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In [5], the method of coupling has been applied to the
proof of self-stabilization of randomized distributed algo-
rithms: A randomized distributed algorithm A is seen as
a Markov chain (Xt)t≥0 on a set Ω of configurations; the
self-stabilization property of A (i.e., the convergence of A
towards a closed subset L of Ω) follows from the existence of
a coupling process (Xt, Yt)t≥0 where Xt and Yt are faithful
copies of A, and coalesce in finite expected time. Further-
more, the coalescence time (or coupling time) gives an upper
bound on the “hitting time”, i.e. on the expected time for A
to reach L. The idea has been enhanced by using the path-
coupling technique of Bubley-Dyer [2], allowing to focus on
a set S of adjacent pairs (for a certain metric δ) instead of
considering the whole space Ω×Ω. More precisely, suppose
that, for all (x, y) of S, the following contraction condition
E[δ(Xt+1, Yt+1)|(Xt, Yt) = (x, y)] ≤ αδ(x, y) holds for some
0 < α < 1, where (Xt, Yt) is a (partial) coupling for A.
Then A is self-stabilizing w.r.t. L, and the hitting time is
bounded by δmax/(1 − α).

We now want to extend this result to the case where the
randomized distributed algorithm A is given not under the
form of a Markov chain, but under the form of a Markov

decision process. In other terms, at each step t, there is now
a certain number of positions of machines that are enabled,
i.e., subject to possible actions of the algorithm. In this
context, a scheduler is a mechanism that selects the subset
of enabled machines that are activated at step t. Given a
scheduler, the algorithm A can be seen as a Markov chain
as before. But we would like to prove now that, under any
scheduler, A self-stabilizes. Furthermore, we would like to
find an upper bound on the hitting time over all schedulers
(including “malicious” ones, i.e. those selecting, at each
step, the positions where actions hinder the progress to-
wards L as much as possible). The coupling-based result of
[5] can be extended as follows. Suppose that, for all sched-
uler σ, there exists a scheduler τ such that:
∀ (x, y) ∈ S: E[δ(Xσ

t+1, Y
τ

t+1)|(X
σ
t , Y τ

t ) = (x, y)] ≤ αδ(x, y)
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for some 0 < α < 1, where (Xσ
t , Y τ

t ) is a (partial) coupling
of faithful copies of A under schedulers σ and τ . Then A
is self-stabilizing under arbitrary scheduler. Note that the
kind of coupling that we will use involves faithful copies of
different Markov chains (Xσ

t )t≥0 and (Y τ
t )t≥0. Note also

that the scheduler τ of the right component is determined
from the scheduler σ of the left one. A further enhance-
ment of this result will exploit an extension of coupling,
variable-length coupling: a variable-length coupling, denoted
by (X

σ

t , Y
τ

t , T ), is a random variable taking values in Ω∗ ×
Ω∗×N, where T is a stopping time (see [6]; cf [3, 4]). By con-
verting the variable-length couplings into fixed-length cou-
plings (T = constant), such couplings can be defined for all
(x, y) ∈ Ω2. Theorem 3 of [6] becomes in our context:
Suppose that there exists 0 < α < 1 such that, for all sched-
uler σ, there exist a scheduler τ and a variable-length partial
coupling (X

σ

t , Y
τ

t , T ) satisfying:
∀(x, y) ∈ S E[δ(Xσ

t+T , Y τ
t+T )|(Xσ

t , Y τ
t ) = (x, y)] ≤ αδ(x, y)

and let M := max(x,y)∈S,σ∈ΣT . Then there exists a fixed-

length full coupling (X
σ
, Y

τ
, M) satisfying:

∀(x, y) ∈ Ω2 E[δ(Xσ
t+M , Y τ

t+M )|(Xσ
t , Y τ

t ) = (x, y)] ≤ αδ(x, y)
It follows that, if M is bounded, A is self-stabilizing w.r.t.
L (for arbitrary scheduler σ), and the hitting time HL sat-
isfies: HL ≤ Mδmax/(1 − α).
Even in the case where there is no good natural upper bound
M on the stopping time T , Hayes and Vigoda [6] explain
how to define a truncated version of the (partial) coupling,
which allows us to extend the above result for unbounded
stopping times. Using this technique, we are able to prove
the self-stabilization of the algorithm of [1] under arbitrary
scheduler.
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