operator
V:9 x 92 — 2 such that:

1. Ve,y e Z,x Uy < xVy.

2. For every infinite increasing chain 1, xo, ..., the sequence ¥, inductively defined by
Yo = xo and y, + 1 = y,Vx,,1 is stationary.

34 CHAPTER 3. ABSTRACT INTERPRETATION

The first point means that the widening operator overapproximates the least upper
bound. The second point ensures termination when computing inductively y (y, is an
overapproximation of z,,). Notice that, on a lattice of finite height, the least upper bound
L is a widening.

Let us give an example. We define the widening operator vRanges by:

° @vRangesX =X
° XvRanges@ =X

o [a,b]vRanees[q’ ¥'] < [c, d] where a < b, o/ <V,

def a lf a < a// def b lf b 2 b/
c= i and d=]
—o0 otherwise +o0 otherwise

Notice that the V operator overapproximate LI that is commutative, but, V may not be
commutative. For instance, [0, 1]vRa€es[(2] = [0, +-o0] and [0, 2]vR2m&es[0, 1] = [0, 2].

A widening operator allows us to compute an overapproximation of (f%)™. Indeed,
given an abstract function f¥, let:

(FOT = U (P = (7)™
where (f%)7 = AX. XV f#(X).

By construction, (%)™ < (f%)'V. If f% is an abstraction of f%, then, according to Proposi-
tion 3.1, (f*)1“ is an abstraction of (%)™ and therefore (f*)!V is an abstraction of (f*)™.

For instance, ((i := i + 1) o (i < 100))T7"*"* is an abstraction of ([i := i + 1] o [i <
100])=.

Definition 3.6. A general widening operator on an abstract lattice & is a sequence of
binary operators V,, : 4 x ¥ — % such that:

1. Vne N\Vr,y € Z,x LUy < xV,y.

2. For every infinite increasing chain xy, xo, ..., the sequence y,, inductively defined by
Yo = xo and vy, + 1 = 4, V2,1 is stationary.

As for simple widening operators, general widening operators overapproximate the least
upper bound. The main difference is in the infinite chain condition. Point 2 allows us to
change the overapproximation of the lest upper bound during the fixpoint computation. As
for simple widenings, we define an overapproximation of the w-iteration: (f9)"V =] | _ f#
where fi = ffand f1,, = AX.fH(X)V,.fto fA(X).

E.g., on Ranges we may define the following widening operator:

e Vo=V =Vy=1L]

e For n > 3, v,, = vRanges,

3.3. WIDENING AND NARROWING 35

1 i := 1;
2 while(i < 3)
3 { i:=i+1; };

Figure 3.3: Program Example

In practice, this widening operator “unrolls” three times a while loop. Hence, using this
widening: ((i := i+ 1) o (i <100))" = ((i := i+ 1) o (i < 100))7V"""* o ((i := i+ 1) o (i <
100))3.

This widening is not very precise, because ((i := i + 1) o (i < 100))"{1} = [1, +o0o].
Nevertheless this widening is more precise than VR27s: consider the program of Figure
3.3. With this general widening operator : ((i := i + 1) o (i < 3))™V {1} = [1, 3], but with
vRanges: ((]Z =g 4 1[) o (]Z < BD)TvRanges{l} _ [17 +OO].

To enhance precision, P. Cousot and R. Cousot introduce narrowing operators:

Definition 3.7. A simple narrowing operator on an abstract lattice & is a binary operator
A: 9D x P — P such that:

l.Ve,ye 9,y <zx=y<zAy <z

2. For each infinite decreasing chain x, xs, ..., the sequence y, inductively defined by
Yo = ro and y, + 1 = y,Ax, 1 is stationary.

A narrowing operator is used after a widening. It allows to enhance precision. We
define (f*)** in the same way as (f*)!":

()2 = [Taen((f92)"
where (f9)2 = AX. XAf*(X).

Notice that ((f#)TV)!2 is still an abstraction of (f%)™. Nevertheless, ((f*)17)*2 is a more
precise abstraction than (f*)'V) in the sense that ((f*)TV)2 < (f)17.

Notice that on a lattice without any infinite decreasing chain, the greatest lower bound
M1is a narrowing.

Let us recall the Cousot and Cousot [CC92, CC77| narrowing on Ranges:

° @ARangesX — @
° XARanges@ — @

o [a,b]VRamges[¢!] = [¢,d] where a < b, o’ <V,

Cd:ef{a if —oo<a dd:ef{b if b < +o0

a’ otherwise V' otherwise

36 CHAPTER 3. ABSTRACT INTERPRETATION

(™)
() (20

\@

Figure 3.4: The Lattice NotZero.

Using this narrowing, we obtain with the example of Figure 3.2:
(i = i+ 1) o (i < 100)) ™)™ 1} — [1,100],
As for widening, narrowing can change during a fixpoint computation:

Definition 3.8. A general widening operator on an abstract lattice & is a sequence of
binary operators V,, : 4 x ¥ — % such that:

I.VneNVe,ye Z,y<r=y<zAy <.

2. For each infinite decreasing chain x, xo, ..., the sequence y, inductively defined by
Yo = vo and y, + 1 = y,A,x,41 is stationary.

Hence, we can use as narrowing:
L4 A0 = |_|7

e Forn>1, A, = ARanges,

3.4 Reduced Product

Let us consider the Euclides algorithm (See Figure 3.6). This algorithm computes the
greatest common divisor between two integers a and b. This algorithm uses the modulo
operator “%” that uses a division. Then, a division by 0 may occur, if at line 6, the value
of b is zero. The domain of ranges will not be sufficient to prove this piece of code.

Since Rranges(Z \ {0}) = [—o0, +0]), the condition “b # 07 at line 4 of Figure 3.6 does
not gives us any information: the domain Ranges loses all precision. After this condition,
the real value of b is not zero, but the abstract value of b is still the range [—o0, +o0].
Hence, for the domain Ranges, the value of b may be zero at lines 5 to 9. Therefore, at
line 6, for the domain Ranges a division by zero may occur. This is a false positive, since
the real value of b cannot be 0 at line 6.

3.4. REDUCED PRODUCT 37

. ><
a1 X Qg Q X Qg
71 |_| 72 Y1 17y
Y1 X Y2

NO ()

a) Separated Prod- b) Simple Product (¢) Reduced Product
uct

Figure 3.5: Products

The absence of division by zero may be proved by the domain NotZero = {1,0,—0, T}

whose ordering is given by Figure 3.4. The Galois connection between P(Z) and NotZero

is!3:

g

)

) = {0}
voo(=0) € Z~ {0}

) = Z

Using the domain NotZero, the guard “b # 07 at line four implies that the abstract
value of b is —0 at lines 6, 7 and 8. Therefore, the modulo operation at line 6 is correct.
In the same program, we may find both:

e functions like euclide of Fig 3.6 that need the domain NotZero,
e and array access (e.g., Figure 1.3) that need the domain of ranges.
In this case, we need both domains: we use the product domain [CC79, Theorem 10.1.0.1].

Definition 3.9. Given a concrete complete lattice D, two abstract lattices 2, and %, and
two Galois connections aq,7; and as,ys from D to Z; and %, respectively, we define the

13Recall Section 3.2. In this Section, we show that a Galois connection is uniquely defined by its
concretization function.

38 CHAPTER 3. ABSTRACT INTERPRETATION

1 int euclide(int a, int b)
2 A

3 int r;

4 while(b # 0)

5 {

6 r :— a % b;
7 a :— b;

8 b = r;

9 ki

10 return a;

11}

Figure 3.6: Euclides Algorithm

simple product domain (% 2, 12,71.2) :

D2 E D x D
a1a(X) = (en(X), aa(X))
M2(Y1,Y2) £ (Y1) Nap(Y2)

This simple product is not totally satisfactory, since ;o may not be injective, and a; o
may not be surjective. This means that two distinct abstract elements may represent the
same concrete element. For instance, let us consider the product between the domain of
ranges Ranges and the domain NotZero. The empty set () is represented, in the abstract,
by (0, L) and by ([0, 0], —0), i.e.:

Y1,2(0, L) = 712([0,0], =0) = 0.

The function a; is not injective, since there exists no set X < Z such that a;5(X) =
([0,0], —0). The set of abstract elements representing @) (i.e., the preimage of () under f,
formally {Y € Z15 | 712(Y) = 0}) is:

(0,Y)|Y € Z} UL(Y, 1) | Y € 20} U{([0,0],—0)} U {([a,5],0) | b < 0 v a>0}.

Notice that, the bottom element of %, 5 represents the same concrete set than a tuple
(y1,y2) € D1 x Dy where y; or y, is the bottom element of its lattice. But, this is not
the unique case, since ([0, 0], —0) represents (), but neither [0, 0], neither —0 is the bottom
element of its lattice.

As a consequence, we lose precision when we analyze a program with a product domain.
Consider the program given in Figure 3.7. Consider that the statements represented by
“...” do not modify the value of b. At the beginning of the program, we consider that
the value of b is unknown, i.e., the abstract value of b is ([—o0,+00], T). At line 1, after
applying the guard “b # 07, the abstract value of b is ([—o0, +],—=0). The abstract

3.4. REDUCED PRODUCT 39

1 if (b # 0)

2 { ..

3 if (b= 0)

4 { ..

5 if (b < 0)
6 { }
7 }

8

Figure 3.7: The Naive Product Fails

domain of ranges knows nothing about b, but the domain NotZero detects that the value
of b is not zero. At line 3, the abstract value of b is ([0, +o0], —0) and at line 5, the
abstract value of b is ([0, 0], —=0). Nevertheless, in reality, line 6 is dead code, i.e., code
that is never executed. Therefore, no run-time error can occur due to line 6. The domain
Ranges x NotZero does not detect that is dead code, since the abstract value is not
bottom (L) at line 6.

We need a method to reduce the abstract domain %; x %,, a method that allows
some kind of communication between the two domains. It is standard to use the reduced
product [Cou05, CC79, CFR*97, CMB*95, GT06|, getting a more precise domain than
both domains separately.

Recall that the main problem is that there exists in the product domain ;5 two
elements that have the same concretization, i.e., there exists y; and yo such that 71 2(y1) =
71.2(y2). We introduce a lower closure operator p:

Definition 3.10. A lower closure operator p is a reductive'* and monotone function such
that pop = p.

We define the following lower closure operator:

p12(y) = ﬂ x-

€D 2 Av1,2(x)=71,2(y)

By construction, if v(y;) = v(y2), then p(y1) = p(y2). This allows us to define a domain
in which the concretization function will be injective. Noticing that p;2 = ay2 0712, We
define the reduced product:

Definition 3.11. Given a concrete complete lattice D, two abstract lattices &, and %,
and two Galois connections aq,y; and as,¥s from D to &, and %, respectively, we define
the following lower closure operator:

def
P12 = 120712

14Gee Definition 2.12.

40 CHAPTER 3. ABSTRACT INTERPRETATION

This operator is used to define the reduced product domain (29, 01x2, Y1x2):

D1x2 = P(gl,z)
061x2(X) = pPOay2
’lez(YbY2) = 71,2(Y17Y2)

where 9, 5, 19,712 is the product domain, and p(Z2,5) = {p(z) | 2 € P15}

The Galois connection aj 2,712 gives a natural lower closure operator:

def
p12 = aiz 01,2

Figure 3.5 summarizes the different kinds of product defined on domains. Figure 3.5a
represents the separate product (Recall Definition 3.4), and is constructed on the product
of two concrete lattices. Figure 3.5b represents the simple product: two domains abstract
the same concrete lattice. Figure 3.5¢ represents the reduced product.

Notice that the we can similarly define a closure operator p = a o 7 for the separate
products. In this case:

(yy) frx#lAay#l
p(z,y) = .
1 ifr=1lvy=_1

Notice that, in the general case, the reduced product must be implemented from scratch,
it is not possible to automatically generate an implementation for the reduced product
given an implementation of two arbitrary domains. Gulwani and Tiwari [GT06] construct
a fourth kind of product : the logical product. This product can be, under some hypotheses,
constructed automatically.

3.5 Conditional Soundness/Blocking semantics

Another way to combine analyses is conditional soundness introduced by Conway et al.
|[CDNBO08|. A program is modeled by a transition system, and we want to check a safety
property. The semantics [program] of a program is the set of states reachable by this
transition system.

The main idea is to introduce a new semantics, called blocking semantics. The transition
system is restricted according to a predicate #: : no transition can be fired from a state
that satisfies 6. Hence, a state that satisfies 6 may be reachable, but no state is reachable
from a state satisfying 6. The 6-blocking semantics [programly of a program is the set
of states reachable using the restricted transition system. lL.e., [program]s are the set of
states that are reachable without going through a state that satisfies 6.

Let us give a practical example. Recall Figure 1.3. At line 16, an array overflow may
occur. An array overflow may update any variable of the program. Consider a variable x

3.5. CONDITIONAL SOUNDNESS/BLOCKING SEMANTICS 41

i

\
\y

O—

/

—()

N

O—CC

/

N
N

Figure 3.8: Example of Blocking Semantics

that appears somewhere in the program. Hence, after line 16, x may have been updated to
5. Without a blocking semantics, we have to update the abstract value of z and to resume
the analysis with this new value.

Here, we can use the predicate 6 £ “No array overflow occurs”. Hence, at line 16, the
analysis raises an alarm, notifying that an array overflow may occur. Hence, the analysis
assumes that this array overflow has not occurred, and resumes the analysis of this program
using this hypothesis.

We give an example in Figure 3.8. Each circle represents a reachable state. The states
01, 0y and 03 are the only states that satisfies 6. Therefore, the 6-blocking semantics
excludes the states 05, e; and es since these states are only reachable through a state that
satisfy 6. Notice that the state r is still reachable, since there exists a path from the
initial state ¢ to r without any state satisfying 6. The states #; and 6, are reachable in the
f-restricted semantics, but not the state 3, since 3 is reachable only through the state 65.

42

CHAPTER 3. ABSTRACT INTERPRETATION

CHAPTER 4

Existing analyses

4.1 Introduction

In this chapter, we dealt with some existing analyses for multithreaded programs. First,
in Section 4.2 we recall what are controll low graphs. They are program representation
used by most static analyses, including analyses of multithreaded programs.

In Section 4.3, we recall what are locations sets. These locations sets are used by R.
Rugina and M. C. Rinard analysis described in Section 4.4.

In Section 4.5, we dealt with thread modular model checking. Malkis et al. show that
this model checking is a kind of abstraction.

In Section 4.6 we dealt with multithreaded Gen/Kill analysis. We want to generalize
such an analysis (See Section 14.3 and Section 17.3.1.a).

Even if our main interest is array-overflows, invalid pointer dereference and NULL
pointer dereference, we recall in Section 4.7 some data-race analysis.

4.2 Control Flow Graph

A program can be represented by a grammar or by a Control Flow Graph. A control flow
graph is a graph whose edges are labeled by program instructions or by guards. The nodes

43

44 CHAPTER 4. EXISTING ANALYSES

Jo\

b #0

®

r:=a¥%b

(2) b=20
a:

®

b :=r

® ®

r:=ai%b b=0
a:=b
b :=r

Figure 4.2: Simplified Control Flow of Euclides Program

of the control flow graph are the control points.

For instance, Figure 4.1 gives the control flow of the Euclides algorithm of Figure 3.6.
Notice that, if the program is single-threaded, the control flow graph may be simplified
(See Figure 4.2), since after going in control point 2, we always go in control point 3 and
then to control point 4. In the multithreaded context, this is not true anymore. Actually,
when a thread executes the Euclides algorithm, another thread may modify the variables
a or b. For instance, when our thread is at control point 2 the value of b may be updated
by another thread. Hence, there is a fundamental difference between the two control flow
graphs of Figure 3.6 and of Figure 4.2.

4.3. LOCATION SET 45

4.3 Location Set

In a program, a variable denotes a memory location. The program can access the memory
location of the variable, e.g, x = 3 assigns value 3 to the memory location of . An
instruction of the program may also access the memory location of a variable plus an
offset, e.g, t[i] = 3 assigns the value 3 the third slot of the array ¢. Furthermore, a dynamic
memory allocation can create a new memory block, which can be accessed through pointers.

The memory of a C program can be divided into blocks of continuous storage. The
relative position of blocks is undefined. Each memory address can be represented by a
pair < name, offset >. The name represents the name of the block, i.e, the name of the
variable, or a fresh name for dynamically allocated blocks. Let us call Locations the set
of memory locations.

According to the C norm [ISO99|, array overflows lead to an unspecified result. A
pointer that points to the n'" slot of an array that has m < n slots is invalid. Therefore, two
distinct pairs < name, offset > represent distinct memory addresses (or invalid addresses).

In particular, this means:

e [t is impossible to use an array overflow on an array ¢ to write into another memory

block

e A pointer to a deallocated memory block will never point to a new allocated memory
block

e A pointer to a local variable x will never point to another local variable when this
local variable is statically deallocated

On some computers'®, the C program given in Figure 4.3 will answer: = = 0;y = 5.
Actually, the semantics of this program is undefined, since v[—1] represents an invalid
address. To handle this kind of programs, we use a blocking semantics (see Section 3.5).
This means that we consider that the program stops with an error when it attempts to do
the statement of line 10: v[—1] = 5.

Wilson and Lam [WL95| introduce location sets to represent the memory address to
which a pointer may legally points.

A location set is a tuple < name, offset, stride >. The name is the name of the
memory block, e.g, a variable name, and offset and stride are integers. A tuple <
name, offset, stride > represents all locations offset + i x stride within the block name.
Let LocationSets be the set of location sets.

A variable v is represented by < v,0,0 >. The field f in a structure s is represented by
< s, 0f ,0 > where of is the offset of the field f in the structure s. An array ¢ is represented
by < t,0, size > where size is the size of an element of the array.

An access to the field f of the element of an array ¢ is represented by < s, of ,0 > where
of is the offset of the field f in an element of the array .

15E.g., on my laptop, using gcc.

46 CHAPTER 4. EXISTING ANALYSES

#include <stdio.h>

1

2

3 int x=0;
4 int v|[3];
5 int y=0;
6
7
8

int main (void)
9
10 v[-1]=5;
11 printf ("x=%d;y=%d\n" ,x,y);
12 return O;
13 }

Figure 4.3: Array Overflow

Each dynamically allocated memory site s has a variable name. < s,0,7 > represents
any array of elements of size ¢ allocated in the site s.

The location sets are some kind of abstraction. We consider that the name of memory
block allocated in a site s is s#id where # is a separator and ¢d an arbitrary identifier.
We also consider a predicate heap that, given a name, decides whether it is the name
of a dynamically allocated block or not. This allows us to recognize the memory blocks
allocated in a given site.

The location sets are then an abstraction of locations. The Galois connection between
P(Locations) and LocationSets is given by:

{< name, offset + istride >| i € N} if —heap(name)
v(< name, offset, stride >) = {< name#id, offset + istride >| i € NA

, , . if heap(name)
id an arbitrary identifier}

Notice that a location set may represent one or several memory locations. A location
set < name, offset, stride > represents a single location if and only if name is not the name
of a site of dynamic allocation, and stride = 0. We define the predicate unique by:

. . def i
unique < name, offset, stride >< —heap(name) A stride = 0.

4.4. R. RUGINA AND M. C. RINARD ANALYSIS 47

4.4 R. Rugina and M. C. Rinard Analysis

4.4.1 Points-to Graph

R. Rugina and M. C. Rinard [RR99, RR03] introduce a flow-sensitive and context-sensitive
pointer analysis for multithreaded programs. The analysis of R. Rugina and M. C. Rinard
uses location sets. They do not check the absence of array overflows or invalid pointer
dereferences and assume the programs they analyze are free of these bugs. They add a
special location set called unk to represent the unknown memory location.

Their algorithm computes a points-to graph for each program point. A points-to graph
G < LocationSets x LocationSets is a set of edges (z,y). An edge (z,y) means that x
may point to y. Furthermore, x must point to some z such that (x, z) is in the points-to
graph.

Let Point-to Graphs ' LocationSets x LocationSets be the set of points-to
graphs. Given a points-to graph o, they introduce the function deref,(z) that maps
x to the set of variables y such that x may point to y:

deref,(z) = {y | (x,y) € o}.

Notice that, each location x must point to some y such that y € deref,(y). The function
deref naturally extends to sets of variables:

deref,(X) = U deref,(z).

rzeX

Let us give an example: G = {(x,unk), (z,v), (y,z)}. In this example, y must point to
x, but z may point to y or to anywhere.
The set of points-to graphs is a lattice for the inclusion ordering.

4.4.2 Gen/Kill

More formally, given a points-to graph o, each assignment assign determines a set genptr(assign, o)
a set killy(assign,o) and a boolean flag strong, (assign,o). Figure 4.4 represents R.
Rugina and M. C. Rinard’s sets gen . and killp, and the strong, flag [RR99, RRO3|.

The strong(assign, o) flag is true if the assignment assign assigns a new value to a location

set that represents a unique memory address. E.g., in the case t[i] = &z the boolean

flag strong,,, is false, because ¢ is an array, and the location set < t,0, size > represents
several memory locations.

4.4.3 Multithreading

The parallel model considered by R. Rugina and M. C. Rinard is based on par constructor;
par{stmty | stmty} executes in parallel the statements stmt; and stmty. Programs are
modeled by parallel flow graphs. A parallel flow graph is a flow graph generated by a
program using the par constructor. A parallel flow graph has two kinds of vertices:

48 CHAPTER 4. EXISTING ANALYSES

Cases Definitions

gen . (v := &y, 0) L {2} x deref,(y)
Ti=y kKilly,(z = &y,0) = {2} x deref,(z)
strong,, (z := &y, 0) < unique(r)

en_ (x:=&y,o & {(x,
B & g ptr(‘ Yy) et (y)}
ri=&y | killy,(z:= &y, 0) = {z} x deref,(z)
strong, (7 := &y, 0) < unique(r)

def

gen . (xx :=y,0) = deref,(z) x {y}
kKilly,(+2 = y,0) = deref,(z) x (deref,(deref,(z)))

*L 1= Y if deref,(z) is a singleton {z}
strong,,.(+7 1= y,0) wr] ITUC such that unique(z)
false else
gen,, (v = +y,0) = {z} x deref,(deref,(y))
T ==y killy, (z = *y,0) = {z} x deref,(z)
strong,, (z = *y,0) = unique()

Figure 4.4: Gen and kill sets for Point-to Graphs

e Statement Vertices that represent a pointer assignment : x =y, v = &y, x = *y or
T = Y.

e Parbegin/parend and begin/end vertices that model the par statement. They come
in corresponding pairs. Parbegin/Parend vertices represent the beginning and the
end of a par statement, and begin/end vertices represent the beginning and the end
of a thread (created by a par statement).

All conditions (e.g., for if and while statements) are non-deterministic, i.e., the value of the
boolean expression tested is disregarded. R. Rugina and M. C. Rinard use a sequentially
consistent semantics, i.e, an execution of par(stmty, stmt,) is an interleaving of executions
of stmt; and stmt,.

The par constructor can handle some kinds of multithreaded programs (e.g., OpenMP
programs [Boa08]). Nevertheless, as explained by A. Bouajjani, M. Miiller-Olm, and T.
Touili [BMOTO05], parallel calls cannot adequately model a command that spawns another
thread and immediately returns, e.g, in Java [GJSBO05] or in C [Boa08]. We will explain in
Part III how to handle such commands.

R. Rugina and M. C. Rinard [RR99, RR03| use a semantics that derives tuples contain-
ing points-to graphs information about current states, transitions of the current thread,
and interferences from other threads. They define the MTI, the multithreaded points-to
information.

A multithreaded points-to information is a tuple:

(C,I,E) € Point-to_Graphs x Point-to_ Graphs x Point-to Graphs.

4.5. THREAD-MODULAR MODEL-CHECKING 49

e (' represents the points-to graph at a control point of the program,
e [represents edges that may be created by other threads,
e [/ represents edges that may be created by the current thread.

The set of MT1 is a lattice for the product ordering.

The idea of R. Rugina and M. C. Rinard is to associate to each control point of a
program an MT'1.

They define the semantics of basic statements as follow:

assign){C, I, E) ={C", I, EU gen

(assign){ g

(C' N\ killp,(assign,C)) U gen,,, (assign, C') if strong, (assign, C))
C U gen

where C' = _ .
(assign, C) otherwise

ptr
They handle the par constructor, its semantics is given as a fixpoint of the following
equations:

(C",I',E"y = (par(stmty, stmts)){C, I, E)

where:
C' = CnC,
E' = E]UE,
I' = 1
Cl - C U E2
CQ - C U E1
I, = TUE,
I, = TUE,
and:

<C{7]1aEi> = (]Stmt1[)<017[17®>
<C§,]1,E§> = (]5tmt1[)<C'2,Ig,®>

Notice that the semantics of a statement never changes the /-component. R. Rugina
and M. C. Rinard compute the fixpoint on the whole Parallel Flow Graph.

R. Rugina and M. C. Rinard also describes how their work extends to par with an
arbitrary number of threads, using a parfor(body) constructor that executes body in parallel
an unbounded number of times.

50 CHAPTER 4. EXISTING ANALYSES

4.5 Thread-Modular Model-Checking

4.5.1 Model Checking

Flanagan and Qadeer [FQO03| use a model-checking approach to verify multi-threaded pro-
grams. Their main idea is to use thread-modular reasoning.

They separate the global and the local part. A Global store contains all variables that
are shared between threads. A Local store contains the program counter and all variables
specific to a thread. Let GlobalStore and LocalStore be the sets of global stores and local
stores respectively.

The number of threads is fixed at the beginning of the program. The set of thread
identifiers is then finite: Ids = {1,...,n}.

Each thread needs a local store. Hence, they define LocalStores, the set of mappings
from Ids to LocalStore. A state st € States is then a pair of GlobalStore x LocalStores.

The behaviors of threads are modeled by a transition relation T < Ids x (GlobalStore x
LocalStore) x (GlobalStore x LocalStore).

Flanagan and Qadeer explain this relation: “The relation T(t,g,l,g,1) holds if the
thread t can take a step from a state with global store g and where thread t has local store
[, yielding a new state with global and local stores g and | , respectively.”

In particular, this means that any execution of the system is an interleaving of exe-
cutions of the threads. Furthermore, if a thread updates the shared memory (the global
store) then, this update is instantaneously visible for the other threads. Hence, Flanagan
and Qadeer strongly rely on sequential consistency.

The naive model-checking approach will explore all states and has space complexity
O(GL™). The objective of Flanagan and Qadeer is to reach a polynomial complexity in n,
G and L and no more exponential in n. Nevertheless G and L, are still exponential in the
number of variables.

To this aim, Flanagan and Qadeer separate the local and global parts in their analysis.
Instead of computing 7', they compute two relations:

e R < Ids x GlobalStore x LocalStore
e G < Ids x GlobalStore x GlobalStore

The relation R(t,g,[) holds when the system can reach some state (g,ls) such that
Is(t) = I. The relation G(t, g1, go) hold when for some local stores l; and Iy the relation

T, (g1,1), (92, 12))-
The idea of Flanagan and Qadeer is to compute R and G instead of all reachable states.

4.5.2 Abstract Interpretation

We easily notice that R and G forget information with respect to the semantics of the
system. Actually, they are abstractions. Malkis et al. [MPR06b, MPRO6a| show that
Flanagan and Qadeer analysis is a cartesian abstraction. Malkis et al. [MPRO6b, MPRO6a]

4.5. THREAD-MODULAR MODEL-CHECKING 51

1 int x = 1;
2 mutex mx;

void p(
lock (
0

) A
mx) ;

X

4

5

6 ,

7 x = x + 13

8 assert x > 0;
9 unlock (mx);

0

}

Figure 4.5: Flanagan and (Qadeer Example

give the Galois connection in the case of two threads, The concrete lattice is P(States) =
P(GlobalStore x LocalStore™), the set of states. And the abstract lattice is P(GlobalStore x
LocalStore)'¥s. This explains why the Flanagan and Qadeer algorithm is polynomial in
card(Ids) and not exponential in card(Ids). In the case where Ids = {1, 2}, the cartesian
Galois connection aiurg, Years Detween the concrete lattice P(States) and the abstract lattice
P(GlobalStore x LocalStore) x P(GlobalStore x LocalStore) is defined by:

Qeart(S) = ({(g,ll) | Als: (9,01, 1) € S} {(g,02) | 31 : (9,01, 1) € S})
Yeart (11, T2) = {(g,11,12) | (g,11) € T1 A (g,12) € T}

In the general case, the cartesian Galois connection ceart, Vears Petween the concrete and
the abstract lattice is defined by:

Qeart(S) = Xi{(g,1s(1)) | (g,1s) € S}
Yeart(T) = {(g,1s) | Vi, (g,1s(i)) € T(i)}

Malkis et al. show [MPRO6b, Proposition 2| that cwart, Yeart is @ Galois connection, and
that [MPRO6b, Theorem 3| the Flanagan and Qadeer algorithm computes the abstract
semantics derived by cart, Yeart- Furthermore [MPRO6b, Theorem 5| prove that the final
results of the Flanagan and Qadeer algorithm is exactly the abstraction (without other
loss of precision) of the concrete semantics.

Malkis et al. improve the precision using human specified [MPRO7] “exception sets”.
They compose their Cartesian abstraction acar, Veart With another Galois connection. This
new Galois connection allows them to correlate the local stores of distinct thread, therefore
the precision is enhanced. This definetely rests on sequential consistency.

4.5.3 Mutexes

Flanagan and Qadeer [FQO03| give two ways to model mutexes:

52 CHAPTER 4. EXISTING ANALYSES

1 int x = 1;

2 mutex mx;

3 int y = 1;

4 mutex my;

5

6 void p() {

7 if (rnd()){

8 lock(mx);

9 x = 0;

10 x =x + 1;
11 unlock (mx);
12 }

13 else

14 {

15 lock(my);
16 y = 0;

17 y = x + 1;
18 unlock (my);
19)

20 }

Figure 4.6: Modified Flanagan and Qadeer Example

e [irst, a mutex is a boolean variable : when it is free, its value is true, and when it is
locked its value is false. In particular, this means that a thread can unlock a mutex
locked by another thread.

e Second, a mutex is associated to the thread that owns it, or the special value none.
The value of a mutex is none whenever it is free.

Since, according to Posix Norm [[T04], the behavior of the program is undefined when
a thread attempts to unlock a mutex owned by another thread, these two behaviors are
acceptable. They are both in fact observed in practice.

Flanagan and Qadeer give a simple example of program with mutexes: n threads ex-
ecute the function p of Figure 4.5. In this example, a variable x is protected by a mutex
mx. Therefore, there is no data race.

To prove the absence of data-race on the variable x, Flanagan and Qadeer have to use
the second model of mutexes. Therefore, a mutex may have n + 1 distinct values where
n is the number of threads. Hence, adding a mutex to the global store increases G' by a
factor n. The cost of the analysis of this example, in the number of threads, is then O(n?).
The cost of the analysis of an example with two mutexes (E.g. as given in Figure 4.6) will
be O(n?) and so on. Finally, G = n®locks) where Locks is the set of all mutexes.

4.6. PURE GEN/KILL ANALYSES 23

4.6 Pure Gen/Kill Analyses

Gen/kill analyses are a family of abstractions.

A pure gen/kill analysis on sets is parametrized by a lattice V = P(X) of subsets of
some set X. Each basic statement stmt of a program is abstracted using two elements of
V gen(stmt) and kill(stmt). In such an analysis, abstract stores are elements of V and
the effect of the statement stmt is abstracted by the function

AE.(E N\ kill(stmt)) U gen(stmt).

The elements of kill(stmt) are withdrawn, and elements in gen(stmt) are added to the
abstract store.

Gen/kill analyzes are generalizable to handle a lattice instead of a set of subsets. A
pure gen/kill analysis use a lattice V. Each basic statement stmt is mapped to two sets:
gen(stmt) and keep(stmt). The effect of a the statement stmt is abstracted by a function
AE.(E Mkeep(stmt)) L gen(stmt). The main difference is the use of a set keep instead
of kill. In the lattice of subsets of X, theses definitions are equivalent according to
the following claim (Claim 4.1). More generally, these approaches are equivalent in a
complemented lattice. But in a non-complemented lattice, we do not have the operation
\ needed for kill; this is why we use keep instead of kill .

Claim 4.1.
AE.(E N\ kill(stmt)) U gen(stmt) = AE.(E Nkeep(stmt)) U gen(stmt)

where keep(stmt) is the complementary of kill(stmt) in X.
Pure Gen/kill analyzes encompass several kinds of analyzes, e.g.:
1. bitvector analysis, e.g, [KSV96],
2. strong copy constant propagation
3. determination of live variables,
4. available expressions
5. and potentially uninitialized variables

For bitvector analysis, we may use the lattice {0, 1}" with the pointwise ordering and 0<1.

The main advantage of pure gen/kill analyses is that kill or keep and gen sets do not
depend on the context. Notice that the R. Rugina and M. C. Rinard gen /kill analysis (See
Section 4.4.2) is not a pure gen/kill analysis given that gen . and killy, depend not only
on the statement, but also of the current abstract store. In Section 8.2.3 we give a general
definition of gen/kill analyses that encompasses pure gen/kill analyses and R. Rugina and
M. C. Rinard analysis.

54 CHAPTER 4. EXISTING ANALYSES

H. Seidl and B. Steffen [SS00| use the advantage afforded by pure gen/kill analyses.
They use the lattice F of functions V — V of the form AE.(F Mkeep(stmt)) Ll gen(stmt).
The idea is to abstract the effect of several basic statements by one element of the lattice
IF, this is possible due to the following claim:

Claim 4.2. Let V be a distributive lattice. Fach function of F is monotone and F is stable
by composition'®.

Proof. Given f = Az.(xMay)Uby and g = Az.(x Mag) Uby, go f = Ax.(z M (ag Mag)) U
((bl I CLQ) L bg) U]

H. Seidl and B. Steffen [SS00| give an inter-procedural analysis for the primitive par and
P. Lammich and M. Miiller-Olm [LMOO08| generalize this approach to the create primitive,
which spawns a new thread and immediately returns. Programs are represented by a par-
allel flow graph, like [RR99, RR03|, and if statements are abstracted as non-deterministic
choices. The semantics is an interleaving semantics. They assume that the height!'? of the
domain F is finite, but this is not a true restriction, since widening and narrowing [CC92]
(See section 3.3) allow to bypass this limitation.

4.7 Data-races

A Data-race is a run-time error that may occur due to multithreading. Recalling Section
1.1, a data-race occurs when a thread write into a memory location, and another thread
accesses (for reading or writing) the same location.

To avoid data-races, several multithreaded libraries [IT04, But06, Barl0, Boa08| give
locks/mutexes to the programmer. The two basic and standard functions on mutexes are
lock and unlock. A lock/mutex may be free or owned by a thread. Whenever a thread
calls the primitive lock(u), it tries to acquire the mutex p. If p is free, then the thread
acquires it, else, the thread waits until the mutex becomes free. Whenever a thread calls
the function unlock (), it releases the mutex, i.e., the mutex becomes free. Notice that a
thread is allowed to released a mutex only if it owns it, else, the behavior is unspecified.
Locks can be used to “protect” a variable. E.g, in Flanagan and Qadeer’s example (See
Figure 4.5), the variable x is protected by the mutex mx. A thread may write into x if and
only if it owns the mutex mx. Since the mutex mx cannot be owned by two threads at the
same time, two distinct threads cannot access to the variable x at the same time.

A good programming practice is to use nested locks: locks are released in the same
order than they have been acquired. Some languages, like Java [GJSBO05| or Visual Basic
[Vic07] syntactically enforce the use of nested locks. These languages provide a constructor
sync(p){stmt} that executes the statement stmt under the protection of the lock p. In other
words sync(p){stmt} locks the mutex p, executes stmt and then releases .

16Te.,if feFand g € F then go f € F.
1"Recall Definition 2.24

4.7. DATA-RACES 95

Thread 1 Thread 2

N\,

l Thread 3

Figure 4.7: Mutexes Protect Variables

4.7.1 Types

The Locksmith tool [PFFHO6] uses a typing method to prove the absence of data-races.

Their analysis is based on the fact that mutexes are commonly used to protect variables.
A variable v is protected by a mutex u if every thread locks u before accessing to v. In
Figure 4.7, Thread 1 and Thread 2 access the protected variable after locking the mutex.
Nevertheless, Thread 3 may access the variable without owning the lock, hence, a data-race
may occurs. Hence, we have to check that whenever a thread accesses to a variable, this
thread owns the mutex that protect this variable.

The main idea of Locksmith tool is to infer the link between a variable and the mutex
that protects it. If the Locksmith tool guesses the right relation, then it propagates it,
using type inference. If all variables are protected by a mutex, then the tool is sure that
no data-race may occur.

4.7.2 The Goblint Tool

The Goblint tool [VV07] is based on theoretical works done by Seidl et al. [VMo03].
Based on abstract interpretation, this tool overapproximates all possible behaviors of the
program and it is specialized in detecting data-races. Goblint analyzes each thread in turn,
and computes a global fixpoint: it considers that any thread may interfere with any other
thread at any time.

To enhance precision, the Goblint tool distinguishes an initialization phase, where only
the mawn thread is executed, and a second phase, it which all threads may interfere.

Let us consider the program execution represented on Figure 4.8. The program is
executed from the top of the figure to the bottom of the figure; moreover, horizontal lines
represent thread creation. The Goblint Tool considers the execution of the thread main
alone, and then, it considers that all threads may interfere. For instance, look at the
bullet on thread j,. When j5 is in the bullet, thread js has not yet been created. But

56 CHAPTER 4. EXISTING ANALYSES

miain

J1

Time s g

T

Figure 4.8: A Program Execution

void £ (int b) {
} sync (p){ if (b==1) {g()} else h();}

void g () { sync(u){...} }

void b () {...}

Otk W

Figure 4.9: Reentrant Monitors

the Goblint tool considers that the action of the thread j, at the bullet may interfere with
thread jg: this is a safe overapproximation, but this approximation loses precision. Our
analysis improves the Goblint method, by introducing an pre-ordering <., that will tell
the analysis that the actions of j5 done before the creation of jg cannot interact with js.

Notice that Goblint is one of the rare analysis tool that is able to handle guards. Most
other analyses abstract if statements by non-deterministic choices.

4.7.3 Reentrant Monitors

P. Lammich and M. Miiller-Olm [LMOO08] analyze programs with reentrant monitors. Mon-
itors are locks that are used in a structured way. It corresponds to the use of a primitive
sync(p){stmt}, as explained at the beginning of this section.

The monitors studied by P. Lammich and M. Miiller-Olm are reentrant. This means
that the same thread can lock the same monitor several times. E.g., in Figure 4.9, the
function f calls g or h depending of the value of its argument. With non-reentrant monitors,
there will be a deadlock when f call g, because the thread that executes f still owns the
monitor p. With reentrant monitors, the thread will own the monitor p a second time.

P. Lammich and M. Miiller-Olm model programs b control-flow graphs. They abstract
all guards by non-deterministic choices and they ignore information on data. Hence, they
need another definition of data-races. The user specifies two sets of nodes of the control-

4.7. DATA-RACES 57

1 void £ (int b) {

2 sync(m){

3 sync (u2){ ... };
4 U;

5}

6}

7

8 wvoid g (int b) {

9 sync(p2){

10 sync (m){ .. }
11 Vs

12)

13 }

Figure 4.10: No Data-Race but a Deadlock

flow graph U and V. A data-race occurs in their model if and only if at the same time a
thread reaches a control point in U and a distinct thread reaches a control point in V.

To detects data-races P. Lammich and M. Miiller-Olm use acquisition histories intro-
duced by Kahlon et al. [KIGO05]. An acquisition history is a function from the set of
monitors Locks to the set P(Locks). Intuitively, an acquisition history h maps each
monitor p to the set of monitors that will be acquired a time where p is held.

Two acquisition histories h; and ho may be interleaved if during an execution, a thread
may have the acquisition history h; and another an acquisition history h,. P. Lammich
and M. Miiller-Olm detect if two distinct threads can reach U and V with interleavable
acquisition histories. Formally, they introduce a predicate h; ® hs that means that h; and
hs may be interleaved:

hi @ hs & Bur, pio s € hi(pa) A po € ho(p).

Acquisition histories allow one to detect some spurious alarms. For instance consider
Figure 4.10. Consider that a first thread executes f and a second thread executes g. The
function £ locks the monitor uq, locks the monitor s, releases the monitor s and then
goes to a control state U. The function f locks the monitors in the reverse order: first it
locks the monitor s, and second, it locks the monitor p; and releases it. After, it goes to
a control point in V.

No data-race can occur, instead a deadlock can occur. Nevertheless, tools like Lock-
smith [PFHO6] will detect a possible data-race, since the control points U and V' are not
protected by the same lock (U is protected by py and V' by ps). P. Lammich and M.
Miiller-Olm’s analysis detects that no data race can occur, due to acquisition histories.

58

CHAPTER 4. EXISTING ANALYSES

CHAPTER 5

Semantics Hierarchy

In this thesis we use several semantics. In Part II, we define a concrete semantics to
models the behavior of real programs. In Part III we define two intermediates semantics.
These semantics are used in Part IV to prove the soundness of an abstract semantics. This
abstract semantics gives an efficient algorithm to check multithreaded programs.

29

60

Abstract
Semantics

Denotational
Intermediate
Semantics

@ Is an algorithm

Intermediate
Semantics

Operational
Semantics

@I Models the behavior of a multithreaded program

Figure 5.1: Semantics Hierarchy

Part |l

Concrete Models

61

CHAPTER 6

Language

The syntax of our language is given in Fig. 6.1. Statements (stmt) are labeled; we denote
by Labels the set of labels. Labels represent the control flow: the statement ‘stmt, ¢’
begins at label ¢ and terminates at label ¢/, e.g., in Fig. 6.2a, a thread at label ¢, will
execute the assignment p := &y and go to label /3. It is assumed that in a given command
or statement each label appears only once. Furthermore, to represent the end of the
execution, we assume a special label /., which does not appear in a command, but may
appear as the return label of a statement. Intuitively, this label represents the termination
of a thread: a thread in this label will not be able to execute any statement.

Notice that sequences cmdi; cmds are not labeled. Indeed, the label of a sequence is
implicitly the label of the first command, e¢md;.We write ‘cmd when the label of c¢md is
¢ and we write ‘stmt, ¢’ the statement stmt labeled by ¢ and . A program is represented
by a statement of the form ‘cmd, ¢,,. Other statements represent a partial execution of a
program.

The actions represent store modifications. We call basic statements the statements of
the form ‘action, ¢' or “* guard(cond), 5 or “*spawn({3), (5.

The statements spawn and guard will be useful in decomposing the steps taken in
executing create, while and if statement. To make our presentation simpler, we consider
all our variables to be global. The consideration of local variables is an orthogonal concern,
and induces no additional complexity. Nevertheless, local variables have been implemented

63

64 CHAPTER 6. LANGUAGE

stmi = statement
cmd, V' command

| ‘guard(cond), guard

| ‘spawn(("), ' new thread

cemd = command
‘action modify store

| emdy; emd, sequence

| if(cond)then{cmd}else{cmds} if

| ‘while(cond){cmd} while

| ‘create(cmd) new thread

action = basic action
lv:=e assignment

| lock(y) lock a mutex

| unlock(p) unlock a mutex

lv o= left value
x variable

| *e pointer deref

e = expression
c constant

| left value

| o(eq,e) operator

| & address

cond = condition
x variable

| —cond negation

Figure 6.1: Syntax

(See Section 18.2) as a stack.
Let Labs(‘cmd, £y) be the set of labels of the statement ‘cmd, (y,.
We also define by induction on commands, the set of labels of subthreads Labs q(-)
by:
Labs g (“ create(2emd), €5) < Labs(®2emd, £y,)
Labs g (U emdy, Zemds, 03) = Labs g (" emdy, 03) U Labs gpig (2 cmdy, Cs)

“if (cond) then{("* cmd }
LabS child (e/se{g3 Cmd2 }7 64

Labsc;”vld(g1 While(cond){g2 cmd}, l3) o Labschild(@cmdl,ﬁl)

. d
Labs pi1q (21 basic,ly) = () if elbaszc, /5 is a basic command.

) d:ef Labs child (62 cmdl, 54) U Labs child ([3 Cmdg, €4)

This language contains all primitives that are difficult to analyze. We dealt with some
extensions of this language in Chapter 17

bp = &x;2p = &y;
create(* x p = 2);
by =3l

(a) Pointers
bog 1= 0; 40y := 0;

“create("2x = 1 + y);
£13y = 3,6@

(c) % examples, Lo,

create("y 1=y + 2);
sy =3 Uy

(b) Interference on z

biag = 0; 057 := 0
6 create(“17y = 3);
bsg = 1,092 =y,

(d) “1¢ezample,, L

Figure 6.2: Program Examples

65

66

CHAPTER 6. LANGUAGE

CHAPTER 7

Operational Semantics

7.1 Introduction

An operational semantics describes how a program is executed. An execution of a program
is a sequence of transition.

Several operational semantics are given here. They assume a set 7ur of variables and
a set V of values. Some variable are mutexes or locks. We call Locks the set of locks and
assume that Locks < V.

In this chapter, we define a generic operational semantics. In Chapter 8 and Chapter
9, we will instantiate this semantics.

7.2 Description of the System.

To give semantics to threads, we use a set Ids of thread identifiers. During program
execution, each thread is represented by a distinct identifier. We assume a distinguished
identifier main € Ids, and take it to denote the initial thread.

When a program is executed, threads go from a label to another one independently. A
control point is a partial function P that maps thread identifiers to labels, and such that

67

68 CHAPTER 7. OPERATIONAL SEMANTICS

lockable(i, i, 0) A 0’ = elemioer((1, U)l . unlockable(i, p, o) A o' = elem ypiock (i, 1) ek
“ock(n), bo =i (€1,0) = (l2y0') " Bunlock(u), by i (6,0) = (ay0)
o' = elemyy.=(i,0) . bool(i, o, cond) = true
assign guard
vi= e, by = (6,0) = (62,0 uard(cona), by = (€1,0) — (£2,0
“ Uy =i (b, 0) = (€2,07) “guard(cond), by i (b, 0) — (2, 0)
“iguard(cond), ly 1—; t ‘ “iguard(—cond), b3 ; t
- while entry - while exit
“while(cond){cmd}, 5 - t “while(cond) {2 cmd}, b5 5 t

“iguard(cond), by - t

“if (cond)then{*2cmd, }else{*cmdy}, €4 1 t
“iguard(—cond), {3 \; t

“1if (cond)then{® cmd }else{**cmdy}, Uy ; t

then

else

Figure 7.1: Local Semantics Rules

P(main) is defined. A control point associates each thread with its current label. The
domain Dom(P) of P is the set of created threads. Let PP be the set of control points.

Furthermore, threads may create other threads at any time. A genealogy of threads is
a finite sequence! of tuples (i, ¢, j) € Ids x Labels x Ids such that the transitive closure
<, of the binary relation i «, j if and only if (i,¢, j) € g is a strict ordering and main
is a minimal element for this ordering. Intuitively, i <, 7 means that the thread ¢ is an
ancestor of j. We call <, the reflexive closure of <,. A genealogy g is well formed, if each
thread j is created only once, and a thread j never creates another thread ¢; before having
been created. Formally g is well formed if for all threads identifiers iy, io, 7, for all labels
¢, ') neither (iy,4,7) - (ig, €', j) nor (j,€,41) - (i2, ¢, j) is a subword of g.

We leave the precise semantics of stores undefined for now, and only require four prim-
itives:

o cleMm erion - Ids X Stores — Stores,

e bool : Ids x Stores — {true, false},

e lockable : Ids x Locks x Stores — {true, false}

e and unlockable : Ids x Locks x Stores — {true, false}.

We also assume a set of initial stores Storeslnit, e.g., all stores, or a store that maps all
variables to 0 as required for global variables by the C norm [ISO99, Section 6.7.9 item
10].

Intuitively, elem,cion(i, o) returns the store after i executes the basic operation action
(see Fig. 6.1) on the store 0. The function bool(i, o, cond) checks if the condition cond is
true in the context o when the current thread? is i. A mutex may be locked or unlocked

Te., a word, see Chapter 2.
2To know which is the current thread will be an important point for weak memory models. See Chapter
9

7.2. DESCRIPTION OF THE SYSTEM. 69

P@@) =10 Ystmt, by (6,0) — (', 0)
“stmt, by & (i, P, o, g) — (i, P[i = ('], 0", g)
P(i) =1 j is fresh in (i, P, 0, g) Pr= Pli— t3][5 = o] spawnable(i, o)
elspaWn(€2)>€3 I (Zv P7 g, g) - (2’ PI,O',g) (Z’g%‘]))
Cemdy, by - T
“if (cond)then{"> cmd, }else{*scmdy}, 04 - T
Bemdy, by - T

parallel

spawn

then body

Iy 7 7 else body
Lif (cond)then{*2cmd }else{*3cmdy}, b4 - T
“Lspawn(ly), U3 - T create “emd, b I- T while body
“icreate(2emd), b3 |- T “while(cond){**cmd}, (5 I+ T
Semdy, by - T 2emdy, Us 1 T
7 7 sequence 1 7 7 sequence 2
temdy; 2 emdg, Us - T temdy; 2 emds, U3 I- T
“emd b I T T € System
; o child e—y,system
Lcreate("emd), Us - T stmt, ' -7

Figure 7.2: Global Semantics Rules

only under some assumptions, e.g, a lock may be acquired only it it is free. The predicates
lockable and unlockable model these conditions.

Similarly, a thread cannot necessary spawn another thread at any time. Then we
introduce the predicate spawnable : Ids x Stores — {true, false}.

A tuple (i, P,o,g) € Ids x P x Stores x Genealogies is a state if:

(a) i € Dom(P),
(b) Dom(P) is the disjoint union between {main} and the set of threads created in g,
(c) and h is a well formed genealogy.
Let States be the set of states. A state is a tuple (i, P, 0, g) where:
e ¢ is the currently running thread,
e P describes where each thread is in the control flow,
e o is the current store
e and g is the genealogy of thread creations.

Dom(P) is the set of existing threads. The constraint (a) means that the current thread
exists, the constraint (b) means that the only threads that exist are the initial threads and
the thread created in the past.

Given a program “ cmd, £, the set Init of initial states is the set of tuples (main, Py, o, €)
where:

70 CHAPTER 7. OPERATIONAL SEMANTICS

e Dom(Fy) = {main}, Py(main) = {y,

e o is an initial store (i.e., 0 € StoresInit)

e and € is the empty genealogy.

A transition is a pair of states 7 = ((z, Po,g), ([, P,o,g- g’)) such that:
(a) for every j € Dom(P) \ {i}, P(j) = P'(j)
(b) The set of letters of ¢ is exactely {(i, P'(§),7j) | j € Dom(P') ~ Dom(P)}

We denote by Transitions the set of all transitions. The point (a) means that a transition
may change the label of the current thread, but cannot change the label of any other
thread. The point (b) means that all new threads are added to the genealogy. Notice that,
while we will use a create statement that create only one thread, for all transition either
g =corg = (i, P'(j),j) for some j € Ids. When we will use par statements (See Section
17.2), we will use transitions that may spawn several threads at the same time.

Notice that, the genealogy increase when transitions are applied. Formally:

Claim 7.1. Let s = (i, P,o,g) and s' = (', P',0',¢") be two states.
If (s,s') € Transitions” < ¢ <y ¢

7.2.1 Program execution

We use a small step semantics: each statement gives rise to an infinite transition system
over states where edges s; — sy correspond to elementary computation steps from state
s1 to so. We define the judgment “*stmt, {5 |- s — S5 to state that s; — s, is one of these
global computation steps that arise when c¢md is executed.

To simplify the semantic rules, we use an auxiliary judgment “stmt, ly —; ((,0) —
(¢',0") to describe evolutions that are local to a given thread i. A local state (¢,0) €
Labels x Stores is a pair. The label represents the program pointer of the current thread,
and the store o represents the current store. The judgment “stmt,{y ; (¢, 0) — (¢',0")
means that the thread ¢ can fire a local transition, and go from ¢ to ', modifying the store
o into o’.

Judgments are derived using the rules of Fig. 7.1 and Fig. 7.2.

The rules “lock” and “unlock” check is the mutex is lockable (respectively unlockable),
and update the store if the condition is satisfied. The rule “assign” changes the value of a
variable. The rule “guard” allows to fire a transition only if the condition is true.

The rules “while entry” and “while exit” give the guard necessary to enter or to exit
the while loop. Rules “then” and “else” respectively give the transitions to enter into the
“then” (respectively the “else”) branch of the if statement.

The rule “parallel” transform a local transition into a global one. The label of the
current thread and the store are updated.

In the rule “spawn”, the expression “j is fresh in (i, P, 0, g)” means that i # j and P(j)
is not defined, i.e., thread j does not exists yet. The transitions generated by this rule does

7.2. DESCRIPTION OF THE SYSTEM.

Name | Threads | Control point Store Genealogy
S1 main El (o) €
So main gg (o) €
S3 main 4 o (main, (s, 1)
i (3
S4 main /; oo (main, (y,1)
L U3
. def . .
S5 main A o1 = elem—1(09) (main, (o, 1)
i Lo
56 main /; o4 (main, (y,1)
S7 main s o1 (main, (y,1)
S8 main l o1 (main, ly, i) - (main, (s, j)
J ls
S9 main 0 o1 (main, ly,1) - (main, (s, j)
j 2

Figure 7.3: Example of Program Execution

71

72 CHAPTER 7. OPERATIONAL SEMANTICS

“while(true)
{“create(x =2 + 1)}, 4y

Figure 7.4: Thread Creation in a While Loop

not change the store but creates a new thread and therefore updates the control point and
the genealogy.

The rules “then body”, “else body”, “while body”, “sequence 1”7 and “sequence 2” say that
a statement generates all transitions generated by its substatements. The rule “create” say
that the statement create spawns a thread.

For the rule “system” we define the set of schedule transitions by:
Schedule = {((i, P,o,9),(j, P,o,9)) | j # i}.
Furthermore, we assume a set of transitions System such that:

V((i, P,o,9), (i, P, o', ¢")) € System, P = P' A g = ¢" and Schedule < System.

The set System contains all transitions common to all programs, e.g., transitions that
switch the current thread.

The set of transitions generated by statement ‘stmt, ¢’ is Tre ;o = {(s,5') | “stmt, ' I+
s — §'}. Furthermore, let Tt st o0 = Trestme o System be the set of transitions specific to
the statement ‘stmt, (.

Figure 7.3 gives the beginning of one possible execution of the program of Fig. 7.4. The
first colum gives the name of the states. The second column indicates created threads,
the current thread is underlined. The third column gives the label of each thread, i.e., the
control point P. The fourth column gives the store and the last column gives the genealogy.

Hence, in Figure 7.3:
e 5o = (main, Py, 00, €) where P;(main) = (;

o 59 = (j, Py,01, (main,ls,i) - (main, s, j)) where Py(main) = (1, Py(i) = {y and
Py(j) = 43

The store og is assumed to be an initial store, i.e., 0g € StoresInit. In that figure, (sq, s2),
(s5,6) and (ss, s9) are in System, but (s, s2) ¢ System.

7.3 Descendants

Figure 7.6 illustrates the execution of a whole program. Each vertical line represents the
execution of a thread from top to bottom, and each horizontal line represents the creation
of a thread. At the beginning (top of the figure), there is only the thread main = jo.

During execution, each thread may execute transitions. At state sg, thread(sg) denotes
the currently running thread (or current thread), see Fig. 7.5. On Fig. 7.6, the current
thread of sqg is jo and the current thread of s is js.

7.3. DESCENDANTS 73

For any set of states S, let S = States ~. S be the complement of S.
thread(i, P,o, g) = i

label(i, P, o, g) < P(3)

descg(i) = {j | i <, 7}

descy(X) = Uley desc, ()

Figure 7.5: Auxiliary definitions

js jo
J1

® S0

J2

Time

Figure 7.6: A thread Execution

During the program execution given in Fig. 7.6, j, creates j;. We say that j; is a
child of jy, and jg is the parent of j;. Furthermore, j; creates j3. We then introduce the
concept of descendant: the thread j3 is a descendant of j; because it has been created
by 71 which has been created by jo. More precisely, descendants depend on genealogies.
Consider the state so = (jo, Po, 00, 90) with go = [(Jo, ¢1,71)]: the set of descendants of
Jo from gy (written descy,({jo}), see Fig. 7.5) is just {jo,j1}. The set of descendants of a
given thread increases during the execution of the program. In Fig. 7.6, the genealogy of
s is of the form go - g for some g, here g = [(jo, l2, J2), (41, 3, J3), (J2, 4, j4)]. When the
execution of the program reaches the state s, the set of descendants of jy from gg - g is
descgyg(Jo) = {Jo, Ju, o, 33, Ja}-

In a genealogy, there are two important pieces of information. First, there is a tree
structure: a thread creates children that may create children and so on... Second, there is
a global time, e.g., in g, the thread j, has been created before the thread js.

Lemma 7.2. If g- ¢’ is a well formed genealogy therefore desc,.y(X) = descy(descy(X)).
Proof. Let j € descy.y. Therefore, by definition of <, there exists 1, ..., ¢, such that:

o Forall k €{0,...,n— 1}, iy, <gg Tgs1

e and i, = j.
Notice that, by definition, i «<—g.¢ 7541 is equivalent to ig <4 1541 OF if <—g Tpy1.

e First case: for all k, i), «—; ix41. Therefore j € descy(X) < descy(descy(X)).

74 CHAPTER 7. OPERATIONAL SEMANTICS

e Second case: there exists k such that iy <, i5y1. Let ko the smallest such k. By
definition, there exists ¢y such that (i, 4o, ik, 11) € ¢'-
By minimality of ko, iy, € descy(X).

Let k > ko. Assume by contradiction that ij <—; i;1. Therefore, there exists ¢ such
that (ik07£07 ik0+1) €g Hence (ikmgOu ik0+1)) (ik07£07 ik0+1) is a subword of g- g/ and
therefore ¢ - ¢’ is not weel formed. Hence for all k > kg, iy <y i541.

We conclude that j € descy (ix,) S descy(descy (X))

During the execution of a program, each thread may only be created once:

Lemma 7.3 (Unique Parent). Let g a well formed genealogy.
]f il (_gj and iQ (_gj then il = ig.

Proof. Because i; <, j, there exists ¢ such that (i1,, j). Because iy «<—, j, there exists ¢
such that (i, ¢, 7).

The genealogy ¢ is well formed. Hence, neither (i1, ¢, j) - (i2, ', j) nor (is, £, 5) - (i1, ¢, j)
is a subword of g.

We conclude that(iy, ¢, j) = (ig, ¢, j) and then iy = is. O

Lemma 7.4. Let g - ¢ a well formed genealogy and i, j which are not created in ¢ .
Therefore, either descy(j) S descy.y (i) or descy(j) N descy.y (i) = 0.

Proof. We consider the case where descy (j)Ndescy.y (i) # 0. Let i € descy (j)Ndescy.q(i).

Therefore, there exists to sequences of threads identifiers ¢4, ..., 7, and ji, ..., J,, such
that

® i, =1

o Forall k€ {0,...,n—1}, ih11 <gq i

e ;=1

® j1=]

o Forall k€{0,...,m—1}, jrt1 <¢ Jk

o ji =1

Given that ¢’ is a subword of g- ¢, we conclude that for all k € {0,...,m—1}, ji <4y Jt1-
We apply by induction the Lemma 7.3 and state that for all k € {1,..., min(n,m)}, ix, = jy.

e Iirst case: n < m. Therefore j,1 <=4 ¢. This is in contradiction with the fact that
7 have not been created in ¢'.

7.4. PROPERTIES OF THE LANGUAGE 75

e Second case: m > n. Therefore i,,1 <, j. Because j have not been created in ¢,
therefore 7,,,1 <4 j.

Assume by contradiction that, for some k > n, ixr; <4 . Let ky the smallest
such k. Therefore, there exists ¢ such that (ix.1,¢', i) € ¢' and there exists ¢” such
that (i, 0, ix_1) € g . Hence (i, 0" i) - (igy1, 0, 1) is a subword of ¢ - ¢; this is
impossible because g - ¢’ is well formed.

Therefore, for every k > n, i1 <, . Hence j € descy(i). Therefore descy (j) <
descy(descy(i)).

e Third case: n = m. Therefore ¢ = j and descy(j) = descy (i) S desc(descy(i)) by
Lemma 7.2.

]

We also need to consider sub-genealogies such as g. In this partial genealogy, j; has
not been created by jo. Hence desc,({jo}) = {Jjo.j2, ja}. Notice that js ¢ desc,({jo}) even
though the creation of j3 is in the genealogy g.

We say that a set of transitions 7' is conservative if and only if for all transitions:
((i, Pyo,q), (', P',0',¢") € T,g = ¢’. The following lemma exhibits some conservative
sets:

Lemma 7.5. The following sets of transitions are conservative:
o System

o Schedule

® Triypasics, Where “Whasic, by is an arbitrary basic statement.

7.4 Properties of the language

In this section, we give some useful properties on the transitions generated by the state-
ments of our language.

7.4.1 Labels

A transition generated by a basic statement go from the initial label of the statement to
the final label. This is not true for non-basic statements (e.g., composition). Formally:

Lemma 7.6. Let ““basic, {5 be a basic statement.
If (s,s"y = ((i, P,o,9), (@', P', o', ¢")) € Tt pasicr, LhEN

1. label(s) = £,

76 CHAPTER 7. OPERATIONAL SEMANTICS

2. label(s") = Ly
3. thread(s) = thread(s')
4. s and s’ has the same genealogy.
Proof. This lemma is a consequence of rules of Fig. 7.1 and rule “parallel” of Fig. 7.2. [

A statement generates only transitions from its labels and to its labels, e.g., the state-
ment of Figure 6.2a generates transitions from the label /5, this is formalized by the fol-
lowing lemma:

Lemma 7.7. If (s,s') € 1r; then:

Estmit 0!
1. label(s) € Labs(*stmt, ¢') ~ {¢'}
2. label(s") € Labs(‘stmt, 0') U {{s}
3. thread(s) = thread(s’)

Proof. This lemma is true for basic statement according to Lemma 7.6. We conclude by
induction. [

The contrapositive gives the following lemma:

Lemma 7.8. If label(s) ¢ Labs(“stmt, (') ~ {¢'} then for all state s', (s, ") & Tri o

Whenever a statement ‘stmt, ¢ generates a transition that creates a new thread j, this
new thread j is in a label of Labs uq(“stmt,). Formally:

Lemma 7.9. If (s,s') = ((i, P,0,9),(@',P',0',9-¢") € Trigmp and i <y j then P'(j) €
Labs g (“stmt, 0') < Labs(“stmt, ().

Lemma 7.10. If (s,s') € Tri,., , and label(s) € Labscpaa(“stmt, ') then label(s') €
Labs cpig (“stmt,).
Furthermore { ¢ Labs iq(“stmt, ') and (' ¢ Labs pqq(“stmt, (').

7.5 Conclusion

We define an operational semantics, assuming only the following sets and functions:
e Stores
e Storeslnit

o eleMaciion : Ids x Stores — Stores

7.5. CONCLUSION 77

bool(o, cond) : Stores x Conditions — {true, false}

where Conditions is the set of conditions generated by the rules of Figure 6.1.
lockable : Ids x Locks x Stores — {true, false}

unlockable : Ids x Locks x Stores — {true, false}

spawnable : Ids x Stores — {true, false}

System

Hence, we can instantiate an operational semantics, giving only these sets and functions.
In Chapter 8 and Chapter 9 we give three different instantiations.

78

CHAPTER 7. OPERATIONAL SEMANTICS

CHAPTER 8

Interleaving Semantics

In this semantics, threads execute their code with respect to sequential consistency. The
principle has been summarized by Lamport [Lam79|: "... the result of any execution is the
same as if the operations of all the processors were executed in some sequential order, and
the operations of each individual processor appear in this sequence in the order specified by
its program."

A large number of multithread analyses uses sequential consistency [LMOO07, MPRO7,
FQO03|.

In this semantics System = Schedule = {7 € Transitions |IFsc 7} (See Figure 8.2).
Sequential consistency is used with several kinds of store. In this chapter, we describe two
kinds of stores : Maps and Gen/Kill stores.

8.1 Maps

Concrete stores are maps from the set of variables Var to the set V of concrete values.
StoresInit = Stores or StoresInit = \z.0.
To define elem;,.—, we need to evaluate a left value and an expression. We assume a
function addr, (Iv) that, given a left value, returns the name of the corresponding variable.
E.g, addr,(z) = x, addr,(+x) = y if o(x) = &y. We also assume the classical function

79

CHAPTER 8. INTERLEAVING SEMANTICS

Name | Threads | Control point | Store Genealogy

S1 main 0y T = €

S9 main Uy r=0 €

S3 main 2 r=0 (main, (5,1)
1 63

S4 main 4 xz=0 (main, (y,1)
A 3

S main 4 r=1 (main, (y,1)
L loo

S6 main 0 r=1 (main, (5,1)
i los

S7 main Uy r=1 (main, (5,1)
i los

Sg main 4 r =1 | (main,/lsy,i) - (main,ly,j)
i los
J {3

So main 4 r =1 | (main,/ly,i) - (main, (s, j)
i los
J ls

Figure 8.1: Interleaving Semantics Example

P(j) is defined i #]
”_SC (i,P,O',g) - (j7P7Uag

) schedule

Figure 8.2: System Transitions for Interleaving Semantics

8.2. GEN/KILL 81

val,(e) that gives the value of an expression. E.g., val,(2) = 2, val,(z) = o(z), val,(z +
y) = o(x) + o(y),. .. Finally:

elemy.—. = oladdr,(lv) — val,(e)].
The boolean evaluation is defined as follow:

bool(0, 7) true if o(x) #0
g, = .
false if o(x) =0

The value of the mutex variable p is the identifier of the thread that owns it, or the
special symbol none. The special symbol none means that the mutex is free. Formally:

eleMioer(uy(i,0)) = ofp— 1]

elemunlock(u) (Za 0)

—_

o[p — none

t if =
lockable(i, p,0) = rue 1 o(p) = none
false if o(p) # none
t if =
unlockable(i, p, o) = rue 1 o(p) Z
false if o(p) #i

Threads can spawn another thread at any time, hence spawnable(i, o) = true for all i
and o.

The Figure 8.1 gives an example of the execution of program of Figure 7.4. This is the
same example than Figure 7.3, instanced in the case of an interleaving semantics.

8.2 Gen/Kill

In Section 4.4.2 and Section 4.6, we have discussed Gen/Kill analyses. Here, we adapt
Gen/Kill analyses to our concrete model.

8.2.1 Pure Gen/Kill

In such analyses [SS00, LMOO07], stores are values in a lattice V, e.g., V is a set of unini-
tialized variable, i.e., Stores = V.
Each gen/kill analysis gives, for each action, two sets:

e gen(action)

e kill(action) (if the lattice V is a complemented lattice) or keep(action) (if V is not
a complemented lattice).

82 CHAPTER 8. INTERLEAVING SEMANTICS

The function elem is defined by:
eleM action(0) = (0 \ kill(action)) L gen(action).

or by:
elem action(0) = (0 Mkeep(action)) U gen(action).

8.2.2 Points-to Graph

Rugina and Rinard [RR99, RRO3| present a pointer analysis for parallel programs. The
concrete stores s € Stores are points-to graphs (See Section 4.4.1).

The definitions of functions elemy;,._. is implicitly given in Fig. 3 and Fig. 4 of their
paper [RR99|. More formally, given a concrete store o each assignment [v := e determines
a set gen (lv := e,0) a set kill,,(lv := e,0) and a boolean flag strong(lv := e, 0).
Figure 4.4 represents Rugina and Rinard’s sets gen , and kill,, [RR99, RRO3|.

Given these sets and this flag, the primitive elemy,.—. is defined by:

(0 Nkilly,(lv :=e,0) Ugen, (lv:=e,0) if strong(lv:=e, o)

oUgen, (lv:=e,0) if not strong(lv := e, 0)

elemy.—e(X) = {

8.2.3 General Gen/Kill Analysis

As for Section 8.2.1, V is a lattice and Stores = V and each gen/kill analysis gives, for
each action and for each store o, two sets: gen(action, o) and keep(action, o). We assume
that gen and keep are monotonic® in o.

The main difference with Section 8.2.1 is that gen and kill sets may depend on the
current store (e.g, strong flag of Section 8.2.2).

elem aetion(0) = (0 N kill(action, o)) U gen(action, o)

The analysis of Rugina and Rinart is a particular case of Gen/Kill analysis where:

Kill(lv = e,0) = {killptr(lv =e,0) if strong(lv:=e,0)

1) otherwise

3An analysis that use the set kill(action, o) need that kill is decreasing in o.

CHAPTER 9

Weak Memory Model

9.1 Introduction

There exists several kinds of weak memory models. In a weak memory model, each thread
as its own view of the memory, but two distinct threads may have two distinct views at
the same time. As explained in introduction, weak memory models are used in practice,
to allows compilers for optimisations and to enhance processor speed.

Nevertheless, M. F. Atig and A. Bouajjani [ABBM10] recall that, in most languages, for
data-race free programs, there is no difference between strong and weak memory models:
the execution of a data-race free program p in a weak memory model is always equivalent
to sequentially consistent execution of p.

This is not true in all languages, e.g, the language C# [ISO06, Section 17.4.3| allows
programmers to access simultaneously to several “volatile” variables, and the semantics of
this accesses is a weak memory model.

Moreover, in practice, due to human errors or in the name of efficiency, a large number
of programs are not data-race free. Microsoft guidelines for .NET [Micl0] advise to keep
some data-races : “Sometimes the algorithm can be adjusted to tolerate race conditions
rather than eliminate them.”

Here, we focus on two weak memory models : TSO and PSO.

83

84 CHAPTER 9. WEAK MEMORY MODEL

9.2 TSO

TSO is a suitable model of the behavior of modern Intel processors [OSS09]. TSO is the
“write to read” relaxation, i.e., when reading a value from memory, a thread may pretend
to ignore some past writes from other threads. An adequate semantics for TSO is Atig et
al.’s operational model [ABBM10).

Threads share a memory, but do not write instantaneously in it. Each thread has
a write buffer. Instead of writing into a variable, a thread writes into its write buffer,
modifying its own view of the memory, but leaving the shared memory untouched. At any
time, some of the writes may be dequeued from the write buffer and the shared memory
is updated accordingly.

We assume a set Memories of memories and a set WriteOp of write operation and a
function update-memory : WriteOp x Memories — Memories that updates a memory
according to a write operation.

A write buffer w is a FIFO queue of write operations. The set of buffer is define as
follow: Buffers = FIFOwriteop-

A store is a pair (m,b) where m € Memories is a memory and b : Ids — Buffers
is a map from threads identifiers to buffers. Let memory-action the partial function that
updates the shared memory with a write buffer. Given a store o = (m,b) and a thread i
such that b(7) is not an empty FIFO, memory-action(i, o) extracts the first write operation
(x,v) of the buffer b(i) and applies it to the memory, formally:

memory-action (i, (m, b)) = (update-memory(op, m), bli — w))
where op = fst(b(i)) and w = deq(b(i)).

Whenever a process reads a variable z it does as though it reads the memory after all
pending updates have been effected by its buffer. Given a store o = (m,b) the view of the
thread ¢ is m modified by b(¢), the write buffer of . This view is written view(i, o). Notice
that view(i, o) € Memories.

Formally, given a store o = (m,b), view(i, o) is defined by induction:

m if b(i) = ¢, i.e., b(i) is an empty FIFO

view (i, memory-action(i,o)) otherwise.

view(i, o) = {

Expressions e are always evaluated in such a view. We leave the formal definition of
evaluation as an exercise. We Shall only need it through two primitives efemy,.—.(i,m),
bool(m, cond).

Given a thread ¢ and a view m, elemy,.—.(i,m) evaluates [v and e in the view m and
returns the corresponding write operation. E.g, efem,_3 returns the write operation (x, 3)
that puts the value 3 in z. The function bool(m, cond) evaluates the condition cond in the
view m, returning true or false.

We define the function elem,eiion(i, o), as required for our semantics, See Section 7.5.
When a thread ¢ makes an assignment [v := e on a store o = (m, b), the thread evaluates

9.2. TSO 85
Name | Threads | Control point | Buffers | Memory Genealogy

S1 main A 1) =0 €

So main ly 0 T = €

S3 main 0 0 r=0 (main, (5, 1)
i l3 0

S4 main A 0 =0 (main, (5, 1)
i (s 0

S5 main A 0 =0 (mawn, (s, 1)
i Uos (x,1)

Sg main A 0 x =0 (main, (s, 1)
i los (x,1)

S7 main ly 0 =0 (mawn, (s, 1)
i los (x,1)

Sg main A 0 r=0 | (main,ly,i)- (main,/ls,j)
i los (x,1)
J 63 Q)

Sg main 0 0 =0 | (main,/lyi)- (main,ls,j)
i los (x,1)
J ls 0

Figure 9.1: TSO Example

lv and e from its view of the memory; computes the write operation and then adds it to
the write buffer. Formally, given a thread i and a store o = (m,b):

def

elemyy.—.(i,0) = (m, bli — eng(op, b(i))])
where op = elemy,.—. (i, view(i, 0)).

Locks and unlocks do not use write buffers, but alter memory. We assume two functions
lock : Ids x Locks x Memories — Memories and unlock : Ids x Locks x Memories —
Memories. Intuitively lock(i, i, m) locks the mutex p for the thread i in the mem-
ory m. Formally: elemoek(u)(i, (m,b)) = (lock(i, jr,m),b) and elemypiock(u)(i, (m, b)) =
(unlock(i, p,m),b).

We assume a set of initial memories Memslnit, e.g., MemsInit = Memories or
MemsInit = {\z.0}. An initial store o (0 € Storeslnit) is a pair (m,b) such that
m € MemslInit and b maps all threads to the empty FIFO.

The set System is the defined by the rules of Fig. 9.2 : System & {7 |I-rso 7}. The rule
“schedule” switches current threads and the rule “memory” executes some pending write
operation, can be triggered at any time.

Fig. 9.1 gives the beginning of one possible execution of the program of Fig. 7.4. This
is the same example as Figures 7.3 and 8.1, but in the TSO Model.

86 CHAPTER 9. WEAK MEMORY MODEL

P(j) is defined i # j o= (m,b) Ab(i) # €

hedul memory
Frso (i, P,o,g) — (j, P,o,g) schedule rso (i, P,o,g) — (i, P, memory-action(i,o), g)

Figure 9.2: System Transitions for TSO

Conclusion

To define an operational semantics for TSO, we assumed:
e A set Memories of memories

e A set WriteOp of write operations

A function update-memoryWriteOp x Memories — Memories that updates a
memory according to a write operation

A set MemsInit of initial memories

Two functions lock : Ids x Locks x Memories — Memories and wunlock : Ids x
Locks x Memories — Memories.

The two predicates lockable and unlockable.

9.2.1 Examples

9.2.1.a Maps A memory maps variables Var to values in V.

A write operation is a pair : WriteOp = %ar x V. Such a pair (z,v) € WriteOp
means that the value v is written into the variable x.

The memory is updated in the following way:

update-memory((x,v),m) = (m[z — v],b[i — w])

The set of initial memories is the set of all memories Mlemories (or, as seen in Section
8.1, it may be the singleton {A\z.0}, according to C-norm).

The value of the mutex variable p is the identifier of the thread that owns it, or the
special symbol none.

The mutexes are locked and unlocked instantaneously in the shared memory, without
using write buffers:

lock(i, p,m) = mlp—i]
unlock(i, p,m) = (m[p— none],b)
A thread i can only lock a mutex p in a store (m,b) if p is lockable:

def

lockable(i, 1, (m,b))) © m(u) = none A b(i) =€

9.3. PSO 87

This means that a mutex is lockable only if it is free : two distinct threads can not own
the same mutex.
Similarly ¢ can unlock p if and only if unlockable(i, u, (m, b)) holds, i.e.:

unlockable(i, pi, (m,b))) & m(p) =1 Ab(i) =€

To unlock a mutex, a thread must own it, and must have an empty buffer: a write operation
generated when the thread own the mutex can not update the memory when the thread
does not own any more the mutex.

Before to spawn a new thread, a thread have to synchronize its view of the memory
with the shared memory. Hence, at creation, a thread and its new child have the same

view of the memory, e.g., in Figure 6.2a, the thread created in ¢, view &y as value of p
def

and not &z. Formally, spawnable(i, (m,b)) < b(i) = e.

9.2.1.b Gen/Kill Similarly to Section 8.2, the set of values is la lattice and a memory
is an element of this lattice: Memories = V.

A write operation is a pair : WriteOp =V x V. Such a pair (gen, keep) € WriteOp
means intuitively that the values of gen are generated, and the values that are not in keep
are killed.

The memory is updated in the following way:

update-memory((gen, keep), m) = (m M keep) LI gen.

9.3 PSO

The PSO (Partial Store Ordering) model is similar to the TSO model. In the PSO model,
a store is a pair (m,b) where m € Memories is a memory and b : Ids x Var — Buffers
is a map from threads identifiers and variables to buffers.

Compared to TSO model, the function memory-action have an extra argument.

memory-action (i, z, (m,b)) = (update-memory(op, m), bli — w])
where op = fst(b(i, z)) and w = deq(b(i, z)).

The set System is defined by System = {7 |lpso 7}, where I-pgo is defined by the rules
of Figure 9.3.

88

P(j) is defined i #]
”_PSO (i,P, Uag) - (j>P7 Uag)

schedule

o= (m,b) Ab(i) # €

memory
”_PSO (27 Pa g, g) - (Zv P7 memory—action(i, z, O-)a g)

Figure 9.3: System Transitions for PSO

Part Il

From Single-threaded to
Multithreaded: Core Model

89

CHAPTER 10

Intermediate Semantics

10.1 Basic Concepts

To prepare the grounds for abstraction, we introduce an intermediate semantics, called
G-collecting semantics, which associates a function on configurations with each statement.
The aim of this semantics is to associate with each statement a transfer function that will
be abstracted (see Section 13) as an abstract transfer function.

A concrete configuration is a tuple Q = (S, G, A) :

1. S is the current state of the system during an execution,
2. G, for guarantee, represents what the current thread and its descendants can do
3. and A, for assume, represents what the other threads can do.

Formally, S is a set of states, and G and A are sets of transitions containing System.
The set of concrete configurations is a complete lattice for the ordering (S1,Gi,A;) <
(82,G2,A2) © S; € Sy A Gy © Gy A Ay © Ay, Let C-Configurations the set of concrete

configurations.
During an execution, after having encountered a state so = (jo, Py, 00, go) we distinguish

two kinds of descendants of j:

91

92 CHAPTER 10. INTERMEDIATE SEMANTICS

o
J1
®
S0
. '2
J3
j4
® ®
S1 S
5
jjﬁ

Figure 10.1: after

(i) those which already exist in state sy (except jo itself) and their descendants,
(i) jo and its other descendants.

Each thread of kind (i) has been created by a statement executed by jo. We call after(so)
the states from which a thread of kind (ii) can execute a transition. Formaly after is
defined by:

Definition 10.1. We define the set after(s) of states after s:

def

after(i, P,o,g) = {(j,P',o',g-¢') € States|j & descy (i)}

= {(j,P',0',9-4') € States|i <, j}
We also define the relation < g, by:
S <gfter s g:e; s S after(s).

In Fig. 10.1, the thick lines describe all the states encountered while executing the
program that fall into after(so). In this figure, s1,s € after(so).

Lemma 10.1. The relation <gper 15 a pre-ordering on States.

Proof. Let s, s1, and sy such that sy <, 51 and 51 <gper So.

Let (ig, Py, 00, go) = so and (i1, Py, 01, ¢1) = s1. By Claim 7.1, we can define ¢} = g, '-1.
Because ig <y g, ig € descy (io).

Given that so <gper 51, we state that s; € after(sg). Let so = (ia, P2, 02, g2) € after(s;).
Therefore, there exists g, such that g, = g1 - g5 = go - g; - g5 and iy € descy (i1). Because
s1 € after(so), by definition, i, € descy(ig). Therefore iy € descy (i1) N descy g (o).
According to Lemma 7.4, descy, (i1) S descy g (i0). Hence iy € descy g (ig) and therefore
Sy € after(sp). O

10.1. BASIC CONCEPTS 93

The following lemma is a corollary:
Lemma 10.2. If s; € after(so) then after(si1) < after(so)
All states are after all initial states.

Lemma 10.3. For all P € P and o € Stores, and s € States:
(main, P,0, €) <gfter S.
As a consequence we have the following lemma:

Lemma 10.4. If Init is the set of initial states of a program and s € Init, then after(s) =
States.

If an execution of a program go from a state sy to a state s; with the same current
thread, therefore s; is after sq:

Lemma 10.5. Let (s, s1) € Transitions™.
If thread(sg) = thread(sy1) then sy € after(so).

Proof. Let (io, Po, 00, 90) = so and (i1, P1,01,91) = 1. By Claim 7.1, we can define g =
90" - g1, i.e., g) is such that g; = go - g}. Because iy <y fd0, G0 € descy (ig). Therefore, if
thread(s) = thread(s'), i.e., iy = g, then s; € after(sg) (By definition of after). O

When a schedule transition is executed, the current thread changes. The future de-
scendants of the past current thread and the new current thread are not the sames. This
is formalized by the following lemma:

Lemma 10.6. If (s1, s2) € Schedule then after(sy) N after(ss) = ().

Proof. Let (i1, P1,01,01) = s1 and iy = thread(ss). Therefore (iy, Py, 01,91) = S2. Let
s = (i, P,0,9) € after(s1) N after(ss).

By definition of after, there exists ¢’ such that g = ¢1-¢, i € descy(i1) and i € descy (iz).
Furthermore i; and iy are in Dom(P;). Therefore i; and iy are either created in gy, or are
main. Hence, i; and iy cannot be created in ¢'. Therefore, iy ¢ descy(i1) and therefore
descy(iz) € descey(i1). Using Lemma 7.4 we conclude that descy (i1) N descy(iz) = 0.
This is a contradiction with i € descy (i1) and i € descy(i2). O

During the execution of a set of transitions 7' that do not create thread, the set of
descendants does not increase:

Lemma 10.7. Let T a conservative' set of transitions.
Let s = (i, P,0,9) and s = (i, P',0’',g - ¢') be two states.
If (s,8") € (A U T)" then descy (i) = {i}.

! This concept is defined in Section 7.3.

94 CHAPTER 10. INTERMEDIATE SEMANTICS

Proof. Let so,...,s, a sequence of states such that sy = s, for all £ € {0,...,n — 1},
(Sk, Ski1) € A oy U T, and s, = 5.

For all k, let (ig, Pk, 0%, gx) = Sk. According to Claim 7.1, we can define, for all k£ > 1,
gy = git1 - gr- Therefore g, = go-g)-...-g,and ¢ =g} -...-g..

Assume by contradiction that there exists a thread j such that i <—, j. Therefore,
there exists a label ¢ and an integer £ < 1 such that (i,¢,j) € g¢,. By definition of
transitions, i, = ¢ = i9. Therefore, according to Lemma 10.5, sx1 € after(sy). Given

that (sx_1,sk) € A ey Y T, we conclude that (sg_1,sx) € T. Because T is conservative,

gi—1 = gr and then g} = g, ', - gr = €. Therefore (ig,¢,j) ¢ g,. O
These lemmas has a consequence on after:

Lemma 10.8. Let T' a conservative set of transitions.
If (s0,51) € (Agfioragy Y T)" and s1 € after(so) then thread(s,) = thread(so).

after(so)

Proof. Let (i, Py, 00, 90) = so and (i1, P1,0,go- g1) = s1. By Lemma 10.7 descy, (i0) = {io}
and by definition of after, i; € descy, (io).]

Lemma 10.9. Let T} a conservative set of transitions.
Let sg, s1, s three states such that:

e (so,51) €1y,

e thread(sg) = thread(sy),

e and (s1,s) € Transitions™.

If s € after(sy) then s € after(sy).

Proof. According to Claim 7.1, the following definitions are correct:
(i9, Py, 00, go) = S0, (i1, P1,0,go - g1) = sy and (i, P,0, g0 - g1 - 9) = s.

By Lemma 10.7 desc,, (ig) = {io} and by definition of after, i; € desc,,{ip}. According
to Lemma 7.2, descg,.4(ig) = descy(descy, (1)) = desc,(io).

Because s € after(so), idescg,.q({i0}), therefore i € desc,(ip). Hence s € after(s;). O

10.2 Definition of the G-collecting Semantics

The definition of the G-collecting semantics [“stmt, {'] of a statement “stmt, ¢’ requires some
intermediate relations and sets. The formal definition is given by the following definition:
Definition 10.2.

def

[“stmt, £'](S,G, A = (S',G U Self UPar U Sub, A U Par U Sub)

{|*stmt, '[}(S,G, A) = [Reach, Ext, Self, Par, Sub]

10.2. DEFINITION OF THE G-COLLECTING SEMANTICS 95

J1 J1 J1

J3 J3 2 J3 2

LT ME

(a) Reach (b) Reach (c) Par (d) Sub

Figure 10.2: G-collecting Semantics

where:
(SO, 8]_) E [(G|(th87‘(80) ﬂ TrZstmt"g/) U A\after(so):l
Athread(sg) = thread(sy) A label(so) = ¢
S" = {s1|s1 € Reach(S) A label(sy) = '}
Self = {(s,s') € Tregmep|s € Reach(S)}
Par = {(s, ") € Tregm |30 € S : (S0, 5) € Reach; Schedule A s € after(sy)}
EXt(307 31) = [(G|after(50) N Tmstmt,@’) U A‘m U G\after(sl)]

ds9, 81 € S x 8" : (sp,51) € ReachAa
(s1,8) € Ext(sg,s1) A s € after(so) \ after(sy)

Reach = {(50, s1)

Sub = {(S, S,) € Tréstmt,ﬂ’

Let us read together, on some special cases shown in Fig. 10.2. This will explain the
rather intimidating of Definition 10.2 step by step, introducing the necessary complications
as they come along.

The statement is executed between states sg = (jo, P, 0, ¢) and s1 = (jo, P',0',9-¢').

Figure 10.2(a) describes the single-thread case: there is no thread interaction during
the execution of ‘stmt, ¢'. The thread js is spawned after the execution of the statement.
E.g., in Fig. 6.2a, “p := &x;2p := &y, l5.

In this simple case, a state s is reachable from s if and only if there exists a path from
sp to s using only transitions done by the unique thread (these transitions should be in
the guarantee G) and that are generated by the statement. S’ represents the final states
reachable from S. Finally, in this case:

Reach = {(so,51) € [GN ‘Z‘restmt7g/]*|label(so) = (}
S" = {s1 | s1 € Reach(S) A label(s;) = ('}
Self = {(s,s") € Tregmer | s € Reach(S)}
[“stmt, €'](S, G, System) = (S', G U Self, System)
Par = Sub = ()

96 CHAPTER 10. INTERMEDIATE SEMANTICS

Figure 10.2(b) is more complex: jy interferes with threads j; and js3. These interferences
are assumed to be in A. Some states can be reached only with such interference transitions.
E.g, consider the statement “sy := 1;%92 := y, £, in Fig. 6.2d: at the end of this statement,
the value of z may be 3, because the statement “7y := 3, ¢, may be executed when the
thread masn is at label ¢19. Therefore, to avoid missing some reachable states, transitions
of A are taken into account in the definition of Reach. In Fig. 10.2(b), the statement
stmt, (' is executed by descendants of jy of kind (i) (i.e., after(sg)), and the interferences
come from j; and j; which are descendants of kind (i) (i.e., in after(sg)). Finally, we find
the complete formula of Definition 10.2:

(s0,51) € [(G|aﬁer(50) N Tféstmt,z/) U A‘after(so)]* })

Reach =
sac {(SO’ 51) Athread(sg) = thread(sy) A label(sg) = ¢

In Fig. 10.2(c), when j, executes the statement ‘stmt, ¢’ it creates subthreads (j, and
ja) which execute transitions in parallel of the statement. The guarantee G is not sup-
posed to contain only transitions executed by the current thread but also these transitions.
These transitions, represented by thick lines in Fig. 10.2(c), are collected into the set Par.
Consider such a transition, it is executed in parallel of the statement, i.e., from a state of
System oReach({sg}). Furthermore, this transition came from the statement, and not from
an earlier thread, hence from after(so).

Par = {(s,5") € Tregymep | 350 € S = (S0, 5) € System o Reach A s € after(sy)}.

The threads created by j, when it executes the statement ‘stmt, ¢ may survive when
this statement returns in s, as shown in Fig. 10.2(d). Such a thread i (here, 7 is j, or j; or
Je) can execute transitions that are not in Par. Sub collects these transitions. The creation
of 7 results of a create statement executed between sy, and s;. Hence, such a transition
(s,s') is executed from a state in after(so) \ after(si). The path from s; to s is comprised
of transitions in (Gjafrer(so) N Trestmee) U A fiertsy (similarly to Reach) and of transitions of
Jo or js under the dotted line, i.e., transitions in Gjper(s,)-

Figure 10.3 gives the beginning of a program execution. This execution begins as Figure
9.1. Let “tstmt, £ be the statement of Figure 7.4.

We consider:

e |Reach;,Exty, Self,Pary, Sub;| = {‘41 stmt,&o‘}<{sl}, System, System),
e (S1,Gy, A) = [“stmt, 0]{{s1}, System, System),

Applying the definitions, we state that:

e Reach; = {(s,s) | label(s) = (1},

S, =10,

e Self; = {(s1,$2)} U System,

10.2. DEFINITION OF THE G-COLLECTING SEMANTICS

Name | Threads | Control point | Buffers | Memory Genealogy

s1 main A 1) =0 €

So main l 0 =0 €

S3 main A 0 =0 (main, ly,1)
i 03 0

Sy main A 0 =0 (mawn, ly,1)
i g 0

S5 main A 0 =0 (main, (s, 1)
i Uos (x,1)

Sg main A 1) =0 (main, (s, 1)
i los (x,1)

S7 main ly 0 =0 (main, (s, 1)
i los (x,1)

sg main A 0 =0 | (main,ly,1i)- (main,ly,j)
i los (x,1)
J {3 0

Sg main 0 0 =0 | (main,/ly i) (main,ls,j)
i Lo (x,1)
j 3 0

sg main 0 0 =0 | (main,ly,i)- (main,/ls,j)
i loo (x,1)
J {3 0

510 main 12 0 =0 | (main,/ly i) (main,ls,j)
i lop (x,1)
j {3 0

S11 main 2 0 x=0 | (main,ly, i) - (main,/ls,j)
i los (x,1)
J {3 0

519 main Uy 0 x=0 | (main,ls, i) (main,(s,j)
i Cop (x,1)
J Uo (x,1)

Figure 10.3: Example of Execution

97

98 CHAPTER 10. INTERMEDIATE SEMANTICS

e Par = System,

e Sub = (),

e G, = {(s1,2)} U System,
e and A, = System

Since the G-component of ({s}, System, System) is System, we collect only a few number
of transitions in Self;, Par; and Sub;. Notice that we collect the transition (si,sq) in
Self;.

Now, let us consider:

e [Reachy, Exty, Selfy, Pary, Suby| = {Vl stmt,foo‘}<{sl},G1, System),
o (Sy, Gy, Ay) = [“1stmt, Loy]{{s1}, Ga, System),

Notice that:

e Reachy = {(s1, $2)} UReach,

e S, =1,

e Selfy = {(s1, $2), (s2,53)} U System,

e and G, = {(s1,52)} U System.

Figure 10.4 gives an alternative execution. This execution of the program of Figure 7.4
begins with the same states sq, so and s3. Nevertheless, when in s3, instead of going to sy,
in Figure 10.4, the system goes to s}, st and sj. After s the system goes back to the first
execution of Figure 9.1. Tt go to state sy.

Now we consider:

o [Reachs, Exts, Selfs, Pars, Subs] = {|create(““x := x+1), (1 [}({s2}, Transitions, System).
o (S3,G3,A3) = [“2create(*x := x + 1), (,]{{s2}, Transitions, System)

Notice that:

e (s2,53) € Reachy

® S3 € S5

o (s3,5)) € Exts(sa,s3)

As a consequence, (sy,S5) € Par, but (si, sg) ¢ Par. Actually, (s%, si) € Sub.

10.3. PROPERTIES OF THE G-COLLECTING SEMANTICS

Name | Threads | Control point | Buffers | Memory Genealogy

s1 main A 1) =0 €

So main ly 1) T = €

S3 main A 1) =0 (mawn, (s, 1)
i ls 0

s main 2 0 =0 (mawn, (s, 1)
i ls 0

st main 2 0 =0 (main, (s, 1)
i g 0

st main 2 0 =0 (main, (s, 1)
i los (x,1)

S7 main l 0 =0 (main, (s, 1)
i los (x,1)

sg main 0 0 =0 | (main,ly,i)- (main,/ls,j)
i loo (x,1)
J ls 0

Sg main 0 0 =0 | (main,/ly i) (main,ls,j)
i lop (x,1)
J ls 0

Figure 10.4: Alternative Execution

99

100 CHAPTER 10. INTERMEDIATE SEMANTICS

. e € (A7 U System)*
torf def 3 S S) |after(s)
interfere,(S) { SES: Athread(s) = thread(s')
def s = (i, P,o,9- (i,(,7)) € States :
post(l) = { s’ € after(s)
: e ,P,o,¢') €8

schedule-child(S) & {(j,P,0,¢) |3 (i, P.og) €8 }

(S) {] 9) |3, g: ~g =g-(i,0,7)

init-child,({S,G,A)) = {interfere,(,.,,,) © Schedule-child(s),
System, AU (Gipost(r)))
combine gy (G) = (interferey ¢ (S),GUG, AUG
execute-thread;s,(G) G with (8',G',A") = f(S,G,A)
guarantee (S, G,A) < execute- thread}“éA(G)

Figure 10.5: Basic semantic functions

10.3 Properties of the G-collecting Semantics

To prepare for our static analysis we provide a compositional analysis of the G-collecting
semantics in Theorem 12.1 below. To this end, we introduce a set of helper functions, see
Fig. 10.5.

The function interfere,(S) returns states that are reachable from S by applying in-
terferences in A. Notice that these interferences do not change the label of the current
thread:

Lemma 10.10. Let s = (i, P,0,9) and s' = (i', P', 0", ¢'). If (s,) € (Agzerey U System)*
then P(i) = P'(i), i.e., label(s) = P’'(thread(s)).

If furthermore thread(s) = thread(s') then label(s) = label(s').
Proof. There exists a sequence of states sg, ..., s, such that sy = s and s, = s’ and for

all k€ {0,...,n— 1}, (Sk, Sky1) € A ey U System.

Let (ig, Py, 0%, gx) = Sg. Let us prove by induction that Py(i) = P(i). If (sk, k1) €
System and Py,(i) = P(i) then Pyi1(i) = P(i). If (sk, sp11) € Agparey and Pie(i) = P(i)
then si ¢ after(sg) and then iy # ¢ and then Py.1(i) = P(i) = P(i). O

The function post(¢) computes the set of states that may be reached after having
created a thread at label /; schedule-child applies a schedule transition to the last child
of the current thread. The function init-child, computes a configuration for the last
child created at ¢, taking into account interferences with its parent using post(/); notice
that we need here the genealogies to define post(¢) and then to have Theorem 12.1. The
following Lemma shows the link between interfere and post(): the function interfere
does not allow to enter into a new set post (/).

Lemma 10.11. If s’ € interfere,({so}) Npost({) then sy € post({)

10.3. PROPERTIES OF THE G-COLLECTING SEMANTICS 101

Proof. Let (ig, Py, 00, 90) = So and (ig, P, 0", g0 -¢') = 5.
s' € post(f). Therefore, there exists s = (i, P,o,g- (i, ¢, 7)) such that s" € after(s).
Hence, both g- (7,4, j) and go are prefixes of go - ¢’. According to Lemma 2.7, two cases
may OCCUr:

o First case: ¢ - (4,4,7) <prefix go. Therefore, there exists a genealogy ¢; such that:
g- (ngaj) 91 = Jo-
Because s' € after(s), ip € descy,.y(i). According to Lemma 7.2 iy € descy(desc(g1))
By definition of desc, there exists jo € desc(gy) such that i € descy(jo). Then,
according to Lemma 7.4 descy(jo) S descy,.qy. Hence jo <g4.o i0 and ig <g,.¢ Jo-
Then ig = jo. Hence, s¢ € after(s) and therefore sy € post(¥).

e Second case: gy <prefix 9 - (4,4, 7).

Let sy = (i, P,o,g - (i,¢,7)). According to Lemma 7.1, (sp,s’) € Transitions”.
Hence, according to Lemma 10.5, s" € after(sg).

Nevertheless, (s, sg) € Schedule, and, according to Lemma 10.6 after(s) Nafter(sy) =
0. But s’ € after(s) N after(sy). This is a contradiction.

]

The function execute-thread computes a part of the guarantee (an under-approximation),
given the semantics of a command represented as a function f from configuration to con-
figuration. And guarantee iterates execute-thread to compute the whole guarantee, as
shown by the following proposition:

Proposition 10.1 (Soundness of guarantee). Let (S, G, A) a concrete configuration, “stmt, '
a statement and G, = guaranteey,., ,<S,G,A). Let so € S and s € after(so) such that
(57 3/) € Tnstmt,f"

If (so,s) € [(‘Z‘rzstmt’zl)mﬂer(m) U A|aﬂT(so)] then (s,s") € Gy
Proof. Let (Sg,Gg, Ay = execute—threadﬁ}stmt’é,ﬂ’sﬁA(G)
and [Reachy, Exty, Selfy, Pary, Suby] = {|’stmt, '[}<S, Gy, A)
and T = Tr‘zstmt,ﬁ’

Let So, ..., Sp11 a path such that s, = s, s,,,1 = ¢ and for all k, (sy, sx41) € [ﬂaﬁer(so) U
A‘W]*. Let m an arbitrary integer. Then, let ko the smallest & (if it exists) such that
(8k:8k+1) € Tjafter(s) Gm- Then, by definition, (sk,,ske+1) € Self,, UPar, < Gni1 S
Geo. O]

This proposition shows how the G-collecting semantics is used to overapproximate the
operational semantics.

During the execution of a statement “stmt, ¢/, some interference transitions may be fired
at any time. Nevertheless, the labels of the thread(s) executing the statement are still in
a label of the statement:

102 CHAPTER 10. INTERMEDIATE SEMANTICS

Lemma 10.12. If (so,5) € (Tregpmep U A|aﬁer(50)) , label(sg) € Labs(“stmt, ') and s €
after(so) then label(s) € Labs(“stmt, ().
Futhermore, if label(s) = 0" or label(s) = { then thread(sy) = thread(s).

Proof. There exists a path si,...,s, such that s, = s and for all £ € {0,...,n — 1},
(Sk, Sk_1) € T ¢ strmt " VA afier (o) Let (ig, Py, 00, 90) = So and for k = 1, let (ix, Py, 0k, go-gr) =
Sk

Let us prove by induction on k that P (i) € Labs(*stmt, ¢') and for all j € desc,, ({io})~
{io}, Pe(4) € Labs pua(“stmt, ().

Let us assume that k satisfies the induction property, and let us show that k + 1 satifies
the induction property.

In the case (sk, Sk+1) € Agarsey
desca,, ({io}), Pili) = Peni()).

In the case (g, Sk+1) € Tregyme and iy = ig, by Lemma 7.7, Pyy1(i) € Labs(“stmt, (').
Furthermore, if j € descg, ({io}) then Py(j) = Prt1(j). If j € descgkﬂ({zo}) ~ descg, ({i0}),
then j € Dom(PkH) . Dom(P;) and by Lemma 7.9, Pyy1(j) € Labs i (‘stmt,).

In the case(sk, sk11) € Tregmee and iy = 49, we conclude similarly by Lemma 7.10. If
s € after(sy), then i, € desc,,({io}) and therefore label(s) € Labs(“stmt, ().

If label(s) = ¢ or label(s) = ¢, then, because by Lemma 7.10, ¢ and ¢’ are not in
Labs g (“stmt, '), we have thread(sq) = thread(s). O

, ik ¢ descy, ({i0}) and then for all j = desc,, ({io}) =

The following lemma summarizes the consequences on Reach of Lemmas 10.2, 10.5 and
10.12:

Lemma 10.13. Let [Reach, Ext, Self, Par, Sub| = {|*stmt, £'[}(S, G, A).
If (s0,) € Reach therefore s € after(so), after(s) S after(so) and label(s) € Labs(“stmt, ').

Proof. (s, s) € Reach. Therefore, by definition, thread(sy) = thread(s). Hence, according
to Lemma 10.5, s € after(sp). According to Lemma 10.2, after(s) < after(so).

Given that (so, s) € Reach, we state that (s, s) € [(Gmﬂer(so) N Tregmie) U A gy) -
Hence, according to Lemma 10.12, label(s) € Labs(‘stmt, ('). O

After a statement returns, some subthreads created during the execution of the state-
ment may continue to be executed. We introduce a concept of coherence:

Definition 10.3. A set T of transitions is coherent with ‘stmt, ¢’ and the states s, and s;
if and only if:

V(s,s") € T,s € after(sy) N after(sy) A label(s) € Labs(“stmt, ') = (s,s") € Tr'stmt, (.

Recall Figure 10.2d. A set of transition coherent with stmt, ¢ and the states sy and s,
of 10.2d may contain two kinds of transitions:

e Transitions (s, s") done by js, je and js. These transitions are in Treg, » (in bold in
Figure 10.2d), or are transitions of another statement (i.e., label(s) ¢ Labs(‘stmt, (')).

10.3. PROPERTIES OF THE G-COLLECTING SEMANTICS 103

e Transition done by other threads.

The Following Lemma ensures us that any transition executed by a thread created
during the execution of ‘stmt, ' (i.e., between so and s;) is a transition generated by the
statement ‘stmt, 0.

Lemma 10.14. Let T a set of transitions coherent with stmt, sqg and s;. For all s =
(i, P,o,g) € States, if (s1,s) € T*, therefore Vj € descy(ip) ~ descgl—l,g(io), P(j) €
Labs cpig (“stmt, 1),

Proof. Let iy = thread(s).

Let us prove by induction on n € N that for all n, for all s = (i €, P €,0 €, g €)States,
if (s1,5) € T", therefore Vj € descy(io) N descy-1,(io), P(i) € Labs chaa(“stmt, ('),

Let s such that (s;,s) € T, Therefore, there exists s, such that (s;,sy) € T" and
(s2,8) €T.

Let sy = (12, P, 02, 92). Let j € descy(io) N descy—1,,(io).-

There are several cases:

e First case: j € descy,(ig). Therefore, by induction hypothesis, Py(j) € Labs pia(‘stmt, (').
There is two cases.

o First case j = iy. Because j € desc,(ip), s2 € after(sp). Because j €
desc,-1.,(io), s2 ¢ after(so). Hence, because T' is coherent, (s2,s) € Trtstmt, 0.

Therefore, by Lemma 7.9, j € Labs cpiq(“stmt, 0).

o Second case j # i, hence, according to the definition of transitions, Py(j) =
P(j). Therefore P(j) € Labspia(‘stmt, ('),

e Second case: j €¢ descy,(ip). Therefore, by definition of transitions, (iz, P2(i2),) €
gy ' - h. Therefore, according to Lemma 7.4, descy—1,,(i2) S descg(ip) and there-
fore iy € descy(ig). Furthermore, because j € desc—1 (iz) and j ¢ desc 1 (io),
therefore, according to Lemma 7.4, desc -1, (i) N desc -1 (io) = () and therefore
g & deSCgfl.g(io).

Hence, by induction hypothesis, Py(iz) € Labscpaa(‘, stmt,). And therefore, by
Lemma 7.9, P(j) € Labspua(‘, stmt, ().

]

The following proposition is fundamental to prove the main properties of Ext(,) and
Sub.

Proposition 10.2. Let ‘stmt, V' a statement,
[Reach, Ext, Self, Par, Sub| = {‘estmt,é"RS,G,A) Let (sg,$1) € Reach and T a set of
transitions coherent with stmt, sy and s;.

Let s' and s" such that (s1,8") € T* and (s',s") € T. Therefore, if ' € after(sq) then
either s' € after(s1) or (s',s") € Tregm -

104 CHAPTER 10. INTERMEDIATE SEMANTICS
Proof. Let (ig, Py, 00,90) = so and (', P',0’,¢') = ¢'.
Either s’ € after(s;) or s’ ¢ after(s;).

e First case: s’ € after(s;), we have nothing to prove.

e Second case: s’ ¢ after(sy). Therefore i € descy,.y(ig) \ descy(ip), and by Lemma
10.14 label(s') € Labs cpaa(“stmt, ¢'). Hence, by definition of T', (5", 8") € Tre s -

]

The G-collecting semantics is a sound overapproximation on the operational semantics.
In other words:

Theorem 10.1 (Soundness). Consider a program ‘cmd,ly and its set of initial states

Init. Let:
(8,6 A Z [emd, £,]{ Init, Goy, System)

with G = guaranteey,,,, , ({Init, System, System)

Then:
s’ = {(main,P,o,q9) € Tr? oma.r, (ANit) | P(main) = (o}
G = Go=1{(55) € Tremar, | 5 € Trippay, (Init)} U System
A = {(s,8") € Treamae, | s € ‘Irzcmdh<[nit> A thread(s) # main}
USystem

Proof. Let [Reach, Ext,Self, Par, Sub| = {‘Ecmd,éw‘}ﬂmt,Go@, System).
We only have to prove that Reach = {s € 7r;_ ,, (Init) | thread(s) = main}. We
conclude using Definition 10.2.

Let s1 € {s € Tr7,,,4,, (Inil) | thread(s) = main}.
There exists sg € Init such that (so,s) € 7r7,,,,, By proposition 10.1, (s, s) €
Geo N Tr}fcmd’gl

By Lemma 10.4, (50, 5) € (Goojaprer(so) N T ema,e,) U System s, Hence (so,s). O

CHAPTER 11

Overapproximation of the
Intermediate Semantics

To ease abstraction, we overapproximate the intermediate semantics by a denotational
semantics. In this Chapter, each section give a way to overapproximate one statement.
These overapproximations will be used to define a denotational semantics in Chapter 12.

The Proposition 11.1 of Section 11.1 allows to overapproximate basic statements. The
proposition 11.2 of Section 11.2 allows to overapproximate the composition of two state-
ments. Notice that the composition of statements can be overapproximated by the com-
position of their semantics. This is not trivial, since when a statement “ cmd;; 2 cmds, U5
is executed, the command “*c¢md; may spawn some threads that will interfere with the
execution of the command 2 cmds.

The proposition 11.3 of Section 11.3 allows to overapproximate if statements. The
proof of this proposition is similar to the proof of Proposition 11.2, since a if statement
look like a composition between a guard and a command.

The proposition 11.4 of Section 11.4 allows to overapproximate the composition of two
statements. Notice that a while loop may create an infinite number of threads. And a
thread created in the k' iteration may interfere with the k + 1" iteration of the loop, but
not with the k — 1*" iteration.

Finally, the Proposition 11.5 of Section 11.5 allows to overapproximate thread creation.

105

106 CHAPTER 11. OVERAPPROXIMATION OF THE INTERMEDIATE SEMANTICS

11.1 Basic Statements

In this section, we exhibit an overapproximation of the semantics of basic statements. This
overapproximation is given by Proposition 11.1

An execution path of a basic statement can be decomposed in interferences, then one
transition of the basic statement, and then, some other interferences. The following lemma
shows this. This lemma will allow us to prove Proposition 11.1.

Lemma 11.1. Let “basic, {5 be a basic statement,
and |Reach, Ext, Self, Par, Sub| = {‘élbasic, 52‘}<S,G,A>. Let (sg,) € Reach then:

o cither s € interfere,({so}) and label(s) = {4,

e or s € interfere,(7ri, ;. ,,{interfere,({so})))
and label(s) = {y

Proof. By definition of Reach (See Definition 10.2), there exists sy, ..., s, such that s, = s
and for all k < 0, (Sk, Sk+1) S (G\after(so) N Trzlbasm&) U A|aftT(so)‘

Either there exists k such that (sg, Sk11) € Glafter(so) N T2 pasicr,) OF there do not exist
such a k.

e First case, there do not exist such a k. Therefore (so,s) € (Agzey U System)*.
By definition of Reach (See Definition 10.2), thread(so) = thread(s). Therefore s €
interfere,({so}). By Lemma 10.10, label(so) = label(s), hence, label(s) = ;.

e Second case, there exists such a k. Let ky be the smallest such k. Hence, by defi-
nition, sy, € after(so) and (so, sx) € (A ey Y System)”. Hence, by Lemma 10.8,
thread(sg) = thread(sy,). Therefore si, € interfere,(S).

Furthermore, by Lemma 7.6, label(sg,11) = lo.

Either there exists k > ko + 1 such that (s, k1) € Glapter(so) N D71 pasicr,) OF there
does not exist such a k.

U

).
)

b

o First case, there does not exist such a k. Therefore (si,41,5) € (Agza0y
System)*. By definition of Reach (See Definition 10.2), thread(s;) = thread(
Therefore s € interfere,({si,+1}). By Lemma 10.10, label(sy) = label(
hence, label(s) = (5.

o Second case, there exists such a k. Let k; be the smallest such k. By definition
of ki, (Sko+1:Sk) € (Agfirsgy Y System)*. By Lemma 10.10, label(sy, + 1) =
label(sy,), therefore label(sg, + 1) = fy. According to Lemma 7.6, this is a
contradiction.

S
S

O

Given a basic statement “ basic, {> and [Reach, Ext, Self, Par, Sub] = {|“basic, (-[}<S, G, A),
we claim that:

11.1. BASIC STATEMENTS 107

Claim 11.2. Par =
Claim 11.3. Sub =
Claim 11.4. Self € {(s,5") € Trupasics, | 5 € interfere,(S)} U System.
Claim 11.5. S’ € interfere, (Tr,}lbasic’£2<interfereA(S)>).

Claims 11.2 and 11.3 say that when a basic statement is executed, only one thread
is executed. Notice that spawn creates a subthread, but does not execute it. The Claim
11.4 characterizes the transitions done by the current thread. The Claim 11.5 gives an
overapproximation of 8’, the set of states reached at the end of the execution of a basic
statement.

We prove these claims in the following way.

proof of Claim 11.2. Let (s,s’) € Par. According to Definition 10.2, there exists sy € S
such that (sg,s) € Reach; Schedule and s € after(sg). Therefore there exists s; such that
(S0,51) € Reach and (si, s) € Schedule.

By Definition 10.2, thread(sg) = thread(s;).

Given that Tre, 4. ¢, is conservative by Lemma 7.5, according to Lemma 10.8 thread(so) =
thread(s).

By definition of Schedule, thread(s,) # thread(s).

There is a contradiction, therefore Par = (). O

proof of Claim 11.3. Let (s,s’) € Sub. By definition, there exists sp € S and s; such that
(s0,51) € Reach, (s1,s) € Ext(sg, s1) and s € after(sg) \ after(s).

In particular (s1,s) € [(AUG) gz Y T basicr,] Hence, by Lemma 10.8, thread(s,) =
thread(s).

By definition of Reach, thread(sy) = thread(sy) and then according to Lemma 10.5,
s € after(so).

This is contradictory with Definition 10.2 that implies s € after(so) ~\ after(s;). Hence
Sub = ().

O

proof of Claim 11.4. Let (s,s') € Self \ System. Then (s,s') € Try,,, ., and s €
Reach(S). Then, there exists s; € S such that (sp,s) € Reach. Because (s,s') €
Tty pasicr,r PY Lemma 7.6, label(s) = {1 # {>. By Lemma 11.1, s € interfere,({so}) <
interfere,(S). O

proof of Claim 11.5. Let s € 8'. Therefore, label(s) = ¢, and there exists sy € S such that
(50, 5) € Reach.
Because label(s) = {5 # (1, according to Lemma 11.1:
s € interfere,(7ri,,,,,. ,(interferey({so}))) S interfere,(7ry,,,,;, ,,(interfere,(s)))
[

The following statement gives an overapproximation of the semantics of basic state-
ments.

108CHAPTER 11. OVERAPPROXIMATION OF THE INTERMEDIATE SEMANTICS

Proposition 11.1 (Basic statements). Let “basic, lo be a basic statement, then:
[“basic, £5](S, G, AY < {(S",G U Gpew, A

where 8" = interfere,(7ri,,, ;. Z2<interfereA(S)>)
and Gpey = {(5,5") € Tre,pogics, | 5 € interfere,(S)}

Proof. This proposition is a straightforward consequence of Claims 11.2, 11.3, 11.4 and
11.5. O]

11.2 Composition

Lemma 11.6. TTél emdi;%2 emda ly = Trel emd,lo U T”2cmd2,£3

In this section, we consider an initial configuration : Qy = {Sp,Go,A¢) and a se-
quence “emdy; 2 emdsy, (3. We write Trp = Tres emdy 0, A0 Try = Trey g, o, and Tr =
Tr[l cemdy;%2 emda f3

Define:

Q = (3,6 A = [“cmdy; 2 emdy, 03](Qo)

K = [Reach, Ext, Self, Par, Sub| = {‘21 cemdy; Cmd27€3‘}(Q0)
Qi = (S1,G1, A1) = [emdy, €:](Qo)

K; = [Reach;, Exty, Selfy, Pary, Suby]| = {|“ cmd, £2]}(Qo)
Q2 = (S2, G2, A2) = [emds, £3](Qy)

KQ = [Reachg,Extg,Selfg,Parg, Sub2] = {‘42 cmdg,fg‘}(Ql)

Lemma 11.7. If (s,s') € Tr and label(s) € Labs(“ cmdy, l3) ~ {€2} then (s, ') € Tr;.
If (5,8') € Tr and label(s) € Labs(2cmds, £3) then (s,s') € Trs.

Proof. Let us consider the case label(s) € Labs(“temdy, o) \ {f2}. Hence because labels
of the command “‘cmdy; 2 emd,, (3 are pairwise distinct, label(s) ¢ Labs(*2cmds, (3). By
Lemma 7.8, (s,s’) ¢ Tro. Hence, by Lemma 11.6, (s, s') € 7ry

The case label(s) € Labs(*2cmds, £3) is similar :
Because labels of the command “*cmdy ; 2 cmds, (5 are pairwise distinct, label(s) ¢ Labs(“ cmdy,).
By Lemma 7.8, (s,s") ¢ Tr1. Hence, by Lemma 11.6, (s, s') € Trs. O

Lemma 11.8. Using the above notations, for every (so, s) € Reach such that sy € Sy,
(a) either (sg,s) € Reachy and label(s) # (o

(b) or there exists s1 € Sy such that (so,s1) € Reachy, (s1,s) € Reachy and (s1,s) €
EXtQ(SO,Sl).

Proof. Let (sg, s) € Reach. Hence there exists sy, ..., s, such s = s,, and that for all k£ < 0,
(Sk, Sk+1) € (Golafter(so) N Tr) U Ao gfiariaey and thread(so) = thread(s.,).
Either there exists & such that (sj,sx+1) € (Goy)y N Try) ~\ System, or there does

not exists a such k.

after(so

11.2. COMPOSITION 109

e In the case where no such k exists, (sg, s) € Reach;.

Either label(s) # la, or label(s) # .

o If label(s) # lo, then we are in the case (a) of the lemma

o If label(s) # {3, therefore, (s,s) € Reachy and therefore s € S;. Notice that
(s,s) € Exty(sp,s). We are in the case (b) of the lemma.

e If such a k exists, let ky the smallest such k. By definition of ky, and by Lemma 11.6
(S0, Sko) € [Tr1UBogferaey]” By definition of Reach, label(so) = {1 € Labs(“ cmdy, ls).
Because (S, Sko+1) € Gojafter(so)s then sg, € after(so). so, according to Lemma 10.12,
label(sy,) € Labs(“temdy,ly). Given that (sk,,sk,11) € Tro ~\ System, according
to Lemma 7.8, label(sy,) € Labs(2cmds, f3). Hence label(sy,) € Labs(®cmdy, €3) N
Labs(“ cmdy, £5). Because the labels of “t cmdy; 2 emd, (3 are pairwise distinct, label(sy,) =
(5. Using Lemma 10.12, we conclude that thread(sy) = thread(s;). Hence (s, sy,) €
Reach;.

Let us show that (sg,,s,) € Reachy. Since (Sp,s,) € Reach and thread(sg,) =
thread(so) and label(sy,) = {2, we just have to show that (sk,,sn) € [(Gijater(sy) N
Tr) U Al\after(sl)]*'

For all k > 0, (sg, $x41) € (Gojafter(so) N Tr) U Ao afiertao)- According to Lemma 11.6:
For all k = ko, (sk, Sk+1) € (Gojafter(so) N T71) U (Gojagter(so) N Tr2) U Ao afierta)

after(so)"

We want to prove, for all k& = kg, two things:

(i) If (sk, Skr1) € (Gojafter(so) N Tr2) . System then s € after(s))
(11) If (Sk, Sk+1) S GO\after(so) N 7ry then (Sk, Sk+1) € Sub; € Ay

Either there exists a k that does not satisfy (i) and (ii), or there do not exist such a
k.

o First case, there does not exists such a k. By definition si, € after(sy), hence, ac-
cording to Lemma 10.2, after(sk,) < after(so) and then Ao zos < BofaFrertonyy:
Therefore (sg,, $,) € Reachy and (Sg,, Sn) € Extq(So, Sk,)-

Since label(s,) = {2, Sk, € S1-
o Let us consider the case where there exists such a k. Let k; the smallest such k.

For all k € {]{30, R 1}, given that for all & = ko, (Sk», 8k+1) S (G0|after(so) N
Tr1) U (Gojafter(so) N Tr2) U Bojafiertse) there are three cases:

> (Sky Sk+1) € Agfioayy, and then sy, € after(so).

> (Sk, 3k+1) € (G0|after(so) N ‘Irl) and then (Sk, Sk+1) c ‘Irl.

> (Ska Sk+l) € G0|after(so) N Try and then7 by (1)7 Sk € aﬁer(sl)'

110CHAPTER 11. OVERAPPROXIMATION OF THE INTERMEDIATE SEMANTICS

Hence (sg,, Sk,) € Exti(so, Sg,) and then if (sk,, sk, +1) € Try then (sg,, Sg,+1) €
Sub;. Hence k; satisfies (ii).

We apply the proposition 10.2 with the statement “ stmt, fo and T' = {(sg, Sp41) |
ko < k < ki}. Therefore, if (sp,,s6,41) € (Gojapter(so) N Tr2) . System, then
(Skys Sky41) ¢ Tr1 and sy, € after(sg). Hence ky satisfies (i).

This is a contradiction with the definition of k1, then k; cannot exist and this
case is not possible.

]

Lemma 11.9. Using the above notations, for every (so,s) € Reach such that sy € Sy and
s’ € 8, there erists s € Sy such that (so,s1) € Reachy, (s1,s) € Reachy and (s1,8) €
Eth(So, 81).

Proof. If (¢, s) € Reachy, then, according to Lemma 10.13, label(s) € Labs(“*cmdy, £3). In
this case label(s) # ¢3. This is not possible because s € §'.

Therefore, according to Lemma 11.8 there exists s; € Sy such that (so, s;) € Reachy,
(s1,5) € Reachy and (s1,s) € Exty(sg, $1) O

Lemma 11.10. Using the notations of this section, let so € Sp, 1 € S1, 89 € S, 5 € States
such that (so,s1) € Reachy, (s1,52) € Reachy N Exty(sp,s1) and (s2,s) € Ext(sg,sa).
Therefore (s1,s) € Exty(so, s1).

Proof. Recall that:

Ext(so, 52) = [(Go\after(SO) N Ir) U AO\aﬁT{so) U G0|aﬁ€T(52)]

Eth(So, 81> = [(G0|after(so) N {Irl) U A°|tzﬂT(so) U GO\after(sﬂ]

We do a proof similar to the proof of Lemma 11.8.

Let s, ..., s, asequence of states such that s, = s and s = s/, and for all &, (s}, s}, ;) €
(G0|after(so) N TT‘) U AO|aftT(50) U Go\after(SQ).

Given Lemma 11.6, we just have to prove that for all &, if (s, sk+1) € Gojarer(sp) N T2
then (i, Sxt+1) € Gojafrer(s;). Hence, we just have to prove that for all &, if (sj, sp41) €
Go|after(so) N T2 then s;, € after(sy).

Either there exists a k that (sg, Sx11) € Gojafer(
not exist such a k.

*

y N Try and s ¢ after(si) or there do

S0

e First case, there does not exists a such k.

e Second case there exists such a k. Let k; the smallest such &.
By definition of k1, (s2, 5},,) € Exti(so,s1,). Given that (s1, s2) € Exti(so, s1,), hence
(81, 821) € Eth(So, 81,).
We apply the proposition 10.2 with the statement “ stmt, ly and T = {(s}, s} 1) | 0 <
k < ki}. Therefore, if (s}, s, 11) € (Gojafer(so) N Tr2) . System, then (s}, s}, 1) ¢ Tr1
and s, € after(sy).
This is a contradiction with the definition of &, then k; cannot exist and this case
is not possible.

11.2. COMPOSITION 111

]

Lemma 11.11. Using the notations of this section, let sy € Sp, 81 € 81,82 € So, 5 such
that (s, s1) € Reachy, (s1,52) € Reachy N Ext(so, s1) and (sq,s) € Ext(sg, s2). Therefore
(82, 8) S EXtQ(Sl, 82).

Proof. Recall that
o Ext(so,52) = [(Gojapter(s) N T) U Aojaficray Y Goafter(sn)]”

° EXt2(817 82) = [(G1|after(s1) N TTQ) U Al\after(sl) U G1|aﬂer(52)]*

Let s, ..., s, asequence of states such that s, = s and s = s/, and for all &, (s}, s}, ;) €
(G0|after(so) ﬂ‘TT) UAo\iafter(so) UGO|after(52)~ Let us prove that for all /{Z, (S;C, S;CJrl) S (Gl|after(51) N

Tr?) U A1|aﬂer(s1) U G1|after(52)'
Let kg € {0, ce ,n}.

o Ilirst case (s},,5u,41) € Gojafter(so) N Tr1- According to Lemma 11.10, (s1,s) €
Exti(so, 51). Either 3 € after(s1) or s) ¢ after(sy).

o First case sj, € after(s;). We apply Proposition 10.2, with the statement
2cemdy, 03 then either (s}, sp .q) € Trz or s, € after(sz) U after(sy).
» First case, (s},,5y,41) € Tra, therefore (s, s, 1) € Tro N Try = System (by
Lemma 7.7)

» Second case,), € after(sz), therefore (s , sy 1) € Gi|afer(ss)-

o Second case: sj ¢ after(s;), therefore sj € after(so) \ after(s;). According
to Lemma 11.10, (s1, s},) € Extyi(so, 51) and therefore (s}, , s}, 1) € Suby S Ay,
! !
therefore (Sko, Sk0+1) S A1|aftT(sl)'

o Second case (S}, S 1+1) € Bojafiar(ag)- HENCE Sk, € aftersy. By Lemma 10.2, after(so) <
after(s1). Furthermore, by Definition 10.2 Ao < Ay. Hence (s}, sj11) € Aoy

e Third case: (s, ,5},11) € Gojafter(ss)- According to Definition 10.2 Go < G;. Hence
(S;W SZOH) € Gi1|after(ss)-
O
To prove the Proposition 11.2, we have to prove that Q; = Q'. We claim that
a

g SQ;

(a) 8

(b) Self’ < Self; U Selfs,

(¢) Par’ < Par; UPars U Suby,
)

(d) Sub’ < Sub; U Subs.

112CHAPTER 11. OVERAPPROXIMATION OF THE INTERMEDIATE SEMANTICS

Using these claims and the definition of the semantics [-], we conclude that Qy > Q'.
Now, we prove these claims:

Claim 11.12. Using the notations of this section, S' € S,.

Proof. Let s € 8, so there exists sy € S such that (sg,s) € Reach’ and label(s) = /.
According to Lemma 11.9 there exists s; € S; such that (s;,s) € Reachy. Therefore
S € SQ. UJ

Claim 11.13. Using the notations of this section, Self’ € Self; U Selfs.

Proof. Let (s,s") € Self’. So (s,s') € Tr, and there exists so € S such that (sg, s) € Reach’.
According to Lemma 11.8 either (so,s) € Reach; and label(s) # (2, or there exists
s1 € 87 such that (sg, s1) € Reach; and (s, s) € Reachs.

e In the first case, according to Lemma 10.13, label(s) € Labs(“‘cmdy, (). Since
label(s) # {5 and by Lemma 11.7, (s,s’) € 7r;. Hence, by definition, (s,s’) € Self;

e In the second case, by Lemma 10.12, label(s') € Labs(*>cmda, £3). Since (s, s') € T,
by Lemma 11.7 (s,s") € Try. Given that s € Reach(S;) and (s, s’) € Trq, we conclude
that (s, s’) € Selfs.

H
Claim 11.14. Using the notations of this section Par’ € Par; U Pary U Sub;.

Proof. Let (s,s") € Par’. Therefore, (s,s’) € 7r and there exists sy € So and s, such that
(S0, S2) € Reach, (sq2,5) € Schedule and s € after(sp). According to Lemma 11.8 there are
two cases:

o First case: (sg,s2) € Reach; and label(sg) # ¢5. Then, using the fact that System <
Tr1, (S0, 8) € (Tr1 U Aogrirayy) - Because s € after(so), by Lemma 10.12, label(s) €
Labs(“ cmdy, lo) \ {f5}. Hence, according to Lemma 11.7, (s,s’) € 7r;. We conclude

that (s, s’) € Par;.
e Second case: There exists s; € Sy such that (sg, s1) € Reachy, (s1,52) € Reachy and
(s1,82) € Exty(so, s1). Hence (s1,5s) € Exty(so, $1); Schedule = Exty(so, s1).
Either s € after(s;) or s ¢ after(s).
o If s € after(sy), then, because (s1,s) € Reachy; Schedule, by Lemma 10.12,

label(s) € Labs(*2cmdy, £3). So, in this case, by Lemma 11.7, (s, s’) € 7ry and
then (s,s’) € Pars.

o We consider the case s ¢ after(s;). Given that (sg,s;) € Reach, (s1,s) €
Exty(s1, $2), so by Proposition 10.2, (s, s’) € 7r1. Hence, (s, s’) € Sub;.

]

11.3. IF STATEMENTS 113

Claim 11.15. Using the notations of this section Sub’ € Sub; U Subs.

Proof. Let (s,s') € Sub’. Then, there exists sy and sy such that (sg,ss) € Reach’ and
(s2,8) € Ext(so, s2). According to Lemma 11.9, there exists s; € Sy such that (sg,s;) €
Reach; and (s1, s2) € Reachy and (s, s2) € Extq (S0, $1)-
By Lemma 11.10 and Lemma 11.11, (s1,s) € Exty(so, s1) and (s2, s) € Exta(sy, S2).
Either s ¢ after(s;) or s € after(s;).

o First case: s ¢ after(s;). Because s € after(sy), then s € after(so) \ after(sy).
Furthermore, given that (so, s1) € Reach; and (s1,s) € Reachy, by Proposition 10.2,
(s,s") € Tr;. We conclude that (s,s’) € Sub;.

e Second case: s € after(sy). Because s € after(so)\after(ss), s € after(s1)~\after(ss).
By Lemma 10.12, label(s) € Labs(2cmdy, (5). Hence, by Lemma 11.7, (s,s’) € Try
and therefore, (s, s’) € Subs.

O

Proposition 11.2. For each concrete configuration Q:
[“remdy; 2 emds, £5](Q) < [2emdsy, €3] o [“emdy, €5](Q).

Proof. This is a consequence of Definition 10.2 and of Claims 11.12, 11.13, 11.14 and
11.15.]

11.3 /f statements

In this section, we consider a command “1if (cond)then{*2 cmd, }else{’ cmds}, (, and an ini-
tial configuration Qp = (S, Go, Ag)

Let {(S',G', A" = [“if (cond)then{*2 cmd}else{* cmd}, (,](S, G, B).
Let [Reach’, Ext/, Self’, Par’, Sub’] = {|"tif (cond)then{"> cmd}else{s cmd}, (4]}(S, G, A).
Let (S;,G,, ALY = [“guardcond, £5](S, G, A).

Let [Reachy,Ext.,Self, Par., Sub,]| = {|""guardcond, (»]}(S,G,A).
Let (S1,Gy, A1) = [®2emdy, 04](Sy, Gy, AL

Let [Reach;, Ext, Self, Pary, Sub;| = {V? cmd1,€4‘}<s+,G+,A+>.
Let (S_,G_,A_) = [“guard—cond, (3](S, G, A).

Let [Reach ., Ext_, Self Par_,Sub_]| = {|"guard—cond, (5[}(S, G,).
Let (Ss,Go, Ay) = [emdy, £4](S—, G-, A_).

Let [Reachy, Exty, Selfs, Pary, Subsy| = {‘53 cmd2,€4‘}<Sﬁ,Gﬁ,Aﬁ>.
Let Tr = Tre,if(cond)then(t2 cmd; Yelse (% cmda} 44

Let Try = Trejf(cond)then(‘2 emd)else{ s cmd) L4 -

Let Tr_ = Trllif(cond)then{gQcmdl}else{@ cmda} by

Let Try = Tres e, 0, -

Let ‘Trz = TTZ3 emds,y°

114CHAPTER 11. OVERAPPROXIMATION OF THE INTERMEDIATE SEMANTICS

Lemma 11.16. Tml if (cond)then{’2 cmd}else{*3 cmd},ts ~— Tml guard cond,l UTN? cmdi,ly U(Iml guard—cond {3 U
TT£3 cmdy fy”

Lemma 11.17. If (so, s) € Reach and sy € Sy, then, one of the three following properties
hold:

1. s € interferey ({so}),
2. or there exists s1 € S; such that (s1,s) € Reach) NExt (s, $1)
3. or there exists s1 € S— such that (s1,s) € Reachy NExt_ (s, $1)

Proof. There exists a sequence of states s'0, ..., s/, such that s = so and s/, = s for all ,
(S;N S§c+l) (Go\after(so) N Tr) U Ao‘after(so)

Either there exists a k such that (s, s 1) € (Gojafter(so) N T7) . System either such a &
does not exists.

e First case: there does not exists such a k. Hence s € interferey ({so}).

e Second case: there is such a k: let &y the smallest such k.
Because (8, 5y,41) € Golafter(so) N T7, 53, € after(so). By Lemma 10.8, thread(sy) =
thread (s,). By Lemma 10.10, label(so) = label(sy) = ¢1. Therefore, due to Lemmas
7.7 and 11167 (8207 S;co-i-l) € Tmlguardcond,ég U ‘Tmlguardﬂcond,ﬁg‘

: / / / /
Either (Sk()? Sk0+1) S {Imlguardcond,fg or (Skoa Sk0+1) € {Imlguardﬂcond,fg'

o In the first case, (s}, S}, 11) € Tt guard(cond)r,- BY Lemma 7.6, thread(s),) =
thread(s),) and label(s},) = lo. Therefore, (so, s}, ;) € Reach, and s, €
S, .

Let us prove, that Vk € {ko + 1,...,n}, (s}, Sp41) € (Go\aﬂer(sko_,.l) N Tres epmge,) Y

Ao\after(so)

Assume by contradiction that there exists a k such that (s, s)_) ¢ (Go‘aﬁer(skoﬁ)ﬂ
Trts ema,ts) Y Bojaier(sgy- 1€t k1 the smallest such k. Therefore (s}, s} 1) €

Gojafter(so) N Tr. Hence sj € after(so). By minimality of &k, we can apply

Proposition 10.2. Hence, either s} € after(s), ;) or (s}, 8%, 1) € Trs.

» First case sy, € after(sy,). Therefore (s, Sk,+1) € Gojafter(s,,) N Zr- This is
in contradiction with the definition of k;. This case is not possible.

» Second case (s},,s;,41) € Try and (sp, € after(so) \ after(s;). Hence
(54,5 Sk, +1)- By minimality of ki, (Skgt1,5%) € Exti(So,Sk+1). Hence
(Sko+1,Sk,) € Suby. Nevertheless, according to Claim 11.3, Sub, = 0.
There is a contradiction, this case is not possible.

Given that G; > Go and Ay D A and, given that s} € after(s), by Lemma 10.2
after (s, 1) S after(so), we conclude that (sy,11,s) € Reach; NExt, (5o, Sg+1)-

o In the second case, (sy,, 5k 1) € D7t guard(—cond),e5- Lhe proof is similar to the
first case. We are in the case 3. of the lemma.

11.3. IF STATEMENTS 115

Claim 11.18. ' < S, US,

Proof. Let s € 8'. Therefore there exists sy € Sy such that (sg,s) € Reach and label(s) =
0y # (1. Hence, due to Lemma 10.10, s ¢ interfere, {so}.

According to Lemma 11.17, there exists s; such that either (1) s; € S; and (s1,s) €
Reach; N Ext(sg, 1), (2) or, s1 € S, and (s, s) € Reachy NExt_(sg, $1).

In the first case, by definition, s € S; and in the second case s € S, [

Claim 11.19. Self < Self, USelf; USelf_ U Self,.

Proof. Let (s,s") € Self. Then, there exists sy € So such that (sg, s) € Reach.
According to Lemma 11.17, there is three cases:

e First case s € interfere,,({so}). By Lemma 10.10, label(s) = ¢,. Hence, by Lemmas
7.7and 11.16, (s, 8") € Tre gyardcond.ts DT guard—cond.es- HeNCe, (5,5") € Self USelf .

e Second case there exists s; such that s; € S, and (s1,$) € Reach; N Ext, (sg, $1).
Hence, by Lemmas 7.7 and 11.16, (81, 5x) € D7tz pa, ¢, and therefore (s, s') € Self;.

e Third case there exists s; such that s; € S_ and (s1,s) € Reachy N Ext_(so, $1)-
Hence, by Lemmas 7.7 and 11.16, (s1, Sx) € Tres 4,0, and therefore (s, s’) € Selfs.

H
Claim 11.20. Par < Par; U Par,.

Proof. Let (s,s") € Par. Therefore, there exists sy € Sy and sy such that (sg, s2) € Reach
and (sq,s) € System and s € after(sy). Notice that thread(so) = thread(ss) # thread(s).
According to Lemma 11.17, there is three cases:

e First case, so € interfere, ({so}). Hence, due to Lema 10.8, thread(s) = thread(so).
This is contradictory.

e Second case: there exists s; such that s; € S, and (s1,s) € Reach; N Ext, (o, 1).
By Lemma 10.12, label(s) € Labs(“>cmdy, £4) and therefore, by Lemmas 11.16 and
7.7, (s,8') € Tres ypa, 4,- Hence, (s, ') € Par;.

e Third case: there exists s; such that s; € S_ and (s1,s) € Reach; NExt_(sp,s1). By
Lemma 10.12, label(s) € Labs(*cmds, £4) and therefore, by Lemmas 11.16 and 7.7,
(5,8') € Trey opay 0,- Hence, (s, ') € Pars.

]

Claim 11.21. Sub < Sub; U Sub,.

116CHAPTER 11. OVERAPPROXIMATION OF THE INTERMEDIATE SEMANTICS

Proof. Let (s,s") € Sub. Therefore, there exists sy € S and s € 8’ such that (sg,ss) €
Reach and (s2,s) € Ext(sp,s2) and s € after(sg) \ after(sy). Notice that thread(sy) =
thread(ss) # thread(s).

According to Lemma 11.17 there are three cases:

e First case: s, € interfere({sy}). Hence, due to Lemma 10.10, label(s;) = ¢;. This
is contradictory with sy € §'.

e Second case: there exists s; such that either s; € S, and (s1,s) € Reach; N
Ext, (s0,51). By Lemma 10.9, s € after(s;). By Lemma 10.12, label(s) € Labs(2cmdy, £4).
Because s ¢ after(sy), by Proposition 10.2, (s,s") € Tre, g, 4,- Hence, (s,s") € Sub;.

e Third case: there exists s; such that either s; € S_ and (s1, s) € ReachaNExt_(so, 51).
This case is very similar to the second case:

By Lemma 10.9, s € after(s;). By Lemma 10.12, label(s) € Labs(*cmds, (4). Be-
cause s ¢ after(sy), by Proposition 10.2, (s, s') € Tre, ong, 4,- Hence, (s,s") € Sub;

O

Proposition 11.3. For all concrete configuration Q:

. & emdy, 5] o [1 guard(cond), ¢
o thent oot (@) < [sl graleondh I

11.4 While loops

In this section, we consider a command “* while(cond){** cmd}, {3 and an initial configuration
Qo = (S0, Go, Ao)-

Let @ = (8,6, A"Y = [“while(cond){*2cmd}, (3]Qo.

Let Q, = (Su, Gy, Ay = 1oop ™ (Qo).

Let Q" = (8",G" A" = [“ while(cond){*2 cmd}, (5]Q,.

Let K = [Reach, Ext, Self, Par, Sub] = {|** while(cond){2cmd}, (5[}Q.,.

Let Q, = (Sy,G,,A,) = [“guard(cond), 5] (Q.).

Let K, = [Reach,,Ext,,Self,, Par, Sub,]| = {|" guard(cond), l>[}(Q.,).
Let Kema = [Reachema, Extema, Se1f cmd, PaTema, Subema] = {{2emd, 1]} (Q4).
Let Q- = (S—,G,A-) = [“ guard(—cond), (5]|Q..

Let K- = |Reach_,Ext_,Self_ Par_, Sub_| = {‘elguard(ﬁcond),fg‘}(lw.
Let 7r = Tre, while(cond){*2 cmd} 03

Lemma 11.22.

Trey while(cond){*2 cmd} b3 — Trey guard(—cond),l3 U Trey guard(cond),l2 U Tre, emd, 1

Notice that, by definition, Qg < Q,

11.4. WHILE LOOPS 117

Lemma 11.23. We use the above notations. Let sg, S1,...,8n,...,Sn G sequence of states
such that for all k € {0,...,m — 1}, (Sg, Sk11) € (Gw‘aﬁer(sO) N rZ“r) U Au aiertaey-

If (so,8m) € Reachy, (so,s,) € Reach, and s, € S, then for all k = n, (sg,Sk+1) €
(Gofagter(sn) N Tr) U Aw afiar(s,y-

P’I’OOf. For all k‘, (Sk, Sk+1) € (Gw\after(sn) N TT) U (Gw|after(so)\after(sn) N {IT) U Aw|aftT(so)'

Let kg = n such that (Skmsko-i-l) c (Gw\after(so)\after(sn) N TT). Notice that (Smsko) S
Ext,(so, sn) and sy, € after(so) \ after(s,). Hence, (s, Sky+1) € Sub,, < A,. Therefore
(Sko’ Sk()‘i‘l) € Aw|after(51)'

In addition to this, according to Lemma 10.13, after(s,) € after(so), so, for all k = n
(Sk7 Sk-i-l) (wlafter(sn) N TT) U Aw\after(sn) H

Lemma 11.24. Using the notations of this section, giwen so € S, and s € States, if
(S0, s) € Reach, therefore there exists s{, € S, such that (sg, s,) € Reach and

1. either (s{,s) € Reach-,

2. or there exists s| € S. such that (s{,s}) € Reach, and (s},s) € Reach.ns and
label(s) # ;.

Proof. There exists a sequence sy, ..., s, such that for all k € {0,...,n — 1}, (s, Sp11) €
(G| after(so) N Tr) U Ao (afieregy @nd sn = .
Let kg the biggest k such that the following properties hold:

(1) S € S,
(2) for all k&' € {]{3, o, n— 1}, (Sk/, Sk/+1) S (Gw\after(sko) N ‘Ir) U Aw‘m,

Such a k exists because 0 satisfy properties (1) and (2). By definition of the sequence
805 - - - Sn, (S0,5},) € Reach.

Either there exists k € {ko, ..., n—1} such that (sk, sk+1) € Gu|after(so) V1 white(cond) {2 cmd} £3™
System or such a k does not exist.

e First case, such a k does not exist. Therefore for all k € {kq,...,n — 1}, (g, Sky1) €

System U A,z Hence (so, s) € Reach, MReach . < Reach-..

e Second case : such a k exists. Let k; the smallest such k.

Therefore (sg,, Sk, +1) € Goafter(sig)> SO Sky € after(sg). According to Lemma 10.8,
thread(sy,) = thread(sy,). By Lemma 10.10, label(sy,) = label(sy,). But label(sg,) =
(1, therefore, by Lemma 7.8, (si,, Ski+1) ¢ Tresemay,- Therefore, by Lemma 11.22,

either (Sk’lv Sk1+1) € ‘Tmlguard(ﬂcond),ﬁg or (Skw Sk’1+1) S {Imlguard(cond),ﬁg'

o First case: (Sk,, Sky11) € Trts guard(—cond),es- BY Lemma 7.6, label(sk, 1) = (3.

Either there exists k > ko such that (si, sg11) ¢ Ao afierooy Y System or not.

after(so)

118CHAPTER 11. OVERAPPROXIMATION OF THE INTERMEDIATE SEMANTICS

» First case: such a k exists. Let ko be the smallest such k.
By minimality of ko, (sk,,Sk,) € [AthT(SO) U System]*. By definition of
Ko, (SkysSka+1) € Gujafter(sy) N Tr- Therefore sp, € after(sy,), then by
Lemma 10.8, thread(sy,) = thread(sg,+1). By Lemma 10.10, label(sg) =
label(sg,+1) = l3. So, by Lemma 7.8, (Sy,, Sk+1) € System. This is contra-
dictory with the definition of k.

» Second case: for all k& > ki, (Sg,Ski1) € Ay y U System. Hence

after(sy,
(Skys) € [AMW U System]* and then (s, s) € Reach_..
o Second case: (Sk,, Sk, 11) € Tres guard(cond) s
Therefore, by Lemma 7.6, si, 11 € S.. Either there exists k3 > k; such that

(Sk37 Sks-‘rl) < G\aftff?”(sko) A (‘Trelguard(ﬁcond),ég U Tnlguard(cond),@g) or there does not
exist such a ks.

» First case: such a kj exists, therefore, by Lemma 7.6, label(sy,) = /5.
According to Lemma 10.12, thread(s) = thread(sy,). Hence, (Sg,,Sks) €
Reach,,.

So, by Lemma 11.23, for all k € {ka,...,n — 1}, (sk, sk+1) € (Gujaprer(sy,) N
Tr) UAW‘W. This is contradictory with the maximality of ky. Therefore
ko does not exist.
> Second case: for all k > ki, (sk, sk+1) € (Guafter(sy,) N Te2 Cli)UAw‘aﬂT(SkO).
According to proposition 10.2, for all k > ki, (sk, Sk+1) € (Gufapter(sy,) N
Tres emae,) U Aoy Therefore, (sg,,s) € Reach,,

after(sky)

Assume by contradiction that label(s) = ¢;. Therefore, according to Lemma 10.12
thread(s) = thread(sg,) and then s € S,,. This is contradictory with the maximality
of k’o.

) def

def
We choose s, = sp,, §| = sk,

O

Lemma 11.25. Using the notations of this section, if s € Reach(Sy), then, there exists
Sg € S, such that:

1. either (so,s) € Reach .,

2. or there exists s} € S. such that (so,s}) € Reach, and (s},s) € Reach.nqs and
label(s) # ;.

Proof. Notice that Sy < S,,. It is a straightforward consequence of Lemma 11.24.]
Claim 11.26. Using the notation of this section S’ < S_.

Proof. Let s € 8/, therefore, s € Reach(Sy). Furthermore, label(s) = ¢3. Hence, according
to Lemma 10.13, for all s; € States, (s1,s) ¢ Reach,. Therefore, according to Lemma
11.25, there exists so € S, such that (sg,s) € Reach_. Hence s € S_.. O]

11.4. WHILE LOOPS 119

Claim 11.27. Self < Self_ USelf, USelf,,q

Proof. Let (s,s') € Self. According to Lemma 11.22, (s, 8") € Tres gyard(— cond),es Y T71 guard(cond) e
TT'ZQ emd fy -

o First case: (s,5) € Tre: guard(—cond) ts Y T guard(cond) ro- D1 to Lemma 7.6, label(s) =
¢ Hence, according to Lemma 11.25, either (sg, s) € Reach—, or label(s) # ¢;. There-
fore (sg,s) € Reach-_.

According to Lemma 11.1, either label(s) = {5 # (1 (contradiction) or s € interfere,,(Sy) <
Reach_(S,) NReach, (S,). Therefore either (s,s’) € Self_ or (s,s’) € Self,.

e Second case: (s,s') € Treypqy,- Therefore, according to Lemma 7.7, label(s) €
Labs(“emd, 01)\{¢,}. If 8" € Reach_(S,,), then, by Lemma 11.1, label(s") € {{1, (3}
Hence, s ¢ Reach_(S,). So, by Lemma 11.25, there exists s € Sy and s; € S,
such that (so,s1) € Reach, and (s1,s) € Reach.,y. According to Proposition 10.2,
(s,s') € after(s1) and therefore (s,s’) € Self .pq.

Claim 11.28. Par € Par g4

Proof. Let (s,s') € Par. There exists so € Sy and sy such that (sg,ss) € Reach, and
(s2,5) € Schedule and s € after(sg). By Lemma 11.1, either (sg,ss) € Reach_ or there
exists s; € S, such that (sg, s1) € Reach, and (s, s2) € Reach,,q and label(ss) # /1.

e In the first case, because s € after(sy) and Tr— is conservative (See Lemma 7.5), by
Lemma 10.8, thread(s) = thread(sy). But, by definition of Schedule and Reach_,,
thread(sy) # thread(s) and thread(sg) = thread(sy). This is contradictory.

e In the second case, by Proposition 10.2, s € after(s;). Because thread(s) # thread(sg) =
thread(sy), by Lemma 10.12, label(s) € Labs(*>cmd, 1)~ {ls}. Therefore, by Lemmas
11.22 and 7.6, (s,5') € Treypay, - Hence (s,8") € Pargpg

O
Claim 11.29. Sub < Sub.,

Proof. Let (s,s’) € Sub. Therefore, there exists so € S, and s; € ' such that (sg,s1) €
Reach and (s1,s) € Ext(sg, 51)-

Notice that label(s;) = (3, therefore, according to Lemma 10.13, s; ¢ Reach, ;Reach,q(S,).
Hence, by Lemma 11.24, there exists s, € S, such that (so,s;) € Reach and (s}, s;) €
Reach-_.

(81, S) S EXt(So, 81) < [(Gw\after(so) N TT) U AW|aftT(so) U Gw|after(51)]*-

Hence: (s1,5) € [(Gujaprer(so)~aprer(shy) N T7) U (Guojagier(sy) N T7) U Ao agiriaay Y Guolafrer(s)] -
According to Definition 10.2:

120CHAPTER 11. OVERAPPROXIMATION OF THE INTERMEDIATE SEMANTICS

(Sla 8) € [(SUbw|after(so)\after(so)) (Gw|after(sg) N ‘IT) U AW\aﬁ‘T(so) U Gw\after(sl)]*

Therefore: (51,) [(SUbw‘afmT(s)) (Gw\after(sg) A Tr) U Aw|aft7(so) U Gw\after(sl)]*-
Because, by Lemma 10.13, after(sy) < after(so). Hence: Ay aors © Ao afier(ery-

Therefore: (s1,s) € [(Subw‘aﬁer(so)) (G agter(sy) N Tr) U Ao afierGopy Y G after(s)]

Because Subw < Aw7 (51, 3) € [(Gw\after(sb) N {IT) U Aw|aftT(56) U Gw|afte7’(51)]*'

This means that (s1,s) € Ext, (s}, s1)-

Therefore:

(517 5) c [(GW|after(so)\after(sl) N TT) U (GUJ|afte7“(51) N {TT) U Aw\after(s A U Gw\after(sl)]

By Proposition 10.2, (s1, s) € (Gw\after(so)m{zdmlguard(ﬂcond),%)U(Gw‘after(sl)ﬂTr\Tr/Iguard(_‘wnd)’eQ)U
Aw“lﬁT(SO) U Gw\after(sl) EXtﬁ(slj 32). 0

Proposition 11.4. [“while(cond){*cmd}, (5](Q) < [guard(ﬁcond) ¢3] o 1oop™(Q)
with Loop(Q') = ([*emd, (1] o [| guard(cond), £5](Q')) U

Proof. Tt is a consequence of Claims 11.26, 11.27, 11.28 and 11.29.]

11.5 Thread Creation

Let Qo = (S, Go, Ag) a configuration.

Let @ = (8,6, A") = [“*create(*2cmd), ¢3](Qo)

Let K = [Reach, Ext, Self, Par, Sub] = {| create(2cmd), (5[} (Qo)
Let Q1 = <Sl, Gl,A1> = [lepawn(@),ﬁg]](Qo)

Let K1 = [Reachl, Eth, Selfl, Parl, Subl] = {‘Zl spawn(ﬁg), 63 ‘}(Qo)
Let Q2 = <SQ, G27A2> = j.ni't—Chi].d.g2 (Ql)

Let Gy, = guarantee,, Cmd’g‘/‘(Qg)

Let K3 = |Reachs, Exts, Selfs, Parg, Subs| = {‘32 cmd,ﬁw‘}<SQ,Gw,A2>
Let Q3 = (S3,G3,A3) = combineq,(Gy)

Let 7r = Tre, create(‘2 cmd),l3

Lemma 11.30. Trelcreate(ZQ cmd) ls 'Tr‘}lspawn(b) 03 U 'Trzg emd, b

When a thread ig executes “create(2cmd), (o, it creates some thread i (See Figure
11.1). The main idea is that three kinds of transitions may interfere with i.

e Transitions that may be fired by some of iy that have been created before i (e.g., t1),
or by a descendant of such a thread (e.g., tg). These transitions are represented in
green on the figure, and collected in A,.

e Transitions fired by iy after having created 7, or transitions fired by some descendant
of 7y created after i. These transitions (in blue on the figure) are collected in Gipost(e,)-

11.5. THREAD CREATION 121

to
t3
Ao
Gopost(rs)
2 emd, Vo
X
tG t5

N}

Figure 11.1: Thread Creation

122CHAPTER 11. OVERAPPROXIMATION OF THE INTERMEDIATE SEMANTICS

t1)
\
Y
Ao
Y
GO\post(ez)

N}

2 emd, £

Figure 11.2: Thread Creation

11.5. THREAD CREATION 123

e Transitions of descendants of i. These transitions are represented in orange. All
these transitions are generated by the statement 2 cmd, £y..

Figure 11.2 is a second example. The thread ¢ creates the thread t3

Lemma 11.31. Let sg, $1, S2 and s be four states such that (so,s1) € Reach;, sy €
schedule-child{s,}, label(sy) = {3, (s2,s) € Transitions™ and s € after(s).
Therefore, s € after(si) U after(ss).

Proof. According to Lemma 11.1, there exists s; and s} such that, s; € interfere, {so},
(507 1) € D74 gpawn(er) 25> @0 51 € 1nterferer{51}

By Lemmas 10.8 and 7.7, thread(sg) = thread(s)) = thread(s}) = thread(s).

Let ig = thread(so) and i = thread(s).

Let go, 94, j, g1 and g such that, respectively, the genealogy of s, s(, sg, s1, S2, S is go,
9o+ 9os 9o * o * (G0s L2, 7), Go - 9o - (G0, L2, 3) - 915 Go * 9o * (G0, C2,7) - 915 Go + Go * (G0s €2, 7) - g1 - g
Notice that s; and s, have the same genealogy.

Because (so,) € [Rojafier(agy Y System]*, by Lemma 10.7, descy (i0) = {io}-

Because (7, 51) € [Aojgferiegy U System]”, by Lemma 10.7, desc i e,,5)-g: (i) = desciy e, jiio} =
{i0, j}-

By Lemma 7.2, descy.(iy t5.5)-9:-g(T0) = descgldescig o, 5).g, (descy {io})] = descylio, j} By
Lemma 7.2, descy (i 0,,5)-01-9(00) = descg({io}) U descy({7}).

Because s € after(so), i € descy (i ts)-g:-9(i0). Therefore either i € descy(ip) or
i € descy(j). If i € desc,y(ip) then s € after(sy). If i € desc,(j) then s € after(ssy). O

Lemma 11.32. If (so,s) € Reach then:
e cither s € interfere, (so) and label(s) = ¢,

e or there exists si, 2,3 such that (sg,s1) € Reachy, (s1,82) € Schedule, (sq,s3) €
Reachg3NExtq(so, s1), (83,$) € Schedule and sy € schedule-child{s;}. Furthermore
label(s1) = label(s) = (3 and s € interfereq,, . ua{s1}-

Proof. (so,s) € Reach, therefore, there exists a sequence s, s/, such that s, = sg, s/, = s
and for every k € {0,...,n — 1}, (s, Sk+1) € [(Gojafter(so) N Tr) U Ao‘aﬁer(so)]*.
Two cases may occur:

o First case for every k € {0,...,n — 1}, (s}, 8411) € [Bojafiercagy U System. Therefore
s € interfere,,(so) and by Lemma 10.10, label(s) = ¢;.

o Second case: there exists k € {0,...,n—1} such that (s}, s} 1) ¢ [Aogzerrsgy U System.

Let ky the smallest such k.

after(so)

(5%0s Skor1) € (Gojafter(so) N Tr). Therefore s, € after(sp). Due to Lemma 10.8
thread(sy) = thread(sg).

Let s; = s}, According to Lemma 7.6, thread(s1) = thread(s;,) = thread(sy) and
label(s1) = ¢3. Therefore (sg, s1) € Reach.

124CHAPTER 11. OVERAPPROXIMATION OF THE INTERMEDIATE SEMANTICS

By definition of schedule-child, schedule-child{s;} is a singleton. hence, let sy
such that
{s2} = schedule-child{s;}.

Therefore, (s9,s1) € Schedule. Let (i,P,0,9) = s and s3 = (thread(sy), P, 0, g).
Therefore, (s, s3) € Schedule and

(s3,8) € Schedule.
Either there exists k € {ko,n— 1} such that (sx, sg+1) € (Gojafter(s) N Tr) System and
sk & after(sy) or not.

o First case: such a k exists. Let k; the smallest such a k. According to Lemma
11.31, sg, € after(sy). Therefore, by Lemma 10.8, thread(s) = thread(s;) and
by Lemma 10.10, label(s) = label(s;) = ¢3. This is contradictory with Lemma
7.7 which implies label(s) # (3.

o Second case: there does not exists such a k. Hence: (sg, s3) € Schedule; [(Go|afier(sy))
Tr) U Ao ggiariay) 5 Schedule = [(Goafter(sy) N T7) U Aojzray] - Hence:

(82, 83) S Eth(So, 51).

Furthermore by Lemma 10.2, after(sz) S after(so). Hence (s2, 53) € [(Go|after(ss)
Tr) U Ao‘aﬁer(sﬂ] Therefore, by Proposition 10.1:

(s2,3) € Reachs.
Given that, by definition of post({s), after(ss) < post({s):

s € interfereq, ., s {s1}.

Claim 11.33. S’ C interfereg, y,(S1)-

Proof. Let s € §'. Therefore there exists sy € S such that (s, s) € Reach and label(s) =
(3 # (1. According to Lemma 11.32 there exists s; such that (sg, s1) € Reach, label(s;) =
(3 and s € interfereg, y,{s1}. Therefore s; € S and s € interfereg, ,(S1). O

Claim 11.34. Self < Self;.

Proof. Let (s,s") € Self. According to Lemma 7.7, label(s) # ¢5. There exists sy € So
such that (so,s) € Reach. Therefore, according to lemma 11.32, s € interfere, {so}.
Therefore (sg,s) € Reach; and, by Lemma 10.10, label(s) = ¢;. Due to Lemmas 7.8 and
11.30, (5,5") € Tre1 pawn(ra) ¢, Hence (s, s') € Self;. O

Claim 11.35. Par < Self3 U Pars.

11.5. THREAD CREATION 125

Proof. Let (s,s") € Par. Therefore, there exists sg € Sy such that (sg, s) € Reach; Schedule
and s € after(sp). Notice that by definition of Schedule, thread(sy) # thread(s).

Assume by contradiction, that s € Schedule{interferey {so}). Due to Lemma 10.8,
thread(sg) = thread(s). This is contradictory.

Hence, by Lemma 11.32, there exists si, S, s3 such that (sg,s;) € Reachy, (s1,82) €
Schedule, (sq,s3) € Reachs, (s3,s) € Schedule, sy € schedule-child{s}, and label(s1) =
label(s) = 1.

Hence, s; € S4, s9 € Ss.

According to Lemma 10.6 after(s1)Nafter(se) = (). Given that (s, s) € Reach; Schedule; Schedule,
(s2,8) € (Go U A0)| TG Hence, du to Lemma 11.23, s € after(ss).

If thread(s) = thread(ss2), then (sa,s) € Reachs and (s,s") € Selfs. If thread(s) #
thread(ss), then (s,s’) € Pars. O

Claim 11.36. Sub < Selfs U Pars.

Proof. Let (s,s') € Sub. There exists sg,s; such that (sg,s;) € Reach and (s4,s) €
Ext(so, s4) and s4 € S'. By Lemma 11.32, there exists s1, so, s3 such that (sg, s1) € Reachy,
sy € schedule-child,({s1}), (s2, $3) € Reachs NExt;(sg, s1) and (s3,s4) € Schedule.

Furthermore, s € after(sg) \ after(sy). Due to Lemma 11.31, either s € after(s;) ~
after(sy) or s € after(sq) \ after(sy).

Assume by contradiction that s € after(s;) \ after(ss). Therefore (s,s’) € Sub;. But,
by Claim 11.3, Sub; =). Therefore s € after(s2) \ after(ss).

Let (i, P,0,9) = s and s5 = (thread(ss), Ps, 05, gs)-

Given that (s4,s) € Ext(so, 1), (54,5) € [(Gojafrer(so) N Tr) U A2 giersy]™ and by Lemma
11. 31 (547) [(G0|afte7“(51)Uafter(32) N ‘TT) U AZ\after(so)] .

By definition of post, after(s;) € post(f2). Furthermore by Lemma 10.6, after(s;) N
after(sy) = (). Therefore after(s;) < post(fy) \ after(ss). Hence, (s4,5) € [(Gojafter(sy) N
Tr) U s afiertsy Y Golpost(fa)~after(ss)]*- By Lemma 10.2, after(sy) < after(s), therefore
(54,8) S [(G0|aﬁer(sg) N TT) (A2 U GO\post(Zg))|aﬂT(so)]*~ By PI‘OpOSitiOIl 101, (84,8) S
[(Gosagter(ss) M Tr) U (A2 U Golposs(t2)) (afiercany)

Let (i, P,0,9) = s and s5 = (thread(ss), P,0,g). Therefore, (sq,s5) € Reachs.

If i = thread(sy), then s5 = s and (s,s’) € Selfs. If i # thread(ss), then (ss5,s) €
Schedule and (s, s’) € Pars. O

Proposition 11.5. [“ create(*2cmd), (3](Q) < combinegoguaranteey, ,,, ., 1°init-child, (Q')
with Q' = [“spawn((y), £5](Q)

126CHAPTER 11. OVERAPPROXIMATION OF THE INTERMEDIATE SEMANTICS

CHAPTER 12

Denotational Intermediate Semantics

12.1 Definition

We introduce the denotational intermediate semantics [| - |]:

Definition 12.1 (Basic statements). Let “'basic, /> be a basic statement, then:
[|“rbasic, 2]](S, G, A) = {S", G U Gpew, A)

where 8" = interfere, (‘Ir;lbasicjz(interfere,;(S)>)

and Gpew = {(5,8") € Tre1pagicr, | 5 € interfere,(S)}.

Definition 12.2. For each concrete configuration Q:

1.

2.

[emd ;2 emda, £3]](Q) = [|*2 emds, €3]] © [|% emdy, £5]](Q)

def

[|if ((cond)then{*2 cmd }else{“ cmds}, (5]](Q) =
[|%2emdy, €3]] o [|* guard(cond), 5| (Q) U [|“ cmds, €3]] o || guard (—cond), £4]](Q)

[|“ while(cond){® cmd}, (5| (Q) £ [|** guard(—cond), £5]] o Loop™(Q)
with Loop(Q') = ([|cmd, (4[] o [|" guard(cond), £[1(@)) U

[create(2 cmd), £5]](Q) &' combineq o guarantee(, .., © init-childy, (Q')
with Q' = [|*spawn((2), £3]](Q)

127

128 CHAPTER 12. DENOTATIONAL INTERMEDIATE SEMANTICS

While points 1 and 3 are as expected, the semantics of “ create(2cmd), (3 (point 4)
computes interferences which will arise from executing the child and its descendants with
guarantee and then combines this result with the configuration of the current thread.

The next theorem shows how the G-collecting semantics is over-approximated by our
intermediate denotational semantics, and is the key point in defining the abstract seman-
tics.

Theorem 12.1 (Soundness). For each concrete configuration Q and each statement “stmt, ('
[“stmt, €7(Q) < [|“stmt, ¢'[](Q).

Proof. This theorem is a consequence of Propositions 10.1, 11.1, 11.2, 11.3, 11.4 and 11.5.
O

From the point of view of Galois connections, consider the lattice of concrete configu-
rations C-Configurations, and the Galois connection ayq, 7iq from C-Configurations to
C-Configurations defined by ojq = viqa = AQ.Q. For all statements ‘stmt, ¢/ The semantics
[|¢stmt, '] is an abstraction? of [*stmt, '] for this Galois connection.

The main advantages of the intermediate denotational semantics, comparing with the
G-collecting semantics are:

e The intermediate denotational semantics is defined by induction on statements.

e There exist a pseudo-algorithm that computes the intermediate denotational seman-
tics by induction on statements. This pseudo-algorithm applies the inductive defini-
tion. This is not a true algorithm since some fixpoint computations need an infinite
time.

The abstract semantics (See Part IV) will overapproximate this semantics and be com-
putable.

12.2 Connection Between the Denotational Intermedi-
ate Semantics and the Operational Semantics

12.2.1 Soundness

Recall that 777, , (Init) is the set of states that occur on paths starting from Init. §'
represents all final states reachable by the whole program from an initial state. G’ represents
all transitions that may be done during any execution of the program and A’ represents
transitions of children of main.

The following proposition states that the denotational semantics is an overapproxima-
tion of the operational semantics.

2The concept of abstraction is defined by Definition 3.3

12.2. CONNECTION BETWEEN SEMANTICS 129

Proposition 12.1 (Soundness). Consider a program ‘cmd,{y, and its set of initial states

fnit. Let: (&GN [emd, 0[] Init, o, System)
with Go = guaranteer,,,q ., j{Init, System, System,)
Then:
s' 2 {(main, P,0,9) € 77}, ,, (Init) | P(main) = (.}
G = G 2{(5,8) € Trecman, | 5 € Tri g, (Init)} U System
A 2 {(5,8) € Treeman, | 5 € Tri gy, (Init) A thread(s) # main}
USystem
Proof. This is a consequence of Theorem 10.1 and Theorem 12.1. [

12.2.2 Completeness

Since the intermediate denotational semantics is an overapproximation of the G-collecting
semantics we may wonder if we lose precision. Obviously, the two semantics are not equal.
Let us consider the program x := 1:
Let (S',G', A") = [z := 1[{Init, System, System) and (8", G", A") = [|x := 1|]{Init, System, System).
It is straightforward to check that S’ = () and 8” # (). Nevertheless, we will show that when
we compute the guarantee of the whole semantics of a program, the two semantics coincide.

We introduce the concept of “consistent”. A consistent configuration is a configuration
without unreachable states or transitions. Formally:

Definition 12.3. A concrete configuration (S, G, A) is consistent with a statement ‘stmt, ¢/
if and only if the three following properties hold:

(a) s TrZstmt7e,<[mt>

(b) G {(5,5) € Tregumie | 8 € Tri gy p{Inity} U System

() AS{(s,5") € Tregpmpe | 8 € Tl g p{Init)} U System
Obviously, consistence is an invariant:

Lemma 12.1. We consider a concrete configuration Q and two statements ‘stmt, ¢ and
“Ustmty, by such that: Tres sty b, S T stmi et -
If Q is consistent with “stmt, (' then [|% stmty, €|](Q) is also consistent with ‘stmt, (.

Proof. We make a proof by induction on statements. The lemma is trivial for basic state-
ments, and induction is straightforward3. [

We notice that the semantics constraints S':

Lemma 12.2. Let {(3',G' A"Y = [‘stmt,('](S,G,A). Therefore for all (i',P', 0", ¢') € &,
P'(i") = 0" and there exists s € S such that i = thread(s).

3We just need to consider each case.

130 CHAPTER 12. DENOTATIONAL INTERMEDIATE SEMANTICS

Proof. As for previous lemma, the proof is done by induction on statements.]

When we compute inductively the semantics of a program, we will encounter two kinds
of configurations:

(a) configurations that represent execution of the main thread.
(b) configurations that represent the execution of some other threads.

The configurations of kind (a) are called “principal” and the configurations of kind (b) are
called “secondary”. Formally:

Definition 12.4. A concrete configuration is principal if and only if the two following
properties hold:

(a) Vs € S, thread(s) = main.
(b) Y(s,s") € A, thread(s) # main

Definition 12.5. A configuration is secondary if and only if the two following properties
hold:

(a) Vs € S, thread(s) # main.
(b) Y(s,s") € G, thread(s) # main
Secondary configurations remain secondary:

Lemma 12.3. If a configuration Q is secondary, therefore, for all statements ‘stmt, (', the
configuration [|*stmt, {'||Q is secondary.

Proof. By induction on statements, using Lemma 12.2.]

The function init-child, transforms a principal configuration into a secondary con-
figuration: i.e, if we were executing the main thread, therefore, after init-child, we
execute some descendant(s) of the main thread. Formally:

Lemma 12.4. If Q is a principal configuration therefore init-child,(Q) is an secondary
configuration.

Proof. This is a consequence of the definition of init-child,. O

A principal configuration remains principal. Notice that, in the proof of the Lemma,
we need to deal with Secondary configurations.

Lemma 12.5. If a configuration Q is principal, therefore, for all statements ‘stmt, ¢, the
configuration [|'stmt, (']]Q is principal.

131

Proof. The proof is done by induction on statements. All cases except create are straight-
forward.

Recall that [|“ create(2cmd), (3]](Q) = combinegoguaranteer, .,q ., [0init-childy, (V)
with Q' = [[**spawn((5), ¢5]](Q)

According to Lemma 12.4, init-childy,(Q’) is secondary, therefore, by Lemma 12.3, for
all (s,s') € G, thread(s) # main where (§",G", A") = guaranteey, .4, j©init-child,, (Q').
Hence we conclude. [

Now, we can conclude that the denotational intermediate semantics is better than only
sound, it is also complete:

Proposition 12.2 (Completeness). Consider a program ‘cmd,ly and its set of initial

states Init. Let:
(8,6, A Z [emd, £ |[{Init, Gy, System)

with Go = guaranteer,,q ., j{Init, System, System,)

Then:
s’ < {(main,P,o,q) € Tr? oma.r, (ANit) | P(main) = (o}
G = G S{(55) € Tremar, | 5 € Trippay, (Init)} U System
A< {(5,8) € Treeman, | 5 € Tri gy, (Init) A thread(s) # main}

USystem

Proof. Lemma 12.1 proves that G' € {(s, s') € Treemay, | 8 € D1l ,yq,, {Init)} U System and
N S {(s,8) € Treeman, | 8 € Tl g, (Init)} U System. “

Lemma 12.5 permits to conclude that A’ < {(s,s') € Trtemap, | 8 € Trlppg e, {INit)y A
thread(s) # main} U System. -

Lemma 12.1 proves that 8" < 717, , , (Init). And, with Lemma 12.2 we conclude that:
' c {(main, P,0,9) € Tr7,,,4,, (Init) | P(main) = (y}. O

12.2.3 Conclusion

The following theorem summarizes the two previous propositions:

Theorem 12.2 (Connection with the operational semantics). Consider a program ‘cmd, (o,
and its set of initial states Init. Let:

(8,6, A [emd, €o|[{Init, Go, System)

with G = guaranteey,,,q ,, [{Init, System, System,)

Then:
s' = {(main,P,o,9) € ‘Tr}cmdh([m@ | P(main) = (4}
G = G ={(55) € Trecmay, | 5 € Tri g, (Init)} U System
N = {(5,5) € Treemag, | 8 € Tl pay, {Init) A thread(s) # main}

USystem

132

Part IV

Abstract Semantics

133

CHAPTER 13

Generic Abstraction for Interleaving
Semantics

13.1 Abstraction

We use the abstract interpretation methodology. Our concrete lattices are the powersets
P(States) and P(Transitions) ordered by inclusion. Remember, our goal is to adapt
any given single-thread analysis in a multithreaded setting. Accordingly, we are given an
abstract complete lattice & of abstract states and an abstract complete lattice Z of abstract
transitions. These concrete and abstract lattices are linked by two (Galois connections,
respectively ag, v, and ag,v,: We consider four Galois connections described in Fig. 13.2
and we assume that the two first Galois connections are given, and build the other two one
from them. We assume that abstractions of states and transitions depend only on stores
and current threads and that all the transitions that leave the store and the current thread
unchanged are in 7y,(Ll). This assumption allows us to abstract guard and spawn as the
least abstract transition L.

We also assume we are given the abstract operators of Figure 13.1, which are correct
abstractions' of the corresponding concrete functions. The labels ¢ and ¢ are implicitely

! According to definition 3.3.

135

136 CHAPTER 13. GENERIC ABSTRACTION FOR INTERLEAVING SEMANTICS

Concrete function Abstract function

AST7¢ 5ction €,<S> eletmaction : 9 — 9

AS(T72 o ctionm e')IS elem-inter oction : 9 — X
NS T1 g sard(cond) ' CS) enforce, 9 —> D
AAS.interfere,(S) inter : A X9 —>9
schedule-child, schedule-child - 9 — 9
)\S.aE[(‘Irzaction’g,)B] error action - 4 — P(Errors)
)\S'&E[(Tﬁguard(cond)l’)‘s] ETTO07 cond, 9 — P(EI‘I‘OI‘S)

Figure 13.1: Given Abstractions

universally quantified, e.g., efemaqrion is an abstraction of AS.7r,, .. ,(S) for all labels ¢ and
v,

The function eleme,qon ¢ abstracts the fact to fire exactly one transition specific to the
statement ‘action, ¢'. Notice that, eletme,erion ¢ 1S the abstraction of the canonical® func-
tion fo, associated to 777, ., - LThe function elem-interc,qon ¢ (C) abstract the fact

to collect all transitions generated by the statement ‘action, ¢ that may be fired from a
state of 7, (C). Functions enforce, 4,0 and enforce-inter, do the same thing for guard
statements.

To handle errors, we assume a function error : Transitions — P(Errors) from the
set of transitions Transitions to some set of errors Errors. The set of errors represents
possibles run-time errors, e.g.:

action, ¢!

ond 0’

Errors = {array-overflow, division-by-zero, NULL-pointer-dereference}.

The function error(7) associates to each transition 7, the set of errors that transition may
make. This gives us a Galois connection ag,yg from the lattice P(Transitions) of set of
transitions to the lattice of set of errors P(Errors):

ap(G) = Uerror(T)

TEG

ve(E) £ {r|error(r) C E}.

The function error,ciion : 9 — P(Errors) abstracts the possible error transitions that may
be fired when applying a action action from a set of states S. For instance, recall the
Euclides algorithm given in Figure 3.6. At line 6, they may be a division by zero, errory.=ap
returns division-by-zero is the value of b may be zero. We assume that transitions that
are not generated by a statement of the form “action, ¢’ or ‘guard(cond), /' cannot generates
errors, e.g., spawn statements does not make errors.

Since the number of thread during an execution may be infinite (E.g., see program of
Figure 7.4) we need to abstract threads. A thread will be abstracted by the label where

2Recall that, in Section 2.2 we associate to each binary relation R a canonical function fr de-
fined by: fr(S) < R(S).

13.1. ABSTRACTION 137

Concrete Abstract ..
Name Elements Elements Definitions
Yo, Ao S € P(States) cev

Yo 0z | A € P(Transitions) IeZx

y={(eL|SnNpost({) = 0}
T, o S € P(States) L e P(L) ’YL(L) = States
) = (per. . POSE(F)
K (G) M. a(Q(G\post(Z))
Yk, ak | G € P(Transitions) | % € #" Yk (K) = {(s, s') € Transitions | V/ € L,

€ post(l) = (s,5') € 12(XK(0))}

Figure 13.2: Galois Connections

it have been created. E.g., in Figure 7.3, the threads ¢ and j will be abstracted by the
same label /5. The set of abstract threads is then the set of labels . € Labels in which
a thread may be created. We define a Galois connection between P(States) and P(L):
a(8) = { € L | snpost(l) # 0} and (L) = (e, Post(¢) (by convention, this set
is States when £ = L). The set ar(S) represents the set of labels that may have been
encountered before reaching this point of the program.

Note that we have two distinct ways of abstracting states (i, P, 0, g), either by using
Q5, or by using «ar, which only depends on the genealogy g and the current thread ¢. The
latter is specific to the multithreaded case, and is used to infer information about possible
interferences. Recall Section 4.7.2: In Figure 4.8, when the thread j, reaches the bullet, it
can fire transitions. Such a transition (s, s’) cannot interfere with js. The abstraction o,
detects this point, since fg ¢ oy (s), where {g is the label in which jg has been created.

We also need to abstract the G component of the G-collecting semantics, and most
importantly Gjpest(s) as used in the definition of init-child (Fig. 10.5), itself required in
the semantics of create (Def. 12.2, item 4). Notice that post() is called only on labels of
L and never on labels of Labels \ L. The purpose of ak is to abstract precisely Gpost(r):
for each G € P(7r), K = ak(G) € Z" maps each label £ to the abstract interference (in %)
on threads created at ¢ and their descendants. Additionally, we assume an extra element
¢, € Labels, never used in statements, and extend post() so that post(/,) = States.
This trick allows us to represent an abstraction of G itself as K (/).

Definition 13.1. Abstract configurations are tuples (C, L, K, I,E) € 2 x P(Labels) x
F2bels x % x P(Errors) and (is saturated with respect to interferences, i.e., inter,(C) = C
and ¢, € £. The meaning of each component of an abstract configuration is given by the
Galois connection o, Yefg:

Qetg(S, G, A = (intery) (a5 (S)), ar(8), ak (G), am(A), ap(G))

Yetg{C, L, K, I, E) = {72 (C) N1 (L), 7 (K) N Ve(E), v2(1))

We call A-Configurations the set of abstract configurations.

138 CHAPTER 13. GENERIC ABSTRACTION FOR INTERLEAVING SEMANTICS

In other words:
e (abstracts the possible current stores of S

e [abstracts the threads encountered so far in the execution.

K (¢) abstracts possible interferences with a thread created in /.

I is an abstraction of interferences A.

E collects all errors that may occur during the execution of the program.

13.2 Semantics of Commands

The abstract semantics is then derived from the concrete. Fig. 13.3 gives the abstract
counterpart of the functions of Fig. 10.5. To ensure termination we use a widening® operator
V (See P. Cousot and R. Cousot papers [CC92, CC91] and Section 3.3), i.e., we approximate
fixpoints f7 by f1V.

Definition. 13.2 gives the abstract semantics, derived from Definitions 12.1 and 12.2.
Our final algorithm is to compute recursively guarantee ., applied to the initial config-
uration.

Definition 13.2. For any abstract configuration Q:

(‘action, V') Q = basicaction(Q)
)Q L (“2emdsy) o (“emdy))(Q)
(“ while(cond){cmd})Q = guard _ .0 loop'” (Q)
with loop(Q’) = ((]éQ cmd, b)) o guard Q/) U

(“ create(" cmd))Q = combineq o guarantee, . © child -spawn,, (Q)

with Q' = spawnb(Q)

(]E1 emdy; 2 emds

The following lemma ensures us that elem-inter,.jon gives us an abstraction of the set of
transition Gye, introduced in Proposition 11.1 and in Definition 12.1.

Lemma 13.1. Let:
o (8,0, K = [[action[) (e (C. £, K., 1,)

i <C,7 Lla K,7 [/7 Z:/> = Ewicaction<cu L, X, 1, £>

3We can also use a narrowing operator. We do not give the details on narrowing here, this is an
orthogonal problem.

13.2. SEMANTICS OF COMMANDS 139

basicaction(C, L, K, I, E) < (inter; o elemaction(C), L, K U Koew, I, E U error(C))
with %ew d:ef N\ e[@m—iﬂt@ract,’on(C) lf / c L
- if (¢ L
guan[cond<a L,K,1,E) = (inter; o enforcecond(C)7 L, K, I,EU error.onq(C))

spawn (C, L, K, 1,E) = {C,LU{{},K,I,E)
child-spawn (C, L, K, I, E)y = interx(e)(C), L, M. L, 1L K((),0)

combinece ;. x.125(K',E) = interjg000,(C), L, KU K, TUK'(0,), EUE)
execute-thread 1y -, (K, E) = (X, E)
with (', /., &', I',)E"Y = fY{(C,L, K, I,E))
guarantee ., (<C, LK, 1, Z>) o execute- tﬁreazf}nvyaL’I(?(, ‘E)

Figure 13.3: Basic Abstract Semantic Functions

® Guew = {(5,5") € Tres setiony, | 5 € interfere,(S)}.

Therefore:

gy (Gnew) elem-inter sction (C)

<
aE(Gnew) <

erTOr action (C)

Proof. Since abstract configurations are saturated with respect to interferences (See Defi-
nition 13.1), interfere,(7,(C)) = 72 (C).

Therefore Gnew < {(5,5") € Trerpasice, | 5 € 72(C)}-

Hence o (Ghew) < elem-interey,._. ¢ (C) and a5 (E) < erroraction(C). [l

Recall that, given a set of transitions G we need to abstract precisely the subset Gjpost(e)-
The following lemma shows the link between ar, and Gpost(s)-

Lemma 13.2. Giwen a set of transitions G:
G\post(@) = @ s/ ¢ QL({S | 35’ : (S’ SI) < G})

Proof. Let 8 = {s | 35" : (s,5') € G}. According to Definition 2.4, Gjpost() = 0 is equivalent
to post(¢) NS = (. This is equivalent to ¢ ¢ ay (8). O

The function inter abstracts interfere for the abstract lattice Z. As showned by the
following lemma, the identity function id : P(L) — P(L) is an abstraction of interfere
for the abstract lattice P(LL).

Lemma 13.3. a;(S) = o (interfere,(S)).

140 CHAPTER 13. GENERIC ABSTRACTION FOR INTERLEAVING SEMANTICS

Proof. This is a consequence of Lemma 10.11.]

The basiceejon e function updates X by adding the modification of the store to all
labels encountered so far (those which are in £). It does not change £ because no thread
is created. Notice that in the case of a non-relational store, we can simplify function basic
using the fact that inter; o elem,._.(C) = Clz — wval-(e)U I(x)]. The following lemma proves
that this function is a correct abstraction of the semantics of “action, ¢'.

Proposition 13.1. For all labels { and (', basic.ction 15 an abstraction of [[‘action, ('|].

Proof. Let us consider that (S, G, A) = (7.{C, L, X, I, E)), and {(S', &', A") = [[*action, ('||(S, G, A)

and <C,7 Lla Kla 1/7 Z:,> = Ea‘gicaction<ca L, K, 1, ‘£>

e Let us prove that a,(8') < C.
By Definition 12.1, 8’ = interfere, (7ri,.,,, »{interfere,(s))). Therefore, by def-
inition, a(S") < inter; o elemerion © inter;(C). But abstract configurations are satu-

rated with respect to interferences, therefore: «(S") < inter; o elemaerion(C). Hence
ay(8) < C.

e Let us prove that ap,(S') < £/ = £. According to Lemma 13.3, ar,(S8') = ag,(interfere,(S)).

Since transitions of 77, , » does not modify the current thread or the genealogy (See
Lemma 7.6), o (77,0, p(interfere,(S)) = ar(interfere,(S). And we conclude
using a second time Lemma 13.3

e Let us prove that ax(G') < K.

According to Definition 12.1, ¢’ = G U Guew With Guew = {(5,5) € Treipusics, | 5 €
interfere,(S)}. By Lemma 13.1, oy (Grew) < elem-intere,.—. ¢ (C).

1 if Gnew|post(f) = @

a (Grew) = AL (Grewlpost(r) < AL {ag(G) otherwise

Notice that, due to Lemma 13.2:

Grew|post(¢) = 0 < € ¢ ar(interfere,(8)).

Due to Lemma 13.3:

Gnew‘post(Z) = @ g g ¢ O{L(S)
Therefore
1 if £¢ ap(S).

g (Gpew) Otherwise

aK(GneW) <)\f {

e Let us prove that o, (A") < I'. This is obvious since A = A" and T = I’ and a,(A) < I.

13.2. SEMANTICS OF COMMANDS 141

Let us prove that ag(G’) < Z’. This is a consequence of Lemma 13.1.]
The guards are abstracted in the same way:
Proposition 13.2. For all labels { and U', guard,, ., is an abstraction of [|*guard(cond), ('|].

Proof. Same as Proposition 13.1, using the facts that, by hypothesis on the abstract lattice
of transitions %Z: v (Tregyard(conay,e) = L]

Proposition 13.3. spawn, is an abstraction of 1|5 spawn(ls), £5]]

Proof. Let {S,G,A) = (Vere{C, L, K, I, E)), and (', ¢, A"y = [|“*spawn((2), (3]](S, G, A) and
(', L', K, I',E) = spawn, (C, L, K, I, E).

e Let us prove that a,(S') < ¢ = C.

By Definition 12.1, §' = interfereA(Tr;lspawn(é2 7Z3<interfereA(S)>). Furthermore,

Tre, _does not modify the current thread and does not modify the store.
pawn({2),03

Therefore, by definition, «(S") < inter; o inter;(C) = C.
e Let us prove that ap,(S') < £/ = £. According to Lemma 13.3, ar,(S8') = ag,(interfere,(S)).

a1, (Tt yenre p{interfere, (S)) = ar(interfere,(S) U {{>}. And we conclude using a
second time Lemma 13.3

e Let us prove that ak (G') < X’. Same proof as for Proposition 13.1, using the fact that
transitions generated by the statement “spawn(fy), (3 have no effect on the current
thread nor the store.

e We prove that a,(A) < I’ and ag(G’) < £’ in the same way than for Proposition
13.1.

]

The functions of Fig. 13.3 abstract the corresponding functions of the G-collecting
semantics (See Fig. 10.5).

Proposition 13.4. The abstract functions child -spawn, , combine and guarantee are

2% cmd,0')
abstractions of the concrete functions init-child,, o[“ spawn(fs), (3], combine and guarantee i,
respectively.

Proof. This is a consequence of Proposition 3.1. O
The abstract semantics is defined by induction on syntax, see Fig. 13.2:
Theorem 13.1 (Soundness). (cmd,l) is an abstraction of [emd, (].

Proof. This is a consequence of Propositions 3.1, 13.1, 13.2, 13.3 and 13.4. O]

142 CHAPTER 13. GENERIC ABSTRACTION FOR INTERLEAVING SEMANTICS

CHAPTER 14

Abstract Domains for Sequential
Consistency

We show some concrete and abstract stores that can be used in practice. For each domain,
we give the abstract lattices 2 and %, the Galois connections of Figure 13.2 and the
abstract functions of Figure 13.1.

14.1 Maps

14.1.1 Main Abstraction

Concrete stores are described in Chapter 8.1. They are maps from the set of variables Var
to some set V of concrete values.

Abstract stores are maps from Var to some complete lattice V* of abstract values, e.g.,
NotZero (see section 3.4), Ranges [CC04| (See Section 3.2), or string lengths [AGHO06].
Abstract stores are ordered by the pointwise ordering (recall Definition 2.10). Assuming
a Galois connection a,7, between ¥V and V* we define a Galois connection O'map, Ymap

143

144 CHAPTER 14. ABSTRACT DOMAINS FOR SEQUENTIAL CONSISTENCY

between set of concrete stores and abstract stores:

map({7}) = w0y (0(2)
Yoap(0F) = {0 |V, 0(x) € 7. (c%())}.

Both abstract states and abstract transitions are encoded as abstract stores, i.e., ¥ =
X = (V)" . As required, abstract states depends only of stores and current threads.
Actually, they depend only of stores.

as({(i, o, g)}) = map(0)

Yo(0!) = {(i, P,0,g) | 0 € Ymap(0F)}.

The abstraction of transitions remembers only information on modified variable: it
recalls the possible new values of a written variable.

ay(d'(x)) if o'(x) # o(x)
1 otherwise

ax({((i,P,0,9), (", P, o' ¢d))}) &)\x_{

va(0?) = {((i,P,0,9), (', P',0",¢)) | Vo € Var,o'(x) = 0(2) v 0’ (2) € Ymap(0F)}.

We give for these domains the primitives of Fig. 13.1. Let val-(e) and addr.(lv) be the
abstract value of the expression e and the set of variables that may be represented by [v,
respectively, in the context ¢; and let truet and false® be the abstractions of true and false
respectively.

e[emxzze(C) = C[JUHUGZC(G)]
elernyy.—o(C) =3 |_| elem,._.(C)

x€addrc(lv)

ar {valc(e) if x € addr(lv)

elem-inter,.—(C) =

bot otherwise
inter;(C) < IUC
st) Clr— c(x) Mtruef] if c(z) Mtruet # L
enforce, (€)= 1 otherwise

Clz — c(x) M false?!] if c(z) M false* # L
1 otherwise

enforce_ (C) = {

def

schedule-child (C) = elemock()(C) = elem piock(1)(C) = C

elem-interjock()(C) = elem-inter ypjock () (C) =l

14.2. CARTESIAN ABSTRACTION 145

by = 0;%2 := 0;
create(""y 1=y + 2);
lsy =30y

Figure 14.1: Example

The function efem() updates the abstract value of the modified variable.

Notice that this abstraction is a separate product (See Definition 3.4) of card(Var) times
the concrete lattice Var. The abstractions of guards take into account that, in a separate
product, (y, L), (L,y) and (L, 1) have the same concretization. The abstraction of guard
takes into account this point. If 2 M false® is empty, this means that, in the concrete world,
the system cannot pass the guard. Therefore, after the guard, the concrete value is ().

In this abstraction, we do not take into account the locks. But a simple product or
even a reduced product with a domain for locks will allow us to take locks into account.

14.1.2 Errors

Errors will depend on what we want to detects. We give here a simple example, with
Errors = {division-by-zero}.

Given an assignment assign equal to lvy := eg, we write e®*assign to say that e is a
subexpression of eg or of lvg. The function error is defined by (all free variables are implicitly
existentially quantified):

error,(C) = {division-by-zero} & e1%ey®a v e1/ex®a A vale(ey) = [Lu] Al<0<u

14.1.3 Example

Consider the program of Fig. 14.1 and the abstract store Ranges of ranges [CC04]. We
apply our algorithm to this example, giving a run-through (See Figure 14.2).

Our algorithm computes execute-thread (line 1 to 7). The fixpoint is not reached, so we
compute execute-thread a second time (line 8 to 14). Then, the fixpoint is reached, as a
third application of execute-thread will confirm (not shown).

We do not give ‘£ in this example since £ = () for all lines.

14.2 Cartesian Abstraction

In Cartesian abstraction [MPRO6b, MPR06a| (See 4.5.2), stores are maps. Nevertheless,
the set of variable 7ar is divided into two parts: shared variables Vargyaeq and private

146 CHAPTER 14. ABSTRACT DOMAINS FOR SEQUENTIAL CONSISTENCY

Line C L U 1
= 7
1 Initial configuration Z _ ? {0.} 1 1
= 0
2 (“y 1= 0, 05) g _ (0.} (> y=0 1
3 | (52:=0,0) g _ 8 (0.} losy=02=0 1
. y = 0
4 child -spawn,_ .~ 0 {0} 1 1
5 | Ty =y + 2, L) A TN losy=0 1
) = 0
6 comﬁmespaw%(.) g 0 {0., 07} lb—>y=0,2=0 y=0
Tk 20 e U b | e
67 —> z=3
y = 7 oo { Y70
8 Initial configuration L 0 {0} * z =0, 3] 1
- 57 = z=3
— y= 0
0 |y = 0,6) AN Vo | o
67 g z=3
_ oy y=0
10 (]552 =0, lg) ‘Z : 8 {¢.} b { z =10, 3] 1
N 67 g z=3
. y 0 _
11 child -spawn,, O {0.} 1 z=3
07, y = [07 3] N -
12 (“y =y + 2,0l z [0.3] {0.} (. —y=]0,3] z=3
 Jy=103]
13| combine puu, () g [063] ARSI { 2=[0,3] |y=1[0,3]
67 = z=3
. Jy=10,3]
T A e
67 — z=3

Figure 14.2: Abstract Example

14.3. GEN/KILL ANALYSES 147

variables Varpivate. €ach thread has its own copy of the private variables as in OpenMP
model [Boa08|.

The set GlobalStore is the set of maps from Varghaea to the set of concrete values V
and Localstore is the set of maps from Varghareq to the set of concrete values. Finally, the
set of stores is defined by:

Stores = GlobalStore x Localstore'®s.

In this concrete model, a thread may only reads the shared variable and its own private
variables.
The abstract lattices 2 and & are defined as following:

2 £ P(GlobalStore x Localstore)
= P(GlobalStore x GlobalStore)

To define Galois connections, we just need to define the abstraction function on sin-
gletons (as shown in 3.2). On states, as, forget all information on the private variables of
other threads. It keeps information only on global variables and on private variables of the
current thread:

aq({(7, P, (globs, Is), g)}) £ (globs, Is(7))

The abstract transitions keep information on how the global variables are modified.
The link between local and global variables is lost:

ag({ ((i, P, (globs, Is), g), (i, P', (globs’, Is"), g’))}) & (globs, globs').

eletm action (C) = Qg (Tr% action ¢/ <7@ (C) >)

elem-interaction(C) = Qa((Teactionsr) o (c)

schedule-child (C) = {(glob,1) | 3globa, Iy : (glob,ly) € C A (globy, 1) € StoresInit}

14.3 Gen/Kill Analyses

In such analyses [SS00| the set of stores is a complete lattice, e.g., sets of initialized vari-
ables, sets of edges of a point-to graph (See Section 8.2 and Section 4.6). As for maps, the
abstract states and abstract transitions are the same: ¥ = % = Stores) .

Each gen/kill analysis gives, for each basic action, two elements of the lattice Stores:

148 CHAPTER 14. ABSTRACT DOMAINS FOR SEQUENTIAL CONSISTENCY

e gen(action, o)

e and keep(action, o).

These sets may take the current store ¢ into account (e.g. Rugina and Rinard’s “strong

flag” [RR99, RR03]); gen. The Galois connections are defined by:

as({(i,P,0,9)}) < {o}
a({((i1, P, o1, q1), (i2, P2, 02, 92))}) = ﬂ o

o:09<0o1Uo

f)/%(o—u) = {((ibpba—lvgl)v (iQa P270—2792)) | 09 < 01 L O—ﬁ}

= (CMkeep(action, o)) U gen(action, o)

(€)
elem-inter,crion(C) = gen(action, o)
inter;(C) £ TUC
enforce (C) = ¢

Notice that, as it is standard in Gen/Kill analyses [SS00, LMOO07], these domains model
if statements by non-deterministic choices.

CHAPTER 15

Abstraction for Weak Memory
Models

We define abstractions for weak memory models. These abstractions are similar to those
given for interleaving semantics. This chapter gives only the difference between abstraction
for weak memory models and abstractions of Chapter 13. Notice that our model is designed
to handle both strong and weak memory models, this is why this chaper is brief: only few
modifications are needed to handle TSO and PSO models.

We also assume an abstract lattice of states 2 and an abstract lattice of transitions Z.

In weak memory models, we have write operations. these operations may be protected
by a lock:

Definition 15.1. A lock protects a write operation op if it is held when op is in the buffer.
ProtWrite = P(WriteOp x P(Locks)) is the set of write operations protected by locks.

Given the abstract lattices & for states and & for transitions we consider six Galois
connections described in Fig. 15.1. Notice that this is the same Galois connections as for
interleaving semantics (Recall Figure 13.2) plus two new Galois connections ap, Yop and
Qbut, Yout- We assume that the three first Galois connections are given. We require «, and

149

150 CHAPTER 15. ABSTRACTION FOR WEAK MEMORY MODELS

Concrete Abstract "
Name Elements Elements Definitions
Yo, Ao S € P(States) ce9
Yo g | A € P(Transitions) IeZx
Yops Cop ProtWrite I1€X
Voufs Obut P(States) I €% apur({s}) =
i Lopep() @opi(op, mutex(j, s))} where
s = (i, P,(m,b), 9g)
aL(S) ={¢ eL|SNpost() # 0}
L, S € P(States) L eP(L) 1.(L) = States
(L) = ﬂéeIL\L post({)
aK(G) = AE.QQ(G|post(g))
&,k | G € P(Transitions) | & € Z* 7k (X) = {(s,s') € Transitions | V/ € L,
€ post(f) = (s, 8) € 12(K(0))}

Figure 15.1: Galois Connections for Weak memory Models

Qop (from which agye is defined) to be compatible in the sense that:
apur(interfere, (S)) < ag,(A) U apy(S).

This requirement states that applying interferences in A to S in the abstract can be com-
puted by combining the effect of interferences (ay) with effects that are pending from
buffers in current states (apy(S)). The requirement will be satisfied in all examples.
For buffer abstraction ay,,¢ we introduce the set of locks owned by a thread j in a state
s = (i, P,(m,b),g) :
mutex(j,s) = {u € Locks | m(u) = j}.

Intuitively apur({s}) represents how the thread buffers other than the current thread can
modify the memory meaning both locks and pending writes.

The set of abstract configurations is the same as for the interleaving semantics, defined
in definition 13.1. Nevertheless, the Galois connection is not the same:

Definition 15.2. Abstract configurations are tuples (C, L, K, I,E) € 2 x P(Labels) x
R2Pels x % < P(Errors) and (is saturated with respect to interferences, i.e., inter,(C) = C
and ¢, € £. The Galois connection between concrete* and abstract configurations is:

etg(S, G, A = (inter g, ny (o (8S)), ar(8), a (G), as (A) U apyr(S), s (G))
7cfg<C> L, K? Ia ‘Z> d:ef <79(C) N ’VL(L) N 7buf([)7 /YK(K) N /VE(T’)a '75'/?([)>
For weak memory models, we need the primitives of Fig. 15.2. Notice that these
primitives are the same as those given in Figure 13.1 in Section 14.1, except for error. Since

4Recall definition 12.3.

151

Concrete function Abstract function
AS.Tr s cpion oS elemaction : 9 — 9
ASA(T72 o tion e')IS elem-inter action : D —> X

)\S'Trzguard(cond),é’<s> enfarﬁecond 9 -9

M S.interferey(S) | inter : Z X 9D — P
schedule-child, schedule-child : 9 — 9
)\S'aE[(Trzaction,Z’)B] error action - 9 x % — P(Errors)
AS. 05 [(T7e setione)1s] | €707 cona : Y x # — P (Errors)

Figure 15.2: Given Abstractions For Weak Memory Models

Easicact,-o,,<C, L,K,1, £> et <inter1 o e[emact;o,,(C), L, KU Kew, I, EU error(C, I)>

lem-i action if ¢ L
with Koew = AL {‘i“’” inter action(C) ;f g :L

guardcond<C, L,K,I,E) et (inter; o enfarcewnd(C), L, K, I,EVU errorconq(C, 1))

Figure 15.3: Basic Abstract Semantic Functions for Weak memory Models

error abstracts states, in the sequential consistent model, this function takes as argument
an abstract state in . But, in the weak memory model abstractions, states are abstracted
with o, and with ay,p, hence, error can take an extra argument: a set of states abstracted
with apys. Furthermore, a, may forget (E.g., Maps in Section 16.1) all information about
buffers, and keep only information on the view of the memory by the current thread. With
its new argument, the function error may detect an error that depends on buffers and not
only on the view (E.g. Section 16.2.2).

To define the abstract semantics, we use functions of Figure 13.3. But, in the case of
a weak memory model, we must do some modifications: we give two arguments to the
function error. The Figure 15.3 gives the difference between the sequential consistency
case and the case of weak memory models. The abstract semantics is then defined as in
sequential consistency case, see Definition 13.2.

152 CHAPTER 15. ABSTRACTION FOR WEAK MEMORY MODELS

CHAPTER 16

Abstract Domains for Weak Memory
Models

As for sequential consistency, we give some examples of domains for weak memory models.
Here we give some domains for TSO (recall Section 9.2), but this domain can be adapted
for the PSO model (see Section 9.3).

16.1 Maps

The concrete stores are those described in Section 9.2.1.a. They are a pair (m, b) where m
is a map from variables to values and b a function that maps threads to their write buffers.

Abstract memories are maps from Var to some complete lattice V¥ of abstract values.
As in Section 14.1, we assume a Galois connection o, v, between V and V*, we reuse the
Galois connection Gtmap, Ymap given in Section 14.1. between set of concrete memories and
abstract memories.

Both abstract states and abstract transitions are encoded as abstract memories, i.e.,
9 =% = (V)" . Abstract states only keep information about the view of the current

153

154 CHAPTER 16. ABSTRACT DOMAINS FOR WEAK MEMORY MODELS

thread, ignoring the shared memory:

as({(i, P,o,g)}) = amap(view(i, o))
Yo (0?) = {(i,P,0,q) | view(i,o) € ’ymap(aﬁ)}.

Notice that we do not keep information on the shared memory, but only on the view of each
thread. The Galois connection ay,,¢ will recover information from buffers, which cannot be
deduced from the view only.

To define ay,, introduce the function new-write : Tr — P(WriteOp x P(Locks)), that,
given a transition 7 returns the set of new protected writes in the buffer of the current
thread (a singleton or the empty set):

new-write(t) =
() 0 otherwise

def {{(op,mutex(i,sl))} if ¥/ (i) = enq(op, b(i))

where 7 = (s1,50) = ((i, P, (m,b),), (7', P, (m',V), ¢")).

To abstract transitions and write buffers, we abstract the written variables and their
new values:

VOP(I) = {((Z’,U),M)|U € ’YV(I($)) ANMc LOCkS}

ag({T}) = aep(new-write(r)).

Notice that aqp, vop do not keep information on locks. To handle locks, we need another
domain.

16.2 Protected Variables

This abstraction infers which lock protects which variable. An error is raised when two
different threads access the same variable (one is a write) but with disjoints sets of locks.

16.2.1 Lattice of Abstract States

We define an abstract complete lattice for locks: SetLocks* = P(Locks). An abstract
state represents locks that must be held at some point, we order the lattice 2 = SetLocks"
by the reverse inclusion ordering, i.e., C; < & < (4 2 &. Hence G UG = ¢ N G. The
Galois connection with concrete states is formally defined by:

a5 (8) = Umutex(thread(s), s).

s€S

Functions of Fig. 13.1 are given here:

16.2. PROTECTED VARIABLES 155

) = ¢

) = ¢
e[emlock(ﬂ)(c) d:ef CU{:U}

(©) 0

(€) C~Anl

Notice that elem;,.—. and enforce do nothing. This domain does not handle writes or guards.

16.2.2 Lattice of Abstract Transitions

We define the domain ProtVars = % of protected variables for transitions. In this domain,
each variable in Var is abstracted by the set of locks that are held when that variable is
accessed, i.e., the locks that protect the variable. Formally: %2 = SetLocks". The Galois
connection is defined by:

az({T}) = ap(new-write(t))
Yop() = {((z,0), I(x)) | v € V}.

We define the following functions:

inter;(C) = C

) —
elem-intery._o(C) o)\y.{c ny=v

elem-inter jock(y.) (C) T

elem-inter ynjock(yu) (C) I

A datarace occurs when, at the same time, a thread write a variable and another thread
wants to read or write the same variable. In our model, a datarace occurs when, in some
store (m, b), a thread attempts to access (in read or write) to a variable x even though x is
the write buffer of another thread. Hence, to check dataraces, we just have to check during
an assignment if a variable accessed by the assignment is written in I.

Let accessg(lv := e) the set of variables accessed by the assignment lv := e in a
context S. F.g., the statement x := y accesses to the variables z and y in any context. The
statement =z := y accesses to z, to y and to a third variable; this third variable depends
of the value of x. If the value of = is &z, then this statement accesses to x, y and z. Let
access-(lv := €) an abstraction of accessg(lv := €). In a similar way we define access(cond).

If neither [v nor e use pointers, then access(lv := e) is the set of all variables that appear
in [v or in e. If there is a pointer dereference, this domain does not know which variable

156 CHAPTER 16. ABSTRACT DOMAINS FOR WEAK MEMORY MODELS

bop = &x;Mop = &y;
“iicreate(2 x p := xp + 2);
élSy = 3’€OO

Figure 16.1: Data-race on y

is accessed, and therefore, a sound approximation will be that the statement [v := e may
access to any variable. This is not precise. It is standard that we combine two domains
by computing their reduced product [Cou05, CC79, CFR*97, CMB*95, GT06], getting a
more precise domain than both domains separately. Hence, we can compute the reduced
product of this domain with a domain that handle pointers, e.g., maps domains of Section
16.1.

Finally, the errors are defined by:

@ if cn ﬂyéaccesSp lv:i=e) [(y) > (Z)
{data-race} if cN ﬂyeacm li=e) I{y) =0

errorlv::e(cv I) = {

For guards, we have a similar definition:

1

@ ifcn ﬂyEacceﬁ[(cond)](y)

0
error cona(C, I) =

{{data_race} if cN ﬂyeaccessc (cond) I(y) =0

When the current thread attempts to access a variable z, it holds the set C of mutexes.

When another thread writes in z, holding the set I(x) of mutexes. A data race occurs

when the two sets are disjoints.

16.2.3 Reduced Product

The main drawback of this domain is that we need to overapproximate access. If a pointer
is used in an assignment (e.g., in the assignment 2 xp := 2 in Fig. 6.2a), then access cannot
be precise. This domain knows nothing about pointers, the set of variables accessed by
2 % p := 2 in overapproximated by the set of all variables: accesse, ,,—o(C) = Var.

To enhance precision, we may use the reduced product described in Section 3.4 with a
domain of maps. For instance, the domains of maps where values are addresses of functions.

Hence, in Fig. 6.2a the reduced product detects that, when * % p := 2 is executed, p
points to ¥ and not to x, hence, there is no datarace.

Figure 16.2 gives an example of the analysis. The columns C, £ and XK give the in-
formation of the domain of maps (values are ranges or addresses of variables). The last
column gives the errors detected by the domain of protected variables.

On the program 16.1, the analysis will detect that there is a data-race on y.

16.3. SET OF LOCKS AND ACQUISITION HISTORIES 157
C L X I Data-race
Initial y=20
L Configuration p = NULL {ed 1 L No
2 (]ng = &x7£10[) z : &ﬂf {g*} g* =D = &x 1 No
=0
3| (fop = &y, t1) g ~ &y {0} b, — p = {&zx, &y} 1 No
) y=20
4 | child-spawn, p= &y {0.} 1 1 No
(72 % p = y =2 B
. y= [07 2] _ _ _
6 comb'mesp,,wnzu(.) p = &y {0 b} [Loy =2,p={&x, &y} |y =2 No
_ L by=123]
7 (]gl?’y = 37&0[) Y : 5’3] {6*7512} b { p = {&w,&y} y=2 Yes
p Y (o —y=3
. = (2, 3]
Initial y=0 (0, — { - 2,
8 Configuration p = NULL {ed 0 y p _3 {&ew, &y} L No
11/ Y=
—12.3]
(fop = &u; y=0 &»—»{y 2,
9 l, = {&x, & 1 No
Z1op:: &y’gnl) p:&y { } gllHyi3{ y}
. Yy =
10 | child -spaw l, L =3 No
c: spawn,, p =&y { } Yy
(]12*]9;: y:[273] B
11 * P+ 23£OOD p= &y {f*} f* Yy = 2 1 Yes

Figure 16.2: Example of Data-Race Detection

158 CHAPTER 16. ABSTRACT DOMAINS FOR WEAK MEMORY MODELS

16.3 Set of Locks and Acquisition Histories

16.3.1 Lattice of Abstract States

We define an abstract complete lattice for locks: SetLocks' = P(Locks) as in Section
16.2.1. Nevertheless, we use this lattice to represent locks that may be held at some point,
we order the lattice 2 = SetLocks' by the inclusion ordering (and not® by the reverse
inclusion ordering), i.e., G < G < (41 S G- Hence UG = G U G.

The functions on abstract states are the same as section 16.2.1:

() = ¢

() = ¢
e[em,ock(ﬂ)(C) © cuU{u}

© 0

(€)= c~{u

16.3.2 Lattice of Abstract Transitions

We consider the complete lattice H = P(Locks)t°%s of acquisition histories [KIG05,
LMOO8| ordered by the pointwise ordering. An acquisition history maps a mutex yu to the
set of mutexes that may be acquired after u is acquired.

Let us consider the operator p defined by: p(h) = Apo.h(p0) U U, epguy) P(1). We
consider the domain H, = {h € H | p(h) = h}. H, is a complete lattice for the pointwise
ordering. We use this lattice as the lattice of abstract transitions: % = H,.

o My~ My if pe M
aa({(si,s))) & o d BT
0 otherwise
where M = mutex(thread(s;), 1)
and M, = mutex(thread(ss), s2)

. if uec
e[em—intt%f/ock(yo)(d =)"u'{go othl:zrwise

. def
elem-inter ypjock (o) = 1

A deadlock occurs when several threads iy,.. .14, attempt to acquire a lock owned by
the next thread: ¢; attempts to lock p; owned by i, 75 attempts to lock s owned by i3,. . .,

5The only difference between SetLocks' and SetLocks' is the ordering.

16.3. SET OF LOCKS AND ACQUISITION HISTORIES 159

in attempts to lock p, owned by i;. To detect deadlocks, at each action lock(u) we check
whether there exists a sequence of locks ps, . .., u,, such that for every k, puy € h(ugy1) and
iy € C. This is easy since p(h) = h for all h € Z%:

{Deadlock} if Ju € C:p e l(u)
error ockuo (C, T) = { {Auto-Deadlock} if yg € ¢
0 otherwise.

The intuition is that domain checks if the mutexes are locked in the same order in all
threads. If a thread locks a mutex p; and after a mutex pu, and another thread locks po
and after py, therefore we detect a deadlock.

The error Auto-Deadlock occurs when a thread attempts to lock a mutex it owns.

16.3.3 Anti-Chains of Acquisition Histories

We introduce an abstract domain based on acquisition histories H = P(Locks)t ks, H is
ordered by the pointwise ordering. We use the lattice of upper-closed sets® of acquisitions
histories: PT(H) = {X e H | Vz € XVy € H,z <y = y € X}. Recall® that an element of
PT(H) may be represented by a finite antichain of acquisition histories.

This domain reuse P. Lammich and M. Miiler-Olm’s ideas [LMOO08]| to detect precisely
data races. Asin P. Lammich and M. Miiler-Olm analysis [LMOO08| (See Section 4.7.3), we
assume aset A & {U, V} and a function critic from assignments to P(A)~A = {0, {U}, {V}}.

The abstract lattice for states is 2 = PT(H). The abstract lattice for transitions
= PVH x {U,V}). Notice that these sets may be represented by anti-chains (See
Section 2.3.3). We do not need to represent all elements of these sets.

We introduce a function f-acquire : H x Locks — H, that, given an acquisition history
h, acquires a new mutex. We encode in acquisition histories the fact that a mutex is owned,
i.e., i € h(p) means that the mutex u is owned by the current thread and h(p) = () means
that the mutex p is free or owned by another thread.

h(p) Upo if p1 € h(p)
h-acquire(h, 1) =V {uo} if = pyo
h() otherwise.

Recall that @ is a predicate that tells us if two acquisition histories may be interleaved,
See Section 4.7.3.

6See Section 2.3.3.

160 CHAPTER 16. ABSTRACT DOMAINS FOR WEAK MEMORY MODELS

Hence we define the functions of Figure 15.2 for this domain:

elemy.—.(C) = C

Cx{U} if critic(lv:=e) =U
elem-interyy—o(C) = Mv.{ Cx {V} if critic(lv:=¢) =V
1 if critic(lv :=e) = ()
inter ;(C) & oc
enforce (C) = c
schedule-child (C) = L
elemioen(uy(C) = {h-acquire(h, 1) | h € C A h(p) = 0}
eletunock(u)(C) = {hlp— 0] | h e CApeh(p)}
elem-inter joci() (C) &
elem-inter ypjock(y) (C) &
Data-race if 3hc € CI(h;, V)€ T:hc®hy
erroryy.—(C, I) & ! Data-race if Ihc € CI(h;, V)€ T:hc®hy

1 if critic(lv :=¢) =0

CHAPTER 1 7

Language Extensions

In this chapter we discuss some language extensions, e.g., the par constructor that is used
in several other analyses [KSV96, RR99, RR03, SS00].

17.1 Conditions and Actions

With our semantics, it is easy to add new kinds of conditions or actions. For instance,
Figure 17.1 gives some possible extensions.
The skip is trivial, and is abstracted by the identity function: (“skip,2)(Q) = Q.
Nondeterministic choices is easy to handle in our concrete model”:

Yo, bool(o, undet()) = true A bool(o, —undet()) = true.
Undeterministic choices allow to model:
e random functions

e cxternal devices that measure some physical quantity

"Recall Chapter 7.

161

162 CHAPTER 17. LANGUAGE EXTENSIONS

cond = condition
| undet() Non-deterministic choice
action ::= basic action

x := pthread lock(p) Lock that may fail

skip do nothing

copy (lvy, lvs) Copy

Figure 17.1: Syntax for “Par” Constructor

e data from an user or from an unknown other program
e complex guards

The semantics of guards with non-deterministic choices is:
(guard (undet (), la) < (“ guard (undet()), ba) < (“ skip, (o).

The copy allows to model copy of memory regions.

Until now, we assume that a lock operation never fails. Nevertheless, in real multi-
threaded libraries, as recalled by V. Vojdani and V. Vene [VV07], it is a common practice
when using Pthread Library to test whether the lock operation succeeded or not. V.
Vojdani and V. Vene give the following example:

1 status = pthread_mutext_lock(m);
2 if (status != 0)
3 err_abort (status, "Lock mutex");

The semantics of = := pthread lock(y) then has to consider two cases: the case where
the mutex is locked, and the case where the mutex is not locked. If the lock operation
succeeds, the value of z is 0, if the lock operation fails, the value of z is ERROR.

(x := pthread _lock(1))(Q) = (x = 0) o (lock())(Q) Ll (x = ERROR))(Q).

17.2 Par Constructor

17.2.1 Concrete Semantics

The par constructor is a different kind of parallelism.

17.2. PAR CONSTRUCTOR 163

stmt = statement
| : :

| ejoin{fl,fg,...,ﬁn},g’ jOiH
| . :

cmd = command
| : :

| foparfo{“emd, | 2 cmdy} binary parallelism
o .

| fopar{cmdy | 2emdy | ... | emd,} m-ary parallelism

| “parfor{*cmd} parallel loop
| . :

Figure 17.2: Syntax for “Par” Constructor

Our language described in Chapter 6 (See Figure 6.1) does not handle the constructor
par. It is why we extend our language to handle create and par at the same time. Figure
17.2 explains how to extend the grammar of Figure 6.1 to add two new constructors. The
classical par statement|KSV96, RR99, RR03, SS00| and the parfor constructor described by
R. Rugina and M. Rinard [RR99, RR03]. We also add an intermediate statement, usefull
to define the semantics of par.

The command Zopar%{e1 emdy | 2 emdsy} executes the statements cmd, £y, and 2 emdsy, £y
in parallel. This command is generalized by par, that executes n statements in parallel.
The statement “ parfor®o{’cmd} launches an arbitrary number of times the same statement
temd, 0. Notice that these commands have two labels ¢, and (5. The label ¢, is as for
other commands: it is the label of the beginning of the command. The second label ¢
represents a label in which a thread will wait its descendants.

We have to define the concrete rules (like rules of Figure 7.2) to state the precise
semantics of par statements. These rules are given in Figure 17.3 for the binary par
operator.

The rule “par spawn” explains how the binary par statement spawns two threads at the
same time. The label ¢ is an intermediate label needed for the definition.

At the end of a par statement, all threads created by this statement will join. Notice
that a set is joinable only under some conditions. It is why we have introduced the predicate
joinable. In a sequentially consistent model, a thread is joinable if and only if it has ended
its execution:

joinable(j, P,o) & P(j) = (o

In a weak memory model (TSO or PSO), we need an extra condition: the thread buffer
is empty, i.e., all writes done by the thread j have been taken into account in the global
memory. Formally, in the TSSO model:

def

joinable(j, P,(m,b)) < P(j) = Ly A b(j) = €.

164 CHAPTER 17. LANGUAGE EXTENSIONS

Zo I /
spawn(l{), ¢ Sg — S *spawn({ly), ¢ S — S
P (01), 02 I+ s¢ 1 P (02), 04 I+ s 2 par spawn

foparo{“remdy | 2 emda}, 0 I- 5o — s,
vja (ivglvj) cgv (i7€27j) €g :joinable(j, P7 U)
“join{ty, by}, 0\~ (i, P,a,g) — (i, Pli — ('], 0, 9)
E()join{él,ég},ﬁ' =7
©par®o {“' emd, | 2 cmdy}, 0 - T
“Yemdy, b - T
Yparo{icmdy, 0} | 2cmdy, 05}, 0 I T
“emds, b I- T

/
foparfo{iemd, | 2emdy}, 0 I- T

binary join

par join

par body 1

par body 2

Figure 17.3: Rules for the Binary “Par” Constructor

Rules “par body” means that a par statement generates all transitions generated by its
substatements. These rules are similar to “while body” and “then body” of Figure 7.2.

The constructor par,, generalized the constructor par. Its rules are given in Figure 17.4.

The statement © parfor{‘smi} (, allows a thread to spawn an arbitrary number of thread,
obligates it to wait for their termination, and then the statement returns. The rules for
this statement are given in Figure 17.5. A thread that executes this statement is at label
ly. According to rule “parfor spawn”, it may spawn a thread staying at the label ¢y. For
simplicity, we model this par the statement “spawn(¢;), {; (Notice that the label ¢, appears
twice). Nondeterminiscally, the thread may decide to go to label ¢y, this is the rule “parfor
join”.

Notice that, with this extension, win our language, a program may use both par and
create constructors.

17.2.2 Intermediate Denotational Semantics

As for other constructors, we give the intermediate denotational semantics for par state-
ments. For create statements we use an intermediate function schedule-child (See Figure
10.5). This function makes a schedule transition to the last spawned child. Nevertheless,
par (and par, and parfor) spawns several threads. Hence, we need an intermediate function
schedule-children;;:

schedule-childreny(S) = {(j, P,o,9)

Yieldsite: BPog eS|
A, 0 5) g

Given a set of labels L < IL, the function schedule-childreny fire a schedule transition
to all threads created by the current thread in any label of L.

17.2. PAR CONSTRUCTOR 165

Yospawn (1), {2 I+ s — 51
mspawn(ékﬂ),f?k: + 11 s — Skt

b=t spawn(ly), £y I- Sn-1 — Sn

- n-par spawn
foparo{iemd; | 2emdy}, U - so — sy

Vi, 30 € {4y, ... 0.} (1,0, 7) € g = joinable(j, P, o)
“join{ty,..., 0}, 0" I+ (i, P,o,g) — (i, P[i — ('], 0, 9)
Gjoin{ly, ... 0}, 0 IF T

general join

’ par join
Yparfo{iemd, | ... | remd,}, 0 - T
3k : *kemdy, b IF T
- par body 1
Yparo{iemd | ... | memd,), 0 I T

Figure 17.4: Rules for the n-ary “Par” Constructor

“ospawn(ly), lo I T
“parfor{**cmd}, by I T

“join{t1}, 0y I+ T
fopar{®emd}, by - T

parfor spawn

parfor join

Yemdy, by I- T
Ypar{®cmdy, 0 | 2cmdy, 05}, 0 - T

parfor body

Figure 17.5: Rules for the“Parfor” Constructor

166 CHAPTER 17. LANGUAGE EXTENSIONS

In addition to this, the threads created by a statement par will join at their termination.

Hence we need an extra function, that makes a schedule transition to the father thread at
termination:

f

pmaa%{@ﬂmm

) . (j,P,a,g)ES N
VZEIdSVEGL'[A(i,é,j)eg = P(j) =l .

The intermediate denotational semantics of par-like statements is then defined by:
[par®{“ stmty | stmtz}|](Q) = (joing, 5,,(S1MS2),GU Gy U Ga, A)
where (S,G,AY = [|“spawn(ly), £y|] o [|*°spawn(f1), £-|](Q)

and S, = schedule-childreng, 4,;(S)
and (S1,G1, A1) = [[“stmty, l|[(interfere,,(S;), G, AUGy)
and (Sy, Gy, KoY = [|®2stmty, lp|]{interfere,, (S;), G, AUG)

Notice that {(S1,Gi,A;) and (S, G, As) are defined by a fixpoint. This fixpoint is the
equivalent of guarantee for create statements.

This definition straightforwardly generalize to par,. Furthermore, we define the seman-
tics of parfor:

[parfor{‘cmd}[](@) = (joing,(S1NS2),G UG, UGy, A)
where (3,G,AY = [[*spawn((y), (o|]™(Q)
and S, = schedule-children(S)
and (8',¢", 8y = [|“stmt,, ly|]{interferey(s’),¢', AUGC"

17.2.3 Abstract Semantics

‘0 part’® {“emd |2 emdy}(Q) £ exe-children'” (Q)
where exe-children(Q) & (O GCy LU Ly, KU K, [U L, B, U Ey)
def

(Ciy L1, Ky, 11, By = (emdy, loy)) © child -spawn, o spawn, (Q)

def

(Cor Lo, Ko, I, Eyy = (2emdy, Lo)) © child -spawn, o spawn, (Q)

Figure 17.6: Abstract Semantics of “Par” Statements

Hence, we introduce the abstract semantics for par statements. This abstract semantics
is described by Figure 17.6. This definition may be straightforwardly generalized to par,,.
The case of the statement parfor is even simpler:

def

% parfor{*cmd}(Q) ((]e1 cmdy, Lo © child -spawn,, o spawne)W(Q)

Notice that, with this semantic extension, we may analyze programs with both create
and par statements.

17.3. FUNCTION CALLS 167

cmd = command

| ‘call(f) Function Call
| : .

Figure 17.7: Syntax for “Call” Constructor

17.3 Function Calls

Until now, we only dealt with intraprocedural analysis. hence, to analyze a function, we
need to analyze the body of the function each time the function is called. We extend the
syntax of our language given in Figure 6.1 with the new constructor call given in Figure
17.7. In Chapter 6 programs were statements of the form ‘cmd, f,,. Now programs are a
pair with a statement of the form ‘cmd, ,, and a list (fi,“cmdy, €)), ..., (fa, " cmd,, (")
of declaration functions. The abstract semantics () can trivially be extended to handle
function calls: (‘call(f),) = (“body, (}); we call (-)o this extension of (). Nevertheless,
computing the semantics of the body of a function each time this function is called may
be costly.

We define another concrete semantics for programs, based on the intermediate denota-
tional semantics. We consider the concrete lattice® Mon(C-Configurations) ordered by

the pointwise ordering. We define the semantics ﬂ of a program by:
¢ M0y def il /
[stmt, C1(f) = [["stmt, €]] o f.

We consider the abstract complete lattice Mon(A-Configurations). The Galois con-
nection between the concrete and the abstract lattice is defined by:

O‘fun(fu) < Qefg © fh O Vefg

Vfun(fu) = Yefg © fti © Qcfg

. e d
Then, we define an abstract semantics (| - |):

(|“stmt, C|)(f) = (“stmt,) o f.
The following proposition tells us that the semantics of function calls may be simplified:

Proposition 17.1. Given a function f, its code “body,) and an abstract configuration
Q: N
(“call(f), €)o(Q) = ((I body, £11)(id))(Q)

where id is the identity function, i.e., Vr,id(z) = x.

8Recall that Mon(X) is the set of monotone functions from X to X (See Definition 2.11).

168 CHAPTER 17. LANGUAGE EXTENSIONS

In this definition, we only need to compute one time the semantics of “ body, ¢;. Indeed,
_
(| body, ¢]) will be applied to the same argument id. Hence we do not need to compute
the semantics of a function each time it is called.
— . —
Nevertheless, (|- |) may be hard to compute. Hence, we need an abstraction of (| - |).
—
We consider an abstract domain & and a Galois connection «_,,7v_, from the concrete
lattice Mon(A-Configurations) to 7. We also assume an operator © that is an ab-
—_ =
straction of composition? o of functions and a function apply : x A-Configurations —
—_—
A-Configurations that is an abstraction of the application of a function, i.e., apply is an
—
abstraction of A(f, Q).f(Q). Furthermore, we assume an element id that is an abstraction
of the identity function Az.z. At the end, we assume an abstract thread creation function
— . Y) ——
create, that, given a semantics (2 cmd, () that overappoximates (|2cmd, (o), returns an
abstraction of (| create(*2cmd), £5)).

N
This allows us to define inductively a new semantics (-):

Definition 17.1. For any abstract function £ of body * body, ¢}:

(eal(F).05(r) = (" body. 5)(id)) = 1
o (Oéa (E[Kmaction)) 6>][
= ("emda) o (" emdi)(f)

)
(“action, £') ()
)
) & guard —cond © [oapw(f)
)
)
)

h(f
D
D(f
D

(]g1 emdy; 2 emd,
(]E1 while(cond) {62 cemd}
with loop(g

—_—
and guard

v
(“ create(2cmd), £o) (£

& ((]e2 emd, 4q)) oguardcond(g)) U g
d:ef (aH (ﬂuar([cond))_O)g

def ——>
= create———>
(2emd,))

with g = a_,(spawn,) Tg

This is a similar definition as Definition 13.2, excepted that we also handle function
calls. Furthermore, this semantics is sound:

. - - . - TR
Proposition 17.2. (v is an abstraction of (| - |).

Hence, this semantics allows us to compute an overapproximation of the abstract se-
mantics. For any abstract configuration Q and any statement ‘cmd, ¢’ : (‘cmd, /)(Q) <

apply((| emd, €))(id), Q)

9Recall Section 2.1.3.

17.3. FUNCTION CALLS 169

17.3.1 Examples of Abstract Domains

17.3.1.a Pure Gen/Kill Analyses We want to define an abstract semantics ﬂ)) for the
gen /kill analysis of Section 14.3. The gen/kill analysis gives us, for each basic action, two
elements of the lattice V:

e gen(action, o)
e and keep(action, o).

In the case of pure Gen/Kill analysis (See Section 4.6), the functions gen and keep does
not depends on the store 0. Hence, we omit this argument and write: gen(action) and
keep(action).

As abstract domain, we use the lattice F define in Section 4.6. An element of F may
be represented by two elements of the lattice V. Furthermore, according to Claim 4.2, F
is stable under composition.

Our domain Z is then abstract configurations using F as abstract states and Z =V
as abstract transitions.

We define the Galois «_,,v_, connection as follow:

def

V=l fs Lo Kos Ios Bo) = MC, L, K, I, E)Lf(C), LU Lo, KU Ko, I U Iy, E LI Fy)

The abstract application is then:

apply({f, Lo, %o, I, Fo),{C, L, K, I, EY) = {f(C), LU Loy, K U Ko, I U Iy, E LI Fy)

The abstract composition is defined by:

(fo, Lo, Ko, I, o) O f1, L1, Ky, b,) = (fro fo, LoU Lo, Ko U K, I U I, B U Ey)
The abstract thread creation is defined by:

o child-spawn t) Tf

—_—> def 6
@«
create———> (f) = O, (COTTL lneg Oguarantee

(emd, L) (2emd, £o)

The abstract function {f, Lo, %y, Iy, Fo)
—>
The semantics () is similar to semantics () given in 14.3. The main difference is the
set of abstract states.

17.3.2 Acquisition Histories
We want to define a semantics (]Ti for the semantics () described in Section 16.3.3.
The domain & is the set of abstract configurations with:

e 2 = PT(H) as set of abstract states

o X =% x Ky as set of abstract transitions, where Z; = %, = PT(H x {U,V'})

170 CHAPTER 17. LANGUAGE EXTENSIONS

e PT(H) as set of errors.

The two differences between abstraction configuration of J and abstract configurations
used in Section 16.3.3 is the set of errors and set of abstract transitions. The set %
represents the end of the execution of the current thread and %, represents the whole
execution of a

The main reason is that an error may be reachable from some configurations and not
from other configurations. The lattice PT(H) x PT(H) will allow us to check whether a
given error is reachable.

We define an intermediate function concat : 9 x %, x %o — PT(H x {U,V}):
concat(C, Hy, Hy) € {(h¢ Uh,X) | h¢ € C A (h, X) € Hi} U H,

The abstract application is defined by:

def

app[y(<607 Ly, Ko, o, 'EO>7 <C, L, X, 1, f>) = <C17 L1, K, L, £1>

where ¢; = {hoUh|ho€ GoAh€EC}
L, ¥ Uz,
K = M.concat(C, % (0))
L % I1UH, whith (Hy, Hy) = I
S {{Data—Race} if 3he € CIhp € Eo he @ hy
0 if otherwise
The Galois connection between Mon(A-Configurations) and Z is defined by: ., (f) =

AQ.apply(f, Q).
The abstract composition is defined by:

<Cl7 Lla ?G: Ib ‘Z:1>_O)<C;2a LZa ?C?a 127 Z:2> = <C[7 L[7 K[a I[a ‘Z[>3]

where G = {hiUhy | hi € G Ahy € G}

L3 - LUULO
def

s = KUK

L € LUbL

B = EBUE

17.3. FUNCTION CALLS 171

cmd = command

| “SyncCall ,(f) Function Call
| : :

Figure 17.8: Syntax for “SyncCall” Constructor

Synchronized Function Call and Reentrant Monitors To handle reentrant monitors,
we need as in P. Lammich and M. Miiller-Olm paper [LMOO08| the possibility to call a
function synchronized with a monitor. This synchronized called are used in practice in
some languages like JAVA [GJSBO05, Section 8.4.3.6 Synchronized Methods].

Hence, we add a new constructor to our language, see Figure 17.8. The new constructor
SyncCall ,(f) may be modeled by lock(y); call(f); unlock(y). Nevertheless, in a program
that never uses lock nor unlock we may have a more precise abstraction of SyncCa//N(f)
than of lock(u); call(f); unlock ().

In the domain describes in Section 17.3.2, we have a more precise abstraction:

(SyncCall ,,()){C, L, K, I,EY = {Ci, Ly, Ky, Iy Ery ULCoy Lo, Ko, Lo, Ez)
where (C;, L1, K, I, E1y = (call(f))) o (lock(11)){Cpys L, K, I, E)
Gio = {heC|pochlpo)}
(Coy Lo, Ko, I, By = (lock (1)) © (call ()] o (lock(11)){C pys £, K, I, E)
Copy = 1{heEC| ¢ hpo)}

The set C is split into two sets C,, and C-,,. G, is the set of acquisition histories in
which the mutex p is held. C_,, is the upper closure (the symbole T means upper-closure)
of the set of acquisition histories in which g is not hold. We must take the upper closure
is the case of C.,,, because the set {h € C | 1o ¢ h(uo)} is not in the abstract domain
PT(H).

This analysis is exact on some kind of programs. We call L-M-O (Lammich-Miiller-Olm)
programs programs such that:

e All guard uses non-deterministic choices
e No lock or unlock are used
e The program uses reentrant monitors through the primitive SyncCall.

This analysis is exact on a large class of L-M-O programs. Let us consider the class
Cly of programs p such that in all execution path of p, whenever a thread i that owns a
mutex p spawns another thread j, ¢ will release p further in the execution.

172

This analysis is exact on the programs of Cly, i.e, if this analysis detects a data-race
on a program p in Cly, then, there is a data-race in the concrete model. The analysis of
P. Lammich and M. M. Miiller-Olm [LMOO08| is exact on all L-M-O programs.

To lose precision of programs that are in L-M-O but not is C'ly is not a problem in
practice, since a programmer will avoid to lock definitively a mutex before spawning a
thread.

17.3.3 Partial Functions

Functions calls can be handled using the concept of R. Wilson and M. Lam’s partial func-
tions [WL95|. Each time a function is called, we compute an abstraction of the semantics
of its body for some abstract values of the arguments.

If the function is called a second time, we check if we may reuse the previous analysis
of the function body, or if we had to re-analyze the function.

17.4 Conclusion

Our language may easily be extended to handle new features. New kinds of basic statement
may be added without changing all the analysis. E.g., we may add a return value to the
lock function and test if the lock fails.

The statement par may also be added. With this statement, we generalize the R.
Rugina and M. C. Rinard analysis [RR99, RR03| of pointers. Furthermore, it is possible
to analyze programs that use both par and create statements.

Part V

A Complete Static Analyzer:
MT-Penjili

173

CHAPTER 18

Implementation

18.1 Penijili: The EADS Tool

The EADS company develops a static analysis tool called Pengjili. This tool is based
on abstract interpretation techniques. The Static Analysis Team that develops Penjili is
composed of three permanents and two Phd students (including me).

Penjili exists since 2006 March; it detects array-overflows, NULL pointer dereference,
invalid pointer dereference, division by zero and integer overflows. The tool is sound, in
the sense that there is no false negative'. It analyzes programs in full fledged C (dynamic
memory allocation is handle with a simple abstraction).

When I began my Phd, this tool was only able to analyze single-threaded programs.
This was a major restriction since most programs (even embedded programs) are multi-
threaded. Now, as a consequence of my work, Penjili handles multithreaded programs as
well.

! Assuming there is no bug in the analyzer.

175

176 CHAPTER 18. IMPLEMENTATION

L.o.C. | Parint MT-Penjili
. . false
time time
alarms
Message 65 0.05 | 0.20s 0
Embedded | 27 100 - 0.34s 7
Test 12 342 - 3.7s 1
Test 15 414 3.8 - -

Figure 18.1: Benchmarks

18.2 Practical Results

The abstract semantics given in Part IV is denotational, so we may compute it recur-
sively. Our final algorithm is to compute recursively guarantee, iy applied to the initial
configuration (T, {£,}, M. L, L, 0. ’

A large part of my work was to implement the analysis described in Part IV. The aim
was to detect the same errors (array-overflows, NULL pointer dereference, invalid pointer
dereference, division by zero and integer overflows) as for single-threaded programs.

I have implemented three tools. First I implement two proof-of-concept tools, then,
[was in charge to extend Penjili so that it can handle multithreaded programs. For
intellectual property reasons, the code is not given. This code is owned by EADS. These
three tools use as entry a program written is the Newspeak language [HOL07, HOLO08|. A
program written in C code can be transformed into Newspeak code using the open source
tool C2Newspeak. C2Newspeak is developped by EADS.

First, the proof-of-concept tool Parint is an standalone tool of 822 lines of code.
Parint analyzes only programs with integer variables. It overapproximate integer values
by ranges (see Section 2.3.2.a for the definition of the domain Ranges). This tool stubs
the pthread_create function of the Pthread Library [IT04, Bar10, But06].

Second, the Tool MT-Penjili is implemented using the code of Penjili as a basis. It add
331 lines of code to Penjili. The main objective of this second proof-of-concept tool was
to prove that my analysis is not restricted to “toy” analyzers and may be integrated into
an industrial tool. MT-Penjili handle Pthread library but is not very precise: it was only
a proof-of-concept tool.

Third, since MT-Penjili was working, [was responsible to integrate into the Penjili Tool
my analysis. Now Penjili is able to analyze multithreaded programs using Pthread or Arinc.
Integrating my analysis into Penjili needs 16 399 line modifications in Penjili source code
and Penjili Benchmark suite. In the current version of Penjili (May 2010), the number
of lines specific to multithread (i.e., that are executed only to analyse a multithreaded
program) is 792, according to SlocCount, or 1294, according to wc -1. This represents
2.6% of the whole source code of Penjili.

In Table 18.1 we show some results on benchmarks of different sizes. L.o.C. means
“Lines of Code”. “Message” is a C file, with 3 threads: one thread sends an integer message

18.2. PRACTICAL RESULTS 177

LOC according to we -1 | LOC according to sloccount
Mini 101 000 64 000

Figure 18.2: Code Size of the “Mini” Program

to another through a shared variable. “Embedded” is extracted from embedded C code
with two threads. “Test 12”7 and “Test 157 are sets of 12 and 15 files respectively, each one
focusing on a specific thread interaction.

To give an idea of the precision of the analysis, we indicate how many false alarms were
raised. Our preliminary experiments show that our algorithm loses precision in two ways:
1. through the (single-thread) abstraction on stores 2. by abstraction on interferences.
Indeed, even though our algorithm takes the order of transitions into account for the
current thread, it considers that interference transitions may be executed in an arbitrary
order and arbitrary many times. This does not cause any loss in “Message”, since the thread
which sends the message never puts an incorrect value in the shared variable. Despite the
fact that “Embedded” is a large excerpt of an actual industrial code, the loss of precision is
moderate: 7 false alarms are reported on a total of 27 100 lines. Furthermore, it is because
of this arbitrary order, that our analysis handles weak memory models.

Given this results, this analysis has been implemented in the industrial tool Penjili.
Penjili was a tool that may check single-threaded programs. Now it is able to check
multithreaded programs.

This analysis have been launched on an embedded software called “Mini”. This software
is quite large (See Figure 18.2), nevertheless we called it “Mini” because it is small compared
to the softwares we want to analyze. The Figure 18.2 gives two ways to count the number
of Source Line Code:

e Using the Linux Tool wc -1 that counts the total number of lines of all source files.
e Using the tool SLocCount [Whe].

The Tool SLocCount does not count comments, blank lines and then is more accurate.
Nevertheless, we also give the number of lines given by wc -1 as other authors do.

Figure 18.3 gives the results of our analysis. In nearly 5h20min, we found only 233
alarms. Figure 18.4 gives more details on these alarms. The first column indicates which
kind of alarm, e.g., we raise 12 “array out of bounds” alarms. The second column gives the
number of alarms, and the third column gives the accuracy of the analysis. The accuracy
of the analysis is the percentage of dangerous operations that have been proved correct,
e.g, the tool prove that 99.44 percents of pointers dereferences are correct.

Furthermore, the fixpoint needed to computes guarantee is reached in only 3 steps.

We investigate where we lose time. The time needed to compute the first step in the
guarantee fixpoint is 30min32s. Notice this time is less that % of the time of 3 the iterations.
The explanation is that, during the two other iterations, we discover new possible execution
paths. When we sequentially executes the code of the threads, we can use the single-
threaded analysis of Penjili on it. This needs 29min25s. This means that, to computation

178 CHAPTER 18. IMPLEMENTATION

Number of Alarms 233
Analysis time 5h 17min 21s
Analysis space 135.5 Mb
Number of iterations of the guarantee loop 3

Figure 18.3: Experimental Results of the Penjili Tool

Run-time error Number of alarms | Accuracy
Array Out of Bounds 12 98,77%
Integer Overflow 193 88.24%
Division by Zero 0 100%
Invalid Pointer Dereference | 28 99.44%

Figure 18.4: Penjili Alarms

time is increased by only 4% with our multithread domain {C, £, X, I, E) compared to the
single-threaded domain C.

18.3 Complexity

In practice, the analysis works and need a reasonnable amount of time (only some hours
on a standard laptop) on large programs. We justify theoretically this point by a study of
complexity.

The complexity of our algorithm greatly depends on widening and narrowing operators.
Given a program “prog, f, the slowness of the widening and narrowing in an integer w
such that: widening-narrowing stops in always at most w steps on each loop and whenever
guarantee is computed (which also requires doing an abstract fixpoint computation). Let
the nesting depth of a program be the nesting depth of while and of create which? have a
subcommand create.

Proposition 18.1. Let d be the nesting depth, n the number of commands of our program,
and, w the slowless of our widening. The time complexity of our analysis is O(nw*)
assuming operations on abstract stores are done in constant time.

This is comparable to the O(nw?) complexity of the corresponding single-thread analy-
sis, and certainly much better that the combinatorial explosion of interleaving-based analy-
ses. Furthermore, this is beter than polynomial in an exponential number of states [FQO03|.

Proof. Let c(*cmd, '), n(‘emd, ¢') and d(‘cmd, ') and w(*cmd, ') be the complexity of
analyzing ‘cmd, ¢', the size of “cmd, ¢ and the nesting depth of ‘emd, ¢/, the slowless of the
widening and narrowing on ‘cmd, ¢’ respectively. Let a and k the complexity of assign and
of reading K (¢) respectively.

2In our Semantics, each create needs a fixpoint computation, except create with no subcommand create.

179

Proposition 18.1 is a straightforward consequence of the following lemma3:

Lemma 18.1. The complezity of computing (‘cmd, ') Q is O(an(w + k)w=1)

This lemma is proven by induction.
c(lv:i=e)=a
c(“emdy; 2 emda, 03) = c(“emdy, by) + c(2emdsy, £3)
c(““while(cond){*2 emd}, €3) < w(“* while(cond){*2emd}, €3) x c(2cmd, £y)

If “?cmd does not contain any subcommand create, then the fixpoint computation
terminates in one step: c¢(“create(*2emd), (3) = k + c(*2emd)
Else: c(“ create(*2cmd), l3) = k + w(“ create(2cmd), £3)) x c(“2cmd) O O

18.3.1 Complexity of Operations on K

Notice that we have assumed that operation on Z%2P¢!s are done in constant time in Propo-

sition 18.1. This abstract store may be represented in different ways. The main problem
is the complexity of the fasic function, which computes a union for each element in £. The
naive approach is to represent X € Z2Pels a5 a map from P(Labels) to Z. Assuming that
operations on maps are done in constant time, this approach yields a O(tnw?) complexity
where t is the number* of creates in the program. We may also represent X € Zlabels
as some map Ky from P(Labels) to % such that X(¢) = |J,5, K (£) and the function
basic is done in constant time : basici.—o(C, £, K, I, EY = (inter; o elemyy.—o(C), L, Ku[L —
Ko (L) U elem-intery,.—.(C)], I). Nevertheless, to access to the value X (¢) may need up to ¢
operations, which increases the complexity of child-spawn and combine. The complexity is
then O(n(w + t)wi=1).

18.3.2 Complexity of Widening

The slowness of the widening and narrowing operators, w, depends on the abstraction.
Nevertheless, a widening is supposed to be fast.

x ify>uz
Consider the classical widening on Ranges : [z, 2’|V [y, y'] = [z, 2’| where z = { ly
—o0 else
/ f / < !
and 2/ = 1" RYSE
+oo else

This widening never widen more than two times on the same variable. Therefore this
widening is linear in the worst case.

3The functions arguments are omitted in the name of simplicity.
4This is different to the number of threads since an arbitrary number of threads may be created at the
same location.

180

Part VI

Conclusion

181

CHAPTER 19

Conclusion

19.1 Conclusion

We have described a generic static analysis technique for multithreaded programs parametrized
by a single-thread analysis framework and based on a form of rely-guarantee reasoning. To
our knowledge, this is the first such modular framework: all previous analysis frameworks
concentrated on a particular abstract domain. Such modularity allows us to leverage any
static analysis technique to the multithreaded case. We have illustrated this by applying
it to a large variety of abstract domains.

Our theoretical analysis generalizes cartesian abstraction [MPR06b, MPR06a, FQO3],
it generalizes the P. Lammich and M. Miiller-Olm Acquisition Histories analysis (with the
same precision, for nearly all programs, see Section 17.3.2). And it generalizes R. Rugina
and M. C. Rinard [RR99, RR03| analysis.

Our theoretical analysis allows us to use domains designed for the single-threaded case
(e.g, string domains [AGHO06], Ranges,. . .).

Furthemore, I have implemented this theoretical framework in an industrial tool (Pen-
jili) and analyzed with it a large embedded program.

We have shown that our framework only incurred a moderate (low-degree polynomial)
amount of added complexity. In particular, we avoid the combinatorial explosion of all

183

184 CHAPTER 19. CONCLUSION

interleaving based approaches.
Our analysis is always correct, and produces reasonably precise information on the
programs we tested.

19.2 Perspectives

As seen in Chapter 17 our analysis has been designed to be easily extended. We hope that
this analysis can be extended to handle more kinds of programs, new kind of parrallel con-
structors. Some interesting parallel constructors are atomic blocks, invokation of another
thread and synchronisation primitives.

An atomic block is executed sequentially, as if it was only one instruction. A primitive
atomic{cmd} can be overapproximated by c¢md. Nevertheless, if this is sound, this is not
precise. We may wonder if we can update the K-componnent of the abstract configuration
in a more precise way. Furthermore, some blocks of instructions are executed “as if” they
where atomics |[Lip75, FF04, FFLO05], e.g., due to mutexes. I hope this analysis may be
extended to detect such blocks and then to enhance precision.

The invocation of another thread is allowed in the C# language. The main idea is that
a thread may “invoke” another thread to execute a function f, i.e., the function f will be
executed by the invoked thread. The invokation of another thread on a function f may
be overapproximated by create(f), but we may hope to improve precision analysing this
primitive since the execution of the function f cannot interfere with the invoked thread.
Maybe we may detect, in some cases, which thread 7 is invoked, and then update in a
different way the X-componnent of abstract configurations.

There exists a large variety of synchronisation primitives, e.g., the Posix norm uses
condition variables. A thread may wait on a variable, and another thread may launch a
signal on a condition variable awaking a thread that waits on this variable. As explained
by H. Seidl and B. Steffen [SS00|, these synchronisations may be ignored, since they only
reduce possible behaviors. Nevertheless I hope these synchronisations may be taken into
consideration to improve precision. May be we can use a set like after to distinguish
transitions fired after some synchronization point and transitions done before some syn-
chronization point. Hence, in the abstract, we may define some K (¢) where ¢ is the label
of a synchronisation primitive.

CHAPTER 20

Index

Abstract Interpretation, 27-33, 36, 48, 49, 51, 87, 101, 124, 131-134, 136, 137, 143, 147,
157, 162-165
Abstract Semantics, 27, 28, 30, 49, 124, 134, 137, 147, 162-165
Abstraction, 28-33, 48, 49, 51, 87, 124, 131, 132, 136, 137, 157, 164
Abstraction Function, 31, 36, 133, 143
Concretization Function, 31
Acquisition History, 55, 154, 155, 165, 167
Deadlocks, 154
Interleaving, 55, 155
Array Overflow, 9, 12, 43

Cartesian Abstraction, 48, 49, 141, 143
Concrete Semantics, 27
Configurations, 87, 96, 97, 124-126, 133, 134, 146, 165, 166
Abstract, 133, 146, 165, 166
Concrete, 87, 96, 97, 124
Consistent, 125
Initial, 134
Principal, 126

185

186 INDEX

Secondary, 126
Conservative, 71, 89, 90, 115

Data-Race, 9, 13, 50, 52-54, 151, 152, 155, 156, 166
Deadlock, 9, 54, 55, 154, 155

FIFO, 25, 80
Fixpoint, 17, 32, 34, 47, 53, 124, 134, 141, 162, 173-175

Galois Connection, 28-31, 34, 35, 37, 44, 49, 124, 131-137, 139, 140, 143-146, 149-151,
154, 163
Abstraction Function, 28
Concretization Function, 28
Ranges, 29, 31, 34
Gen/Kill Analysis, 45, 47, 51, 52, 75, 77, 78, 83, 143, 165
Points-to Graph, 78
Points-to Graphs, 45
Pure Gen/Kill Analysis, 51, 77, 165

Lattice, 21, 23, 33, 51, 77, 83, 124, 131, 132, 135, 139, 141, 143, 145, 149-151, 154, 155,
163, 165, 166
Complemented Lattice, 23, 51, 77
Lattice of Ranges, 22, 23, 29, 31-34, 36, 37, 139, 141, 172, 175, 179

Monotone, 20, 28-30, 52, 163
Narrowing, 31, 33, 34, 52, 134, 174, 175

Ordering, 16, 18-22, 24, 29, 34, 45, 47, 51, 54, 64, 66, 69, 72, 87-89, 97, 131, 139, 150, 154,
155, 163
After, 54, 88, 89
Ancestor, 64, 69, 72, 88, 89, 97
Inclusion Ordering, 16, 45, 131, 150, 154
Pointwise Ordering, 19, 29, 51, 139, 154, 155, 163
Pre-Ordering, 18, 19, 21, 88
Prefix Ordering, 24, 66, 97
Product Ordering, 19, 47
Reverse Ordering, 19, 20, 150, 154
Strict Ordering, 18, 19, 64

Poset, 19-21, 28

Product, 16, 19, 23, 31, 34-38, 141, 152
Cartesian Product, 16, 31
Product of Lattices, 23
Product Ordering, 19

INDEX 187

Reduced Product, 34, 37, 38, 141, 152
Separate Product, 31, 38, 141
Simple Product, 35, 36, 38, 141

Restriction, 18
Stationary, 17, 32-34

Turing Machine, 11, 13
Turing powerful, 11, 12

Widening, 31-34, 52, 134, 135, 162, 164, 174, 175
Write Buffer, 80-83, 145-147, 149-151, 159

188 INDEX

CHAPTER 21

List of Figures

1.1
1.2
1.3

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2

Par Statement 12
Create Statement L 12
Presence of an Array Overflow is Undecidable 14
Example of Lattice 23
A Flat Lattice e 24
Example of FIFO 27
Overapproximation 30
Program Example o o 32
Program Example oL 35
The Lattice “Not Zero” 36
Products 37
Euclides Algorithm 38
The Naive Product Fails 39
Example of Blocking Semantics 0 0L, 41
Control Flow of Euclides Program 44
Simplified Control Flow of Euclides Program 44

189

190

4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

5.1

6.1
6.2

7.1
7.2
7.3
7.4
7.5
7.6

8.1
8.2

9.1
9.2
9.3

10.1
10.2
10.3
10.4
10.5

11.1
11.2

13.1
13.2
13.3

14.1
14.2

15.1
15.2

LIST OF FIGURES

Array Overflow 46
Gen and kill sets for Point-to Graphs 48
Flanagan and Qadeer Example 51
Modified Flanagan and Qadeer Example 52
Mutexes Protect Variables 55
A Program Execution 56
Reentrant Monitors 56
No Data-Race but a Deadlock Y
Semantics Hierarchy L 60
SYNtax e 64
Program Examples o 65
Local Semantics Rules 68
Global Semantics Rules 69
Example of Program Execution 71
Thread Creation in a While Loop 72
Auxiliary definitions 73
A thread Execution 73
Interleaving Semantics Example o000 80
System Transitions for Interleaving Semantics 80
TSO Example 85
System Transitions for TSO 86
System Transitions for PSO L. 88
after ..o e e e e e e e e e e e 92
G-collecting Semantics Lo 95
Example of Execution 000 97
Alternative Execution 99
Basic semantic functionso Lo 100
Thread Creation 121
Thread Creation e 122
Given Abstractions 136
Galois Connections e e 137
Basic Abstract Semantic Functions 139
Example 145
Abstract Example 146
Galois Connections for Weak memory Models 150

Given Abstractions For Weak Memory Models 151

LIST OF FIGURES 191

15.3

16.1
16.2

171
17.2
17.3
17.4
17.5
17.6
17.7
17.8

18.1
18.2
18.3
18.4

Basic Abstract Semantic Functions for Weak memory Models 151
Data-raceony 156
Example of Data-Race Detection 157
Syntax for “Par” Constructor 162
Syntax for “Par” Constructor 163
Rules for the Binary “Par” Constructor 164
Rules for the n-ary “Par” Constructor 165
Rules for the“Parfor” Constructor 165
Abstract Semantics of “Par” Statements. 166
Syntax for “Call” Constructor 167
Syntax for “SyncCall” Constructor 171
Benchmarks 176
Code Size of the “Mini” Program 177
Experimental Results of the Penjili Tool 178
Penjili Alarms 178

192 LIST OF FIGURES

CHAPTER 22

Bibliography

[ABBM10| Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt, and Madanlal
Musuvathi. On the verification problem for weak memory models. In POPL
'10, pages 7-18, New York, NY, USA, 2010. ACM.

[AGH06] Xavier Allamigeon, Wenceslas Godard, and Charles Hymans. Static Analysis
of String Manipulations in Critical Embedded C Programs. In Kwangkeun Yi,
editor, Static Analysis, 13th International Symposium (SAS’06), volume 4134
of Lecture Notes in Computer Science, pages 35-51, Seoul, Korea, August 2006.
Springer Verlag.

[Bar10] Blaise Barney. Posix threads programming, 2010. https://computing.1llnl.
gov/tutorials/pthreads/.

[BMOTO05| Ahmed Bouajjani, Markus Miiller-Olm, and Tayssir Touili. Regular symbolic
analysis of dynamic networks of pushdown systems. pages 473-487, 2005.

[Boalg| "OpenMP Architecture Review Board". OpenMP Application Program Inter-
face. Mai 2008.

[But06] David R. Butenhof. Programming with POSIX Threads. Addison-Wesley, 2006.

193

194

[cCT7|

[CCT9)

[CCo1]

[CC92]

[CC04)

[CDNBOS]

[CFR*97]

[CMB+95]

[Cou96]

[Cou05]
[fCS98]

BIBLIOGRAPHY

P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fixpoints.
In Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT Sympo-
stum on Principles of Programming Languages, pages 238-252, Los Angeles,
California, 1977. ACM Press, New York, NY.

P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Conference Record of the Sixth Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 269-282, San Antonio, Texas,
1979. ACM Press, New York, NY.

P. Cousot and R. Cousot. Comparison of the Galois connection and widening/-
narrowing approaches to abstract interpretation. JTASPEFL 91, Bordeaux.
BIGRE, 74:107-110, October 1991.

P. Cousot and R. Cousot. Comparing the Galois connection and widening/nar-
rowing approaches to abstract interpretation, invited paper. In M. Bruynooghe
and M. Wirsing, editors, Proceedings of the International Workshop Program-
ming Language Implementation and Logic Programming, PLILP 92, Leuven,
Belgium, 13-17 August 1992, Lecture Notes in Computer Science 631, pages
269-295. Springer-Verlag, Berlin, Germany, 1992.

P. Cousot and R. Cousot. Basic Concepts of Abstract Interpretation, pages
359-366. Kluwer Academic Publishers, 2004.

Christopher L. Conway, Dennis Dams, Kedar S. Namjoshi, and Clark Barrett.
Pointer analysis, conditional soundness, and proving the absence of errors. In
SAS 08: Proceedings of the 15th international symposium on Static Analysis,
pages 62-77, Berlin, Heidelberg, 2008. Springer-Verlag.

Agostino Cortesi, Gilberto Filé, Francesco Ranzato, Roberto Giacobazzi, and
Catuscia Palamidessi. Complementation in abstract interpretation. ACM
Trans. Program. Lang. Syst., 19(1):7-47, 1997.

Michael Codish, Anne Mulkers, Maurice Bruynooghe, Maria Garcia de la
Banda, and Manuel Hermenegildo. Improving abstract interpretations by com-
bining domains. ACM Trans. Program. Lang. Syst., 17(1):28-44, 1995.

P. Cousot. Abstract interpretation. Symposium on Models of Programming
Languages and Computation, ACM Computing Surveys, 28(2):324-328, June
1996.

P. Cousot. Forward relational infinitary static analysis, 2005.

"Supercomputing Technologies Group MIT Laboratory for Computer Science".
Cilk 5.4.6 - Reference Manual. 1998.

BIBLIOGRAPHY 195

[FF04)

[FFLO5)|

[FQO3]

[GBC*07]

[GHK+93]

[GHK*03]

[GJSBO3]

|GT06]

[HOLO7|

[HOLOS|

[Hym06]
[1SO99)
[1SO06]
[1T04]

Cormac Flanagan and Stephen N Freund. Atomizer: a dynamic atomicity
checker for multithreaded programs. In POPL ’04: Proceedings of the 31st
ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 256267, New York, NY, USA, 2004. ACM Press.

Cormac Flanagan, Stephen N. Freund, and Marina Lifshin. Type inference for
atomicity. In TLDI ’05: Proceedings of the 2005 ACM SIGPLAN international
workshop on Types in languages design and implementation, pages 47-58, New
York, NY, USA, 2005. ACM Press.

Cormac Flanagan and Shaz Qadeer. Thread-modular model checking. In
Thomas Ball and Sriram K. Rajamani, editors, SPIN, volume 2648 of Lecture
Notes in Computer Science, pages 213-224. Springer, 2003.

Alexey Gotsman, Josh Berdine, Byron Cook, Noam Rinetzky, and Mooly Sagiv.
Local reasoning for storable locks and threads. Technical report, 2007.

Gierz, Hofmann, Keimel, Lawson, Mislove, and Scott. A Compendium of Con-
tinuous Lattices. second edition, 1998.

G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D. Scott.
Continuous Lattices and Domains. Cambridge University Press, 2003.

James Gosling, Bill Joy, Guy L. Steele, and Gilad Brach. The Java Language
Specification, Third Edition. May 2005.

Sumit Gulwani and Ashish Tiwari. Combining abstract interpreters. In PLDI
'06: Proceedings of the 2006 ACM SIGPLAN conference on Programming lan-
guage design and implementation, pages 376-386, New York, NY, USA, 2006.
ACM.

Charles Hymans and Olivier Levillain. Newspeak: Big Brother is compiling
your code. Technical report, EADS France, 2007. This tool may be downloaded
on http://www.penjili.org/newspeak.html.

Charles Hymans and Olivier Levillain. Newspeak, Doubleplussimple Minilang
for Goodthinkful Static Analysis of C. Technical report, EADS ITW /SE, 2008.
This tool may be downloaded on http://www.penjili.org/newspeak.html.

Charles Hymans. Presentation at Isv seminar, at ENS cachan, 2006.
ISO/IEC. Programming Languages C. 1999.
ISO/IEC. Programming languages — C#. 2006.

IEEE and The Open Group. The Open Group base specifications issue 6 - IEEE
Std 1003.1, 2004. http://www.opengroup.org/onlinepubs/009695399/toc.
htm.

196

[KIGO5]

[KSV96]

[Lam79]

[Lip75]

[LMOO7]

[LMOOS]

[Mic10|

[MPRO6a]

[MPROG6b]

[MPRO7]|

[0SS09]

[PFHO6]

BIBLIOGRAPHY

Vineet Kahlon, Franjo Ivanc¢i¢, and Aarti Gupta. Reasoning about threads
communicating via locks. In In Computer Aided Verification, pages 505-518.
Springer, 2005.

Jens Knoop, Bernhard Steffen, and Jiirgen Vollmer. Parallelism for free: effi-
cient and optimal bitvector analyses for parallel programs. ACM Trans. Pro-
gram. Lang. Syst., 18(3):268-299, 1996.

Leslie Lamport. How to Make a Multiprocessor Computer That Correctly Exe-
cutes Multiprocess Programs. IEEE, 1979.

Richard J. Lipton. Reduction: a method of proving properties of parallel pro-
grams. Commun. ACM, 18(12):717-721, 1975.

Peter Lammich and Markus Miiller-Olm. Precise fixpoint-based analysis of
programs with thread-creation and procedures. In Luis Caires and Vasco Thu-
dichum Vasconcelos, editors, CONCUR, volume 4703 of Lecture Notes in Com-
puter Science, pages 287-302. Springer, 2007.

Peter Lammich and Markus Miiller-Olm. Conflict analysis of programs with
procedures, dynamic thread creation, and monitors. In SAS’08, pages 205-220.
Springer, 2008.

Microsoft. .NET framework general reference — design guidelines for class li-
brary developers, 2010.

Er Malkis, Andreas Podelski, and Andrey Rybalchenko. Thread-modular ver-
ification and cartesian abstraction. In Thread Verification workshop, TV06,
pages 21-22. Springer, 2006.

Er Malkis, Andreas Podelski, and Andrey Rybalchenko. Thread-modular verifi-
cation is cartesian abstraction. In Interpretation, 3rd International Colloguium
on Theoretical Aspects of Computing, pages 21-22. Springer, 2006.

Alexander Malkis, Andreas Podelski, and Andrey Rybalchenko. Precise thread-
modular verification. In Hanne Riis Nielson and Gilberto Filé, editors, SAS,

volume 4634 of Lecture Notes in Computer Science, pages 218-232. Springer,
2007.

Scott Owens, Susmit Sarkar, and Peter Sewell. A better x86 memory model:
x86-tso. In TPHOLs ’09: Proceedings of the 22nd International Conference on
Theorem Proving in Higher Order Logics, pages 391-407, Berlin, Heidelberg,
2009. Springer-Verlag.

Polyvios Pratikakis, Jeffrey S. Foster, and Michael Hicks. Locksmith: context-
sensitive correlation analysis for race detection. In PLDI ’06: Proceedings

BIBLIOGRAPHY 197

IRR9Y|

[RRO3]

5S00]

[Vic07]

[VMo03]

[VVO07]

[Whe]
[WL95|

of the 2006 ACM SIGPLAN conference on Programming language design and
implementation, pages 320-331, New York, NY, USA, 2006. ACM Press.

Radu Rugina and Martin C. Rinard. Pointer analysis for multithreaded pro-
grams. In PLDI, pages 77-90, 1999.

Radu Rugina and Martin C. Rinard. Pointer analysis for structured parallel
programs. ACM Trans. Program. Lang. Syst., 25(1):70-116, 2003.

Helmut Seidl and Bernhard Steffen. Constraint-based inter-procedural analysis
of parallel programs. Nordic J. of Computing, 7(4):375-400, 2000.

Paul Vick. The Microsoft Visual Basic Language Specification — Version 9.0.
2007.

Varmo Vene and Markus Muller-olm. Global invariants for analyzing multi-
threaded applications. In In Proc. of Estonian Academy of Sciences: Phys.,
Math, pages 413-436, 2003.

Vesal Vojdani and Varmo Vene. Goblint: Path-sensitive data race analysis. In
SPLST, 2007.

David A. Wheeler. Sloccount.

Robert P. Wilson and Monica S. Lam. Efficient context-sensitive pointer anal-
ysis for ¢ programs. pages 1-12, 1995.

