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Abstract. A channel machine consists of a finite controller together with several fifo
channels; the controller can read messages from the head of a channel and write messages
to the tail of a channel. In this paper, we focus on channel machines with insertion
errors, i.e., machines in whose channels messages can spontaneously appear. Such devices
have been previously introduced in the study of Metric Temporal Logic. We consider the
termination problem: are all the computations of a given insertion channel machine finite?
We show that this problem has non-elementary, yet primitive recursive complexity.

1. Introduction

Many of the recent developments in the area of automated verification, both theoretical
and practical, have focussed on infinite-state systems. Although such systems are not, in
general, amenable to fully algorithmic analysis, a number of important classes of models
with decidable problems have been identified. Several of these classes, such as Petri nets,
process algebras, process rewrite systems, faulty channel machines, timed automata, and
many more, are instances of well-structured transition systems, for which various problems
are decidable—see [7] for a comprehensive survey.

Well-structured transition systems are predicated on the existence of ‘compatible well-
quasi orders’, which guarantee, for example, that certain fixed-point computations will
terminate, etc. Unfortunately, these properties are often non-constructive in nature, so
that although convergence is guaranteed, the rate of convergence is not necessarily known.
As a result, the computational complexity of problems involving well-structured transition
systems often remains open.
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In this paper, we are interested in a particular kind of well-structured transition systems,
known as faulty channel machines. A channel machine (also known as a queue automaton)
consists of a finite-state controller equipped with several unbounded fifo channels (queues,
buffers). Transitions of the machine can write messages (letters) to the tail of a channel
and read messages from the head of a channel. Channel machines can be used, for example,
to model distributed protocols that communicate asynchronously.

Channel machines, unfortunately, are easily seen to be Turing powerful [3], and all
non-trivial verification problems concerning them are therefore undecidable. In [1, 6, 4, 2],
Abdulla and Jonsson, and Finkel et al. independently introduced lossy channel machines
as channel machines operating over an unreliable medium; more precisely, they made the
assumption that messages held in channels could at any point vanish nondeterministically.
Not only was this a compelling modelling assumption, more adequately enabling the rep-
resentation of fault-tolerant protocols, for example, but it also endowed the underlying
transition systems of lossy channel machines with a well-structure, thanks to Higman’s
lemma [8]. As a result, several non-trivial problems, such as control-state reachability, are
decidable for lossy channel machines.

Abdulla and Jonsson admitted in [1] that they were unable to determine the complexity
of the various problems they had shown to be decidable. Such questions remained open
for almost a decade, despite considerable research interest in the subject from the scientific
community. Finally, Schnoebelen showed in [16] that virtually all non-trivial decidable
problems concerning lossy channel machines have non-primitive recursive complexity. This
result, in turn, settled the complexity of a host of other problems, usually via reduction
from reachability for lossy channel machines. Recently, the relevance of the lossy channel
model was further understood when it was linked to a surprisingly complex variant of Post’s
correspondence problem [5].

Other models of unreliable media in the context of channel machines have also been
studied in the literature. In [4], for example, the effects of various combinations of insertion,
duplication, and lossiness errors are systematically examined. Although insertion errors are
well-motivated (as former users of modems over telephone lines can attest!), they were
surprisingly found in [4] to be theoretically uninteresting: channels become redundant,
since read- and write-transitions are continuously enabled (the former because of potential
insertion errors, the latter by assumption, as channels are unbounded). Consequently, most
verification problems trivially reduce to questions on finite automata.

Recently, however, slightly more powerful models of channel machines with insertion
errors have appeared as key tools in the study of Metric Temporal Logic (MTL). In [13, 14],
the authors showed that MTL formulas can capture the computations of insertion channel
machines equipped with primitive operations for testing channel emptiness. This new class
of faulty channel machines was in turn shown to have a non-primitive recursive reachability
problem and an undecidable recurrent control-state reachability problem. Consequently,
MTL satisfiability and model checking were established to be non-primitive recursive over
finite words [13], and undecidable over infinite words [14].

Independently of Metric Temporal Logic, the notion of emptiness testing, broadly con-
strued, is a rather old and natural one. Counter machines, for instance, are usually assumed
to incorporate primitive zero-testing operations on counters, and likewise pushdown au-
tomata are able to detect empty stacks. Variants of Petri nets have also explored emptiness
testing for places, usually resulting in a great leap in computational power. In the context
of channel machines, a slight refinement of emptiness testing is occurrence testing, checking
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that a given channel contains no occurrence of a particular message, as defined and studied
in [14]. Emptiness and occurrence testing provide some measure of control over insertion
errors, since once a message has been inserted into a channel, it remains there until it is
read off it.

Our main focus in this paper is the complexity of the termination problem for insertion
channel machines: given such a machine, are all of its computations finite? We show that
termination is non-elementary, yet primitive recursive. This result is quite surprising, as
the closely related problems of reachability and recurrent reachability are respectively non-
primitive recursive and undecidable. Moreover, the mere decidability of termination for
insertion channel machines follows from the theory of well-structured transition systems,
in a manner quite similar to that for lossy channel machines. In the latter case, however,
termination is non-primitive recursive, as shown in [16]. Obtaining a primitive recursive
upper bound for insertion channel machines has therefore required us to abandon the well-
structure and pursue an entirely new approach.

On the practical side, one of the main motivations for studying termination of insertion
channel machines arises from the safety fragment of Metric Temporal Logic. Safety MTL
was shown to be decidable in [15], although no non-trivial bounds on the complexity could
be established at the time. It is not difficult, however, to show that (non-)termination for
insertion channel machines reduces (in polynomial time) to satisfiability for Safety MTL; the
latter, therefore, is also non-elementary. We note that in a similar vein, a lower bound for
the complexity of satisfiability of an extension of Linear Temporal Logic was given in [10],
via a reduction from the termination problem for counter machines with incrementation
errors.

2. Decision Problems for Faulty Channel Machines: A Brief Survey

In this section, we briefly review some key decision problems for lossy and insertion
channel machines (the latter equipped with either emptiness or occurrence testing). Apart
from the results on termination and structural termination for insertion channel machines,
which are presented in the following sections, all results that appear here are either known or
follow easily from known facts. Our presentation is therefore breezy and terse. Background
material on well-structured transition systems can be found in [7].

The reachability problem asks whether a given distinguished control state of a channel
machine is reachable. This problem was shown to be non-primitive recursive for lossy
channel machines in [16]; it is likewise non-primitive recursive for insertion channel machines
via a straightforward reduction from the latter [13].

The termination problem asks whether all computations of a channel machine are
finite, starting from the initial control state and empty channel contents. This problem
was shown to be non-primitive recursive for lossy channel machines in [16]. For insertion
channel machines, we prove that termination is non-elementary in Section 4 and primitive
recursive in Section 5.

The structural termination problem asks whether all computations of a channel machine
are finite, starting from the initial control state but regardless of the initial channel contents.
This problem was shown to be undecidable for lossy channel machines in [12]. For insertion
channel machines, it is easy to see that termination and structural termination coincide, so
that the latter is also non-elementary primitive-recursive decidable.
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Lossy Channel Machines Insertion Channel Machines
Reachability non-primitive recursive non-primitive recursive
Termination non-primitive recursive non-elementary / primitive recursive
Struct. term. undecidable non-elementary / primitive recursive

Response undecidable non-primitive recursive
Recurrence undecidable undecidable
CTL / LTL undecidable undecidable

Figure 1: Complexity of decision problems for faulty channel machines.

Given a channel machine S and two distinguished control states p and q of S, a response
property is an assertion that every p state is always eventually followed by a q state in
any infinite computation of S. Note that a counterexample to a response property is a
computation that eventually visits p and forever avoids q afterwards. The undecidability
of response properties for lossy channel machines follows easily from that of structural
termination, as the reader may wish to verify.

In the case of insertion channel machines, response properties are decidable, albeit at
non-primitive recursive cost (by reduction from reachability). For decidability one first
shows using the theory of well-structured transition systems that the set of all reachable
configurations, the set of p-configurations, and the set of configurations that have infinite
q-avoiding computations are all effectively computable. It then suffices to check whether
their mutual intersection is empty.

The recurrence problem asks, given a channel machine and a distinguished control state,
whether the machine has a computation that visits the distinguished state infinitely often.
It is undecidable for lossy channel machines by reduction from response, and was shown to
be undecidable for insertion channel machines in [14].

Finally, CTL and LTL model checking for both lossy and insertion channel machines
are undecidable, which can be established along the same lines as the undecidability of
recurrence.

These results are summarised in Figure 1.

3. Definitions

A channel machine is a tuple S = (Q, init ,Σ, C, ∆), where Q is a finite set of control
states, init ∈ Q is the initial control state, Σ is a finite channel alphabet, C is a finite set of
channel names, and ∆ ⊆ Q×L×Q is the transition relation, where L = {c!a, c?a, c=∅, a/∈c :
c ∈ C, a ∈ Σ} is the set of transition labels. Intuitively, label c!a denotes the writing of
message a to tail of channel c, label c?a denotes the reading of message a from the head
of channel c, label c=∅ tests channel c for emptiness, and label a/∈c tests channel c for the
absence (non-occurrence) of message a.

We first define an error-free operational semantics for channel machines. Given S as
above, a configuration of S is a pair (q, U), where q ∈ Q is the control state and U ∈ (Σ∗)C

gives the contents of each channel. Let us write Conf for the set of possible configurations
of S. The rules in ∆ induce an L-labelled transition relation on Conf , as follows:

(1) (q, c!a, q′) ∈ ∆ yields a transition (q, U) c!a−→ (q′, U ′), where U ′(c) = U(c)·a and
U ′(d) = U(d) for d 6= c. In other words, the channel machine moves from control
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state q to control state q′, writing message a to the tail of channel c and leaving all
other channels unchanged.

(2) (q, c?a, q′) ∈ ∆ yields a transition (q, U) c?a−→ (q′, U ′), where U(c) = a·U ′(c) and
U ′(d) = U(d) for d 6= c. In other words, the channel machine reads message a from
the head of channel c while moving from control state q to control state q′, leaving
all other channels unchanged.

(3) (q, c=∅, q′) ∈ ∆ yields a transition (q, U) c=∅−→ (q′, U), provided U(c) is the empty
word. In other words, the transition is only enabled if channel c is empty; all channel
contents remain the same.

(4) (q, a/∈c, q′) ∈ ∆ yields a transition (q, U) a/∈c−→ (q′, U), provided a does not occur
in U(c). In other words, the transition is only enabled if channel c contains no
occurrence of message a; all channels remain unchanged.

If the only transitions allowed are those listed above, then we call S an error-free
channel machine. This machine model is easily seen to be Turing powerful [3]. As discussed
earlier, however, we are interested in channel machines with (potential) insertion errors;
intuitively, such errors are modelled by postulating that channels may at any time acquire
additional messages interspersed throughout their current contents.

For our purposes, it is convenient to adopt the lazy model of insertion errors, given
next. Slightly different models, such as those of [4, 14], have also appeared in the literature.
As the reader may easily check, all these models are equivalent insofar as reachability and
termination properties are concerned.

The lazy operational semantics for channel machines with insertion errors simply aug-
ments the transition relation on Conf with the following rule:

(5) (q, c?a, q′) ∈ ∆ yields a transition (q, U) c?a−→ (q′, U). In other words, insertion errors
occur ‘just in time’, immediately prior to a read operation; all channel contents
remain unchanged.

The channel machines defined above are called insertion channel machines with occur-
rence testing, or ICMOT s. We will also consider insertion channel machines with emptiness
testing, or ICMET s. The latter are simply ICMOTs without any occurrence-testing tran-
sitions (i.e., transitions labelled with a/∈c).

A run of an insertion channel machine is a finite or infinite sequence of transitions of
the form σ0

l0−→ σ1
l1−→ . . . that is consistent with the lazy operational semantics. The run

is said to start from the initial configuration if the first control state is init and all channels
are initially empty.

Our main focus in this paper is the study of the complexity of the termination problem:
given an insertion channel machine S, are all runs of S starting from the initial configuration
finite?

4. Termination is Non-Elementary

In this section, we show that the termination problem for insertion channel machines—
ICMETs and ICMOTs—is non-elementary. More precisely, we show that the termination
problem for ICMETs of size n in the worst case requires time at least 2⇑Ω(log n).1 Note
that the same immediately follows for ICMOTs.

1The expression 2⇑m, known as tetration, denotes an exponential tower of 2s of height m.
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Our proof proceeds by reduction from the termination problem for two-counter ma-
chines in which the counters are tetrationally bounded; the result then follows from standard
facts in complexity theory (see, e.g., [9]).

Without insertion errors, it is clear that a channel machine can directly simulate a
two-counter machine simply by storing the values of the counters on one of its channels.
To simulate a counter machine in the presence of insertion errors, however, we require
periodic integrity checks to ensure that the representation of the counter values has not
been corrupted. Below we give a simulation that follows the ‘yardstick’ construction of
Meyer and Stockmeyer [17, 11]: roughly speaking, we use an m-bounded counter to check
the integrity of a 2m-bounded counter.

Theorem 4.1. The termination problem for ICMETs and ICMOTs is non-elementary.

Proof. Let us say that a counter is m-bounded if it can take values in {0, 1, . . . ,m− 1}. We
assume that such a counter u comes equipped with procedures Inc(u), Dec(u), Reset(u),
and IsZero(u), where Inc and Dec operate modulo m, and increment, resp. decrement, the
counter. We show how to simulate a deterministic counter machine M of size n equipped
with two 2⇑n-bounded counters by an ICMET S of size 2O(n). We use this simulation to
reduce the termination problem for M to the termination problem for S.

By induction, assume that we have constructed an ICMET Sk that can simulate the
operations of a 2⇑k-bounded counter uk. We assume that Sk correctly implements the
operations Inc(uk), Dec(uk), Reset(uk), and IsZero(uk) (in particular, we assume that
the simulation of these operations by Sk is guaranteed to terminate). We describe an
ICMET Sk+1 that implements a 2⇑(k + 1)-bounded counter uk+1. Sk+1 incorporates Sk,
and thus can use the above-mentioned operations on the counter uk as subroutines. In
addition, Sk+1 has two extra channels c and d on which the value of counter uk+1 is stored
in binary. We give a high-level description.

We say that a configuration of Sk+1 is clean if channel c has size 2⇑k and channel d
is empty. We ensure that all procedures on counter uk+1 operate correctly when they are
invoked in clean configurations of Sk+1, and that they also yield clean configurations upon
completion. In fact, we only give details for the procedure Inc(uk+1)—see Figure 2; the
others should be clear from this example.

Since the counter uk is assumed to work correctly, the above procedure is guaranteed
to terminate, having produced the correct result, in the absence of any insertion errors on
channels c or d. On the other hand, insertion errors on either of these channels will be
detected by one of the two emptiness tests, either immediately or in the next procedure to
act on them.

The initialisation of the induction is handled using an ICMET S1 with no channel (in
other words, a finite automaton) of size 2, which can simulate a 2-bounded counter (i.e., a
single bit). The finite control of the counter machine, likewise, is duplicated using a further
channel-less ICMET.

Using a product construction, it is straightforward to conflate these various ICMETs
into a single one, S, of size exponential in n (more precisely: of size 2O(n)). As the reader
can easily check, M has an infinite computation iff S has an infinite run. The result follows
immediately.
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Procedure Inc(uk+1)
Reset(uk)
repeat

c?x ; d!(1− x) /* Increment counter uk+1 while transferring c to d */
Inc(uk)

until IsZero(uk) or x = 0
while not IsZero(uk) do

c?x ; d!x /* Transfer remainder of c to d */
Inc(uk)

endwhile
test(c=∅) /* Check that there were no insertion errors on c, otherwise halt */
repeat

d?x ; c!x /* Transfer d back to c */
Inc(uk)

until IsZero(uk)
test(d=∅) /* Check that there were no insertion errors on d, otherwise halt */
return

Figure 2: Procedure to increment counter uk+1. Initially, this procedure assumes that
counter uk+1 is encoded in binary on channel c, with least significant bit at
the head of the channel; moreover, c is assumed to comprise exactly 2⇑k bits
(using padding 0s if need be). In addition, channel d is assumed to be initially
empty. Upon exiting, channel c will contain the incremented value of counter
uk+1 (modulo 2⇑(k + 1)) in binary, again using 2⇑k bits, and channel d will be
empty. We regularly check that no insertion errors have occurred on channels c
or d by making sure that they contain precisely the right number of bits. This
is achieved using counter uk (which can count up to 2⇑k and is assumed to work
correctly) together with emptiness tests on c and d. If an insertion error does
occur during execution, the procedure will either halt, or the next procedure to
handle channels c and d (i.e., any command related to counter uk+1) will halt.

5. Termination is Primitive Recursive

The central result of our paper is the following:

Theorem 5.1. The termination problem for ICMOTs and ICMETs is primitive recursive.
More precisely, when restricting to the class of ICMOTs or ICMETs that have at most k
channels, the termination problem is in (k+1)-EXPSPACE.

Proof. In what follows, we sketch the proof for ICMOTs, ICMETs being a special case of
ICMOTs. Let us also assume that our ICMOTs do not make use of any emptiness tests;
this restriction is harmless since any emptiness test can always be replaced by a sequence
of occurrence tests, one for each letter of the alphabet, while preserving termination.

Let S = (Q, init ,Σ, C, ∆) be a fixed ICMOT without emptiness tests; in other words,
S’s set of transition labels is L = {c!a, c?a, a/∈c : c ∈ C, a ∈ Σ}. Our strategy is as follows:
we suppose that S has no infinite runs, and then derive an upper bound on the length of the
longest possible finite run. The result follows by noting that the total number of possible
runs is exponentially bounded by this maximal length.
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For a subset D ⊆ C of channels, we define an equivalence ≡D over the set Conf of
configurations of S as follows:

(q, U) ≡D (q′, U ′) iff q = q′ and U(d) = U ′(d) for every d ∈ D.

Let us write Conf D to denote the set Conf /≡D of equivalence classes of Conf with
respect to ≡D. Furthermore, given f : D → N a ‘bounding function’ for the channels in D,
let

Conf f
D = {[(q, U)]D ∈ Conf D : |U(d)| ≤ f(d) for every d ∈ D}

be the subset of Conf D consisting of those equivalence classes of configurations whose D-
channels are bounded by f . As the reader can easily verify, we have the following bound
on the cardinality γf

D of Conf f
D:

γf
D ≤ |Q|

∏
d∈D

(|Σ|+ 1)f(d). (5.1)

Consider a finite run σ0
l0−→ σ1

l1−→ . . .
ln−1−→ σn of S (with n ≥ 1), where each σi ∈ Conf

is a configuration and each li ∈ L is a transition label. We will occasionally write σ0
λ=⇒ σn

to denote such a run, where λ = l0l1 . . . ln−1 ∈ L+.
We first state a pumping lemma of sorts, whose straightforward proof is left to the

reader:

Lemma 5.2. Let D ⊆ C be given, and assume that σ
λ=⇒ σ′ (with λ ∈ L+) is a run of S

such that σ ≡D σ′. Suppose further that, for every label a/∈c occurring in λ, either c ∈ D,
or the label c!a does not occur in λ. Then λ is repeatedly firable from σ, i.e., there exists
an infinite run σ

λ=⇒ σ′ λ=⇒ σ′′ λ=⇒ . . ..

Note that the validity of Lemma 5.2 rests crucially on (the potential for) insertion
errors.

Let 〈wi〉1≤i≤n be a finite sequence, and let 0 < α ≤ 1 be a real number. A set S is said
to be α-frequent in the sequence 〈wi〉 if the set {i : wi ∈ S} has cardinality at least αn.

The next result we need is a technical lemma guaranteeing a certain density of repeated
elements in an α-frequent sequence:

Lemma 5.3. Let 〈wi〉1≤i≤n be a finite sequence, and assume that S is a finite α-frequent
set in 〈wi〉. Then there exists a sequence of pairs of indices 〈(ij , i′j)〉1≤j≤ αn

2(|S|+1)
such that,

for all j < αn
2(|S|+1) , we have ij < i′j < ij+1, i′j − ij ≤ 2(|S|+1)

α , and wij = wi′j
∈ S.

Proof. By assumption, 〈wi〉 has a subsequence of length at least αn consisting exclusively of
elements of S. This subsequence, in turn, contains at least αn

|S|+1 disjoint ‘blocks’ of length
|S| + 1. By the pigeonhole principle, each of these blocks contains at least two identical
elements from S, yielding a sequence of pairs of indices 〈(ij , i′j)〉1≤j≤ αn

|S|+1
having all the

required properties apart, possibly, from the requirement that i′j − ij ≤ 2(|S|+1)
α . Note also

that there are, for now, twice as many pairs as required.
Consider therefore the half of those pairs whose difference is smallest, and let p be the

largest such difference. Since the other half of pairs in the sequence 〈(ij , i′j)〉 have difference
at least p, and since there is no overlap between indices, we have 1

2 ·
αn

|S|+1 · p < n, from

which we immediately derive that p is bounded by 2(|S|+1)
α , as required. This concludes the

proof of Lemma 5.3.
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Recall our assumption that S has no infinite run, and let π = σ0
l0−→ σ1

l1−→ . . .
ln−1−→ σn

be any finite run of S, starting from the initial configuration; we seek to obtain an upper
bound on n.

Given a set D ⊆ C of channels, it will be convenient to consider the sequence [π]D =
〈[σi]D〉0≤i≤n of equivalence classes of configurations in π modulo ≡D (ignoring the inter-
spersed labelled transitions for now).

Let f : C → N and 0 < α ≤ 1 be given, and suppose that Conf f
C is α-frequent in [π]C ,

so that there are at least αn occurrences of configuration equivalence classes in Conf f
C along

[π]C . Recall that Conf f
C contains γf

C elements. Observe, by Lemma 5.2, that no member of
Conf f

C can occur twice along [π]D, otherwise S would have an infinite run. Consequently,

n ≤
γf

C

α
. (5.2)

We will now inductively build an increasing sequence ∅ = D0 ⊂ D1 ⊂ . . . ⊂ D|C| = C,
as well as functions fi : Di → N and real numbers 0 < αi ≤ 1, for 0 ≤ i ≤ |C|, such that
Conf fi

Di
is αi-frequent in [π]Di for every i ≤ |C|.

The base case is straightforward: the set Conf f0

∅ = Conf ∅ is clearly 1-frequent in [π]∅.
Let us therefore assume that Conf f

D is α-frequent in [π]D for some strict subset D of
C and some f : D → N and α > 0. We now compute D′ ⊆ C strictly containing D,
f ′ : D′ → N, and α′ > 0 such that Conf f ′

D′ is α′-frequent in [π]D′ .
Thanks to our induction hypothesis and Lemma 5.3, we obtain a sequence of pairs of

configurations 〈(θj , θ
′
j)〉1≤j≤h, where h = αn

2(γf
D+1)

, [θj ]D = [θ′j ]D ∈ Conf f
D, and such that

π = σ0 =⇒ θ1
λ1=⇒ θ′1 =⇒ θ2

λ2=⇒ θ′2 =⇒ . . . =⇒ θh
λh=⇒ θ′h =⇒ σn

with each λj ∈ L+ having length no greater than 2(γf
D+1)
α , for 1 ≤ j ≤ h.

For each λj , let OT j be the set of occurrence-test labels that occur at least once in
λj . Among these sets, let OT denote the one that appears most often. Note that there are
2|Σ|·|C| different possible sets of occurrence-test labels, and therefore at least h

2|Σ|·|C| of the
OT j are equal to OT .

Following a line of reasoning entirely similar to that used in Lemma 5.32, we can deduce
that π contains at least h

4·2|Σ|·|C| = αn

8(γf
D+1)2|Σ|·|C| non-overlapping patterns of the form

θ
λ=⇒ θ′

δ=⇒ θ̄
λ̄=⇒ θ̄′,

where:
• [θ]D = [θ′]D ∈ Conf f

D and [θ̄]D = [θ̄′]D ∈ Conf f
D,

• λ, λ̄ ∈ L+ each have length no greater than 2(γf
D+1)
α ,

• δ ∈ L+ has length no greater than 8(γf
D+1)2|Σ|·|C|

α , and
• the set of occurrence-test labels occurring in λ and λ̄ in both cases is OT .

2Formally, we could directly invoke Lemma 5.3, as follows. Write the sequence of transition labels of π as
δ0λ1δ1λ2 · · ·λhδh, with the λi as above. Next, formally replace each instance of λi whose set of occurrence-
test labels is OT by a new symbol O; if needed, add dummy non-O symbols to the end of the sequence to
bring its length up to n, and call the resulting sequence 〈wi〉. Finally, note that the singleton set {O} is

h

2|Σ|·|C|·n -frequent in 〈wi〉.



10 P. BOUYER, N. MARKEY, J. OUAKNINE, PH. SCHNOEBELEN, AND J. WORRELL

Consider such a pattern. Observe that λ must contain at least one occurrence-test label
a/∈c with c /∈ D and such that the label c!a occurs in λ, otherwise S would have an infinite
run according to Lemma 5.2. Pick any such occurrence-test label and let us denote it a/∈c.

We now aim to bound the size of channel c in the θ̄ configuration of our patterns. Note
that since λ and λ̄ contain the same set of occurrence-test labels, the label a/∈c occurs in λ̄.
That is to say, somewhere between configurations θ̄ and θ̄′, we know that channel c did not
contain any occurrence of a. On the other hand, an a was written to the tail of channel c
at some point between configurations θ and θ′, since λ contains the label c!a. For that a to
be subsequently read off the channel, the whole contents of channel c must have been read
from the time of the c!a transition in λ to the time of the a/∈c transition in λ̄. Finally, note
that, according to our lazy operational semantics, the size of a channel changes by at most
1 with each transition. It follows that the size of channel c in configuration θ̄ is at most

|λ|+ |δ|+ |λ′| ≤ (γf
D+1)(4+8·2|Σ|·|C|)

α .
Let D′ = D∪{c}, and define the bounding function f ′ : D′ → N such that f ′(d) = f(d)

for all d ∈ D, and f ′(c) = (γf
D+1)(4+8·2|Σ|·|C|)

α . From our lower bound on the number of special
patterns, we conclude that the set Conf f ′

D′ is α′-frequent in [π]D′ , where α′ = α

8(γf
D+1)2|Σ|·|C| .

We now string everything together to obtain a bound on n, the length of our original
arbitrary run π. For convenience, let c1, c2, . . . , c|C| be an enumeration of the channel names
in C in the order in which they are picked in the course of our proof; thus Di = Di−1 ∪{ci}
for 1 ≤ i ≤ |C|. Correspondingly, let Mi = fi(ci), for 0 ≤ i ≤ |C|, with the convention that
M0 = 1; it is easy to see that Mi is the maximum value of fi over Di, since the sequences
〈γfi

Di
〉 and 〈αi〉 are monotonically increasing and decreasing respectively.
From Equation 5.1, we easily get that γfi

Di
∈ O(|S||S|Mi), where |S| is any reasonable

measure of the size of our ICMOT S. Combining this with our expressions for f ′ and α′

above, we obtain that Mi+1,
1

αi+1
∈ O

(
|S||S|2Mi

αi

)
for 0 ≤ i ≤ |C| − 1. This, in turns, lets

us derive bounds for γ
f|C|
C and α|C|, which imply, together with Equation 5.2, that

n ≤ 22·
··
2P (|S|)

,

where P is some polynomial (independent of S), and the total height of the tower of expo-
nentials is |C|+ 2.

The ICMOT S therefore has an infinite run iff it has a run whose length exceeds the
above bound. Since the lazy operational semantics is finitely branching (bounded, in fact, by
the size of the transition relation), this can clearly be determined in (|C|+1)-EXPSPACE,
which concludes the proof of Theorem 5.1.

Theorems 4.1 and 5.1 immediately entail the following:

Corollary 5.4. The structural termination problem—are all computations of the machine
finite, starting from the initial control state but regardless of the initial channel contents?—is
decidable for ICMETs and ICMOTs, with non-elementary but primitive-recursive complex-
ity.
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6. Conclusion

The main result of this paper is that termination for insertion channel machines with
emptiness or occurrence testing has non-elementary, yet primitive recursive complexity.
This result is in sharp contrast with the equivalent problem for lossy channel machines,
which has non-primitive recursive complexity.

We remark that the set of configurations from which a given insertion channel machine
has at least one infinite computation is finitely representable (thanks to the theory of well-
structured transition systems), and is in fact computable as the greatest fixed point of the
pre-image operator. The proof of Theorem 5.1, moreover, shows that this fixed point will be
reached in primitive-recursively many steps. The set of configurations from which there is
an infinite computation is therefore primitive-recursively computable, in contrast with lossy
channel machines for which it is not even recursive (as can be seen from the undecidability
of structural termination).

Finally, another interesting difference with lossy channel machines can be highlighted
by quoting a slogan from [16]: “Lossy systems with k channels can be [polynomially] encoded
into lossy systems with one channel.” We can deduce from Theorems 4.1 and 5.1 that any
such encoding, in the case of insertion channels machines, would require non-elementary
resources to compute, if it were to preserve termination properties.
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