
Phd Thesis in Computer Science

Static Analysis of Embedded Multithreaded Programs

Jean-Loup Carré

Mai 2010

2

Jury

� Prof. HALBWACHS Nicolas (president)

� Prof. SEIDL Helmut (reviewer)

� Reviewer : Prof. BOUAJJANI Ahmed (reviewer)

� Dr. JEANNET Bertrand

� Dr. KUNCAK Viktor

� Dr. HYMANS Charles

� Pr. GOUBAULT-LARRECQ Jean (Phd Advisor)

Table of Contents

I Introduction 9

1 Introduction 11

1.1 Multithreading . 11
1.2 Program Veri�cation . 13

2 Mathematical Basis 17

2.1 Classical Notations . 17
2.1.1 Logical Symbols . 17
2.1.2 Sets . 17
2.1.3 Functions . 18

2.2 Binary Relations . 19
2.3 Ordering . 20

2.3.1 Bounds . 22
2.3.2 Lattices . 23
2.3.3 Construction of Lattices . 26

2.4 Words . 26
2.4.1 FIFO . 27

3 Abstract Interpretation 29

3.1 Basic Principles . 29
3.2 Galois Connections . 30
3.3 Widening and Narrowing . 33
3.4 Reduced Product . 36
3.5 Conditional Soundness/Blocking semantics 40

3

4 TABLE OF CONTENTS

4 Existing analyses 43

4.1 Introduction . 43

4.2 Control Flow Graph . 43

4.3 Location Set . 45

4.4 R. Rugina and M. C. Rinard Analysis . 47

4.4.1 Points-to Graph . 47

4.4.2 Gen/Kill . 47

4.4.3 Multithreading . 47

4.5 Thread-Modular Model-Checking . 50

4.5.1 Model Checking . 50

4.5.2 Abstract Interpretation . 50

4.5.3 Mutexes . 51

4.6 Pure Gen/Kill Analyses . 53

4.7 Data-races . 54

4.7.1 Types . 55

4.7.2 The Goblint Tool . 55

4.7.3 Reentrant Monitors . 56

5 Semantics Hierarchy 59

II Concrete Models 61

6 Language 63

7 Operational Semantics 67

7.1 Introduction . 67

7.2 Description of the System. 67

7.2.1 Program execution . 70

7.3 Descendants . 72

7.4 Properties of the language . 75

7.4.1 Labels . 75

7.5 Conclusion . 76

8 Interleaving Semantics 79

8.1 Maps . 79

8.2 Gen/Kill . 81

8.2.1 Pure Gen/Kill . 81

8.2.2 Points-to Graph . 82

8.2.3 General Gen/Kill Analysis . 82

TABLE OF CONTENTS 5

9 Weak Memory Model 83

9.1 Introduction . 83
9.2 TSO . 84

9.2.1 Examples . 86
9.3 PSO . 87

III From Single-threaded to Multithreaded: Core Model 89

10 Intermediate Semantics 91

10.1 Basic Concepts . 91
10.2 De�nition of the G-collecting Semantics . 94
10.3 Properties of the G-collecting Semantics 100

11 Overapproximation of the Intermediate Semantics 105

11.1 Basic Statements . 106
11.2 Composition . 108
11.3 if Statements . 113
11.4 While loops . 116
11.5 Thread Creation . 120

12 Denotational Intermediate Semantics 127

12.1 De�nition . 127
12.2 Connection Between Semantics . 128

12.2.1 Soundness . 128
12.2.2 Completeness . 129
12.2.3 Conclusion . 131

IV Abstract Semantics 133

13 Generic Abstraction for Interleaving Semantics 135

13.1 Abstraction . 135
13.2 Semantics of Commands . 138

14 Abstract Domains for Sequential Consistency 143

14.1 Maps . 143
14.1.1 Main Abstraction . 143
14.1.2 Errors . 145
14.1.3 Example . 145

14.2 Cartesian Abstraction . 145
14.3 Gen/Kill Analyses . 147

15 Abstraction for Weak Memory Models 149

6 TABLE OF CONTENTS

16 Abstract Domains for Weak Memory Models 153

16.1 Maps . 153
16.2 Protected Variables . 154

16.2.1 Lattice of Abstract States . 154
16.2.2 Lattice of Abstract Transitions . 155
16.2.3 Reduced Product . 156

16.3 Set of Locks and Acquisition Histories . 158
16.3.1 Lattice of Abstract States . 158
16.3.2 Lattice of Abstract Transitions . 158
16.3.3 Anti-Chains of Acquisition Histories 159

17 Language Extensions 161

17.1 Conditions and Actions . 161
17.2 Par Constructor . 162

17.2.1 Concrete Semantics . 162
17.2.2 Intermediate Denotational Semantics 164
17.2.3 Abstract Semantics . 166

17.3 Function Calls . 167
17.3.1 Examples of Abstract Domains . 169
17.3.2 Acquisition Histories . 169
17.3.3 Partial Functions . 172

17.4 Conclusion . 172

V A Complete Static Analyzer: MT-Penjili 173

18 Implementation 175

18.1 Penjili: The EADS Tool . 175
18.2 Practical Results . 176
18.3 Complexity . 178

18.3.1 Complexity of Operations on K . 179
18.3.2 Complexity of Widening . 179

VI Conclusion 181

19 Conclusion 183

19.1 Conclusion . 183
19.2 Perspectives . 184

20 Index 185

21 List of Figures 189

7

22 Bibliography 193

8

Part I

Introduction

9

CHAPTER 1
Introduction

1.1 Multithreading

The main feature of multithreading is to allow several threads to be executed concur-
rently. This enables the implementation of new features and improved speed. This is why
multithreading is frequently used in practice, even in embedded software.

In sequential programs, some run-time errors may happen, e.g. array over�ows (at-
tempt to access in an array outside of its range), integer over�ows (computes an integer
greater that INT_MAX), invalid pointer dereferences, notably. These bugs can also happen
in multithreaded programs. Worse than that, they are harder to detect due to possible
interferences between threads.

In addition to this, multithreading comes with new kinds of bugs, e.g, data-races or
deadlocks. A data-race occurs when two di�erent threads attempt to access the same
variable at the same time and at least one of these accesses is a �write�. Data-race may
lead to an unspeci�ed behavior of the program, e.g., in C norm [ISO99].

A large variety of parallel execution models exists, some easier than others to ana-
lyze. The simplest kind of parallelisms has been well studied [FQ03, MPR06b, MPR06a,
MPR07]: threads exist at the beginning of the execution of the program, and no new
thread is even created.

11

12 CHAPTER 1. INTRODUCTION

Time code1 code2

Figure 1.1: par{{ code1 }{ code2 }}

Time parent code1

Figure 1.2: create{code1}

A more general kind of parallelisms is thread creation using a par statement. The par
statement [KSV96, RR99, RR03, SS00] executes in parallel two pieces of code: parpf1, f2q
executes f1 and f2 in parallel and then returns. This kind of parallelisms is used in some
API [Boa08]. It is illustrated in Figure 1.1 : the execution begins at the top of the �gure,
the main thread spawns two threads and waits until their termination. Using the par
statement, we can encode a program where all threads are created at the beginning: e.g.,
a program where two threads execute in parallel f1 and f2 can be modeled by parpf1, f2q.

The create statement has been less studied [LMO08, GBC�07, BMOT05], but is more
used in practice. E.g., it is used in Java [GJSB05], in POSIX [IT04] and in Cilk[fCS98].
The create constructor spawns a new thread and immediately returns. The Figure 1.2
shows an execution of create statements. The create statement is known [LMO08] to be
more complex to analyze than par . Furthermore, as explained by A. Bouajjani, M. Müller-
Olm, and T. Touili [BMOT05], parallel calls cannot adequately model a command that
spawns another thread and immediately returns.

De�ning a semantics for multithreaded programs is not so easy. What is the meaning
of parpx � 1, x � xq ? Multithreaded programs should ideally be executed with sequential
consistency, i.e., any run would be an interleaving of sequential runs. In the name of
simplicity, a large number of analyses [FQ03, MPR06b, MPR06a, MPR07, KSV96, LMO08,

1.2. PROGRAM VERIFICATION 13

RR99, RR03, SS00] assume sequential consistency.
Nevertheless, as Lamport said [Lam79] : �For some applications, achieving sequential

consistency may not be worth the price of slowing down the processors.� Memory models
without sequential consistency, a.k.a. weak memory models, allow for speed increases in two
ways: �rst, as in Lamport's quote, by lifting the constraints that multi-processors should
ensure sequential consistency, and second, by allowing compilers to apply more aggressive
optimizations, e.g., by reordering instructions as explicitly mandated in Java [GJSB05],
and done in practice in any reasonable C compiler.

In a weak memory model, each thread has a temporary view of the memory. The shared
memory and the temporary view of a thread are not necessarily consistent with each other:
two threads that read the same variable simultaneously may obtain di�erent values.

To our knowledge, in most standard thread models, e.g., Posix [IT04] or OpenMP
[Boa08], the memory model is not speci�ed accurately. In practice, their weak memory
model is a combination of the processor's memory model and the need to allow for speci�c
families of optimizations.

1.2 Program Veri�cation

We do not recall here the well-known de�nition of Turing machines. Intuitively, a Turing
machine is an abstract computer, which can use an arbitrary large amount of memory1

and can run for an arbitrary long amount of time.
A set X is decidable, if there exists a Turing machine that, given an entry, answers2

whether this entry is in X or not.
We recall the well-known Rice Theorem:

Theorem 1.1 (Rice Theorem). Given a non-constant predicate P :

tM |M is a Turing machine ^ P pLpMqqu is undecidable.

where LpMq is the language recognized by the Turing machine M .

The Rice theorem means that it is impossible to decide if the language recognized by
a Turing machine satis�es a non-trivial predicate3.

Most used programming languages are Turing powerful, i.e., all functions computable
by a Turing machine may be written in these languages4. Moreover, these languages can
simulate the execution of a Turing machine5. Therefore, most interesting properties are
undecidable.

1No �Out of memory� will stop a Turing machine.
2In particular, this Turing machine always terminates.
3Obvioulsy, the problem is decidable if P pXq � true for all X. Symmetrically, the problem is decidable

if P pXq � false for all X.
4Notice that, in practice, a computer have a �nite memory. Therefore, it may raise an �Out of memory�

when it computes some complex Turing-computable functions.
5�To be able to simulate the execution of a Turing machine� is a stronger property than �to be Turing-

powerful �, since we can de�ne a Turing-powerful machine that is not able to simulate an arbitrary Turing

14 CHAPTER 1. INTRODUCTION

1 i n t v [3] ;
2
3 i n t f (void) {
4 i n t i ;
5
6 . . .
7 . . .
8 . . .
9
10 re turn i ;
11 }
12
13 i n t main (void)
14 {
15 i n t i = f () ;
16 v [i]=5;
17 . . .
18 }

Figure 1.3: Presence of an Array Over�ow is Undecidable

For instance, let us consider the following problem:

ENTRY: A program P
QUESTION: Is the program P free of array over�ows ?

Detecting array over�ows has two main interests:

� For compilers, it allows them not to check during the execution, and therefore allows
compilers to enhance execution speed signi�cantly.

� It allows one to prove the absence of unwanted array over�ows during runtime. An
array over�ow at run-time may corrupt silently corrupt the memory and lead to
unwanted results.

An array over�ow occurs when the program attempts to access an array out of its
range. E.g., in Figure 1.3, if the function f returns a value that is not in r0, 2s, an array

machine. Let us de�ne the n-small word machines. Such a machine is a pair pX,Mq where X is a �nite
set of words and M a Turing machine. When we launch a n-small word machine T � pX,Mq on a word
w, if w is length smaller or equal than n, then, T accepts w if and only if w ∈ X, else, T launches the
Turing machine M on w, and recognizes w if and only if M recognizes w.
Obviously, n-small word machines are Turing powerful. Nevertheless, Rice theorem is false for n-small

word machines, since given a n-small word machine T , the problem �Does T recognize the empty word ? �
is decidable.

1.2. PROGRAM VERIFICATION 15

over�ow occurs at line 16, because the array v only has three cells : v[0], v[1] and v[2].
Attempting to access v[42] causes an array over�ow.

Since the function f may simulate a Turing machine M on a random entry and return
0 if the word is rejected by M and 42 otherwise, therefore, deciding the absence of array
over�ow can be reduced to the problem of deciding if the language of a Turing machine
contains an integer that is not in the array bounds. According to the Rice Theorem
(Theorem 1.1), the problem to know whether the language of a Turing machine is a subset
of t0, . . . , nu is undecidable. Hence, the problem of detecting array over�ows is undecidable.

Due to Rice Theorem (Theorem 1.1), all interesting safety properties are undecidable,
e.g., to detect array over�ows, integer over�ows, divisions by zero or data-races.

We may consider that, �in a computer, everything is �nite, therefore everything is
decidable� [Hym06]. Indeed, a computer has a �nite memory, a �nite hard disk, etc.
Hence a computer is a �nite machine. Nevertheless, a basic program, that uses 4 Mbytes
(� 8�4�220 bits) of memory will lead to a large number c of con�gurations: c � 28�4�220 �
10106 , i.e, a one followed by one million zeroes.

It is physically impossible to explore the whole state space. Imagine a modern computer
of 4GHz that computes a new state in only one clock cycle. If this computer started
during the Big Bang (14 billions years ago), it would have explored only 1027 states. Space
complexity is worse: the number of possible con�gurations, c, is larger than the number of
atoms in the Universe (� 1080). Obviously, analyses [FQ03, MPR06b, MPR06a, MPR07]
that are polynomial in time (or worse, in space) in the size of the state space will not scale
up.

Hence, we need another approach. Instead of checking exactly whether there is an
array over�ow, we can instead design an approximation. This approximation should be
computable with a low complexity.

� Under-approximations allow one to �nd errors, and, then, to enhance code quality.

� Over-approximations allow one to prove that some errors will never happen.

In an under-approximation, we have false negatives: the analysis may fail to detect an
error than can happen in practice. In an over-approximation, we have false positives: the
analysis may pretend that some bugs may happen although the program is correct.

In this thesis, we focus on over-approximations: our aim is to prove automatically that
some embedded programs do not make errors at run-time.

16 CHAPTER 1. INTRODUCTION

CHAPTER 2
Mathematical Basis

2.1 Classical Notations

In this section, we recall classical notations. These notations are needed to understand the
other chapters.

2.1.1 Logical Symbols

We use the classical notations for logical symbols:

� ^ represents conjunction �and�.

� _ represents disjunction �or�.

� ô represents equivalence.

� ñ is implication. Añ B means �if A then B�.

2.1.2 Sets

We assume the set theory, and recall here some classical notations that are used in this
thesis:

17

18 CHAPTER 2. MATHEMATICAL BASIS

� The empty set is written ∅.

� tx | φpxqu represents the set of all elements x such that φpxq holds (if such a set
exists).

� The inclusion of two sets X and Y is written X � Y or Y � X. Formally:

X � Y
def

ô @x ∈ X, x ∈ Y.

� The set of subsets of X is written PpXq. Formally:

PpXq � tY | Y � Xu.

� The intersection of two sets is written ∩. Formally:

X ∩ Y � tx | x ∈ X ^ y ∈ Y u.

� The union is written ∪. When the two sets are disjoint6, we may stress this by using
Z instead of ∪.

� The Cartesian product between a set X and a set Y is written X � Y .

� The set of functions from I to X is written XI . To say that the function f is in XI ,
we will write f : I Ñ X.

2.1.3 Functions

We use the lambda notation to de�ne functions: λx.fpxq is the function that maps x to
fpxq.

The composition of two functions f and g is written: g � f . Formally:

g � f def� λx.gpfpxqq.

We can then de�ne by induction the iteration of a function:

f 0 def� id
def� λx.x

fn
def� fn � f def� f � fn

Given a partial function f , we write Dompfq the domain of f .
E.g, to de�ne assignment, we need to modify a function on only one element. To this

aim, we introduce the following notation. Given a partial function f , let f rx0 ÞÑ vs be the
partial function de�ned by

fpxq def�

$'&
'%
v if x � x0

fpxq if x ∈ Dompfq ^ x � x0

unde�ned otherwise.

6X and Y are disjoint if and only if X ∩ Y � ∅

2.2. BINARY RELATIONS 19

To handle �xpoints, we need the concept of stationary sequence. A sequence s1, s2, . . .
is stationary if and only if there exists N ∈ N such that @n ¥ N, sn � sN . This means
that the sequence s1, s2, . . . reaches its limit after a �nite number of steps.

2.2 Binary Relations

A binary relation R on a set Σ is a set of pairs of elements of Σ: R � Σ� Σ.

Notations. For a binary relation R, there exists three well-known and equivalent notations:

� xRy,

� Rpx, yq (Predicate Notation),

� px, yq ∈ R (Set Notation).

Relations are, in some way, similar to functions. A relation on a set Σ can be applied
to a subset of Σ:

De�nition 2.1. RxSy � ts1 | Ds ∈ S : ps, s1q ∈ Ru be the application of R on S.

This de�nition means that a relation R on Σ induce a canonical function fR : PpXq Ñ
PpXq such that:

fRpSq
def� RxSy.

Notice that each relation R de�nes a unique function on PpΣq, and, reversely, two distinct
relations de�ne to distinct functions. These functions may be composed:

De�nition 2.2. Given two binary relations R and R1 on a set Σ, R;R1 � tps, s2q | Ds1 ∈
Σ : ps, s1q ∈ R ^ ps1, s2q ∈ R1u is the composition of R and R1.

The composition of R and R1 corresponds to the composition of their functions:

fR;R1 � fR1 � fR.

As for function, a relation may be iterated, given a relation R on a set Σ we de�ne:

R0 def� tps, sq | s ∈ Σu
Rk�1 def� R;Rk

There is a simple correspondence between function iterations and relation iterations:

fRk � fkR.

Now, we introduce a concept speci�c to relations, the re�exive-transitive closure:

20 CHAPTER 2. MATHEMATICAL BASIS

De�nition 2.3. Given a relation R on Σ, let R� �
�
k∈NR

k where R0 � tps, sq | s ∈ Σu
and Rk�1 � R;Rk. R� is called the re�exive-transitive closure of R.

On functions, the re�exive-transitive closure corresponds to:

fR� � λS.
¤
n∈N

fnpSq.

Now, we introduce the concept of restriction. There also exists a concept of restriction
on functions, but we will not use it. Notice that a restriction of R has no link with any
restriction of fR.

De�nition 2.4. Given a binary relation R on a set Σ and S � Σ, let R|S � tps, s1q ∈ R |
s ∈ Su be the restriction of R to S.

The corresponding concept on function is:

fR|S
pXq � RxX ∩ Sy.

2.3 Ordering

In this subsection we will study binary relations that have some interesting properties, e.g.,
that may be used to order a set.

De�nition 2.5. A binary relation R on a set Σ is a pre-ordering if and only if:

(Re�exivity) @x, xRx,

(Transitivity) @x@y, @z, xRy ^ yRz ñ xRz.

De�nition 2.6. A binary relation R on a set Σ is an ordering if and only if:

(Pre-ordering) R is a pre-ordering,

(Antisymmetry) @x, @y, xRy ^ yRxô x � y.

An ordering ¤ on Σ is total if and only if @x, y ∈ Σ, x ¤ y _ y ¤ x. A great majority
of orderings used in this thesis are partial, i.e., not total.

De�nition 2.7. A binary relation R on a set Σ is a strict ordering if and only if:

(Anti-Re�exivity) @x, pxRxq,

(Transitivity) @x@y, @z, xRy ^ yRz ñ xRz.

Orderings are often written ¤ and strict orderings . There exists a link between
orderings and strict orderings:

2.3. ORDERING 21

Claim 2.1.

� If ¤ is an ordering, then the relation de�ned by x y
def

ô x ¤ y^ x � y is a strict
ordering.

� If is a strict ordering, then the relation ¤ de�ned by x ¤ y
def

ô x y_ x � y is an
ordering.

De�nition 2.8. Given an ordering ¤, we de�ne the reverse ordering ¥ by:

a ¥ b
def

ô b ¤ a.

Whenever an ordering is written ¤ we will write ¥ for the reverse ordering.

Examples. Let us give some examples of binary relations:

� The relation Σ� Σ is a preordering on Σ but is not an ordering.

� The relation �equal� (i.e, the relation tpx, xq | x ∈ Σu) is an ordering on Σ.

� The re�exive-transitive closure R� of a binary relation R is a pre-ordering.

� The inclusion � on the set PpΣq is an ordering.

An ordered set (also called poset7) pΣ,¤q is a pair composed of a set Σ and an ordering
¤ on Σ. The reversed ordered set of pΣ,¤q is pΣ,¥q.

De�nition 2.9 (Product Ordering). If ¤1 and ¤2 are two orderings on Σ1 and Σ2 respec-
tively. The product ordering ¤1,2 on Σ1 � Σ2 is de�ned by:

px, yq ¤1,2 px
1, y1q

def

ô x ¤1 x
1 ^ y ¤2 y

1

Claim 2.2. The product ordering is an ordering.

The de�nition of product ordering is given only for a product of two sets. It is straight-
forward to generalize this de�nition to a product of an arbitrary number of sets. The
pointwise ordering (de�ned below) is a product ordering on a potentially in�nite product:

De�nition 2.10 (Pointwise Ordering). Given an ordered set pΣ,¤q and an arbitrary set
Y , we de�ne as follow the pointwise ordering ¤ΣX on the set ΣX :

f ¤ΣX g
def

ô @x, fpxq ¤ gpxq.

Claim 2.3. The pointwise ordering is an ordering.

Let us de�ne two interesting properties for functions in a poset:

7Poset means �partially ordered set�.

22 CHAPTER 2. MATHEMATICAL BASIS

De�nition 2.11. A function f on a poset pΣ,¤q is monotone if and only if:

@x, y ∈ Σ, x ¤ y ñ fpxq ¤ fpyq

We write MonpXq the set of monotone functions from X to X.

Recall that, for a relation R, we have de�ned the re�exive-transitive closure R�. We
de�ne the corresponding concept, called ω-iteration, for functions:

f ÒωpXq def�
¤
n∈N

fnpXq

.

De�nition 2.12. A function f on a poset pΣ,¤q is reductive if and only if:

@x ∈ Σ, fpxq ¤ x

2.3.1 Bounds

De�nition 2.13. Given a subset X of a poset pΣ,¤q, a lower bound of X is an element
b ∈ Σ such that:

@x ∈ X, b ¤ x

De�nition 2.14. Given a subset X of a poset pΣ,¤q, an upper bound of X is a lower
bound of X in the reversed ordered set pΣ,¥q.

De�nition 2.15. The least element of a subset X of a poset pΣ,¤q is a lower bound b of
X such that b ∈ X.

Symmetrically, we de�ne a greatest element:

De�nition 2.16. The greatest element of a subset X of a poset pΣ,¤q is a least element
for the reverse ordered set pΣ,¥q.

De�nition 2.17. The greatest lower bound (glb) of a subset X of a poset pΣ,¤q is, if it
exists, the one greatest element of the set ty ∈ Σ|@x ∈ X, x ¤ yu of the lower bounds of X

De�nition 2.18. The least upper bound (lup) of a subset X of a poset pΣ,¤q is, if it
exists, the greatest upper bound of X for the reverse ordering.

For convenience, in any poset pΣ,¤q, we write x1 u x2 the greatest lower bound of the
set tx1, x2u if it exists. Furthermore, we write

d
i∈I xi the greatest lower bound of the set

txi | i ∈ Iu. Symmetrically, we write x1 t x2 the least upper bound of the set tx1, x2u and�
i∈I xi the least upper bound of the set txi | i ∈ Iu.

2.3. ORDERING 23

K

J

x v

u y z

Figure 2.1: Example of Lattice

2.3.2 Lattices

2.3.2.a De�nition and Examples

De�nition 2.19. A lattice L is a poset such that for all x and y in L:

� x and y have a greatest lower bound,

� x and y have a least upper bound

Lattices arise frequently in practice. Let us give some examples:

� The most current example of lattices is the set of subsets PpXq of a set X for the
inclusion � ordering.

� The set R of reals is a lattice without greatest element.

� The set R̄ � R ∪ t�8,�8u is a lattice.

� The set Z̄ � Z ∪ t�8,�8u is a lattice.

� The set I � tx ∈ R | 0 ¤ 1u of real numbers between 0 and 1 is a lattice.

� Figure 2.1 gives an example of lattice.
Consider the relation Ñ:

� K Ñ x,

� v Ñ y,

� etc.

24 CHAPTER 2. MATHEMATICAL BASIS

K

J

.

Figure 2.2: A Flat Lattice

It is straightforward to check8 that ¤ is an ordering on the set L � tK, x, y, z, u, v,Ju.
pL,¤q is a �nite lattice. The lower bound of y and z is: y u z � v

� The lattice Ranges of integer ranges [CC04, CC77] is a sublattice of PpZq. It is the
set of intervals of Z and is formally de�ned by:

Ranges
def� tX � Z | @a, b ∈ X, @x ∈ Z, a ¤ x ¤ bñ x ∈ Xu

� tX | Da, b ∈ Z̄ : X � tx ∈ Z | a ¤ x ¤ buu.

We write ra, bs the interval of integers9 between a and b; formally: ra, bs def� tx ∈ Z |
a ¤ x ¤ bu. Hence, we have a simpler de�nition of Ranges:

Ranges
def� tra, bs | a, b ∈ Z̄u.

� Another classical lattice is the �at lattice on X. This lattice is the set Σ � XZtKuZ
tJu ordered by the ordering R de�ned by:

R � ptKu � Σq ∪ pΣ� tJuq ∪ tpK,Jqu.

Figure 2.2 represents such a lattice with the same conventions than Figure 2.1.

2.3.2.b Main Properties

8The re�exive-transitive closure of a relation is always a preordering, but it may not be an ordering.
E.g., the re�exive-transitive closure of Σ � Σ is Σ � Σ and is not an ordering, since the �antisymmetry�
property of De�nition 2.6 is not satis�ed.

9Notice that, in our de�nition, r0,�8s � tn ∈ Z | 0 ¤ n �8u � N � N ∪ t�8u.

2.3. ORDERING 25

De�nition 2.20. A bounded lattice is a lattice with a greatest element and a smallest
element.

In the name of simplicity, when it is clear due to the context, we write K for the smallest
element (bottom) of a bounded lattice and J for the greatest element (top) of a bounded
lattice. Notice that some authors [GHK�98, GHK�03] call lattices what we call bounded
lattices.

Let us gives some examples:

� R is a lattice but not a bounded lattice

� Ranges, the interval I of real numbers between 0 and 1, and the lattice of Figure
2.1 are bounded lattices.

De�nition 2.21. A complete lattice L is a lattice such that for any subset X � L, X has
a least upper bound and a greatest lower bound.

As a consequence, all complete lattices are bounded lattices; and all �nite non-empty
lattices are complete lattices. For instance, Ranges and PpΣq are complete lattices.

De�nition 2.22. A distributive lattice is a lattice for which the operations of join and
meet distribute over each other. Formally:

@x@y@z, x t py u zq � px t yq u px t zq ^ x u py t zq � px u yq t px u zq.

All lattices are not distributive, e.g, the lattice of Figure 2.1 is not distributive since
x t py u zq � u and px t yq u px t zq � J.

De�nition 2.23. A complemented lattice is a bounded lattice L such that each element
x ∈ L has a complement, i.e.:

@x ∈ L, Dy ∈ L : x u y � K^ x t y � J.

Notice that, in a distributed and complemented lattice, each element has a unique
complement.

De�nition 2.24. The height of a lattice pΣ,¤q is the largest n ∈ N such that there exists
a sequence x0 ∈ Σ, . . . , xn ∈ Σ such that for every k ∈ t0, . . . , nu, xk xk�1.

If no such n exists10, then we say that the lattice has in�nite height.

In other words, the height of a lattice, is the length (minus 1) of the greatest strictly
increasing chain. For instance, a �at lattice has height 2, the lattice of Figure 2.1 has
height 3, and the lattice Ranges has in�nite height.

10We should have de�ned the height as an ordinal or a cardinal. In this case, a lattice has an in�nite
height whenever its height is an in�nite ordinal or cardinal.

26 CHAPTER 2. MATHEMATICAL BASIS

2.3.3 Construction of Lattices

In this section, we give some ways to construct new lattices. Given two lattices pL1,¤1q,
pL2,¤2q we can de�ne their product:

De�nition 2.25. The Cartesian product of two lattices pL1,¤1q and pL2,¤2q is the set
L1 � L2 ordered by the product ordering.

In a similar way, we can construct a lattice of functions from a set X. This lattice may
be seen as the product of cardpXq times the same lattice:

De�nition 2.26. Given a lattice pL,¤q and an arbitrary set X, the lattice of functions
from X to L is the set LX ordered by the pointwise ordering.

Obviously, they are lattices:

Claim 2.4. The Cartesian product of two lattices is a lattice.
The lattice of functions from a set X to a lattice L is a lattice.

Another way to construct lattices is to consider the set of subsets PpXq of some set X.
Here we consider a sublattice of the set of subsets of a poset:

De�nition 2.27. A subset X of an poset L,¤ is upper-closed if and only if

@x ∈ x, @y ∈ L, x ¤ y Ñ y ∈ X.

The set of upper closed subset of L is written PÒpLq.

Claim 2.5. If L,¤ is a poset, PÒpLq is a complete lattice for the inclusion ordering.

Notice that, given a �nite lattice L,¤, any element X of PÒpLq can be represented a
sequence s1, . . . , sn of elements of L such that X �

�
k∈t1,...,nutx ∈ L | sn ¤ xu. There exist

several sequences that gives the same set. Let us consider antichains:

De�nition 2.28. An antichain is a set X such that @x, y ∈ X, x � y ñ px ¤ yq^ py ¤
xq.

An antichain is a set such that two distinct elements are uncomparable. Given a �nite
lattice L,¤, each element of PÒpLq can be represented by a �nite antichain. This antichain
is unique, i.e., two distinct antichains represents two distinct subsets of L.

2.4 Words

Given an alphabet Σ, the elements of Σ are called letters, and a word is a �nite sequence
of letters. E.g., aaabab is a word on the alphabet ta, bu. We write w � a1 . . . an to say that
w is the �nite sequence of letters a1, . . . , an.

2.4. WORDS 27

data6 data5 data4 data3 data2 data1

tail head

Figure 2.3: Example of FIFO

The concatenation of two words u � a1 . . . an and v � b1 . . . bm is u�v def� a1 . . . anb1 . . . bm.
The empty word, i.e., the word with zero letters, is written ε.

A word u � a1 . . . an is a subword of a word v if there exists a sequence w1, . . . , wn�1

such that v � w1 � a1 � w2 � . . . � an � wn�1. In other words, a word u is a subword of v is we
can reach u by erasing letters in v. E.g., aa and bb are subwords of baab but aba is not a
subword of baab.

A word u is a pre�x of a word v if there exists a word w such that u � w � v. The

relation ¤pre�x is de�ned by u ¤pre�x v
def

ô Dw : u � w � v.
The concatenation by an inverse word is de�ned by : u�1 � pu �vq � v. u�1w is unde�ned

if u is not a pre�x of w.

Claim 2.6. The relation ¤pre�x is an ordering on words.

This relation is a total ordering on some set of words:

Claim 2.7. Given a word w, the relation ¤pre�x is a total ordering on the set of pre�xes
of w.

2.4.1 FIFO

First-in �rst-out queues (FIFO) are an abstract data structure. In a FIFO, we can add
some elements. The �rst element pushed on a FIFO will be the �rst element that will
be extracted. Figure 2.3 gives an example of a FIFO containing data1, . . . , data6. If we
want to add data7, it will be added to the tail, after data6. The �rst element that will be
extracted from the FIFO is data1.

Formally, we model FIFO as words: A FIFO on the alphabet Σ is represented by a
word on Σ. Let FIFOΣ be the set of FIFOs on the alphabet Σ.

We de�ne on words the standard FIFO operations:

� fst : FIFOΣ Ñ Σ

� deq : FIFOΣ Ñ FIFOΣ

� enq : Σ� FIFOΣ Ñ FIFOΣ

The partial function fst reads the �rst element of the FIFO; the partial function deq
discards the �rst element of the FIFO, and the function enq adds an element at the end
of a FIFO and ε is the empty FIFO.

28 CHAPTER 2. MATHEMATICAL BASIS

Formally, for any letter a and any word u:

fstpu � aq def� a

deqpu � aq def� u

enqpa, uq def� a � u

In Figure 2.3, the function fst will return data1, and the function deq will erase data1.
FIFO will be used in Chapter 9 to de�ne bu�ers.

CHAPTER 3
Abstract Interpretation

3.1 Basic Principles

A semantics v�w : ProgramsÑ S associates to each program a value, in a set S.

For instance, a semantics can associate to each program a transition system. The
transition system represents the possible behaviors of the program during an execution.
This kind of semantics is called small-step semantics, because it describes each step of the
execution of a program. In Part II we give a such semantics for our programs.

A semantics may be hard to compute, or even may be unrepresentable or uncomputable.
To study the properties of a semantics v�w, an approach to abstract interpretation [Cou96]
is to give an alternative semantics L�M to programs. Given an abstract domain S , an
abstract semantics L�M : Programs Ñ S maps programs to S . Programs then have two
semantics, a semantics v�w, called concrete semantics and an abstract semantics L�M.

An abstract semantics may be anything. Nevertheless, the main interest of an abstract
semantics is its link with the concrete semantics. This is modeled by a soundness property
σ that is hold for all programs. Formally, we want:

@p ∈ Programs, σpvpw, LpMq.

29

30 CHAPTER 3. ABSTRACT INTERPRETATION

Figure 3.1: Overapproximation

3.2 Galois Connections

Here, we use abstract interpretation to overapproximate [CC04] the possible behaviors of
a program. The abstract semantics L�M will overapproximate (in some sense) the concrete
semantics v�w. To formally de�ne �overapproximate�, we use Galois connections:

De�nition 3.1. A Galois connection [GHK�03, CC91, CC04] between a poset X and a
poset Y is a pair of monotone functions α : X Ñ Y and γ : Y Ñ X such that:

@x ∈ X, @y ∈ Y, αpxq ¤ y ô x ¤ γpyq.

De�nition 3.2. A domain on a concrete complete lattice D is a tuple pD , α, γq where D
is an abstract lattice, and α, γ is a Galois connection between D and D .

The function α, called abstraction function, lose information. It overapproximates a
complex concrete object by a simpler abstract one. In Figure 3.1, the green object, at the
left, can be approximated by the rectangle (at the right). The function α is called the
abstraction function and γ is the concretization function.

We use a particular instance of Galois connections. Let us consider two lattices D

and D . A concrete semantics v�w : Programs Ñ pD Ñ Dq associates to each program, a
monotone function (called �transfer function�) from the concrete lattice to itself. Similarly,
the abstract semantics v�w : Programs Ñ pD Ñ Dq associates to each program a monotone
function from the abstract lattice to itself. The soundness property is:

@p ∈ Programs, @X ∈ D, α � vpw � γpXq ¤ LpMpXq.

This means that the abstract semantics is an abstraction of the concrete semantics.
Formally:

3.2. GALOIS CONNECTIONS 31

De�nition 3.3. Given a Galois connection α, γ. A monotone function f 7 is an abstraction
of a monotone function f 6 if and only if α � f 6 � γ ¤ f 7.

There exists several equivalent de�nitions of abstractions:

Claim 3.1. Given a Galois connection α, γ between D and D and two monotone functions
f 6 : DÑ D and f 7 : D Ñ D , the following properties are equivalent:

1. f 7 is an abstraction of f 6,

2. α � f 6 � γ ¤ f 7,

3. f 6 � γ ¤ γ � f 7,

4. α � f 6 ¤ f 7 � α,

5. f 6 ¤ γ � f 7 � α.

Proof. The equivalence between Points 1 and 2 is given by De�nition 3.3.
De�nition 3.1 gives the equivalence between Points 3 and 2 and the equivalence between

Points 4 and 5.
If @Y ∈ D , f 6 � γpY q ¤ γ � f 7pY q, then @X ∈ D, f 6 � γpαpXqq ¤ γ � f 7pαpXqq, then,

because @X ∈ D, X ¤ γ � αpXq, @X ∈ D, f 6pXq ¤ γ � f 7 � αpXq. The reverse inclusion is
proven similarly using the fact that @Y ∈ D , α � γpY q ¤ Y .

We give as example a Galois connection αRanges, γRanges between PpZq and Ranges:

αRangespXq
def� rglbpXq, luppXqs,

γRangespXq
def� X.

This Galois connection allows us to abstract the value of one integer variable. Let us give
a second example, which allows us to represent several variables. Let Var be the set of
variables, the concrete lattice is PpZVar q and the abstract lattice is RangesVar , ordered by
the pointwise ordering11. The Galois connection is then:

αpσq def� αRanges � σ,

γpσ7q def� tσ ∈ ZVar | @x ∈ Var , σpxq ∈ γRanges � σ
7pxqu.

Our semantics will be de�ned by induction on programs. Typically, a semantics is
de�ned using function composition (e.g, for sequences), ω-iterations (e.g., for while loops),
union etc.

For instance, let us consider the program12 of Figure 3.2. We use for this example the
concrete lattice D � PpZq (a set X ∈ D represents all possible values of i) and the abstract
lattice Ranges. The transfer function vi :� 1w associated to the �i := 1 ;� statement is:

11This ordering is de�ned in De�nition 2.10.
12This program was given as an example by P. Cousot and R. Cousot [CC92].

32 CHAPTER 3. ABSTRACT INTERPRETATION

1 i := 1 ;
2 whi l e (i ¤ 100)
3 { i :=i+1; } ;

Figure 3.2: Program Example

λX.tiu. The function transfer vi :� i� 1w is de�ned by vi :� i� 1wpXq � tn� 1 | n ∈ Xu.
The transfer function of the guard �i¤ 100� is vi ¤ 100wpXq � X ∩ r�8, 100s. The transfer
function of the while loop is then de�ned using composition and ω-iteration:

vwhilepi ¤ 100qti :� i� 1uw � vi ¡ 100w � pvi :� i� 1w � vi ¤ 100wqÒω.

Fortunately, abstractions can be composed, iterated, etc.

Proposition 3.1. Let α, γ be a Galois connection between two complete lattices D and
D . Let us consider two monotone functions f 6 : D Ñ D, g6 : D Ñ D and their respective
abstractions f 6 : D Ñ D , g7 :: D Ñ D .

� g7 � f 7 is an abstraction of g6 � f 6.

� pf 7qÒω is an abstraction of pf 6qÒω

� λx.f 7pxq t g7pxq is an abstraction of λx.f 6pxq t g6pxq.

Hence, in the example of Figure 3.2, we only need to give an abstraction of basic
statements. The abstract semantics of the while loop may be de�ned by:

Lwhilepi ¤ 100qti :� i� 1uM � Li ¡ 100M � pLi :� i� 1M � Li ¤ 100MqÒω.

Galois connections satisfy properties that simplify their de�nition.

Proposition 3.2. Let α, γ be a Galois connection between two complete lattices D and D .
Therefore:

1. @F ∈ DI , αp
�
i∈I F piqq �

�
i∈I αpF piqq,

2. @G ∈ D I , γp
d
i∈I Gpiqq �

d
i∈I γpGpiqq,

3. @X ∈ D, αpXq �
d
Y ∈D^X¤γpY q Y ,

4. @Y ∈ D , γpY q �
�
X∈D^αpXq¤Y X.

Point 1 allows us to simplify the de�nition of an abstraction function. Let us consider
a subset S of D that generates D, i.e., such that: @X ∈ D, DS 1 � S : X �

�
X 1∈S1 X

1.
The values of α on elements of S uniquely determine α. Hence, to de�ne α, we may give

3.3. WIDENING AND NARROWING 33

the de�nition of α only on S. For instance, if D � PpΣq, then, we may de�ne α only on
singletons. The de�nition of αRanges is then simpli�ed:

αptxuq def� txu.

Indeed, if αptxuq def� txu, therefore, αpXq �
�
x∈X αptxuq �

�
x∈Xtxu. Notice that t on

Ranges is distinct from the union ∪, since t0ut t2u � t0, 1, 2u and t0ut t2u � t0, 2u. If X
is �nite non-empty, αpXq � tglbpXquttlubpXqut

�
x∈Xtxu � rglbpXq, luppXqst

�
x∈Xtxu.

Since Ranges are ordered by inclusion, αpXq � rglbpXq, lubpXqs. The case where X is
in�nite is similar. The case X � ∅ is trivial: αp∅q � ∅ � r�8,�8s � rglbp∅q, lubp∅qs.

The Points 3 and 4 mean that the abstraction function uniquely determines the con-
cretization function and reciprocally. Hence, to de�ne a Galois connection α, γ we just have
to give α or to de�ne γ. Finally, the Galois connection αRanges, γRanges may be de�ned by

the simple following equation: αptxuq def� txu.

De�nition 3.4. Product of domains. We consider two concrete lattices D1 and D2 and two
abstract lattices D1, D2. Let us assume two Galois connections α1, γ1 and α2, γ2 from D1

to D1 and from D2 to D2 respectively.
The separate product of domains is the domain D1|2, α1|2, γ1|2 where:

� D1|2 is the Cartesian product of D1 and D2, ordered by the product ordering.

� α1|2, γ1|2 is a Galois connection between D1 � D2 (ordered by the product ordering)
and D1|2 de�ned by:

α1|2px1, x2q � pα1px1q, α2px2qq (3.1)

γ1|2py1, y2q � pγ1px1q, γ2py2qq (3.2)

(3.3)

3.3 Widening and Narrowing

As seen before, if f 7 is an abstraction of f 6, then pf 7qÒω is an abstraction of pf 6qÒω. Nev-
ertheless, even though f 7 is computable, pf 7qÒω may be uncomputable or may be hard to
compute. In the example of Figure 3.2, computing pLi :� i � 1M � Li ¤ 100MqÒωpt1uq need
100 iterations! We need a new method to �nd an easily computable abstraction of pf 6qÒω.

P. Cousot and R. Cousot introduce the concept of widening [CC92, CC91].

De�nition 3.5. A simple widening operator on an abstract lattice D is a binary operator
O : D �D Ñ D such that:

1. @x, y ∈ D , x t y ¤ xOy.

2. For every in�nite increasing chain x1, x2, . . . , the sequence yn inductively de�ned by
y0 � x0 and yn � 1 � ynOxn�1 is stationary.

34 CHAPTER 3. ABSTRACT INTERPRETATION

The �rst point means that the widening operator overapproximates the least upper
bound. The second point ensures termination when computing inductively y (yn is an
overapproximation of xn). Notice that, on a lattice of �nite height, the least upper bound
t is a widening.

Let us give an example. We de�ne the widening operator ORanges by:

� ∅ORangesX � X

� XORanges∅ � X

� ra, bsORangesra1, b1s def� rc, ds where a ¤ b, a1 ¤ b1,

c
def�

#
a if a ¤ a1

�8 otherwise
and d

def�

#
b if b ¥ b1

�8 otherwise

Notice that the O operator overapproximate t that is commutative, but, O may not be
commutative. For instance, r0, 1sORangesr0, 2s � r0,�8s and r0, 2sORangesr0, 1s � r0, 2s.

A widening operator allows us to compute an overapproximation of pf 6qÒω. Indeed,
given an abstract function f 7, let:

pf 7qÒO �
�
n∈Nppf

7qOqn � ppf 7qOqÒω

where pf 7qO � λX.XOf 7pXq.

By construction, pf 7qÒω ¤ pf 7qÒO. If f 7 is an abstraction of f 6, then, according to Proposi-
tion 3.1, pf 7qÒω is an abstraction of pf 6qÒω and therefore pf 7qÒO is an abstraction of pf 6qÒω.

For instance, pLi :� i � 1M � Li ¤ 100MqÒORanges
is an abstraction of pvi :� i � 1w � vi ¤

100wqÒω.

De�nition 3.6. A general widening operator on an abstract lattice D is a sequence of
binary operators On : D �D Ñ D such that:

1. @n ∈ N, @x, y ∈ D , x t y ¤ xOny.

2. For every in�nite increasing chain x1, x2, . . . , the sequence yn inductively de�ned by
y0 � x0 and yn � 1 � ynOnxn�1 is stationary.

As for simple widening operators, general widening operators overapproximate the least
upper bound. The main di�erence is in the in�nite chain condition. Point 2 allows us to
change the overapproximation of the lest upper bound during the �xpoint computation. As
for simple widenings, we de�ne an overapproximation of the ω-iteration: pf 7qÒO �

�
n∈N f

7
n

where f 70 � f 7 and f 7n�1 � λX.f 7npXqOnf
7 � f 7npXq.

E.g., on Ranges we may de�ne the following widening operator:

� O0 � O1 � O2 � t,

� For n ¥ 3, On � ORanges.

3.3. WIDENING AND NARROWING 35

1 i := 1 ;
2 whi l e (i ¤ 3)
3 { i :=i+1; } ;

Figure 3.3: Program Example

In practice, this widening operator �unrolls� three times a while loop. Hence, using this
widening: pLi :� i� 1M � Li ¤ 100MqÒO � pLi :� i� 1M � Li ¤ 100MqÒORanges

� pLi :� i� 1M � Li ¤
100Mq3.

This widening is not very precise, because pLi :� i � 1M � Li ¤ 100MqÒOt1u � r1,�8s.
Nevertheless this widening is more precise than ORanges: consider the program of Figure
3.3. With this general widening operator : pLi :� i � 1M � Li ¤ 3MqÒOt1u � r1, 3s, but with
ORanges: pLi :� i� 1M � Li ¤ 3MqÒORanges

t1u � r1,�8s.
To enhance precision, P. Cousot and R. Cousot introduce narrowing operators:

De�nition 3.7. A simple narrowing operator on an abstract lattice D is a binary operator
∆ : D �D Ñ D such that:

1. @x, y ∈ D , y ¤ xñ y ¤ x∆y ¤ x.

2. For each in�nite decreasing chain x1, x2, . . . , the sequence yn inductively de�ned by
y0 � x0 and yn � 1 � yn∆xn�1 is stationary.

A narrowing operator is used after a widening. It allows to enhance precision. We
de�ne pf 7qÓ∆ in the same way as pf 7qÒO:

pf 7qÓ∆ �
d
n∈Nppf

7q∆qn

where pf 7q∆ � λX.X∆f 7pXq.

Notice that ppf 7qÒOqÓ∆ is still an abstraction of pf 6qÒω. Nevertheless, ppf 7qÒOqÓ∆ is a more
precise abstraction than pf 7qÒO, in the sense that ppf 7qÒOqÓ∆ ¤ pf 7qÒO.

Notice that on a lattice without any in�nite decreasing chain, the greatest lower bound
u is a narrowing.

Let us recall the Cousot and Cousot [CC92, CC77] narrowing on Ranges:

� ∅∆RangesX � ∅

� X∆Ranges∅ � ∅

� ra, bsORangesra1, b1s def� rc, ds where a ¤ b, a1 ¤ b1,

c
def�

#
a if �8 a

a1 otherwise
and d

def�

#
b if b �8

b1 otherwise

36 CHAPTER 3. ABSTRACT INTERPRETATION

K

J

0 0

Figure 3.4: The Lattice NotZero.

Using this narrowing, we obtain with the example of Figure 3.2:

ppLi :� i� 1M � Li ¤ 100MqÒO
Ranges

qÓ∆
Ranges

t1u � r1, 100s.

As for widening, narrowing can change during a �xpoint computation:

De�nition 3.8. A general widening operator on an abstract lattice D is a sequence of
binary operators On : D �D Ñ D such that:

1. @n ∈ N, @x, y ∈ D , y ¤ xñ y ¤ x∆ny ¤ x.

2. For each in�nite decreasing chain x1, x2, . . . , the sequence yn inductively de�ned by
y0 � x0 and yn � 1 � yn∆nxn�1 is stationary.

Hence, we can use as narrowing:

� ∆0 � u,

� For n ¥ 1, ∆n � ∆Ranges.

3.4 Reduced Product

Let us consider the Euclides algorithm (See Figure 3.6). This algorithm computes the
greatest common divisor between two integers a and b. This algorithm uses the modulo
operator �%� that uses a division. Then, a division by 0 may occur, if at line 6, the value
of b is zero. The domain of ranges will not be su�cient to prove this piece of code.

Since αRangespZr t0uq � r�8,�8sq, the condition �b � 0� at line 4 of Figure 3.6 does
not gives us any information: the domain Ranges loses all precision. After this condition,
the real value of b is not zero, but the abstract value of b is still the range r�8,�8s.
Hence, for the domain Ranges, the value of b may be zero at lines 5 to 9. Therefore, at
line 6, for the domain Ranges a division by zero may occur. This is a false positive, since
the real value of b cannot be 0 at line 6.

3.4. REDUCED PRODUCT 37

D1�D1

α1 � α2

γ1 � γ2

D1�D1

(a) Separated Prod-
uct

D

α1 � α2

γ1 u γ2

D1�D1

(b) Simple Product

D

α1 � α2

γ1 u γ2

D1�D1

hkkkkkkkkkkkkikkkkkkkkkkkkjρ

D1�2

(c) Reduced Product

Figure 3.5: Products

The absence of division by zero may be proved by the domain NotZero � tK, 0, 0,Ju
whose ordering is given by Figure 3.4. The Galois connection between PpZq and NotZero
is13:

γ 0pKq
def� ∅

γ 0p0q
def� t0u

γ 0p 0q def� Z r t0u
γ 0pJq

def� Z.

Using the domain NotZero, the guard �b � 0� at line four implies that the abstract
value of b is 0 at lines 6, 7 and 8. Therefore, the modulo operation at line 6 is correct.

In the same program, we may �nd both:

� functions like euclide of Fig 3.6 that need the domain NotZero,

� and array access (e.g., Figure 1.3) that need the domain of ranges.

In this case, we need both domains: we use the product domain [CC79, Theorem 10.1.0.1].

De�nition 3.9. Given a concrete complete lattice D, two abstract lattices D1 and D2 and
two Galois connections α1, γ1 and α2, γ2 from D to D1 and D2 respectively, we de�ne the

13Recall Section 3.2. In this Section, we show that a Galois connection is uniquely de�ned by its
concretization function.

38 CHAPTER 3. ABSTRACT INTERPRETATION

1 i n t euclide (i n t a , i n t b)
2 {
3 i n t r ;
4 whi l e (b � 0)
5 {
6 r := a % b ;
7 a := b ;
8 b := r ;
9 }
10 re turn a ;
11 }

Figure 3.6: Euclides Algorithm

simple product domain pD1,2, α1,2, γ1,2q :

D1,2
def� D1 �D2

α1,2pXq
def� pα1pXq, α2pXqq

γ1,2pY1, Y2q
def� γ1pY1q u γ2pY2q

This simple product is not totally satisfactory, since γ1,2 may not be injective, and α1,2

may not be surjective. This means that two distinct abstract elements may represent the
same concrete element. For instance, let us consider the product between the domain of
ranges Ranges and the domain NotZero. The empty set ∅ is represented, in the abstract,
by p∅,Kq and by pr0, 0s, 0q, i.e.:

γ1,2p∅,Kq � γ1,2pr0, 0s, 0q � ∅.

The function α1,2 is not injective, since there exists no set X � Z such that α1,2pXq �
pr0, 0s, 0q. The set of abstract elements representing ∅ (i.e., the preimage of ∅ under f ,
formally tY ∈ D1,2 | γ1,2pY q � ∅u) is:

tp∅, Y q | Y ∈ D2u ∪ tpY,Kq | Y ∈ D1u ∪ tpr0, 0s, 0qu ∪ tpra, bs, 0q | b 0_ a ¡ 0u.

Notice that, the bottom element of D1,2 represents the same concrete set than a tuple
py1, y2q ∈ D1 � D2 where y1 or y2 is the bottom element of its lattice. But, this is not
the unique case, since pr0, 0s, 0q represents ∅, but neither r0, 0s, neither 0 is the bottom
element of its lattice.

As a consequence, we lose precision when we analyze a program with a product domain.
Consider the program given in Figure 3.7. Consider that the statements represented by
�. . . � do not modify the value of b. At the beginning of the program, we consider that
the value of b is unknown, i.e., the abstract value of b is pr�8,�8s,Jq. At line 1, after
applying the guard �b � 0�, the abstract value of b is pr�8,�8s, 0q. The abstract

3.4. REDUCED PRODUCT 39

1 i f (b � 0)
2 { . . .
3 i f (b ¥ 0)
4 { . . .
5 i f (b ¤ 0)
6 {Dead Code}
7 }
8 }

Figure 3.7: The Naive Product Fails

domain of ranges knows nothing about b, but the domain NotZero detects that the value
of b is not zero. At line 3, the abstract value of b is pr0,�8s, 0q and at line 5, the
abstract value of b is pr0, 0s, 0q. Nevertheless, in reality, line 6 is dead code, i.e., code
that is never executed. Therefore, no run-time error can occur due to line 6. The domain
Ranges � NotZero does not detect that is dead code, since the abstract value is not
bottom (K) at line 6.

We need a method to reduce the abstract domain D1 � D2, a method that allows
some kind of communication between the two domains. It is standard to use the reduced
product [Cou05, CC79, CFR�97, CMB�95, GT06], getting a more precise domain than
both domains separately.

Recall that the main problem is that there exists in the product domain D1,2 two
elements that have the same concretization, i.e., there exists y1 and y2 such that γ1,2py1q �
γ1,2py2q. We introduce a lower closure operator ρ:

De�nition 3.10. A lower closure operator ρ is a reductive14 and monotone function such
that ρ � ρ � ρ.

We de�ne the following lower closure operator:

ρ1,2pyq �
£

x∈D1,2^γ1,2pxq�γ1,2pyq

x.

By construction, if γpy1q � γpy2q, then ρpy1q � ρpy2q. This allows us to de�ne a domain
in which the concretization function will be injective. Noticing that ρ1,2 � α1,2 � γ1,2, we
de�ne the reduced product:

De�nition 3.11. Given a concrete complete lattice D, two abstract lattices D1 and D2

and two Galois connections α1, γ1 and α2, γ2 from D to D1 and D2 respectively, we de�ne
the following lower closure operator:

ρ1,2
def� α1,2 � γ1,2

14See De�nition 2.12.

40 CHAPTER 3. ABSTRACT INTERPRETATION

This operator is used to de�ne the reduced product domain pD1�2, α1�2, γ1�2q:

D1�2
def� ρpD1,2q

α1�2pXq
def� ρ � α1,2

γ1�2pY1, Y2q
def� γ1,2pY1, Y2q

where D1,2, α1,2, γ1,2 is the product domain, and ρpD1,2q
def� tρpxq | x ∈ D1,2u.

The Galois connection α1,2, γ1,2 gives a natural lower closure operator:

ρ1,2
def� α1,2 � γ1, 2

Figure 3.5 summarizes the di�erent kinds of product de�ned on domains. Figure 3.5a
represents the separate product (Recall De�nition 3.4), and is constructed on the product
of two concrete lattices. Figure 3.5b represents the simple product: two domains abstract
the same concrete lattice. Figure 3.5c represents the reduced product.

Notice that the we can similarly de�ne a closure operator ρ � α � γ for the separate
products. In this case:

ρpx, yq �

#
px, yq if x � K^ y � K

K if x � K_ y � K

Notice that, in the general case, the reduced product must be implemented from scratch,
it is not possible to automatically generate an implementation for the reduced product
given an implementation of two arbitrary domains. Gulwani and Tiwari [GT06] construct
a fourth kind of product : the logical product. This product can be, under some hypotheses,
constructed automatically.

3.5 Conditional Soundness/Blocking semantics

Another way to combine analyses is conditional soundness introduced by Conway et al.
[CDNB08]. A program is modeled by a transition system, and we want to check a safety
property. The semantics vprogramw of a program is the set of states reachable by this
transition system.

The main idea is to introduce a new semantics, called blocking semantics. The transition
system is restricted according to a predicate θ: : no transition can be �red from a state
that satis�es θ. Hence, a state that satis�es θ may be reachable, but no state is reachable
from a state satisfying θ. The θ-blocking semantics vprogramwθ of a program is the set
of states reachable using the restricted transition system. I.e., vprogramwθ are the set of
states that are reachable without going through a state that satis�es θ.

Let us give a practical example. Recall Figure 1.3. At line 16, an array over�ow may
occur. An array over�ow may update any variable of the program. Consider a variable x

3.5. CONDITIONAL SOUNDNESS/BLOCKING SEMANTICS 41

i θ1

θ2

e1

θ3

r

e2

Figure 3.8: Example of Blocking Semantics

that appears somewhere in the program. Hence, after line 16, x may have been updated to
5. Without a blocking semantics, we have to update the abstract value of x and to resume
the analysis with this new value.

Here, we can use the predicate θ
def

ô �No array over�ow occurs�. Hence, at line 16, the
analysis raises an alarm, notifying that an array over�ow may occur. Hence, the analysis
assumes that this array over�ow has not occurred, and resumes the analysis of this program
using this hypothesis.

We give an example in Figure 3.8. Each circle represents a reachable state. The states
θ1, θ2 and θ3 are the only states that satis�es θ. Therefore, the θ-blocking semantics
excludes the states θ2, e1 and e2 since these states are only reachable through a state that
satisfy θ. Notice that the state r is still reachable, since there exists a path from the
initial state i to r without any state satisfying θ. The states θ1 and θ2 are reachable in the
θ-restricted semantics, but not the state θ3, since θ3 is reachable only through the state θ2.

42 CHAPTER 3. ABSTRACT INTERPRETATION

CHAPTER 4
Existing analyses

4.1 Introduction

In this chapter, we dealt with some existing analyses for multithreaded programs. First,
in Section 4.2 we recall what are controll �ow graphs. They are program representation
used by most static analyses, including analyses of multithreaded programs.

In Section 4.3, we recall what are locations sets. These locations sets are used by R.
Rugina and M. C. Rinard analysis described in Section 4.4.

In Section 4.5, we dealt with thread modular model checking. Malkis et al. show that
this model checking is a kind of abstraction.

In Section 4.6 we dealt with multithreaded Gen/Kill analysis. We want to generalize
such an analysis (See Section 14.3 and Section 17.3.1.a).

Even if our main interest is array-over�ows, invalid pointer dereference and NULL
pointer dereference, we recall in Section 4.7 some data-race analysis.

4.2 Control Flow Graph

A program can be represented by a grammar or by a Control Flow Graph. A control �ow
graph is a graph whose edges are labeled by program instructions or by guards. The nodes

43

44 CHAPTER 4. EXISTING ANALYSES

0

1

b � 0

2

r := a % b

3

a:=b

4

b := r
5

b = 0

Figure 4.1: Control Flow of Euclides Program

0

1

b � 0

r := a % b

a:=b

b := r

4 5

b = 0

Figure 4.2: Simpli�ed Control Flow of Euclides Program

of the control �ow graph are the control points.

For instance, Figure 4.1 gives the control �ow of the Euclides algorithm of Figure 3.6.
Notice that, if the program is single-threaded, the control �ow graph may be simpli�ed
(See Figure 4.2), since after going in control point 2, we always go in control point 3 and
then to control point 4. In the multithreaded context, this is not true anymore. Actually,
when a thread executes the Euclides algorithm, another thread may modify the variables
a or b. For instance, when our thread is at control point 2 the value of b may be updated
by another thread. Hence, there is a fundamental di�erence between the two control �ow
graphs of Figure 3.6 and of Figure 4.2.

4.3. LOCATION SET 45

4.3 Location Set

In a program, a variable denotes a memory location. The program can access the memory
location of the variable, e.g, x � 3 assigns value 3 to the memory location of x. An
instruction of the program may also access the memory location of a variable plus an
o�set, e.g, tris � 3 assigns the value 3 the third slot of the array t. Furthermore, a dynamic
memory allocation can create a new memory block, which can be accessed through pointers.

The memory of a C program can be divided into blocks of continuous storage. The
relative position of blocks is unde�ned. Each memory address can be represented by a
pair name, offset ¡. The name represents the name of the block, i.e, the name of the
variable, or a fresh name for dynamically allocated blocks. Let us call Locations the set
of memory locations.

According to the C norm [ISO99], array over�ows lead to an unspeci�ed result. A
pointer that points to the nth slot of an array that hasm n slots is invalid. Therefore, two
distinct pairs name, offset ¡ represent distinct memory addresses (or invalid addresses).

In particular, this means:

� It is impossible to use an array over�ow on an array t to write into another memory
block

� A pointer to a deallocated memory block will never point to a new allocated memory
block

� A pointer to a local variable x will never point to another local variable when this
local variable is statically deallocated

On some computers15, the C program given in Figure 4.3 will answer: x � 0; y � 5.
Actually, the semantics of this program is unde�ned, since vr�1s represents an invalid
address. To handle this kind of programs, we use a blocking semantics (see Section 3.5).
This means that we consider that the program stops with an error when it attempts to do
the statement of line 10: vr�1s � 5.

Wilson and Lam [WL95] introduce location sets to represent the memory address to
which a pointer may legally points.

A location set is a tuple name, offset , stride ¡. The name is the name of the
memory block, e.g, a variable name, and offset and stride are integers. A tuple
name, o�set, stride ¡ represents all locations o�set � i � stride within the block name.
Let LocationSets be the set of location sets.

A variable v is represented by v, 0, 0 ¡. The �eld f in a structure s is represented by
 s, of , 0 ¡ where of is the o�set of the �eld f in the structure s. An array t is represented
by t, 0, size ¡ where size is the size of an element of the array.

An access to the �eld f of the element of an array t is represented by s, of , 0 ¡ where
of is the o�set of the �eld f in an element of the array t.

15E.g., on my laptop, using gcc.

46 CHAPTER 4. EXISTING ANALYSES

1 #inc lude <s td i o . h>
2
3 i n t x=0;
4 i n t v [3] ;
5 i n t y=0;
6
7
8 i n t main (void)
9 {
10 v [-1]=5;
11 printf ("x=%d;y=%d\n" ,x , y) ;
12 re turn 0 ;
13 }

Figure 4.3: Array Over�ow

Each dynamically allocated memory site s has a variable name. s, 0, i ¡ represents
any array of elements of size i allocated in the site s.

The location sets are some kind of abstraction. We consider that the name of memory
block allocated in a site s is s#id where # is a separator and id an arbitrary identi�er.
We also consider a predicate heap that, given a name, decides whether it is the name
of a dynamically allocated block or not. This allows us to recognize the memory blocks
allocated in a given site.

The location sets are then an abstraction of locations. The Galois connection between
PpLocationsq and LocationSets is given by:

γp name, offset , stride ¡q def�

$'&
'%
t name, offset � istride ¡| i ∈ Nu if heappnameq

t name#id , offset � istride ¡| i ∈ N^
id an arbitrary identi�eru

if heappnameq

Notice that a location set may represent one or several memory locations. A location
set name, offset , stride ¡ represents a single location if and only if name is not the name
of a site of dynamic allocation, and stride � 0. We de�ne the predicate unique by:

unique name, offset , stride ¡
def

ô heappnameq ^ stride � 0.

4.4. R. RUGINA AND M. C. RINARD ANALYSIS 47

4.4 R. Rugina and M. C. Rinard Analysis

4.4.1 Points-to Graph

R. Rugina and M. C. Rinard [RR99, RR03] introduce a �ow-sensitive and context-sensitive
pointer analysis for multithreaded programs. The analysis of R. Rugina and M. C. Rinard
uses location sets. They do not check the absence of array over�ows or invalid pointer
dereferences and assume the programs they analyze are free of these bugs. They add a
special location set called unk to represent the unknown memory location.

Their algorithm computes a points-to graph for each program point. A points-to graph
G � LocationSets� LocationSets is a set of edges px, yq. An edge px, yq means that x
may point to y. Furthermore, x must point to some z such that px, zq is in the points-to
graph.

Let Point-to_Graphs
def� LocationSets � LocationSets be the set of points-to

graphs. Given a points-to graph σ, they introduce the function derefσpxq that maps
x to the set of variables y such that x may point to y:

derefσpxq � ty | px, yq ∈ σu.

Notice that, each location x must point to some y such that y ∈ derefσpyq. The function
deref naturally extends to sets of variables:

derefσpXq �
¤
x∈X

derefσpxq.

Let us give an example: G � tpx, unkq, px, yq, py, xqu. In this example, y must point to
x, but x may point to y or to anywhere.

The set of points-to graphs is a lattice for the inclusion ordering.

4.4.2 Gen/Kill

More formally, given a points-to graph σ, each assignment assign determines a set genptrpassign, σq
a set killptrpassign, σq and a boolean �ag strongptrpassign, σq. Figure 4.4 represents R.
Rugina and M. C. Rinard's sets genptr and killptr and the strongptr �ag [RR99, RR03].
The strongpassign, σq �ag is true if the assignment assign assigns a new value to a location
set that represents a unique memory address. E.g., in the case tris � &x the boolean
�ag strongptr is false, because t is an array, and the location set t, 0, size ¡ represents
several memory locations.

4.4.3 Multithreading

The parallel model considered by R. Rugina and M. C. Rinard is based on par constructor;
partstmt1 | stmt2u executes in parallel the statements stmt1 and stmt2. Programs are
modeled by parallel �ow graphs. A parallel �ow graph is a �ow graph generated by a
program using the par constructor. A parallel �ow graph has two kinds of vertices:

48 CHAPTER 4. EXISTING ANALYSES

Cases De�nitions

x :� y

genptrpx :� &y, σq def� txu � derefσpyq
killptrpx :� &y, σq def� txu � derefσpxq
strongptrpx :� &y, σq def� uniquepxq

x :� &y

genptrpx :� &y, σq def� tpx, yqu
killptrpx :� &y, σq def� txu � derefσpxq
strongptrpx :� &y, σq def� uniquepxq

�x :� y

genptrp�x :� y, σq def� derefσpxq � tyu
killptrp�x :� y, σq def� derefσpxq � pderefσpderefσpxqqq

strongptrp�x :� y, σq def�

$'&
'%

true
if derefσpxq is a singleton {z}

such that uniquepzq

false else

x � �y
genptrpx � �y, σq � txu � derefσpderefσpyqq
killptrpx � �y, σq � txu � derefσpxq
strongptrpx � �y, σq � uniquepxq

Figure 4.4: Gen and kill sets for Point-to Graphs

� Statement Vertices that represent a pointer assignment : x � y, x � &y, x � �y or
�x � y.

� Parbegin/parend and begin/end vertices that model the par statement. They come
in corresponding pairs. Parbegin/Parend vertices represent the beginning and the
end of a par statement, and begin/end vertices represent the beginning and the end
of a thread (created by a par statement).

All conditions (e.g., for if and while statements) are non-deterministic, i.e., the value of the
boolean expression tested is disregarded. R. Rugina and M. C. Rinard use a sequentially
consistent semantics, i.e, an execution of parpstmt1, stmt2q is an interleaving of executions
of stmt1 and stmt2.

The par constructor can handle some kinds of multithreaded programs (e.g., OpenMP
programs [Boa08]). Nevertheless, as explained by A. Bouajjani, M. Müller-Olm, and T.
Touili [BMOT05], parallel calls cannot adequately model a command that spawns another
thread and immediately returns, e.g, in Java [GJSB05] or in C [Boa08]. We will explain in
Part III how to handle such commands.

R. Rugina and M. C. Rinard [RR99, RR03] use a semantics that derives tuples contain-
ing points-to graphs information about current states, transitions of the current thread,
and interferences from other threads. They de�ne the MTI, the multithreaded points-to
information.

A multithreaded points-to information is a tuple:
xC, I, Ey ∈ Point-to_Graphs�Point-to_Graphs�Point-to_Graphs.

4.5. THREAD-MODULAR MODEL-CHECKING 49

� C represents the points-to graph at a control point of the program,

� I represents edges that may be created by other threads,

� E represents edges that may be created by the current thread.

The set of MTI is a lattice for the product ordering.

The idea of R. Rugina and M. C. Rinard is to associate to each control point of a
program an MTI.

They de�ne the semantics of basic statements as follow:

LassignMxC, I, Ey � xC 1, I, E ∪ geny

where C 1 �

#
pC r killptrpassign, Cqq ∪ genptrpassign, Cq if strongptrpassign, Cqq

C ∪ genptrpassign, Cq otherwise

They handle the par constructor, its semantics is given as a �xpoint of the following
equations:

xC 1, I 1, E 1y � Lparpstmt1, stmt2qMxC, I, Ey

where:

C 1 � C 11 ∩ C 12
E 1 � E 11 ∪ E 12
I 1 � I

C1 � C ∪ E2

C2 � C ∪ E1

I1 � I ∪ E2

I2 � I ∪ E1

and:

xC 11, I1, E
1
1y � Lstmt1MxC1, I1, ∅y

xC 12, I1, E
1
2y � Lstmt1MxC2, I2, ∅y

Notice that the semantics of a statement never changes the I-component. R. Rugina
and M. C. Rinard compute the �xpoint on the whole Parallel Flow Graph.

R. Rugina and M. C. Rinard also describes how their work extends to par with an
arbitrary number of threads, using a parforpbodyq constructor that executes body in parallel
an unbounded number of times.

50 CHAPTER 4. EXISTING ANALYSES

4.5 Thread-Modular Model-Checking

4.5.1 Model Checking

Flanagan and Qadeer [FQ03] use a model-checking approach to verify multi-threaded pro-
grams. Their main idea is to use thread-modular reasoning.

They separate the global and the local part. A Global store contains all variables that
are shared between threads. A Local store contains the program counter and all variables
speci�c to a thread. Let GlobalStore and LocalStore be the sets of global stores and local
stores respectively.

The number of threads is �xed at the beginning of the program. The set of thread
identi�ers is then �nite: Ids � t1, . . . , nu.

Each thread needs a local store. Hence, they de�ne LocalStores , the set of mappings
from Ids to LocalStore. A state st ∈ States is then a pair of GlobalStore � LocalStores .

The behaviors of threads are modeled by a transition relation T � Ids�pGlobalStore�
LocalStoreq � pGlobalStore � LocalStoreq.

Flanagan and Qadeer explain this relation: �The relation T pt, g, l, g, lq holds if the
thread t can take a step from a state with global store g and where thread t has local store
l, yielding a new state with global and local stores g and l , respectively.�

In particular, this means that any execution of the system is an interleaving of exe-
cutions of the threads. Furthermore, if a thread updates the shared memory (the global
store) then, this update is instantaneously visible for the other threads. Hence, Flanagan
and Qadeer strongly rely on sequential consistency.

The naive model-checking approach will explore all states and has space complexity
OpGLnq. The objective of Flanagan and Qadeer is to reach a polynomial complexity in n,
G and L and no more exponential in n. Nevertheless G and L, are still exponential in the
number of variables.

To this aim, Flanagan and Qadeer separate the local and global parts in their analysis.
Instead of computing T , they compute two relations:

� R � Ids�GlobalStore � LocalStore

� G � Ids�GlobalStore �GlobalStore

The relation Rpt, g, lq holds when the system can reach some state pg, lsq such that
lsptq � l. The relation Gpt, g1, g2q hold when for some local stores l1 and l2 the relation
T pt, pg1, l1q, pg2, l2qq.

The idea of Flanagan and Qadeer is to compute R and G instead of all reachable states.

4.5.2 Abstract Interpretation

We easily notice that R and G forget information with respect to the semantics of the
system. Actually, they are abstractions. Malkis et al. [MPR06b, MPR06a] show that
Flanagan and Qadeer analysis is a cartesian abstraction. Malkis et al. [MPR06b, MPR06a]

4.5. THREAD-MODULAR MODEL-CHECKING 51

1 i n t x = 1 ;
2 mutex mx ;
3
4 void p () {
5 lock (mx) ;
6 x = 0 ;
7 x = x + 1 ;
8 assert x > 0 ;
9 unlock (mx) ;
10 }

Figure 4.5: Flanagan and Qadeer Example

give the Galois connection in the case of two threads, The concrete lattice is PpStatesq �
PpGlobalStore�LocalStoreIdsq, the set of states. And the abstract lattice is PpGlobalStore�
LocalStoreqIds. This explains why the Flanagan and Qadeer algorithm is polynomial in
cardpIdsq and not exponential in cardpIdsq. In the case where Ids � t1, 2u, the cartesian
Galois connection αcart, γcart between the concrete lattice PpStatesq and the abstract lattice
PpGlobalStore � LocalStoreq � PpGlobalStore � LocalStoreq is de�ned by:

αcartpSq �
�
tpg, l1q | Dl2 : pg, l1, l2q ∈ Su, tpg, l2q | Dl1 : pg, l1, l2q ∈ Su

�
γcartpT1, T2q � tpg, l1, l2q | pg, l1q ∈ T1 ^ pg, l2q ∈ T2u

In the general case, the cartesian Galois connection αcart, γcart between the concrete and
the abstract lattice is de�ned by:

αcartpSq � λi.tpg, lspiqq | pg, lsq ∈ Su

γcartpT q � tpg, lsq | @i, pg, lspiqq ∈ T piqu

Malkis et al. show [MPR06b, Proposition 2] that αcart, γcart is a Galois connection, and
that [MPR06b, Theorem 3] the Flanagan and Qadeer algorithm computes the abstract
semantics derived by αcart, γcart. Furthermore [MPR06b, Theorem 5] prove that the �nal
results of the Flanagan and Qadeer algorithm is exactly the abstraction (without other
loss of precision) of the concrete semantics.

Malkis et al. improve the precision using human speci�ed [MPR07] �exception sets�.
They compose their Cartesian abstraction αcart, γcart with another Galois connection. This
new Galois connection allows them to correlate the local stores of distinct thread, therefore
the precision is enhanced. This de�netely rests on sequential consistency.

4.5.3 Mutexes

Flanagan and Qadeer [FQ03] give two ways to model mutexes:

52 CHAPTER 4. EXISTING ANALYSES

1 i n t x = 1 ;
2 mutex mx ;
3 i n t y = 1 ;
4 mutex my ;
5
6 void p () {
7 i f (rnd ()) {
8 lock (mx) ;
9 x = 0 ;
10 x = x + 1 ;
11 unlock (mx) ;
12 }
13 e l s e
14 {
15 lock (my) ;
16 y = 0 ;
17 y = x + 1 ;
18 unlock (my) ;
19 }
20 }

Figure 4.6: Modi�ed Flanagan and Qadeer Example

� First, a mutex is a boolean variable : when it is free, its value is true, and when it is
locked its value is false. In particular, this means that a thread can unlock a mutex
locked by another thread.

� Second, a mutex is associated to the thread that owns it, or the special value none.
The value of a mutex is none whenever it is free.

Since, according to Posix Norm [IT04], the behavior of the program is unde�ned when
a thread attempts to unlock a mutex owned by another thread, these two behaviors are
acceptable. They are both in fact observed in practice.

Flanagan and Qadeer give a simple example of program with mutexes: n threads ex-
ecute the function p of Figure 4.5. In this example, a variable x is protected by a mutex
mx. Therefore, there is no data race.

To prove the absence of data-race on the variable x, Flanagan and Qadeer have to use
the second model of mutexes. Therefore, a mutex may have n � 1 distinct values where
n is the number of threads. Hence, adding a mutex to the global store increases G by a
factor n. The cost of the analysis of this example, in the number of threads, is then Opn2q.
The cost of the analysis of an example with two mutexes (E.g. as given in Figure 4.6) will
be Opn3q and so on. Finally, G ¥ ncardpLocksq where Locks is the set of all mutexes.

4.6. PURE GEN/KILL ANALYSES 53

4.6 Pure Gen/Kill Analyses

Gen/kill analyses are a family of abstractions.
A pure gen/kill analysis on sets is parametrized by a lattice V � PpXq of subsets of

some set X. Each basic statement stmt of a program is abstracted using two elements of
V genpstmtq and killpstmtq. In such an analysis, abstract stores are elements of V and
the e�ect of the statement stmt is abstracted by the function

λE.pE r killpstmtqq ∪ genpstmtq.

The elements of killpstmtq are withdrawn, and elements in genpstmtq are added to the
abstract store.

Gen/kill analyzes are generalizable to handle a lattice instead of a set of subsets. A
pure gen/kill analysis use a lattice V . Each basic statement stmt is mapped to two sets:
genpstmtq and keeppstmtq. The e�ect of a the statement stmt is abstracted by a function
λE.pE u keeppstmtqq t genpstmtq. The main di�erence is the use of a set keep instead
of kill. In the lattice of subsets of X, theses de�nitions are equivalent according to
the following claim (Claim 4.1). More generally, these approaches are equivalent in a
complemented lattice. But in a non-complemented lattice, we do not have the operation
r needed for kill; this is why we use keep instead of kill .

Claim 4.1.

λE.pE r killpstmtqq ∪ genpstmtq � λE.pE ∩ keeppstmtqq ∪ genpstmtq

where keeppstmtq is the complementary of killpstmtq in X.

Pure Gen/kill analyzes encompass several kinds of analyzes, e.g.:

1. bitvector analysis, e.g, [KSV96],

2. strong copy constant propagation

3. determination of live variables,

4. available expressions

5. and potentially uninitialized variables

For bitvector analysis, we may use the lattice t0, 1un with the pointwise ordering and 0<1.
The main advantage of pure gen/kill analyses is that kill or keep and gen sets do not

depend on the context. Notice that the R. Rugina and M. C. Rinard gen/kill analysis (See
Section 4.4.2) is not a pure gen/kill analysis given that genptr and killptr depend not only
on the statement, but also of the current abstract store. In Section 8.2.3 we give a general
de�nition of gen/kill analyses that encompasses pure gen/kill analyses and R. Rugina and
M. C. Rinard analysis.

54 CHAPTER 4. EXISTING ANALYSES

H. Seidl and B. Ste�en [SS00] use the advantage a�orded by pure gen/kill analyses.
They use the lattice F of functions V Ñ V of the form λE.pE u keeppstmtqq t genpstmtq.
The idea is to abstract the e�ect of several basic statements by one element of the lattice
F, this is possible due to the following claim:

Claim 4.2. Let V be a distributive lattice. Each function of F is monotone and F is stable
by composition16.

Proof. Given f � λx.px u a1q t b1 and g � λx.px u a2q t b2, g � f � λx.px u pa1 u a2qq t
ppb1 u a2q t b2q.

H. Seidl and B. Ste�en [SS00] give an inter-procedural analysis for the primitive par and
P. Lammich and M. Müller-Olm [LMO08] generalize this approach to the create primitive,
which spawns a new thread and immediately returns. Programs are represented by a par-
allel �ow graph, like [RR99, RR03], and if statements are abstracted as non-deterministic
choices. The semantics is an interleaving semantics. They assume that the height17 of the
domain F is �nite, but this is not a true restriction, since widening and narrowing [CC92]
(See section 3.3) allow to bypass this limitation.

4.7 Data-races

A Data-race is a run-time error that may occur due to multithreading. Recalling Section
1.1, a data-race occurs when a thread write into a memory location, and another thread
accesses (for reading or writing) the same location.

To avoid data-races, several multithreaded libraries [IT04, But06, Bar10, Boa08] give
locks/mutexes to the programmer. The two basic and standard functions on mutexes are
lock and unlock . A lock/mutex may be free or owned by a thread. Whenever a thread
calls the primitive lockpµq, it tries to acquire the mutex µ. If µ is free, then the thread
acquires it, else, the thread waits until the mutex becomes free. Whenever a thread calls
the function unlockpµq, it releases the mutex, i.e., the mutex becomes free. Notice that a
thread is allowed to released a mutex only if it owns it, else, the behavior is unspeci�ed.
Locks can be used to �protect� a variable. E.g, in Flanagan and Qadeer's example (See
Figure 4.5), the variable x is protected by the mutex mx. A thread may write into x if and
only if it owns the mutex mx. Since the mutex mx cannot be owned by two threads at the
same time, two distinct threads cannot access to the variable x at the same time.

A good programming practice is to use nested locks: locks are released in the same
order than they have been acquired. Some languages, like Java [GJSB05] or Visual Basic
[Vic07] syntactically enforce the use of nested locks. These languages provide a constructor
syncpµqtstmtu that executes the statement stmt under the protection of the lock µ. In other
words syncpµqtstmtu locks the mutex µ, executes stmt and then releases µ.

16I.e., if f ∈ F and g ∈ F then g � f ∈ F.
17Recall De�nition 2.24

4.7. DATA-RACES 55

Protected Variable

Thread 2Thread 1

Thread 3

Figure 4.7: Mutexes Protect Variables

4.7.1 Types

The Locksmith tool [PFH06] uses a typing method to prove the absence of data-races.
Their analysis is based on the fact that mutexes are commonly used to protect variables.

A variable v is protected by a mutex µ if every thread locks µ before accessing to v. In
Figure 4.7, Thread 1 and Thread 2 access the protected variable after locking the mutex.
Nevertheless, Thread 3 may access the variable without owning the lock, hence, a data-race
may occurs. Hence, we have to check that whenever a thread accesses to a variable, this
thread owns the mutex that protect this variable.

The main idea of Locksmith tool is to infer the link between a variable and the mutex
that protects it. If the Locksmith tool guesses the right relation, then it propagates it,
using type inference. If all variables are protected by a mutex, then the tool is sure that
no data-race may occur.

4.7.2 The Goblint Tool

The Goblint tool [VV07] is based on theoretical works done by Seidl et al. [VMo03].
Based on abstract interpretation, this tool overapproximates all possible behaviors of the
program and it is specialized in detecting data-races. Goblint analyzes each thread in turn,
and computes a global �xpoint: it considers that any thread may interfere with any other
thread at any time.

To enhance precision, the Goblint tool distinguishes an initialization phase, where only
the main thread is executed, and a second phase, it which all threads may interfere.

Let us consider the program execution represented on Figure 4.8. The program is
executed from the top of the �gure to the bottom of the �gure; moreover, horizontal lines
represent thread creation. The Goblint Tool considers the execution of the thread main

alone, and then, it considers that all threads may interfere. For instance, look at the
bullet on thread j2. When j2 is in the bullet, thread j6 has not yet been created. But

56 CHAPTER 4. EXISTING ANALYSES

Time

main

j2

j1

j5

j3
j4

j6

Figure 4.8: A Program Execution

1 void f (i n t b) {
2 sync (µ){ i f (b==1) {g ()} e l s e h () ; }
3 }
4
5 void g () { sync (µ){. . . } }
6
7 void h () {. . . }

Figure 4.9: Reentrant Monitors

the Goblint tool considers that the action of the thread j2 at the bullet may interfere with
thread j6: this is a safe overapproximation, but this approximation loses precision. Our
analysis improves the Goblint method, by introducing an pre-ordering Ìafter that will tell
the analysis that the actions of j2 done before the creation of j6 cannot interact with j6.

Notice that Goblint is one of the rare analysis tool that is able to handle guards. Most
other analyses abstract if statements by non-deterministic choices.

4.7.3 Reentrant Monitors

P. Lammich and M. Müller-Olm [LMO08] analyze programs with reentrant monitors. Mon-
itors are locks that are used in a structured way. It corresponds to the use of a primitive
syncpµqtstmtu, as explained at the beginning of this section.

The monitors studied by P. Lammich and M. Müller-Olm are reentrant. This means
that the same thread can lock the same monitor several times. E.g., in Figure 4.9, the
function f calls g or h depending of the value of its argument. With non-reentrant monitors,
there will be a deadlock when f call g, because the thread that executes f still owns the
monitor µ. With reentrant monitors, the thread will own the monitor µ a second time.

P. Lammich and M. Müller-Olm model programs b control-�ow graphs. They abstract
all guards by non-deterministic choices and they ignore information on data. Hence, they
need another de�nition of data-races. The user speci�es two sets of nodes of the control-

4.7. DATA-RACES 57

1 void f (i n t b) {
2 sync (µ1){
3 sync (µ2){ . . . } ;
4 U ;
5 }
6 }
7
8 void g (i n t b) {
9 sync (µ2){
10 sync (µ1){ . . . }
11 V ;
12 }
13 }

Figure 4.10: No Data-Race but a Deadlock

�ow graph U and V . A data-race occurs in their model if and only if at the same time a
thread reaches a control point in U and a distinct thread reaches a control point in V .

To detects data-races P. Lammich and M. Müller-Olm use acquisition histories intro-
duced by Kahlon et al. [KIG05]. An acquisition history is a function from the set of
monitors Locks to the set PpLocksq. Intuitively, an acquisition history h maps each
monitor µ to the set of monitors that will be acquired a time where µ is held.

Two acquisition histories h1 and h2 may be interleaved if during an execution, a thread
may have the acquisition history h1 and another an acquisition history h2. P. Lammich
and M. Müller-Olm detect if two distinct threads can reach U and V with interleavable
acquisition histories. Formally, they introduce a predicate h1 b h2 that means that h1 and
h2 may be interleaved:

h1 b h2
def

ô Eµ1, µ2 : µ1 ∈ h1pµ2q ^ µ2 ∈ h2pµ1q.

Acquisition histories allow one to detect some spurious alarms. For instance consider
Figure 4.10. Consider that a �rst thread executes f and a second thread executes g. The
function f locks the monitor µ1, locks the monitor µ2, releases the monitor µ2 and then
goes to a control state U . The function f locks the monitors in the reverse order: �rst it
locks the monitor µ2, and second, it locks the monitor µ1 and releases it. After, it goes to
a control point in V .

No data-race can occur, instead a deadlock can occur. Nevertheless, tools like Lock-
smith [PFH06] will detect a possible data-race, since the control points U and V are not
protected by the same lock (U is protected by µ1 and V by µ2). P. Lammich and M.
Müller-Olm's analysis detects that no data race can occur, due to acquisition histories.

58 CHAPTER 4. EXISTING ANALYSES

CHAPTER 5
Semantics Hierarchy

In this thesis we use several semantics. In Part II, we de�ne a concrete semantics to
models the behavior of real programs. In Part III we de�ne two intermediates semantics.
These semantics are used in Part IV to prove the soundness of an abstract semantics. This
abstract semantics gives an e�cient algorithm to check multithreaded programs.

59

60

Operational

Semantics

Intermediate

Semantics

Denotational

Intermediate

Semantics

Abstract

Semantics

Models the behavior of a multithreaded program

Is an algorithm

Figure 5.1: Semantics Hierarchy

Part II

Concrete Models

61

CHAPTER 6
Language

The syntax of our language is given in Fig. 6.1. Statements (stmt) are labeled; we denote
by Labels the set of labels. Labels represent the control �ow: the statement `stmt , `1

begins at label ` and terminates at label `1, e.g., in Fig. 6.2a, a thread at label `2 will
execute the assignment p :� &y and go to label `3. It is assumed that in a given command
or statement each label appears only once. Furthermore, to represent the end of the
execution, we assume a special label `8 which does not appear in a command, but may
appear as the return label of a statement. Intuitively, this label represents the termination
of a thread: a thread in this label will not be able to execute any statement.

Notice that sequences cmd1; cmd2 are not labeled. Indeed, the label of a sequence is
implicitly the label of the �rst command, cmd1.We write `cmd when the label of cmd is
` and we write `stmt , `1 the statement stmt labeled by ` and `1. A program is represented
by a statement of the form `cmd , `8. Other statements represent a partial execution of a
program.

The actions represent store modi�cations. We call basic statements the statements of
the form `action, `1 or `1guardpcondq, `2 or

`1spawnp`3q, `2.
The statements spawn and guard will be useful in decomposing the steps taken in

executing create, while and if statement. To make our presentation simpler, we consider
all our variables to be global. The consideration of local variables is an orthogonal concern,
and induces no additional complexity. Nevertheless, local variables have been implemented

63

64 CHAPTER 6. LANGUAGE

stmt ::� statement
cmd , `1 command

| `guardpcondq, `1 guard
| `spawnp`2q, `1 new thread

cmd ::� command
`action modify store

| cmd1; cmd2 sequence
| if pcondqthentcmd1uelsetcmd2u if
| `whilepcondqtcmdu while
| `createpcmdq new thread

action ::� basic action
lv :� e assignment

| lockpµq lock a mutex
| unlockpµq unlock a mutex

lv ::� left value
x variable

| �e pointer deref
e ::� expression

c constant
| lv left value
| ope1, e2q operator
| &x address

cond ::� condition
x variable

| cond negation

Figure 6.1: Syntax

(See Section 18.2) as a stack.
Let Labsp`cmd , `8q be the set of labels of the statement `cmd , `8.
We also de�ne by induction on commands, the set of labels of subthreads Labschildp�q

by:

Labschildp
`1createp`2cmdq, `3q

def� Labsp`2cmd , `8q

Labschildp
`1cmd1,

`2cmd2, `3q
def� Labschildp

`1cmd1, `2q ∪ Labschildp
`2cmd2, `3q

Labschild

�
`1 if pcondqthent`2cmd1u

elset`3cmd2u, `4

def� Labschildp

`2cmd1, `4q ∪ Labschildp
`3cmd2, `4q

Labschildp
`1whilepcondqt`2cmdu, `3q

def� Labschildp
`2cmd1, `1q

Labschildp
`1basic, `2q

def� ∅ if `1basic, `2 is a basic command.

This language contains all primitives that are di�cult to analyze. We dealt with some
extensions of this language in Chapter 17

65

`1p :� &x; `2p :� &y;
`3createp`4 � p :� 2q;
`5x :� 3, `8

(a) Pointers

`6createp`7y :� y � zq;
`8z :� 3, `8
(b) Interference on z

`9x :� 0; `10y :� 0;
`11createp`12x � x� yq;
`13y :� 3, `8

(c) `9example2, `8

`14y :� 0; `15z :� 0;
`16createp`17y :� 3q;
`18y :� 1; `19z :� y, `8

(d) `14example4, `8

Figure 6.2: Program Examples

66 CHAPTER 6. LANGUAGE

CHAPTER 7
Operational Semantics

7.1 Introduction

An operational semantics describes how a program is executed. An execution of a program
is a sequence of transition.

Several operational semantics are given here. They assume a set Var of variables and
a set V of values. Some variable are mutexes or locks. We call Locks the set of locks and
assume that Locks � V .

In this chapter, we de�ne a generic operational semantics. In Chapter 8 and Chapter
9, we will instantiate this semantics.

7.2 Description of the System.

To give semantics to threads, we use a set Ids of thread identi�ers. During program
execution, each thread is represented by a distinct identi�er. We assume a distinguished
identi�er main ∈ Ids, and take it to denote the initial thread.

When a program is executed, threads go from a label to another one independently. A
control point is a partial function P that maps thread identi�ers to labels, and such that

67

68 CHAPTER 7. OPERATIONAL SEMANTICS

lockablepi, µ, σq ^ σ1 � elem lockpµqpi, σq
`1 lockpµq, `2 $i p`1, σq Ñ p`2, σ

1q
lock

unlockablepi, µ, σq ^ σ1 � elemunlockpi, µq
`1unlockpµq, `2 $i p`1, σq Ñ p`2, σq

unlock

σ1 � elem lv:�epi, σq
`1lv :� e, `2 $i p`1, σq Ñ p`2, σ

1q
assign

boolpi, σ, condq � true
`1guardpcondq, `2 $i p`1, σq Ñ p`2, σq

guard

`1guardpcondq, `2 $i t
`1whilepcondqt`2cmdu, `3 $i t

while entry
`1guardp condq, `3 $i t

`1whilepcondqt`2cmdu, `3 $i t
while exit

`1guardpcondq, `2 $i t
`1 if pcondqthent`2cmd1uelset`3cmd2u, `4 $i t

then

`1guardp condq, `3 $i t
`1 if pcondqthent`2cmd1uelset`3cmd2u, `4 $i t

else

Figure 7.1: Local Semantics Rules

P pmainq is de�ned. A control point associates each thread with its current label. The
domain DompP q of P is the set of created threads. Let P be the set of control points.

Furthermore, threads may create other threads at any time. A genealogy of threads is
a �nite sequence1 of tuples pi, `, jq ∈ Ids � Labels � Ids such that the transitive closure
 g of the binary relation i Ðg j if and only if pi, `, jq ∈ g is a strict ordering and main

is a minimal element for this ordering. Intuitively, i g j means that the thread i is an
ancestor of j. We call ¨g the re�exive closure of g. A genealogy g is well formed, if each
thread j is created only once, and a thread j never creates another thread i1 before having
been created. Formally g is well formed if for all threads identi�ers i1, i2, j, for all labels
`, `1, neither pi1, `, jq � pi2, `1, jq nor pj, `, i1q � pi2, `1, jq is a subword of g.

We leave the precise semantics of stores unde�ned for now, and only require four prim-
itives:

� elemaction : Ids� Stores Ñ Stores,

� bool : Ids� Stores Ñ ttrue, falseu,

� lockable : Ids� Locks� Stores Ñ ttrue, falseu

� and unlockable : Ids� Locks� Stores Ñ ttrue, falseu.

We also assume a set of initial stores StoresInit, e.g., all stores, or a store that maps all
variables to 0 as required for global variables by the C norm [ISO99, Section 6.7.9 item
10].

Intuitively, elemactionpi, σq returns the store after i executes the basic operation action
(see Fig. 6.1) on the store σ. The function boolpi, σ, condq checks if the condition cond is
true in the context σ when the current thread2 is i. A mutex may be locked or unlocked

1I.e., a word, see Chapter 2.
2To know which is the current thread will be an important point for weak memory models. See Chapter

9

7.2. DESCRIPTION OF THE SYSTEM. 69

P piq � ` `1stmt , `2 $i p`, σq Ñ p`1, σ1q
`1stmt , `2 , pi, P, σ, gq Ñ pi, P ri ÞÑ `1s, σ1, gq

parallel

P piq � `1 j is fresh in pi, P, σ, gq P 1 � P ri ÞÑ `3srj ÞÑ `2s spawnablepi, σq
`1spawnp`2q, `3 , pi, P, σ, gq Ñ pi, P 1, σ, g � pi, `2, jqq

spawn

`2cmd1, `4 , τ
`1 if pcondqthent`2cmd1uelset`3cmd2u, `4 , τ

then body

`3cmd2, `4 , τ
`1 if pcondqthent`2cmd1uelset`3cmd2u, `4 , τ

else body

`1spawnp`2q, `3 , τ
`1createp`2cmdq, `3 , τ

create
`2cmd , `1 , τ

`1whilepcondqt`2cmdu, `3 , τ
while body

`1cmd1, `2 , τ
`1cmd1; `2cmd2, `3 , τ

sequence 1
`2cmd2, `3 , τ

`1cmd1; `2cmd2, `3 , τ
sequence 2

`2cmd , `8 , τ
`1createp`2cmdq, `3 , τ

child
τ ∈ System
`stmt , `1 , τ

system

Figure 7.2: Global Semantics Rules

only under some assumptions, e.g, a lock may be acquired only it it is free. The predicates
lockable and unlockable model these conditions.

Similarly, a thread cannot necessary spawn another thread at any time. Then we
introduce the predicate spawnable : Ids� Stores Ñ ttrue, falseu.

A tuple pi, P, σ, gq ∈ Ids� P� Stores�Genealogies is a state if:

(a) i ∈ DompP q,

(b) DompP q is the disjoint union between tmainu and the set of threads created in g,

(c) and h is a well formed genealogy.

Let States be the set of states. A state is a tuple pi, P, σ, gq where:

� i is the currently running thread,

� P describes where each thread is in the control �ow,

� σ is the current store

� and g is the genealogy of thread creations.

DompP q is the set of existing threads. The constraint (a) means that the current thread
exists, the constraint (b) means that the only threads that exist are the initial threads and
the thread created in the past.

Given a program `0cmd , `8 the set Init of initial states is the set of tuples pmain , P0, σ, εq
where:

70 CHAPTER 7. OPERATIONAL SEMANTICS

� DompP0q � tmainu, P0pmainq � `0,

� σ is an initial store (i.e., σ ∈ StoresInit)

� and ε is the empty genealogy.

A transition is a pair of states τ �
�
pi, P, σ, gq, pi1, P 1, σ1, g � g1q

�
such that:

(a) for every j ∈ DompP qr tiu, P pjq � P 1pjq

(b) The set of letters of g1 is exactely tpi, P 1pjq, jq | j ∈ DompP 1qr DompP qu

We denote by Transitions the set of all transitions. The point (a) means that a transition
may change the label of the current thread, but cannot change the label of any other
thread. The point (b) means that all new threads are added to the genealogy. Notice that,
while we will use a create statement that create only one thread, for all transition either
g1 � ε or g1 � pi, P 1pjq, jq for some j ∈ Ids. When we will use par statements (See Section
17.2), we will use transitions that may spawn several threads at the same time.

Notice that, the genealogy increase when transitions are applied. Formally:

Claim 7.1. Let s � pi, P, σ, gq and s1 � pi1, P 1, σ1, g1q be two states.
If ps, s1q ∈ Transitions� ô g ¤pre�x g

1.

7.2.1 Program execution

We use a small step semantics: each statement gives rise to an in�nite transition system
over states where edges s1 Ñ s2 correspond to elementary computation steps from state
s1 to s2. We de�ne the judgment `1stmt , `2 , s1 Ñ s2 to state that s1 Ñ s2 is one of these
global computation steps that arise when cmd is executed.

To simplify the semantic rules, we use an auxiliary judgment `1stmt , `2 $i p`, σq Ñ
p`1, σ1q to describe evolutions that are local to a given thread i. A local state p`, σq ∈
Labels�Stores is a pair. The label represents the program pointer of the current thread,
and the store σ represents the current store. The judgment `1stmt , `2 $i p`, σq Ñ p`1, σ1q
means that the thread i can �re a local transition, and go from ` to `1, modifying the store
σ into σ1.

Judgments are derived using the rules of Fig. 7.1 and Fig. 7.2.
The rules �lock� and �unlock� check is the mutex is lockable (respectively unlockable),

and update the store if the condition is satis�ed. The rule �assign� changes the value of a
variable. The rule �guard� allows to �re a transition only if the condition is true.

The rules �while entry� and �while exit� give the guard necessary to enter or to exit
the while loop. Rules �then� and �else� respectively give the transitions to enter into the
�then� (respectively the �else�) branch of the if statement.

The rule �parallel� transform a local transition into a global one. The label of the
current thread and the store are updated.

In the rule �spawn�, the expression �j is fresh in pi, P, σ, gq� means that i � j and P pjq
is not de�ned, i.e., thread j does not exists yet. The transitions generated by this rule does

7.2. DESCRIPTION OF THE SYSTEM. 71

Name Threads Control point Store Genealogy
s1 main `1 σ0 ε
s2 main `2 σ0 ε
s3 main `1 σ0 pmain , `2, iq

i `3

s4 main `1 σ0 pmain , `2, iq
i `3

s5 main `1 σ1
def� elemx�1pσ0q pmain , `2, iq

i `8
s6 main `1 σ1 pmain , `2, iq

i `8
s7 main `2 σ1 pmain , `2, iq

i `8
s8 main `1 σ1 pmain , `2, iq � pmain , `2, jq

i `8
j `3

s9 main `1 σ1 pmain , `2, iq � pmain , `2, jq
i `8
j `3

Figure 7.3: Example of Program Execution

72 CHAPTER 7. OPERATIONAL SEMANTICS

`1whileptrueq
t`2createp`3x :� x� 1qu, `8

Figure 7.4: Thread Creation in a While Loop

not change the store but creates a new thread and therefore updates the control point and
the genealogy.

The rules �then body�, �else body�, �while body�, �sequence 1� and �sequence 2� say that
a statement generates all transitions generated by its substatements. The rule �create� say
that the statement create spawns a thread.

For the rule �system� we de�ne the set of schedule transitions by:
Schedule

def� tppi, P, σ, gq, pj, P, σ, gqq | j � iu.
Furthermore, we assume a set of transitions System such that:

@ppi, P, σ, gq, pi1, P 1, σ1, g1qq ∈ System, P � P 1 ^ g � g1 and Schedule � System.

The set System contains all transitions common to all programs, e.g., transitions that
switch the current thread.

The set of transitions generated by statement `stmt , `1 is Tr `stmt ,`1 � tps, s1q | `stmt , `1 ,
sÑ s1u. Furthermore, let Tr -`stmt ,`1 � Tr `stmt ,`1 r System be the set of transitions speci�c to

the statement `stmt , `1.
Figure 7.3 gives the beginning of one possible execution of the program of Fig. 7.4. The

�rst colum gives the name of the states. The second column indicates created threads,
the current thread is underlined. The third column gives the label of each thread, i.e., the
control point P . The fourth column gives the store and the last column gives the genealogy.

Hence, in Figure 7.3:

� s0 � pmain , P1, σ0, εq where P1pmainq � `1

� s9 � pj, P9, σ1, pmain , `2, iq � pmain , `2, jqq where P9pmainq � `1, P9piq � `8 and
P9pjq � `3

The store σ0 is assumed to be an initial store, i.e., σ0 ∈ StoresInit. In that �gure, ps1, s2q,
ps5, s6q and ps8, s9q are in System, but ps1, s2q R System.

7.3 Descendants

Figure 7.6 illustrates the execution of a whole program. Each vertical line represents the
execution of a thread from top to bottom, and each horizontal line represents the creation
of a thread. At the beginning (top of the �gure), there is only the thread main � j0.

During execution, each thread may execute transitions. At state s0, threadps0q denotes
the currently running thread (or current thread), see Fig. 7.5. On Fig. 7.6, the current
thread of s0 is j0 and the current thread of s is j2.

7.3. DESCENDANTS 73

For any set of states S, let S � States r S be the complement of S.
threadpi, P, σ, gq def� i

labelpi, P, σ, gq def� P piq
descgpiq � tj | i ¨g ju
descgpXq �

�
i∈X descgpiq

Figure 7.5: Auxiliary de�nitions

Time

j0

s0

j2

j1

j5

j3

j4

s

j6

Figure 7.6: A thread Execution

During the program execution given in Fig. 7.6, j0 creates j1. We say that j1 is a
child of j0 and j0 is the parent of j1. Furthermore, j1 creates j3. We then introduce the
concept of descendant : the thread j3 is a descendant of j0 because it has been created
by j1 which has been created by j0. More precisely, descendants depend on genealogies.
Consider the state s0 � pj0, P0, σ0, g0q with g0 � rpj0, `1, j1qs: the set of descendants of
j0 from g0 (written descg0ptj0uq, see Fig. 7.5) is just tj0, j1u. The set of descendants of a
given thread increases during the execution of the program. In Fig. 7.6, the genealogy of
s is of the form g0 � g for some g, here g � rpj0, `2, j2q, pj1, `3, j3q, pj2, `4, j4qs. When the
execution of the program reaches the state s, the set of descendants of j0 from g0 � g is
descg0�gpj0q � tj0, j1, j2, j3, j4u.

In a genealogy, there are two important pieces of information. First, there is a tree
structure: a thread creates children that may create children and so on... Second, there is
a global time, e.g., in g, the thread j2 has been created before the thread j3.

Lemma 7.2. If g � g1 is a well formed genealogy therefore descg�g1pXq � descg1pdescgpXqq.

Proof. Let j ∈ descg�g1 . Therefore, by de�nition of g, there exists i0, . . . , in such that:

� For all k ∈ t0, . . . , n� 1u, ik Ðg�g1 ik�1

� and in � j.

Notice that, by de�nition, ik Ðg�g1 ik�1 is equivalent to ik Ðg ik�1 or ik Ðg1 ik�1.

� First case: for all k, ik Ðg ik�1. Therefore j ∈ descgpXq � descg1pdescgpXqq.

74 CHAPTER 7. OPERATIONAL SEMANTICS

� Second case: there exists k such that ik Ðg ik�1. Let k0 the smallest such k. By
de�nition, there exists `0 such that pik0 , `0, ik0�1q ∈ g1.

By minimality of k0, ik0 ∈ descgpXq.

Let k ¡ k0. Assume by contradiction that ik Ðg ik�1. Therefore, there exists ` such
that pik0 , `0, ik0�1q ∈ g. Hence pik0 , `0, ik0�1q � pik0 , `0, ik0�1q is a subword of g � g1 and
therefore g � g1 is not weel formed. Hence for all k ¡ k0, ik Ðg1 ik�1.

We conclude that j ∈ descg1pik0q � descg1pdescgpXqq

During the execution of a program, each thread may only be created once:

Lemma 7.3 (Unique Parent). Let g a well formed genealogy.
If i1 Ðg j and i2 Ðg j then i1 � i2.

Proof. Because i1 Ðg j, there exists ` such that pi1, `, jq. Because i2 Ðg j, there exists `
such that pi2, `, jq.

The genealogy g is well formed. Hence, neither pi1, `, jq � pi2, `1, jq nor pi2, `1, jq � pi1, `, jq
is a subword of g.

We conclude thatpi1, `, jq � pi2, `1, jq and then i1 � i2.

Lemma 7.4. Let g � g1 a well formed genealogy and i, j which are not created in g1.
Therefore, either descg1pjq � descg�g1piq or descg1pjq ∩ descg�g1piq � ∅.

Proof. We consider the case where descg1pjq∩descg�g1piq � ∅. Let i1 ∈ descg1pjq∩descg�g1piq.
Therefore, there exists to sequences of threads identi�ers i1, . . . , in and j1, . . . , jm such

that

� in � i

� For all k ∈ t0, . . . , n� 1u, ik�1 Ðg�g1 ik

� i1 � i1

� j1 � j

� For all k ∈ t0, . . . ,m� 1u, jk�1 Ðg1 jk

� j1 � i1

Given that g1 is a subword of g �g1, we conclude that for all k ∈ t0, . . . ,m�1u, jk Ðg�g1 jk�1.
We apply by induction the Lemma 7.3 and state that for all k ∈ t1, . . . ,minpn,mqu, ik � jk.

� First case: n m. Therefore jn�1 Ðg1 i. This is in contradiction with the fact that
i have not been created in g1.

7.4. PROPERTIES OF THE LANGUAGE 75

� Second case: m ¡ n. Therefore im�1 Ðg�g1 j. Because j have not been created in g1,
therefore im�1 Ðg j.

Assume by contradiction that, for some k ¡ n, ik�1 Ðg1 ik. Let k0 the smallest
such k. Therefore, there exists `1 such that pik�1, `

1, ikq ∈ g1 and there exists `2 such
that pik, `1, ik�1q ∈ g . Hence pik, `2, ik��q � pik�1, `

1, ikq is a subword of g � g1; this is
impossible because g � g1 is well formed.

Therefore, for every k ¡ n, ik�1 Ðg ik. Hence j ∈ descgpiq. Therefore descg1pjq �
descg1pdescgpiqq.

� Third case: n � m. Therefore i � j and descg1pjq � descg1piq � descpdescg1piqq by
Lemma 7.2.

We also need to consider sub-genealogies such as g. In this partial genealogy, j1 has
not been created by j0. Hence descgptj0uq � tj0, j2, j4u. Notice that j3 R descgptj0uq even
though the creation of j3 is in the genealogy g.

We say that a set of transitions T is conservative if and only if for all transitions:
ppi, P, σ, gq, pi1, P 1, σ1, g1qq ∈ T, g � g1. The following lemma exhibits some conservative
sets:

Lemma 7.5. The following sets of transitions are conservative:

� System

� Schedule

� Tr `1basic,`2 where
`1basic, `2 is an arbitrary basic statement.

7.4 Properties of the language

In this section, we give some useful properties on the transitions generated by the state-
ments of our language.

7.4.1 Labels

A transition generated by a basic statement go from the initial label of the statement to
the �nal label. This is not true for non-basic statements (e.g., composition). Formally:

Lemma 7.6. Let `1basic, `2 be a basic statement.
If ps, s1q � ppi, P, σ, gq, pi1, P 1, σ1, g1qq ∈ Tr -`1basic,`2 then

1. labelpsq � `1

76 CHAPTER 7. OPERATIONAL SEMANTICS

2. labelps1q � `2

3. threadpsq � threadps1q

4. s and s1 has the same genealogy.

Proof. This lemma is a consequence of rules of Fig. 7.1 and rule �parallel� of Fig. 7.2.

A statement generates only transitions from its labels and to its labels, e.g., the state-
ment of Figure 6.2a generates transitions from the label `2, this is formalized by the fol-
lowing lemma:

Lemma 7.7. If ps, s1q ∈ Tr -`stmt ,`1 then:

1. labelpsq ∈ Labsp`stmt , `1qr t`1u

2. labelps1q ∈ Labsp`stmt , `1q ∪ t`8u

3. threadpsq � threadps1q

Proof. This lemma is true for basic statement according to Lemma 7.6. We conclude by
induction.

The contrapositive gives the following lemma:

Lemma 7.8. If labelpsq R Labsp`stmt , `1qr t`1u then for all state s1, ps, s1q R Tr -`stmt ,`1

Whenever a statement `stmt , `1 generates a transition that creates a new thread j, this
new thread j is in a label of Labschildp`stmt , `1q. Formally:

Lemma 7.9. If ps, s1q � ppi, P, σ, gq, pi1, P 1, σ1, g � g1qq ∈ Tr `stmt ,`1 and i g1 j then P
1pjq ∈

Labschildp`stmt , `1q � Labsp`stmt , `1q.

Lemma 7.10. If ps, s1q ∈ Tr -`stmt ,`1 and labelpsq ∈ Labschildp`stmt , `1q then labelps1q ∈
Labschildp`stmt , `1q.

Furthermore ` R Labschildp`stmt , `1q and `1 R Labschildp`stmt , `1q.

7.5 Conclusion

We de�ne an operational semantics, assuming only the following sets and functions:

� Stores

� StoresInit

� elemaction : Ids� Stores Ñ Stores

7.5. CONCLUSION 77

� boolpσ, condq : Stores�Conditions Ñ ttrue, falseu

where Conditions is the set of conditions generated by the rules of Figure 6.1.

� lockable : Ids� Locks� Stores Ñ ttrue, falseu

� unlockable : Ids� Locks� Stores Ñ ttrue, falseu

� spawnable : Ids� Stores Ñ ttrue, falseu

� System

Hence, we can instantiate an operational semantics, giving only these sets and functions.
In Chapter 8 and Chapter 9 we give three di�erent instantiations.

78 CHAPTER 7. OPERATIONAL SEMANTICS

CHAPTER 8
Interleaving Semantics

In this semantics, threads execute their code with respect to sequential consistency. The
principle has been summarized by Lamport [Lam79]: "... the result of any execution is the
same as if the operations of all the processors were executed in some sequential order, and
the operations of each individual processor appear in this sequence in the order speci�ed by
its program."

A large number of multithread analyses uses sequential consistency [LMO07, MPR07,
FQ03].

In this semantics System � Schedule � tτ ∈ Transitions |,SC τu (See Figure 8.2).
Sequential consistency is used with several kinds of store. In this chapter, we describe two
kinds of stores : Maps and Gen/Kill stores.

8.1 Maps

Concrete stores are maps from the set of variables Var to the set V of concrete values.
StoresInit � Stores or StoresInit � λx.0.
To de�ne elem lv:�e we need to evaluate a left value and an expression. We assume a

function addrσplvq that, given a left value, returns the name of the corresponding variable.
E.g, addrσpxq � x, addrσp�xq � y if σpxq � &y. We also assume the classical function

79

80 CHAPTER 8. INTERLEAVING SEMANTICS

Name Threads Control point Store Genealogy
s1 main `1 x � 0 ε
s2 main `2 x � 0 ε
s3 main `1 x � 0 pmain , `2, iq

i `3

s4 main `1 x � 0 pmain , `2, iq
i `3

s5 main `1 x � 1 pmain , `2, iq
i `8

s6 main `1 x � 1 pmain , `2, iq
i `8

s7 main `2 x � 1 pmain , `2, iq
i `8

s8 main `1 x � 1 pmain , `2, iq � pmain , `2, jq
i `8
j `3

s9 main `1 x � 1 pmain , `2, iq � pmain , `2, jq
i `8
j `3

Figure 8.1: Interleaving Semantics Example

P pjq is de�ned i � j

,SC pi, P, σ, gq Ñ pj, P, σ, gq
schedule

Figure 8.2: System Transitions for Interleaving Semantics

8.2. GEN/KILL 81

valσpeq that gives the value of an expression. E.g., valσp2q � 2, valσpxq � σpxq, valσpx�
yq � σpxq � σpyq,. . . Finally:

elem lv:�e � σraddrσplvq ÞÑ valσpeqs.

The boolean evaluation is de�ned as follow:

boolpσ, xq �

#
true if σpxq � 0

false if σpxq � 0

The value of the mutex variable µ is the identi�er of the thread that owns it, or the
special symbol none. The special symbol none means that the mutex is free. Formally:

elem lockpµqpi, σqq � σrµ ÞÑ is

elemunlockpµqpi, σq � σrµ ÞÑ nones

lockablepi, µ, σq �

#
true if σpµq � none

false if σpµq � none

unlockablepi, µ, σq �

#
true if σpµq � i

false if σpµq � i

Threads can spawn another thread at any time, hence spawnablepi, σq � true for all i
and σ.

The Figure 8.1 gives an example of the execution of program of Figure 7.4. This is the
same example than Figure 7.3, instanced in the case of an interleaving semantics.

8.2 Gen/Kill

In Section 4.4.2 and Section 4.6, we have discussed Gen/Kill analyses. Here, we adapt
Gen/Kill analyses to our concrete model.

8.2.1 Pure Gen/Kill

In such analyses [SS00, LMO07], stores are values in a lattice V , e.g., V is a set of unini-
tialized variable, i.e., Stores � V .

Each gen/kill analysis gives, for each action, two sets:

� genpactionq

� killpactionq (if the lattice V is a complemented lattice) or keeppactionq (if V is not
a complemented lattice).

82 CHAPTER 8. INTERLEAVING SEMANTICS

The function elem is de�ned by:

elemactionpσq � pσ r killpactionqq t genpactionq.

or by:
elemactionpσq � pσ u keeppactionqq t genpactionq.

8.2.2 Points-to Graph

Rugina and Rinard [RR99, RR03] present a pointer analysis for parallel programs. The
concrete stores s ∈ Stores are points-to graphs (See Section 4.4.1).

The de�nitions of functions elem lv:�e is implicitly given in Fig. 3 and Fig. 4 of their
paper [RR99]. More formally, given a concrete store σ each assignment lv :� e determines
a set genptrplv :� e, σq a set killptrplv :� e, σq and a boolean �ag strongplv :� e, σq.
Figure 4.4 represents Rugina and Rinard's sets genptr and killptr [RR99, RR03].

Given these sets and this �ag, the primitive elem lv:�e is de�ned by:

elem lv:�epXq �

#
pσ r killptrplv :� e, σq ∪ genptrplv :� e, σq if strongplv :� e, σq

σ ∪ genptrplv :� e, σq if not strongplv :� e, σq

8.2.3 General Gen/Kill Analysis

As for Section 8.2.1, V is a lattice and Stores � V and each gen/kill analysis gives, for
each action and for each store σ, two sets: genpaction, σq and keeppaction, σq. We assume
that gen and keep are monotonic3 in σ.

The main di�erence with Section 8.2.1 is that gen and kill sets may depend on the
current store (e.g, strong �ag of Section 8.2.2).

elemactionpσq � pσ r killpaction, σqq ∪ genpaction, σq

The analysis of Rugina and Rinart is a particular case of Gen/Kill analysis where:

killplv :� e, σq �

#
killptrplv :� e, σq if strongplv :� e, σq

∅ otherwise

3An analysis that use the set killpaction, σq need that kill is decreasing in σ.

CHAPTER 9
Weak Memory Model

9.1 Introduction

There exists several kinds of weak memory models. In a weak memory model, each thread
as its own view of the memory, but two distinct threads may have two distinct views at
the same time. As explained in introduction, weak memory models are used in practice,
to allows compilers for optimisations and to enhance processor speed.

Nevertheless, M. F. Atig and A. Bouajjani [ABBM10] recall that, in most languages, for
data-race free programs, there is no di�erence between strong and weak memory models:
the execution of a data-race free program p in a weak memory model is always equivalent
to sequentially consistent execution of p.

This is not true in all languages, e.g, the language C# [ISO06, Section 17.4.3] allows
programmers to access simultaneously to several �volatile� variables, and the semantics of
this accesses is a weak memory model.

Moreover, in practice, due to human errors or in the name of e�ciency, a large number
of programs are not data-race free. Microsoft guidelines for .NET [Mic10] advise to keep
some data-races : �Sometimes the algorithm can be adjusted to tolerate race conditions
rather than eliminate them.�

Here, we focus on two weak memory models : TSO and PSO.

83

84 CHAPTER 9. WEAK MEMORY MODEL

9.2 TSO

TSO is a suitable model of the behavior of modern Intel processors [OSS09]. TSO is the
�write to read� relaxation, i.e., when reading a value from memory, a thread may pretend
to ignore some past writes from other threads. An adequate semantics for TSO is Atig et
al.'s operational model [ABBM10].

Threads share a memory, but do not write instantaneously in it. Each thread has
a write bu�er. Instead of writing into a variable, a thread writes into its write bu�er,
modifying its own view of the memory, but leaving the shared memory untouched. At any
time, some of the writes may be dequeued from the write bu�er and the shared memory
is updated accordingly.

We assume a set Memories of memories and a set WriteOp of write operation and a
function update-memory : WriteOp�Memories Ñ Memories that updates a memory
according to a write operation.

A write bu�er w is a FIFO queue of write operations. The set of bu�er is de�ne as
follow: Buffers

def� FIFOWriteOp.
A store is a pair pm, bq where m ∈ Memories is a memory and b : Ids Ñ Buffers

is a map from threads identi�ers to bu�ers. Let memory-action the partial function that
updates the shared memory with a write bu�er. Given a store σ � pm, bq and a thread i
such that bpiq is not an empty FIFO, memory-actionpi, σq extracts the �rst write operation
px, vq of the bu�er bpiq and applies it to the memory, formally:

memory-actionpi, pm, bqq � pupdate-memorypop,mq, bri ÞÑ wsq
where op � fstpbpiqq and w � deqpbpiqq.

Whenever a process reads a variable x it does as though it reads the memory after all
pending updates have been e�ected by its bu�er. Given a store σ � pm, bq the view of the
thread i is m modi�ed by bpiq, the write bu�er of i. This view is written viewpi, σq. Notice
that viewpi, σq ∈ Memories.

Formally, given a store σ � pm, bq, viewpi, σq is de�ned by induction:

viewpi, σq �

#
m if bpiq � ε, i.e., bpiq is an empty FIFO

viewpi,memory-actionpi, σqq otherwise.

Expressions e are always evaluated in such a view. We leave the formal de�nition of
evaluation as an exercise. We Shall only need it through two primitives elem lv:�epi,mq,
boolpm, condq.

Given a thread i and a view m, elem lv:�epi,mq evaluates lv and e in the view m and
returns the corresponding write operation. E.g, elemx�3 returns the write operation px, 3q
that puts the value 3 in x. The function boolpm, condq evaluates the condition cond in the
view m, returning true or false.

We de�ne the function elemactionpi, σq, as required for our semantics, See Section 7.5.
When a thread i makes an assignment lv :� e on a store σ � pm, bq, the thread evaluates

9.2. TSO 85

Name Threads Control point Bu�ers Memory Genealogy
s1 main `1 ∅ x � 0 ε
s2 main `2 ∅ x � 0 ε
s3 main `1 ∅ x � 0 pmain , `2, iq

i `3 ∅
s4 main `1 ∅ x � 0 pmain , `2, iq

i `3 ∅
s5 main `1 ∅ x � 0 pmain , `2, iq

i `8 px, 1q
s6 main `1 ∅ x � 0 pmain , `2, iq

i `8 px, 1q
s7 main `2 ∅ x � 0 pmain , `2, iq

i `8 px, 1q
s8 main `1 ∅ x � 0 pmain , `2, iq � pmain , `2, jq

i `8 px, 1q
j `3 ∅

s9 main `1 ∅ x � 0 pmain , `2, iq � pmain , `2, jq
i `8 px, 1q
j `3 ∅

Figure 9.1: TSO Example

lv and e from its view of the memory; computes the write operation and then adds it to
the write bu�er. Formally, given a thread i and a store σ � pm, bq:

elem lv:�xpi, σq
def� pm, bri ÞÑ enqpop, bpiqqsq

where op � elem lv:�epi, viewpi, σqq.

Locks and unlocks do not use write bu�ers, but alter memory. We assume two functions
lock : Ids�Locks�Memories Ñ Memories and unlock : Ids�Locks�Memories Ñ
Memories. Intuitively lockpi, µ,mq locks the mutex µ for the thread i in the mem-
ory m. Formally: elem lockpµqpi, pm, bqq � plockpi, µ,mq, bq and elemunlockpµqpi, pm, bqq �
punlockpi, µ,mq, bq.

We assume a set of initial memories MemsInit, e.g., MemsInit � Memories or
MemsInit � tλx.0u. An initial store σ (σ ∈ StoresInit) is a pair pm, bq such that
m ∈ MemsInit and b maps all threads to the empty FIFO.

The set System is the de�ned by the rules of Fig. 9.2 : System
def� tτ |,TSO τu. The rule

�schedule� switches current threads and the rule �memory� executes some pending write
operation, can be triggered at any time.

Fig. 9.1 gives the beginning of one possible execution of the program of Fig. 7.4. This
is the same example as Figures 7.3 and 8.1, but in the TSO Model.

86 CHAPTER 9. WEAK MEMORY MODEL

P pjq is de�ned i � j

,TSO pi, P, σ, gq Ñ pj, P, σ, gq
schedule

σ � pm, bq ^ bpiq � ε

,TSO pi, P, σ, gq Ñ pi, P,memory-actionpi, σq, gq
memory

Figure 9.2: System Transitions for TSO

Conclusion

To de�ne an operational semantics for TSO, we assumed:

� A set Memories of memories

� A set WriteOp of write operations

� A function update-memoryWriteOp � Memories Ñ Memories that updates a
memory according to a write operation

� A set MemsInit of initial memories

� Two functions lock : Ids � Locks �Memories Ñ Memories and unlock : Ids �
Locks�Memories Ñ Memories.

� The two predicates lockable and unlockable.

9.2.1 Examples

9.2.1.a Maps A memory maps variables Var to values in V .
A write operation is a pair : WriteOp � Var � V . Such a pair px, vq ∈ WriteOp

means that the value v is written into the variable x.
The memory is updated in the following way:

update-memoryppx, vq,mq � pmrx ÞÑ vs, bri ÞÑ wsq

The set of initial memories is the set of all memories Memories (or, as seen in Section
8.1, it may be the singleton tλx.0u, according to C-norm).

The value of the mutex variable µ is the identi�er of the thread that owns it, or the
special symbol none.

The mutexes are locked and unlocked instantaneously in the shared memory, without
using write bu�ers:

lockpi, µ,mq � mrµ ÞÑ is

unlockpi, µ,mq � pmrµ ÞÑ nones, bq

A thread i can only lock a mutex µ in a store pm, bq if µ is lockable:

lockablepi, µ, pm, bqqq
def

ô mpµq � none^ bpiq � ε

9.3. PSO 87

This means that a mutex is lockable only if it is free : two distinct threads can not own
the same mutex.

Similarly i can unlock µ if and only if unlockablepi, µ, pm, bqq holds, i.e.:

unlockablepi, µ, pm, bqqq
def
ô mpµq � i^ bpiq � ε

To unlock a mutex, a thread must own it, and must have an empty bu�er: a write operation
generated when the thread own the mutex can not update the memory when the thread
does not own any more the mutex.

Before to spawn a new thread, a thread have to synchronize its view of the memory
with the shared memory. Hence, at creation, a thread and its new child have the same
view of the memory, e.g., in Figure 6.2a, the thread created in `4 view &y as value of p

and not &x. Formally, spawnablepi, pm, bqq
def

ô bpiq � ε.

9.2.1.b Gen/Kill Similarly to Section 8.2, the set of values is la lattice and a memory
is an element of this lattice: Memories � V .

A write operation is a pair : WriteOp � V � V . Such a pair pgen, keepq ∈ WriteOp
means intuitively that the values of gen are generated, and the values that are not in keep
are killed.

The memory is updated in the following way:

update-memoryppgen, keepq,mq � pm u keepq t gen.

9.3 PSO

The PSO (Partial Store Ordering) model is similar to the TSO model. In the PSO model,
a store is a pair pm, bq where m ∈ Memories is a memory and b : Ids � Var Ñ Buffers
is a map from threads identi�ers and variables to bu�ers.

Compared to TSO model, the function memory-action have an extra argument.

memory-actionpi, x, pm, bqq � pupdate-memorypop,mq, bri ÞÑ wsq
where op � fstpbpi, xqq and w � deqpbpi, xqq.

The set System is de�ned by System � tτ |,PSO τu, where ,PSO is de�ned by the rules
of Figure 9.3.

88

P pjq is de�ned i � j

,PSO pi, P, σ, gq Ñ pj, P, σ, gq
schedule

σ � pm, bq ^ bpiq � ε

,PSO pi, P, σ, gq Ñ pi, P,memory-actionpi, x, σq, gq
memory

Figure 9.3: System Transitions for PSO

Part III

From Single-threaded to

Multithreaded: Core Model

89

CHAPTER 10
Intermediate Semantics

10.1 Basic Concepts

To prepare the grounds for abstraction, we introduce an intermediate semantics, called
G-collecting semantics, which associates a function on con�gurations with each statement.
The aim of this semantics is to associate with each statement a transfer function that will
be abstracted (see Section 13) as an abstract transfer function.

A concrete con�guration is a tuple Q � xS, G, Ay :

1. S is the current state of the system during an execution,

2. G, for guarantee, represents what the current thread and its descendants can do

3. and A, for assume, represents what the other threads can do.

Formally, S is a set of states, and G and A are sets of transitions containing System.
The set of concrete con�gurations is a complete lattice for the ordering xS1, G1, A1y ¤
xS2, G2, A2y ô S1 � S2 ^ G1 � G2 ^ A1 � A2. Let C-Configurations the set of concrete
con�gurations.

During an execution, after having encountered a state s0 � pj0, P0, σ0, g0q we distinguish
two kinds of descendants of j0:

91

92 CHAPTER 10. INTERMEDIATE SEMANTICS

j0

s0

s1

j2

j1

j5

j3

j4

s

j6

Figure 10.1: after

(i) those which already exist in state s0 (except j0 itself) and their descendants,

(ii) j0 and its other descendants.

Each thread of kind (i) has been created by a statement executed by j0. We call afterps0q
the states from which a thread of kind (ii) can execute a transition. Formaly after is
de�ned by:

De�nition 10.1. We de�ne the set afterpsq of states after s:

afterpi, P, σ, gq def� tpj, P 1, σ1, g � g1q ∈ States|j ∈ descg1piqu

� tpj, P 1, σ1, g � g1q ∈ States|i ¨g1 ju

We also de�ne the relation Ìafter by:

s Ìafter s
1 def

ô s1 ∈ afterpsq.

In Fig. 10.1, the thick lines describe all the states encountered while executing the
program that fall into afterps0q. In this �gure, s1, s ∈ afterps0q.

Lemma 10.1. The relation Ìafter is a pre-ordering on States.

Proof. Let s0, s1, and s2 such that s0 Ìafter s1 and s1 Ìafter s2.
Let pi0, P0, σ0, g0q � s0 and pi1, P1, σ1, g1q � s1. By Claim 7.1, we can de�ne g11 � g�1

0 �g1.
Because i0 ¨g11

i0, i0 ∈ descg11pi0q.
Given that s0 Ìafter s1, we state that s1 ∈ afterps0q. Let s2 � pi2, P2, σ2, g2q ∈ afterps1q.

Therefore, there exists g12 such that g2 � g1 � g12 � g0 � g11 � g
1
2 and i2 ∈ descg12pi1q. Because

s1 ∈ afterps0q, by de�nition, i1 ∈ descg12pi0q. Therefore i1 ∈ descg12pi1q ∩ descg11�g12pi0q.
According to Lemma 7.4, descg12pi1q � descg11�g12pi0q. Hence i2 ∈ descg11�g12pi0q and therefore
s2 ∈ afterps0q.

10.1. BASIC CONCEPTS 93

The following lemma is a corollary:

Lemma 10.2. If s1 ∈ afterps0q then afterps1q � afterps0q

All states are after all initial states.

Lemma 10.3. For all P ∈ P and σ ∈ Stores, and s ∈ States:

pmain, P, σ, εq Ìafter s.

As a consequence we have the following lemma:

Lemma 10.4. If Init is the set of initial states of a program and s ∈ Init , then afterpsq �
States.

If an execution of a program go from a state s0 to a state s1 with the same current
thread, therefore s1 is after s0:

Lemma 10.5. Let ps0, s1q ∈ Transitions�.
If threadps0q � threadps1q then s1 ∈ afterps0q.

Proof. Let pi0, P0, σ0, g0q � s0 and pi1, P1, σ1, g1q � s1. By Claim 7.1, we can de�ne g11 �
g�1

0 � g1, i.e., g
1
1 is such that g1 � g0 � g11. Because i0 ¨g11

i0, i0 ∈ descg11pi0q. Therefore, if
threadpsq � threadps1q, i.e., i1 � i0, then s1 ∈ afterps0q (By de�nition of after).

When a schedule transition is executed, the current thread changes. The future de-
scendants of the past current thread and the new current thread are not the sames. This
is formalized by the following lemma:

Lemma 10.6. If ps1, s2q ∈ Schedule then afterps1q ∩ afterps2q � ∅.

Proof. Let pi1, P1, σ1, g1q � s1 and i2 � threadps2q. Therefore pi2, P1, σ1, g1q � s2. Let
s � pi, P, σ, gq ∈ afterps1q ∩ afterps2q.

By de�nition of after , there exists g1 such that g � g1�g1, i ∈ descg1pi1q and i ∈ descg1pi2q.
Furthermore i1 and i2 are in DompP1q. Therefore i1 and i2 are either created in g1, or are
main . Hence, i1 and i2 cannot be created in g1. Therefore, i2 R descg1pi1q and therefore
descg1pi2q � descε�g1pi1q. Using Lemma 7.4 we conclude that descg1pi1q ∩ descg1pi2q � ∅.
This is a contradiction with i ∈ descg1pi1q and i ∈ descg1pi2q.

During the execution of a set of transitions T that do not create thread, the set of
descendants does not increase:

Lemma 10.7. Let T a conservative1 set of transitions.
Let s � pi, P, σ, gq and s � pi1, P 1, σ1, g � g1q be two states.

If ps, s1q ∈ pA|afterps0q ∪ T q
� then descg1piq � tiu.

1This concept is de�ned in Section 7.3.

94 CHAPTER 10. INTERMEDIATE SEMANTICS

Proof. Let s0, . . . , sn a sequence of states such that s0 � s, for all k ∈ t0, . . . , n � 1u,
psk, sk�1q ∈ A|afterps0q ∪ T , and sn � s1.

For all k, let pik, Pk, σk, gkq � sk. According to Claim 7.1, we can de�ne, for all k ¥ 1,
g1k � g�1

k�1 � gk. Therefore gn � g0 � g11 � . . . � g
1
n and g1 � g11 � . . . � g

1
n.

Assume by contradiction that there exists a thread j such that i Ðg1 j. Therefore,
there exists a label ` and an integer k ¤ 1 such that pi, `, jq ∈ g1k. By de�nition of
transitions, ik � i � i0. Therefore, according to Lemma 10.5, sk�1 ∈ afterps0q. Given
that psk�1, skq ∈ A|afterps0q ∪ T , we conclude that psk�1, skq ∈ T . Because T is conservative,

gk�1 � gk and then g1k � g�1
k�1 � gk � ε. Therefore pi0, `, jq R g1k.

These lemmas has a consequence on after :

Lemma 10.8. Let T a conservative set of transitions.
If ps0, s1q ∈ pA|afterps0q ∪ T q

� and s1 ∈ afterps0q then threadps1q � threadps0q.

Proof. Let pi0, P0, σ0, g0q � s0 and pi1, P1, σ, g0 � g1q � s1. By Lemma 10.7 descg1pi0q � ti0u
and by de�nition of after , i1 ∈ descg1pi0q.

Lemma 10.9. Let T1 a conservative set of transitions.
Let s0, s1, s three states such that:

� ps0, s1q ∈ T �1 ,

� threadps0q � threadps1q,

� and ps1, sq ∈ Transitions�.

If s ∈ afterps0q then s ∈ afterps1q.

Proof. According to Claim 7.1, the following de�nitions are correct:
pi0, P0, σ0, g0q

def� s0, pi1, P1, σ, g0 � g1q
def� s1 and pi, P, σ, g0 � g1 � gq

def� s.
By Lemma 10.7 descg1pi0q � ti0u and by de�nition of after , i1 ∈ descg1ti0u. According

to Lemma 7.2, descg1�gpi0q � descgpdescg1pi0qq � descgpi0q.
Because s ∈ afterps0q, idescg1�gpti0uq, therefore i ∈ descgpi0q. Hence s ∈ afterps1q.

10.2 De�nition of the G-collecting Semantics

The de�nition of the G-collecting semantics v`stmt , `1w of a statement `stmt , `1 requires some
intermediate relations and sets. The formal de�nition is given by the following de�nition:

De�nition 10.2.

v`stmt , `1wxS, G, Ay def� xS1, G ∪ Self ∪ Par ∪ Sub, A ∪ Par ∪ Suby ��`stmt , `1
��(xS, G, Ay def� rReach, Ext, Self, Par, Subs

10.2. DEFINITION OF THE G-COLLECTING SEMANTICS 95

j0

s0

s1
j5

(a) Reach

j0

s0

s1

j1

j5

j3

(b) Reach

j0

s0

s1

j2

j1

j5

j3
j4

(c) Par

j0

s0

s1

j2

j1

j5

j3
j4

j6

(d) Sub

Figure 10.2: G-collecting Semantics

where:

Reach �

"
ps0, s1q

���� ps0, s1q ∈
�
pG|afterps0q ∩ Tr `stmt ,`1q ∪ A|afterps0q

��
^threadps0q � threadps1q ^ labelps0q � `

*
S1 � ts1|s1 ∈ ReachxSy ^ labelps1q � `1u

Self � tps, s1q ∈ Tr `stmt ,`1 |s ∈ ReachxSyu

Par � tps, s1q ∈ Tr `stmt ,`1 |Ds0 ∈ S : ps0, sq ∈ Reach; Schedule ^ s ∈ afterps0qu

Extps0, s1q �
�
pG|afterps0q ∩ Tr `stmt ,`1q ∪ A|afterps0q ∪ G|afterps1q

��
Sub �

"
ps, s1q ∈ Tr `stmt ,`1

���� Ds0, s1 ∈ S� S1 : ps0, s1q ∈ Reach^
ps1, sq ∈ Extps0, s1q ^ s ∈ afterps0qr afterps1q

*

Let us read together, on some special cases shown in Fig. 10.2. This will explain the
rather intimidating of De�nition 10.2 step by step, introducing the necessary complications
as they come along.

The statement is executed between states s0 � pj0, P, σ, gq and s1 � pj0, P
1, σ1, g � g1q.

Figure 10.2(a) describes the single-thread case: there is no thread interaction during
the execution of `stmt , `1. The thread j5 is spawned after the execution of the statement.
E.g., in Fig. 6.2a, `1p :� &x; `2p :� &y, `3.

In this simple case, a state s is reachable from s0 if and only if there exists a path from
s0 to s using only transitions done by the unique thread (these transitions should be in
the guarantee G) and that are generated by the statement. S1 represents the �nal states
reachable from S. Finally, in this case:

Reach � tps0, s1q ∈
�
G ∩ Tr `stmt ,`1

��
|labelps0q � `u

S1 � ts1 | s1 ∈ ReachpSq ^ labelps1q � `1u

Self � tps, s1q ∈ Tr `stmt ,`1 | s ∈ ReachpSqu

v`stmt , `1wxS, G, Systemy � xS1, G ∪ Self, Systemy

Par � Sub � ∅

96 CHAPTER 10. INTERMEDIATE SEMANTICS

Figure 10.2(b) is more complex: j0 interferes with threads j1 and j3. These interferences
are assumed to be in A. Some states can be reached only with such interference transitions.
E.g, consider the statement `18y :� 1; `19z :� y, `8 in Fig. 6.2d: at the end of this statement,
the value of z may be 3, because the statement `17y :� 3, `8 may be executed when the
thread main is at label `19. Therefore, to avoid missing some reachable states, transitions
of A are taken into account in the de�nition of Reach. In Fig. 10.2(b), the statement
`stmt , `1 is executed by descendants of j0 of kind (ii) (i.e., afterps0q), and the interferences
come from j1 and j3 which are descendants of kind (i) (i.e., in afterps0q). Finally, we �nd
the complete formula of De�nition 10.2:

Reach �

"
ps0, s1q

���� ps0, s1q ∈
�
pG|afterps0q ∩ Tr `stmt ,`1q ∪ A|afterps0q

��
^threadps0q � threadps1q ^ labelps0q � `

*
.

In Fig. 10.2(c), when j0 executes the statement `stmt , `1 it creates subthreads (j2 and
j4) which execute transitions in parallel of the statement. The guarantee G is not sup-
posed to contain only transitions executed by the current thread but also these transitions.
These transitions, represented by thick lines in Fig. 10.2(c), are collected into the set Par.
Consider such a transition, it is executed in parallel of the statement, i.e., from a state of
System �Reachpts0uq. Furthermore, this transition came from the statement, and not from
an earlier thread, hence from afterps0q.

Par � tps, s1q ∈ Tr `stmt ,`1 | Ds0 ∈ S : ps0, sq ∈ System � Reach^ s ∈ afterps0qu.

The threads created by j0 when it executes the statement `stmt , `1 may survive when
this statement returns in s1, as shown in Fig. 10.2(d). Such a thread i (here, i is j4 or j5 or
j6) can execute transitions that are not in Par. Sub collects these transitions. The creation
of i results of a create statement executed between s0 and s1. Hence, such a transition
ps, s1q is executed from a state in afterps0qr afterps1q. The path from s1 to s is comprised
of transitions in pG|afterps0q ∩ Tr `stmt ,`1q ∪ A|afterps0q (similarly to Reach) and of transitions of
j0 or j5 under the dotted line, i.e., transitions in G|afterps1q.

Figure 10.3 gives the beginning of a program execution. This execution begins as Figure
9.1. Let `1stmt , `8 be the statement of Figure 7.4.

We consider:

� rReach1, Ext1, Self1, Par1, Sub1s �
 ��`1stmt , `8

��(xts1u, System, Systemy,

� xS1, G1, A1y � v`1stmt , `8wxts1u, System, Systemy,

Applying the de�nitions, we state that:

� Reach1 � tps, sq | labelpsq � `1u,

� S1 � ∅,

� Self1 � tps1, s2qu ∪ System,

10.2. DEFINITION OF THE G-COLLECTING SEMANTICS 97

Name Threads Control point Bu�ers Memory Genealogy
s1 main `1 ∅ x � 0 ε
s2 main `2 ∅ x � 0 ε
s3 main `1 ∅ x � 0 pmain , `2, iq

i `3 ∅
s4 main `1 ∅ x � 0 pmain , `2, iq

i `3 ∅
s5 main `1 ∅ x � 0 pmain , `2, iq

i `8 px, 1q
s6 main `1 ∅ x � 0 pmain , `2, iq

i `8 px, 1q
s7 main `2 ∅ x � 0 pmain , `2, iq

i `8 px, 1q
s8 main `1 ∅ x � 0 pmain , `2, iq � pmain , `2, jq

i `8 px, 1q
j `3 ∅

s9 main `1 ∅ x � 0 pmain , `2, iq � pmain , `2, jq
i `8 px, 1q
j `3 ∅

s8 main `1 ∅ x � 0 pmain , `2, iq � pmain , `2, jq
i `8 px, 1q
j `3 ∅

s10 main `2 ∅ x � 0 pmain , `2, iq � pmain , `2, jq
i `8 px, 1q
j `3 ∅

s11 main `2 ∅ x � 0 pmain , `2, iq � pmain , `2, jq
i `8 px, 1q
j `3 ∅

s12 main `2 ∅ x � 0 pmain , `2, iq � pmain , `2, jq
i `8 px, 1q
j `8 px, 1q

Figure 10.3: Example of Execution

98 CHAPTER 10. INTERMEDIATE SEMANTICS

� Par � System,

� Sub � ∅,

� G1 � tps1, s2qu ∪ System,

� and A1 � System

Since the G-component of xts1u, System, Systemy is System, we collect only a few number
of transitions in Self1, Par1 and Sub1. Notice that we collect the transition ps1, s2q in
Self1.

Now, let us consider:

� rReach2, Ext2, Self2, Par2, Sub2s �
 ��`1stmt , `8

��(xts1u, G1, Systemy,

� xS2, G2, A2y � v`1stmt , `8wxts1u, G2, Systemy,

Notice that:

� Reach2 � tps1, s2qu ∪ Reach1,

� S2 � ∅,

� Self2 � tps1, s2q, ps2, s3qu ∪ System,

� and G2 � tps1, s2qu ∪ System.

Figure 10.4 gives an alternative execution. This execution of the program of Figure 7.4
begins with the same states s1, s2 and s3. Nevertheless, when in s3, instead of going to s4,
in Figure 10.4, the system goes to s14, s

1
5 and s

1
6. After s

1
6 the system goes back to the �rst

execution of Figure 9.1. It go to state s7.
Now we consider:

� rReach3, Ext3, Self3, Par3, Sub3s �
 ��`2createp`3x :� x�1q, `1

��(xts2u,Transitions, Systemy.

� xS3, G3, A3y � v`2createp`3x :� x� 1q, `1wxts2u,Transitions, Systemy

Notice that:

� ps2, s3q ∈ Reach3

� s3 ∈ S3

� ps3, s
1
4q ∈ Ext3ps2, s3q

As a consequence, ps4, s5q ∈ Par, but ps15, s
1
6q R Par. Actually, ps

1
5, s

1
6q ∈ Sub.

10.3. PROPERTIES OF THE G-COLLECTING SEMANTICS 99

Name Threads Control point Bu�ers Memory Genealogy
s1 main `1 ∅ x � 0 ε
s2 main `2 ∅ x � 0 ε
s3 main `1 ∅ x � 0 pmain , `2, iq

i `3 ∅
s14 main `2 ∅ x � 0 pmain , `2, iq

i `3 ∅
s15 main `2 ∅ x � 0 pmain , `2, iq

i `3 ∅
s16 main `2 ∅ x � 0 pmain , `2, iq

i `8 px, 1q
s7 main `2 ∅ x � 0 pmain , `2, iq

i `8 px, 1q
s8 main `1 ∅ x � 0 pmain , `2, iq � pmain , `2, jq

i `8 px, 1q
j `3 ∅

s9 main `1 ∅ x � 0 pmain , `2, iq � pmain , `2, jq
i `8 px, 1q
j `3 ∅

Figure 10.4: Alternative Execution

100 CHAPTER 10. INTERMEDIATE SEMANTICS

interfereApSq
def�

"
s1
����Ds ∈ S :

ps, s1q ∈ pA|afterpsq ∪ Systemq�

^threadpsq � threadps1q

*

postp`q def�

"
s1
���� Ds � pi, P, σ, g � pi, `, jqq ∈ States :
s1 ∈ afterpsq

*

schedule-childpSq def�

"
pj, P, σ, g1q

����Di, g :
pi, P, σ, g1q ∈ S

^g1 � g � pi, `, jq

*
init-child`pxS, G, Ayq

def� xinterfereA∪pG|postp`qq � schedule-childpSq,
System, A ∪ pG|postp`qqy

combinexS,G,AypG1q
def� xinterfereA∪G1pSq, G ∪ G1, A ∪ G1y

execute-threadf,S,ApGq
def� G1 with xS1, G1, A1y � fxS, G, Ay

guaranteefxS, G, Ay
def� execute-thread

Òω
f,S,ApGq

Figure 10.5: Basic semantic functions

10.3 Properties of the G-collecting Semantics

To prepare for our static analysis we provide a compositional analysis of the G-collecting
semantics in Theorem 12.1 below. To this end, we introduce a set of helper functions, see
Fig. 10.5.

The function interfereApSq returns states that are reachable from S by applying in-
terferences in A. Notice that these interferences do not change the label of the current
thread:

Lemma 10.10. Let s � pi, P, σ, gq and s1 � pi1, P 1, σ1, g1q. If ps, s1q ∈ pA|afterpsq ∪ Systemq�

then P piq � P 1piq, i.e., labelpsq � P 1pthreadpsqq.
If furthermore threadpsq � threadps1q then labelpsq � labelps1q.

Proof. There exists a sequence of states s0, . . . , sn such that s0 � s and sn � s1 and for
all k ∈ t0, . . . , n� 1u, psk, sk�1q ∈ A|afterpsq ∪ System.

Let pik, Pk, σk, gkq � sk. Let us prove by induction that Pkpiq � P piq. If psk, sk�1q ∈
System and Pkpiq � P piq then Pk�1piq � P piq. If psk, sk�1q ∈ A|afterpsq and Pkpiq � P piq
then sk R afterpskq and then ik � i and then Pk�1piq � Pkpiq � P piq.

The function postp`q computes the set of states that may be reached after having
created a thread at label `; schedule-child applies a schedule transition to the last child
of the current thread. The function init-child` computes a con�guration for the last
child created at `, taking into account interferences with its parent using postp`q; notice
that we need here the genealogies to de�ne postp`q and then to have Theorem 12.1. The
following Lemma shows the link between interfere and postpq: the function interfere

does not allow to enter into a new set postp`q.

Lemma 10.11. If s1 ∈ interfereApts0uq ∩ postp`q then s0 ∈ postp`q

10.3. PROPERTIES OF THE G-COLLECTING SEMANTICS 101

Proof. Let pi0, P0, σ0, g0q � s0 and pi0, P 1, σ1, g0 � g1q � s1.
s1 ∈ postp`q. Therefore, there exists s � pi, P, σ, g � pi, `, jqq such that s1 ∈ afterpsq.
Hence, both g � pi, `, jq and g0 are pre�xes of g0 � g1. According to Lemma 2.7, two cases

may occur:

� First case: g � pi, `, jq ¤pre�x g0. Therefore, there exists a genealogy g1 such that:
g � pi, `, jq � g1 � g0.

Because s1 ∈ afterpsq, i0 ∈ descg1�g1piq. According to Lemma 7.2 i0 ∈ descg1pdescpg1qq
By de�nition of desc, there exists j0 ∈ descpg1q such that i0 ∈ descg1pj0q. Then,
according to Lemma 7.4 descg1pj0q � descg1�g1 . Hence j0 ¨g1�g1 i0 and i0 ¨g1�g1 j0.
Then i0 � j0. Hence, s0 ∈ afterpsq and therefore s0 ∈ postp`q.

� Second case: g0 ¤pre�x g � pi, `, jq.

Let s10 � pi0, P, σ, g � pi, `, jqq. According to Lemma 7.1, ps10, s
1q ∈ Transitions�.

Hence, according to Lemma 10.5, s1 ∈ afterps0q.

Nevertheless, ps, s0q ∈ Schedule, and, according to Lemma 10.6 afterpsq∩afterps0q �
∅. But s1 ∈ afterpsq ∩ afterps0q. This is a contradiction.

The function execute-thread computes a part of the guarantee (an under-approximation),
given the semantics of a command represented as a function f from con�guration to con-
�guration. And guarantee iterates execute-thread to compute the whole guarantee, as
shown by the following proposition:

Proposition 10.1 (Soundness of guarantee). Let xS, G, Ay a concrete con�guration, `stmt , `1

a statement and G8 � guaranteev`stmt ,`1wxS, G, Ay. Let s0 ∈ S and s ∈ afterps0q such that
ps, s1q ∈ Tr `stmt ,`1.

If ps0, sq ∈
�
pTr `stmt ,`1q|afterps0q ∪ A|afterps0q

��
then ps, s1q ∈ G8

Proof. Let xSk, Gk, Aky � execute-threadkv`stmt ,`1w,S,ApGq

and rReachk, Extk, Selfk, Park, Subks �
 ��`stmt , `1

��(xS, Gk, Ay
and T � Tr `stmt ,`1

Let s0, . . . , sn�1 a path such that sn � s, sn�1 � s1 and for all k, psk, sk�1q ∈
�
T|afterps0q∪

A|afterps0q
��
. Let m an arbitrary integer. Then, let k0 the smallest k (if it exists) such that

psk, sk�1q ∈ T|afterps0q r Gm. Then, by de�nition, psk0 , sk0�1q ∈ Selfm ∪ Parm � Gm�1 �
G8.

This proposition shows how the G-collecting semantics is used to overapproximate the
operational semantics.

During the execution of a statement `stmt , `1, some interference transitions may be �red
at any time. Nevertheless, the labels of the thread(s) executing the statement are still in
a label of the statement:

102 CHAPTER 10. INTERMEDIATE SEMANTICS

Lemma 10.12. If ps0, sq ∈ pTr `stmt ,`1 ∪ A|afterps0qq
�, labelps0q ∈ Labsp`stmt , `1q and s ∈

afterps0q then labelpsq ∈ Labsp`stmt , `1q.
Futhermore, if labelpsq � `1 or labelpsq � ` then threadps0q � threadpsq.

Proof. There exists a path s1, . . . , sn such that sn � s and for all k ∈ t0, . . . , n � 1u,
psk, sk�1q ∈ Tr `stmt ,`1∪A|afterps0q. Let pi0, P0, σ0, g0q � s0 and for k ¥ 1, let pik, Pk, σk, g0�gkq �
sk.

Let us prove by induction on k that Pkpiq ∈ Labsp`stmt , `1q and for all j ∈ descgkpti0uqr
ti0u, Pkpjq ∈ Labschildp`stmt , `1q.

Let us assume that k satis�es the induction property, and let us show that k�1 sati�es
the induction property.

In the case psk, sk�1q ∈ A|afterps0q, ik R descgkpti0uq and then for all j � descgkpti0uq �
descgk�1

pti0uq, Pkpjq � Pk�1pjq.
In the case psk, sk�1q ∈ Tr `stmt ,`1 and ik � i0, by Lemma 7.7, Pk�1pikq ∈ Labsp`stmt , `1q.

Furthermore, if j ∈ descgkpti0uq then Pkpjq � Pk�1pjq. If j ∈ descgk�1
pti0uqr descgkpti0uq,

then j ∈ DompPk�1qr DompPkq and by Lemma 7.9, Pk�1pjq ∈ Labschildp`stmt , `1q.
In the casepsk, sk�1q ∈ Tr `stmt ,`1 and ik � i0, we conclude similarly by Lemma 7.10. If

s ∈ afterps0q, then in ∈ descgnpti0uq and therefore labelpsq ∈ Labsp`stmt , `1q.
If labelpsq � `1 or labelpsq � `, then, because by Lemma 7.10, ` and `1 are not in

Labschildp`stmt , `1q, we have threadps0q � threadpsq.

The following lemma summarizes the consequences on Reach of Lemmas 10.2, 10.5 and
10.12:

Lemma 10.13. Let rReach, Ext, Self, Par, Subs �
 ��`stmt , `1

��(xS, G, Ay.
If ps0, sq ∈ Reach therefore s ∈ afterps0q, afterpsq � afterps0q and labelpsq ∈ Labsp`stmt , `1q.

Proof. ps0, sq ∈ Reach. Therefore, by de�nition, threadps0q � threadpsq. Hence, according
to Lemma 10.5, s ∈ afterps0q. According to Lemma 10.2, afterpsq � afterps0q.

Given that ps0, sq ∈ Reach, we state that ps0, sq ∈
�
pG|afterps0q ∩ Tr `stmt ,`1q ∪ A|afterps0q

��
.

Hence, according to Lemma 10.12, labelpsq ∈ Labsp`stmt , `1q.

After a statement returns, some subthreads created during the execution of the state-
ment may continue to be executed. We introduce a concept of coherence:

De�nition 10.3. A set T of transitions is coherent with `stmt , `1 and the states s0 and s1

if and only if:

@ps, s1q ∈ T, s ∈ afterps0q ∩ afterps1q ^ labelpsq ∈ Labsp`stmt , `1q ñ ps, s1q ∈ Tr `stmt , `1.

Recall Figure 10.2d. A set of transition coherent with `stmt , `1 and the states s0 and s1

of 10.2d may contain two kinds of transitions:

� Transitions ps, s1q done by j5, j6 and j4. These transitions are in Tr `stmt ,`1 (in bold in
Figure 10.2d), or are transitions of another statement (i.e., labelpsq R Labsp`stmt , `1q).

10.3. PROPERTIES OF THE G-COLLECTING SEMANTICS 103

� Transition done by other threads.

The Following Lemma ensures us that any transition executed by a thread created
during the execution of `stmt , `1 (i.e., between s0 and s1) is a transition generated by the
statement `stmt , `1.

Lemma 10.14. Let T a set of transitions coherent with stmt , s0 and s1. For all s �
pi, P, σ, gq ∈ States, if ps1, sq ∈ T �, therefore @j ∈ descgpi0q r descg�1

1 �gpi0q, P pjq ∈
Labschildp`stmt , `1q.

Proof. Let i0 � threadps0q.
Let us prove by induction on n ∈ N that for all n, for all s � pi ∈, P ∈, σ ∈, g ∈qStates,

if ps1, sq ∈ T n, therefore @j ∈ descgpi0qr descg�1
1 �gpi0q, P piq ∈ Labschildp`stmt , `1q.

Let s such that ps1, sq ∈ T n�1. Therefore, there exists s2 such that ps1, s2q ∈ T n and
ps2, sq ∈ T .

Let s2 � pi2, P2, σ2, g2q. Let j ∈ descgpi0qr descg�1
1 �gpi0q.

There are several cases:

� First case: j ∈ descg2pi0q. Therefore, by induction hypothesis, P2pjq ∈ Labschildp`stmt , `1q.
There is two cases.

� First case j � i2. Because j ∈ descgpi0q, s2 ∈ afterps0q. Because j ∈
descg�1

1 �gpi0q, s2 R afterps0q. Hence, because T is coherent, ps2, sq ∈ Tr `stmt , `1.

Therefore, by Lemma 7.9, j ∈ Labschildp`stmt , `1q.

� Second case j � i2, hence, according to the de�nition of transitions, P2pjq �
P pjq. Therefore P pjq ∈ Labschildp`stmt , `1q.

� Second case: j ∈R descg2pi0q. Therefore, by de�nition of transitions, pi2, P2pi2q, jq ∈
g�1

2 � h. Therefore, according to Lemma 7.4, descg�1
2 �gpi2q � descgpi0q and there-

fore i2 ∈ descgpi0q. Furthermore, because j ∈ descg�1
2 �gpi2q and j R descg�1

1 �gpi0q,
therefore, according to Lemma 7.4, descg�1

2 �gpi2q ∩ descg�1
1 �gpi0q � ∅ and therefore

i2 R descg�1
1 �gpi0q.

Hence, by induction hypothesis, P2pi2q ∈ Labschildp`, stmt , `1q. And therefore, by
Lemma 7.9, P pjq ∈ Labschildp`, stmt , `1q.

The following proposition is fundamental to prove the main properties of Extp,) and
Sub.

Proposition 10.2. Let `stmt , `1 a statement,
rReach, Ext, Self, Par, Subs �

 ��`stmt , `1
��(xS, G, Ay. Let ps0, s1q ∈ Reach and T a set of

transitions coherent with stmt , s0 and s1.
Let s1 and s2 such that ps1, s

1q ∈ T � and ps1, s2q ∈ T . Therefore, if s1 ∈ afterps0q then
either s1 ∈ afterps1q or ps1, s2q ∈ Tr `stmt ,`1.

104 CHAPTER 10. INTERMEDIATE SEMANTICS

Proof. Let pi0, P0, σ0, g0q � s0 and pi1, P 1, σ1, g1q � s1.
Either s1 ∈ afterps1q or s1 R afterps1q.

� First case: s1 ∈ afterps1q, we have nothing to prove.

� Second case: s1 R afterps1q. Therefore i1 ∈ descg0�g1pi0q r descg1pi0q, and by Lemma
10.14 labelps1q ∈ Labschildp`stmt , `1q. Hence, by de�nition of T , ps1, s2q ∈ Tr `stmt ,`1 .

The G-collecting semantics is a sound overapproximation on the operational semantics.
In other words:

Theorem 10.1 (Soundness). Consider a program `cmd , `8 and its set of initial states
Init . Let:

xS1, G1, A1y def� v`cmd , `8wxInit , G8, Systemy

with G8 � guaranteev`cmd ,`8w
xInit , System, Systemy

Then:

S1 � tpmain, P, σ, gq ∈ Tr �`cmd ,`8
xInity | P pmainq � `8u

G1 � G8 � tps, s
1q ∈ Tr `cmd ,`8 | s ∈ Tr �`cmd ,`8

xInityu ∪ System

A1 � tps, s1q ∈ Tr `cmd ,`8 | s ∈ Tr �`cmd ,`8
xInity ^ threadpsq � mainu

∪System

Proof. Let rReach, Ext, Self, Par, Subs �
 ��`cmd , `8

��(xInit , G8, Systemy.
We only have to prove that Reach � ts ∈ Tr �`cmd ,`8

xInity | threadpsq � mainu. We
conclude using De�nition 10.2.

Let s1 ∈ ts ∈ Tr �`cmd ,`8
xInity | threadpsq � mainu.

There exists s0 ∈ Init such that ps0, sq ∈ Tr �`cmd ,`8
By proposition 10.1, ps0, sq ∈

G8 ∩ Tr �`cmd ,`8
By Lemma 10.4, ps0, sq ∈ pG8|afterps0q ∩ Tr �`cmd ,`8

q ∪ System |afterps0q
. Hence ps0, sq.

CHAPTER 11
Overapproximation of the

Intermediate Semantics

To ease abstraction, we overapproximate the intermediate semantics by a denotational
semantics. In this Chapter, each section give a way to overapproximate one statement.
These overapproximations will be used to de�ne a denotational semantics in Chapter 12.

The Proposition 11.1 of Section 11.1 allows to overapproximate basic statements. The
proposition 11.2 of Section 11.2 allows to overapproximate the composition of two state-
ments. Notice that the composition of statements can be overapproximated by the com-
position of their semantics. This is not trivial, since when a statement `1cmd1; `2cmd2, `3

is executed, the command `1cmd1 may spawn some threads that will interfere with the
execution of the command `2cmd2.

The proposition 11.3 of Section 11.3 allows to overapproximate if statements. The
proof of this proposition is similar to the proof of Proposition 11.2, since a if statement
look like a composition between a guard and a command.

The proposition 11.4 of Section 11.4 allows to overapproximate the composition of two
statements. Notice that a while loop may create an in�nite number of threads. And a
thread created in the kth iteration may interfere with the k� 1th iteration of the loop, but
not with the k � 1th iteration.

Finally, the Proposition 11.5 of Section 11.5 allows to overapproximate thread creation.

105

106CHAPTER 11. OVERAPPROXIMATION OF THE INTERMEDIATE SEMANTICS

11.1 Basic Statements

In this section, we exhibit an overapproximation of the semantics of basic statements. This
overapproximation is given by Proposition 11.1

An execution path of a basic statement can be decomposed in interferences, then one
transition of the basic statement, and then, some other interferences. The following lemma
shows this. This lemma will allow us to prove Proposition 11.1.

Lemma 11.1. Let `1basic, `2 be a basic statement,
and rReach, Ext, Self, Par, Subs �

 ��`1basic, `2

��(xS, G, Ay. Let ps0, sq ∈ Reach then:

� either s ∈ interfereApts0uq and labelpsq � `1,

� or s ∈ interfereApTr -`1basic,`2xinterfereApts0uqyq
and labelpsq � `2

Proof. By de�nition of Reach (See De�nition 10.2), there exists s1, . . . , sn such that sn � s
and for all k ¤ 0, psk, sk�1q ∈ pG|afterps0q ∩ Tr `1basic,`2q ∪ A|afterps0q.

Either there exists k such that psk, sk�1q ∈ G|afterps0q ∩ Tr `1basic,`2q or there do not exist
such a k.

� First case, there do not exist such a k. Therefore ps0, sq ∈ pA|afterps0q ∪ Systemq�.
By de�nition of Reach (See De�nition 10.2), threadps0q � threadpsq. Therefore s ∈
interfereApts0uq. By Lemma 10.10, labelps0q � labelpsq, hence, labelpsq � `1.

� Second case, there exists such a k. Let k0 be the smallest such k. Hence, by de�-
nition, sk0 ∈ afterps0q and ps0, skq ∈ pA|afterps0q ∪ Systemq�. Hence, by Lemma 10.8,

threadps0q � threadpsk0q. Therefore sk0 ∈ interfereApSq.

Furthermore, by Lemma 7.6, labelpsk0�1q � `2.

Either there exists k ¥ k0 � 1 such that psk, sk�1q ∈ G|afterps0q ∩ Tr `1basic,`2q or there
does not exist such a k.

� First case, there does not exist such a k. Therefore psk0�1, sq ∈ pA|afterps0q ∪
Systemq�. By de�nition of Reach (See De�nition 10.2), threadps1q � threadpsq.
Therefore s ∈ interfereAptsk0�1uq. By Lemma 10.10, labelps0q � labelpsq,
hence, labelpsq � `2.

� Second case, there exists such a k. Let k1 be the smallest such k. By de�nition
of k1, psk0�1, sk1q ∈ pA|afterps0q ∪ Systemq�. By Lemma 10.10, labelpsk0 � 1q �
labelpsk1q, therefore labelpsk0 � 1q � `2. According to Lemma 7.6, this is a
contradiction.

Given a basic statement `1basic, `2 and rReach, Ext, Self, Par, Subs �
 ��`1basic, `2

��(xS, G, Ay,
we claim that:

11.1. BASIC STATEMENTS 107

Claim 11.2. Par � ∅.

Claim 11.3. Sub � ∅.

Claim 11.4. Self � tps, s1q ∈ Tr `1basic,`2 | s ∈ interfereApSqu ∪ System.

Claim 11.5. S1 � interfereA
�

Tr -`1basic,`2xinterfereApSqy
�
.

Claims 11.2 and 11.3 say that when a basic statement is executed, only one thread
is executed. Notice that spawn creates a subthread, but does not execute it. The Claim
11.4 characterizes the transitions done by the current thread. The Claim 11.5 gives an
overapproximation of S1, the set of states reached at the end of the execution of a basic
statement.

We prove these claims in the following way.

proof of Claim 11.2. Let ps, s1q ∈ Par. According to De�nition 10.2, there exists s0 ∈ S

such that ps0, sq ∈ Reach; Schedule and s ∈ afterps0q. Therefore there exists s1 such that
ps0, s1q ∈ Reach and ps1, sq ∈ Schedule.

By De�nition 10.2, threadps0q � threadps1q.
Given that Tr `1basic,`2 is conservative by Lemma 7.5, according to Lemma 10.8 threadps0q �

threadpsq.
By de�nition of Schedule, threadps1q � threadpsq.
There is a contradiction, therefore Par � ∅.

proof of Claim 11.3. Let ps, s1q ∈ Sub. By de�nition, there exists s0 ∈ S and s1 such that
ps0, s1q ∈ Reach, ps1, sq ∈ Extps0, s1q and s ∈ afterps0qr afterps1q.

In particular ps1, sq ∈ rpA∪Gq|afterps1q∪Tr `1basic,`2s
�. Hence, by Lemma 10.8, threadps1q �

threadpsq.
By de�nition of Reach, threadps1q � threadps0q and then according to Lemma 10.5,

s ∈ afterps0q.
This is contradictory with De�nition 10.2 that implies s ∈ afterps0qr afterps1q. Hence

Sub � ∅.

proof of Claim 11.4. Let ps, s1q ∈ Self r System. Then ps, s1q ∈ Tr -`1basic,`2 and s ∈
ReachxSy. Then, there exists s0 ∈ S such that ps0, sq ∈ Reach. Because ps, s1q ∈
Tr -`1basic,`2 , by Lemma 7.6, labelpsq � `1 � `2. By Lemma 11.1, s ∈ interfereApts0uq �
interfereApSq.

proof of Claim 11.5. Let s ∈ S1. Therefore, labelpsq � `2 and there exists s0 ∈ S such that
ps0, sq ∈ Reach.

Because labelpsq � `2 � `1, according to Lemma 11.1:
s ∈ interfereApTr -`1basic,`2xinterfereApts0uqyq � interfereApTr -`1basic,`2xinterfereApSqyq

The following statement gives an overapproximation of the semantics of basic state-
ments.

108CHAPTER 11. OVERAPPROXIMATION OF THE INTERMEDIATE SEMANTICS

Proposition 11.1 (Basic statements). Let `1basic, `2 be a basic statement, then:

v`1basic, `2wxS, G, Ay ¤ xS
2, G ∪ Gnew, Ay

where S2 � interfereA
�

Tr -`1basic,`2xinterfereApSqy
�

and Gnew � tps, s1q ∈ Tr `1basic,`2 | s ∈ interfereApSqu

Proof. This proposition is a straightforward consequence of Claims 11.2, 11.3, 11.4 and
11.5.

11.2 Composition

Lemma 11.6. Tr `1cmd1;`2cmd2,`3 � Tr `1cmd1,`2 ∪ Tr `2cmd2,`3

In this section, we consider an initial con�guration : Q0 � xS0, G0, A0y and a se-
quence `1cmd1; `2cmd2, `3. We write Tr 1 � Tr `1cmd1,`2 and Tr 2 � Tr `2cmd2,`3 and Tr �
Tr `1cmd1;`2cmd2,`3

De�ne:
Q1 � xS1, G1, A1y � v`1cmd1; `2cmd2, `3wpQ0q
K � rReach, Ext, Self, Par, Subs �

 ��`1cmd1; `2cmd2, `3

��(pQ0q
Q1 � xS1, G1, A1y � v`1cmd1, `2wpQ0q
K1 � rReach1, Ext1, Self1, Par1, Sub1s �

 ��`1cmd1, `2

��(pQ0q
Q2 � xS2, G2, A2y � v`2cmd2, `3wpQ1q
K2 � rReach2, Ext2, Self2, Par2, Sub2s �

 ��`2cmd2, `3

��(pQ1q

Lemma 11.7. If ps, s1q ∈ Tr and labelpsq ∈ Labsp`1cmd1, `2qr t`2u then ps, s1q ∈ Tr 1.
If ps, s1q ∈ Tr and labelpsq ∈ Labsp`2cmd2, `3q then ps, s1q ∈ Tr 2.

Proof. Let us consider the case labelpsq ∈ Labsp`1cmd1, `2q r t`2u. Hence because labels
of the command `1cmd1; `2cmd2, `3 are pairwise distinct, labelpsq R Labsp`2cmd3, `3q. By
Lemma 7.8, ps, s1q R Tr 2. Hence, by Lemma 11.6, ps, s1q ∈ Tr 1

The case labelpsq ∈ Labsp`2cmd2, `3q is similar :
Because labels of the command `1cmd1; `2cmd2, `3 are pairwise distinct, labelpsq R Labsp`1cmd2, `2q.
By Lemma 7.8, ps, s1q R Tr 1. Hence, by Lemma 11.6, ps, s1q ∈ Tr 2.

Lemma 11.8. Using the above notations, for every ps0, sq ∈ Reach such that s0 ∈ S0,

(a) either ps0, sq ∈ Reach1 and labelpsq � `2

(b) or there exists s1 ∈ S1 such that ps0, s1q ∈ Reach1, ps1, sq ∈ Reach2 and ps1, sq ∈
Ext2ps0, s1q.

Proof. Let ps0, sq ∈ Reach. Hence there exists s1, . . . , sn such s � sn and that for all k ¤ 0,
psk, sk�1q ∈ pG0|afterps0q ∩ Tr q ∪ A0|afterps0q and threadps0q � threadpsnq.

Either there exists k such that psk, sk�1q ∈ pG0|afterps0q ∩ Tr 2q r System, or there does
not exists a such k.

11.2. COMPOSITION 109

� In the case where no such k exists, ps0, sq ∈ Reach1.

Either labelpsq � `2, or labelpsq � `2.

� If labelpsq � `2, then we are in the case (a) of the lemma

� If labelpsq � `2, therefore, ps, sq ∈ Reach2 and therefore s ∈ S1. Notice that
ps, sq ∈ Ext1ps0, sq. We are in the case (b) of the lemma.

� If such a k exists, let k0 the smallest such k. By de�nition of k0, and by Lemma 11.6
ps0, sk0q ∈ rTr 1∪A0|afterps0qs

� By de�nition of Reach, labelps0q � `1 ∈ Labsp`1cmd1, `2q.
Because psk0 , sk0�1q ∈ G0|afterps0q, then sk0 ∈ afterps0q. so, according to Lemma 10.12,
labelpsk0q ∈ Labsp`1cmd1, `2q. Given that psk0 , sk0�1q ∈ Tr 2 r System, according
to Lemma 7.8, labelpsk0q ∈ Labsp`2cmd2, `3q. Hence labelpsk0q ∈ Labsp`2cmd2, `3q ∩
Labsp`1cmd1, `2q. Because the labels of `1cmd1; `2cmd2, `3 are pairwise distinct, labelpsk0q �
`2. Using Lemma 10.12, we conclude that threadps0q � threadps1q. Hence ps, sk0q ∈
Reach1.

Let us show that psk0 , snq ∈ Reach2. Since ps0, snq ∈ Reach and threadpsk0q �
threadps0q and labelpsk0q � `2, we just have to show that psk0 , snq ∈ rpG1|afterps1q ∩
Tr q ∪ A1|afterps1qs

�.

For all k ¥ 0, psk, sk�1q ∈ pG0|afterps0q ∩ Tr q ∪ A0|afterps0q. According to Lemma 11.6:

For all k ¥ k0, psk, sk�1q ∈ pG0|afterps0q ∩ Tr 1q ∪ pG0|afterps0q ∩ Tr 2q ∪ A0|afterps0q.

We want to prove, for all k ¥ k0, two things:

(i) If psk, sk�1q ∈ pG0|afterps0q ∩ Tr 2qr System then sk ∈ afterps1q

(ii) If psk, sk�1q ∈ G0|afterps0q ∩ Tr 1 then psk, sk�1q ∈ Sub1 � A1

Either there exists a k that does not satisfy (i) and (ii), or there do not exist such a
k.

� First case, there does not exists such a k. By de�nition sk0 ∈ afterps0q, hence, ac-
cording to Lemma 10.2, afterpsk0q � afterps0q and then A0|afterps0q � A0|afterpsk0 q

.

Therefore psk0 , snq ∈ Reach2 and psk0 , snq ∈ Ext1ps0, sk0q.

Since labelpsk0q � `2, sk0 ∈ S1.

� Let us consider the case where there exists such a k. Let k1 the smallest such k.

For all k ∈ tk0, . . . , k1 � 1u, given that for all k ¥ k0, psk, sk�1q ∈ pG0|afterps0q ∩
Tr 1q ∪ pG0|afterps0q ∩ Tr 2q ∪ A0|afterps0q there are three cases:

␐ psk, sk�1q ∈ A|afterps0q, and then sk ∈ afterps0q.

␐ psk, sk�1q ∈ pG0|afterps0q ∩ Tr 1q and then psk, sk�1q ∈ Tr 1.

␐ psk, sk�1q ∈ G0|afterps0q ∩ Tr 2 and then, by (i), sk ∈ afterps1q.

110CHAPTER 11. OVERAPPROXIMATION OF THE INTERMEDIATE SEMANTICS

Hence psk0 , sk1q ∈ Ext1ps0, sk0q and then if psk1 , sk1�1q ∈ Tr 1 then psk1 , sk1�1q ∈
Sub1. Hence k1 satis�es (ii).

We apply the proposition 10.2 with the statement `1stmt , `2 and T � tpsk, sk�1q |
k0 ¤ k k1u. Therefore, if psk1 , sk1�1q ∈ pG0|afterps0q ∩ Tr 2q r System, then
psk1 , sk1�1q R Tr 1 and sk1 ∈ afterps0q. Hence k1 satis�es (i).

This is a contradiction with the de�nition of k1, then k1 cannot exist and this
case is not possible.

Lemma 11.9. Using the above notations, for every ps0, sq ∈ Reach such that s0 ∈ S0 and
s1 ∈ S1, there exists s1 ∈ S1 such that ps0, s1q ∈ Reach1, ps1, sq ∈ Reach2 and ps1, sq ∈
Ext1ps0, s1q.

Proof. If ps0, sq ∈ Reach1, then, according to Lemma 10.13, labelpsq ∈ Labsp`1cmd1, `2q. In
this case labelpsq � `3. This is not possible because s ∈ S1.

Therefore, according to Lemma 11.8 there exists s1 ∈ S1 such that ps0, s1q ∈ Reach1,
ps1, sq ∈ Reach2 and ps1, sq ∈ Ext1ps0, s1q

Lemma 11.10. Using the notations of this section, let s0 ∈ S0, s1 ∈ S1, s2 ∈ S2, s ∈ States
such that ps0, s1q ∈ Reach1, ps1, s2q ∈ Reach2 ∩ Ext1ps0, s1q and ps2, sq ∈ Extps0, s2q.
Therefore ps1, sq ∈ Ext1ps0, s1q.

Proof. Recall that:
Extps0, s2q �

�
pG0|afterps0q ∩ Tr q ∪ A0|afterps0q ∪ G0|afterps2q

��
Ext1ps0, s1q �

�
pG0|afterps0q ∩ Tr 1q ∪ A0|afterps0q ∪ G0|afterps1q

��
We do a proof similar to the proof of Lemma 11.8.
Let s10, . . . , s

1
n a sequence of states such that s2 � s10 and s � s1n and for all k, ps

1
k, s

1
k�1q ∈

pG0|afterps0q ∩ Tr q ∪ A0|afterps0q ∪ G0|afterps2q.

Given Lemma 11.6, we just have to prove that for all k, if psk, sk�1q ∈ G0|afterps0q ∩ Tr 2

then psk, sk�1q ∈ G0|afterps1q. Hence, we just have to prove that for all k, if psk, sk�1q ∈
G0|afterps0q ∩ Tr 2 then sk ∈ afterps1q.

Either there exists a k that psk, sk�1q ∈ G0|afterps0q ∩ Tr 2 and sk R afterps1q or there do
not exist such a k.

� First case, there does not exists a such k.

� Second case there exists such a k. Let k1 the smallest such k.

By de�nition of k1, ps2, s
1
k1
q ∈ Ext1ps0, s1,). Given that ps1, s2q ∈ Ext1ps0, s1,), hence

ps1, s
1
k1
q ∈ Ext1ps0, s1,).

We apply the proposition 10.2 with the statement `1stmt , `2 and T � tps1k, s
1
k�1q | 0 ¤

k k1u. Therefore, if ps1k1 , s
1
k1�1q ∈ pG0|afterps0q∩Tr 2qrSystem, then ps1k1 , s

1
k1�1q R Tr 1

and s1k1 ∈ afterps1q.

This is a contradiction with the de�nition of k1, then k1 cannot exist and this case
is not possible.

11.2. COMPOSITION 111

Lemma 11.11. Using the notations of this section, let s0 ∈ S0, s1 ∈ S1, s2 ∈ S2, s such
that ps0, s1q ∈ Reach1, ps1, s2q ∈ Reach2 ∩ Ext1ps0, s1q and ps2, sq ∈ Extps0, s2q. Therefore
ps2, sq ∈ Ext2ps1, s2q.

Proof. Recall that

� Extps0, s2q �
�
pG0|afterps0q ∩ Tr q ∪ A0|afterps0q ∪ G0|afterps2q

��
� Ext2ps1, s2q �

�
pG1|afterps1q ∩ Tr 2q ∪ A1|afterps1q ∪ G1|afterps2q

��
Let s10, . . . , s

1
n a sequence of states such that s2 � s10 and s � s1n and for all k, ps

1
k, s

1
k�1q ∈

pG0|afterps0q∩Tr q∪A0|afterps0q∪G0|afterps2q. Let us prove that for all k, ps
1
k, s

1
k�1q ∈ pG1|afterps1q∩

Tr 2q ∪ A1|afterps1q ∪ G1|afterps2q.

Let k0 ∈ t0, . . . , nu.

� First case ps1k0 , s
1
k0�1q ∈ G0|afterps0q ∩ Tr 1. According to Lemma 11.10, ps1, sq ∈

Ext1ps0, s1q. Either s1k0 ∈ afterps1q or s1k0 R afterps1q.

� First case s1k0 ∈ afterps1q. We apply Proposition 10.2, with the statement
`2cmd2, `3 then either ps1k0 , s

1
k0�1q ∈ Tr 2 or s

1
k0

∈ afterps2q ∪ afterps1q.

␐ First case, ps1k0 , s
1
k0�1q ∈ Tr 2, therefore ps1k0 , s

1
k0�1q ∈ Tr 2 ∩ Tr 1 � System (by

Lemma 7.7)

␐ Second case, s1k0 ∈ afterps2q, therefore ps1k0 , s
1
k0�1q ∈ G1|afterps2q.

� Second case: s1k0 R afterps1q, therefore s1k0 ∈ afterps0q r afterps1q. According
to Lemma 11.10, ps1, s

1
k0
q ∈ Ext1ps0, s1q and therefore ps1k0 , s

1
k0�1q ∈ Sub1 � A1,

therefore ps1k0 , s
1
k0�1q ∈ A1|afterps1q.

� Second case ps1k0 , s
1
k0�1q ∈ A0|afterps0q. Hence sk0 ∈ afters0. By Lemma 10.2, afterps0q �

afterps1q. Furthermore, by De�nition 10.2 A0 � A1. Hence ps1k0 , s
1
k0�1q ∈ A1|afterps1q

� Third case: ps1k0 , s
1
k0�1q ∈ G0|afterps2q. According to De�nition 10.2 G0 � G1. Hence

ps1k0 , s
1
k0�1q ∈ G1|afterps2q.

To prove the Proposition 11.2, we have to prove that Q2 ¥ Q1. We claim that

(a) S1 � S2,

(b) Self1 � Self1 ∪ Self2,

(c) Par1 � Par1 ∪ Par2 ∪ Sub1,

(d) Sub1 � Sub1 ∪ Sub2.

112CHAPTER 11. OVERAPPROXIMATION OF THE INTERMEDIATE SEMANTICS

Using these claims and the de�nition of the semantics v�w, we conclude that Q2 ¥ Q1.
Now, we prove these claims:

Claim 11.12. Using the notations of this section, S1 � S2.

Proof. Let s ∈ S1, so there exists s0 ∈ S such that ps0, sq ∈ Reach1 and labelpsq � `3.
According to Lemma 11.9 there exists s1 ∈ S1 such that ps1, sq ∈ Reach2. Therefore
s ∈ S2.

Claim 11.13. Using the notations of this section, Self1 � Self1 ∪ Self2.

Proof. Let ps, s1q ∈ Self1. So ps, s1q ∈ Tr , and there exists s0 ∈ S such that ps0, sq ∈ Reach1.
According to Lemma 11.8 either ps0, sq ∈ Reach1 and labelpsq � `2, or there exists

s1 ∈ S1 such that ps0, s1q ∈ Reach1 and ps1, sq ∈ Reach2.

� In the �rst case, according to Lemma 10.13, labelpsq ∈ Labsp`1cmd1, `2q. Since
labelpsq � `2 and by Lemma 11.7, ps, s1q ∈ Tr 1. Hence, by de�nition, ps, s1q ∈ Self1

� In the second case, by Lemma 10.12, labelps1q ∈ Labsp`2cmd2, `3q. Since ps, s1q ∈ Tr ,
by Lemma 11.7 ps, s1q ∈ Tr 2. Given that s ∈ ReachxS1y and ps, s1q ∈ Tr 2, we conclude
that ps, s1q ∈ Self2.

Claim 11.14. Using the notations of this section Par1 � Par1 ∪ Par2 ∪ Sub1.

Proof. Let ps, s1q ∈ Par1. Therefore, ps, s1q ∈ Tr and there exists s0 ∈ S0 and s2 such that
ps0, s2q ∈ Reach1, ps2, sq ∈ Schedule and s ∈ afterps0q. According to Lemma 11.8 there are
two cases:

� First case: ps0, s2q ∈ Reach1 and labelps2q � `2. Then, using the fact that System �
Tr 1, ps0, sq ∈ pTr 1 ∪ A0|afterps0q

q�. Because s ∈ afterps0q, by Lemma 10.12, labelpsq ∈
Labsp`1cmd1, `2qr t`2u. Hence, according to Lemma 11.7, ps, s1q ∈ Tr 1. We conclude
that ps, s1q ∈ Par1.

� Second case: There exists s1 ∈ S1 such that ps0, s1q ∈ Reach1, ps1, s2q ∈ Reach2 and
ps1, s2q ∈ Ext1ps0, s1q. Hence ps1, sq ∈ Ext1ps0, s1q; Schedule � Ext1ps0, s1q.

Either s ∈ afterps1q or s R afterps1q.

� If s ∈ afterps1q, then, because ps1, sq ∈ Reach2; Schedule, by Lemma 10.12,
labelpsq ∈ Labsp`2cmd2, `3q. So, in this case, by Lemma 11.7, ps, s1q ∈ Tr 2 and
then ps, s1q ∈ Par2.

� We consider the case s R afterps1q. Given that ps0, s1q ∈ Reach, ps1, sq ∈
Ext1ps1, s2q, so by Proposition 10.2, ps, s1q ∈ Tr 1. Hence, ps, s1q ∈ Sub1.

11.3. IF STATEMENTS 113

Claim 11.15. Using the notations of this section Sub1 � Sub1 ∪ Sub2.

Proof. Let ps, s1q ∈ Sub1. Then, there exists s0 and s2 such that ps0, s2q ∈ Reach1 and
ps2, sq ∈ Extps0, s2q. According to Lemma 11.9, there exists s1 ∈ S1 such that ps0, s1q ∈
Reach1 and ps1, s2q ∈ Reach2 and ps1, s2q ∈ Ext1ps0, s1q.

By Lemma 11.10 and Lemma 11.11, ps1, sq ∈ Ext1ps0, s1q and ps2, sq ∈ Ext2ps1, s2q.
Either s R afterps1q or s ∈ afterps1q.

� First case: s R afterps1q. Because s ∈ afterps0q, then s ∈ afterps0q r afterps1q.
Furthermore, given that ps0, s1q ∈ Reach1 and ps1, sq ∈ Reach2, by Proposition 10.2,
ps, s1q ∈ Tr 1. We conclude that ps, s1q ∈ Sub1.

� Second case: s ∈ afterps1q. Because s ∈ afterps0qrafterps2q, s ∈ afterps1qrafterps2q.
By Lemma 10.12, labelpsq ∈ Labsp`2cmd2, `2q. Hence, by Lemma 11.7, ps, s1q ∈ Tr 2

and therefore, ps, s1q ∈ Sub2.

Proposition 11.2. For each concrete con�guration Q:
v`1cmd1; `2cmd2, `3wpQq ¤ v`2cmd2, `3w � v`1cmd1, `2wpQq.

Proof. This is a consequence of De�nition 10.2 and of Claims 11.12, 11.13, 11.14 and
11.15.

11.3 if statements

In this section, we consider a command `1 if pcondqthent`2cmd1uelset`3cmd2u, `4 and an ini-
tial con�guration Q0 � xS0, G0, A0y

Let xS1, G1, A1y � v`1 if pcondqthent`2cmduelset`3cmdu, `4wxS, G, Ay.
Let rReach1, Ext1, Self1, Par1, Sub1s �

 ��`1 if pcondqthent`2cmduelset`3cmdu, `4

��(xS, G, Ay.
Let xS�, G�, A�y � v`1guardcond , `2wxS, G, Ay.
Let rReach�, Ext�, Self�, Par�, Sub�s �

 ��`1guardcond , `2

��(xS, G, Ay.
Let xS1, G1, A1y � v`2cmd1, `4wxS�, G�, A�y.
Let rReach1, Ext1, Self1, Par1, Sub1s �

 ��`2cmd1, `4

��(xS�, G�, A�y.
Let xS , G , A y � v`1guard cond , `3wxS, G, Ay.
Let rReach , Ext , Self , Par , Sub s �

 ��`1guard cond , `3

��(xS, G, Ay.
Let xS2, G2, A2y � v`3cmd2, `4wxS , G , A y.
Let rReach2, Ext2, Self2, Par2, Sub2s �

 ��`3cmd2, `4

��(xS , G , A y.
Let Tr � Tr `1 if pcondqthent`2cmd1uelset`3cmd2u,`4 .
Let Tr� � Tr `1 if pcondqthent`2cmduelset`3cmdu,`4 .
Let Tr � Tr `1 if pcondqthent`2cmd1uelset`3cmd2u,`4 .
Let Tr 1 � Tr `2cmd1,`4 .
Let Tr 2 � Tr `3cmd2,`4 .

114CHAPTER 11. OVERAPPROXIMATION OF THE INTERMEDIATE SEMANTICS

Lemma 11.16. Tr `1 if pcondqthent`2cmduelset`3cmdu,`4 � Tr `1guardcond ,`2∪Tr `2cmd1,`4∪Tr `1guard cond ,`3∪
Tr `3cmd1,`4.

Lemma 11.17. If ps0, sq ∈ Reach and s0 ∈ S0, then, one of the three following properties
hold:

1. s ∈ interfereA0pts0uq,

2. or there exists s1 ∈ S� such that ps1, sq ∈ Reach1 ∩ Ext�ps0, s1q

3. or there exists s1 ∈ S such that ps1, sq ∈ Reach2 ∩ Ext ps0, s1q

Proof. There exists a sequence of states s10, . . . , s1n such that s10 � s0 and s1n � s for all k,
ps1k, s

1
k�1q ∈ pG0|afterps0q ∩ Tr q ∪ A0|afterps0q.

Either there exists a k such that ps1k, s
1
k�1q ∈ pG0|afterps0q ∩ Tr qr System either such a k

does not exists.

� First case: there does not exists such a k. Hence s ∈ interfereA0pts0uq.

� Second case: there is such a k: let k0 the smallest such k.

Because ps1k0 , s
1
k0�1q ∈ G0|afterps0q ∩ Tr , s1k0 ∈ afterps0q. By Lemma 10.8, threadps0q �

threadps1k0q. By Lemma 10.10, labelps0q � labelps10q � `1. Therefore, due to Lemmas
7.7 and 11.16, ps1k0 , s

1
k0�1q ∈ Tr `1guardcond ,`2 ∪ Tr `1guard cond ,`3 .

Either ps1k0 , s
1
k0�1q ∈ Tr `1guardcond ,`2 or ps

1
k0
, s1k0�1q ∈ Tr `1guard cond ,`3 .

� In the �rst case, ps1k0 , s
1
k0�1q ∈ Tr `1guardpcondq,`2 . By Lemma 7.6, threadps1k0q �

threadps1k0�1q and labelps1k0�1q � `2. Therefore, ps0, s
1
k0�1q ∈ Reach� and s1k0�1 ∈

S�.

Let us prove, that @k ∈ tk0 � 1, . . . , nu, ps1k, s
1
k�1q ∈ pG0|afterpsk0�1q ∩ Tr `2cmd ,`4q ∪

A0|afterps0q.

Assume by contradiction that there exists a k such that ps1k, s
1
k�1q R pG0|afterpsk0�1q∩

Tr `2cmd ,`4q ∪ A0|afterps0q. Let k1 the smallest such k. Therefore ps1k1 , s
1
k1�1q ∈

G0|afterps0q ∩ Tr . Hence s1k1 ∈ afterps0q. By minimality of k1, we can apply
Proposition 10.2. Hence, either s1k1 ∈ afterps1k0�1q or ps

1
k1
, s1k1�1q ∈ Tr�.

␐ First case sk1 ∈ afterpsk0q. Therefore psk1 , sk1�1q ∈ G0|afterpsk0 q ∩ Tr . This is
in contradiction with the de�nition of k1. This case is not possible.

␐ Second case ps1k1 , s
1
k1�1q ∈ Tr� and psk1 ∈ afterps0q r afterps1q. Hence

ps1k1 , s
1
k1�1q. By minimality of k1, psk0�1, sk1q ∈ Ext�ps0, sk0�1q. Hence

psk0�1, sk1q ∈ Sub�. Nevertheless, according to Claim 11.3, Sub� � ∅.
There is a contradiction, this case is not possible.

Given that G1 � G0 and A1 � A0 and, given that s1k0 ∈ afterps0q, by Lemma 10.2
afterps1k0�1q � afterps0q, we conclude that psk0�1, sq ∈ Reach1 ∩ Ext�ps0, sk0�1q.

� In the second case, ps1k0 , s
1
k0�1q ∈ Tr `1guardp condq,`3 . The proof is similar to the

�rst case. We are in the case 3. of the lemma.

11.3. IF STATEMENTS 115

Claim 11.18. S1 � S1 ∪ S2

Proof. Let s ∈ S1. Therefore there exists s0 ∈ S0 such that ps0, sq ∈ Reach and labelpsq �
`4 � `1. Hence, due to Lemma 10.10, s R interfereA0ts0u.

According to Lemma 11.17, there exists s1 such that either (1) s1 ∈ S� and ps1, sq ∈
Reach1 ∩ Ext�ps0, s1q, (2) or, s1 ∈ S and ps1, sq ∈ Reach2 ∩ Ext ps0, s1q.

In the �rst case, by de�nition, s ∈ S1 and in the second case s ∈ S2

Claim 11.19. Self � Self� ∪ Self1 ∪ Self ∪ Self2.

Proof. Let ps, s1q ∈ Self. Then, there exists s0 ∈ S0 such that ps0, sq ∈ Reach.
According to Lemma 11.17, there is three cases:

� First case s ∈ interfereA0pts0uq. By Lemma 10.10, labelpsq � `1. Hence, by Lemmas
7.7 and 11.16, ps, s1q ∈ Tr `1guardcond ,`2∪Tr `1guard cond ,`3 . Hence, ps, s

1q ∈ Self�∪Self .

� Second case there exists s1 such that s1 ∈ S� and ps1, sq ∈ Reach1 ∩ Ext�ps0, s1q.
Hence, by Lemmas 7.7 and 11.16, ps1, skq ∈ Tr `2cmd1,`4 and therefore ps, s1q ∈ Self1.

� Third case there exists s1 such that s1 ∈ S and ps1, sq ∈ Reach2 ∩ Ext ps0, s1q.
Hence, by Lemmas 7.7 and 11.16, ps1, skq ∈ Tr `3cmd2,`4 and therefore ps, s1q ∈ Self2.

Claim 11.20. Par � Par1 ∪ Par2.

Proof. Let ps, s1q ∈ Par. Therefore, there exists s0 ∈ S0 and s2 such that ps0, s2q ∈ Reach

and ps2, sq ∈ System and s ∈ afterps0q. Notice that threadps0q � threadps2q � threadpsq.
According to Lemma 11.17, there is three cases:

� First case, s2 ∈ interfereA0pts0uq. Hence, due to Lema 10.8, threadpsq � threadps0q.
This is contradictory.

� Second case: there exists s1 such that s1 ∈ S� and ps1, sq ∈ Reach1 ∩ Ext�ps0, s1q.
By Lemma 10.12, labelpsq ∈ Labsp`2cmd1, `4q and therefore, by Lemmas 11.16 and
7.7, ps, s1q ∈ Tr `2cmd1,`4 . Hence, ps, s

1q ∈ Par1.

� Third case: there exists s1 such that s1 ∈ S� and ps1, sq ∈ Reach1 ∩ Ext�ps0, s1q. By
Lemma 10.12, labelpsq ∈ Labsp`3cmd2, `4q and therefore, by Lemmas 11.16 and 7.7,
ps, s1q ∈ Tr `3cmd2,`4 . Hence, ps, s

1q ∈ Par2.

Claim 11.21. Sub � Sub1 ∪ Sub2.

116CHAPTER 11. OVERAPPROXIMATION OF THE INTERMEDIATE SEMANTICS

Proof. Let ps, s1q ∈ Sub. Therefore, there exists s0 ∈ S0 and s2 ∈ S1 such that ps0, s2q ∈
Reach and ps2, sq ∈ Extps0, s2q and s ∈ afterps0q r afterps2q. Notice that threadps0q �
threadps2q � threadpsq.

According to Lemma 11.17 there are three cases:

� First case: s2 ∈ interferepts0uq. Hence, due to Lemma 10.10, labelps2q � `1. This
is contradictory with s2 ∈ S1.

� Second case: there exists s1 such that either s1 ∈ S� and ps1, sq ∈ Reach1 ∩
Ext�ps0, s1q. By Lemma 10.9, s ∈ afterps1q. By Lemma 10.12, labelpsq ∈ Labsp`2cmd1, `4q.
Because s R afterps2q, by Proposition 10.2, ps, s1q ∈ Tr `1cmd1,`2 . Hence, ps, s

1q ∈ Sub1.

� Third case: there exists s1 such that either s1 ∈ S� and ps1, sq ∈ Reach2∩Ext�ps0, s1q.
This case is very similar to the second case:

By Lemma 10.9, s ∈ afterps1q. By Lemma 10.12, labelpsq ∈ Labsp`3cmd2, `4q. Be-
cause s R afterps2q, by Proposition 10.2, ps, s1q ∈ Tr `1cmd1,`2 . Hence, ps, s

1q ∈ Sub1

Proposition 11.3. For all concrete con�guration Q:

v`1 if ppcondqthent`2cmd1uelset`4cmd2u, `3wpQq ¤
v`2cmd1, `3w � v`1guardpcondq, `2wpQq
tv`4cmd2, `3w � v`1guardp condq, `4wpQq

11.4 While loops

In this section, we consider a command `1whilepcondqt`2cmdu, `3 and an initial con�guration
Q0 � xS0, G0, A0y.
Let Q1 � xS1, G1, A1y � v`1whilepcondqt`2cmdu, `3wQ0.
Let Qω � xSω, Gω, Aωy � loopÒωpQ0q.
Let Q2 � xS2, G2, A2y � v`1whilepcondqt`2cmdu, `3wQω.
Let K � rReach, Ext, Self, Par, Subs �

 ��`1whilepcondqt`2cmdu, `3

��(Qω.
Let Q� � xS�, G�, A�y � v`1guardpcondq, `2wpQωq.
Let K� � rReach�, Ext�, Self�, Par�, Sub�s �

 ��`1guardpcondq, `2

��(pQωq.
Let Kcmd � rReachcmd , Extcmd , Selfcmd , Parcmd , Subcmd s �

 ��`2cmd , `1

��(pQ�q.
Let Q � xS , G , A y � v`1guardp condq, `3wQω.
Let K � rReach , Ext , Self , Par , Sub s �

 ��`1guardp condq, `3

��(Qω.
Let Tr � Tr `1whilepcondqt`2cmdu,`3 .

Lemma 11.22.

Tr `1whilepcondqt`2cmdu,`3 � Tr `1guardp condq,`3 ∪ Tr `1guardpcondq,`2 ∪ Tr `2cmd ,`1

Notice that, by de�nition, Q0 ¤ Qω

11.4. WHILE LOOPS 117

Lemma 11.23. We use the above notations. Let s0, s1, . . . , sn, . . . , sm a sequence of states
such that for all k ∈ t0, . . . ,m� 1u, psk, sk�1q ∈ pGω |afterps0q ∩ Tr q ∪ Aω |afterps0q.

If ps0, smq ∈ Reachω, ps0, snq ∈ Reachω and sn ∈ Sω then for all k ¥ n, psk, sk�1q ∈
pGω |afterpsnq ∩ Tr q ∪ Aω |afterpsnq.

Proof. For all k, psk, sk�1q ∈ pGω |afterpsnq ∩ Tr q ∪ pGω |afterps0qrafterpsnq ∩ Tr q ∪ Aω |afterps0q.

Let k0 ¥ n such that psk0 , sk0�1q ∈ pGω |afterps0qrafterpsnq ∩ Tr q. Notice that psn, sk0q ∈
Extωps0, snq and sk0 ∈ afterps0q r afterpsnq. Hence, psk0 , sk0�1q ∈ Subω � Aω. Therefore
psk0 , sk0�1q ∈ Aω |afterps1q.

In addition to this, according to Lemma 10.13, afterpsnq � afterps0q, so, for all k ¥ n,
psk, sk�1q ∈ pGω |afterpsnq ∩ Tr q ∪ Aω |afterpsnq.

Lemma 11.24. Using the notations of this section, given s0 ∈ Sω and s ∈ States, if
ps0, sq ∈ Reach, therefore there exists s10 ∈ Sω such that ps0, s

1
0q ∈ Reach and

1. either ps10, sq ∈ Reach ,

2. or there exists s11 ∈ S� such that ps10, s
1
1q ∈ Reach� and ps11, sq ∈ Reachcmd and

labelpsq � `1.

Proof. There exists a sequence s0, . . . , sn such that for all k ∈ t0, . . . , n � 1u, psk, sk�1q ∈
pGω |afterps0q ∩ Tr q ∪ Aω |afterps0q and sn � s.

Let k0 the biggest k such that the following properties hold:

(1) sk ∈ Sω,

(2) for all k1 ∈ tk, . . . , n� 1u, psk1 , sk1�1q ∈ pGω |afterpsk0 q ∩ Tr q ∪ Aω |afterpsk0 q
,

Such a k exists because 0 satisfy properties (1) and (2). By de�nition of the sequence
s0, . . . , sn, ps0, s

1
k0
q ∈ Reach.

Either there exists k ∈ tk0, . . . , n�1u such that psk, sk�1q ∈ Gω |afterps0q∩Tr `1whilepcondqt`2cmdu,`3r
System or such a k does not exist.

� First case, such a k does not exist. Therefore for all k ∈ tk0, . . . , n� 1u, psk, sk�1q ∈
System ∪ Aω |afterps0q. Hence ps0, sq ∈ Reach� ∩ Reach � Reach .

� Second case : such a k exists. Let k1 the smallest such k.

Therefore psk1 , sk1�1q ∈ Gω |afterpsk0 q, so, sk1 ∈ afterps0q. According to Lemma 10.8,

threadpsk0q � threadpsk1q. By Lemma 10.10, labelpsk0q � labelpsk1q. But labelpsk0q �
`1, therefore, by Lemma 7.8, psk1 , sk1�1q R Tr `2cmd ,`1 . Therefore, by Lemma 11.22,
either psk1 , sk1�1q ∈ Tr `1guardp condq,`3 or psk1 , sk1�1q ∈ Tr `1guardpcondq,`2 .

� First case: psk1 , sk1�1q ∈ Tr `1guardp condq,`3 . By Lemma 7.6, labelpsk1�1q � `3.

Either there exists k ¥ k0 such that psk, sk�1q R Aω |afterps0q ∪ System or not.

118CHAPTER 11. OVERAPPROXIMATION OF THE INTERMEDIATE SEMANTICS

␐ First case: such a k exists. Let k2 be the smallest such k.
By minimality of k2, psk1 , sk2q ∈ rAω |afterps0q ∪ Systems�. By de�nition of

k2, psk2 , sk2�1q ∈ Gω |afterps0q ∩ Tr . Therefore sk2 ∈ afterpsk0q, then by
Lemma 10.8, threadpsk2q � threadpsk1�1q. By Lemma 10.10, labelpskq �
labelpsk1�1q � `3. So, by Lemma 7.8, psk2 , sk�1q ∈ System. This is contra-
dictory with the de�nition of k2.

␐ Second case: for all k ¡ k1, psk, sk�1q ∈ Aω |afterpsk0 q
∪ System. Hence

psk0 , sq ∈ rAω |afterpsk0 q ∪ Systems� and then psk0 , sq ∈ Reach .

� Second case: psk1 , sk1�1q ∈ Tr `1guardpcondq,`2 .

Therefore, by Lemma 7.6, sk1�1 ∈ S�. Either there exists k3 ¡ k1 such that
psk3 , sk3�1q ∈ G|afterpsk0 q ∩ pTr `1guardp condq,`3 ∪ Tr `1guardpcondq,`3q or there does not
exist such a k3.

␐ First case: such a k3 exists, therefore, by Lemma 7.6, labelpsk3q � `1.
According to Lemma 10.12, threadpsq � threadpsk0q. Hence, psk0 , sk3q ∈
Reachω.
So, by Lemma 11.23, for all k ∈ tk2, . . . , n � 1u, psk, sk�1q ∈ pGω |afterpsk2 q ∩
Tr q∪Aω |afterpsk2 q

. This is contradictory with the maximality of k0. Therefore

k2 does not exist.

␐ Second case: for all k ¡ k1, psk, sk�1q ∈ pGω |afterpsk0 q∩Tr `2cmd ,`1q∪Aω |afterpsk0 q.
According to proposition 10.2, for all k ¡ k1, psk, sk�1q ∈ pGω |afterpsk2 q ∩
Tr `2cmd ,`1q ∪ Aω |afterpsk0 q

. Therefore, psk1 , sq ∈ Reachω

Assume by contradiction that labelpsq � `1. Therefore, according to Lemma 10.12
threadpsq � threadpsk1q and then s ∈ Sω. This is contradictory with the maximality
of k0.

We choose s10
def� sk0 , s

1
1

def� sk1

Lemma 11.25. Using the notations of this section, if s ∈ ReachxS0y, then, there exists
s0 ∈ Sω such that:

1. either ps0, sq ∈ Reach ,

2. or there exists s11 ∈ S� such that ps0, s
1
1q ∈ Reach� and ps11, sq ∈ Reachcmd and

labelpsq � `1.

Proof. Notice that S0 � Sω. It is a straightforward consequence of Lemma 11.24.

Claim 11.26. Using the notation of this section S1 � S .

Proof. Let s ∈ S1, therefore, s ∈ ReachxS0y. Furthermore, labelpsq � `3. Hence, according
to Lemma 10.13, for all s1 ∈ States, ps1, sq R Reachω. Therefore, according to Lemma
11.25, there exists s0 ∈ Sω such that ps0, sq ∈ Reach . Hence s ∈ S .

11.4. WHILE LOOPS 119

Claim 11.27. Self � Self ∪ Self� ∪ Selfcmd

Proof. Let ps, s1q ∈ Self. According to Lemma 11.22, ps, s1q ∈ Tr `1guardp condq,`3∪Tr `1guardpcondq,`2∪
Tr `2cmd ,`1 .

� First case: ps, s1q ∈ Tr `1guardp condq,`3 ∪ Tr `1guardpcondq,`2 . Due to Lemma 7.6, labelpsq �
`1 Hence, according to Lemma 11.25, either ps0, sq ∈ Reach or labelpsq � `1. There-
fore ps0, sq ∈ Reach .

According to Lemma 11.1, either labelpsq � `2 � `1 (contradiction) or s ∈ interfereA0pS0q �
Reach xSωy ∩ Reach�xSωy. Therefore either ps, s1q ∈ Self or ps, s1q ∈ Self�.

� Second case: ps, s1q ∈ Tr `2cmd ,`1 . Therefore, according to Lemma 7.7, labelpsq ∈
Labsp`2cmd , `1qrt`1u. If s2 ∈ Reach xSωy, then, by Lemma 11.1, labelps2q ∈ t`1, `3u.
Hence, s R Reach xSωy. So, by Lemma 11.25, there exists s ∈ S0 and s1 ∈ S�
such that ps0, s1q ∈ Reach� and ps1, sq ∈ Reachcmd . According to Proposition 10.2,
ps, s1q ∈ afterps1q and therefore ps, s1q ∈ Selfcmd .

Claim 11.28. Par � Parcmd

Proof. Let ps, s1q ∈ Par. There exists s0 ∈ S0 and s2 such that ps0, s2q ∈ Reachω and
ps2, sq ∈ Schedule and s ∈ afterps0q. By Lemma 11.1, either ps0, s2q ∈ Reach or there
exists s1 ∈ S� such that ps0, s1q ∈ Reach� and ps1, s2q ∈ Reachcmd and labelps2q � `1.

� In the �rst case, because s ∈ afterps0q and Tr is conservative (See Lemma 7.5), by
Lemma 10.8, threadpsq � threadps0q. But, by de�nition of Schedule and Reach ,
threadps2q � threadpsq and threadps0q � threadps2q. This is contradictory.

� In the second case, by Proposition 10.2, s ∈ afterps1q. Because threadpsq � threadps0q �
threadps2q, by Lemma 10.12, labelpsq ∈ Labsp`2cmd , `1qrt`2u. Therefore, by Lemmas
11.22 and 7.6, ps, s1q ∈ Tr `2cmd ,`1 . Hence ps, s

1q ∈ Parcmd

Claim 11.29. Sub � Sub

Proof. Let ps, s1q ∈ Sub. Therefore, there exists s0 ∈ Sω and s1 ∈ S1 such that ps0, s1q ∈
Reach and ps1, sq ∈ Extps0, s1q.

Notice that labelps1q � `3, therefore, according to Lemma 10.13, s1 R Reach�; ReachcmdxSωy.
Hence, by Lemma 11.24, there exists s10 ∈ Sω such that ps0, s

1
0q ∈ Reach and ps10, s1q ∈

Reach .
ps1, sq ∈ Extps0, s1q � rpGω |afterps0q ∩ Tr q ∪ Aω |afterps0q ∪ Gω |afterps1qs

�.

Hence: ps1, sq ∈ rpGω |afterps0qrafterps10q
∩ Tr q ∪ pGω |afterps10q ∩ Tr q ∪ Aω |afterps0q ∪ Gω |afterps1qs

�.
According to De�nition 10.2:

120CHAPTER 11. OVERAPPROXIMATION OF THE INTERMEDIATE SEMANTICS

ps1, sq ∈ rpSubω |afterps0qrafterps10q
q ∪ pGω |afterps10q ∩ Tr q ∪ Aω |afterps0q ∪ Gω |afterps1qs

�

Therefore: ps1, sq ∈ rpSubω |afterps10qq ∪ pGω |afterps10q ∩ Tr q ∪ Aω |afterps0q ∪ Gω |afterps1qs
�.

Because, by Lemma 10.13, afterps10q � afterps0q. Hence: Aω |afterps0q � Aω |afterps10q
.

Therefore: ps1, sq ∈ rpSubω |afterps10qq ∪ pGω |afterps10q ∩ Tr q ∪ Aω |afterps10q
∪ Gω |afterps1qs

�.

Because Subω � Aω, ps1, sq ∈ rpGω |afterps10q ∩ Tr q ∪ Aω |afterps10q
∪ Gω |afterps1qs

�.

This means that ps1, sq ∈ Extωps10, s1q.
Therefore:
ps1, sq ∈ rpGω |afterps10qrafterps1q ∩ Tr q ∪ pGω |afterps1q ∩ Tr q ∪ Aω |afterps10q

∪ Gω |afterps1qs
�

By Proposition 10.2, ps1, sq ∈ pGω |afterps0q∩Tr `1guardp condq,`2q∪pGω |afterps1q∩TrrTr `1guardp condq,`2q∪
Aω |afterps0q ∪ Gω |afterps1q � Ext ps1, s2q.

Proposition 11.4. v`1whilepcondqt`2cmdu, `3wpQq ¤ v`1guardp condq, `3w � loopÒωpQq
with looppQ1q �

�
v`2cmd , `1w � v|`1guardpcondq, `2|wpQ1q

�
t Q1

Proof. It is a consequence of Claims 11.26, 11.27, 11.28 and 11.29.

11.5 Thread Creation

Let Q0 � xS0, G0, A0y a con�guration.
Let Q1 � xS1, G1, A1y � v`1createp`2cmdq, `3wpQ0q
Let K � rReach, Ext, Self, Par, Subs �

 ��`1createp`2cmdq, `3

��(pQ0q
Let Q1 � xS1, G1, A1y � v`1spawnp`2q, `3wpQ0q
Let K1 � rReach1, Ext1, Self1, Par1, Sub1s �

 ��`1spawnp`2q, `3

��(pQ0q
Let Q2 � xS2, G2, A2y � init-child`2pQ1q
Let G8 � guarantee`2cmd ,`8

pQ2q

Let K3 � rReach3, Ext3, Self3, Par3, Sub3s �
 ��`2cmd , `8

��(xS2, G8, A2y
Let Q3 � xS3, G3, A3y � combineQ0pG8q
Let Tr � Tr `1createp`2cmdq,`3

Lemma 11.30. Tr `1createp`2cmdq,`3 � Tr `1 spawnp`2q,`3 ∪ Tr `2cmd ,`8

When a thread i0 executes `1createp`2cmdq, `2, it creates some thread i (See Figure
11.1). The main idea is that three kinds of transitions may interfere with i.

� Transitions that may be �red by some of i0 that have been created before i (e.g., t1),
or by a descendant of such a thread (e.g., t6). These transitions are represented in
green on the �gure, and collected in A0.

� Transitions �red by i0 after having created i, or transitions �red by some descendant
of i0 created after i. These transitions (in blue on the �gure) are collected in G|postp`2q.

11.5. THREAD CREATION 121

i0

i
t1

t6

t2

t4

t7

t3

t5

A0

G0|post(ℓ2)
ℓ2cmd , ℓ∞

Figure 11.1: Thread Creation

122CHAPTER 11. OVERAPPROXIMATION OF THE INTERMEDIATE SEMANTICS

i0

i
t1

t6

t2

t4

t7

t3

t5

A0

G0|post(ℓ2)

ℓ2cmd , ℓ∞

Figure 11.2: Thread Creation

11.5. THREAD CREATION 123

� Transitions of descendants of i. These transitions are represented in orange. All
these transitions are generated by the statement `2cmd , `8.

Figure 11.2 is a second example. The thread i creates the thread t3

Lemma 11.31. Let s0, s1, s2 and s be four states such that ps0, s1q ∈ Reach1, s2 ∈
schedule-childts1u, labelps1q � `3, ps2, sq ∈ Transitions� and s ∈ afterps0q.

Therefore, s ∈ afterps1q ∪ afterps2q.

Proof. According to Lemma 11.1, there exists s10 and s11 such that, s10 ∈ interfereA0ts0u,
ps10, s

1
1q ∈ Tr -`1 spawnp`2q,`3 , and s1 ∈ interfereA0ts

1
1u.

By Lemmas 10.8 and 7.7, threadps0q � threadps10q � threadps11q � threadps1q.
Let i0 � threadps0q and i � threadpsq.
Let g0, g

1
0, j, g1 and g such that, respectively, the genealogy of s0, s

1
0, s

2
0, s1, s2, s is g0,

g0 � g10, g0 � g10 � pi0, `2, jq, g0 � g10 � pi0, `2, jq � g1, g0 � g10 � pi0, `2, jq � g1, g0 � g10 � pi0, `2, jq � g1 � g.
Notice that s1 and s2 have the same genealogy.

Because ps0, s
1
0q ∈ rA0|afterps0q ∪ Systems�, by Lemma 10.7, descg10pi0q � ti0u.

Because ps21, s1q ∈ rA0|afterps0q∪Systems�, by Lemma 10.7, descpi0,`2,jq�g1pi0q � descpi0,`2,jqti0u �
ti0, ju.

By Lemma 7.2, descg10�pi0,`2,jq�g1�gpi0q � descgrdescpi0,`2,jq�g1pdescg10ti0uqs � descgti0, ju By
Lemma 7.2, descg10�pi0,`2,jq�g1�gpi0q � descgpti0uq ∪ descgptjuq.

Because s ∈ afterps0q, i ∈ descg10�pi0,`2,jq�g2�gpi0q. Therefore either i ∈ descgpi0q or
i ∈ descgpjq. If i ∈ descgpi0q then s ∈ afterps1q. If i ∈ descgpjq then s ∈ afterps2q.

Lemma 11.32. If ps0, sq ∈ Reach then:

� either s ∈ interfereA0ps0q and labelpsq � `1

� or there exists s1, s2, s3 such that ps0, s1q ∈ Reach1, ps1, s2q ∈ Schedule, ps2, s3q ∈
Reach3∩Ext1ps0, s1q, ps3, sq ∈ Schedule and s2 ∈ schedule-childts1u. Furthermore
labelps1q � labelpsq � `3 and s ∈ interfereG0|postp`2q∪A0ts1u.

Proof. ps0, sq ∈ Reach, therefore, there exists a sequence s10, s
1
n such that s10 � s0, s

1
n � s

and for every k ∈ t0, . . . , n� 1u, psk, sk�1q ∈ rpG0|afterps0q ∩ Tr q ∪ A0|afterps0qs
�.

Two cases may occur:

� First case for every k ∈ t0, . . . , n � 1u, ps1k, s
1
k�1q ∈ rA0|afterps0q ∪ System. Therefore

s ∈ interfereA0ps0q and by Lemma 10.10, labelpsq � `1.

� Second case: there exists k ∈ t0, . . . , n�1u such that ps1k, s
1
k�1q R rA0|afterps0q∪System.

Let k0 the smallest such k.

ps1k0 , s
1
k0�1q ∈ pG0|afterps0q ∩ Tr q. Therefore sk0 ∈ afterps0q. Due to Lemma 10.8

threadps10q � threadps0q.

Let s1 � s1k0�1. According to Lemma 7.6, threadps1q � threadps1k0q � threadps0q and
labelps1q � `3. Therefore ps0, s1q ∈ Reach1.

124CHAPTER 11. OVERAPPROXIMATION OF THE INTERMEDIATE SEMANTICS

By de�nition of schedule-child, schedule-childts1u is a singleton. hence, let s2

such that
ts2u � schedule-childts1u.

Therefore, ps2, s1q ∈ Schedule. Let pi, P, σ, gq � s and s3 � pthreadps1q, P, σ, gq.
Therefore, ps, s3q ∈ Schedule and

ps3, sq ∈ Schedule.

Either there exists k ∈ tk0, n�1u such that psk, sk�1q ∈ pG0|afterps0q∩TrrqSystem and
sk R afterps2q or not.

� First case: such a k exists. Let k1 the smallest such a k. According to Lemma
11.31, sk1 ∈ afterps1q. Therefore, by Lemma 10.8, threadpsq � threadps1q and
by Lemma 10.10, labelpsq � labelps1q � `3. This is contradictory with Lemma
7.7 which implies labelpsq � `3.

� Second case: there does not exists such a k. Hence: ps2, s3q ∈ Schedule; rpG0|afterps2q∩
Tr q ∪ A0|afterps0qs

�; Schedule � rpG0|afterps2q ∩ Tr q ∪ A0|afterps0qs
�. Hence:

ps2, s3q ∈ Ext1ps0, s1q.

Furthermore by Lemma 10.2, afterps2q � afterps0q. Hence ps2, s3q ∈ rpG0|afterps2q∩
Tr q ∪ A0|afterps2qs

�. Therefore, by Proposition 10.1:

ps2, s3q ∈ Reach3.

Given that, by de�nition of postp`2q, afterps2q � postp`2q:

s ∈ interfereG0|postp`2q∪A0ts1u.

Claim 11.33. S1 � interfereG0∪A0pS1q.

Proof. Let s ∈ S1. Therefore there exists s0 ∈ S0 such that ps0, sq ∈ Reach and labelpsq �
`3 � `1. According to Lemma 11.32 there exists s1 such that ps0, s1q ∈ Reach1, labelps1q �
`3 and s ∈ interfereG0∪A0ts1u. Therefore s1 ∈ S1 and s ∈ interfereG0∪A0pS1q.

Claim 11.34. Self � Self1.

Proof. Let ps, s1q ∈ Self. According to Lemma 7.7, labelpsq � `3. There exists s0 ∈ S0
such that ps0, sq ∈ Reach. Therefore, according to lemma 11.32, s ∈ interfereA0ts0u.
Therefore ps0, sq ∈ Reach1 and, by Lemma 10.10, labelpsq � `1. Due to Lemmas 7.8 and
11.30, ps, s1q ∈ Tr `1 spawnp`2q,`3 . Hence ps, s

1q ∈ Self1.

Claim 11.35. Par � Self3 ∪ Par3.

11.5. THREAD CREATION 125

Proof. Let ps, s1q ∈ Par. Therefore, there exists s0 ∈ S0 such that ps0, sq ∈ Reach; Schedule
and s ∈ afterps0q. Notice that by de�nition of Schedule, threadps0q � threadpsq.

Assume by contradiction, that s ∈ SchedulexinterfereA0ts0uy. Due to Lemma 10.8,
threadps0q � threadpsq. This is contradictory.

Hence, by Lemma 11.32, there exists s1, s2, s3 such that ps0, s1q ∈ Reach1, ps1, s2q ∈
Schedule, ps2, s3q ∈ Reach3, ps3, sq ∈ Schedule, s2 ∈ schedule-childts1u, and labelps1q �
labelpsq � `3.

Hence, s1 ∈ S1, s2 ∈ S2.
According to Lemma 10.6 afterps1q∩afterps2q � ∅. Given that ps2, sq ∈ Reach; Schedule; Schedule,

ps2, sq ∈ pG0 ∪ A0q�|afterps1q. Hence, du to Lemma 11.23, s ∈ afterps2q.

If threadpsq � threadps2q, then ps2, sq ∈ Reach3 and ps, s1q ∈ Self3. If threadpsq �
threadps2q, then ps, s1q ∈ Par3.

Claim 11.36. Sub � Self3 ∪ Par3.

Proof. Let ps, s1q ∈ Sub. There exists s0, s4 such that ps0, s4q ∈ Reach and ps4, sq ∈
Extps0, s4q and s4 ∈ S1. By Lemma 11.32, there exists s1, s2, s3 such that ps0, s1q ∈ Reach1,
s2 ∈ schedule-childApts1uq, ps2, s3q ∈ Reach3 ∩ Ext1ps0, s1q and ps3, s4q ∈ Schedule.

Furthermore, s ∈ afterps0q r afterps4q. Due to Lemma 11.31, either s ∈ afterps1q r
afterps4q or s ∈ afterps2qr afterps4q.

Assume by contradiction that s ∈ afterps1qr afterps4q. Therefore ps, s1q ∈ Sub1. But,
by Claim 11.3, Sub1 � ∅. Therefore s ∈ afterps2qr afterps4q.

Let pi, P, σ, gq � s and s5 � pthreadps2q, P5, σ5, g5q.
Given that ps4, sq ∈ Extps0, s4q, ps4, sq ∈ rpG0|afterps0q ∩ Tr q ∪ A2|afterps0q

s� and by Lemma

11.31, ps4, sq ∈ rpG0|afterps1q∪afterps2q ∩ Tr q ∪ A2|afterps0q
s�.

By de�nition of post, afterps1q � postp`2q. Furthermore by Lemma 10.6, afterps1q ∩
afterps2q � ∅. Therefore afterps1q � postp`2q r afterps2q. Hence, ps4, sq ∈ rpG0|afterps2q ∩
Tr q ∪ A2|afterps0q

∪ G0|postp`2qrafterps2qs
�. By Lemma 10.2, afterps2q � afterpsq, therefore

ps4, sq ∈ rpG0|afterps2q ∩ Tr q ∪ pA2 ∪ G0|postp`2qq|afterps0qs
�. By Proposition 10.1, ps4, sq ∈

rpG8|afterps2q ∩ Tr q ∪ pA2 ∪ G0|postp`2qq|afterps0qs
�.

Let pi, P, σ, gq � s and s5 � pthreadps2q, P, σ, gq. Therefore, ps2, s5q ∈ Reach3.
If i � threadps2q, then s5 � s and ps, s1q ∈ Self3. If i � threadps2q, then ps5, sq ∈

Schedule and ps, s1q ∈ Par3.

Proposition 11.5. v`1createp`2cmdq, `3wpQq ¤ combineQ1�guaranteev`2cmd ,`8w
�init-child`2pQ

1q
with Q1 � v`1spawnp`2q, `3wpQq

126CHAPTER 11. OVERAPPROXIMATION OF THE INTERMEDIATE SEMANTICS

CHAPTER 12
Denotational Intermediate Semantics

12.1 De�nition

We introduce the denotational intermediate semantics v| � |w:

De�nition 12.1 (Basic statements). Let `1basic, `2 be a basic statement, then:

v|`1basic, `2|wxS, G, Ay
def� xS2, G ∪ Gnew, Ay

where S2 � interfereA
�

Tr -`1basic,`2xinterfereApSqy
�

and Gnew � tps, s1q ∈ Tr `1basic,`2 | s ∈ interfereApSqu.

De�nition 12.2. For each concrete con�guration Q:

1. v|`1cmd1; `2cmd2, `3|wpQq
def� v|`2cmd2, `3|w � v|`1cmd1, `2|wpQq

2. v|`1 if ppcondqthent`2cmd1uelset`4cmd2u, `3|wpQq
def�

v|`2cmd1, `3|w � v|`1guardpcondq, `2|wpQq t v|`4cmd2, `3|w � v|`1guardp condq, `4|wpQq

3. v|`1whilepcondqt`2cmdu, `3|wpQq
def� v|`1guardp condq, `3|w � loopÒωpQq

with looppQ1q �
�
v|`2cmd , `1|w � v|`1guardpcondq, `2|wpQ1q

�
t Q1

4. v|`1createp`2cmdq, `3|wpQq
def� combineQ1 � guaranteev|`2cmd ,`8|w

� init-child`2pQ
1q

with Q1 � v|`1spawnp`2q, `3|wpQq

127

128 CHAPTER 12. DENOTATIONAL INTERMEDIATE SEMANTICS

While points 1 and 3 are as expected, the semantics of `1createp`2cmdq, `3 (point 4)
computes interferences which will arise from executing the child and its descendants with
guarantee and then combines this result with the con�guration of the current thread.

The next theorem shows how the G-collecting semantics is over-approximated by our
intermediate denotational semantics, and is the key point in de�ning the abstract seman-
tics.

Theorem 12.1 (Soundness). For each concrete con�guration Q and each statement `stmt , `1:
v`stmt , `1wpQq ¤ v|`stmt , `1|wpQq.

Proof. This theorem is a consequence of Propositions 10.1, 11.1, 11.2, 11.3, 11.4 and 11.5.

From the point of view of Galois connections, consider the lattice of concrete con�gu-
rations C-Configurations, and the Galois connection αid, γid from C-Configurations to
C-Configurations de�ned by αid � γid � λQ.Q. For all statements `stmt , `1 The semantics
v|`stmt , `1|w is an abstraction2 of v`stmt , `1w for this Galois connection.

The main advantages of the intermediate denotational semantics, comparing with the
G-collecting semantics are:

� The intermediate denotational semantics is de�ned by induction on statements.

� There exist a pseudo-algorithm that computes the intermediate denotational seman-
tics by induction on statements. This pseudo-algorithm applies the inductive de�ni-
tion. This is not a true algorithm since some �xpoint computations need an in�nite
time.

The abstract semantics (See Part IV) will overapproximate this semantics and be com-
putable.

12.2 Connection Between the Denotational Intermedi-

ate Semantics and the Operational Semantics

12.2.1 Soundness

Recall that Tr �`cmd ,`8
pInitq is the set of states that occur on paths starting from Init . S1

represents all �nal states reachable by the whole program from an initial state. G1 represents
all transitions that may be done during any execution of the program and A1 represents
transitions of children of main .

The following proposition states that the denotational semantics is an overapproxima-
tion of the operational semantics.

2The concept of abstraction is de�ned by De�nition 3.3

12.2. CONNECTION BETWEEN SEMANTICS 129

Proposition 12.1 (Soundness). Consider a program `cmd , `8 and its set of initial states
Init . Let:

xS1, G1, A1y def� v|`cmd , `8|wxInit , G8, Systemy
with G8 � guaranteev|`cmd ,`8|w

xInit , System, Systemy
Then:

S1 � tpmain, P, σ, gq ∈ Tr �`cmd ,`8
xInity | P pmainq � `8u

G1 � G8 � tps, s
1q ∈ Tr `cmd ,`8 | s ∈ Tr �`cmd ,`8

xInityu ∪ System

A1 � tps, s1q ∈ Tr `cmd ,`8 | s ∈ Tr �`cmd ,`8
xInity ^ threadpsq � mainu

∪System

Proof. This is a consequence of Theorem 10.1 and Theorem 12.1.

12.2.2 Completeness

Since the intermediate denotational semantics is an overapproximation of the G-collecting
semantics we may wonder if we lose precision. Obviously, the two semantics are not equal.
Let us consider the program x :� 1:
Let xS1, G1, A1y � vx :� 1wxInit , System, Systemy and xS2, G2, A2y � v|x :� 1|wxInit , System, Systemy.
It is straightforward to check that S1 � ∅ and S2 � ∅. Nevertheless, we will show that when
we compute the guarantee of the whole semantics of a program, the two semantics coincide.

We introduce the concept of �consistent�. A consistent con�guration is a con�guration
without unreachable states or transitions. Formally:

De�nition 12.3. A concrete con�guration xS, G, Ay is consistent with a statement `stmt , `1

if and only if the three following properties hold:

(a) S � Tr �`stmt ,`1xInity

(b) G � tps, s1q ∈ Tr `stmt ,`1 | s ∈ Tr �`stmt ,`1xInityu ∪ System

(c) A � tps, s1q ∈ Tr `stmt ,`1 | s ∈ Tr �`cmd ,`1xInityu ∪ System

Obviously, consistence is an invariant:

Lemma 12.1. We consider a concrete con�guration Q and two statements `stmt , `1 and
`1stmt1, `2 such that: Tr `1stmt1,`2 � Tr `stmt ,`1.

If Q is consistent with `stmt , `1 then v|`1stmt1, `2|wpQq is also consistent with `stmt , `1.

Proof. We make a proof by induction on statements. The lemma is trivial for basic state-
ments, and induction is straightforward3.

We notice that the semantics constraints S1:

Lemma 12.2. Let xS1, G1, A1y � v`stmt , `1wxS, G, Ay. Therefore for all pi1, P 1, σ1, g1q ∈ S1,
P 1pi1q � `1 and there exists s ∈ S such that i � threadpsq.

3We just need to consider each case.

130 CHAPTER 12. DENOTATIONAL INTERMEDIATE SEMANTICS

Proof. As for previous lemma, the proof is done by induction on statements.

When we compute inductively the semantics of a program, we will encounter two kinds
of con�gurations:

(a) con�gurations that represent execution of the main thread.

(b) con�gurations that represent the execution of some other threads.

The con�gurations of kind (a) are called �principal� and the con�gurations of kind (b) are
called �secondary�. Formally:

De�nition 12.4. A concrete con�guration is principal if and only if the two following
properties hold:

(a) @s ∈ S, threadpsq � main .

(b) @ps, s1q ∈ A, threadpsq � main

De�nition 12.5. A con�guration is secondary if and only if the two following properties
hold:

(a) @s ∈ S, threadpsq � main .

(b) @ps, s1q ∈ G, threadpsq � main

Secondary con�gurations remain secondary:

Lemma 12.3. If a con�guration Q is secondary, therefore, for all statements `stmt , `1, the
con�guration v|`stmt , `1|wQ is secondary.

Proof. By induction on statements, using Lemma 12.2.

The function init-child` transforms a principal con�guration into a secondary con-
�guration: i.e, if we were executing the main thread, therefore, after init-child` we
execute some descendant(s) of the main thread. Formally:

Lemma 12.4. If Q is a principal con�guration therefore init-child`pQq is an secondary
con�guration.

Proof. This is a consequence of the de�nition of init-child`.

A principal con�guration remains principal. Notice that, in the proof of the Lemma,
we need to deal with Secondary con�gurations.

Lemma 12.5. If a con�guration Q is principal, therefore, for all statements `stmt , `1, the
con�guration v|`stmt , `1|wQ is principal.

131

Proof. The proof is done by induction on statements. All cases except create are straight-
forward.

Recall that v|`1createp`2cmdq, `3|wpQq � combineQ1�guaranteev|`2cmd ,`8|w
�init-child`2pQ

1q
with Q1 � v|`1spawnp`2q, `3|wpQq

According to Lemma 12.4, init-child`2pQ
1q is secondary, therefore, by Lemma 12.3, for

all ps, s1q ∈ G2, threadpsq � main where xS2, G2, A2y � guaranteev|`2cmd ,`8|w
�init-child`2pQ

1q.
Hence we conclude.

Now, we can conclude that the denotational intermediate semantics is better than only
sound, it is also complete:

Proposition 12.2 (Completeness). Consider a program `cmd , `8 and its set of initial
states Init . Let:

xS1, G1, A1y def� v|`cmd , `8|wxInit , G8, Systemy

with G8 � guaranteev|`cmd ,`8|w
xInit , System, Systemy

Then:
S1 � tpmain, P, σ, gq ∈ Tr �`cmd ,`8

xInity | P pmainq � `8u

G1 � G8 � tps, s
1q ∈ Tr `cmd ,`8 | s ∈ Tr �`cmd ,`8

xInityu ∪ System

A1 � tps, s1q ∈ Tr `cmd ,`8 | s ∈ Tr �`cmd ,`8
xInity ^ threadpsq � mainu

∪System

Proof. Lemma 12.1 proves that G1 � tps, s1q ∈ Tr `cmd ,`8 | s ∈ Tr �`cmd ,`8
xInityu∪System and

A1 � tps, s1q ∈ Tr `cmd ,`8 | s ∈ Tr �`cmd ,`8
xInityu ∪ System.

Lemma 12.5 permits to conclude that A1 � tps, s1q ∈ Tr `cmd ,`8 | s ∈ Tr �`cmd ,`8
xInity ^

threadpsq � mainu ∪ System.
Lemma 12.1 proves that S1 � Tr �`cmd ,`8

xInity. And, with Lemma 12.2 we conclude that:
S1 � tpmain , P, σ, gq ∈ Tr �`cmd ,`8

xInity | P pmainq � `8u.

12.2.3 Conclusion

The following theorem summarizes the two previous propositions:

Theorem 12.2 (Connection with the operational semantics). Consider a program `cmd , `8
and its set of initial states Init . Let:

xS1, G1, A1y def� v|`cmd , `8|wxInit , G8, Systemy

with G8 � guaranteev|`cmd ,`8|w
xInit , System, Systemy

Then:
S1 � tpmain, P, σ, gq ∈ Tr �`cmd ,`8

xInity | P pmainq � `8u

G1 � G8 � tps, s
1q ∈ Tr `cmd ,`8 | s ∈ Tr �`cmd ,`8

xInityu ∪ System

A1 � tps, s1q ∈ Tr `cmd ,`8 | s ∈ Tr �`cmd ,`8
xInity ^ threadpsq � mainu

∪System

132

Part IV

Abstract Semantics

133

CHAPTER 13
Generic Abstraction for Interleaving

Semantics

13.1 Abstraction

We use the abstract interpretation methodology. Our concrete lattices are the powersets
PpStatesq and PpTransitionsq ordered by inclusion. Remember, our goal is to adapt
any given single-thread analysis in a multithreaded setting. Accordingly, we are given an
abstract complete lattice D of abstract states and an abstract complete lattice R of abstract
transitions. These concrete and abstract lattices are linked by two Galois connections,
respectively αD, γD and αR, γR: We consider four Galois connections described in Fig. 13.2
and we assume that the two �rst Galois connections are given, and build the other two one
from them. We assume that abstractions of states and transitions depend only on stores
and current threads and that all the transitions that leave the store and the current thread
unchanged are in γRpKq. This assumption allows us to abstract guard and spawn as the
least abstract transition K.

We also assume we are given the abstract operators of Figure 13.1, which are correct
abstractions1 of the corresponding concrete functions. The labels ` and `1 are implicitely

1According to de�nition 3.3.

135

136 CHAPTER 13. GENERIC ABSTRACTION FOR INTERLEAVING SEMANTICS

Concrete function Abstract function
λS.Tr -`action,`1xSy elemaction : D Ñ D

λS.pTr -`action,`1q|S elem-inter action : D Ñ R

λS.Tr -`guardpcondq,`1xSy enforce
cond

: D Ñ D

λA, S.interfereApSq inter : R �D Ñ D
schedule-child` schedule-child : D Ñ D
λS.αErpTr -`action,`1q|Ss error action : D Ñ PpErrorsq
λS.αErpTr -`guardpcondq,`1q|Ss error cond : D Ñ PpErrorsq

Figure 13.1: Given Abstractions

universally quanti�ed, e.g., elemaction is an abstraction of λS.Tr -`action,`1xSy for all labels ` and
`1.

The function elem `action,`1 abstracts the fact to �re exactly one transition speci�c to the
statement `action, `1. Notice that, elem `action,`1 is the abstraction of the canonical2 func-
tion fTr -`action,`1

associated to Tr -`action,`1 . The function elem-inter `action,`1pCq abstract the fact

to collect all transitions generated by the statement `action, `1 that may be �red from a
state of γDpCq. Functions enforce`cond ,`1

and enforce-inter `cond ,`1
do the same thing for guard

statements.
To handle errors, we assume a function error : Transitions Ñ PpErrorsq from the

set of transitions Transitions to some set of errors Errors. The set of errors represents
possibles run-time errors, e.g.:

Errors � tarray-overflow,division-by-zero,NULL-pointer-dereferenceu.

The function errorpτq associates to each transition τ , the set of errors that transition may
make. This gives us a Galois connection αE, γE from the lattice PpTransitionsq of set of
transitions to the lattice of set of errors PpErrorsq:

αEpGq
def�

¤
τ∈G

errorpτq

γEpEq
def� tτ | errorpτq � Eu.

The function error action : D Ñ PpErrorsq abstracts the possible error transitions that may
be �red when applying a action action from a set of states S. For instance, recall the
Euclides algorithm given in Figure 3.6. At line 6, they may be a division by zero, error r:=a%b
returns division-by-zero is the value of b may be zero. We assume that transitions that
are not generated by a statement of the form `action, `1 or `guardpcondq, `1 cannot generates
errors, e.g., spawn statements does not make errors.

Since the number of thread during an execution may be in�nite (E.g., see program of
Figure 7.4) we need to abstract threads. A thread will be abstracted by the label where

2Recall that, in Section 2.2 we associate to each binary relation R a canonical function fR de-

�ned by: fRpSq
def
� RxSy.

13.1. ABSTRACTION 137

Name
Concrete
Elements

Abstract
Elements

De�nitions

γD, αD S ∈ PpStatesq C ∈ D
γR, αR A ∈ PpTransitionsq I ∈ R

γL, αL S ∈ PpStatesq L ∈ PpLq
αLpSq � t` ∈ L | S ∩ postp`q � ∅u
γLpLq � States

γLpLq �
�
`∈LrL postp`q

γK, αK G ∈ PpTransitionsq K ∈ RL
αKpGq � λ`.αRpG|postp`qq
γKpK q � tps, s1q ∈ Transitions | @` ∈ L,

∈ postp`q ñ ps, s1q ∈ γRpK p`qqu

Figure 13.2: Galois Connections

it have been created. E.g., in Figure 7.3, the threads i and j will be abstracted by the
same label `2. The set of abstract threads is then the set of labels L � Labels in which
a thread may be created. We de�ne a Galois connection between PpStatesq and PpLq:
αLpSq � t` ∈ L | S ∩ postp`q � ∅u and γLpLq �

�
`∈LrL postp`q (by convention, this set

is States when L � L). The set αLpSq represents the set of labels that may have been
encountered before reaching this point of the program.

Note that we have two distinct ways of abstracting states pi, P, σ, gq, either by using
αD, or by using αL which only depends on the genealogy g and the current thread i. The
latter is speci�c to the multithreaded case, and is used to infer information about possible
interferences. Recall Section 4.7.2: In Figure 4.8, when the thread j2 reaches the bullet, it
can �re transitions. Such a transition ps, s1q cannot interfere with j6. The abstraction αL
detects this point, since `6 R αLpsq, where `6 is the label in which j6 has been created.

We also need to abstract the G component of the G-collecting semantics, and most
importantly G|postp`q as used in the de�nition of init-child (Fig. 10.5), itself required in
the semantics of create (Def. 12.2, item 4). Notice that postpq is called only on labels of
L and never on labels of Labels r L. The purpose of αK is to abstract precisely G|postp`q:
for each G ∈ PpTr q, K � αKpGq ∈ RL maps each label ` to the abstract interference (in R)
on threads created at ` and their descendants. Additionally, we assume an extra element
`� ∈ Labels, never used in statements, and extend postpq so that postp`�q � States.
This trick allows us to represent an abstraction of G itself as K p`�q.

De�nition 13.1. Abstract con�gurations are tuples xC ,L,K , I ,Ey ∈ D � PpLabelsq �
RLabels�R�PpErrorsq and C is saturated with respect to interferences, i.e., inter I pCq � C
and `� ∈ L. The meaning of each component of an abstract con�guration is given by the
Galois connection αcfg, γcfg:

αcfgxS, G, Ay
def� xinterαRpAqpαDpSqq, αLpSq, αKpGq, αRpAq, αEpGqy

γcfgxC ,L,K , I ,Ey def� xγDpCq ∩ γLpLq, γKpK q ∩ γEpEq, γRpI qy

We call A-Configurations the set of abstract con�gurations.

138 CHAPTER 13. GENERIC ABSTRACTION FOR INTERLEAVING SEMANTICS

In other words:

� C abstracts the possible current stores of S

� L abstracts the threads encountered so far in the execution.

� K p`q abstracts possible interferences with a thread created in `.

� I is an abstraction of interferences A.

� E collects all errors that may occur during the execution of the program.

13.2 Semantics of Commands

The abstract semantics is then derived from the concrete. Fig. 13.3 gives the abstract
counterpart of the functions of Fig. 10.5. To ensure termination we use a widening3 operator
O (See P. Cousot and R. Cousot papers [CC92, CC91] and Section 3.3), i.e., we approximate
�xpoints f Òω by f ÒO.

De�nition. 13.2 gives the abstract semantics, derived from De�nitions 12.1 and 12.2.
Our �nal algorithm is to compute recursively guaranteeL`cmd ,`8M applied to the initial con�g-
uration.

De�nition 13.2. For any abstract con�guration Q :

L`action, `1MQ def� basicactionpQ q

L`1cmd1; `2cmd2MQ def� L`2cmd2M � L`1cmd1MpQ q
L`1whilepcondqt`2cmduMQ def� guard

 cond
� loopÒOpQ q

with looppQ 1q def�
�
L`2cmd , `1M � guard

cond
Q 1
�
t Q 1

L`1createp`2cmdqMQ def� combineQ 1 � guaranteeL`2cmdM � child -spawn
`2
pQ q

with Q 1 def� spawn
`2
pQ q

The following lemma ensures us that elem-inter action gives us an abstraction of the set of
transition Gnew introduced in Proposition 11.1 and in De�nition 12.1.

Lemma 13.1. Let:

� xS1, G1, A1y � v|action|wpγcfgxC ,L,K , I ,Eyq

� xC 1,L 1,K 1, I 1,E 1y � basicactionxC ,L,K , I ,Ey

3We can also use a narrowing operator. We do not give the details on narrowing here, this is an
orthogonal problem.

13.2. SEMANTICS OF COMMANDS 139

basicactionxC ,L,K , I ,Ey def� xinter I � elemactionpCq,L,K t Knew, I ,E ∪ error pCqy

with Knew
def� λ`.

#
elem-inter actionpCq if ` ∈ L
K if ` R L

guard
cond

xC ,L,K , I ,Ey def� xinter I � enforce
cond

pCq,L,K , I ,E ∪ error condpCqy

spawn
`
xC ,L,K , I ,Ey def� xC ,L ∪ t`u,K , I ,Ey

child -spawn
`
xC ,L,K , I ,Ey def� xinter ItK p`qpCq,L, λ`.K, I t K p`q, ∅y

combinexC ,L,K ,I ,EypK 1,E 1q def� xinter ItK 1p`�qpCq,L,K t K 1, I t K 1p`�q,E ∪ E 1y

execute-thread f 7,C ,L,I pK ,Eq def� pK 1,E 1q

with xC 1,L 1,K 1, I 1,E 1y def� f 7pxC ,L,K , I ,Eyq

guarantee
f 7
pxC ,L,K , I ,Eyq def� execute-thread ÒO

f 7,C ,L,I pK ,Eq

Figure 13.3: Basic Abstract Semantic Functions

� Gnew � tps, s1q ∈ Tr `1action,`2 | s ∈ interfereApSqu.

Therefore:

αRpGnewq ¤ elem-inter actionpCq
αEpGnewq ¤ error actionpCq

Proof. Since abstract con�gurations are saturated with respect to interferences (See De�-
nition 13.1), interfereApγDpCqq � γDpCq.
Therefore Gnew � tps, s1q ∈ Tr `1basic,`2 | s ∈ γDpCqu.
Hence αRpGnewq ¤ elem-inter `lv:�e,`1pCq and αRpEq ¤ error actionpCq.

Recall that, given a set of transitions G we need to abstract precisely the subset G|postp`q.
The following lemma shows the link between αL and G|postp`q.

Lemma 13.2. Given a set of transitions G:

G|postp`q � ∅ô ` R αLpts | Ds
1 : ps, s1q ∈ Guq

Proof. Let S � ts | Ds1 : ps, s1q ∈ Gu. According to De�nition 2.4, G|postp`q � ∅ is equivalent
to postp`q ∩ S � ∅. This is equivalent to ` R αLpSq.

The function inter abstracts interfere for the abstract lattice R. As showned by the
following lemma, the identity function id : PpLq Ñ PpLq is an abstraction of interfere
for the abstract lattice PpLq.

Lemma 13.3. αLpSq � αLpinterfereApSqq.

140 CHAPTER 13. GENERIC ABSTRACTION FOR INTERLEAVING SEMANTICS

Proof. This is a consequence of Lemma 10.11.

The basic`action,`1 function updates K by adding the modi�cation of the store to all
labels encountered so far (those which are in L). It does not change L because no thread
is created. Notice that in the case of a non-relational store, we can simplify function basic
using the fact that inter I � elemx:�epCq � C rx ÞÑ val C peqtI pxqs. The following lemma proves
that this function is a correct abstraction of the semantics of `action, `1.

Proposition 13.1. For all labels ` and `1, basicaction is an abstraction of v|`action, `1|w.

Proof. Let us consider that xS, G, Ay � pγcfgxC ,L,K , I ,Eyq, and xS1, G1, A1y � v|`action, `1|wxS, G, Ay
and xC 1,L 1,K 1, I 1,E 1y � basicactionxC ,L,K , I ,Ey.

� Let us prove that αDpS1q ¤ C 1.

By De�nition 12.1, S1 � interfereA
�

Tr -`action,`1xinterfereApSqy
�
. Therefore, by def-

inition, αpS 1q ¤ inter I � elemaction � inter I pCq. But abstract con�gurations are satu-
rated with respect to interferences, therefore: αpS 1q ¤ inter I � elemactionpCq. Hence
αDpS1q ¤ C 1.

� Let us prove that αLpS1q ¤ L 1 � L. According to Lemma 13.3, αLpS1q � αLpinterfereApSqq.
Since transitions of Tr -`action,`1 does not modify the current thread or the genealogy (See
Lemma 7.6), αLpTr -`action,`1xinterfereApSqy � αLpinterfereApSq. And we conclude
using a second time Lemma 13.3

� Let us prove that αKpG1q ¤ K .

According to De�nition 12.1, G1 � G ∪ Gnew with Gnew � tps, s1q ∈ Tr `1basic,`2 | s ∈
interfereApSqu. By Lemma 13.1, αRpGnewq ¤ elem-inter `lv:�e,`1pCq.

αKpGnewq � λ`.αRpGnew|postp`qq ¤ λ`.

#
K if Gnew|postp`q � ∅
αRpGnewq otherwise

Notice that, due to Lemma 13.2:

Gnew|postp`q � ∅ô ` R αLpinterfereApSqq.

Due to Lemma 13.3:
Gnew|postp`q � ∅ô ` R αLpSq.

Therefore

αKpGnewq ¤ λ`.

#
K if ` R αLpSq.

αRpGnewq otherwise

� Let us prove that αRpA1q ¤ I 1. This is obvious since A � A1 and I � I 1 and αRpAq ¤ I .

13.2. SEMANTICS OF COMMANDS 141

Let us prove that αEpG1q ¤ E 1. This is a consequence of Lemma 13.1.

The guards are abstracted in the same way:

Proposition 13.2. For all labels ` and `1, guard `cond ,`1
is an abstraction of v|`guardpcondq, `1|w.

Proof. Same as Proposition 13.1, using the facts that, by hypothesis on the abstract lattice
of transitions R: αRpTr `guardpcondq,`1q � K

Proposition 13.3. spawn
`2
is an abstraction of v|`1spawnp`2q, `3|w

Proof. Let xS, G, Ay � pγcfgxC ,L,K , I ,Eyq, and xS1, G1, A1y � v|`1spawnp`2q, `3|wxS, G, Ay and
xC 1,L 1,K 1, I 1,E 1y � spawn

`2
xC ,L,K , I ,Ey.

� Let us prove that αDpS1q ¤ C 1 � C .

By De�nition 12.1, S1 � interfereA
�

Tr -`1 spawnp`2q,`3xinterfereApSqy
�
. Furthermore,

Tr -`1 spawnp`2q,`3 does not modify the current thread and does not modify the store.

Therefore, by de�nition, αpS 1q ¤ inter I � inter I pCq � C .

� Let us prove that αLpS1q ¤ L 1 � L. According to Lemma 13.3, αLpS1q � αLpinterfereApSqq.
αLpTr -`create,`1xinterfereApSqy � αLpinterfereApSq ∪ t`2u. And we conclude using a
second time Lemma 13.3

� Let us prove that αKpG1q ¤ K 1. Same proof as for Proposition 13.1, using the fact that
transitions generated by the statement `1spawnp`2q, `3 have no e�ect on the current
thread nor the store.

� We prove that αRpA1q ¤ I 1 and αEpG1q ¤ E 1 in the same way than for Proposition
13.1.

The functions of Fig. 13.3 abstract the corresponding functions of the G-collecting
semantics (See Fig. 10.5).

Proposition 13.4. The abstract functions child -spawn
`2
, combine and guaranteeL`cmd ,`1M are

abstractions of the concrete functions init-child`1�v
`1spawnp`2q, `3w, combine and guaranteev`cmd ,`8w

respectively.

Proof. This is a consequence of Proposition 3.1.

The abstract semantics is de�ned by induction on syntax, see Fig. 13.2:

Theorem 13.1 (Soundness). Lcmd , `M is an abstraction of vcmd , `w.

Proof. This is a consequence of Propositions 3.1, 13.1, 13.2, 13.3 and 13.4.

142 CHAPTER 13. GENERIC ABSTRACTION FOR INTERLEAVING SEMANTICS

CHAPTER 14
Abstract Domains for Sequential

Consistency

We show some concrete and abstract stores that can be used in practice. For each domain,
we give the abstract lattices D and R, the Galois connections of Figure 13.2 and the
abstract functions of Figure 13.1.

14.1 Maps

14.1.1 Main Abstraction

Concrete stores are described in Chapter 8.1. They are maps from the set of variables Var
to some set V of concrete values.

Abstract stores are maps from Var to some complete lattice V7 of abstract values, e.g.,
NotZero (see section 3.4), Ranges [CC04] (See Section 3.2), or string lengths [AGH06].
Abstract stores are ordered by the pointwise ordering (recall De�nition 2.10). Assuming
a Galois connection αV , γV between V and V7, we de�ne a Galois connection αmap, γmap

143

144 CHAPTER 14. ABSTRACT DOMAINS FOR SEQUENTIAL CONSISTENCY

between set of concrete stores and abstract stores:

αmapptσuq
def� λx.αV pσpxqq

γmappσ
7q def� tσ | @x, σpxq ∈ γV pσ

7pxqqu.

Both abstract states and abstract transitions are encoded as abstract stores, i.e., D �
R � pV7qVar . As required, abstract states depends only of stores and current threads.
Actually, they depend only of stores.

αDptpi, P, σ, gquq
def� αmappσq

γDpσ
7q def� tpi, P, σ, gq | σ ∈ γmappσ

7qu.

The abstraction of transitions remembers only information on modi�ed variable: it
recalls the possible new values of a written variable.

αRptppi, P, σ, gq, pi
1, P 1, σ1, g1qquq def� λx.

#
αV pσ1pxqq if σ1pxq � σpxq

K otherwise

γRpσ
7q def� tppi, P, σ, gq, pi1, P 1, σ1, g1qq | @x ∈ Var , σ1pxq � σpxq _ σ1pxq ∈ γmappσ

7qu.

We give for these domains the primitives of Fig. 13.1. Let val C peq and addr C plvq be the
abstract value of the expression e and the set of variables that may be represented by lv,
respectively, in the context C ; and let true7 and false7 be the abstractions of true and false
respectively.

elemx:�epCq
def� C rx ÞÑ val C peqs

elem lv:�epCq
def�

§
x∈addrC plvq

elemx:�epCq

elem-inter lv:�epCq
def� λx.

#
val C peq if x ∈ addr C plvq

bot otherwise

inter I pCq
def� I t C

enforce
x
pCq def�

#
C rx ÞÑ Cpxq u true7s if Cpxq u true7 � K

K otherwise

enforce
 x
pCq def�

#
C rx ÞÑ Cpxq u false7s if Cpxq u false7 � K

K otherwise

schedule-child pCq def� elem lockpµqpCq
def� elemunlockpµqpCq

def� C

elem-inter lockpµqpCq
def� elem-inter unlockpµqpCq

def� K

14.2. CARTESIAN ABSTRACTION 145

`4y :� 0; `5z :� 0;
`6createp`7y :� y � zq;
`8z :� 3, `8

Figure 14.1: Example

The function elem pq updates the abstract value of the modi�ed variable.
Notice that this abstraction is a separate product (See De�nition 3.4) of cardpVar q times

the concrete lattice Var . The abstractions of guards take into account that, in a separate
product, py,Kq, pK, yq and pK,Kq have the same concretization. The abstraction of guard
takes into account this point. If xu false7 is empty, this means that, in the concrete world,
the system cannot pass the guard. Therefore, after the guard, the concrete value is ∅.

In this abstraction, we do not take into account the locks. But a simple product or
even a reduced product with a domain for locks will allow us to take locks into account.

14.1.2 Errors

Errors will depend on what we want to detects. We give here a simple example, with

Errors � tdivision-by-zerou.

Given an assignment assign equal to lv0 :� e0, we write eóassign to say that e is a
subexpression of e0 or of lv0. The function error is de�ned by (all free variables are implicitly
existentially quanti�ed):

error apCq � tdivision-by-zerou
def

ô e1%e2óa _ e1{e2óa ^ val C pe2q � rl, us ^ l ¤ 0 ¤ u

14.1.3 Example

Consider the program of Fig. 14.1 and the abstract store Ranges of ranges [CC04]. We
apply our algorithm to this example, giving a run-through (See Figure 14.2).

Our algorithm computes execute-thread (line 1 to 7). The �xpoint is not reached, so we
compute execute-thread a second time (line 8 to 14). Then, the �xpoint is reached, as a
third application of execute-thread will con�rm (not shown).

We do not give E in this example since E � ∅ for all lines.

14.2 Cartesian Abstraction

In Cartesian abstraction [MPR06b, MPR06a] (See 4.5.2), stores are maps. Nevertheless,
the set of variable Var is divided into two parts: shared variables Var shared and private

146 CHAPTER 14. ABSTRACT DOMAINS FOR SEQUENTIAL CONSISTENCY

Line C L K I

1 Initial con�guration
y � ?
z � ?

t`�u K K

2 L`4y :� 0, `5M
y � 0
z � ?

t`�u `� ÞÑ y � 0 K

3 L`5z :� 0, `6M
y � 0
z � 0

t`�u `� ÞÑ y � 0, z � 0 K

4 child -spawn
`7

y � 0
z � 0

t`�u K K

5 L`7y :� y � z, `8M y � 0
z � 0

t`�u `� ÞÑ y � 0 K

6 combinespawn`7
p�q

y � 0
z � 0

t`�, `7u `� ÞÑ y � 0, z � 0 y � 0

7 L`8z :� 3, `8M y � 0
z � 3

t`�, `7u
`� ÞÑ

"
y � 0
z � r0, 3s

`7 ÞÑ z � 3
y � 0

8 Initial con�guration
y � ?
z � ?

t`�u
`� ÞÑ

"
y � 0
z � r0, 3s

`7 ÞÑ z � 3
K

9 L`4y :� 0, `5M
y � 0
z � ?

t`�u
`� ÞÑ

"
y � 0
z � r0, 3s

`7 ÞÑ z � 3
K

10 L`5z :� 0, `6M
y � 0
z � 0

t`�u
`� ÞÑ

"
y � 0
z � r0, 3s

`7 ÞÑ z � 3
K

11 child -spawn
`7

y � 0
z � r0, 3s

t`�u K z � 3

12 L`7y :� y � z, `8M y � r0, 3s
z � r0, 3s

t`�u `� ÞÑ y � r0, 3s z � 3

13 combinespawn`7
p�q

y � r0, 3s
z � 0

t`�, `7u
`� ÞÑ

"
y � r0, 3s
z � r0, 3s

`7 ÞÑ z � 3
y � r0, 3s

14 L`8z :� 3, `8M y � r0, 3s
z � 3

t`�, `7u
`� ÞÑ

"
y � r0, 3s
z � r0, 3s

`7 ÞÑ z � 3
y � r0, 3s

Figure 14.2: Abstract Example

14.3. GEN/KILL ANALYSES 147

variables Var private. each thread has its own copy of the private variables as in OpenMP
model [Boa08].

The set GlobalStore is the set of maps from Var shared to the set of concrete values V
and Localstore is the set of maps from Var shared to the set of concrete values. Finally, the
set of stores is de�ned by:

Stores � GlobalStore � LocalstoreIds.

In this concrete model, a thread may only reads the shared variable and its own private
variables.

The abstract lattices D and R are de�ned as following:

D
def� PpGlobalStore � Localstoreq

R
def� PpGlobalStore �GlobalStoreq

To de�ne Galois connections, we just need to de�ne the abstraction function on sin-
gletons (as shown in 3.2). On states, αD forget all information on the private variables of
other threads. It keeps information only on global variables and on private variables of the
current thread:

αDptpi, P, pglobs, lsq, gquq
def� pglobs, lspiqq

The abstract transitions keep information on how the global variables are modi�ed.
The link between local and global variables is lost:

αRpt
�
pi, P, pglobs, lsq, gq, pi1, P 1, pglobs1, ls 1q, g1q

�
uq def� pglobs, globs1q.

elemactionpCq
def� αD

�
Tr -`action,`1xγDpCqy

�
elem-inter actionpCq

def� αRppTr -`action,`1q|γDpCqq

schedule-child pCq def� tpglob, lq | Dglob2, l2 : pglob, l2q ∈ C ^ pglob2, lq ∈ StoresInitu

14.3 Gen/Kill Analyses

In such analyses [SS00] the set of stores is a complete lattice, e.g., sets of initialized vari-
ables, sets of edges of a point-to graph (See Section 8.2 and Section 4.6). As for maps, the
abstract states and abstract transitions are the same: D � R � StoresV .

Each gen/kill analysis gives, for each basic action, two elements of the lattice Stores:

148 CHAPTER 14. ABSTRACT DOMAINS FOR SEQUENTIAL CONSISTENCY

� genpaction, σq

� and keeppaction, σq.

These sets may take the current store σ into account (e.g. Rugina and Rinard's �strong
�ag� [RR99, RR03]); gen. The Galois connections are de�ned by:

αDptpi, P, σ, gquq
def� tσu

αptppi1, P1, σ1, g1q, pi2, P2, σ2, g2qquq
def�

£
σ:σ2¤σ1tσ

σ

γRpσ
7q def�

 �
pi1, P1, σ1, g1q, pi2, P2, σ2, g2q

�
| σ2 ¤ σ1 t σ7

(

elemactionpCq
def� pC u keeppaction, σqq ∪ genpaction, σq

elem-inter actionpCq
def� genpaction, σq

inter I pCq
def� I t C

enforce
x
pCq def� C

Notice that, as it is standard in Gen/Kill analyses [SS00, LMO07], these domains model
if statements by non-deterministic choices.

CHAPTER 15
Abstraction for Weak Memory

Models

We de�ne abstractions for weak memory models. These abstractions are similar to those
given for interleaving semantics. This chapter gives only the di�erence between abstraction
for weak memory models and abstractions of Chapter 13. Notice that our model is designed
to handle both strong and weak memory models, this is why this chaper is brief: only few
modi�cations are needed to handle TSO and PSO models.

We also assume an abstract lattice of states D and an abstract lattice of transitions R.

In weak memory models, we have write operations. these operations may be protected
by a lock:

De�nition 15.1. A lock protects a write operation op if it is held when op is in the bu�er.
ProtWrite � PpWriteOp�PpLocksqq is the set of write operations protected by locks.

Given the abstract lattices D for states and R for transitions we consider six Galois
connections described in Fig. 15.1. Notice that this is the same Galois connections as for
interleaving semantics (Recall Figure 13.2) plus two new Galois connections αop, γop and
αbuf, γbuf. We assume that the three �rst Galois connections are given. We require αR and

149

150 CHAPTER 15. ABSTRACTION FOR WEAK MEMORY MODELS

Name
Concrete
Elements

Abstract
Elements

De�nitions

γD, αD S ∈ PpStatesq C ∈ D
γR, αR A ∈ PpTransitionsq I ∈ R
γop, αop ProtWrite I ∈ R
γbuf, αbuf PpStatesq I ∈ R αbufptsuq ��

j�i

�
op∈bpjq αoptpop, mutexpj, sqqu where

s � pi, P, pm, bq, gq

γL, αL S ∈ PpStatesq L ∈ PpLq
αLpSq � t` ∈ L | S ∩ postp`q � ∅u
γLpLq � States

γLpLq �
�
`∈LrL postp`q

γK, αK G ∈ PpTransitionsq K ∈ RL
αKpGq � λ`.αRpG|postp`qq
γKpK q � tps, s1q ∈ Transitions | @` ∈ L,

∈ postp`q ñ ps, s1q ∈ γRpK p`qqu

Figure 15.1: Galois Connections for Weak memory Models

αop (from which αbuf is de�ned) to be compatible in the sense that:

αbufpinterfereApSqq ¤ αRpAq t αbufpSq.

This requirement states that applying interferences in A to S in the abstract can be com-
puted by combining the e�ect of interferences (αR) with e�ects that are pending from
bu�ers in current states (αbufpSq). The requirement will be satis�ed in all examples.

For bu�er abstraction αbuf we introduce the set of locks owned by a thread j in a state
s � pi, P, pm, bq, gq :

mutexpj, sq def� tµ ∈ Locks | mpµq � ju.

Intuitively αbufptsuq represents how the thread bu�ers other than the current thread can
modify the memory meaning both locks and pending writes.

The set of abstract con�gurations is the same as for the interleaving semantics, de�ned
in de�nition 13.1. Nevertheless, the Galois connection is not the same:

De�nition 15.2. Abstract con�gurations are tuples xC ,L,K , I ,Ey ∈ D � PpLabelsq �
RLabels�R�PpErrorsq and C is saturated with respect to interferences, i.e., inter I pCq � C
and `� ∈ L. The Galois connection between concrete4 and abstract con�gurations is:

αcfgxS, G, Ay
def� xinterαRpAqpαDpSqq, αLpSq, αKpGq, αRpAq t αbufpSq, αEpGqy

γcfgxC ,L,K , I ,Ey def� xγDpCq ∩ γLpLq ∩ γbufpI q, γKpK q ∩ γEpEq, γRpI qy

For weak memory models, we need the primitives of Fig. 15.2. Notice that these
primitives are the same as those given in Figure 13.1 in Section 14.1, except for error . Since

4Recall de�nition 12.3.

151

Concrete function Abstract function
λS.Tr -`action,`1xSy elemaction : D Ñ D

λS.pTr -`action,`1q|S elem-inter action : D Ñ R

λS.Tr -`guardpcondq,`1xSy enforce
cond

: D Ñ D

λA, S.interfereApSq inter : R �D Ñ D
schedule-child` schedule-child : D Ñ D
λS.αErpTr -`action,`1q|Ss error action : D �R Ñ PpErrorsq
λS.αErpTr -`action,`1q|Ss error cond : D �R Ñ PpErrorsq

Figure 15.2: Given Abstractions For Weak Memory Models

basicactionxC ,L,K , I ,Ey def� xinter I � elemactionpCq,L,K t Knew, I ,E ∪ error pC , I qy

with Knew
def� λ`.

#
elem-inter actionpCq if ` ∈ L
K if ` R L

guard
cond

xC ,L,K , I ,Ey def� xinter I � enforce
cond

pCq,L,K , I ,E ∪ error condpC , I qy

Figure 15.3: Basic Abstract Semantic Functions for Weak memory Models

error abstracts states, in the sequential consistent model, this function takes as argument
an abstract state in D . But, in the weak memory model abstractions, states are abstracted
with αD and with αbuf, hence, error can take an extra argument: a set of states abstracted
with αbuf. Furthermore, αD may forget (E.g., Maps in Section 16.1) all information about
bu�ers, and keep only information on the view of the memory by the current thread. With
its new argument, the function error may detect an error that depends on bu�ers and not
only on the view (E.g. Section 16.2.2).

To de�ne the abstract semantics, we use functions of Figure 13.3. But, in the case of
a weak memory model, we must do some modi�cations: we give two arguments to the
function error . The Figure 15.3 gives the di�erence between the sequential consistency
case and the case of weak memory models. The abstract semantics is then de�ned as in
sequential consistency case, see De�nition 13.2.

152 CHAPTER 15. ABSTRACTION FOR WEAK MEMORY MODELS

CHAPTER 16
Abstract Domains for Weak Memory

Models

As for sequential consistency, we give some examples of domains for weak memory models.
Here we give some domains for TSO (recall Section 9.2), but this domain can be adapted
for the PSO model (see Section 9.3).

16.1 Maps

The concrete stores are those described in Section 9.2.1.a. They are a pair pm, bq where m
is a map from variables to values and b a function that maps threads to their write bu�ers.

Abstract memories are maps from Var to some complete lattice V7 of abstract values.
As in Section 14.1, we assume a Galois connection αV , γV between V and V7, we reuse the
Galois connection αmap, γmap given in Section 14.1. between set of concrete memories and
abstract memories.

Both abstract states and abstract transitions are encoded as abstract memories, i.e.,
D � R � pV7qVar . Abstract states only keep information about the view of the current

153

154 CHAPTER 16. ABSTRACT DOMAINS FOR WEAK MEMORY MODELS

thread, ignoring the shared memory:

αDptpi, P, σ, gquq
def� αmappviewpi, σqq

γDpσ
7q def� tpi, P, σ, gq | viewpi, σq ∈ γmappσ

7qu.

Notice that we do not keep information on the shared memory, but only on the view of each
thread. The Galois connection αbuf will recover information from bu�ers, which cannot be
deduced from the view only.

To de�ne αR, introduce the function new -write : Tr Ñ PpWriteOp�PpLocksqq, that,
given a transition τ returns the set of new protected writes in the bu�er of the current
thread (a singleton or the empty set):

new -writepτq def�

#
t
�
op, mutexpi, s1q

�
u if b1piq � enqpop, bpiqq

∅ otherwise

where τ � ps1, s2q �
�
pi, P, pm, bq, gq, pi1, P 1, pm1, b1q, g1q

�
.

To abstract transitions and write bu�ers, we abstract the written variables and their
new values:

γoppI q � tppx, vq,Mq|v ∈ γV pI pxqq ^M � Locksu

αRptτuq � αoppnew -writepτqq.

Notice that αop, γop do not keep information on locks. To handle locks, we need another
domain.

16.2 Protected Variables

This abstraction infers which lock protects which variable. An error is raised when two
di�erent threads access the same variable (one is a write) but with disjoints sets of locks.

16.2.1 Lattice of Abstract States

We de�ne an abstract complete lattice for locks: SetLocksÓ � PpLocksq. An abstract
state represents locks that must be held at some point, we order the lattice D � SetLocksÓ

by the reverse inclusion ordering, i.e., C1 ¤ C2 ô C1 � C2. Hence C1 t C2 � C1 ∩ C2. The
Galois connection with concrete states is formally de�ned by:

αDpSq �
§
s∈S

mutexpthreadpsq, sq.

Functions of Fig. 13.1 are given here:

16.2. PROTECTED VARIABLES 155

elem lv:�epCq
def� C

enforcepCq def� C

elem lockpµqpCq
def� C ∪ tµu

schedule-child pCq def� ∅
elemunlockpµqpCq

def� C r tµu

Notice that elem lv:�e and enforce do nothing. This domain does not handle writes or guards.

16.2.2 Lattice of Abstract Transitions

We de�ne the domain ProtVars � R of protected variables for transitions. In this domain,
each variable in Var is abstracted by the set of locks that are held when that variable is
accessed, i.e., the locks that protect the variable. Formally: R � SetLocksVar . The Galois
connection is de�ned by:

αRptτuq
def� αoppnew -writepτqq

γoppI q
def� tppx, vq, I pxqq | v ∈ Vu.

We de�ne the following functions:

inter I pCq
def� C

elem-inter x:�epCq
def� λy.

#
C if y � x

K if y � x

elem-inter lockpµqpCq
def� K

elem-inter unlockpµqpCq
def� K

A datarace occurs when, at the same time, a thread write a variable and another thread
wants to read or write the same variable. In our model, a datarace occurs when, in some
store pm, bq, a thread attempts to access (in read or write) to a variable x even though x is
the write bu�er of another thread. Hence, to check dataraces, we just have to check during
an assignment if a variable accessed by the assignment is written in I .

Let accessSplv :� eq the set of variables accessed by the assignment lv :� e in a
context S. E.g., the statement x :� y accesses to the variables x and y in any context. The
statement �x :� y accesses to x, to y and to a third variable; this third variable depends
of the value of x. If the value of x is &z, then this statement accesses to x, y and z. Let
accessC plv :� eq an abstraction of accessSplv :� eq. In a similar way we de�ne accessC pcondq.

If neither lv nor e use pointers, then accessplv :� eq is the set of all variables that appear
in lv or in e. If there is a pointer dereference, this domain does not know which variable

156 CHAPTER 16. ABSTRACT DOMAINS FOR WEAK MEMORY MODELS

`9p :� &x; `10p :� &y;
`11createp`12 � p :� �p� 2q;
`13y :� 3, `8

Figure 16.1: Data-race on y

is accessed, and therefore, a sound approximation will be that the statement lv :� e may
access to any variable. This is not precise. It is standard that we combine two domains
by computing their reduced product [Cou05, CC79, CFR�97, CMB�95, GT06], getting a
more precise domain than both domains separately. Hence, we can compute the reduced
product of this domain with a domain that handle pointers, e.g., maps domains of Section
16.1.

Finally, the errors are de�ned by:

error lv:�epC , I q �

#
∅ if C ∩

�
y∈accessC plv:�eq I pyq � ∅

tdata-raceu if C ∩
�
y∈accessC plv:�eq I pyq � ∅

For guards, we have a similar de�nition:

error condpC , I q �

#
∅ if C ∩

�
y∈accessC pcondq

I pyq � ∅
tdata-raceu if C ∩

�
y∈accessC pcondq

I pyq � ∅

When the current thread attempts to access a variable x, it holds the set C of mutexes.
When another thread writes in x, holding the set I pxq of mutexes. A data race occurs
when the two sets are disjoints.

16.2.3 Reduced Product

The main drawback of this domain is that we need to overapproximate access. If a pointer
is used in an assignment (e.g., in the assignment `2 � p :� 2 in Fig. 6.2a), then access cannot
be precise. This domain knows nothing about pointers, the set of variables accessed by
`2 � p :� 2 in overapproximated by the set of all variables: access `2�p:�2pCq � Var .

To enhance precision, we may use the reduced product described in Section 3.4 with a
domain of maps. For instance, the domains of maps where values are addresses of functions.

Hence, in Fig. 6.2a the reduced product detects that, when `2 � p :� 2 is executed, p
points to y and not to x, hence, there is no datarace.

Figure 16.2 gives an example of the analysis. The columns C , L and K give the in-
formation of the domain of maps (values are ranges or addresses of variables). The last
column gives the errors detected by the domain of protected variables.

On the program 16.1, the analysis will detect that there is a data-race on y.

16.3. SET OF LOCKS AND ACQUISITION HISTORIES 157

C L K I Data-race

1
Initial
Con�guration

y � 0
p � NULL

t`�u K K No

2 L`9p :� &x, `10M
y � 0
p � &x

t`�u `� ÞÑ p � &x K No

3 L`10p :� &y, `11M
y � 0
p � &y

t`�u `� ÞÑ p � t&x,&yu K No

4 child -spawn
`12

y � 0
p � &y

t`�u K K No

5
L`12 � p :�
� p� 2, `8M

y � 2
p � &y

t`�u `� ÞÑ y � 2 K No

6 combinespawn`12
p�q

y � r0, 2s
p � &y

t`�, `12u `� ÞÑ y � 2, p � t&x,&yu y � 2 No

7 L`13y :� 3, `8M y � r0, 3s
p � &y

t`�, `12u
`� ÞÑ

"
y � r2, 3s
p � t&x,&yu

`11 ÞÑ y � 3
y � 2 Yes

8
Initial
Con�guration

y � 0
p � NULL

t`�u
`� ÞÑ

"
y � r2, 3s
p � t&x,&yu

`11 ÞÑ y � 3
K No

9
L`9p :� &x;
`10p :� &y, `11M

y � 0
p � &y

t`�u
`� ÞÑ

"
y � r2, 3s
p � t&x,&yu

`11 ÞÑ y � 3
K No

10 child -spawn
`11

y � 0
p � &y

t`�u K y � 3 No

11
L`12 � p :�
� p� 2, `8M

y � r2, 3s
p � &y

t`�u `� ÞÑ y � 2 K Yes

Figure 16.2: Example of Data-Race Detection

158 CHAPTER 16. ABSTRACT DOMAINS FOR WEAK MEMORY MODELS

16.3 Set of Locks and Acquisition Histories

16.3.1 Lattice of Abstract States

We de�ne an abstract complete lattice for locks: SetLocksÒ � PpLocksq as in Section
16.2.1. Nevertheless, we use this lattice to represent locks that may be held at some point,
we order the lattice D � SetLocksÒ by the inclusion ordering (and not5 by the reverse
inclusion ordering), i.e., C1 ¤ C2 ô C1 � C2. Hence C1 t C2 � C1 ∪ C2.

The functions on abstract states are the same as section 16.2.1:

elem lv:�epCq
def� C

enforcepCq def� C

elem lockpµqpCq
def� C ∪ tµu

schedule-child pCq def� ∅
elemunlockpµqpCq

def� C r tµu

16.3.2 Lattice of Abstract Transitions

We consider the complete lattice H � PpLocksqLocks of acquisition histories [KIG05,
LMO08] ordered by the pointwise ordering. An acquisition history maps a mutex µ to the
set of mutexes that may be acquired after µ is acquired.

Let us consider the operator ρ de�ned by: ρphq � λµ0.hpµ0q ∪
�
µ∈hpµ0q hpµq. We

consider the domain Hρ � th ∈ H | ρphq � hu. Hρ is a complete lattice for the pointwise
ordering. We use this lattice as the lattice of abstract transitions: R � Hρ.

αRptps1, s2quq
def� λµ.

#
M1 rM2 if µ ∈M1

∅ otherwise

where M1 � mutexpthreadps1q, s1q
and M2 � mutexpthreadps2q, s2q

elem-inter lockpµ0qpCq
def� λµ.

#
µ0 if µ ∈ C
∅ otherwise.

elem-inter unlockpµ0q
def� K

A deadlock occurs when several threads i1, . . . , in attempt to acquire a lock owned by
the next thread: i1 attempts to lock µ1 owned by i2, i2 attempts to lock µ2 owned by i3,. . . ,

5The only di�erence between SetLocksÒ and SetLocksÓ is the ordering.

16.3. SET OF LOCKS AND ACQUISITION HISTORIES 159

in attempts to lock µn owned by i1. To detect deadlocks, at each action lockpµq we check
whether there exists a sequence of locks µ2, . . . , µn such that for every k, µk ∈ hpµk�1q and
µn ∈ C . This is easy since ρphq � h for all h ∈ R:

error lockµ0pC , I q def�

$'&
'%
tDeadlocku if Dµ ∈ C : µ ∈ Ipµ0q

tAuto-Deadlocku if µ0 ∈ C
∅ otherwise.

The intuition is that domain checks if the mutexes are locked in the same order in all
threads. If a thread locks a mutex µ1 and after a mutex µ2 and another thread locks µ2

and after µ1, therefore we detect a deadlock.

The error Auto-Deadlock occurs when a thread attempts to lock a mutex it owns.

16.3.3 Anti-Chains of Acquisition Histories

We introduce an abstract domain based on acquisition histories H � PpLocksqLocks. H is
ordered by the pointwise ordering. We use the lattice of upper-closed sets6 of acquisitions
histories: PÒpHq � tX ∈ H | @x ∈ X@y ∈ H, x ¤ y ñ y ∈ Xu. Recall6 that an element of
PÒpHq may be represented by a �nite antichain of acquisition histories.

This domain reuse P. Lammich and M. Müler-Olm's ideas [LMO08] to detect precisely
data races. As in P. Lammich and M. Müler-Olm analysis [LMO08] (See Section 4.7.3), we

assume a set A
def� tU, V u and a function critic from assignments to PpAqrA � t∅, tUu, tV uu.

The abstract lattice for states is D � PÒpHq. The abstract lattice for transitions
R � PÒpH � tU, V uq. Notice that these sets may be represented by anti-chains (See
Section 2.3.3). We do not need to represent all elements of these sets.

We introduce a function h-acquire : H� Locks Ñ H, that, given an acquisition history
h, acquires a new mutex. We encode in acquisition histories the fact that a mutex is owned,
i.e., µ ∈ hpµq means that the mutex µ is owned by the current thread and hpµq � ∅ means
that the mutex µ is free or owned by another thread.

h-acquireph, µ0q
def� λµ.

$'&
'%
hpµq ∪ µ0 if µ ∈ hpµq

tµ0u if µ � µ0

hpµq otherwise.

Recall that b is a predicate that tells us if two acquisition histories may be interleaved,
See Section 4.7.3.

6See Section 2.3.3.

160 CHAPTER 16. ABSTRACT DOMAINS FOR WEAK MEMORY MODELS

Hence we de�ne the functions of Figure 15.2 for this domain:

elem lv:�epCq
def� C

elem-inter lv:�epCq
def� λx.

$'&
'%

C � tUu if criticplv :� eq � U

C � tV u if criticplv :� eq � V

K if criticplv :� eq � ∅

inter I pCq
def� C

enforce
x
pCq def� C

schedule-child pCq def� K

elem lockpµqpCq
def� th-acquireph, µq | h ∈ C ^ hpµq � ∅u

elemunlockpµqpCq
def� thrµ ÞÑ ∅s | h ∈ C ^ µ ∈ hpµqu

elem-inter lockpµqpCq
def� K

elem-inter unlockpµqpCq
def� K

error lv:�epC , I q def�

$'&
'%

Data-race if DhC ∈ CDphI , V q ∈ I : hC b hI
Data-race if DhC ∈ CDphI , V q ∈ I : hC b hI
K if criticplv :� eq � ∅

CHAPTER 17
Language Extensions

In this chapter we discuss some language extensions, e.g., the par constructor that is used
in several other analyses [KSV96, RR99, RR03, SS00].

17.1 Conditions and Actions

With our semantics, it is easy to add new kinds of conditions or actions. For instance,
Figure 17.1 gives some possible extensions.

The skip is trivial, and is abstracted by the identity function: L`1skip, `2MpQ q � Q .
Nondeterministic choices is easy to handle in our concrete model7:

@σ, boolpσ, undetp qq � true ^ boolpσ, undetp qq � true.

Undeterministic choices allow to model:

� random functions

� external devices that measure some physical quantity

7Recall Chapter 7.

161

162 CHAPTER 17. LANGUAGE EXTENSIONS

cond ::� condition

|
...

...
| undetp q Non-deterministic choice

|
...

...
action ::� basic action

|
...

...
| x :� pthread_lockpµq Lock that may fail
| skip do nothing
| copyplv1, lv2q Copy

|
...

...

Figure 17.1: Syntax for �Par� Constructor

� data from an user or from an unknown other program

� complex guards

The semantics of guards with non-deterministic choices is:

L`1guardpundetp qq, `2M
def� L`1guardpundetp qq, `2M

def� L`1skip, `2M.

The copy allows to model copy of memory regions.
Until now, we assume that a lock operation never fails. Nevertheless, in real multi-

threaded libraries, as recalled by V. Vojdani and V. Vene [VV07], it is a common practice
when using Pthread Library to test whether the lock operation succeeded or not. V.
Vojdani and V. Vene give the following example:

1 status = pthread_mutext_lock (m) ;
2 i f (status != 0)
3 err_abort (status , "Lock mutex") ;

The semantics of x :� pthread_lockpµq then has to consider two cases: the case where
the mutex is locked, and the case where the mutex is not locked. If the lock operation
succeeds, the value of x is 0, if the lock operation fails, the value of x is ERROR.

Lx :� pthread_lockpµqMpQ q � Lx � 0M � LlockpµqMpQ q t Lx � ERRORMpQ q.

17.2 Par Constructor

17.2.1 Concrete Semantics

The par constructor is a di�erent kind of parallelism.

17.2. PAR CONSTRUCTOR 163

stmt ::� statement

|
...

...
| `joint`1, `2, . . . , `nu, `1 join

|
...

...
cmd ::� command

|
...

...
| `0par `

1
0t`1cmd1 | `2cmd2u binary parallelism

| `0par
`10
n t`1cmd1 | `2cmd2 | . . . | `ncmdnu n-ary parallelism

| `0parfort`cmdu parallel loop

|
...

...

Figure 17.2: Syntax for �Par� Constructor

Our language described in Chapter 6 (See Figure 6.1) does not handle the constructor
par . It is why we extend our language to handle create and par at the same time. Figure
17.2 explains how to extend the grammar of Figure 6.1 to add two new constructors. The
classical par statement[KSV96, RR99, RR03, SS00] and the parfor constructor described by
R. Rugina and M. Rinard [RR99, RR03]. We also add an intermediate statement, usefull
to de�ne the semantics of par .

The command `0par `
1
0t`1cmd1 | `2cmd2u executes the statements `1cmd1, `8 and `2cmd2, `8

in parallel.This command is generalized by parn that executes n statements in parallel.
The statement `0parfor `

1
0t`cmdu launches an arbitrary number of times the same statement

`cmd , `8. Notice that these commands have two labels `0 and `10. The label `0 is as for
other commands: it is the label of the beginning of the command. The second label `10
represents a label in which a thread will wait its descendants.

We have to de�ne the concrete rules (like rules of Figure 7.2) to state the precise
semantics of par statements. These rules are given in Figure 17.3 for the binary par
operator.

The rule �par spawn� explains how the binary par statement spawns two threads at the
same time. The label `? is an intermediate label needed for the de�nition.

At the end of a par statement, all threads created by this statement will join. Notice
that a set is joinable only under some conditions. It is why we have introduced the predicate
joinable. In a sequentially consistent model, a thread is joinable if and only if it has ended
its execution:

joinablepj, P, σq
def

ô P pjq � `8.

In a weak memory model (TSO or PSO), we need an extra condition: the thread bu�er
is empty, i.e., all writes done by the thread j have been taken into account in the global
memory. Formally, in the TSO model:

joinablepj, P, pm, bqq
def

ô P pjq � `8 ^ bpjq � ε.

164 CHAPTER 17. LANGUAGE EXTENSIONS

`0spawnp`1q, `? , s0 Ñ s1
`?spawnp`2q, `10 , s1 Ñ s2

`0par `
1
0t`1cmd1 | `2cmd2u, `1 , s0 Ñ s2

par spawn

@j, pi, `1, jq ∈ g _ pi, `2, jq ∈ g ñ joinablepj, P, σq
`0 joint`1, `2u, `1 , pi, P, σ, gq Ñ pi, P ri ÞÑ `1s, σ, gq

binary join

`10 joint`1, `2u, `1 , τ
`0par `

1
0t`1cmd1 | `2cmd2u, `1 , τ

par join

`1cmd1, `8 , τ
`0par `

1
0t`1cmd1, `

1
1 |

`2cmd2, `
1
2u, `

1 , τ
par body 1

`2cmd2, `8 , τ
`0par `

1
0t`1cmd1 | `2cmd2u, `1 , τ

par body 2

Figure 17.3: Rules for the Binary �Par� Constructor

Rules �par body� means that a par statement generates all transitions generated by its
substatements. These rules are similar to �while body� and �then body� of Figure 7.2.

The constructor parn generalized the constructor par . Its rules are given in Figure 17.4.
The statement `0parfort`cmdu, `2 allows a thread to spawn an arbitrary number of thread,

obligates it to wait for their termination, and then the statement returns. The rules for
this statement are given in Figure 17.5. A thread that executes this statement is at label
`0. According to rule �parfor spawn�, it may spawn a thread staying at the label `0. For
simplicity, we model this par the statement `0spawnp`1q, `0 (Notice that the label `0 appears
twice). Nondeterminiscally, the thread may decide to go to label `2, this is the rule �parfor
join�.

Notice that, with this extension, win our language, a program may use both par and
create constructors.

17.2.2 Intermediate Denotational Semantics

As for other constructors, we give the intermediate denotational semantics for par state-
ments. For create statements we use an intermediate function schedule-child (See Figure
10.5). This function makes a schedule transition to the last spawned child. Nevertheless,
par (and parn and parfor) spawns several threads. Hence, we need an intermediate function
schedule-childrenL:

schedule-childrenLpSq
def�

"
pj, P, σ, gq

����Di ∈ IdsD` ∈ L :
pi, P, σ, gq ∈ S

^pi, `, jq ∈ g

*
.

Given a set of labels L � L, the function schedule-childrenL �re a schedule transition
to all threads created by the current thread in any label of L.

17.2. PAR CONSTRUCTOR 165

`0spawnp`1q, `?0 , s0 Ñ s1
...

`?kspawnp`k�1q, `?k � 1 , sk Ñ sk�1
...

`?n�1spawnp`nq, `10 , sn�1 Ñ sn
`0par `

1
0t`1cmd1 | `2cmd2u, `1 , s0 Ñ sn

n-par spawn

@j, D` ∈ t`1, . . . , `nupi, `, jq ∈ g ñ joinablepj, P, σq
`0 joint`1, . . . , `nu, `1 , pi, P, σ, gq Ñ pi, P ri ÞÑ `1s, σ, gq

general join

`10 joint`1, . . . , `nu, `1 , τ
`0par `

1
0t`1cmd1 | . . . | `ncmdnu, `1 , τ

par join

Dk : `kcmdk, `8 , τ
`0par `

1
0t`1cmd1 | . . . | `ncmdnu, `1 , τ

par body 1

Figure 17.4: Rules for the n-ary �Par� Constructor

`0spawnp`1q, `0 , τ
`0parfort`1cmdu, `2 , τ

parfor spawn

`0 joint`1u, `2 , τ
`0part`1cmdu, `2 , τ

parfor join

`1cmd1, `8 , τ
`0part`1cmd1, `

1
1 |

`2cmd2, `
1
2u, `

1 , τ
parfor body

Figure 17.5: Rules for the�Parfor� Constructor

166 CHAPTER 17. LANGUAGE EXTENSIONS

In addition to this, the threads created by a statement par will join at their termination.
Hence we need an extra function, that makes a schedule transition to the father thread at
termination:

joinLpSq
def�

"
pi, P, σ, gq

����@i ∈ Ids@` ∈ L :

�
pj, P, σ, gq ∈ S

^pi, `, jq ∈ g

�
ñ P pjq � `8

*
.

The intermediate denotational semantics of par -like statements is then de�ned by:

v|`0par `
1
0t`1stmt1 |

`2stmt2u|wpQq
def� xjoint`1,`2upS1 ∩ S2q, G ∪ G1 ∪ G2, Ay

where xS, G, Ay � v|`?spawnp`2q, `
1
0|w � v|

`0spawnp`1q, `?|wpQq

and S0 � schedule-childrent`1,`2upSq

and xS1, G1, A1y � v|`1stmt1, `8|wxinterfereA2pS1q, G1, A ∪ G2y

and xS2, G2, A2y � v|`2stmt2, `8|wxinterfereA1pS2q, G2, A ∪ G1y

Notice that xS1, G1, A1y and xS2, G2, A2y are de�ned by a �xpoint. This �xpoint is the
equivalent of guarantee for create statements.

This de�nition straightforwardly generalize to parn. Furthermore, we de�ne the seman-
tics of parfor :

v|`0parfort`cmdu|wpQq def� xjoint`upS1 ∩ S2q, G ∪ G1 ∪ G2, Ay

where xS, G, Ay � v|`0spawnp`1q, `0|w
ÒωpQq

and S0 � schedule-childrent`1upSq

and xS1, G1, A1y � v|`1stmt1, `8|wxinterfereA1pS
1q, G1, A ∪ G1y

17.2.3 Abstract Semantics

`0par `
10t`1cmd1|

`2cmd2upQ q
def� exe-childrenÒOpQ q

where exe-childrenpQ q def� xC1 u C2,L1 t L2,K1 t K2, I1 t I2,E1 t E2y

xC1,L1,K1, I1,E1y
def� L`1cmd1, `8M � child -spawn

`1
� spawn

`2
pQ q

xC2,L2,K2, I2,E2y
def� L`2cmd2, `8M � child -spawn

`2
� spawn

`1
pQ q

Figure 17.6: Abstract Semantics of �Par� Statements

Hence, we introduce the abstract semantics for par statements. This abstract semantics
is described by Figure 17.6. This de�nition may be straightforwardly generalized to parn.
The case of the statement parfor is even simpler:

`0parfort`cmdupQ q def�
�
L`1cmd1, `8M � child -spawn

`
� spawn

`

�ÒO
pQ q

Notice that, with this semantic extension, we may analyze programs with both create
and par statements.

17.3. FUNCTION CALLS 167

cmd ::� command

|
...

...
| `callpfq Function Call

|
...

...

Figure 17.7: Syntax for �Call� Constructor

17.3 Function Calls

Until now, we only dealt with intraprocedural analysis. hence, to analyze a function, we
need to analyze the body of the function each time the function is called. We extend the
syntax of our language given in Figure 6.1 with the new constructor call given in Figure
17.7. In Chapter 6 programs were statements of the form `cmd , `8. Now programs are a
pair with a statement of the form `cmd , `8 and a list pf1,

`1cmd1, `
1
1q, . . . , pfn,

`ncmdn, `
1
nq

of declaration functions. The abstract semantics L�M can trivially be extended to handle
function calls: L`callpfq, `1M � L`1body , `11M; we call L�M0 this extension of L�M. Nevertheless,
computing the semantics of the body of a function each time this function is called may
be costly.

We de�ne another concrete semantics for programs, based on the intermediate denota-
tional semantics. We consider the concrete lattice8 MonpC-Configurationsq ordered by

the pointwise ordering. We de�ne the semantics
ÝÑ
v�w of a program by:

ÝÝÝÝÝÝÑ
v`stmt , `1wpfq def� v|`stmt , `1|w � f.

We consider the abstract complete lattice MonpA-Configurationsq. The Galois con-
nection between the concrete and the abstract lattice is de�ned by:

αfunpf
6q def� αcfg � f

6 � γcfg

γfunpf
7q def� γcfg � f

7 � αcfg

Then, we de�ne an abstract semantics
ÝÝÑ
L| � |M:

ÝÝÝÝÝÝÝÑ
L|`stmt , `1|Mpfq def� L`stmt , `1M0 � f.

The following proposition tells us that the semantics of function calls may be simpli�ed:

Proposition 17.1. Given a function f , its code `1body , `11 and an abstract con�guration
Q :

L`callpfq, `1M0pQ q �
�ÝÝÝÝÝÝÝÝÑ
L|`1body , `11|Mpidq

�
pQ q

where id is the identity function, i.e., @x, idpxq � x.

8Recall that MonpXq is the set of monotone functions from X to X (See De�nition 2.11).

168 CHAPTER 17. LANGUAGE EXTENSIONS

In this de�nition, we only need to compute one time the semantics of `1body , `11. Indeed,ÝÝÝÝÝÝÝÝÑ
L|`1body , `11|M will be applied to the same argument id. Hence we do not need to compute
the semantics of a function each time it is called.

Nevertheless,
ÝÝÑ
L| � |M may be hard to compute. Hence, we need an abstraction of

ÝÝÑ
L| � |M.

We consider an abstract domain
ÝÑ
D and a Galois connection αÑ, γÑ from the concrete

lattice MonpA-Configurationsq to
ÝÑ
D . We also assume an operator ÝÑ� that is an ab-

straction of composition9 � of functions and a function
ÝÝÑ
apply :

ÝÑ
D �A-Configurations Ñ

A-Configurations that is an abstraction of the application of a function, i.e.,
ÝÝÑ
apply is an

abstraction of λpf,Q q.fpQ q. Furthermore, we assume an element
ÝÑ
id that is an abstraction

of the identity function λx.x. At the end, we assume an abstract thread creation function
ÝÝÝÑcreate , that, given a semantics

ÝÝÝÝÝÝÝÝÑ
L`2cmd , `8M that overappoximates

ÝÝÝÝÝÝÝÝÝÑ
L|`2cmd , `8|M, returns an

abstraction of
ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ
L|`1createp`2cmdq, `3|M.

This allows us to de�ne inductively a new semantics
ÝÑ
L�M:

De�nition 17.1. For any abstract function f of body `1body , `11:

ÝÝÝÝÝÝÝÝÑ
L`callpfq, `1Mpf q def�

�ÝÝÝÝÝÝÝÑ
L`1body , `11Mp

ÝÑ
id q

�ÝÑ� f
ÝÝÝÝÝÝÝÑ
L`action, `1Mpf q def�

�
αÑpelemactionq

�ÝÑ� f
ÝÝÝÝÝÝÝÝÝÝÝÝÑ
L`1cmd1; `2cmd2Mpf q

def�
ÝÝÝÝÝÝÑ
L`2cmd2M �

ÝÝÝÝÝÝÑ
L`1cmd1Mpf q

ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ
L`1whilepcondqt`2cmduMpf q def�

ÝÝÝÑ
guard

 cond
� loopÒOpf q

with looppgq def�
�ÝÝÝÝÝÝÝÑ
L`2cmd , `1M �

ÝÝÝÑ
guard

cond
pgq

�
t g

and
ÝÝÝÑ
guard

cond
pgq def�

�
αÑpguard

cond
q
�ÝÑ� g

ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÑ
L`1createp`2cmdq, `2Mpf q

def� ÝÝÝÑcreateÝÝÝÝÝÝÝÝÑ
L`2cmd , `8M

pf q

with g def� αÑpspawn
`2
qÝÑ� g

This is a similar de�nition as De�nition 13.2, excepted that we also handle function
calls. Furthermore, this semantics is sound:

Proposition 17.2.
ÝÑ
L�M is an abstraction of

ÝÝÑ
L| � |M.

Hence, this semantics allows us to compute an overapproximation of the abstract se-
mantics. For any abstract con�guration Q and any statement `cmd , `1 : L`cmd , `1MpQ q ¤
ÝÝÑ
applyp

ÝÝÝÝÝÝÝÑ
L|`cmd , `1|MpÝÑid q,Q q

9Recall Section 2.1.3.

17.3. FUNCTION CALLS 169

17.3.1 Examples of Abstract Domains

17.3.1.a Pure Gen/Kill Analyses We want to de�ne an abstract semantics
ÝÑ
L�M for the

gen/kill analysis of Section 14.3. The gen/kill analysis gives us, for each basic action, two
elements of the lattice V :

� genpaction, σq

� and keeppaction, σq.

In the case of pure Gen/Kill analysis (See Section 4.6), the functions gen and keep does
not depends on the store σ. Hence, we omit this argument and write: genpactionq and
keeppactionq.

As abstract domain, we use the lattice F de�ne in Section 4.6. An element of F may
be represented by two elements of the lattice V . Furthermore, according to Claim 4.2, F
is stable under composition.

Our domain
ÝÑ
D is then abstract con�gurations using F as abstract states and R � V

as abstract transitions.
We de�ne the Galois αÑ, γÑ connection as follow:

γÑxf,L0,K0, I0,E0y
def� λxC ,L,K , I ,Ey.xfpCq,L ∪ L0,K t K0, I t I0,E t E0y

The abstract application is then:

ÝÝÑ
applypxf,L0,K0, I0,E0y, xC ,L,K , I ,Eyq def� xfpCq,L ∪ L0,K t K0, I t I0,E t E0y

The abstract composition is de�ned by:

xf0,L0,K0, I0,E0yÝÑ� xf1,L1,K1, I1,E1y � xf1 � f2,L0 ∪ L1,K0 t K1, I0 t I1,E0 t E1y

The abstract thread creation is de�ned by:

ÝÝÝÑcreateÝÝÝÝÝÝÝÝÑ
L`2cmd , `8M

pf q def� αÑ
�

combineg � guaranteeÝÝÝÝÝÝÝÝÑ
L`2cmd , `8M

� child -spawn
`2

�ÝÑ� f

The abstract function xf,L0,K0, I0,E0y
The semantics

ÝÑ
L�M is similar to semantics L�M given in 14.3. The main di�erence is the

set of abstract states.

17.3.2 Acquisition Histories

We want to de�ne a semantics
ÝÑ
L�M for the semantics L�M described in Section 16.3.3.

The domain
ÝÑ
D is the set of abstract con�gurations with:

� D � PÒpHq as set of abstract states

� R � R1 �R2 as set of abstract transitions, where R1 � R2 � PÒpH� tU, V uq

170 CHAPTER 17. LANGUAGE EXTENSIONS

� PÒpHq as set of errors.

The two di�erences between abstraction con�guration of
ÝÑ
D and abstract con�gurations

used in Section 16.3.3 is the set of errors and set of abstract transitions. The set R1

represents the end of the execution of the current thread and R2 represents the whole
execution of a

The main reason is that an error may be reachable from some con�gurations and not
from other con�gurations. The lattice PÒpHq � PÒpHq will allow us to check whether a
given error is reachable.

We de�ne an intermediate function concat : D �R1 �R2 Ñ PÒpH� tU, V uq:

concatpC , H1, H2q
def� tphC t h,Xq | hC ∈ C ^ ph,Xq ∈ H1u ∪H2

The abstract application is de�ned by:

ÝÝÑ
apply

�
xC0,L0,K0, I0,E0y, xC ,L,K , I ,Ey

�
def� xC1,L1,K1, I1,E1y

where C1
def� th0 t h | h0 ∈ C0 ^ h ∈ Cu

L1
def� L0 ∪ L0

K1
def� λ`.concatpC ,K0p`qq

I1
def� I ∪H2 whith pH1, H2q � I0

E1
def�

#
tData-Raceu if DhC ∈ CDhE ∈ E0 : hC b hE
∅ if otherwise

The Galois connection betweenMonpA-Configurationsq and
ÝÑ
D is de�ned by: γÑpf q �

λQ .
ÝÝÑ
applypf ,Q q.
The abstract composition is de�ned by:

xC1,L1,K1, I1,E1yÝÑ� xC2,L2,K2, I2,E2y � xC r,Lr,K r, I r,Ery3s

where C3
def� th1 t h2 | h1 ∈ C1 ^ h2 ∈ C2u

L3
def� L0 ∪ L0

K3
def� K1 t K2

I3
def� I1 t I2

E3
def� E1 t E2

17.3. FUNCTION CALLS 171

cmd ::� command

|
...

...
| `SyncCallµpfq Function Call

|
...

...

Figure 17.8: Syntax for �SyncCall� Constructor

Synchronized Function Call and Reentrant Monitors To handle reentrant monitors,
we need as in P. Lammich and M. Müller-Olm paper [LMO08] the possibility to call a
function synchronized with a monitor. This synchronized called are used in practice in
some languages like JAVA [GJSB05, Section 8.4.3.6 Synchronized Methods].

Hence, we add a new constructor to our language, see Figure 17.8. The new constructor
SyncCallµpfq may be modeled by lockpµq; callpfq; unlockpµq. Nevertheless, in a program
that never uses lock nor unlock we may have a more precise abstraction of SyncCallµpfq
than of lockpµq; callpfq; unlockpµq.

In the domain describes in Section 17.3.2, we have a more precise abstraction:

ÝÝÝÝÝÝÝÝÝÝÝÑ
LSyncCallµ0pfqMxC ,L,K , I ,Ey def� xC1,L1,K1, I1,E1y t xC2,L2,K2, I2,E2y

where xC1,L1,K1, I1,E1y
def�

ÝÝÝÝÝÑ
LcallpfqM �

ÝÝÝÝÝÝÑ
LlockpµqMxCµ0 ,L,K , I ,Ey

Cµ0
def� th ∈ C | µ0 ∈ hpµ0qu

xC2,L2,K2, I2,E2y
def�

ÝÝÝÝÝÝÑ
LlockpµqM �

ÝÝÝÝÝÑ
LcallpfqM �

ÝÝÝÝÝÝÑ
LlockpµqMxC µ0 ,L,K , I ,Ey

C µ0
def� Ò th ∈ C | µ0 R hpµ0qu

The set C is split into two sets Cµ0 and C µ0 . Cµ0 is the set of acquisition histories in
which the mutex µ0 is held. C µ0 is the upper closure (the symbole Ò means upper-closure)
of the set of acquisition histories in which µ0 is not hold. We must take the upper closure
is the case of C µ0 , because the set th ∈ C | µ0 R hpµ0qu is not in the abstract domain
PÒpHq.

This analysis is exact on some kind of programs. We call L-M-O (Lammich-Müller-Olm)
programs programs such that:

� All guard uses non-deterministic choices

� No lock or unlock are used

� The program uses reentrant monitors through the primitive SyncCall .

This analysis is exact on a large class of L-M-O programs. Let us consider the class
Cl0 of programs p such that in all execution path of p, whenever a thread i that owns a
mutex µ spawns another thread j, i will release µ further in the execution.

172

This analysis is exact on the programs of Cl0, i.e, if this analysis detects a data-race
on a program p in Cl0, then, there is a data-race in the concrete model. The analysis of
P. Lammich and M. M. Müller-Olm [LMO08] is exact on all L-M-O programs.

To lose precision of programs that are in L-M-O but not is Cl0 is not a problem in
practice, since a programmer will avoid to lock de�nitively a mutex before spawning a
thread.

17.3.3 Partial Functions

Functions calls can be handled using the concept of R. Wilson and M. Lam's partial func-
tions [WL95]. Each time a function is called, we compute an abstraction of the semantics
of its body for some abstract values of the arguments.

If the function is called a second time, we check if we may reuse the previous analysis
of the function body, or if we had to re-analyze the function.

17.4 Conclusion

Our language may easily be extended to handle new features. New kinds of basic statement
may be added without changing all the analysis. E.g., we may add a return value to the
lock function and test if the lock fails.

The statement par may also be added. With this statement, we generalize the R.
Rugina and M. C. Rinard analysis [RR99, RR03] of pointers. Furthermore, it is possible
to analyze programs that use both par and create statements.

Part V

A Complete Static Analyzer:

MT-Penjili

173

CHAPTER 18
Implementation

18.1 Penjili: The EADS Tool

The EADS company develops a static analysis tool called Penjili. This tool is based
on abstract interpretation techniques. The Static Analysis Team that develops Penjili is
composed of three permanents and two Phd students (including me).

Penjili exists since 2006 March; it detects array-over�ows, NULL pointer dereference,
invalid pointer dereference, division by zero and integer over�ows. The tool is sound, in
the sense that there is no false negative1. It analyzes programs in full �edged C (dynamic
memory allocation is handle with a simple abstraction).

When I began my Phd, this tool was only able to analyze single-threaded programs.
This was a major restriction since most programs (even embedded programs) are multi-
threaded. Now, as a consequence of my work, Penjili handles multithreaded programs as
well.

1Assuming there is no bug in the analyzer.

175

176 CHAPTER 18. IMPLEMENTATION

L.o.C. Parint MT-Penjili

time time
false
alarms

Message 65 0.05 0.20s 0
Embedded 27 100 - 0.34s 7
Test 12 342 - 3.7s 1
Test 15 414 3.8 - -

Figure 18.1: Benchmarks

18.2 Practical Results

The abstract semantics given in Part IV is denotational, so we may compute it recur-
sively. Our �nal algorithm is to compute recursively guarantee`cmd ,`8

applied to the initial

con�guration xJ, t`�u, λ`.K,K, ∅y.
A large part of my work was to implement the analysis described in Part IV. The aim

was to detect the same errors (array-over�ows, NULL pointer dereference, invalid pointer
dereference, division by zero and integer over�ows) as for single-threaded programs.

I have implemented three tools. First I implement two proof-of-concept tools, then,
I was in charge to extend Penjili so that it can handle multithreaded programs. For
intellectual property reasons, the code is not given. This code is owned by EADS. These
three tools use as entry a program written is the Newspeak language [HOL07, HOL08]. A
program written in C code can be transformed into Newspeak code using the open source
tool C2Newspeak. C2Newspeak is developped by EADS.

First, the proof-of-concept tool Parint is an standalone tool of 822 lines of code.
Parint analyzes only programs with integer variables. It overapproximate integer values
by ranges (see Section 2.3.2.a for the de�nition of the domain Ranges). This tool stubs
the pthread_create function of the Pthread Library [IT04, Bar10, But06].

Second, the Tool MT-Penjili is implemented using the code of Penjili as a basis. It add
331 lines of code to Penjili. The main objective of this second proof-of-concept tool was
to prove that my analysis is not restricted to �toy� analyzers and may be integrated into
an industrial tool. MT-Penjili handle Pthread library but is not very precise: it was only
a proof-of-concept tool.

Third, since MT-Penjili was working, I was responsible to integrate into the Penjili Tool
my analysis. Now Penjili is able to analyze multithreaded programs using Pthread or Arinc.
Integrating my analysis into Penjili needs 16 399 line modi�cations in Penjili source code
and Penjili Benchmark suite. In the current version of Penjili (May 2010), the number
of lines speci�c to multithread (i.e., that are executed only to analyse a multithreaded
program) is 792, according to SlocCount, or 1294, according to wc -l. This represents
2.6% of the whole source code of Penjili.

In Table 18.1 we show some results on benchmarks of di�erent sizes. L.o.C. means
�Lines of Code�. �Message� is a C �le, with 3 threads: one thread sends an integer message

18.2. PRACTICAL RESULTS 177

LOC according to wc -l LOC according to sloccount

Mini 101 000 64 000

Figure 18.2: Code Size of the �Mini� Program

to another through a shared variable. �Embedded� is extracted from embedded C code
with two threads. �Test 12� and �Test 15� are sets of 12 and 15 �les respectively, each one
focusing on a speci�c thread interaction.

To give an idea of the precision of the analysis, we indicate how many false alarms were
raised. Our preliminary experiments show that our algorithm loses precision in two ways:
1. through the (single-thread) abstraction on stores 2. by abstraction on interferences.
Indeed, even though our algorithm takes the order of transitions into account for the
current thread, it considers that interference transitions may be executed in an arbitrary
order and arbitrary many times. This does not cause any loss in �Message�, since the thread
which sends the message never puts an incorrect value in the shared variable. Despite the
fact that �Embedded� is a large excerpt of an actual industrial code, the loss of precision is
moderate: 7 false alarms are reported on a total of 27 100 lines. Furthermore, it is because
of this arbitrary order, that our analysis handles weak memory models.

Given this results, this analysis has been implemented in the industrial tool Penjili.
Penjili was a tool that may check single-threaded programs. Now it is able to check
multithreaded programs.

This analysis have been launched on an embedded software called �Mini�. This software
is quite large (See Figure 18.2), nevertheless we called it �Mini� because it is small compared
to the softwares we want to analyze. The Figure 18.2 gives two ways to count the number
of Source Line Code:

� Using the Linux Tool wc -l that counts the total number of lines of all source �les.

� Using the tool SLocCount [Whe].

The Tool SLocCount does not count comments, blank lines and then is more accurate.
Nevertheless, we also give the number of lines given by wc -l as other authors do.

Figure 18.3 gives the results of our analysis. In nearly 5h20min, we found only 233
alarms. Figure 18.4 gives more details on these alarms. The �rst column indicates which
kind of alarm, e.g., we raise 12 �array out of bounds� alarms. The second column gives the
number of alarms, and the third column gives the accuracy of the analysis. The accuracy
of the analysis is the percentage of dangerous operations that have been proved correct,
e.g, the tool prove that 99.44 percents of pointers dereferences are correct.

Furthermore, the �xpoint needed to computes guarantee is reached in only 3 steps.
We investigate where we lose time. The time needed to compute the �rst step in the

guarantee �xpoint is 30min32s. Notice this time is less that 1
3
of the time of 3 the iterations.

The explanation is that, during the two other iterations, we discover new possible execution
paths. When we sequentially executes the code of the threads, we can use the single-
threaded analysis of Penjili on it. This needs 29min25s. This means that, to computation

178 CHAPTER 18. IMPLEMENTATION

Number of Alarms 233
Analysis time 5h 17min 21s
Analysis space 135.5 Mb
Number of iterations of the guarantee loop 3

Figure 18.3: Experimental Results of the Penjili Tool

Run-time error Number of alarms Accuracy
Array Out of Bounds 12 98,77%
Integer Over�ow 193 88.24%
Division by Zero 0 100%
Invalid Pointer Dereference 28 99.44%

Figure 18.4: Penjili Alarms

time is increased by only 4% with our multithread domain xC ,L,K , I ,Ey compared to the
single-threaded domain C .

18.3 Complexity

In practice, the analysis works and need a reasonnable amount of time (only some hours
on a standard laptop) on large programs. We justify theoretically this point by a study of
complexity.

The complexity of our algorithm greatly depends on widening and narrowing operators.
Given a program `0prog, `8, the slowness of the widening and narrowing in an integer w
such that: widening-narrowing stops in always at most w steps on each loop and whenever
guarantee is computed (which also requires doing an abstract �xpoint computation). Let
the nesting depth of a program be the nesting depth of while and of create which2 have a
subcommand create.

Proposition 18.1. Let d be the nesting depth, n the number of commands of our program,
and, w the slowless of our widening. The time complexity of our analysis is Opnwd�1q
assuming operations on abstract stores are done in constant time.

This is comparable to the Opnwdq complexity of the corresponding single-thread analy-
sis, and certainly much better that the combinatorial explosion of interleaving-based analy-
ses. Furthermore, this is beter than polynomial in an exponential number of states [FQ03].

Proof. Let cp`cmd , `1q, np`cmd , `1q and dp`cmd , `1q and wp`cmd , `1q be the complexity of
analyzing `cmd , `1, the size of `cmd , `1 and the nesting depth of `cmd , `1, the slowless of the
widening and narrowing on `cmd , `1 respectively. Let a and k the complexity of assign and
of reading K p`q respectively.

2In our Semantics, each create needs a �xpoint computation, except create with no subcommand create.

179

Proposition 18.1 is a straightforward consequence of the following lemma3:

Lemma 18.1. The complexity of computing L`cmd , `1MQ is Opanpw � kqwd�1q

This lemma is proven by induction.
cplv :� eq � a
cp`1cmd1; `2cmd2, `3q � cp`1cmd1, `2q � cp`2cmd2, `3q
cp`1whilepcondqt`2cmdu, `3q ¤ wp`1whilepcondqt`2cmdu, `3q � cp`2cmd , `1q

If `2cmd does not contain any subcommand create, then the �xpoint computation
terminates in one step: cp`1createp`2cmdq, `3q � k � cp`2cmdq
Else: cp`1createp`2cmdq, `3q � k � wp`1createp`2cmdq, `3qq � cp`2cmdq

18.3.1 Complexity of Operations on K

Notice that we have assumed that operation on RLabels are done in constant time in Propo-
sition 18.1. This abstract store may be represented in di�erent ways. The main problem
is the complexity of the basic function, which computes a union for each element in L. The
naive approach is to represent K ∈ RLabels as a map from PpLabelsq to R. Assuming that
operations on maps are done in constant time, this approach yields a Optnwdq complexity
where t is the number4 of creates in the program. We may also represent K ∈ RLabels

as some map KM from PpLabelsq to R such that K p`q �
�

LQ` KMpLq and the function

basic is done in constant time : basic lv:�exC ,L,K , I ,Ey def� xinter I � elem lv:�epCq,L,KM rL ÞÑ
KMpLq t elem-inter lv:�epCqs, I y. Nevertheless, to access to the value K p`q may need up to t
operations, which increases the complexity of child -spawn and combine . The complexity is
then Opnpw � tqwd�1q.

18.3.2 Complexity of Widening

The slowness of the widening and narrowing operators, w, depends on the abstraction.
Nevertheless, a widening is supposed to be fast.

Consider the classical widening on Ranges : rx, x1sOry, y1s � rz, z1s where z �

#
x if y ¥ x

�8 else

and z1 �

#
x1 if y1 ¤ x1

�8 else
.

This widening never widen more than two times on the same variable. Therefore this
widening is linear in the worst case.

3The functions arguments are omitted in the name of simplicity.
4This is di�erent to the number of threads since an arbitrary number of threads may be created at the

same location.

180

Part VI

Conclusion

181

CHAPTER 19
Conclusion

19.1 Conclusion

We have described a generic static analysis technique for multithreaded programs parametrized
by a single-thread analysis framework and based on a form of rely-guarantee reasoning. To
our knowledge, this is the �rst such modular framework: all previous analysis frameworks
concentrated on a particular abstract domain. Such modularity allows us to leverage any
static analysis technique to the multithreaded case. We have illustrated this by applying
it to a large variety of abstract domains.

Our theoretical analysis generalizes cartesian abstraction [MPR06b, MPR06a, FQ03],
it generalizes the P. Lammich and M. Müller-Olm Acquisition Histories analysis (with the
same precision, for nearly all programs, see Section 17.3.2). And it generalizes R. Rugina
and M. C. Rinard [RR99, RR03] analysis.

Our theoretical analysis allows us to use domains designed for the single-threaded case
(e.g, string domains [AGH06], Ranges,. . .).

Furthemore, I have implemented this theoretical framework in an industrial tool (Pen-
jili) and analyzed with it a large embedded program.

We have shown that our framework only incurred a moderate (low-degree polynomial)
amount of added complexity. In particular, we avoid the combinatorial explosion of all

183

184 CHAPTER 19. CONCLUSION

interleaving based approaches.
Our analysis is always correct, and produces reasonably precise information on the

programs we tested.

19.2 Perspectives

As seen in Chapter 17 our analysis has been designed to be easily extended. We hope that
this analysis can be extended to handle more kinds of programs, new kind of parrallel con-
structors. Some interesting parallel constructors are atomic blocks, invokation of another
thread and synchronisation primitives.

An atomic block is executed sequentially, as if it was only one instruction. A primitive
atomictcmdu can be overapproximated by cmd . Nevertheless, if this is sound, this is not
precise. We may wonder if we can update the K -componnent of the abstract con�guration
in a more precise way. Furthermore, some blocks of instructions are executed �as if� they
where atomics [Lip75, FF04, FFL05], e.g., due to mutexes. I hope this analysis may be
extended to detect such blocks and then to enhance precision.

The invocation of another thread is allowed in the C# language. The main idea is that
a thread may �invoke� another thread to execute a function f , i.e., the function f will be
executed by the invoked thread. The invokation of another thread on a function f may
be overapproximated by createpfq, but we may hope to improve precision analysing this
primitive since the execution of the function f cannot interfere with the invoked thread.
Maybe we may detect, in some cases, which thread i is invoked, and then update in a
di�erent way the K -componnent of abstract con�gurations.

There exists a large variety of synchronisation primitives, e.g., the Posix norm uses
condition variables. A thread may wait on a variable, and another thread may launch a
signal on a condition variable awaking a thread that waits on this variable. As explained
by H. Seidl and B. Ste�en [SS00], these synchronisations may be ignored, since they only
reduce possible behaviors. Nevertheless I hope these synchronisations may be taken into
consideration to improve precision. May be we can use a set like after to distinguish
transitions �red after some synchronization point and transitions done before some syn-
chronization point. Hence, in the abstract, we may de�ne some K p`q where ` is the label
of a synchronisation primitive.

CHAPTER 20
Index

Abstract Interpretation, 27�33, 36, 48, 49, 51, 87, 101, 124, 131�134, 136, 137, 143, 147,
157, 162�165

Abstract Semantics, 27, 28, 30, 49, 124, 134, 137, 147, 162�165
Abstraction, 28�33, 48, 49, 51, 87, 124, 131, 132, 136, 137, 157, 164
Abstraction Function, 31, 36, 133, 143
Concretization Function, 31

Acquisition History, 55, 154, 155, 165, 167
Deadlocks, 154
Interleaving, 55, 155

Array Over�ow, 9, 12, 43

Cartesian Abstraction, 48, 49, 141, 143
Concrete Semantics, 27
Con�gurations, 87, 96, 97, 124�126, 133, 134, 146, 165, 166

Abstract, 133, 146, 165, 166
Concrete, 87, 96, 97, 124
Consistent, 125
Initial, 134
Principal, 126

185

186 INDEX

Secondary, 126
Conservative, 71, 89, 90, 115

Data-Race, 9, 13, 50, 52�54, 151, 152, 155, 156, 166
Deadlock, 9, 54, 55, 154, 155

FIFO, 25, 80
Fixpoint, 17, 32, 34, 47, 53, 124, 134, 141, 162, 173�175

Galois Connection, 28�31, 34, 35, 37, 44, 49, 124, 131�137, 139, 140, 143�146, 149�151,
154, 163

Abstraction Function, 28
Concretization Function, 28
Ranges, 29, 31, 34

Gen/Kill Analysis, 45, 47, 51, 52, 75, 77, 78, 83, 143, 165
Points-to Graph, 78
Points-to Graphs, 45
Pure Gen/Kill Analysis, 51, 77, 165

Lattice, 21, 23, 33, 51, 77, 83, 124, 131, 132, 135, 139, 141, 143, 145, 149�151, 154, 155,
163, 165, 166

Complemented Lattice, 23, 51, 77
Lattice of Ranges, 22, 23, 29, 31�34, 36, 37, 139, 141, 172, 175, 179

Monotone, 20, 28�30, 52, 163

Narrowing, 31, 33, 34, 52, 134, 174, 175

Ordering, 16, 18�22, 24, 29, 34, 45, 47, 51, 54, 64, 66, 69, 72, 87�89, 97, 131, 139, 150, 154,
155, 163

After, 54, 88, 89
Ancestor, 64, 69, 72, 88, 89, 97
Inclusion Ordering, 16, 45, 131, 150, 154
Pointwise Ordering, 19, 29, 51, 139, 154, 155, 163
Pre-Ordering, 18, 19, 21, 88
Pre�x Ordering, 24, 66, 97
Product Ordering, 19, 47
Reverse Ordering, 19, 20, 150, 154
Strict Ordering, 18, 19, 64

Poset, 19�21, 28
Product, 16, 19, 23, 31, 34�38, 141, 152

Cartesian Product, 16, 31
Product of Lattices, 23
Product Ordering, 19

INDEX 187

Reduced Product, 34, 37, 38, 141, 152
Separate Product, 31, 38, 141
Simple Product, 35, 36, 38, 141

Restriction, 18

Stationary, 17, 32�34

Turing Machine, 11, 13
Turing powerful, 11, 12

Widening, 31�34, 52, 134, 135, 162, 164, 174, 175
Write Bu�er, 80�83, 145�147, 149�151, 159

188 INDEX

CHAPTER 21
List of Figures

1.1 Par Statement . 12
1.2 Create Statement . 12
1.3 Presence of an Array Over�ow is Undecidable 14

2.1 Example of Lattice . 23
2.2 A Flat Lattice . 24
2.3 Example of FIFO . 27

3.1 Overapproximation . 30
3.2 Program Example . 32
3.3 Program Example . 35
3.4 The Lattice �Not Zero� . 36
3.5 Products . 37
3.6 Euclides Algorithm . 38
3.7 The Naive Product Fails . 39
3.8 Example of Blocking Semantics . 41

4.1 Control Flow of Euclides Program . 44
4.2 Simpli�ed Control Flow of Euclides Program 44

189

190 LIST OF FIGURES

4.3 Array Over�ow . 46
4.4 Gen and kill sets for Point-to Graphs . 48
4.5 Flanagan and Qadeer Example . 51
4.6 Modi�ed Flanagan and Qadeer Example 52
4.7 Mutexes Protect Variables . 55
4.8 A Program Execution . 56
4.9 Reentrant Monitors . 56
4.10 No Data-Race but a Deadlock . 57

5.1 Semantics Hierarchy . 60

6.1 Syntax . 64
6.2 Program Examples . 65

7.1 Local Semantics Rules . 68
7.2 Global Semantics Rules . 69
7.3 Example of Program Execution . 71
7.4 Thread Creation in a While Loop . 72
7.5 Auxiliary de�nitions . 73
7.6 A thread Execution . 73

8.1 Interleaving Semantics Example . 80
8.2 System Transitions for Interleaving Semantics 80

9.1 TSO Example . 85
9.2 System Transitions for TSO . 86
9.3 System Transitions for PSO . 88

10.1 after . 92
10.2 G-collecting Semantics . 95
10.3 Example of Execution . 97
10.4 Alternative Execution . 99
10.5 Basic semantic functions . 100

11.1 Thread Creation . 121
11.2 Thread Creation . 122

13.1 Given Abstractions . 136
13.2 Galois Connections . 137
13.3 Basic Abstract Semantic Functions . 139

14.1 Example . 145
14.2 Abstract Example . 146

15.1 Galois Connections for Weak memory Models 150
15.2 Given Abstractions For Weak Memory Models 151

LIST OF FIGURES 191

15.3 Basic Abstract Semantic Functions for Weak memory Models 151

16.1 Data-race on y . 156
16.2 Example of Data-Race Detection . 157

17.1 Syntax for �Par� Constructor . 162
17.2 Syntax for �Par� Constructor . 163
17.3 Rules for the Binary �Par� Constructor . 164
17.4 Rules for the n-ary �Par� Constructor . 165
17.5 Rules for the�Parfor� Constructor . 165
17.6 Abstract Semantics of �Par� Statements . 166
17.7 Syntax for �Call� Constructor . 167
17.8 Syntax for �SyncCall� Constructor . 171

18.1 Benchmarks . 176
18.2 Code Size of the �Mini� Program . 177
18.3 Experimental Results of the Penjili Tool 178
18.4 Penjili Alarms . 178

192 LIST OF FIGURES

CHAPTER 22
Bibliography

[ABBM10] Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt, and Madanlal
Musuvathi. On the veri�cation problem for weak memory models. In POPL
'10, pages 7�18, New York, NY, USA, 2010. ACM.

[AGH06] Xavier Allamigeon, Wenceslas Godard, and Charles Hymans. Static Analysis
of String Manipulations in Critical Embedded C Programs. In Kwangkeun Yi,
editor, Static Analysis, 13th International Symposium (SAS'06), volume 4134
of Lecture Notes in Computer Science, pages 35�51, Seoul, Korea, August 2006.
Springer Verlag.

[Bar10] Blaise Barney. Posix threads programming, 2010. https://computing.llnl.
gov/tutorials/pthreads/.

[BMOT05] Ahmed Bouajjani, Markus Müller-Olm, and Tayssir Touili. Regular symbolic
analysis of dynamic networks of pushdown systems. pages 473�487, 2005.

[Boa08] "OpenMP Architecture Review Board". OpenMP Application Program Inter-
face. Mai 2008.

[But06] David R. Butenhof. Programming with POSIX Threads. Addison-Wesley, 2006.

193

194 BIBLIOGRAPHY

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a uni�ed lattice model
for static analysis of programs by construction or approximation of �xpoints.
In Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, pages 238�252, Los Angeles,
California, 1977. ACM Press, New York, NY.

[CC79] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Conference Record of the Sixth Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 269�282, San Antonio, Texas,
1979. ACM Press, New York, NY.

[CC91] P. Cousot and R. Cousot. Comparison of the Galois connection and widening/-
narrowing approaches to abstract interpretation. JTASPEFL '91, Bordeaux.
BIGRE, 74:107�110, October 1991.

[CC92] P. Cousot and R. Cousot. Comparing the Galois connection and widening/nar-
rowing approaches to abstract interpretation, invited paper. In M. Bruynooghe
and M. Wirsing, editors, Proceedings of the International Workshop Program-
ming Language Implementation and Logic Programming, PLILP '92,, Leuven,
Belgium, 13�17 August 1992, Lecture Notes in Computer Science 631, pages
269�295. Springer-Verlag, Berlin, Germany, 1992.

[CC04] P. Cousot and R. Cousot. Basic Concepts of Abstract Interpretation, pages
359�366. Kluwer Academic Publishers, 2004.

[CDNB08] Christopher L. Conway, Dennis Dams, Kedar S. Namjoshi, and Clark Barrett.
Pointer analysis, conditional soundness, and proving the absence of errors. In
SAS '08: Proceedings of the 15th international symposium on Static Analysis,
pages 62�77, Berlin, Heidelberg, 2008. Springer-Verlag.

[CFR�97] Agostino Cortesi, Gilberto Filé, Francesco Ranzato, Roberto Giacobazzi, and
Catuscia Palamidessi. Complementation in abstract interpretation. ACM
Trans. Program. Lang. Syst., 19(1):7�47, 1997.

[CMB�95] Michael Codish, Anne Mulkers, Maurice Bruynooghe, Maria García de la
Banda, and Manuel Hermenegildo. Improving abstract interpretations by com-
bining domains. ACM Trans. Program. Lang. Syst., 17(1):28�44, 1995.

[Cou96] P. Cousot. Abstract interpretation. Symposium on Models of Programming
Languages and Computation, ACM Computing Surveys, 28(2):324�328, June
1996.

[Cou05] P. Cousot. Forward relational in�nitary static analysis, 2005.

[fCS98] "Supercomputing Technologies Group MIT Laboratory for Computer Science".
Cilk 5.4.6 - Reference Manual. 1998.

BIBLIOGRAPHY 195

[FF04] Cormac Flanagan and Stephen N Freund. Atomizer: a dynamic atomicity
checker for multithreaded programs. In POPL '04: Proceedings of the 31st
ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 256�267, New York, NY, USA, 2004. ACM Press.

[FFL05] Cormac Flanagan, Stephen N. Freund, and Marina Lifshin. Type inference for
atomicity. In TLDI '05: Proceedings of the 2005 ACM SIGPLAN international
workshop on Types in languages design and implementation, pages 47�58, New
York, NY, USA, 2005. ACM Press.

[FQ03] Cormac Flanagan and Shaz Qadeer. Thread-modular model checking. In
Thomas Ball and Sriram K. Rajamani, editors, SPIN, volume 2648 of Lecture
Notes in Computer Science, pages 213�224. Springer, 2003.

[GBC�07] Alexey Gotsman, Josh Berdine, Byron Cook, Noam Rinetzky, and Mooly Sagiv.
Local reasoning for storable locks and threads. Technical report, 2007.

[GHK�98] Gierz, Hofmann, Keimel, Lawson, Mislove, and Scott. A Compendium of Con-
tinuous Lattices. second edition, 1998.

[GHK�03] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D. Scott.
Continuous Lattices and Domains. Cambridge University Press, 2003.

[GJSB05] James Gosling, Bill Joy, Guy L. Steele, and Gilad Brach. The Java Language
Speci�cation, Third Edition. May 2005.

[GT06] Sumit Gulwani and Ashish Tiwari. Combining abstract interpreters. In PLDI
'06: Proceedings of the 2006 ACM SIGPLAN conference on Programming lan-
guage design and implementation, pages 376�386, New York, NY, USA, 2006.
ACM.

[HOL07] Charles Hymans and Olivier Levillain. Newspeak: Big Brother is compiling
your code. Technical report, EADS France, 2007. This tool may be downloaded
on http://www.penjili.org/newspeak.html.

[HOL08] Charles Hymans and Olivier Levillain. Newspeak, Doubleplussimple Minilang
for Goodthinkful Static Analysis of C. Technical report, EADS IW/SE, 2008.
This tool may be downloaded on http://www.penjili.org/newspeak.html.

[Hym06] Charles Hymans. Presentation at lsv seminar, at ENS cachan, 2006.

[ISO99] ISO/IEC. Programming Languages C. 1999.

[ISO06] ISO/IEC. Programming languages � C#. 2006.

[IT04] IEEE and The Open Group. The Open Group base speci�cations issue 6 - IEEE
Std 1003.1, 2004. http://www.opengroup.org/onlinepubs/009695399/toc.
htm.

196 BIBLIOGRAPHY

[KIG05] Vineet Kahlon, Franjo Ivan£i¢, and Aarti Gupta. Reasoning about threads
communicating via locks. In In Computer Aided Veri�cation, pages 505�518.
Springer, 2005.

[KSV96] Jens Knoop, Bernhard Ste�en, and Jürgen Vollmer. Parallelism for free: e�-
cient and optimal bitvector analyses for parallel programs. ACM Trans. Pro-
gram. Lang. Syst., 18(3):268�299, 1996.

[Lam79] Leslie Lamport. How to Make a Multiprocessor Computer That Correctly Exe-
cutes Multiprocess Programs. IEEE, 1979.

[Lip75] Richard J. Lipton. Reduction: a method of proving properties of parallel pro-
grams. Commun. ACM, 18(12):717�721, 1975.

[LMO07] Peter Lammich and Markus Müller-Olm. Precise �xpoint-based analysis of
programs with thread-creation and procedures. In Luís Caires and Vasco Thu-
dichum Vasconcelos, editors, CONCUR, volume 4703 of Lecture Notes in Com-
puter Science, pages 287�302. Springer, 2007.

[LMO08] Peter Lammich and Markus Müller-Olm. Con�ict analysis of programs with
procedures, dynamic thread creation, and monitors. In SAS'08, pages 205�220.
Springer, 2008.

[Mic10] Microsoft. .NET framework general reference � design guidelines for class li-
brary developers, 2010.

[MPR06a] Er Malkis, Andreas Podelski, and Andrey Rybalchenko. Thread-modular ver-
i�cation and cartesian abstraction. In Thread Veri�cation workshop, TV06,
pages 21�22. Springer, 2006.

[MPR06b] Er Malkis, Andreas Podelski, and Andrey Rybalchenko. Thread-modular veri�-
cation is cartesian abstraction. In Interpretation, 3rd International Colloquium
on Theoretical Aspects of Computing, pages 21�22. Springer, 2006.

[MPR07] Alexander Malkis, Andreas Podelski, and Andrey Rybalchenko. Precise thread-
modular veri�cation. In Hanne Riis Nielson and Gilberto Filé, editors, SAS,
volume 4634 of Lecture Notes in Computer Science, pages 218�232. Springer,
2007.

[OSS09] Scott Owens, Susmit Sarkar, and Peter Sewell. A better x86 memory model:
x86-tso. In TPHOLs '09: Proceedings of the 22nd International Conference on
Theorem Proving in Higher Order Logics, pages 391�407, Berlin, Heidelberg,
2009. Springer-Verlag.

[PFH06] Polyvios Pratikakis, Je�rey S. Foster, and Michael Hicks. Locksmith: context-
sensitive correlation analysis for race detection. In PLDI '06: Proceedings

BIBLIOGRAPHY 197

of the 2006 ACM SIGPLAN conference on Programming language design and
implementation, pages 320�331, New York, NY, USA, 2006. ACM Press.

[RR99] Radu Rugina and Martin C. Rinard. Pointer analysis for multithreaded pro-
grams. In PLDI, pages 77�90, 1999.

[RR03] Radu Rugina and Martin C. Rinard. Pointer analysis for structured parallel
programs. ACM Trans. Program. Lang. Syst., 25(1):70�116, 2003.

[SS00] Helmut Seidl and Bernhard Ste�en. Constraint-based inter-procedural analysis
of parallel programs. Nordic J. of Computing, 7(4):375�400, 2000.

[Vic07] Paul Vick. The Microsoft Visual Basic Language Speci�cation � Version 9.0.
2007.

[VMo03] Varmo Vene and Markus Muller-olm. Global invariants for analyzing multi-
threaded applications. In In Proc. of Estonian Academy of Sciences: Phys.,
Math, pages 413�436, 2003.

[VV07] Vesal Vojdani and Varmo Vene. Goblint: Path-sensitive data race analysis. In
SPLST, 2007.

[Whe] David A. Wheeler. Sloccount.

[WL95] Robert P. Wilson and Monica S. Lam. E�cient context-sensitive pointer anal-
ysis for c programs. pages 1�12, 1995.

