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Abstract

Mobile ad hoc networks consist of mobile wireless devices which autonomously organize their
infrastructure. In such networks, a central issue, ensured by routing protocols, is to find a
route from one device to another. Those protocols use cryptographic mechanisms in order to
prevent malicious nodes from compromising the discovered route.

We first propose a calculus for modeling and reasoning about security protocols, including
in particular secured routing protocols. Our calculus extends standard symbolic models to
take into account the characteristics of routing protocols and to model wireless communication
in a more accurate way.

We then give decision procedures for analyzing routing protocols. We use a symbolic
model and constraint systems to represent the possible executions of a given protocol. We
revisit constraint system solving, providing a complete symbolic representation of the attacker
knowledge.

We show that it is possible to automatically discover (in NPTIME) whether there exists
a network topology that would allow malicious nodes to mount an attack against a secured
routing protocol, for a bounded number of sessions. We also provide a decision procedure for
detecting attacks in case the network topology is given a priori.

We also analyze protocols with recursive tests. We provide NPTIME decision procedures
for two classes of protocols with recursive tests and for a bounded number of sessions.
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Résumé

Les réseaux mobiles ad hoc consistent en un assemblage de machines mobiles qui organisent
elle-mémes leur infrastructure. Dans ces réseaux, déterminer comment les messages doivent
circuler pour atteindre leur destination est une fonctionnalité primordiale, qui est assurée
par les protocoles de routage. Les protocoles de routage sécurisés utilisent des mécanismes
cryptographiques pour empécher des agents mal intentionnés de compromettre les routes.

Nous proposons un calcul de processus pour modéliser les protocoles sécurisés, et en par-
ticulier les protocoles de routage sécurisés. Notre calcul se base sur des modéles symboliques
connus que nous enrichissons pour prendre en compte les caractéristiques des protocoles de
routage et de la communication sans fil.

Nous fournissons ensuite des procédures de décision qui nous permettent d’analyser des
protocoles de routage. Nous mettons en place un modéle symbolique avec des systémes de
contraintes pour représenter les exécutions possibles d'un protocole. Nous revisitons les sys-
témes de contraintes en donnant une représentation symbolique compléte de la connaissance
de l’intrus.

Nous montrons qu’on peut décider s’il existe une topologie du réseau permettant une
attaque du protocole pour un nombre borné de sessions. Nous fournissons aussi une procédure
de décision pour détecter des attaques dans le cas ou la topologie du réseau est fixée a ’avance.

Nous analysons aussi des protocoles faisant des tests récursifs. Nous fournissons des procé-
dures de décisions en temps NP pour deux classes de protocoles utilisant des tests récursifs et
pour un nombre borné de sessions.
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Chapter 1

Introduction

With the development of digital networks, such as Internet, communication protocols are
omnipresent. Digital devices have to interact with each other in order to perform the numerous
and complex tasks we have come to expect as commonplace, such as using a mobile phone,
sending or receiving electronic mail, making purchases online and so on.

In such applications, security is important. For instance, in the case of an online purchase,
the right amount of money has to be paid without leaking the buyer personal information
to outside parties. Communication protocols are the rules that govern these interactions. In
order to make sure that they guarantee a certain level of security, it is desirable to analyze
them. Doing so manually or by testing them is not enough, as attacks can be quite subtle.
Some protocols have been used for years before an attack was discovered.

Because of their increasing ubiquity in many important applications, e.g. electronic com-
merce, a very important research challenge consists in developing methods and verification
tools to increase our trust on security protocols, and so on the applications that rely on
them. For example, more than 28 billion Euros were spent in France using Internet transac-
tions [BHS10], and the number is growing. Moreover, new types of protocols are continuously
appearing in order to face new technological and societal challenges, e.g. electronic voting,
electronic passport to name a few.

1.1 Ad hoc networks

1.1.1 Wireless ad-hoc networks

Computers, and more generally electronic devices, communicate with each other to perform
a large number of various tasks, such as entering into a transaction over the Internet, finding
your way thanks to the GPS, or simply retrieving money from a cash dispenser to name a
few. Such communication can be achieved either via a physical medium, often wires, or a
wireless medium. Mobile phones, portable computers, wireless sensors are able to send and
receive messages over radio waves, wi-fi, bluetooth... Using wireless communication is a cost
efficient way of setting up a communication network in a short time when there is no existing
infrastructure, or if the network is only temporary.

Wireless networks can be structured around a central point. For instance, in managed
wireless networks which are routinely used in home networks, the central device is linked to a
wired network and serves as a gateway to the Internet for the other devices on the network, it
is called the access point. Sensor networks are also often hierarchised, the sensors all have to
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transmit the information they gather to a central device. However, there is not always such a
hierarchy, some wireless networks are decentralized, without any preexisting structure. Such
auto adaptive networks are called ad hoc networks.

Ad hoc networks are the focus of many recent research efforts. In particular, mobile and
self-organizing networks are of high interest. Examples of applications range from military or
rescue operations to interaction among meeting attendees or students during a lecture, and
can also include self-organizing wireless sensors or vehicular ad hoc networks.

1.1.2 Routing protocols

Ad hoc networks have no fixed infrastructure: the wireless devices making up the network
are arbitrarily located, and thus the way to communicate has to be carefully thought out.
Basic communication is achieved by broadcasting messages. Any machine within a certain
range (whose value depends on the power of the antenna and the wireless medium chosen) of
the emitting machine can receive the message. Whereas in a managed wireless network, each
machine only communicates with the central access point and ignores all other messages, in
an ad hoc setting they have to listen to every message, at least until some sort of organisation
can be established. Each of the devices can communicate directly only with the devices that
are situated within a certain range. As a consequence, when two distant machines wish to
communicate, the data traffic has to travel through the other devices making up the network
until it reaches its destination. In a wired network, bringing the data to its destination is a
task performed by specific devices called routers. In an ad hoc wireless network, each device
can act as a router, propagating messages on behalf of some other device.

An ad hoc network can be thought of as a graph, where the nodes of the graph represent
the devices making up the network. Two nodes are linked by an edge in the graph if they are
within direct communication range of each other, which means that when one of the devices of
that link broadcasts a message, his neighbor can hear it. Finding the paths that the messages
must follow in an a priori unknown and constantly changing network topology is a crucial
functionality of any ad hoc network. Specific protocols, called routing protocols, are designed
to ensure this functionality known as route discovery.

As an illustrative example, we give a brief description of the route discovery functionality
of a basic routing protocol, namely the Dynamic Source Routing protocol (DSR). DSR is a
simple routing protocol designed to be used in ad hoc networks.

This protocol is used when a node, that we denote as the source node S, wishes to commu-
nicate with another node that we will denote as the destination node D. The routing method
used to transfer data makes use of a route, a path in the graph that the data must follow to
reach its final destination. In order to perform the routing operation, S thus needs to discover
a path in the network leading to D. The route discovery in DSR is divided in two phases: a
request phase and a reply phase. During the request phase, messages are sent everywhere over
the network, in an effort to reach D. First, the source node broadcasts a message signalling
that it is looking for a route towards DD. The nodes receiving this message that do not cor-
respond to the intended destination are called intermediate nodes. They forward the message
after appending their name to the request. When D is reached, the reply phase begins, where
the discovered route is conveyed back to S through the intermediate nodes. D. Jonhson and
D. Maltz provide a full description of the protocol in [JMBO1].
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1.1.3 Classification of routing protocols.
Routing protocols can be classified into two groups:

e proactive (or periodic): those protocols try to maintain up-to date routing information.
In other words, routes are periodically updated. At any time, each nodes knows how to
route a packet.

e reactive (or on-demand): those protocols establish routes only when it is needed. In other
words, a route discovery is initiated only when a source node .S wishes to communicate
with a destination node D which he does not already know how to reach.

In general, proactive approaches are thought to have shorter latency, as routes are instantly
available, while on-demand approaches have a lower overhead, since route discovery only
occurs when it is useful. The main drawback of on-demand routing protocols is the fact that
communication must be delayed until a route is found. However, information is updated in
an on-demand manner, in contrast with proactive protocols. As these protocols maintain up-
to-date routing information for all possible destinations, they will establish some routes that
will never be used. There are also some hybrid protocols that try to combine the advantages
of both approaches.

In wired networks, routing protocols usually adopt the proactive approach, which is better
adapted to a network whose configuration changes rarely: the updates need not be too fre-
quent. For instance, the routing protocol used in the Internet, the Border Gateway Protocol
(BGP) [BGP95], is proactive. = Some routing protocols for ad hoc networks also use this
method, such as SEAD [HJPO03].

Furthermore, routing protocols can also be sorted between the source routing and table
routing methods.

e source routing: the source node needs to know the entire route between itself and the
destination. During the routing phase, the source node provides the route that the
message he is sending has to follow, and the intermediate nodes forward the message
along this route. This means that every packet carries the route in its header, as each
node needs this information in order to forward the data along the way to the destina-
tion. Examples of source routing protocols include DSR [JMBO01|, AnonDSR [SKYO05],
Ariadne [HPJ05] and endairA [BV04].

e table routing (or hop-by-hop routing): each node knows only which is the following node
on the route towards a given destination. This information is stored in routing tables.
Several methods can be used to compute this next node, mainly link-state and distance-
vector. In link-state algorithms, the nodes share information about their neighbors,
and each node computes the shortest path towards every destination. In distance vector
algorithms, nodes share their estimates of the shortest path for all known nodes, and the
neighbors update their routing tables accordingly. Examples of table routing protocols
include AODV [PBR99] and its secure version SAODV [ZA02].

Source routing allows one to easily prevent the presence of loops in a route, but in com-
pensation each packet carries the entire route in its header. It is more complicated to detect
the formation of loops in the case where table routing is used. This is a serious drawback, as
loops are serious flaws: when a routing loop forms, it generates excessive traffic in the loop,
and may prevent the nodes of the loop to function in a normal way.
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Most of the time, on-demand routing protocols are made of several separate mechanisms:
route discovery, route maintenance and data transmission. Route discovery consists in finding
a suitable path from a source node to a given destination, and route maintenance is the
mechanism used when a link breaks, which can be quite frequent in a mobile network. However,
route maintenance often consists in advertising the link failure and prompting the source node
to initiate a new route discovery if needed, without any attempt at fixing the existing route.
Data transmission is the actual communication phase and occurs when a route has been
established through route discovery.

In order to secure data transmission, the route discovery has to be secure too. We focus
on the security of route discovery, and when describing a routing protocol we consider only
the route discovery mechanism. The security of route discovery is crucial for the functioning
of ad hoc wireless networks. Indeed, an adversary can easily paralyze the entire network by
attacking the underlying routing protocol. While the routing aspects of mobile ad hoc networks
(MANETS) are well-understood, the research activities about security in those networks are
still at their beginning.

1.2 Secure Ad Hoc Routing Protocols

Assuming that the routing protocols operate in a friendly environment is unrealistic. Secure
routing protocols have been proposed in order to take the adversarial setting into account and
protect against an attacker.

AODV [PBRY9] and DSR [JMBO01] are not secure and in particular do not ensure correction
of the discovered route in the presence of malicious nodes. Some protocols aim at fixing this
vulnerability. For instance, SAODV [ZA02] is a secured version of AODV, and SRP [PH02| is
a security mechanism designed to be used with source routing protocols such as DSR.

Some protocols [SKY05, ZWK 04, BEKXKO04] moreover want to ensure anonymity of the
participants. They make use of similar techniques as some secure source routing protocols.
The computations performed are however more complex in general, as the security guarantees
desired are more difficult to obtain.

In order to ensure correctness of the route, nodes executing a routing protocol may have
to perform some checks, typically checking that some other node claiming to be their neighbor
actually is. Specific protocols are designed to discover neighbors, and they have to be secure
in order to derive security of the routing protocol above. The importance of this functionality
is explained in [PPS*08], and a method to check whether such protocols are indeed secure is
introduced by [PPHO08|. We use secure neighborhood discovery as a black box, in the same way
as cryptography: we consider that each node knows the list of its neighbors when executing a
routing protocol.

1.2.1 Cryptographic primitives

In order to build protocols that protect information, we make use of cryptography: from the
Greek words kryptos = "hidden, secret" and graphein = "writing", it denotes the science of
hiding information. The need for protecting sensitive data over digital media has prompted a
huge development of this field of study. In the symbolic model, the workings of cryptography
are captured by cryptographic primitives, that are used as a black box hiding the computa-
tional workings of cryptography. The data on which these methods are applied is called the
message.
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Encryption. Symmetric encryption is the oldest known cryptographic method. Coding a
message in order to keep it hidden is called encryption. The inverse method, i.e. retrieving
the initial message is called decryption. Encryption and decryption make use of a key. The
encryption may be symmetric or asymmetric. For symmetric encryption, the same key is used
for encrypting and decrypting a message. Asymmetric encryption involves different keys for
the two operations: a public key for encryption and a secret key for decryption. Decryption
should only be possible with the secret key.

Hash function. A cryptographic hash function is a function that takes an arbitrary block of
data and returns a bitstring of fixed size called the hash value. A change in the data, whether
accidental or intentional, will change the hash value. Computing a hash value is easy, but
the opposite operation, i.e. generating a message that has a given hash, should be infeasible.
Furthermore, it should be infeasible to find two different messages with the same hash.

Message authentication code. A message authentication code, or MAC, is a short bit-
string used to authenticate a message. The function producing a MAC from an arbitrary-
length message needs a secret key to perform the computation. Agents possessing the same
key will be able to detect changes in the message by computing the MAC and comparing
them. The algorithm is sometimes called keyed hash function. The MAC value protects both
a message’s data integrity and its authenticity.

Digital signatures. A digital signature is a scheme for proving the authenticity of a digital
message, as traditional handwritten signatures are proofs of the authenticity of a document.
Digital signatures are commonly used for example in software distribution, financial trans-
actions, and in other cases where it is important to detect forgery or tampering. Digital
signatures employ a type of asymmetric cryptography, two algorithms make up a signature
scheme. The signing algorithm produces a signature, given a message and a private key. The
signature verifying algorithm considers as input a message, a verifying key and a signature,
and either accepts or rejects the message’s claim to authenticity. It should be infeasible to
generate a valid signature without the private key.

1.2.2 Examples of routing protocols

Designing secure version of routing protocols is a difficult task. Actually, most routing proto-
cols proposed for wireless ad hoc networks are insecure, attacks have been discovered against
them. Those who have no known attacks have mostly only been analysed by informal reas-
oning. We describe here two routing protocols claimed to be secure that will be used as
illustrating examples in this dissertation.

Secure Routing Protocol (SRP) [PHO02] is actually not a routing protocol in itself. In
fact, it is designed to be applied as an extension of an existing on-demand source routing
protocols, such as DSR. The goal of the protocol obtained after extension is to provide correct
connectivity information, even in the presence of (non-colluding) attackers. In order to be able
to use SRP, the source and destination of the route discovery are required to have a security
association, for instance sharing a key Kgp.

A syntactic description of SRP is given in Figure 1.1. To discover a route to the destination,
the source S constructs a request packet and broadcasts it to its neighbors. The request packet
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req, rep: identifiers indicating the phase of the execution

1d: request identifier

Gn: query sequence number

0,0 list of nodes

Ksp: key shared between S and D

MAC :  function computing a message authentication code
m,m’:  message authentication codes

Request phase:
S broadcasts (req, S, D, qn, 1d, [], MAC(Ksp, (S, D, q,, Id)))

V receives (req, S, D, qn, Id, {,m)
V' checks that the message was last processed by a neighbor
V broadcasts (req, S, D, q,, Id,V :: £,m)

D receives (req, S, D, g, Id, ¢, MAC(Kgsp, (S, D, qn, Id)))
Reply phase:
D sends (rep, D, S, ¢, MAC(Ksp, (S, D, qn, Id, 0')))

V receives (rep, D, S, ¢',m’)
V' checks that ¢ is plausible from its point of view
V sends (rep, D, S, ¢',m’)

S receives (rep, D, S, g, Id, ', MAC(Kgsp, (S, D, qn, Id, ?')))

Figure 1.1: Specification of SRP

contains its name S, the name of the destination D, an identifier of the request Id, a request
sequence number ¢, to prove the freshness of the route request and to prevent replaying of
old requests, a list containing the beginning of a route to D, and a MAC computed over
the content of the request with a key Kgp shared by S and D. It then waits for an answer
containing a route to D with a MAC matching this route, and tests whether it is a plausible
route by checking that the route does not contain a loop and that his neighbor in the route is
indeed a neighbor of his in the network. Each intermediate node that receives the message first
checks that the list representing the route begins with the identifier of one of his neighbors.
Then, he appends his identifier to the route accumulated so far in the request and broadcasts
the modified request message to his immediate neighbors. During the reply phase, they behave
in a similar way, they check that the route is plausible according to their view of the network
and they forward the reply along the way. Upon receiving the request packet, the destination
checks that the MAC is correct and initiates the reply phase. He sends a message containing
the route discovered with a MAC computed over it with the key Kgp.

This protocol, although it was analyzed informally and considered secure [PH02], is subject
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req, rep: identifiers indicating the execution phase
1d: request identifier

0,0 list of nodes

Lsig, l;ig: lists of signatures

sigp, sigy, : signatures over the reply message

Request phase:

S broadcasts (req, S, D, Id, [])

V receives (req, S, D, Id, ()
V' checks that the message was last processed by a neighbor
V broadcasts (req, S, D,V :: {)

D receives (req, S, D, ')
D checks that the message was last processed by a neighbor

Reply phase:
D sends (rep, D, S, V', sigp)

V receives (rep, D, S, €', 1, )

V checks that (¢, 1) is a valid pair node list/list of signatures
V sends (rep, D, S, V', sigy :: sig)

S receives (rep, D, S, ¢/, 1’ )

) Ustg

S checks that (¢/,1/,,) is a valid pair node list/list of signatures

» Usig

Figure 1.2: Specification of EndairA

to attacks [Mar03, BV04]. We describe one of these attacks in Section 1.2.3.

EndairA is a secured routing protocol inspired by another one called Ariadne. The
authors, G. Acs, L. Buttyan and I. Vajda, discovered an attack on Ariadne [BV04]. They
established a formal model to analyze routing protocols and proved EndairA to be secure for
a slightly modified notion of correctness, called route validity. The protocol is called endairA
(which is the reverse of Ariadne) because, instead of signing the request, they propose that
intermediate nodes should sign the route reply. The aim of signing the route reply is to protect
the protocol against the attacks found against Ariadne, which take advantage of the fact that
the list could be tampered with during the request phase. There are no known attacks against
this routing protocol.

A syntactic description of EndairA is given in Figure 1.2. The initiator of the route
discovery process, S, generates a route request containing the identifiers of the source S and
the destination D, and a randomly generated identifier Id. Each intermediate node that
receives the message for the first time appends its identifier to the route accumulated so far



tel-00675509, version 1 - 1 Mar 2012

8 CHAPTER 1. INTRODUCTION

in the request and broadcasts the modified request message to its immediate neighbors.

When the request reaches the destination D, it generates a route reply (rep, D, S, ¢, sigp)
where ¢’ is the accumulated route obtained from the request and sigp = [rep, D, S, V'] k,, is
a digital signature of D on the other fields of the reply. The reply is sent back to S on the
reverse of the route found in the request.

Upon receiving the reply (rep, D, S, ', l54), the intermediate node V verifies that the route
¢ contains its identifier V' and that both the preceding and following identifiers in the list
belong to neighboring nodes. The node V also checks that the list of signatures [y, is valid
and corresponds to the list of names ¢'. If these verifications fail, then the message is dropped.
Otherwise, V' appends its signature to /4, and forwards it to the next node.

When S receives the route reply (rep, D, S, ¢, l};,), he checks that the signatures in [{;, are
valid and correspond with the sequence of nodes in list #'. If these verifications are successful,
then S accepts the route .

1.2.3 Attacks on routing protocols

We can consider two types of attacks [HPJO5]: routing disruption and resource consumption.
During routing disruption attacks, the aim of the intruder is to prevent the routing protocol
from executing in a correct way. In resource consumption attacks, the intruder sends requests
over the network to make honest nodes consume their (limited) resources such as bandwidth
or memory.

The first kind of attacks can be performed by an intruder trying to route all the traffic
through nodes he controls, so as to be able to listen to all communications. He could also
try to prevent two nodes from communicating by advertising a false route. The second type
of attacks are denial of service attacks. If a protocol satisfies the route correctness property,
it is secure against route disruption attacks but not necessarily against resource consumption
attacks. We describe below some generic ways of mounting attacks.

Replay attacks. A replay attack consists in broadcasting without modification a message
that the intruder received from an honest agent. A replay attack may for example enable
the intruder to steal the identity of an honest agent. In the context of routing protocols, this
could shorten the paths going through the intruder, and thus possibly prompt nodes to choose
these paths to communicate. As an illustration, we consider again SRP.

In [BV04], an attack is found on SRP for an intruder controlling one node in the network.
This attack, described in Figure 1.3 is similar to a replay attack, but the message transferred
is modified slightly, in order to fool the destination into signing a path that appears correct.

First, the source node S initiates the protocol by sending a request message
(req, S, D, qn, Id, [|, MAC(Kgsp, (S, D, gn, Id))).
As the intruder is a neighbor of the source, he receives the message. This enables him to send
the forged message (req, S, D, qn, Id, [X, W],MAC(Ksp, (S, D, ¢, Id))). When the destination
D receives this message, he checks that the node at the head of the list is one of his neighbors.
In this case, the test succeeds, as X is really a neighbor of D, even though X has not sent the
message. The destination node then computes a MAC over the false route [ X, W], and sends
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1. (req, S, D, qn, Id, [], MAC(Ksp, (S, D, gn, 1d)))
2. <req, S, D, qp, 1d, [X, W], MAC(KSD, (S, D, qy, Id))>
3. (req, S, D, qn, 1d,[X, W], MAC(Ksp, (S, D, qn, Id, [ X, W1])))

Figure 1.3: Example of an attack on SRP

a reply message that the intruder forwards to the source. Notice that this attack is possible
even if nodes perform secure neighborhood discovery: as X is a neighbor of D, the destination
node D accepts [ X, W] as a route between him and S.

Tunneling attacks. This attack requires the intruder to control at least two nodes. A
tunneling attack (or wormhole attack) is similar to a replay attack: when the first node
receives a request sent by an honest agent, he sends it (over a private channel) to the other
node, who processes it as if he had really received it. This can lead other agents to believe that
a route going through the dishonest node is short, and so to choose this route to communicate.

Rushing attacks. For this attack, the intruder needs to be faster than the honest agents
(see a description and model in [KHGO06]). To prevent flooding of the network, in most of the
routing protocols, the agents process only the first request that they receive. If the intruder
is faster, the probability is higher that the routes found by the protocol go through him.

Intruders in a network can be passive or active. A passive intruder does not send any
message, he only overhears the communications. Passive intruders are considered a threat for
secrecy or anonymity, but not for the correct execution of protocols. An active intruder can
send messages over the network. In an ad hoc network, the power of the intruder also depends
on the number of nodes that he controls. In a wireless network, the intruder is constrained
by his location in addition to his computing abilities. An intruder controlling only one node
has therefore less power to disrupt the routing protocols than an intruder controlling several
nodes across the network. For example, an intruder controlling only one node can not mount
tunneling attacks.

1.3 Formal verification

In the previous section, we have seen an attack against SRP, although the authors analyzed
their protocol with BAN logic and concluded that it was secure. They showed that, after a
successful run of the protocol, the source node S believes that the entire route reply originates
from the destination node D. Unfortunately, even though this analysis is sound, it is not
sufficient to ensure route correctness(|[Mar03]).This illustrates how difficult it is to correctly
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analyze cryptographic protocols. Furthermore, verification has to be performed for each new
protocol, and verification by hand is tedious and error prone. Other methods to test whether
routing protocols are secure proceed by checking whether they withstand known attacks, but
this is not sufficient to prove that they are secure.

It has been recognized that designing a secure protocol is a difficult and error-prone task.
Indeed, protocols are very sensitive to small changes in their description and many protocols
have been shown to be flawed several years after their publication (and deployment).

Formal methods include techniques that can be used for the specification, development and
verification of protocols. Performing appropriate analyses can contribute to the reliability and
robustness of software using the protocols. Formal methods make use of a variety of theoretical
computer science fundamentals, in particular logic calculi, formal languages, automata theory,
and program semantics, but also type systems and algebraic data types.

1.3.1 Symbolic approach

Symbolic models are highly astracted models used to reason about protocols. In symbolic mod-
els, the network is represented by a set of agents that can exchange messages. These messages
are represented by symbolic terms. Furthermore, in the traditional Dolev-Yao model [DY81],
the intruder controls the network: he can overhear, intercept, and forge messages within the
constraints of the cryptography. The symbolic models make the hypothesis of perfect crypto-
graphy: all the cryptographic primitives behave in an ideal way. For instance, it is impossible
to decrypt without the corresponding key, or to sign a message without a private key.

A multitude of effective frameworks have been proposed to analyze protocols in a symbolic
way. The Paulson inductive model [Pau98| is an algebraic model where a protocol is modeled
inductively as a set of traces. A trace is a sequence of communication operations representing
an execution of the protocol. Proofs in this model can be generated with the theorem prover
Isabelle/HOL [Pau89]. The strand spaces model [THG99] introduces the notion of strands,
which represent a sequence of events either legitimate or malicious. A strand space is a
collection of strands with links representing causal interaction. The applied pi-calculus [AF01]
is an extension of the pi calculus with value passing, primitive functions, and equations among
terms. Constraints systems [RT01] represent each protocol execution as a set of constraints
which represent the intruder knowledge and the terms the intruder has to be able to build in
order to perform an attack.

Formal modeling and analysis techniques are well-adapted for checking correctness of secur-
ity protocols. Formal methods have for example been successfully used for analyzing authen-
tication or key establishment security protocols. Symbolic methods have been successfully
applied to the analysis of security protocols, yielding the discovery of new attacks like the
famous man-in-the-middle attack in the Needham-Schroeder public key protocol [Low96| or,
more recently, a flaw in Gmail [ACCT08]. While secrecy and authentication properties are
undecidable in the general case [DLMS99], many decision procedures have been proposed.
For example, secrecy and authentication become NP-complete for a bounded number of ses-
sions [RT01] and B. Blanchet has developed a procedure for security protocols encoded as Horn
clauses [Bla01]|. This yielded various efficient tools for detecting flaws and proving security
(e.g. ProVerif [Bla05] or Avispa [ABB'05]).

Symbolic models are highly abstracted approaches, but there are results that show that
the security guarantees they provide are nonetheless reasonable. For instance, let us consider
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a more precise model, the computational model. In this approach, messages are bitstrings
and the intruder is a probabilistic polynomial time Turing machine. Results of computational
soundness show that it is possible to prove security in the symbolic model and to lift the
result to the computational model, under certain conditions. The concept of computational
soundness was introduced by M. Abadi and Ph. Rogaway [AR00] ( [CKWO09] is a recent survey
of computational soundness results). In light of these works, symbolic models seem to be a
reasonable approach for analyzing protocols in an efficient way while having sufficient security
guarantees.

1.3.2 Characteristics of routing protocols

While key-exchange protocols in traditional frameworks are well studied, there are very few
attempts to develop formal techniques allowing an automated analysis of secured routing pro-
tocols. Up to our knowledge, tools that would allow the security analysis of routing protocols
are also missing. Those protocols indeed involve several subtleties that cannot be reflected in
existing work, that we will describe now.

Routing protocols involve different elements that distinguish them from other crypto-
graphic protocols. For instance, most cryptographic protocols involve two agents who want
to communicate while preserving some privacy or anonymity or other property. They could
for example be executed once the routing protocol has been run and has established a route
between two nodes. We give here the main characterisitcs of routing protocols that have to
be accurately modeled in order to formally verify them.

Number of agents involved. It is impossible to know in advance how many devices will
be involved in the execution of a route discovery protocol. In fact, route discovery can involve
an unbounded number of nodes. The first phase of route discovery potentially involves all the
nodes of the network. Intuitively, when a node S wants to interact with another node D and
he has no idea of how to reach D he will send messages everywhere on the network in order to
reach him. Furthermore, the number of nodes in the network is not fixed. By nature, anyone
can participate in an ad hoc network. The only requirement is to emit and receive messages via
the same wireless medium as the other nodes. The infrastructure is much more flexible than in
a wired setting. Nodes can appear, disappear, move. It is thus impossible to know in advance
how many devices will be involved in the execution of a route discovery protocol, even by fixing
the source and the destination. Fixing the network is a first step towards knowing which nodes
will be involved. We believe that considering a truly unbounded number of participants would
make any reachability problem, and thus basic security properties, undecidable, as it is the
case for an unbounded number of sessions in traditional protocols. However, it is not clear
whether some simple conditions could circumvent this problem. Unfortunately, we do not
deal with the case of an unknown number of participants, but we deal with an unbounded
number of nodes in the network (with a bounded number of nodes in the network that actively
participate in the protocol execution).

Network topology. The underlying network topology is crucial to define who can receive
the messages sent by a node. Moreover, the intruder is localized to some specific nodes
(possibly several). The natural way to model an ad hoc network is to use a notion of graph
where there is an edge between two nodes if they can communicate directly. For a protocol
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used in a wired or a fixed setting, there also exists an underlying graph, but it does not play
a role in the interaction. In a traditional malicious setting, the intruder is assumed to control
the network. He can receive all the messages that are sent between the participants, intercept
them, forge and send messages in the name of an honest agent. In a wireless network where
communication can only occur node to node, it is not realistic to assume that an intruder can
receive all messages. The intruder has to be located somewhere, and can thus only receive the
messages sent by his immediate neighbors. Similarly, he can only send messages directly to
his neighbors. The physical aspect of the equipment used by the intruder can play a role. If he
has the use of an antenna that can send messages in a given direction, it is possible for him to
send messages to a given agent. Otherwise, he has to broadcast his messages, as do the honest
agents. The broadcast nature of transmission means that the intruder can no longer intercept
messages. It is possible to jam the communications in a physical way, but this would block any
message during a certain amount of time without discrimination. We do not consider denial
of service attacks. We do not give the intruder the ability to jam communications either. But
we give him the ability to send messages to only one of his neighbors. This only adds to his
power, so we do not miss attacks by doing such a thing. We also let the intruder control
several nodes of the network.

Specific data structure: list. When studying source routing protocol, we have to consider
a data structure not usually treated in verification tools: the list. Indeed, the route discovered
is represented by a list of nodes. Intuitively, during the first phase of the discovery process,
also known as request phase, the list is built incrementally, each node adds its name to the
route field in the request message, and when the message reaches the destination, the reply
phase begins. During the reply phase, he only has to send a message back to the source,
containing the fully built list, possibly protected so as not to be modified. The source needs
this list to route the normal data traffic between him and the destination. So messages contain
lists, whose size are not known in advance. We model lists and we show that not knowing
their size beforehand does not prevent us from establishing some decidability results.

Security Properties. What seems to be a fundamental property is that when a routing
protocol discovers a route, this route matches a real path in the network. This property
can not be reduced to an authentication or security property, due in particular to the fact
that it is a graph property. In the existing frameworks, this property can therefore not be
defined. We model this property by using a logic that reasons about lists. Some routing
protocols aim to ensure other security properties about the route, for instance that the route
discovered by the protocol is as short as possible, or that the route does not go through any
malicious node, or yet that the protocol always discover a route when a path exists in the
graph ... All these properties are properties of the route, which means properties of a list in a
source routing protocol. They could probably also be modeled similarly to route correctness.
However, in table based routing protocols, the same properties are more complex to express,
as the information is scattered across various routing tables in the network. Yet other routing
protocols aim at providing anonymity, which is a property that we did not consider.

Neighbor tests. As we have seen after describing the DSR protocol, a very straightforward
attack on a routing protocol designed to be used in a friendly environment is to send a forged
message in the name of the destination, which could be situated at the other end of the
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network. To protect against these basic attacks, nodes have to check, when they receive a
message supposedly from an agent A, that this agent is within communication range, or in
other words in our model, is a neighbor. The neighbor discovery protocol must thus also be
secured, if we want to make checks that are useful. We consider that a secure neighborhood
discovery protocol has been used, and that each node can check whether a node is his neighbor.
Another test involving neighbors can be performed on lists. Typically, during a reply phase, a
list of nodes is forwarded, and this list is supposed to represent a valid route. Nodes forwarding
this reply message can check whether the list contained in the route field is locally correct by
making sure that their name is in the list and appears between the names of two neighbors.
Intuitively this test is also essential, as the unprotected route is easily modifiable.

Recursivity. In the EndairA example, we can see that to protect the route during the reply
phase against malicious tampering, each node performs an operation on the same field. They
each sign the list, and build a list out of these signatures. To check that the list has not been
tampered with, the source then has to check that the result of this construction is valid. This
means checking that a recursively built list is valid. So, in order to model protocols that use
these recursively built lists to authenticate the route, we have to be able to deal with a form
of recursivity.

1.3.3 Verification of secure routing protocols

Recently, several results have been proposed for studying routing protocols. For example,
S. Yang and J. Baras [YBO03| provide a first symbolic model for routing protocols based on
strand spaces, modeling the network topology. They implement a semi-decision procedure to
search for attacks and find an attack on AODV [PBR99], a routing protocol (built for friendly
environments) that does not include cryptography. Their approach however does not apply
to routing protocols using cryptographic primitives for securing communications.

Case studies

Several case studies of important secured routing protocols have been performed. J. God-
skesen [God06] provides an analysis of a simplified version of the ARAN [SDL*02] protocol
with ProVerif, for a given configuration, and captures a relay attack. J. Marshall [Mar03| uses
Cryptographic Protocol Analysis Language Evaluation System (CPAL-ES) to specify the SRP
protocol and analyze it. The encoding of SRP is done on a precise fixed topology, without
broadcast, and a replay attack is retrieved.

T. Andel [And07] uses model checking in his PhD thesis to analyze the ARAN protocol
in the SPIN tool, for a fixed topology. In order to be able to analyze a priori unknown
topologies, the authors propose a reduction of the search space by establishing equivalence
between different topologies, and showing that it is enough to test the smallest topology in an
equivalence class to decide security.

General framework

While these last results focus on particular routing protocols, some frameworks have been
proposed to model wireless communication and/or routing protocols in a more generic way.
L. Buttyan and I. Vajda [BV04] provide a model for routing protocols, in a cryptographic
setting. Their model enables them to find attacks on SRP and Ariadne [HPJO05|. They provide
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a security proof (by hand) for a fixed protocol they propose, endairA. G. Acs, L. Buttyan and I.
Vajda then develop their framework for distance vector routing protocols [ABV05], analyzing
SAODV [ZA02] and ARAN. They also apply their framework to sensor networks [ABVO06|,
analyzing TinyOS [PSWT02].

S. Nanz and C. Hankin [NHO6] propose a process calculus to model the network topo-
logy and broadcast communications, extending the Calculus of Broadcasting System. They
analyze scenarios with special topologies and attacker configuration by computing an over-
approximation of reachable states. They develop a static analysis based on a flow logic. Their
analysis is safe in the sense that the discovered attacks correspond to real ones. They also
propose a decision procedure but for an intruder that is already specified by the user. This
allows to check security only against fixed, known in advance scenarios.

Up to our knowledge, we are the first to provide decidability or complexity result for
routing protocols, for arbitrary intruders and network topologies.

1.4 Contributions

Ad hoc routing protocols have several particularities that distinguish them from traditional
key-exchange protocols. Among them are predominant the network topology, the neighbor-
hood tests and security properties, as well as recursivity. We propose a model for ad hoc
routing protocols that takes into account the topology of the network and the specific broad-
cast primitive. We then analyze separately protocols that perform neighborhood tests and
protocols that make use of recursivity. In order to analyze both types of protocols, we use
constraint systems [MS01, CLCZ10]. We extend constraint systems with the primitives useful
to deal with routing protocols and recursivity, such as lists. Furthermore, we also revisit them
to deal with an infinite number of nodes. Thanks to the representation of protocol execution
using constraint systems, we obtain decidability results for source routing protocols with their
specific security properties on the one hand, and for protocols with recursive tests on the other
hand.

Modeling routing protocols

We propose a calculus, inspired from CBS# [NHO06], which allows ad hoc networks and their
security properties to be formally described and analyzed. As for standard symbolic mod-
els for security protocols, we model cryptography as a black box (the perfect cryptography
assumption), thus the attacker cannot break cryptography, e.g. decrypt a message without
having the appropriate decryption key. To take the features of ad hoc routing protocols into
account, we first propose a logic to express the neighbor tests performed by the nodes at each
step. There are also some implications for the attacker model. Indeed, in most existing formal
approaches, the intruder model consists in the Dolev Yao attacker that controls the entire
network. We have explained why this attacker model is too strong in the context of routing
protocols: the topology of the network plays a crucial role in the execution of the protocol and
the possible communications. Considering an intruder with a total control over the network
and not localized in one particular node would lead to a number of false attacks. Our model
reflects the fact that a malicious node can interfere directly only with his neighbors.

In order to analyze protocols such as EndairA, we have to be able to deal with recursivity.
These protocols share a way of authenticating the route during the reply phase of the route
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discovery. Each of the nodes on the route compute a signature, and the source has to check
that the list of signatures has been properly built.

Recursivity quickly yields undecidability, as even a single input/output step in a protocol
may reveal complex information, as soon as it involves a recursive computation [KW04]. In
order to circumvent this, we consider protocols that perform standard input/output actions
(modeled using usual pattern matching) but that are allowed to perform recursive tests such as
checking the validity of a route or the validity of a chain of certificates. Indeed, secure routing
protocols use recursivity only for performing sanity checks at some steps of the protocol. It
is also the case of other protocols such as distributed right delegation, and PKI certification
paths.

Analyzing routing protocols

Our formal model represents all possible executions against an adversary that controls some of
the nodes and acts maliciously in these nodes by sending any message that he can construct.
Our model is thus infinitely branching. As a first step towards automation, we provide an
alternative symbolic semantics, based on constraint systems and we show its correctness and
completeness w.r.t. the concrete semantics. This result holds for arbitrary processes (possibly
with replication) and for any set of primitives.

We provide two NP decision procedures for analyzing routing protocols for a bounded
number of sessions and for a large set of standard primitives. For a fixed set of roles and
sessions, we show that it is possible to discover whether there exists a network topology and
a malicious behavior of some nodes that yield an attack. We can also decide whether there
exists an attack, for a network topology chosen by the user. These two procedures hold for
any property that can be expressed in our logic, which includes classical properties such as
secrecy as well as properties more specific to routing protocols such as route validity.

Analyzing protocols with recursive tests

For checking security of protocols with recursive tests (for a bounded number of sessions), we
reuse the setting of constraint systems and add tests of membership to recursive languages.
We propose (NPTIME) decision procedures for two classes of recursive languages (used for
tests): link-based recursive languages and mapping-based languages. A link-based recursive
language contains chains of links where consecutive links have to satisfy a given relation. A
typical example is X.509 public key certificates as defined in [HFP98] that consist in a chain
of signatures of the form:

[[(A1, pub(A1))lsk(a,); [(A2, Pub(A2))lsk(as); - - 5 [{An, Pub(An))lsk(s)]-

A mapping-based language contains lists that are based on a list of names (typically names
of agents involved in the protocol session) and are uniquely defined by it. Typical examples
can be found in the context of routing protocols, when nodes check for the validity of the route.
For example, in the endairA protocol [BV04], a route from the source Ay to the destination A,
is represented by a list loute = [An;...; A1]. This list is accepted by the source node Ay only
if the received message contains a list of signatures authenticating it of the form:

[[(An, Ao, lroute, [siga; - - -5 5ign]>]]sk(A1)§ [{An, Ao, lroutes [3i93; S Sign]ﬂ]sk(Az); s

sigy siga
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cees [[<An7 Ao, lroute; [Sign]”]sk(An_l); [[<An; Ao, lroute, H>]]sk(An)]

Vv VvV
$ig, 1 sig,

Note that a link [(Ay, Ao, lroute, [$19;; - - -; sign]>]]sk(,4i) depends on the list l,oyute, on its i-th
element and on the following links in the list.

Some of those results were published in [ACD10]|, with a preliminary version in [ACD09]. A
journal version has been submitted to the special issue of Information and Computation on Se-
curity and Rewriting techniques. The results regarding recursivity were published in [ACD11].

1.5 Outline of the Dissertation

In order to provide decision procedures for routing protocols, we reuse the setting of constraint
systems. We first show in Chapter 2 how to transform the constraint systems corresponding to
the execution of those protocols into solved constraint systems. We define constraint systems
and the simplification rules that are used to obtain solved constraint systems. Our constraint
systems give the intruder the power of generating any IP address. To achieve that, we assume
that he has at his disposal a potentially infinite number of names. In the context of routing
protocols, these names represent IP addresses. We also revisit the procedure of [CLCZ10] for
solving constraint systems and obtain a complete symbolic representation of the knowledge of
the attacker, in the spirit of the characterization obtained in [ACO06] in the passive case (with
no active attacker). We show that all the terms that the intruder can build are obtained by
combining terms from a particular set of terms. We give a characterization of the solutions to
these solved constraint systems.

In Chapter 3, we propose a way to model and analyze ad hoc routing protocols. Section 3.1
presents our formal model for routing protocols, using a process calculus with an underlying
graph. It is illustrated with the modeling of the SRP protocol. We explain how to abstract
some parts in the execution of the protocol in order to get a finite number of representations of
the possible runs. This allows us to provide two NP decision procedures for analyzing routing
protocols for a bounded number of sessions, for a fixed network and an unknown one.

In Chapter 4, we show that it is possible to analyze protocols with recursive tests and
obtain decidability results. We use the results obtained in Chapter 2, and we add tests
of membership to recursive languages. We provide two NPTIME decision procedures for
two classes of recursive languages that encompass most of recursive tests involved in secured
routing protocols.

In Chapter 5, we conclude by discussing possible further works.



tel-00675509, version 1 - 1 Mar 2012

Chapter 2

Constraint systems

Constraint systems are quite common in modeling security protocols in the case of an active
intruder. A constraint system represents the execution of a protocol for a finite number
of sessions and a fixed interleaving. Symbolic constraint systems are thus well suited to
express a reachability (e.g., secrecy) property. J. Millen and V. Shmatikov first introduced
constraint systems in [MSO01] to solve a reachability problem for cryptographic protocols.
M. Rusinowitch and M. Turuani showed that protocol insecurity is NP-complete in the case of a
finite number of sessions by establishing a small attack property [RT01]|. Both of these two first
approaches consider rather basic cryptographic primitives. The notion of constraint systems
has since been used in several works, with decidability results for different primitives, such as
exclusive or operator [CS03], modular exponentiation [CKRT03], monoidal theories [DLLT08].
In [CS03], and later in [CLCZ10], a more generic approach is provided to decide general security
properties. It consists in transforming any constraint system into simpler constraint systems.
This procedure preserves all the solutions of the initial constraint system. In this chapter,
we follow a similar approach. We consider a large signature, encompassing symmetric and
asymmetric encryption, signature, hashes, and lists. Lists are particularly useful for modeling
routing protocols (see Chapter 3). Moreover, we provide the intruder with an infinite set of
names that he can use however he wants. This is also important in the context of routing
protocols to model an arbitrary number of nodes.

We also revisit the procedure of [CLCZ10| for solving constraint systems and obtain a
complete symbolic representation of the knowledge of the attacker, in the spirit of the char-
acterization obtained in [ACO06] in the passive case (with no active attacker).

We work in symbolic models, where messages are represented by elements in some term
algebra. In the next chapters, we also make use of this model, that we introduce in Section 2.1.
We define constraint systems in §2.2.1 and give the simplification rules associated in §2.2.2.
Those simplification rules are sound, complete and terminate in polynomial time (proofs can
be found in §2.3.1, §2.3.3 and §2.3.2 respectively). Our procedure furthermore allows us to
reduce the search for solutions to a specific form of solutions (non-confusing solutions, defined
page 23). We show in Section 2.4 that, when considering these solutions, any term of the
intruder knowledge may be obtained by composition only from a clearly defined set of terms.

17
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2.1 Model for security protocols

In this section, we first introduce term algebra, our model for messages, in §2.1.1. We explain
how the power of the intruder is modeled through deduction in §2.1.2. We then illustrate
in §2.1.3 how protocol execution can be represented using constraint systems.

2.1.1 Messages

In our model, messages are represented using a term algebra. Cryptographic primitives are
represented by function symbols. For instance, symmetric encryption will be represented
by the function symbol senc. Hence, a message m encrypted with a symmetric key k& will be
represented by senc(m, k). We work under the perfect cryptography assumption: an encrypted
message senc(m, k) can only decrypted by somebody who knows the value of the key k used
to perform the encryption.

We consider a signature (S, F) consisting in a set of sorts S and a set of function symbols F.
Each function symbol f is associated with an arity ar(f), which is a mapping from F to S*xS.
We write ar(f) =s1 X ... x sp — s (with s1,...,sk,s € S). Furthermore, we distinguish a
set Fprip of functions symbols of F that will contain private function symbols, i.e. functions
that the intruder can not use. These functions typically encompass the generation of keys.

We consider an infinite set of variables X and an infinite set of names N that typically
represent nonces or agent names. We assume that names and variables are given with sorts.
The set of terms of sort s is defined inductively by:

term of sort s
T variable x of sort s
a name a of sort s
fltr, ... tk) application of symbol f € F such that
ar(f) =s1 X ... x s — s and each t; is a term of sort s;

Sorts will mostly be left unspecified in this chapter, except in specific examples.

We consider an infinite set of names N having Base sort. These names typically represent
constants, nonces, symmetric keys, or agent names. We write vars(t) for the set of variables
occurring in a term ¢t. The term ¢ is said to be a ground term if vars(t) = ().

We write st(t) for the set of syntactic subterms of a term ¢. This notion is extended as
expected to sets of terms. If S is a set, we denote by #5 the cardinal of S. Let u be a term,
u can be represented in different ways. In general, it is represented by a tree. We write ||u||
for the size of u, i.e. the size of the tree representing u. We can also represent u as a directed
acyclic graph where subgraphs are all distinct. This is called the dag representation of w.
We denote by ||u||4qg the size of the dag representation of w, that is the number of distinct
subterms of u.

Substitutions are written o = {x1 — t1,...,2, — t,} with dom(o) = {x1,...,z,}. They
are assumed to be well-sorted substitutions, that is each ¢; is of the same sort as x;. Such a
substitution o is ground if all the t; are ground terms. The application of a substitution o to
a term w is written uo or o(u). A most general unifier of terms u; and ug is a substitution
(when it exists) denoted by mgu(ui,usg).

Example 2.1.1. In our ezamples, we will consider the specific signature (S,F) defined by
S = {Msg, Base, List} and F = {senc,aenc,[ ] ,(_, ),h,hmac,:, ], pub,priv,vk,sk} with
corresponding arities:
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o ar(f) = Msg x Msg — Msg for f € {senc,aenc,[_] ,(_,_),hmac},

)
h) = Msg — Msg,

(
ar(
e ar(::) = Msg x List — List, and ar([]) = List,

e ar(f) = Base — Msg for f € Fpriy = {pub, priv, vk, sk}.

The sort Msg subsumes the two other sorts. The symbol () represents the pairing function,
i 18 the list constructor, and [| represents the empty list. For the sake of clarity, we write
(ui,ug,us) for the term (ui, (u2,us)), and [ui;u;us] for uy == (uz :: (us :: [])). The terms
pub(A) and priv(A) represent respectively the public and private keys associated to an agent A,
whereas the terms sk(A) and vk(A) represent respectively the signature and verification keys
associated to an agent A. The function symbol senc (resp. aenc) is used to model symmetric
(resp. asymmetric) encryption whereas the term [m]q 4y represents the message m signed by
the agent A.

2.1.2 Intruder Capabilities

We model the ability of the intruder by a deduction relation - C 2™ x terms. The relation
T F t represents the fact that the term ¢ is computable from the set of terms T'. It is typically
defined through a deduction system:.

The deduction system we use to model the ability of the intruder is described in Figure 2.1:

Ul ... Up <u1,uQ> U U2
f €F~Fpriv ie{1,2}
flug, ... up) u; U;

senc(uy,u2) ug  aenc(ug, pub(uz)) priv(usg)

1€{1,2}

u1 U1
Figure 2.1: Deduction system

The first inference rule describes the composition rules. The remaining inference rules
describe the decomposition rules. Intuitively, these deduction rules say that an intruder can
compose messages by pairing, building lists, encrypting and signing messages provided he has
the corresponding keys. Conversely, he can retrieve the components of a pair or a list, and he
can also decompose messages by decrypting provided he has the decryption keys. However, he
can not use the functions included in the specific set 74, of private functions. For instance, he
may not be able to create secret keys (Fpriy = {pub, priv, vk, sk} in our running example). The
intruder is also able to verify whether a signature [[m]]sk(a) and a message m match (provided
he has the verification key vk(a)), but this operation does not allow him to learn any new
message. For this reason, this capability is not represented in the deduction system. We also
consider an optional rule

T Jsk(us)
Uy
that expresses that an intruder can retrieve the whole message from its signature. This
property may or may not hold depending on the signature scheme, and that is why this rule
is optional. Our results hold in both cases (that is, when the deduction relation + is defined
with or without this rule).
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The deduction system allows us to define formally which terms the intruder can deduce
from his knowledge. We define proof trees, that are intuitively trees where every intermediate
node is an instance of one of the rules of the deduction system. If the leaves of a proof tree
are terms of the knowledge of the intruder, then the root is a term that the intruder is able
to create.

Definition 2.1.1 (proof tree). A proof tree is a tree whose nodes are labeled by terms and
defined recursively in the following way: trees with only one mode are proof trees and, if

T, ..., T, are proof trees whose respective roots are ui,...,u, and if
t1...1ty
t
1s an inference rule such that for some well-sorted substitution o, to = u,t10 = u1,...,tp0 =

Uy, then the following tree is a proof tree:
T1...Tp

u
Example 2.1.2. The following tree 7 is a proof tree:

(NB, [{B, pub(B))]sk(s))
[(B, pub(B))]sk(s)

According to the definition, the tree consisting of the node (N, [(B,pub(B))]s«(s)) is a proof
tree. Furthermore, consider the inference rule given by

(u1, uz)

U2

and the substitution o = {u1 — Np,ug — [(B, pub(B))]s(s)} to complete the proof that m is
a proof tree.

Definition 2.1.2 (deducible term). A term w is deducible from a set of terms T, denoted by
T+ u, if there exists a proof tree whose root is labeled with u and whose leaves are labeled by
terms in T'.

Example 2.1.3. The proof tree w as defined in Example 2.1.2 has its root labeled by a term
u = [(B,pub(B))]sk(s)- Furthermore, its leaves are labeled by terms in

Ty = Ty U {(N, [(B, pub(B))sx(s) })

so we deduce that Ts - u, i.e. u is deducible from Ts.

2.1.3 From protocols to constraint systems

Constraint systems were first introduced in [MS01] in order to model security protocols. They
are used to specify trace-based property, e.g. secrecy preservation of security protocols under
a particular, finite scenario. The model of constraint system we use is close to the model
in [CLCZ10], with slight differences in the definitions of constraint systems and the way we
simplify them. But before defining constraint systems, we motivate their use by showing how
they can represent the execution of a protocol in the presence of an active intruder. We will use
an example in order to illustrate this. Note that in Chapter 3, we describe precisely how the
execution of a protocol modeled using our process calculus may be represented by constraint
systems.
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Example 2.1.4. We consider part of the TLS handshake protocol [DR0OS/, designed to ex-
change enough information between an agent A (the client) and an agent B (the server) to
compute a shared key while authenticating the agent B:

A— B: Ny
B—A: <NB7 [[<B7 pUb(B)>]]sk(S)>
A — B: aenc(K4,pub(B))

The agent A sends B a fresh nonce N4. Upon receiving this message, B generates a fresh
nonce Np and sends it to A together with a certificate [B, pub(B)]]sk(S) signed by a trusted
third party S. The agent A checks that the certificate is valid. Then, it generates a fresh
nonce K4 and uses the public key pub(B) to encrypt this nonce before sending it to B. The
full protocol makes use of the nonces exchanged between the agents to generate a session key.
However, we do not model the full protocol, as the part described here is enough to illustrate
how protocols are modeled in the symbolic setting, and to explain the use of constraint systems.

A passive intruder eavesdropping on the communications between A and B would thus
obtain the following sequence of messages at the end of the session:

Na, (Ng, [(B, pub(B))]sk(s)), aenc(K 4, pub(B)).

We want to model an active intruder. In the Dolev-Yao setting [DY81] that we have
adopted, such an intruder is given full control of the network: not only can he overhear
messages, but he can also intercept and modify them. This also gives him the power to choose
the interleaving of the messages.

To model that capacity, we consider that every agent involved in the protocol can only
communicate with the intruder. For example, the first step of the TLS handshake protocol
would intuitively be represented in the following way:

AM g

where ¢; is a term that the intruder I can build. During this step, the intruder overhears the
terms N4. Formally, if the initial knowledge of the intruder is represented by a set of terms
To, t1 is a term that can be deduced from 77 = Top U {Na} . The deducibility constraint

?
associated is T F z1 and will be formally defined later.

Now, take a look at the second step:
A1 p
where my = (Np, [B, pub(B)]s(s))- Notice that the knowledge of the intruder has grown,
since he receives the message ms. Thus the condition on to is of the form T5 F t5 where
Ty = Th U {mso}. Furthermore, the agent A expects a message following the same pattern
as (N, [(B, pub(B))]sk(s)) where S is a known in advance, trusted third party. Thus, the

term 3 has to be a term of the form (z2, [(y2, 22)]sk(s)), Where pub(yz) is instantiated by the
public key of B in the normal run of the protocol.

Finally, the third step
AT B

?
where m3 = aenc(K 4, 22), yields the following deducibility constraint: T3 - aenc(xs, pub(B))
where 75 = TH U {mg}
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2.2 Constraint systems

In this section, we introduce formally constraint systems. We first give in §2.2.1 the formal
definition of our constraint systems, and then we describe in §2.2.2 the simplifications rules
that will allow us to always consider a simple form of constraint systems.

2.2.1 Defining constraint systems

To enforce the intruder capabilities, we assume that the intruder has at his disposal an infinite
set of names that he might use at his will to mount attacks. In the general case, this ability
is not used. However, our modeling of routing protocols, as exposed in Chapter 3, may yield
disequality constraints (see Definition 3.2.1). In order to be able to satisfy these specific
constraints, the intruder may need a potentially unbounded number of distinct names.

Definition 2.2.1 (constraint system). A constraint system is a pair (C,Z) such that T is a
non empty (and possibly infinite) set of names, and C is either L or a finite conjunction

? ?

TlFulA---ATnFun

?
of expressions T; F u; called constraints. Each T; is a finite set of terms called the left-hand

side of the constraint. Fach u; is a term, called the right-hand side of the constraint. The
constraints are ordered such that they satisfy two conditions:

e monotonicity: T; C Ty for every i,k such that 1 <i < k <mn;

e origination: if x € vars(T;) for some i then there exists j < i such that x € vars(u;).
Moreover, st(C)NZ = (.

The monotonicity condition states that the intruder knowledge is always increasing. The
origination condition in Definition 2.2.1 states that each time a new variable is introduced,
it first occurs in some right-hand side. The left-hand side of a constraint system usually
represents the messages sent on the network, while the right-hand side represents the message
expected by the party. The set Z represents names that only the intruder knows, so they are
not used in the messages exchanged on the network, as the condition st(C) NZ = ) clearly
states: the set of syntactic subterms of C has no term in common with 7.

Definition 2.2.2 (right-hand and left-hand sides). Let (C,Z) be a constraint system. We
denote by rhs(C) (respectively, lhs(C)) the set of right-hand side terms (respectively, left-hand
side sets of terms) of C. Formally, rhs(C) and Ihs(C) are defined recursively in the following
way:

rhs(L) =0 lhs(L) =0

2

ths(C AT Iz u) = rhs(C) U {u} lhs(C AT Fu) =lhs(C)U{T}

The origination property ensures that variables are always introduced in the right-hand
side of a deduction constraint, which is always the case when modeling protocols. Formally,
if (C,7) is a constraint system, then var(rhs(C)) = var(C).
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Example 2.2.1. An ezxecution of the TLS handshake protocol as defined previously, in Ex-
ample 2.1.4, can be represented by the constraint system (C,Z) where

T défToU{NA}

C= Ty déf T, U {<N37 [[<B, pUb(B»]]sk(S))}
Ts “ T U {aenc(K 4, 22)}

z1

(z2, [{y2, 22)]sk(5))
aenc(zs, pub(B))

T T Too

where Ty = {pub(B), [(B, pub(C))]sk(s)} s a set of terms representing the initial knowledge of
the intruder (here, we assume he is in possession of a false certificate), and T = {ny,na,...}
is a set of names disjoint from st(C). I represents names that the intruder can generate and
use at his will.

Definition 2.2.3 ((non-confusing) solution). Let (C,Z) be a constraint system where C =
n ?

N\ T; - u;. A solution of (C,Z) is a well-sorted ground substitution 6 whose domain is vars(C)
i=1

such that T;0 UZ & w0 for every i € {1,...,n}. The empty constraint system is always
satisfiable whereas (1L,7) denotes an unsatisfiable constraint system. Furthermore, we say

that 0 is non-confusing for (C,Z) if t; = to for any t1,ts € st(1,) such that t,0 = t20.

In other words, non-confusing solutions do not map two distinct subterms of a left-hand
side of the constraint system to the same term. We will show that we can restrict ourselves
to consider this particular case of solutions when all possible equalities have already been
guessed.

Example 2.2.2. The substitution 0 = {x1 +— Na,x2 +— Np,y2 — B, zo — pub(C), z3 — n1}
is a solution of (C,Z). But it is confusing since y2, B € st(13), yo # B and y20 = BO(= B).

? ?
Notice that 6 is a solution of the constraint system ((C AT Fu AT F w),Z) if and only if
?

0 is a solution of the constraint system (C AT - u,Z). We will thus only consider constraint
systems whose constraints are all distinct.

2.2.2 Simplifying constraint systems

We will use simplification rules in order to reduce solving constraint systems to solving simpler
constraint systems that we call solved, as is done in [CLCZ10]. Our result follows this work
closely but our simplification rules are slightly different in order to obtain a nice characteriz-
ation of solutions by only considering non-confusing ones.

Definition 2.2.4 (solved form). A constraint system is solved if it is (L,Z) or each of its
?

constraints is of the form T 2 where x is a variable.

Solved constraints are especially easy to solve since variables can be instantiated by any
term of the same sort.

The simplification rules for deducibility constraints we consider are defined in Figure 2.2.



tel-00675509, version 1 - 1 Mar 2012

24 CHAPTER 2. CONSTRAINT SYSTEMS

Rax : CATEWT) ~ (C1) HTU{z | T'Leel, T CThru
Runif : (CAT lz u,I) ~5 (Co ANTo lz uo,T) if 0 = mgu(ty,t2)

where t; € st(T), ta € st(T' U{u}), and t; # to
Reail : (CANT Iz w,Z) ~ (L,7) if vars(T' U {u}) =0 and T t/ u
Re : (C/\Tl?—f(u,v),I) ~ (C/\Tl?—u/\Tl?—v,I) for f e F N Fs

Figure 2.2: Simplification rules

The rule R, removes a redundant constraint, i.e a constraint which is a logical consequence
of previous constraints. The rule R decomposes a term f(u, v). Intuitively, applying this rule
means that the intruder has produced the term f(u,v) by applying function f to the terms u
and v. The rule R,,if guesses some equality between two parts of the messages.

All the rules are indexed by a substitution. When there is no index the identity substitution
is implicitly assumed. We write (C,Z) ~% (C',Z) if there are Cy,...,Cp—1 and o1, . .., 0y such
that (C,Z) ~4, (C1,Z) ~gy ... ~¢, (C',Z)and o = 0,0---009001. We write (C,Z) ~% (C',T)
if there exists n such that (C,Z) ~2 (C',Z).

Our rules are similar to those in [CLCZ10] with a modification for rule R,is. More precisely,
we authorize unification with a subterm of the right hand side u of the constraint and also
with variables. This will allow us to obtain non-confusing solutions. We will also consider
a particular strategy, defined in Figure 2.3, in order to ensure termination in polynomial
time. Indeed, applying the simplification rules randomly could yield derivations of exponential
length.

The strategy S is defined in the following way:

e apply R, as soon as possible
e apply Runir up to a point arbitrarily decided, then stop applying it at all.
e Then, assuming that all the constraints are uncolored at the beginning:

— Consider the uncolored constraint with the largest right-hand side.
Either color it or apply R to it. Repeat.
— When the system is entirely colored, apply Rax-

Figure 2.3: Strategy

Example 2.2.3. Consider the constraint system (C,Z) defined in Example 2.2.1, representing
an ezxecution of the TLS handshake protocol. We can simplify (C,Z) following strategy S:

® Rynif: (Cvl') o (Clvl')
with & = mogu([(B, oub(C)lus), [ 22)lacs)) = (o — B 25 — pub(C)} and

? ?

C1 = Co =Tio - 21 ATao &= {x2, [(B, pub(C))]a(s)) A T30 F aenc(as, pub(B)).
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o Rf.' (Cl,I) 2 (CQ,I) with
? ? ?

7 7 7 ? ?
Co=Tiotxz1 N Tooct a9 N Tho [[<B,pub(0)>]]sk(s) AN Tso b x3 N T30 F pub(B)

? ? ?
® Rax: (Co,T) ~2(C',T) ™ Tio - 21 ATao b 20 A T30 F a3

The constraint system (C',T) is in solved form, and we have that 6 = 6’ o o where 6/ =
{z1+— Na,z2— Np,x3+— n1} is a non-confusing solution of (C',T).

In the next section, we will show that there is a solution to a constraint system (C,Z) if
and only if there is a sequence of simplification rules following strategy S leading from (C,7)
to (C',Z) such that (C',Z) is a constraint system in solved form that has a non-confusing
solution.

2.3 Properties

We show here that the simplification rules allow us to consider simpler constraint systems
while preserving the exact same set of solutions. This is ensured by the following theorem.

Theorem 2.3.1. Let (C,Z) be a constraint system. We have that:

e Soundness: If (C,Z) ~7% (C',I) for some constraint system (C',Z) and some substitu-
tion o and if 0 is a solution of (C',Z) then 6 o o is a solution of (C,T).

o Completeness: If 0 is a solution of (C,T), then there exist a constraint system (C',T) in
solved form and substitutions o, 0 such that 6 = 6 oo, (C,Z) ~% (C',Z) following the
strategy S, and 0’ is a non-confusing solution of (C',T).

o Termination: If (C,Z) ~" (C',Z) following the strategy S, then n is polynomially

g

bounded in the size of C. Moreover, we have that st(C') C st(Co) C st(C)o.

The theorem is a direct consequence of Propositions 2.3.5, 2.3.11, and 2.3.6, that are proven
in the following sections.

2.3.1 Soundness

To show soundness, we give simple lemmas: first, we give simple properties of the deduction
system, and secondly we show that the monotonicity and origination properties are invari-
ant during simplification, i.e. our simplification rules transform a constraint system into a
constraint system.

Lemma 2.3.2. If T F u then vars(u) C vars(T).

Proof. The proof follows the proof of Lemma 4.4 in [CLCZ10], since no deduction rules
introduce new variables. We proceed by induction on the depth of a proof of T'F u. Indeed,

for deduction rules of the form
uy ... Up

u
with n > 0, we have that vars(u) C | vars(u;).

)

The next lemma shows a cut elimination property for our deduction system:.
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Lemma 2.3.3. If T'Fu and T U {u} F v, then T - v.

Proof. Consider a proof m of T'U {u} v and a proof 7’ of T'F u. The tree obtained by
replacing each leaf u of ™ by 7’ is a proof of T' - v. O

As a consequence, if T'U {uq,...,u;} - u and for every u;, T+ w;, then T'F w. This will
be useful to show that a constraint eliminated by the simplification rule R,y did not contain
crucial information about possible solutions.

We can now show that monotonicity and origination are invariant by simplification.

Lemma 2.3.4. Let (C,Z) be a constraint system, and suppose that (C,Z) ~», (C',Z). Then
(C',T) is a constraint system.

Proof. Let (C,7) be a constraint system such that (C,Z) ~, (C', 7).

n n’

? ?
We write C = A (T; F u;) and C' = A (T} F u;). We show that (C’,Z) satisfies the

=1 =1
properties defining a constraint system, i.e. :
e monotonicity: 7] C T}, for every 4,k such that 1 <i <k <n/;

e origination: if x € vars(7}) for some i then there exists j < i such that = € vars(u}).

Since T; C T}, implies T;o C Tyo, (C',7) satisfies monotonicity.

We show that it also satisfies origination. Consider ¢ < n’ and x € vars(T}), we have to
prove that there exists j < ¢ such that x € vars(u;-). We distinguish cases, depending on
which simplification rule is applied in the transition (C,Z) ~~, (C',7):

2

? ?
e Case R,x. Assume that it eliminates the constraint 7'+ u. Then ¢’ = C ~\ {T - u}. Let
Jj=min{i | x € var(u;)}. As (C,7) is a constraint system, j exists and j <. If T; # T
then we can choose ;' = 7. We show that this was the only possible case.

Suppose by contradiction that T; = T". As j is minimal, it follows that = ¢ var(T}) and
?
z ¢ {y| Ty +y) €Ck < j}. Furthermore, if T, C T then k£ < j since (C,7) is a
? ?
constraint system, and thus {y | (T" Fy) € C,T' C T;} C{y | Tx Fy) € C,k < j}.

?
Since z € var(u), by Lemma 2.3.2, TU{y | (T" Fy) € C,T" C T} t/ u, and so rule Ra
can not be applied, which is in contradiction with our hypothesis. This allows us to
conclude.

e Case Rynir. Then there exists a substitution ¢ such that ¢’ = Co.

(C,7) is a constraint system, so it satisfies origination: if x is a variable and = € var(T;)
?
for some (7; - ;) € C, then there exists j < ¢ such that z € var(u;).
?
Let x be a variable such that = € var(T;o) for T; i u; € C. There exists y such that

x € var(yo) and y € var(T;) (we can possibly have x = y). There exists j < i such that
y € vars(u;). Consequently, x € vars(u;o).

Thus, we have that Co is a constraint system.

e If the rule Ry is applied then there is nothing to prove
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?
e If some rule Rf is applied, then it is applied to some constraint 7; - u;. Hence, there

exists f € F \ F, such that u; = f(uj,uj, ) and Tj = T], ; = T;. We have that :

? ?
= Ifj <, (T Fuj) = (Tj F uy)
)

? 7
— Ifj>i—|—1, (T]’»}—u;-):(ijll—ujfl)

As (C,7) is a constraint system, it satisfies origination, and we easily conclude.

Thus, it only remains to show that st(C')NZ = (). We distinguish several cases depending
on the rule involved in the transition (C,Z) ~, (C’,Z).

e If (C',7) is obtained by applying Rax, Rf, or Rei, then st(C") C st(C), hence st(C")NZ = ().

e If (C',7) is obtained by applying Rynif, it is sufficient to show that st(Co)NZ = (), where
o = mgu(t,u), with ¢t,u € st(C). As st(C)NZ = 0, for every x € dom(o), st(xzo)NZ = .
So st(Co)NZ =10, ie st(CYNZ =0.

This allows us to conclude. O
Hence, applying a simplification rule gives us a new constraint system, whose solutions
allow us to build solutions of the first constraint system, as we show now.

Proposition 2.3.5 (soundness). Let (C,Z) be a constraint system. If (C,Z) ~% (C',Z), then
(C',T) is a constraint system and for every solution T of (C',Z), T o o is a solution of (C,T).

Proof.  We show that, if (C,Z) ~, (C’,Z), then (C’,Z) is a constraint system and for
every solution 7 of (C',Z), 7 o ¢ is a solution of (C,Z). The result of the proposition follows
immediately by recursion on the length of the derivation.

Thanks to Lemma 2.3.4, we have that (C’,Z) is a constraint system. We reason by case
study over the simplification rule used in (C,Z) ~, (C’',Z). Let 7 be a solution of (C',Z).

? ?
Case Rax. In such a case, we have that C =C' AT Fuwand TU{z | (T'Fz) e C,T' C T} F u.
It follows that:

2

TrU{er |(T"Fz)eC, T C T}t ur.

?
Each constraint 7" + 2 in C with 7" C T is also a constraint in C’. Thus, for all such
?

constraints, we have that 77 UZ  z7, and hence Tt UZ + x7. Then, as Tt U {a7 | (T’ F
x) € C,T" C T} F ur, we obtain through Lemma 2.3.3 that 77 UZ + ur, and we deduce that

7 is a solution of (C,Z).
Case Rynir. In such a case, there exists a substitution ¢ such that C’ = Co. For every constraint
? ?

T F wof C, To b uo is a constraint of C’. As 7 is a solution of (C',Z), (T'o)r UZ + (uo)T,
hence 7 o o is a solution of (C,Z).

? ? ?
Case R¢. In such a case, we have that C = Co AT F f(u,v), and C' = Co AT Fu AT F v.
We know that 7 is a solution of (C’,Z), so in particular Tt UZ + ur and Tt UZ F vr. By
applying the corresponding inference rule, we obtain that 7 UZ + f(u,v)r. Moreover, for
?
every T v € Co, TT UZ I vr. And so, in that case, 7 is a solution of (C,Z).

Case Rg,j. This case is impossible since 7 is a solution of (C',Z). O
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2.3.2 Termination

We show termination before we show completeness as the latter notion depends on termina-
tion. Applying the simplification rules terminates, whatever strategy is used, but we want a
stronger result. There may be derivations of exponential length in the size of the constraints,
but intuitively we can restrict ourselves to derivations of polynomial length by considering a
suitable strategy. We consider the strategy defined in Figure 2.3.

Applying rules Ry, first allows us to guess all possible equalities and obtain a non-
confusing solution. We show that we obtain non-confusing solutions and that this strategy is
complete later on, in Section 2.3.3.

We show now that derivations following strategy S are polynomial in the size of C. Intuit-

?

ively, a derivation of exponential length may occur if a constraint T’ F u is considered several
times. When a constraint is considered, it is eliminated and can be replaced by other ones (or
lead to the empty constraint system). Notice that Rule Ry« does not generate new constraints.
It is mainly when applying Rule Rf that we have to be careful, hence our strategy. As we
may consider constraint systems which have distinct right-hand sides, choosing to consider
the constraint with the largest right-hand side allows us to ensure that we will never consider
it again for Rule Rs.

Proposition 2.3.6 (complexity). Let (C,Z) be a constraint system. If there is a derivation
(C,Z) ~" (C',T) following the strategy S for some constraint system (C',Z) and some substi-
tution o, then n is polynomially bounded in the size of C.  Moreover, st(C') C st(Co) C st(C)o

Proof. As a first step, we show that n is polynomially bounded in the size of C. First,
we prove that we cannot get twice the same constraint in the part of a derivation following
strategy S using only rule Rf. We denote by rhs(C) the right-hand side terms of C. Consider
a derivation sequence following the strategy S.

€, ) 5 e, ) %L X e, D).
? ?

At each step i of this derivation, a constraint T+ wu is eliminated from C;, i.e. T F u € C;\Ciy1
?
(this follows from the fact that the constraints of C; are all distinct). If T F u € C; \ Cit1
? ?
(T' - u has been eliminated at this step), then, for any j > 4, we show that T' - u ¢ C;.
?

Indeed, as the derivation follows strategy S, it means that T' Fouis (one of) the uncolored

constraint(s) with the largest right-hand side in C;. So we have that ||u| = n;L]a(%: It|| (where

C/ is the set of uncolored constraints of C;). Suppose by contradiction that for some j > ¢, the
?
constraint T' - u was in C; 1 and not in C;. According to the strategy, rule R¢ has been applied

to the uncolored constraint with the largest right-hand side, and furthermore it has produced
?

constraint 7"+ u. Hence, there exists v such that u € st(v), ||u|| < ||v|| and ||v| = ma(ﬂcvl It |-

Thus the maximum of the sizes of the right-hand side terms of the uncolored constraints has
strictly increased, which is impossible according to our strategy.

We want to show that derivation (C,Z) ~7 (C',Z) following strategy S is of polynomial
length. According to the definition of strategy S, there exist C;,Cs such that

€1 *, .1) % (€1 % (1)
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We assume a DAG representation of the terms and constraints, in such a way that the
size of the constraints is proportional to the number of the distinct subterms occurring in it.
Next, observe that

#st(t0) < #(st()U ] st(a0)).

z€dom(0)

Moreover, when unifying two subterms of ¢t with mgu 6, #st(t0) < #st(t) since, for every
variable z € dom(0), x0 € (st(t) ~ {z})0, and so for every term u € st(t0), u € st(t)f. It
follows that, for any constraint system C’ such that (C,Z) ~~% (C’,Z) using only rule Ryps,
st(C") = st(Co) C st(C)o. Consequently, #st(C") < #st(C). In particular, #st(C1) < #st(C).

Next, observe that the number of distinct left hand sides of the constraints, denoted by
lhs(C’), is never increasing: #lhs(C') < #lhs(C) if (C,Z) ~* (C’,Z). Furthermore, as long as
we only apply the rules R, and Ry, starting from (C;,Z), the left hand sides of the deduction
constraint system are fixed: there are at most #lhs(C;) of them. Now, since we cannot
consider twice the same constraints, the number of consecutive applications of rules R, and

Rf is bounded by
#lhs(C1) x #st(rhs(C1)) < #lhs(C) x #st(C)

Moreover, when applying rules Rax and Ry, it is clear that st(C’) C st(Cy) C st(C)o.
It follows that the length of a derivation sequence is bounded by #lhs(C) x #st(C) (for
Rax, R steps) plus #wvar(C) (for Rynif steps) plus 1 (for a possible Rey step).
U

2.3.3 Completeness

We want to show that the strategy S defined in the previous subsection is complete, i.e. there
exists a derivation following strategy S leading to a solved constraint system with a non-
confusing solution, from which we can reconstruct our initial solution. Moreover, we will see
that the solution of the solved constraint system is non-confusing.

The strategy S can be divided into two phases:
e First, apply only rules Rynif to obtain a constraint system with a non-confusing solution.

e Then, use rules Ry and R,x to obtain a solved constraint system.

Consider a constraint system (C,Z) and a substitution # such that 6 is a solution of (C,Z).
We want to build a derivation following strategy S: (C,Z) ~~% (C',Z) such that (C’,Z) is in
solved form, there exists a substitution ¢’ verifying # = ¢’ oo and ¢’ is a non-confusing solution
of (C',Z). In fact, we use a stronger notion than non-confusing, that we define now.

n ?
Definition 2.3.1 (strongly non-confusing). Let (C,Z) be a constraint system withC = N\ T; F
i=1
u;. A substitution 6 is a strongly non-confusing solution of (C,Z) if 6 is a solution of (C,T)
and, for every 1 < i < n, for every terms t; € st(1;) and t2 € st(T; U {u;}), we have that

110 = tof implies that t1 = to.

Intuitively, when a solution € of a constraint system (C,Z) is strongly non-confusing, rules
Runif cannot be applied to (C,Z) while keeping this solution. Note that if 6 is a strongly
non-confusing solution of (C,Z) then in particular 6 is a non-confusing solution of (C,Z). Note
also that these two notions coincide on constraint systems in solved form.
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Example 2.3.1. 0’ defined in Example 2.2.3 is not strongly non-confusing, as x10' = Na,
for instance, and Na,x1 € st(Tyo,x1). An example of strongly non-confusing solution is
T = {1 — n1,x2 — ng, T3 — n3}.

If ¢ is a strongly non-confusing solution of (C1,Z), and there is a derivation using only
rules Rf and R,y leading from (C1,7Z) to (C2,Z), then &’ is a strongly non-confusing solution of
(C2,7). So it only remains for us to obtain a solved constraint system thanks to the second
part of the strategy.

?
In this part of the strategy, we consider the largest uncolored constraint 7'+ u and we

have to either color it or apply some rule Rs to it. We decide between the two possibilities by
?

considering a proof of 7'+ w and whether it ends in a composition or not. We thus wish to
consider proofs with the property that their last rule does not vary along a derivation. We
define such proofs now.

Definition 2.3.2 (simple proof). Let T}y C Ty C --- C T,,. We say that a proof m of T; F u is
left-minimal with respect to 11, ..., T, if, whenever there is a proof of T; F u for some j < 1,
then m is a proof of T - u.

We say that a proof is simple if all of its subproofs are left-minimal and there is no repeated
label on any branch.

Example 2.3.2. Constider the following constraint system:

2

?
Ty ={a} Fx1 NT> = {a, (a,b)} F xa.

a,b) . . . L
{a,b) s a proof of To F a, but it is not a simple proof. Indeed, it is not a proof of T1 - a, even

a
though there is a proof of Th - a.

The definition of simple proofs we use is inherited from [CLCZ10], as is the next lemma,
which shows that it is always possible to consider simple proofs. We can prove the lemma
by following strictly the proof given in [CLCZ10| (Lemma 4.8), as it does not depend on the
signature.

Lemma 2.3.7. Let Ty C 1Ty C --- CT,. If there is a proof of T; b u, then there is a simple
proof of it.

We show that if part of the constraint system is already in solved form and the next
?

constraint is 7 F v with A a simple proof of 70 UZ F u, then there is a term ¢ € T such
that t0 = u. This result will be useful for proving that we can apply Ra.x on constraints whose
simple proofs end with a decomposition.

Lemma 2.3.8. Let (C,Z) be a constraint system, 6 be a solution of (C,Z), T; € Ihs(C) such

?
that for any (T Fv) € C, if T C T;, then v is a variable. Let u be a term such that uw ¢ Z. If
there is a simple proof of T;0 UZ & u, that is reduced to a leaf or whose last inference rule is
a decomposition, then there is t € st(1;) ~ X such that t0 = u.
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Proof. Consider a simple proof m of T;0 UZ F u that is reduced to a leaf or whose last
inference rule is a decomposition. We may assume, without loss of generality, that ¢ is minimal.
Otherwise, we have that 70 UZ I u is derivable with j < 4. In that case, as 7 is left-minimal,
we still have a proof tree whose last inference rule is a decomposition. Such a T; C T; also
satisfies the hypotheses of the lemma.

We reason by induction on the depth of the proof m. We make a case distinction, depending
on the last rule of 7.

The last rule is an axiom. Then u € T;0 UZ and there is t € T; UZ such that t0 = u. By
hypothesis, u ¢ Z,sot ¢ Z, i.e. t € T; (and ¢ € st(T;)). Suppose by contradiction that ¢ is a
?

variable. Then, by definition of a constraint system, there exists 7} FweCc , with t € var(w),
such that T; C T;. Moreover, by hypothesis of the lemma, w must be a variable. Hence ¢ = w.
Then 760 U T I~ u, which contradicts the minimality of 7.

The last rule is a symmetric decryption. In such a case, we have that:

senc(u, w) w
u

Let m be the proof of T;60 UZ F senc(u,w). As m is simple, the last rule of 7; cannot be
a composition, or else T;0 UZ F u would appear twice on the same path. Then, by induction
hypothesis, there is t € st(T;) ~ X such that t0 = senc(u,w). It follows that ¢ = senc(t’,t")

?
with #'0 = u. If ¢’ was a variable, then there would exist T} - w € C, with T; C T; such that

T;0UZ - t'6. (because t’ € var(w) and w € X). Hence we would have that T;60 UZ + u, which
contradicts the minimality of 7. Hence ¢’ is not variable.

For the other decomposition rules, the proof is similar to the previous case. O
The next two lemmas explain respectively how to apply rule R when the constraint con-

sidered has a simple proof ending with a composition, or how to apply rule R,x when the
constraint considered has a simple proof ending with a decomposition.

Lemma 2.3.9 (composition). Let (C,Z) be a constraint system, 6 a strongly non-confusing
?
solution of (C,Z). Let T + u € C with u not a variable and 7 be a proof of TO UZ F uf that
?

ends with a composition rule. We can apply the rule R on T = u, yielding a constraint system
(C',T) such that 0 is a strongly non-confusing solution of (C',T).

Proof. Since u is not a variable, we have that u = f(vy,...,v,). The last rule of 7 ends
with a composition, so TOUZ - v;0 for every 1 < j < p. Then we can apply the simplification
?

rule Rf to (C,Z), yielding constraints T - vj in C’ for every 1 < j < p. Clearly, we have
that @ is a solution of the constraint system (C’,Z). It remains to show that 6 is a strongly
non-confusing solution of (C’,Z). Assume by contradiction that this is not the case. This
means that there exist ¢; € st(T) and t5 € st(T'U{v;}) with j € {1,...p} such that t;0 = t26
and t1 # to. This would imply that # is not a strongly non-confusing solution of (C,Z). Hence
contradiction. O

Lemma 2.3.10 (decomposition). Let (C,Z) be a constraint system not in solved form and 0

?
be a strongly non-confusing solution of (C,T). Suppose that for every constraint T F u € C
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such that u ¢ X, there exists a simple proof m of TOUZ & uf which ends with a decomposition.
Then there exists a constraint system (C',Z) such that (C,Z)~(C',T) using Rax and 0 is a
?

strongly non-confusing solution of (C',Z). Furthermore, for every constraint T Fu el such
that u ¢ X, there exists a simple proof ™ of TO UZ t uf which ends with a decomposition.

n ? ?
Proof. Let C = AT; F u;. Consider a constraint 7; F u; such that u; ¢ X and for all
i=1
J <1, uj € X. We show that for every u € st(T;) ~ X, if T;,0 UZ - uf, then T, - u, where
?
T!=T,U{z | (T+z)eC and T C T;}. Consider a simple proof 7 of T;6 UZ - uf. We show

this result by induction on || where |7| is the size, i.e. number of nodes, of 7.

Base case: |r| = 1. In such a case, we have that there is ¢t € T;UZ such that t6 = uf. Actually,
since u ¢ X, we have that ¢t € T; and thus, using the fact that 6 is strongly non-confusing, we
deduce that ¢t = u. Hence u € T}, so T; - u, and as T; C T}, we have T} - u.

Induction step: |w| > 1. We distinguish several cases depending on the last rule of 7.
The last rule is a symmetric decryption rule. In such a case, we have that:

senc(uf, w) w
uf

As 7 is simple, the last rule of the proof of T;0 UZ F senc(uf, w) is a decomposition. Further-
more, senc(uf,w) ¢ Z. Consequently, thanks to Lemma 2.3.8, there is ¢ € st(T;) ~ X such
that t0 = senc(uf,w). Let t = senc(t1,t2) and t160 = uf, t26 = w. By induction hypothesis,
we have that T} F .

As 0 is strongly non-confusing and ¢10 = uf with t; € st(7;), we get that t; = u. If ¢y is
a variable, then ty € var(7T;), and by definition of a constraint system there exists j < i such

N
that Tj = uj € C and ty € var(u;). By hypothesis, u; € X, so to = uj, so to € T/. If t5 is
not a variable, we can apply the induction hypothesis, and we deduce that T} I t2. So, in any
case, T} t- to.

Now, we have both that T - senc(u, t2) and T} I t2, from which we conclude that T} - u
by applying the symmetric decryption rule.

The last rule is an asymmetric decryption rule. In such a case, we have that:
aenc(uf, pub(v)) priv(v)
uf

As 7 is simple, the last rule of the proof of 76 UZ t- aenc(uf, pub(v)) is a decomposition.
Furthermore, aenc(uf, pub(v)) ¢ Z. Consequently, thanks to Lemma 2.3.8, there is t € st(7;)~
X such that t0 = aenc(uf, pub(v)). Let t = aenc(ty,t2) with t10 = uf, t260 = pub(v). By
induction hypothesis, we have that T} + .

As 0 is strongly non-confusing and ¢10 = uf with t; € st(7;), we get that t; = u. On the
other hand, the last rule in the proof of 7;0 UZ  sk(v) is a decomposition (no composition
rule can yield a term headed with priv()). Then, by Lemma 2.3.8, there is w € st(T;) ~ X
such that w6 = priv(v). Let w = priv(w’). By induction hypothesis, T} F priv(w’).

(aenc(ty,t2))0 priv(w’)6

aenc(uf, pub(v)) priv(v)
uf
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Now, to € st(t), and t € st(T;), so ta € st(1;). If t2 is a variable, then t2 € var(7;), and

?
by definition of a constraint system there exists j < i such that T - u; € C and t2 € var(u;).

By hypothesis, u; € X, so t = u;. Hence, we have a simple proof of T;60 UZ I t26. Note
that this proof is either reduced to a leaf or ends with a decomposition rule since there is no
composition rule yielding to a term headed with pub(). Hence, we apply Lemma 2.3.8, and we
deduce that there exists t3 € st(T}) \ X such that t360 = t26. Hence, we have that t3 = pub(t4)
with t40 = v with t4 € st(T3).

Similarly, w" € st(w), and w € st(T;), so w’' € st(T;). Moreover, t460 = v = w'f, and 0 is
non-confusing, so t4 = w’. Now, we have both that 7] - aenc(u, pub(w’)) and T}  priv(w’),
from which we conclude that 7] F u by applying the asymmetric decryption rule.

Similarly, we can conclude for the optional rule.

The last rule is a projection rule. By symmetry, we can assume that
f(ub,v)
uf

with f € {(,),:}.

As 7 is simple, the last rule of the proof of T;0 UZ I f(uf,v) is a decomposition, and so,
thanks to Lemma 2.3.8, there is ¢ € st(7;) \ X such that t6 = f(uf,v). Let t = f(¢1,t2). By
induction hypothesis, T/ |- ¢.

Now, as 6 is strongly non-confusing and ¢10 = uf, we have that ¢; = u. From T} - f(u, t2),
we deduce T} F u by projection.

The last rule is a composition In such a case, we have that:

v ... Un
f(vi,...,vn)
with uf = f(vi,...,vy,). Since u is not a variable, u = f(wy, ..., wy,), with wi0 = v; for

all k. If wy is a variable, then wy € var(T;), and by definition of a constraint system there
?

exists j < i such that T} = u;j € C and wy, € var(u;). By hypothesis, u; € X, so wy, = u;, so
wy, € T}. If wy, is not a variable, we can apply the induction hypothesis, and we deduce that
T!  wy. So, for every k, we get that in all possible cases T} - wy. Thus T F u by applying
the composition rule.

We have shown that for every u € st(T;) ~ X, if T;,60 UZ + uf, then T/ F u, where

0

T/ =T,U{z | (T - 2) € C,T C T;}. Consider the term u;. We know that there is a simple

proof of T;0 UZ F ;0 which ends with a decomposition, so by applying Lemma 2.3.8 (since

u; € Cand st(C)NZ =0, u; ¢ 7), there is t € st(T;) \ X such that t0 = w;0. As 6 is strongly

non-confusing, we deduce that ¢t = u;, and u; € st(T;) ~ X such that T;60 UZ  u;0. Hence,
?

T! F u;. Consequently, we can apply Rax to the constraint T; - u;, and we get a constraint

system C’.
? ?

Furthermore, consider 7} F u € C' with u not a variable. We know that T; Fu e C, and
there exists a simple proof 7 of T30 UZ F ufl with respect to the left-hand sides of C which
ends with a decomposition. As 7 is simple w.r.t. Ihs(C), and Ihs(C’) C Ihs(C), 7 is simple w.r.t.
lhs(C"). O

We can now prove formally the completeness of our strategy S.
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Proposition 2.3.11 (completeness). Let (C,Z) be a constraint system and 6 be a solution
of (C,T). There exist a constraint system (C',T) in solved form, substitutions o and 6 such
that (C,Z) ~% (C',I) following the strateqgy S, 6 = 0" o o and ¢’ is a (strongly) non-confusing
solution of (C',T).

n ?
Proof. Let C = N\ T; F u;.

i=1
Step 1. First, we show that there exist substitutions #’,c and a constraint system (C1,7)
such that (C,Z) ~% (C1,Z) using only rules Ry and €’ is a strongly non-confusing solution
of (C1,7) with 6 = 0’ o 0. We show this result by induction on #wvars(C).
Base case: #vars(C) = 0. In such a case, we have that dom(f) = () and thus 6 is a strongly
non-confusing solution of (C,Z). We easily conclude.

Induction step: #wvars(C) > 0. In such a case, either 6 is already a non-confusing solution of
(C,Z) and we easily conclude. Otherwise, we have that there exist 1 <i <mn, t; € st(T;), and
to € st(T; U {u;}) such that ¢10 = t26 with t; # to. In such a case, we apply Rynif obtaining a
constraint system on which we can apply our induction hypothesis. This allows us to conclude
for this first step.

Step 2. Now, #' is a strongly non-confusing solution of (C1,Z). We still need to derive C’
in solved form from C;. To do that, we follow the strategy S. Intuitively, we consider each
constraint and either decompose it or color it to remember not to consider it anymore.

We derive a colored constraint system from C; in the following way: Select a constraint
”

Thu among the uncolored constraints with the largest right-hand sides. According to the
strategy S, we must either color it or decompose it. We describe how we choose between these
two possibilities.

e If u is a variable, color the constraint.
e Else, consider a simple proof A of T0' UZ - uf’:

?
— If A ends with a decomposition, we color the constraint 1"+ w.

— If A ends with a composition, we apply rule Rs to the constraint T’ - .

We show that this procedure terminates and produces a derivation:

€.7) % (. 1) B (05,7 X (D)

?
where Cy is totally colored, and for each (T F u) € Cy, either u € X or there is a simple proof
?

of T¢' UZ + uf’ whose last rule is a decomposition. Indeed, consider a constraint 7' - U,
uncolored in C;_1 and colored in C;. Then, either u is a variable, or there is a simple proof A
of T¢' UZ + uf’ w.r.t. lhs(C;—10") ending with a decomposition. Furthermore, if A is a simple
proof of a colored constraint and we apply Rf to another constraint, A is still a simple proof
in the constraint system obtained after simplification.

Regarding termination, note that the total size of the right-hand sides of the uncolored con-
straints strictly decreases, either because we color a constraint or we apply Rf to an uncolored
constraint.

Applying Lemma 2.3.9 recursively on the derivation

€1,7) X (Co,7) 5 (03,7) ... X (€ T)
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)
we obtain that for every constraint 7T° Fue Cy with u not a variable, there exists a simple
proof A of T#' UZ F uf" which ends with a decomposition. Furthermore, ¢’ is a strongly
non-confusing solution of (C;,Z). Then, by applying Lemma 2.3.10 recursively, we have a
derivation
€., 7) % .. R 1)

such that (C’,7) is in solved form and 6’ is a strongly non-confusing solution of (C’,7).

To sum up, there is a derivation (C,Z) ~, (C',Z) following strategy S such that § = ' oo
and 6’ is a solution of both (C',Z). O

2.4 Characterization of solutions

Showing that solving constraint systems can be reduced to solving solved constraint systems
has been done in [CLCZ10]. Our result enables us to furthermore reduce the search for
solutions to non-confusing solutions. This is interesting because, for any non-confusing solution
(which represents an execution trace), any term of the attacker knowledge may be obtained
by composition only.

Definition 2.4.1. We associate to each set of terms T the set of subterms of T' that may be
deduced from T Uwvars(T): Sat,(T) ={u € st(T) | T Uwvars(T) - u}

Notice that in the case of solved constraint systems, the variables occurring in T are
deducible.

Proposition 2.4.1 states that it is possible to compute from a solved constraint system, a
“basis” Sat,(T') from which all deducible terms can be obtained applying only composition
rules. This follows the spirit of [AC06] but now in the active case.

Proposition 2.4.1. Let (C,7Z) be a constraint system in solved form, 6 be a non-confusing
solution of (C,Z), T be a left-hand side of a constraint in C and u be a term such that TOUZ + u.
We have that Sat,(T)0 UZ - u by using composition rules only.

Proof. Consider a simple proof A of T;0 UZ t u. We show by induction on (¢, |A|) that
there exists a proof A’ of Sat,(T;)0 UZ I u that uses composition rules only. We distinguish
several cases depending on the last rule of A:

The last rule is an axiom. Then u € T;0 UZ and there is ¢t € T; UZ such that © = tf. The
property immediately follows.

The last rule is a symmetric decryption rule:

senc(u,v) v
u

Let Aj be the subproof of A whose root is labelled with senc(u,v). By induction hypothesis,
there exists a proof A} of Sat,(T;)0 UZ F senc(u,v) that uses composition rules only. Let j
be the minimal index such that Sat,(7})0 UZ |- senc(u, v) with a proof that uses composition
rules only. We distinguish two cases.

Either A} ends with a symmetric encryption rule. Let A’ be the direct subproof of A}
whose root is labelled with u. We have that A’ is a proof of Sat,(Tj)0 UZ F u that uses
composition rules only.
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Otherwise, A} is reduced to an axiom. In such a case, there exists u; € Sat,(Tj) UZ such
?

that w10 = senc(u,v). If u; was a variable, there would exist k < j such that (7} - uy) € C,
and so T0 UZ + senc(u,v). Since A; is a simple proof of T;60 UZ  senc(u,v), it is also
a simple proof of T;0 UZ + senc(u,v). By applying our induction hypothesis, we deduce
that there exists a proof of Sat,(1})0 UZ F senc(u,v) that uses composition rules only. This
contradicts the minimality of j. Hence, u; is not a variable. Consequently, there exist ¢, o
such that u; = senc(t,t2), with ¢;0 = u and t26 = v. We are thus in the case where
senc(ty,t2) € Sat,(T;) UZ.

We want to show that to € Sat,(T;) UZ and we already know that to € st(7;) UZ. Thus,
it only remains to show that 7; U var(T;) UZ F t5. By induction hypothesis, we know that
there exists a proof A} of Sat,(7;)0 UZ b v that uses composition rules only. Furthermore,
v = t26 and 6 is non-confusing. We show by induction on t3 that, if there exists a proof Al of
Sat,(T;)0UT | to0 that uses composition rules only, and to € st(7T;)UZ, then to € Sat,(T;)UZ.

o if t9 =z € X, then = € var(7;), and by definition of Sat,(1;) UZ, ta € Sat,(T;) UZ.
o if to =f(t],...,t)) then we make a case distinction depending on Al:

— Al is reduced to an aziom. In such a case, there exists v; € Sat,(T;) UZ such
that tof = v16. Since t9f is headed with f, we deduce that vy € st(T;). As 6 is
non-confusing, tof = v160 implies that to = v1 € Sat,(T;).

— Al ends with a composition rule. Let m,...,m, be the direct subproofs of Al.
We know that each 7; is a proof of Sat,(T;) UZ t;@ that uses composition
rules only. By induction hypothesis, we deduce that t; € Sat,(T;) UZ. Hence,
T; Uwvar(T;) UZ F to by applying the composition rule associated with function
symbol f. As to € st(1;) UZ, it follows that t2 € Sat,(T;) UZ.

We have shown that senc(t1,t2) and t5 are in Sat,(T;) UZ. Hence, we easily conclude that
t1 € Sat,(T;) UZ. Since t10 = u, this allows us to conclude by considering a simple proof A’
reduced to an axiom rule.

The last rule is an asymmetric decryption rule:

aenc(u, pub(v)) priv(v)

Let A; be the subproof of A whose root is labelled with aenc(u, pub(v)). By induction
hypothesis, there exists a proof A} of Sat,(T;)0 UZ I aenc(u, pub(v)) that uses composition
rules only. Let j be the minimal indice such that Sat,(7;)0 UZ F aenc(u, pub(v)) with a proof
that uses composition rules only. We distinguish two cases.

Either A} ends with an asymmetric encryption rule. Let A’ be the direct subproof of A}
whose root is labelled with u. We have that A’ is a proof of Sat,(Tj)0 UZ F u that uses
composition rules only.

Otherwise, A} is reduced to an axiom. In such a case, there exists u; € Sat,(Tj) UZ such
?
that u10 = aenc(u, pub(v). If u; was a variable, there would exist k£ < j such that (T} F u;) €

C, and so T0 UZ F aenc(u, pub(v)). Since A; is a simple proof of T;0 UZ + aenc(u, pub(v)),
it is also a simple proof of 70 UZ F aenc(u, pub(v)). By applying our induction hypothesis,
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we deduce that there exists a proof of Sat,(1})0 UZ F aenc(u, pub(v)) that uses composition
rules only. This contradicts the minimality of j. Hence u; is not a variable. Consequently,
there exist t1,ty such that u; = aenc(t1,t2) with ¢;0 = u and t20 = pub(v). We are thus in
the case where aenc(t1,t2) € Sat,(T;) UZ.

Now, we show that to is not a variable. By contradiction, assume that ¢o is a variable.
?

In such a case, there exists k < i such that (7 = t2) € C, and so TR0 UZ + ta60 = pub(v),
and there is a simple proof witnessing this fact. This proof is either reduced to a leaf or ends
with a decomposition. Thus, thanks to Lemma 2.3.8, there exists ), € st(T}) \ X such that
th0 = pub(v). Hence, we have that ¢, = pub(t;). We have also that t50 = t26. Since 0 is
non-confusing, we deduce that to = t).

Now, we want to show that priv(t) € Sat,(T;)UZ. Let Ay be the subproof of A whose root
is labelled with priv(v). By applying our induction hypothesis, we deduce that there exists A},
of Sat,(T;)0 UL I priv(v) that uses composition rules only. Actually, we necessarily have that
priv(v) € Sat,(T;)0, i.e. there exists w € Sat,(T;) such that priv(v) = wf. Moreover, we know
that Ay is a simple proof that is either reduced to a leaf or that ends with a decomposition.
Hence, we can apply Lemma 2.3.8. We deduce that there exists ¢} € st(7;) ~ X such that
46 = priv(v). Hence, we have that ) = priv(t;). Moreover, we have that t50 = t,6. Since
6 is non-confusing, we deduce that t§ = ¢;. Lastly, we have that w8 = t}f. Since 6 is non-
confusing, we deduce that w = t;. Hence, we have that w = t; = priv(t5) = priv(#}), and thus
priv(ts) € Sat,(T;) UZ.

Hence, we have that aenc(t1, pub(t})) € Sat,(T;)UZ, and priv(ts) € Sat,(T;)UZ. Hence, we

easily conclude that ¢, € Sat,(T;) UZ. Since t10 = w, this allows us to conclude by considering
a simple proof A’ reduced to an axiom rule.

A similar reasoning holds for our optional rule.

The last rule is another decomposition rule: We can apply a similar reasoning as in the case
of the decryption rule. By symmetry, consider a rule of the form

f(u,v)
u with f € {(),::}

Let Ay be the subproof of A whose root is labelled with f(u,v). By induction hypothesis,
there exists a proof A of Sat,(7;)0 UZ + f(u,v) that uses composition rules only. Let j be
the minimal indice such that Sat,(7})0 UZ - f(u, v) with a proof that uses composition rules
only. We distinguish two cases:

Either A} ends with a composition rule. Let A’ be the direct subproof of A} whose root is
labelled with w. We have that A’ is a proof of Sat,(Tj)0 UZ F u that uses composition rules
only.

Otherwise, A] is reduced to an axiom. In such a case, there exists u; € Sat,(Tj) UZ such
?

that w10 = f(u,v). If u; was a variable, there would exist & < j such that (7} - u) € C,
and so 17,0 UZ  f(u,v). Since A; is a simple proof of T;6 UZ + f(u,v). By applying our
induction hypothesis, we deduce that there exists a proof of Sat,(T;)0 UZ - f(u,v) that uses
composition rules only. This contradicts the minimality of j. Hence, u; is not a variable.
Consequently, there exist t1, t2 such that uy = f(¢1,t2), with ¢;0 = u and t260 = v. We are thus
in the case where f(t1,t2) € Sat,(T;) UZ. Hence, we easily conclude that ¢; € Sat,(T;) UZ.
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The last rule is a composition rule:
v ... Un

f(vi,...,vn)

By induction hypothesis, we know that for 1 < k < n, there exist A} a proof of Sat,(T;)0UZ
v, that uses composition rules only. Let A’ be the proof consisting of applying the composition
rule associated to the symbol f on Af},..., A}, It immediately follows that A’ is a proof of
Sat,(T;)0 UZ + f(vy,...,v,) that uses composition rules only. Hence the result.

O

2.5 Conclusion and future prospects

We use a symbolic model with a large signature, encompassing symmetric and asymmetric
encryption, signature, hashes, and lists. Moreover, we provide the intruder with an infinite
set of names that he can use however he wants. We have defined in this setting the notion
of constraint systems to model the execution of the protocol. Using simplification rules, we
have obtained a complete symbolic representation of the knowledge of the attacker: when
considering non-confusing solutions, any term of the intruder knowledge may be obtained by
composition only from a clearly defined set of terms.

In order to model more protocols, we could extend this characterization result to a wider
signature. For instance, for local inference systems, an algorithm in [BDC09] gives a repres-
entation of solutions. Trying to pinpoint the properties of the deduction system representing
the intruder capabilities that are needed in order to keep our characterization result would al-
low to add new primitives to the signature automatically, without having to prove everything
from scratch each time a new primitive is needed. We would like to discover conditions on the
signature or on the deduction system that allow to generalize the result so that it holds for
a family of signatures. Intuitively, these conditions would be linked to the deduction system,
and the relations between composition and decomposition rules.
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Chapter 3

Modeling and analyzing routing
protocols

A standard method to model protocols is to use a process calculus [AG97]. Process calculi
are particularly well adapted to model interactions between independent agents. But ad hoc
networks have particularities that can not be modeled in the standard way, most notably the
communication medium. Indeed, in such a network, nodes can only send messages to nodes
that are situated within a certain distance of them. So, in order to properly model ad hoc
routing protocol with a process calculus, the communication model has to be adapted.

Furthermore, the standard intruder model used in protocol verification, the so-called Dolev-
Yao intruder [DY81], is not well suited for the study of such protocols. The intruder in the
Dolev Yao model controls the network: he can overhear every communication, modify or delete
any message. This is far too strong an assumption in a wireless setting. A more reasonable
assumption regarding his ability is to limit the scope of his actions: for instance, he can only
overhear messages sent by nodes that are situated near enough, and he can not prevent the
reception of a specific message.

As our goal is to model ad hoc routing protocols, we have to take the particularities of
these protocols into account. Few other formal approaches have been proposed to achieve this
goal. Nanz and Hankin [NHO6] propose a process calculus to model the network topology
and broadcast communications. They also provide a decision procedure for an intruder that
is already specified by the user. This allows to check security against fixed, known in advance
scenarios.  The model we propose here is inspired from their work. @~ We add a logic for
specifying the tests performed at each step by the nodes on the current route and to specify
the security properties.

In this chapter, we will first propose in Section 3.1 a way to model protocols in ad hoc
networks. It is a process calculus with an underlying graph that represents the links in the
network. Then we will explain in Section 3.2 how to abstract some parts in the execution of
the protocol in order to get a finite number of representations of the possible runs. Finally,
we will show in Section 3.3 how to bound the lists appearing in messages, in order to bound
in turn the size of messages exchanged. This allows us to provide two NP decision procedures
in Section 3.4 for analyzing routing protocols for a bounded number of sessions.

39
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3.1 Modeling

Recall that we consider an infinite set of names N. We state here some of the names we will
use in the course of the chapter: N = {rep,req, N, K, K,, A, S, D,...}. Furthermore, we will
consider a special set of names Ny, which represents the nodes of the network. The lists we
use in this chapter are lists of names in N, they typically represent a route in the network.
We assume that the intruder has access to Njqc.

3.1.1 Process calculus

Security protocols are typically defined by the roles of the agents participating in the pro-
tocol. A role is a sequence of actions that the agent must accomplish to execute the protocol.
Process algebras are well suited to model security protocols specified by roles, with each role
represented by a distinct process.

Several calculi already exist to model security protocols (e.g. [AG97, AF01]|). However,
for our purpose, a node, i.e. a process, has to perform some specific actions that can not be
easily modeled in such calculi. For instance, a node stores some information, e.g. the content
of its routing table. We also need to take into account the network topology and to model
broadcast communication. Such features can not be easily modeled in these calculi.

Actually, our calculus is inspired from CBS#, a process calculus introduced in [NHO06],
which allows mobile wireless networks and their security properties to be formally described
and analyzed. However, we extend this calculus to allow nodes to perform some sanity checks
on the routes they receive, such as checking neighborhood properties.

The intended behavior of each node of the network can be modeled by a process defined
by the grammar given in Figure 3.1. Our calculus is parametrized by a set £ of formulas.

P,Q = Processes
0 null process
out(u).P emission
in u[®].P reception, ® € £
store(u).P storage
read u then P else Q reading
if ® then P else ) conditional, ® € L
P|Q parallel composition
P replication
new m.P fresh name generation

Figure 3.1: Process grammar.

First, we describe the constructions specific to our calculus. The process out(u).P emits u
and then behaves like P. The process in u[®].P expects a message m matching the pattern u
and such that ® is true. It then behaves like Po where 0 = mgu(m,u). If ® is the true
formula, we simply write in u.P. The process store(u).P stores u in the storage list of the
node executing the process and then behaves like P. The process read u then P else () looks
for a message matching the pattern u in the storage list of the node executing the process.
Then, if such an element m is found, it behaves like Po where o = mgu(m,u). If no element
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of the form u is found, it behaves like ). For the sake of clarity, we will omit the else part
when Q) = 0.

The other entries in the grammar are the usual ones. The process if ® then P else () tests
whether @ is true. If ® is true, it then behaves like P. Else, it behaves like (). For the sake of
clarity, we will again omit the else part when ) = 0. The process P | ) allows computation in
process P and () to happen independently. The process ! P allows to use process P as many
times as we want. (Note that in the general case, allowing replication leads to undecidability)
The process new m.P creates a fresh nonce m and then behaves like P.

Sometimes, for the sake of clarity, we will omit the null process.

We write fu(P) (respectively, bv(P)) for the set of free (respectively, bound) variables of P.
A process P is ground when fu(P) = ().

The store and read primitives are particularly important when modeling routing protocols,
in order to avoid multiple answers to a single request or to allow nodes to store and retrieve
already known routes. These primitives can also be used to represent other classes of protocols,
where a global state is assumed for each agent, in order to store some information (black list,
already used keys. etc.) throughout the sessions.

Secured routing protocols require the agents participating in the protocol to perform some
checks on the part of the messages they receive that is supposed to represent a route or part
of a route. For instance, they may check that the list they receive begins with the name of the
neighbor who sent them the message, to test whether the message was processed correctly.
These verifications rely partly on neighborhood discovery, which is a protocol run by the nodes
before executing the routing protocol. The aim of a node running such a protocol is to discover
which nodes are within his reach, and are thus neighbors in the underlying graph representing
the network. In order to get a secure routing protocol, the neighborhood discovery protocol
needs to be correct [PPST08, PPH08|. We assume that a secure neighborhood discovery
protocol has been used, consequently, each node can check whether a given node is one of his
neighbors. We express these checks thanks to a logic. Next is an example of such a logic.

Example 3.1.1. We will typically consider the logic Lioute defined by the following grammar:

® = Formula
check(a, b) neighborhood of two nodes
checkl(c, 1) local neighborhood of a node in a list
route(]) validity of a route
loop(1) existence of a loop in a list
[OZA 28 conjunction
D,V Dy disjunction
- negation

Given an undirected graph G = (V, E) with V C Noc, the semantics [®]c of a formula
D € Lioute is Tecursively defined by:

o [check(a,b)]c =1 iff (a,b) € E,
e [checkl(c,)]g =1 iff I is of sort lists, ¢ appears exactly once in l, and for any sub-list I
of I,
—ifl' =a:c:ly, then (a,c) € E.
— ifl' =c:: b1y, then (b,c) € E.
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o [route()]c =1 iff I is of sort lists, | = ay :: ... :: ap, for every 1 <i <mn, (a;,a;4+1) € E,
and for every 1 <i,j < mn, i # j implies that a; # a;.

o [loop(D)]a = 1 iff I is of sort lists and there exists an element appearing at least twice
mnl,

° [[CI)l VAN (I)Q]]G = [[CI)I]]G A [[@2]]@, [[—\(I)]]G = —|[[(I)]]G’ and [[(131 V (I)Q]]G = [[(131]]@ V [[‘PQ]]G,

Intuitively, check(a, b) is true if the agents a and b are neighbors in the network. checkl(c,!)
1s true if from the point of view of c, the list | could be a valid route that goes through c, i.e. if
the list | contains one occurrence of ¢ between two neighbours of c. route(l) is true if the list
[ represents a valid path in the graph that does not go through the same node twice. loop(l) is
true if the list I contains twice the same element. (We usually want to test for loop-free lists).
The other entries are the usual ones: ®1 N\ ®o is true if ®1 and P2 are true, @1 V @y is true
if @1 or ®o is true, and —~P is true if ® is false.

3.1.2 Example: modeling the SRP protocol

We consider SRP introduced in [PH02|, assuming that each node already knows his neighbors
(running e.g. some neighbor discovery protocol). We model here its application to the DSR
protocol [JMBO1].

Consider the signature given in Example 2.1.1 and let S, D,req, rep, Id, Kgp be names
(S, D € Njoc) and z, be a variable of sort lists. The process executed by a node S initiating
the search for a route towards a node D is:

Pinit(S, D) = new Id.out(uq).in ug[®g].0

where:
up = (req, S, D, Id, S :: L, hmac({req, S, D,id), Ksp))
ug = (rep, D, S, Id, x1,, hmac(({rep, D, S,id, x1), Ksp))
&g = checkl(S, 1) A —loop(xy).

The names of the intermediate nodes are accumulated in the route request packet. In-
termediate nodes relay the request over the network, except if they have already seen it. An
intermediate node also checks that the received request is locally correct by verifying whether
the head of the list in the request is one of its neighbors. Below, V € Noc, T5,2p and z, are
variables of sort loc whereas x, is a variable of sort lists and x4, x,, are variables of sort terms.
The process executed by an intermediate node V' when forwarding a request is as follows:

Preq(V') = in wq[®@y].read ¢ then 0 else (store(t).out(ws))

wy = (req, s, 2Tp, T1d, Tq :: Try Trn)

Oy = check(V, xq)

t=(zs,%p, %)

wy = (req, s, Tp, T, V i (Tq = Tp), Tm)

where

When the request reaches the destination D, it checks that the request has a correct hmac
and that the first node in the route is one of his neighbors. Then, the destination D constructs
a route reply, in particular it computes a new hmac over the route accumulated in the request
packet with Kgp, and sends the answer back over the network.
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The process executed by the destination node D is the following:
Pdest(Dys) =in v [‘I)D].out(vg).O

U1 = <req7 S,D,ZC]d,.Ta Lx, hmac(<reqasaD7xld>7K5'D)>
where: ¢ ®p = check(D, z,)
V2 = <repaD757 Td,Tqg * L], hmac((rep,D, Sa Tid,Tq :: 'Il)’KSD»

Then, the reply travels along the route back to S. The intermediate nodes check that
the route in the reply packet is locally correct, which means that their name appears once in
the list and that the names appearing just before and just after in the list are the names of
some of their neighbors. If this test is passed successfully, they forward the reply. The process
executed by an intermediary node V' when forwarding a reply is the following:

Prep(V) = in w'[®},].out(w’)

/
w = (rep,r rs,T Ly, T
here . < P,TpD,Ts, T4, Ty, m>
v = checkl(V, z,)

3.1.3 Execution model

Each process is located at a specified node of the network. Unlike classical Dolev-Yao model,
the intruder does not control the entire network but can only interact with its neighbors.
More specifically, we assume that the topology of the network is represented by giving an
undirected graph G = (V, E) with V' C Ny, where an edge in the graph models the fact that
two nodes are neighbors. We also assume that we have a set of nodes M that are controlled
by the attacker. These nodes are then called malicious. Our model is not restricted to a single
malicious node. Our results allow us to consider the case of several compromised nodes that
collaborate by sharing their knowledge. However, it is well-known that the presence of several
colluding malicious nodes often yields straightforward attacks [HPJ06, LPM™05].

Definition 3.1.1 (configuration). A (ground) concrete configuration of the network is a
triplet (P;S;Z) where:

e P is a multiset of expressions of the form | P|,, which represents the (ground) process P
located at node n € V.

o S is a set of expressions of the form |t], withn € V andt a ground term. |t], represents
the fact that the node n has stored the term t.

e 7 is a set of ground terms representing the messages seen by the intruder.

In the expressions of the form | P|,, we consider for the sake of clarity that null processes,
i.e. expressions of the form [0],, are removed. Moreover, we will write | P |, U P instead of

{[Pln}UP.

Example 3.1.2. Continuing our modeling of SRP, a typical initial configuration for the SRP
protocol is

KO = (LPinit(S7 D)JS | LPdest(Dv S)JD; QQIO)

where both the source node S and the destination node D wish to communicate. We assume
that each node has an empty storage list and that the initial knowledge of the intruder is given
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by an infinite set of terms Zy. A possible network configuration is modeled by the graph Gg in
Figure 3.2. We assume that there is a single malicious node, i.e. My = {nr}. The nodes W
and X are two extra (honest) nodes. We do not assume that the intermediary nodes ny, W,
and X ezecute the routing protocol. Actually, this is not needed to show that the protocol is
flawed, and we want to keep this example as simple as possible.

Figure 3.2: Example of network topology (where ny is the malicious node).

Each honest node broadcasts its messages to all his neighbors. To capture more malicious
behaviors, we allow the nodes controlled by the intruder to send messages only to some specific
neighbor. The communication system is formally defined by the rules of Figure 3.3. They are
parametrized by the underlying graph G and the set of malicious nodes M.

The relation —>*G’ Ay 18 the reflexive and transitive closure of —g A¢. We may write —, —¢,
— nm instead of —@ a4 when the underlying network topology G or the underlying set M is
clear from the context.

Note that in the case where we assume that there is a single malicious node with each
honest node connected to it, we retrieve the model where the attacker is assumed to control
all the communications.

Example 3.1.3. Continuing the example developed in Section 3.1.2, the following sequence
of transitions is enabled from the initial configuration Ky:

KO_%}O,MO(U” 'UQ[(DS].OJS U \_Pdest(Da S)JD; @;Io U {ul})

where:
uy = (req, S, D, Id, S :: L, hmac((req, S, D, Id), Ksp))
ug = (rep, D, S, Id, z1,, hmac({rep, D, S, Id, x1,), Ksp))
&g = checkl(S, z1) A —loop(zy)

During this transition, S broadcasts to its neighbors a request to find a route to D. The
intruder ny is a neighbor of S in G, so he learns the request message. Assuming that the
intruder knows the mames of its neighbors, i.e. W, X € Iy, he can then build the following
fake message request:

m = (req, S, D, Id, [ X; W; S],hmac({req, S, D, Id), Ksp))

and broadcasts it. Since (X, D) € E, D accepts this message and the resulting configuration
of the transition is

([in u2[®s].0] s U |out(v20).0] p; 0; Zo U {u1})

where V2 = <rep,D,S,£C[d,$a LT, hmac((D, Sa Tid,Lq ::>7KSD)>
o=Ax— ld,z, — X,— [W;S]}
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Comm ({Lm uj[(I)j]'PjJnj ’ mgu(tvuj) #1, [[‘I)jaj]]G =1, (nvnj) € E}
U [out(t).P|, UP;S;T)
—om ({[Pjojln;} U LPln UP; ST

where o; = mgu(t,u;), ' = Z U {t} if (n,n;) € E for some n; € M and Z' = T
otherwise. Moreover, | P’|,, € P implies that:

e (n,n') ¢ E, or

e P’ is not of the form in «/[®'].Q)', or

e P =in/[?].Q and (mgu(t,u’) = L or [®'mgu(t,u')]c = 0).

IN (lin u[®].P],UP;S;T) —am (|[Poln,UP;S;T)
if (ny,n) € E for some n; € M, T+ t, 0 = mgu(t,u) and [Po]g =1

STORE ([store(t).P|, UP;S;T) —agm ([PlnUP;|t],US;T)

READ-THEN (|read u then P else Q|, UP; [t|, US;T)
—am (|[Pol,UP;[t]nUS;T)
where o = mgu(t, u)
READ-ELSE (|read u then P else Q|, UP;S;T)
—am (lQJnUP;ST)
if for all ¢ such that [t], € S, mgu(t,u) = L

IF-THEN (Lif @ then P else Q|, UP;S;T)

—aM (|P|lnUP;S;T) if [[(I)]]Gzl
IF-ELSE (Lif @ then P else Q|, UP;S;T)

—aM (I_QJnUP;S;I) if [[‘I)]]G:O
PAr (Lpl ’ PQJnUP;S;I) —a.M (Lpljn U {PQJnU’P;S;I)
REPL (P UP:S;T) —can (|PalnU|lPlnUP;S;T)

where « is a renaming of the bound variables of P

NEW (l[new m.P],, UP;S;Z) —agm ([P{m— m'}], UP;S;T)
where m' is a fresh name

Figure 3.3: Concrete transition system.

45
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As usual, an attack is defined as a reachability property.

Definition 3.1.2. Let G be a graph and M be a set of nodes. There is an M-attack on a
configuration with a hole (P[_|;S;Z) for the network topology G and the formula ® if there
exist n, P, S',T" such that:

(P[if @ thenout(error)]; S; Z) —& o ([out(error) |, UP', S, T")
where error is a special symbol not occurring in the configuration (P[_];S;7).

The usual secrecy property can be typically encoded by adding a witness process in parallel.
For example, the process W = in s.  can only evolve if it receives the secret s. Thus the
secrecy preservation of s on a configuration (P;S;7) for a graph G = (V, E) can be defined by
the (non) existence of an {n}-attack on the configuration (P U |W],;S;Z) and the formula
true for the graph G’ = (V. U{n}, EU{(n,n1)}).

Example 3.1.4. For the SRP protocol, the property we want to check is that the list of nodes
obtained by the source through the protocol represents a path in the graph. We can easily encode
this property by replacing the null process in Py (S, D) by a hole, and checking whether the
formula —route(xr) holds. Let P! ..(S, D) be the resulting process.

nit

P! ..(S, D) = new Id.out(uy).in ug[®g].P

where P = if —route(x,) thenout(error). Then, we recover the attack mentioned in [BV04] with
the topology Go given in Example 3.1.2, and from the initial configuration:

K(/) = (L zmt(s D)JS‘ LPdest(D S)JD (D IO)
Indeed, we have that:
Ky —* (Lm UQ[CI)S] PJS U {out(m’).OJD;@;I)

— ([in u2[®s].P|s U 0] p; 0;I")
— ([if—route([X; W; S]) then out(error) | ;0; Z")
— (out(error).0|g; 0; Z")

m' = (rep, D, S, Id, [X; W; S], hmac((D, S, Id, [ X; W;S]), Ksp))
where < T =7ZoU{ui}, and

' =TIyU {ul} U {m'}

3.2 Symbolic model

It is difficult to directly reason with the transition system defined in Figure 3.3 since it is
infinitely branching. Indeed, a potentially infinite number of distinct messages can be sent at
each step by the intruder node. In fact, the messages that the intruder can send encompass
any message that he is able to forge from his knowledge.

That is why it is often interesting to introduce a symbolic transition system where each
intruder step is captured by a single rule (as in e.g. [ALV02]). This transition system will have
to maintain some sort of control over the messages through the use of the constraint systems
defined in Chapter 2. Furthermore, we will also have to consider formulas and disequality
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constraints to account for some of the requirements inherited from the concrete transition
system.

As in [MS01, CLCZ10, RT01], groups of executions can be represented using constraint
systems. However, compared to previous work, we have to add constraints in order to cope
with the formulas that are checked upon the reception of a message and also in order to cope
with generalized disequality tests for reflecting cases where agents reject messages of the wrong
form. Indeed, since messages can be broadcasted to all neighbors, we need to determine for
each message which agents will accept the message and which agents will not accept it.

Definition 3.2.1 (Disequality constraint). A disequality constraint is an expression of the
form VX . v # u where v,u are terms and X is a set of variables.

Our disequality constraints are rather general: they do not simply allow to check that two
terms are different (u # v), but they also allow to ensure that no unification was possible at
a certain point of the execution. It is necessary to check this due to our broadcast primitive:
the disequality constraint represents the fact that a message was not treated because it did
not match the expected pattern.

To model the execution of a protocol in a symbolic way, we will use the constraint systems
defined in Chapter 2. Moreover, we will also maintain a set of other constraints ¥ consisting
in disequality constraints and a formula ® of L.

Definition 3.2.2. Let (C,Z) be a constraint system and ¥ = &1 A Py where 1 € L and Pq is
a conjunction of disequality constraints, such that fu(¥) C rvar(C) and names(V)NZ =0. A
solution to (C,Z) and ¥ for a graph G is a ground substitution 6 such that dom(0) = rvar(C)
and:

?
o TO0UTOF ub for all T u € C;

o for all (VX.v # u) € ®g, the terms vl and uh are not unifiable (even renaming the
variables of X with fresh variables); and

o [P10]¢ =1.

? ?
Example 3.2.1. Consider the conjunction of constraints C = ZoU{ui} - vi A ZoU{ui,ve} F
uz and the formula ® = &p N &g A —route(xy).

with:
up = (req, S, D, Id, S :: L, hmac((req, S, D,id), Ksp))

ug = (rep, D, S, Id, z1,, hmac((rep, D, S,id, x1), Ksp))
®p = check(D, z,)
®g = checkl(S, x) A —loop(zr)
vy = (req, S, D, x1q, x4 = 21, hmac((req, S, D, x;q4), Ksp))
vy = (rep, D, S, x4, T4 :: 21, hmac({rep, D, S, x4, x4 :: 1), Ksp))
Let I be a set of names such that names(C, p)NZy = 0. We have that (C,Zp) is a constraint
system, and the substitution

0 ={xpy— Id,xq — X, x;— [W; S|,z — [X;W;S]}

is a solution of the constraint system (C,Zy) and of the formula ® for the graph Gy defined in
FEzxample 3.1.2.
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3.2.1 Transition system

Concrete executions can be finitely represented by executing the transitions symbolically. A
symbolic configuration is a quintuplet (P;S;Z;C; V) where

e P is a multiset of expressions of the form | P|,, where null processes are removed. |P|,
represents the process P located at node n € Nqc.

e S is a set of expressions of the form [t|, with n € My and ¢ a term (not necessarily
ground).

® 7 = Tpames W Zterms Where Zierms is a set of terms (not necessarily ground) representing
the messages seen by the intruder, and Z,,es is a set of names that the intruder has at
his disposal .

?
o (C,Znames) is a constraint system such that T C Zierms for every constraint 7T+ u € C.

o U =20, A ®dy where &; € £ and P5 is a conjunction of disequality constraints.

Such a configuration is ground when:

fo(P)Uwvars(S) Uwvars(Z) U fo(¥) C rvar(C)

Compared to concrete configurations, terms exchanged by processes in symbolic configur-
ations are not necessarily ground anymore but have to satisfy some (deduction or disequality)
constraints. We define the associated symbolic transitions in Figure 3.4. They mimic concrete
ones. In particular, for the communication rule, the set I of processes ready to input a mes-
sage is split into three sets J, K and L. The message being transmitted is a term ¢, and the
processes ready to input are of the form in w;[®;]. J is the set of processes that accept the
message t, K is the set of processes that reject the message ¢ because ¢ does not unify with
the expected pattern uy, and L is the set of processes that reject the message ¢t because the
condition ®; is not fulfilled.

Whenever (P;S;Z;C; V) —¢ v (P'58"577,C V') where (P;S;Z;C; V) is a (ground) sym-
bolic configuration then (P’;S’;Z';C’; ¥') is still a (ground) symbolic configuration.

More precisely, we show in Lemma 3.2.1 that the result of a transition from a ground sym-
bolic configuration is also a ground symbolic configuration, in particular the set of constraints
obtained is a constraint system. This lemma will be useful later, to show that our transition
system is complete (Proposition 3.2.2) and sound (Proposition 3.2.3) when considering ground
configurations.

Lemma 3.2.1. Let G = (Njoc, E) be a graph, M C Nioc, and Ks = (P;S;Z;C; V) be a ground
symbolic configuration. If K is a quintuplet such that Ky —% . K., then K is a ground
symbolic configuration.

Proof.  Since K is a symbolic configuration, there exist Z,qmes, Zterms such that 7 =
?

Tterms W Znamess (Cy Znames) 18 a constraint system and 7' C Zierms for every T Fuel. We
also have that ¥ = &; A &5 with ®&; € £ and ®4 is a conjunction of disequality constraints.
Moreover, since K, is ground, we have that var(Z) U fo(P) U var(S) U fu(¥) C rvar(C). Let
us write K. = (P;8;7';C'; ¥') and G = (V, E). To prove the result, we do a case analysis on
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CoMM;, (lout(t).P|n U {|in w;[®;].P/|pn, | 1 € [}UP;S;Z;C; V)
—&M
{lPjo]n; | j € J}UPo; S0, T';C"5 V)
where:
e |P'|,, € P implies that (n,n') € E or P’ is not of the form in «'[®].Q)/,
o | =JyJ KWL and (n;,n) € E for every i € I,

for every | € L, oy is a renaming of vars(u;) ~ rvar(C) by fresh variables
e o =mgu({u;=t|jeJ}U{wo=t|leL})

\I/J:{(I)j ’jGJ}, U = {Vth;éuk | k‘GK} and \IJL:{—KI)lOél ’lEL}
where V), = (vars(ug) ~\ rvar(C))

7' = (ZU{t})o when (n,ns) € E for some n; € M, and 7' = Zo otherwise.
e ('=Coand V' = (\IJU\I/JU\I/KU\I/L)O'

?
INg (lin u[®@].P],UP;S;T;C;0) —g 0y ([PlnUP;S;TCATEuw W A D)
if (ny,n) € E for some n; € M

STORE, (|store(t).P |, UP;S;Z;C; W) —&M (|P]nUP;t|nUS;Z;C; )

READ-THEN; (|read u then P else Q|, UP;S;Z;C; V)
—am ([PolnUPo;So;Zo;Co; Vo)
where [t], € S and o = mgu(t,u)
READ-ELSE; (|read u then P else Q|, UP;S;Z;C; ¥)
—om ([QInUP;S;TC0 AYX t #u | [t]n € S})

where X = vars(u) \ rvar(C)

IF-THEN, (|if ® then P else Q|, UP;S5;Z;C; V) —2 Pl,UP;S;T:C;¥ N D
G,.M

»

IF-ELSE; ([if ® then Pelse Q|, UP;S;T;C; V) —¢ v ([QIn UP;S;I;C ¥ A —®)

5

PARs (1P| P2Jn UPSTC0) =G0 ([Pn U [R2]n UPS;T5C;0)

REPL, (!PJnUP;STC V) =gy ([PalaUIP], UP; S T;C0)
where « is a renaming of the bound variables of P that are not in rvar(C).

NEW, ([new m.Pl, UP;S; ;6 0) =g 0 ([P{m—m'}n UP;S;T:C; 1)

where m/' is a fresh name

Figure 3.4: Symbolic transition system.
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the transition rule involved in K; —¢; \ K !. Note that the result is straightforward for the
rules STORE,, PARs, REPL,, and NEW,. Indeed, in these cases, we have that C' =C, ¥/ = ¥,
7' =7, and fo(P)Uwvar(S) = fu(P")Uwvar(S"). Now, we consider the remaining rules in turn.

e Rule READ-THEN,;. We have that:
([read u then P else Q, U Q;S;Z;C;¥) —¢ o ([Po]nUQo;S0;Z0;Co; Vo)

where [t|, € S and 0 = mgu(u,t).

First, we have that (C’, Zpames) is a constraint system. Indeed, monotonicity is straight-

forwardly satisfied by C’. Moreover, application of a substitution preserves origination.

Since 7' = Z0 = Tterms0 W Lnames and C' = Co, we also have that T" C Zieymso for every
?

T' ' € C'. Lastly, since K, is ground, we have that:
fo(P)U fu(Q) Uwars(S) Uwvars(Z) U fu(¥) C rvar(C)
Thus, we deduce that
fo(Po) U fu(Qo) Uwars(So) U wvars(Zo) U fo(¥o) C rvar(Co)

We conclude that the resulting symbolic configuration K is ground.
e Rule READ-ELSE,;. We have that:
(lread u then P else Q]n, U Q;S;T;C; W) —¢ o (1Q)n U Q5S;T;C; ¥ A Eq)
where Eq = {Vvar(u) ~ rvar(C) .t #u | |t], € S}.
First, we know that 7 = Ite”;]s W Znamess (C'y Tnames) is a constraint system, and we have

that T' C Zierms for every T FueC. Furthermore, since K, is ground, we already have
that fu(Q)U fv(Q)Uwvar(S)Uwvar(Z) C rvar(C). Since fv(Eq) C rvar(C), we obtain that
fo(¥") C rvar(C). In conclusion, the resulting configuration K is ground.

e Rule IF-THEN,;. We have that:

([if @ then P else Q], U Q;S;Z;C; W) —g pq ([Pl U Q5 S;Z;C; ¥ A D)

We still have that Z = Zierms W Znames, (C'y Znames) is a constraint system, and T' C Zrerms

?
for every T+ u € C. Since K is ground, we have that

fo(P) U fo(®) U fu(Q) Uwar(S) U var(Z) U fo(¥) C rvar(C)

Thus, the configuration K is ground.
e Rule IF-ELSE;. Similar to the previous case.

e Rule IN,. We have that:

?
([in u[®].P],UQ;S;T;C¥) =g (IP]nUQS;TCANTEw ¥ A )

where (ny,n) € E for some ny € M.

We have that Z = Zierms W Znames, (C'y Znames) is a constraint system, and T' C Zierms for
?

every T Fuec. Consequently, we deduce that (C’, Zames) satisfies the monotonicity
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property. Since var(Z) C rvar(C) (because Ky is ground), (C',Znames) furthermore

satisfies the origination property. Clearly, we have that T' C Zierms for any T Iz uecl.

Lastly, since K is ground and fu(in u[®]P) = (fo(P) U fu(®)) \ var(u), we have that:
fo(P)U fo(®) U fo(Q) Uwar(S) Uvar(Z)U fuo(¥) C rvar(C) U var(u).

Since rvar(C") = rvar(C) Uwvar(u), we easily deduce that the symbolic configuration K,

is ground.

Rule CoMmM . We have that:

(lout(t).P|,UPruUQ;S;Z;C; V) —&M
(|[Po|pnUPjo UPK oUQo;So;T'0;Co; W)

where:
= Pr=A{lPjln; 7€ J}
- 'PKJJ = {Lin uk[q)k]PkJnk | ke KUL}
— \IJJ:{@j |j€J}and\IlL:{ﬂ©loq]l€L}
— Ui = {Vvar(ug) ~ rvar(C) .t #uy | k € K},
—o=mgu{u; =t|jeJ}U{wyoy=t|leL})
- \I/,:(\I’/\\I/J/\\I’K/\\I’L)O'
| P'|,» € Q implies that (n,n’) ¢ E or P’ is not of the form in «/[®'].Q", [ = JY K | L,

(ni,m) € E for any i € I, oy is a renaming of var(u;) \ rvar(C) by fresh variables, and
if (n,ny) € E for some ny € M then I/ =Z U {t}) else 7’ = T.

”
Clearly, To C Ziemso for any T F u € C. Moreover, (C',Zpames) straightforwardly
satisfies the monotonicity property. As substitution preserves origination, (C’,Znames)
satisfies the origination property. Consequently, K is a symbolic configuration. Lastly,
we have to show that K is ground. Since K is ground, we have that:

fu(t, P,Pr, Q,¥)Uwvar(S,Z) C rvar(C)
We immediately deduce that

fo(Po,Pyo, Pk 10, Qo, Vo) U var(So,Zo,to) C rvar(Co)

It remains to show that fu(V; A Ui A Wp)o C rvar(Co). Now, fu(V;) C rvar(C) as
K, is ground. Furthermore, fu(Vg) C rvar(C) by definition of Wx. So we only have to
prove that fu(Vro) C rvar(Co). Let | € L, and X; = var(u;) ~ rvar(C). Necessarily,
var(®;) C var(uy) Urvar(C) = X;Wrvar(C). Consequently, var(®;oq) C Xjoq W rvar(C),
as qy is a renaming of X; by fresh variables. Moreover, (u;cq)o = to, so var((wao;)o) =
var(to) C rvar(Co). Consequently, var((®;oq)o) C rvar(Co). We easily deduce that
fo(¥ro) C rvar(Co).

We conclude that K is a ground symbolic configuration.
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Example 3.2.2. FEzecuting the same transitions as in Fxample 3.1.4 symbolically, we reach
the following configuration:

K5 = (|out(error).0]s;0; Zo U {u1,v2}; C; @)

where C, ®,u1,vo are defined as in Example 3.2.1.

3.2.2 Soundness and completeness

We show that our symbolic transition system reflects exactly the concrete transition system,
i.e. each concrete execution of a process is captured by one of the symbolic executions. More
precisely, a concrete configuration is represented by a symbolic configuration if it is one of its
instances, called concretization.

Definition 3.2.3 (6-concretization). Let Ky = (Ps;Ss;Zs;C; W) be a symbolic configuration
such that T = Zpames W Zterms, (Cy Znames) 18 a constraint system. A concretization of K is a
concrete configuration K. = (P;S;Z) such that there exists 6 a solution of (C,Znames) and ¥
and, furthermore, Ps6 =P, S0 =S, .0 =1. We say that K. is a 0-concretization of K.

Note that the @-concretization of a ground symbolic configuration is a ground concrete
configuration. Now, we show that each concrete transition can be matched by a symbolic one.
The proof is performed by studying each rule of the concrete transition system, showing that
the corresponding symbolic rule covers all possible cases. In particular, disequality constraints
allow to faithfully model cases where nodes reject a message because the message does not
match the expected pattern.

Proposition 3.2.2 (completeness). Let G = (Noe, E) be a graph and M C Nyoc. Let Ky =
(Ps; Ss;Zs; C; W) be a ground symbolic configuration with T = LpamesWZierms and 0 be a solution
of the constraint system (C,Znames) and W. Let K. be the 0-concretization of Ks. Let K|
be a concrete configuration such that K. —aam K.. Then there ezists a ground symbolic
configuration K and a substitution 6 such that:

e K! is the 0'-concretization of K., and

o Ks —=4m Ks

Proof. Let K. = (P;S;Z). We distinguish cases depending on which transition is applied
to K.. We write K, = (P’;S’;Z’). We show that there exists a symbolic configuration K
such that K7 is the ¢'-concretization of K and Ky —¢ 5, K. Thanks to Lemma 3.2.1, we
easily deduce that K is ground.

o Rule PAR. We have that:
(P P2)n U QS T) —mam ([ Piln U [ P2)n U QS T)
By hypothesis, K is a symbolic configuration whose 6-concretization is K.. Con-
sequently, we have that K; = (| P{|Ps|n U Qs;Ss;Zs;C; W) with Q.0 = 9, S = S,
I = I, Pi0 = P, and Ps0 = P,. Let K. = (|Pf], U | P5]n U Qs;Ss;Zs; C; ¥). We
have that Ky —¢ K! (with the PARs; rule), 0 is a solution of (C,Zpames) and ¥
and K is the f-concretization of K.
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e Rule REPL. We have that:
(UPJnU Q;SEI) —G,M (LPO‘JnU L!PJn U Q;S;I)

where « is a fresh renaming of the bound variables in P. Since K, is a symbolic
configuration whose #-concretization is K., we have that Ks = (|!Ps], U Qs; Ss;Zs; C; V)
with Q.0 = 9, §:0 = S, Z,0 = T and Ps0 = P. Note that « is also a renaming of
the variables in bv(Ps) \ rvar(C). Let K. = (| Psa)n U |!Ps|n U Qs; Ss;Zs; C; @). We
have that K, &M K! (with the REPLs rule) and 6 is a solution of (C,Znames). It
remains to show that K/ is the f-concretization of K.. Since the variables introduced
by « are fresh, we have that img(a) N dom(#) = 0, and since Ps# = P, we have that
dom(a)) N dom(f) = (). Hence we have that (Ps;a)f = (Psf)a = Pa. This allows us to
conclude.

e Rule NEw. We have that:
(lnew m.P],, U Q;S;7) —a,m (| P{m— m'}],, U Q;S;T)

where m’ is a fresh name.

We know that K is a symbolic configuration whose 6-concretization is K.. Thus, we
have that Ks = (|new m.Ps|, U Qs;Ss;Zs; C; W) with Q40 = Q, S0 = S, 7,60 = Z, and
Py = P. Let Ky = ([Ps{m — m'}|n U Qs;S5;Zs;C; ¥). We have that Ky —¢ o K
(with the NEw; rule), 6 is a solution of (C, Z,4mes) and K, is the f-concretization of K.

e Rule STORE. We have that:
([store(t).Pl, U Q;S;T) —magm ([PlnUQ; |t US;T)
We know that K is a symbolic configuration whose 6-concretization is K.. Thus, we
have that Ky = (|store(ts).Ps|n U Qs;Ss;Zs; C; V) with Q0 = Q, S0 = S, Z,60 = 7,
P = P and t0 = t. Let K. = (| Ps|n U Qs; |ts|n U Ss;Zs;C; ¥). We have that
Ks =& m K! (with the STORE; rule), 0 is a solution of (C,Znames) and K. is the

S
-concretization of K.

e Rule READ-THEN . We have that:
(|read u then P else Q|, U Q; [t]|, US;T) —gm ([Po|nUQ;[t]nUS;T)
where o = mgu(t,u).

We know that K is a symbolic configuration whose 6-concretization is K.. Thus, we
have that Ky = (|read us then Ps else Q|n U Qs; [ts|n U Ss;Zs;C; ) with Qg6 = Q,
usd = u, ts0 =t, P8 = P, Q0 =@, S0 =S and Z,60 = Z. By hypothesis, we have that
(ush)o = uo = to = (ts0)o, so o’ = mgu(us,ts) exists and there exists ' a substitution
such that cof = §'oc’. Let us define K. = (| Pso’|,UQs0”; |ts0” | nUSso’; Zs0';Co’; Wa').
We have that Ks —¢, v K, (with the READ-THEN; rule).

It remains to prove that € is a solution for (Co’, Z,ames) and Wo'. As 6 is a solution of

.
(C, Tnames), for every T Fu € C, TOU Tpames - ub, and so (To")0' U Lpames = (uc’)'.
With a similar reasoning, we can show that ¢’ is also a solution for ¥o’. Furthermore,
we have that Q,0'¢/ = Q.00 = Qo, P,0'0) = P,#oc = Po, S0’ = S;00 = So and
Z,0'0) = I,00c = To. As o = mgu(u,t) where ¢ is ground and the variables of u are
bound in (read u then P else Q)), we deduce that dom(o) N vars(Q,S,Z) = B, and so
Qo = Q, So =S8 and Zo = Z. Hence, we have that K is the ¢'-concretization of K.
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e Rule READ-ELSE. We have that:

([read u then P else Q|, U Q;S;7) =g m (|Q)n U Q;S;7)
and for all |t], € S we have that mgu(t,u) = L.

We know that K is a symbolic configuration whose 6-concretization is K.. Thus, we
have that K = (|read us then Pj else Qs]|n U Qs; Ss;Zs;C; V) with usf = u, P = P,
QRH0=0Q, Q0 =09,S:0=38,and Z,0 =T.

Let K. = (|Qs)|n U Qs;8s;Zs;C; V') where W = WU A {VYits # us | [ts]n € S} and
Y = war(us) \ rvar(C). We have that Ky —¢ ,, K, (with the READ-ELSE; rule).
Now, let us show that 6 is a solution of ¥’. Let VY.t, # us be a disequation in ¥/ ~\ .
We have that us6 = u, ts6 =t for some term ¢ such that [t], € S, and mgu(t,u) = L.
Thus, 6 is also a solution of this constraint, and more generally 6 is a solution of W'.
Now, it is easy to see that K is the #-concretization of K.

Rule IF-THEN. We have that:

([if ® then Pelse Q|, U Q;S;7) —»gm (| PlnUQ;S;T) and [®]q = 1.
We know that K is a symbolic configuration whose 6-concretization is K.. Thus, we
have that Ky = ([if ®s then Ps else Qs]|n U Qs;85;Zs;C; V) with &0 = &, P.§ = P,
QR0=0Q, Q0=09,80=3S8,and 7,0 = 1.
Let K. = (| Ps|nUQs; Ss;Zs; C; WAD,). We have that K &M K! (with the IF-THEN,
rule). By hypothesis, we have that 6 is a solution of ¥, and as [®0]c = [®]¢ is true,

we easily deduce that 6 is a solution of ¥/ = W A ®,. Lastly, it is easy to see that K. is
the #-concretization of K.

Rule Ir-ELSE. Similar to the previous case.

Rule IN. We have that:

(lin u[®].P|,UQ;S8;T) —g,m (| PolnUQ;8;7)
with (ny,n) € E for some n; € M, 0 = mgu(t,u), Z Ft and [Po]g = 1.
We know that K is a symbolic configuration whose 6-concretization is K.. Thus, we
have that K, = ([in us[®s].Ps|n U Qs;Ss;Zs;C; V) with ugf = u, &0 = P, Psf = P,
Q0 =0,80=8,and Z,0 = T.

?

Let K, = (| Ps|n U Qs;Ss;Zs; C'; ¥') where C' = C A Zs - ug and W/ = ¥ A &;. We have
that Ks —¢ o K, (with the INg rule). Let 6" =000 . By hypothesis, we have that ¢

is a solution of (C,Z,ames) and . To show that 6’ is a solution of (C', Z,ames) and V',
it remains to establish that:

— (Zterms®) 0 UL pames b (us6)o: We have that (Zierms8)oUZnames = Z since var(Z) = (),
and (usf)o = uo = t. Since by hypothesis, we have that Z I ¢, we easily conclude.

— [(®s6)0]c = 1. Actually, we have that (®s0)0 = Po. Since, by hypothesis, we
have that [®c]e = 1, we easily conclude.

Hence, we have that 6’ is a solution of C’. It is easy to see that K is the #’-concretization
of K.
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e Rule CoMM. We have that

Ke = (lout(t).Pln U {[in uj[®;].Pj]n; | j € J} U Q;S;T)
—em ([PlnUPjojln, } UQ S T') = K|

where:

— 0; = mgu(t,uj), (n,n;) € E, and [®;0;]¢ =1 for any j € J,
— if (n,ns) € E for some ny € M then Z' =T U {t} else ' = 7.

Moreover, we know that | P’],, € Q implies that:

— (n,n') ¢ E, or

— P’ is not of the form in «/[®'].Q’, or

— P =ind/[?].Q" and (mgu(t,u') = L or [®'mgu(t,u’)]c = 0).
We know that K is a symbolic configuration whose 6-concretization is K.. Thus, we
have that K = ([out(ts).Ps |, U{[in uj[®5].P7 |n;]5 € J}U Qs Ss; Zs; C; V) with ¢50 = ¢,
PO =P, 710 =17, S0=38, Q6 =Q and for any j € J, we have that ujé?:uj,
@j@ = ®;, and PjSH = P;. Let us define

= Pi,r = {lin wp[®4].Piln, € Qs | (mi,n) € EY,

— Q. be such that Q, = P ¥ QL.
K ={k | [in u}[®}].P;]n, € Pg 1, and mgu(ts0,uzf) = L},
= L=A{l] [in uj[®]].P}|n, € Pf 1, 01 = mgu(tsd,u;j0) and —~[(®j0)o)]c = 1}.

We have that Pj ; = {|in up[®;].5¢|n, € Py | k€ KWL}
Let o be a renaming of {var(w) |l € L} \ rvar(C). Let 0 = U,c;05 U Ujcp 01 We
show that there exists a substitution o’ = mgu({u; =t | j € J} U{uja =ts |l € L}).

To achieve this result, we show that o oa~! 0@ is a unifier of {uj =ts|j e JtU{uja=
ts |l € L}:

— Vj € J,05 = mgu(u;,t). We have that u;0 = u; and t;0 =t. As dom(a~!) includes
only fresh variables, uja™! = u; and ta™! = t. Consequently, ((uj@)a‘l)a =
((ts0)a Yo

=Vl € L,o; = mgu(ts,u;0) exists. We have that dom(6) = rvar(C) and img(6) N
X = 0. Moreover, dom(a) = {var(w) | I € L} \ rvar(C) and img(«) is a set of
fresh variables. Hence, § o @ = w0 §. We deduce that (((uja)f)a™1)o = (uff)o =
(ts0)o = (((tsa)0)a Yo

We have proven that o o a~! o § is a unifier of {uj =t [jeJtU{uja =t |1l €L}
Consequently, there exists o/, ¢ such that o’ = mgu({u; =5 | j € J} U{uja =1, |1 €
L})and @ oo’ =coatod.

Let K = (| P50’ |, UPj0" U Py 10" UQLo's Ss0'; 0" Co’s Wa')  where:
— Py = {[ P, | j €} and Wy = {® | j € J},
- Uy ={VY,.t, #uj | k € K} with Y}, = var(ug) \ rvar(C),
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-~ V¥ ={-®ja|leL}
- I, =Z,U{t} if (n,ns) € E and Z] = Z, otherwise.
— \IJ,:(\IJ/\\IJJ/\\IJK/\\I’L) ,

Clearly, we have that K, —¢ ,, K.. To conclude, it remains to show that K/ is the

S
y
¢’-concretization of K.

First, as 6 is a solution of C and #' 0 0’ = o o ™! 06, it is straightforward to see that ¢’
is a solution of C’ = Co’. Similarly, ¢’ is a solution of Wo’.

It remains to establish that:
— 0 is a solution of W ;0’. For every j € J, [®;0,]c =1, and &; = ®30 = (@j@)oﬁl,
so [(®;0")0']¢ =1.

— 0 is a solution of Wio', i.e. ¢ satisfies Yvar(uy) \ rvar(C).tso" # ujo’ for any
k € K. This is true since §' oo’ = coa o and mgu(ts0,u;f) = L for any k € K.

— 0’ is a solution of Wyo', i.e. [((Pfa)o’)f']¢ = 0 for any | € L. By definition of
L,[(®;6)0]c = 0. We have that ((®ja)o”’)0 = (((Pja)f)at)o = (;0)o. Hence,
we have that [((®{a)o’)0']¢ =0 for any [ € L.

Lastly, it remains to verify that K is the 6'-concretization of K. Indeed, we have that:
- (P = (P#)a™)s = PO = P,
(Pfo")0 = ((P70)a~ Do = (Pf0)oj = Pjo; for any j € J,

- ((PKLU )00 = (Qs0")0 = ((Qsb)a™!)o = Q0 = Q,
(
(

Sso")0 = ((Ss0)aHo = S0 = S,
Tio0 = ((T0)a Yo =T =T'.

This allows us to conclude.

O

Conversely, we have that each symbolic transition can be instantiated in a concrete one.

The proof is again obtained by inspection of the rules. We deduce from these two propositions
that checking for a concrete attack can be reduced to checking for a symbolic one.

Proposition 3.2.3 (soundness). Let G = (Njoc, E) be a graph and M C Njoc. Let Kg =
(Ps; S5 Zs;C; W) and K|, = (PL; 8L ZL; C' W) be two ground symbolic configurations, such that

Ky —g pq K- Let 0" be a substitution and let K be the 0'-concretization of K. There exists
a substitution 6 and a ground configuration K. such that

o K. is the 8-concretization of K.

L] KC —G,M Ké, and

Proof. There exists Zyames, Zterms such that Ty = Zierms W Znames and (C Inames) is a
constraint system. As K is the #’-concretization of K., 6’ is a solution of (C’, Z,ames) and W'
To prove the proposition, we define first a substltutlon 0, solution of (C,Znames) and ¥, and
we consider K. the #-concretization of K;. We distinguish several cases, depending on the
rule involved in the transition K5 —¢ \ K.
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e Rule PAR;. We have that:
(LP|P5 | U Qs; Ss5Zs; C; V) _>SG,M (LPP]n U [P35 ]n U Qs; Ss; Zs; C; W)
Since K is the ¢'-concretization of K, we have that:
Ké = QPlSH/J’n U I_PQSHIJH U Qs(gl;Ssa/;Zsel)
Since C' = C and ¥ = ¥, we can choose § = 0’ solution of (C,Z,qmes) and V. Let K.
be the f-concretization of K.

Ke = (LPP0'|P30' |n U Qs0'; Ss0", Zs0')
We have K. —ag m K. (by the PAR rule).

e Rule REPL;. We have that:
(['Ps]n U Qs; 855 Ls; C; W) —¢ pyq ([Psevs|n U [1Ps|n U Q53 855 Ls; C; )
where «; is a renaming of the bound variables of P, that are not in rvar(C).
Since K is the ¢'-concretization of K, we have that:
K = ([(Psas)t ] U [P’ | U Qs8'; S50, Z50')
Since C' = C and ¥ = ¥, we can choose § = ' solution of (C,Z,qmes) and V. Let K.
be the 6-concretization of Kj.

K. = ([!Ps0], U Q.0;S:0;Z,0).
To show that K, —g a K. (by the REPL rule), it remains to prove that:
— (Psf)as = (Psas)0. This equality comes from the fact dom(6) N dom(as) = 0.

— «y is a renaming of bv(P,#). This is due to the fact that «ag is renaming of the
bound variables of Ps that are not in rvar(C) and dom(6) = rvar(C).

e Rule NEw,. We have that:
(Lnew m.Py]n U Qs; S5: Lo C5 W) —¢; pq ([Ps{m = m'}n U Qs; S5 Zs; C; W)
where m' is a fresh name.

As in the previous cases, we have that K is the §'-concretization of K.. Moreover, since
C' = C and V' = U, we can choose § = 6. Let K. be the O-concretization of K. Hence,
we have that:

— KL= ([(Pm > m')0) |y U Q.6:5.6:7.6),
— K. = (|new m.Ps0],, U Q.0;5,0;70).
As in the previous case, since m’ is a fresh name and (Ps0){m — m'} = (Ps{m — m'})#,

we have that K. —g am K| (by the NEW rule).

e Rule STORE;. We have that:
(Istore(ts).Ps]n U Qs; Ss; Zs; C; W) —& aq ([ Psln U Qs [ts]n US55 Zs; C; W)

As in the previous cases, we have that K, is the §'-concretization of K.. Moreover, since
C' =C and V' = U, we can choose § = 6. Let K. be the 6-concretization of K. Hence,
we have that:

— K. = ([store(ts0).(Ps0)]n U Qs0; Ss6; Zs0),
— K| = ([P0 ], U Q05 [t:0' ], USH;Z50").
We have that K, —g am K. (by the STORE rule).
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e Rule READ-THEN,. We have that:

(|read us then Pj else Qs|pn U Qs; |ts]n U Ss;Zs; C; W)
—am ([ Psa'ln U Qsa'; [ts0' | U S50’ Iso"; Co's Wo')
where o' = mgu(us, ts)
Since K is the ¢'-concretization of K, we have that:
K= ([(Ps0")0'|n U (Qs0")8'; [ (ts0")0 |5 U (Ss0”)0; (Zso”)6')

Let 0 = 6 oo’. 0 is a solution of (C,Z,ames) and W. Let K. be the f-concretization of
K.

K. = (|read us0 then P,0 else Q0],, U Qs0; [ts0], U Ss6;Zs0).
We have that us6 = t;0. Hence, we have that:

K. —gm ([(PsO)o ], U Qb |ts0], USH;Z:6)

by the READ-THEN rule with ¢ = Id . Since K is a ground symbolic configuration,
we know that var(Zs) U fu(Qs) Uvar(|ts|nUSs) C dom(6), and thus, K. —g am K. (by
the READ-THEN rule).

Rule READ-ELSE;. We have that:

Ky = (|read us then P else Qs |, U Qg; Ss; Zs; C; W)
—aom ([Qs)n U Qs; 85 T; C; ¥ A Eq) = K

where Eq = {Yvar(us) \ rvar(C) . ts # us | |ts|n € Ss}-

We can choose § = 6. 6 is a solution of (C', Zpames) and ¥’. In particular, 6 is a solution

of (C,Znames) and .
As in the previous cases, we have that K is the ¢’-concretization of K. Let K, be the
f-concretization of K. Hence, we have that:
— K. = (|read us6 then Ps0 else Q0],, U Qs0;S:0;Z,0),
- K. =(lQs0' |, U Qb S:0";Z,0").
Furthermore, we have that us0 is not unifiable with ¢s0 for any |ts|, € Ss. In other

words, mgu(usf,t) = L for any ¢ such that [t|, € S;0. Hence, we have that K. —g um
K/ by the READ-ELSE rule.

Rule IF-THEN,;. We have that:

K, = (|if @5 then Py else Q| U Qs; Ss; Zs; C; V)
_%;’M (I_Pan U QsQSs§Is§C§ U A (I)s) = Ké

We can choose 6 = '. 6 is a solution of (C', Z,,qmes) and ¥'. In particular,  is a solution
of (C,Znames) and W. As in the previous cases, we have that K is the #’-concretization
of K!. Let K. be the #-concretization of K. Hence, we have that:

— K. = ([|if ®0 then P,0 else Qs0,, U Qs0; S:0;Z,6),

— K| = (| Ps0]n U Qs0; S:6;Z50).
Moreover, since 6 is a solution of ®s, we have that [®:0] = 1. Hence, we have that
K. —¢ m K. by the IF-THEN rule.
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e Rule IF-ELSE,. This case is similar to the previous one.

e Rule IN,. We have that:

(Lin us[®s].Ps]n U Qs; Ss; Zs; C; W) _%;,M ([ Ps)n U Qs; Ss; Zs; C'; W)

?
where ¢’ =C A Zs F us and ¥ = ¥ A &, and (ny,n) € E for some n; € M. We choose
6 = @', solution of (C,Znames) and .

As in the previous cases, we have that K is the ¢’-concretization of K. Let K, be the
f-concretization of K. Hence, we have that:

— K. = ([in us0[@s0].Ps0], U Qs0; Ss0;Zs0),

— K. = (|Pst ], U Qs0'; S0 Z,:6).
Since ¢ is a solution of (C', Z,ames), we have that Z;60' - us6’ and [®:6']¢ = 1. Thus,
Zs0 - us0 =t and [®s0]¢ = 1. Hence, we have that K. —g a K. by the IN rule.

e Rule CoMmM,;. We have that:

(P U lout(ts).Psln U Qs; Ss; Zs; C; W) =G amq (P U PR L U | Pso)n U Q038503 L3 C'5 W)

PRl

where:

= Pp = {lin wj[®F].57|n,| (ni,n) € Ei € I},

—I=JWKWlL,

—o=mgu({u; =t|jeJ}U{wal|leL})

- Pj= {I_P;JHJ'U’ j€J}

= Pir = {L(in ug[®F].Piny)o| k € K'w L},

—C=Coand V' =(¥ ANU; AT A VU)o,

-y ={®] | j € J}, Yk = {Vvar(ug) \ rvar(C).ts # ui | k € K}, and ¥y, =

{®ja; | I € L} where o is a renaming of var(uj) \ rvar(C) by fresh variables.

— Il = (Zs U {ts})o if (n,ny) € E for some n; € M and Z, = Zso otherwise.
Moreover, |Qs] € Qs implies that (n,n') ¢ E or Qs is not of the form in u[®].Q".
We have also that (n;,n) € E for every i € I.

Let 6 = 0’ o 0. Since ' is a solution of (Co, Z,ames) and ¥’ D Wo, it is clear that 0 is a
solution of (C,Z,gmes) and .

As in the previous cases, we have that K is the '-concretization of K.. Let K. be the
f-concretization of K. Hence, we have that:

— K. = (P;0U |out(ts0).Psb |, U Qs6; Ss0;Z0),
— K¢ = (P30' UPE 10U Psat' |, U Qs08'; Ssa0; I,0').

To conclude, it remains to show that K. —g am K. First, we have that:
— Ssot = S0,

— if (n,ns) € E for some n; € M then Z.0' = (Z;U{ts})o0 = Z,0U{t;0}. Otherwise,
we have that Z.0' = Z,00' = Z,0.
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— P,ot = P,0, Qs00' = Q,0, and P%’LG’ = Py 10 (thanks to the renaming ).

Note also that the processes in Q.6 are not of the right form to evolve by receiving a
message from the node n. Thus, to show that K, —¢ K., it remains to prove that
J = J' where

J'={i | [in uf[®:).P]|n, € Pj,7i = mgu(t0, uf) exists , [(®;0)7:]c = 1} .

We prove the two inclusions separately.

First, we show that J C J’. Let i € J. We know that |in u}[®{].P?|,, € P;. By
definition of o, ujo = to. Consequently, u?0 = ujo0’ = tod’ =t6. So 7; = mgu(t6,u0)
exists and ; = Id. Since ¢’ is a solution of ¥/, we have that [®06']c = 1. We deduce
that [®7¢]¢ = 1. This allows us to conclude that i € J'.

Now, we show that J' C J. Let i € J'. We have that |in uf[®f].Pf],, € P;, Hence, we
have that ¢ € I. In order to conclude that ¢ € J, it is sufficient to show that ¢ ¢ K and
i ¢ L.

1. i ¢ K. By contradiction, assume that i € K. Since ¢’ is a solution of ¥ 0o, we have
that ¢ satisfies the constraint Vvar(uf) \ rvar(C) . tso # ujo. This implies that t,60
and u@ are not unifiable This is impossible since we know that &; = mgu(t0, u;0)
exists. Contradiction. Hence, we deduce that i ¢ K.

2. i € L. By contradiction, assume that ¢ € L. Since ¢’ is a solution of ¥ o, we have
that to0' = (ufa;)ob and [(P5a;)00 ] = 0. Actually, we have that:

(uf )8 = (uff)ay; = (t0) .
Hence, we have that &; = a;. We have also that:
(®500)6 = (B0)a0).
We deduce that [(®70)7;]¢ = 0. Contradiction. Hence, we have that i ¢ L.

This allows us to conclude that K, —g m K. O

These lemmas allow us to show that to a concrete derivation corresponds a symbolic one.
Thus, checking for attacks can be done in the symbolic model, as shown in Theorem 3.2.4.

Theorem 3.2.4. Let G = (Njoc, E) be a graph and M C Nipe. Let K = (P] ];S5;7) be a
ground concrete configuration with a hole, and ® be a formula. There is an M-attack on K
and ® for graph G if, and only if,

(Pif @ thenout(error)]; S; Z;0;0) —& pq (Lout(u)]n U Ps; Ss; Zs; C; 0)

with Zs = Tnames W Zierms and o = mgu(u, error) exists and the constraint system (Co, Lnames)
with Yo has a solution for graph G.

Proof. We show the two directions separately.

(=) First, let us suppose that there is an attack on K and ® for graph G. By definition of
an attack, there exists a concrete configuration K’ such that:
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e K’ is of the form (|out(error)|, UP’';S’;7"), and
o K - K.

By applying Proposition 3.2.2 recursively, we deduce that there exist a ground symbolic
configuration K, and a substitution €’ such that:

o (Plif ® then out(error) else 0]; S;Z;0; 0) —& K, and
e K’ is the ¢'-concretization of K.

Consequently, K’ is of the form (|out(u)|, U PL;SL;ZL;C5 ), 6 is a solution of C' and ¥’
for G, and u#’ = error. Hence, o = mgu(u, error) exists and there exists a substitution ' such

that § = 6’ o 0. We conclude that 6’ is a solution of (Co, Z,4mes) and Yo for graph G.

(<) Conversely, assume that
K, = (P[if ® then out(error) else 0];S;Z;0;0) —& (lout(u)]n UPs;Ss;Zs; C; V) = K,

and 6 is a solution of (Co, Zpames) and Yo where o = mgu(u, error).

First, we have that K is a ground symbolic configuration whose concretization is K =
(P[if @ then out(error) else 0];S;Z). Thanks to Lemma 3.2.1, we know that the symbolic
configurations involved in this derivation are ground. Furthermore, §” = ¢’ o o is a solution
of (C, Znames) and W. Let K’ be the 6”-concretization of K., as uf” = (uc)@’ = error, we have
that:

K' = (|out(error) |, U Ps0"; Ss0"; Z;0")

Hence, by applying recursively Proposition 3.2.3, we know that there exists a substitution 6
and a ground concrete configuration K such that:

e K is the f-concretization of K,
o K =3 K.
Hence, there is an attack on K and ® for graph G. O

Note that our result holds for any signature, for any choice of predicates, and for processes
possibly with replication. Of course, it then remains to decide the existence of a constraint
system that has a solution.

Example 3.2.3. Consider our former example of an attack on SRP, with initial configuration
Ky. We can reach the configuration K, and the constraint system C has a solution o for
graph Go (cf. Example 3.2.1), so there is an {ny}-attack on Ky for Gy.

3.3 Bounding the size of minimal solutions for solved forms

Applying the technique described in Section 3.2, we are left to decide the existence of a solution
for a constraint system (C, Zpames) together with disequality constraints and formulas of Lyoyte-

In Chapter 2, we have developed a technique that allows us to consider only constraint
systems in solved form.



tel-00675509, version 1 - 1 Mar 2012

62 CHAPTER 3. MODELING AND ANALYZING ROUTING PROTOCOLS

In this section, we show how to bound the size of a minimal solution for solved constraint
systems. First, we have in Subsection 3.3.1 preliminary results about substitutions, showing
that applying substitutions does not increase the number of subterms. Then we have two
propositions, corresponding to our two decidability results, in order to take into account a
fixed topology as well as (a priori unbounded) unknown topology.

3.3.1 Preliminary results regarding substitutions

All throughout our procedures, we apply substitutions, and more precisely mgus of terms, to
the systems we consider. We have to control the size of the terms with respect to the size of
the inputs. Thus we need the following results to know how we can bound the size of terms
in a system where we just applied a substitution.

In order to obtain these results, we use the following rules for computing an mgu, called
DAG syntactic unification [JK91].

DELETE PU{s=s} = P

DEc. PU{f(s1,...,8n) = f(t1,...,tn)} = PU{s1=t1,...,8, =tn}
CoNF.  PU{f(s1,.--,8n) =g(t1,...,tp)} = L if f#g

CoAaL. PU{z=y}= Plez—ytU{z=y} ifz,y € var(P)and z #y

CHECK PU{x1 =s1[xa],...,zp = sp[z1]} = L
if s, ¢ X for some i € [1...n)]

MERGE PU{z=s,x=t} = PU{x=s,s=1}Hf0<|s| <[t
Figure 3.5: Rules for DAG syntactic unification

Lemma 3.3.1. Let T be a set of terms and P be a set of equations between terms in st(T)
with 0 = mgu(P). We have that st(To) C st(T)o.

Proof.  'We use the rules for DAG syntactic unification given in Figure 3.5. Applying
these rules on P results in a set of equations P’ = {z1 = t1,...,z, = t,} in DAG solved form
(see [JK91]). By definition of a DAG solved form, we have that:

o y;#x;foralll <i<j<n,
o z; ¢ var(t;) forall 1 <i < j<n.

Let ¢ = {x1 — t1,...,2, — t,}. By inspection of the rules in Figure 3.5, we can show
by induction on the length of the derivation from P to P’ that st(P')o C st(P)o. Since
st(P) C st(T), we easily deduce that st(t;)o C st(T)o for every 1 <i < n.

Let u € st(T'o), we show that there exists ¢t € st(T") such that u = to. Either there exists
v a subterm of T" such that v = vo, and we conclude, or there exists z; € dom (o) such that
u is a subterm of z;0. In that case, let ig = max{i | u € St(z;o)}.

e Either u € st(t;,)o C st(T)o, and we conclude.

e Or u € st(zo) for some x € var(ti,) N dom(o). By definition of a DAG solved form,
we have that var(t;,) N dom(o) C {xiy+1,...,2n}. Hence, we have that u € st(z;o) for
some j > ¢o. This yields to a contradiction.
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O

Let S be a set, we denote by #S5 the cardinal of S. Let u be a term. We denote by

|u|q the maximal depth of a variable in u. The lemma below is useful to bound the depth of

variables after application of a substitution. Intuitively, the depth of variables is bounded

polynomially in the size of the domain of the substitution, as well as the size of the set of
terms.

Lemma 3.3.2. Let T be a set of terms, P be a set of equations between terms in T and
o = mgu(P). For every variable x € st(T'), we have that:

|xo|q < #dom(o) - max{|t|q | t € T}.

Proof.  We use the rules for DAG syntactic unification given in Figure 3.5. Applying
these rules on P results in a set of equations representing a most general unifier of P in DAG
solved form (see [JKO1]): o = {x1 = t1,...,z, = t,}. By definition of a DAG solved form,
we have that:

o x; #x;foralll1 <i<j<n,
o z; ¢ war(t;) foralll1 <i<j<n.

Hence, we have that |zo|y < |ti|g+ ... + |tn|q- Furthermore, by inspection of the rules, we
can see that each ¢; is a subterm (modulo a non-bijective renaming of the variables) of T'. For
every 1 < i < n, we have that |t;|; < max{|t|q | ¢ € T'}. Since n = #dom(c), we deduce that
|zo|g < #dom(o) - max{|t|g | t € T}. O

3.3.2 Bounding variables which are not of sort loc or lists

In this section, we prove that given any solution of C, the variables which are not of sort loc
or lists can be instantiated by any fresh name, still preserving the solution.

Lemma 3.3.3. Let (C,Z) be a constraint system in solved form, ®1 be a formula of Lroute,
Dy be a set of disequality constraints, and G = (Njoc, E) be a graph. Consider o a solution of
(C,Z) NPy A Dy for graph G. There is a solution o’ of (C,Z) NP1 A Py for graph G such that:

e 10’ = xo for every variable x of sort loc or lists;

o x0' € T otherwise.

Proof. Since (C,Z) is a constraint system in solved form, we have that

?

?
C=TrFxoi N...NT, Fzx,
where:

® I1,...,T, are distinct variables, and

o var((C,I) NP1 AN P2) ={z1,...,2} = rvar(C).
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We show the result by induction on:
p(o) = #{x € rvar(C) | = is neither of sort loc nor of sort lists and zo ¢ Z}.

Base case: ji(o) = 0. In such a case, since rvar(C) contains all the variables that occur in the
constraint system, we easily conclude. The substitution o is already of the right form.

Induction step: p(o) > 0. Let ip be the maximal index 1 <ig < n such that z;,0c ¢ Z and
x;, is not of sort loc or lists. Let a be a name in Z that does not occur elsewhere. Let
o' = 17U {x;, — a} where 7 = o|x with X = dom(o) \ {z;,}. Clearly, we have that

p(o’) < (o). In order to conclude, it remains to show that ¢’ is a solution of (C,Z) A ®1 A Ps.

1. We show that o’ is a solution of (C,T). For every i < iy, since o is a solution of (C,Z),
we have that Tjo UZ I z;0. Since z;, does not occur in this constraint, we also have
that T;0’' UZ b 2;0’. Since a € Z, we have that T;,0’ UZ b z;,0".

For every i > ig, according to the definition of ig, either x; is of sort loc or lists, or
x;0 € I. In the first case, as for every term ¢ of sort loc or lists, Noc F ¢, we have
that Moc - x;0. In the second case, Z - z;0. Hence, in both cases, we have that
T.o' UL 20

2. We show that o’ is a solution of ®1. All the variables appearing in ®; are of type loc or
lists. Hence, we have that ®0 = ®;0’. This allows us to conclude.

3. Lastly, we show that o’ is a solution of ®5. Let VY.u # v be a disequality constraint in
®y. Assume w.l.o.g. that dom(c) NY = (). Since o is a solution of VY.u # v, we know
that uo and vo are not unifiable.

Assume by contradiction that there exists a substitution 6’ such that uo’6’ = vo’¢’ (i.e.
o’ does not satisfy VY.u # v). We can assume w.l.o.g. that uo’6’ and vo’#’ are ground
terms, and z;, € dom(6’). In such a case, we have that:

(uo")0" = ((ur){zi; — a})0" = ((ur)0'){zi; — a}
(v0")0" = ((v7){ziy = a})0" = ((v7)0"){iy — a}

Since a is fresh, we deduce that (ur)f’ = (v7)6#’. Hence, we have also that:
((ur)0' {wiy = iy} = ((v7)0 ) {wiy — 350}
i.e. uol' = vol'. This contradicts the fact that uo and vo are not unifiable.

Hence, o’ is a solution of (C,Z) A &1 A ®s. O

It remains to show that it is possible to find a solution in which lists are polynomially
bounded. We need to prove two separate propositions, according to whether the network
topology is fixed or not. The proofs of these propositions use the facts that, on the one hand,
disequality constraints can be satisfied using fresh node names (hence the use of the set Z,gmes)
and, on the other hand, the predicates of the logic L,oute involve only a finite number of nodes.
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3.3.3 Case of a fixed topology

In case the network topology is fixed, we show that we can bound the size of an attack, where
the bound depends on the size of the graph and the size of the constraints.

In particular, we show that, if there is a solution of (C,Z) A ®; A ®5 for graph G, then
there exists a substitution o such that o is a solution of (C,Z) A ®; A @5 for G, and variables
of sort lists are instantiated by lists of length at most M where M is a bound that depends
on ®9, ¢1, and F.

To prove this result, we consider a smallest solution o of (C,Z) A 1 A @4 for G, and we
assume that there exists a variable x, of sort lists such that xy0 is a list of length greater
than M. We built a solution ¢’ (smaller that o) by changing only the value of z;0 in order
to reduce its length, preserving the satisfiability of our constraints. We build z,0’ by first
marking the names we want to keep in xy0 getting a marked list, i.e. a list in which some
elements are marked.

For instance, in order to ensure that a loop predicate will still be satisfied, two names
are actually sufficient, whereas for a checkl predicate, three names are needed. Note that, to
satisfy a positive occurrence of a route predicate, we know that the list contains at most #F
names (since names in the list have to be distinct), thus we know that the variable z;, is not
involved in a positive occurrence of a route predicate. We also have to keep some names to
take the disequality constraints into account.

Definition 3.3.1 (extracted list). An extracted list from a list | = [a1;...;a,] is a list
[@iy;. . 5a4,] such that 1 < iy <ip < ...<ip <n with0 <k <n.

Then, we consider the list extracted from x,0 by keeping the marked names plus an
additional one, and we consider variations of this extracted list. Note that the length of this
extracted list is bounded by the size of the graph and the size of the constraints.

Definition 3.3.2 (variation). Let I' be a marked list in which at least one of its element is
not marked. A variation of I' = [a);...;al] is a list | = [a1;...;ay] such that:

o there exists 1 < jo < n such that ag-o is not marked and aj, is a fresh name,
o for all 1 <i <n such that i # jo, we have that a; = a.

Intuitively, a variation of a list [ which contains only one unmarked name is a list I’ that
coincides with [ on all marked names, and that replaces the unmarked one by a fresh name.

Actually, instantiating x, by any variation of this extracted list allows us to ensure that
our constraints are still satisfied.

We prove that we can find a solution in which lists are polynomially bounded. In the
case where the network topology is fixed, the bound depends on the size of the graph, i.e. its
number of edges. Let [ be a list, we denote by |l|; the length of [.

Proposition 3.3.4. Let (C,Z) be a special constraint system in solved form, ®1 be a conjunc-
tion of atomic formulas of Lioute, P2 be a set of disequality constraints, and G = (N, F)
be a graph. If there is a solution of (C,Z) AN ®1 A @y for G, then there exists a solution o of
(C,Z) AN ®1 A Dy for G that is polynomially bounded in the size of ®1, Py and E.
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Proof. We write ®3 = A\VY,,.u,, # v, and
n

by
D, = /\ +; check(a;, b)) A /\/\ +,, checkl(cj,, 1) A /\ +; route(r;) A /\ +, loop(pp)
i ik ! h

with + € {4+, —}, a;, b;, ¢j, are of sort loc, 1,77, py, are terms of sort lists, uy,, v, are terms and
Y,, are sets of variables.

In the following, we denote:

e N the maximal depth of a variable in the disequality constraints,
e k the maximal number of variables in a disequality constraint,

e ( the number of constraints +checkl in &,

e [, the number of constraints loop in &1,

e R the number of constraints —route in ®;, and

o M =max(kN +3C+ L+ R+ 3,#E).

We show that, if there is a solution of (C,Z) A &1 A &3 for graph G, then there exists a
substitution o such that o is a solution of (C,Z) A 1 A @5 for G, and

e for all variables = of sort lists, |zo|, < M, and

e 10 € 7 U N otherwise.

First, we have that zoc € N, when z is a variable of sort loc. Moreover, thanks to
Lemma 3.3.3, we can assume that xo € Z when x is a variable that is neither of sort loc nor
of type lists. Now, among these solutions, consider a smallest solution o of (C,Z) A ®1 A ®o
for G, where the size of a solution o is given by |o| = |x10];+ ... + |x,0o|p where z1,... 2,
are the variables of sort lists that occur in (C,Z) A &1 A ®s.

If |xzo|p < M for all variables z of sort lists, then we easily conclude. Otherwise, there
exists a variable xy of sort lists such that the length of x40 is greater than M. We are going
to show that we can build ¢’ from o, solution of (C,Z) A &1 A @5 for G, smaller than o. More
specifically, we build ¢’ such that for all = # x4, z0’ = zo, and |z0'|; < M < |z40],.

We build zy0’ by marking the names we want to keep in the list in the following manner:

ng:‘allagl ‘akNl ‘ap’

We mark the first kN names in the list:

(e ]| Jax] .. |

We then mark the other names we want to keep in the list in the following way:

Case of a checkl that occurs positively.

If there exists ¢;, such that checkl(cj,,l;) is a constraint that occurs positively in @1, i.e.
+;, =+, and zy € var(l;). Assume that [; =d; :: ... dp :: 4. As o is a solution for @4, in
particular we know that ¢ = ¢;, 0 appears exactly once in /o, and for any !’ sublist of /;o,
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e if ' =a:c:l, then (a,c) € E.
o if ' =c:b:ly, then (b,c) € E.

Since ¢ appears exactly once in [0, either there exists n such that ¢ = d, o, or there exists m
such that ¢ = a,,. In the first case and if n = p, we mark a;. In the second case, we mark a,,,
am—1(if m > 1) and ap,41(if m < P). Any variation of a list extracted from z,0 containing
at least the marked names plus another one satisfies the checkl condition for graph G.

laa [ - (@t [ [Gar [ . [ap ]

Cuase of a checkl that occurs negatively.

If there exists ¢;, such that checkl(cj,,l;) is a constraint that occurs negatively in @1, i.e.
+;, = —, and zy € var(l;). Assume that l; = by :: ... :: b, :: ;. As o is a solution for @1, we
can have three different cases depending on ¢ = ¢j, o:

e c does not appear in [jo: for every n,m, b,0 # c and a,, # c. In that case, we mark
nothing.

e c appears at least twice in /;0. In that case, we choose two occurrences of ¢ and we mark
them when they appear in x,0.

(e . (2] . [2] .. [ap]

e c appears once in [;o, but one of his neighbors in the list is not a neighbor of it in the
graph. For example, ¢ = a; and (a;,a;+1) ¢ E. We mark ¢ and this false neighbor when
they appear in z40.

la | @ |aga | . | aum |

Any variation of a list extracted from x,0 containing at least the marked names plus
another one satisfies the —checkl condition for graph G.

Case of a loop that occurs positively.

If there exists h such that loop(py) is a constraint that occurs positively in @1, i.e. &5, = +,
and zy € var(py). Assume pp = by :: ... 2 by i xp. Then there exists a name ¢ repeated in
pro. We mark two occurrences of such a ¢, when they appear in z40.

(ai] . (2] . [2] .. [ar]

Any variation of a list extracted from x,0 containing at least the marked names plus
another one satisfies the loop condition for graph G. Indeed, the condition does not depend
on the graph.

Cuase of a loop that occurs negatively.

If there exists h such that loop(py,) occurs negatively in ®1, i.e. &, = —, and xy € var(py).
Assume that p,, = by :: ... :: b, ;. Removing nodes from the list preserves this condition,
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so any extracted list of xyo satisfies the —loop condition. Moreover, as a variation of a list is
built with a fresh constant, any variation of a list extracted from zyo satisfies the condition.
Case of a route that occurs negatively.

If there exists r; such that route(r;) occurs negatively in @1, i.e. £; = —, and xy € var(r;).
Assume that r; = by :: ... :: by it xp. As 0 is a solution for ®1, we can have two different cases:

e There exists a name c repeated in ;0. Then we mark two occurrences of such a ¢, when
they appear in z40.

e There exists a sublist [ of r;o such that [ =c::d :: {; and (¢,d) ¢ E. We mark ¢ and d
if they appear in x40.

(] [2]d] . [ar]

Any variation of a list extracted from x,0 containing at least the marked names plus another
one satisfies the —route condition for G.

Case of a route that occurs positively.

If there exists r; such that route(r;) occurs positively in @1, i.e. £ =+, and x4 € var(r;).
Assume that r; = by = ... = by it . Write 70 = ¢ 1 ... it ¢p. As o is a solution for
¢ in G, for every 0 < @ < n, (¢, ciy1) € E and for every i # j, ¢; # ¢;. Consequently,
|riole < #E, and as |zgol|y < |rols, we have that |zgo|, < #E. But our hypothesis tells us
that |z¢o|y > M > #E. So there is no positive route condition on z.

We count the number of marked names. We have marked the first kN names in the list.
For each constraint +checkl, we mark at most 3 names in the list. Suppose there are several
constraints —route(l) with xy sublist of [. Either —route(zyo) holds, and we can mark two
names in xzyo which will make all the —route constraints true; or the constraint is satisfied by
marking one name for each constraint. Thus, we need only mark max(R,2) names when R > 1
and 0 otherwise. Thus, in any case, it is sufficient to mark R + 1 names in zyo. Similarly, it
is sufficient to mark L + 1 names in xy0 to satisfy the loop constraints. The number of names
marked in the list is at most

EN +3C+(R+1)+ (L+1) < M.

Consider [; extracted from zyo by keeping only the marked names in zyo and the first
unmarked name. Such an unmarked name exists, because |zs0|p > M. Let I be the variation
of [ replacing the first unmarked name with a fresh constant a,. For each condition considered
above, [y satisfies it, as it is a variation of a list extracted from x,0 containing the marked
names.

Let o¢ be the substitution such that zog = zo for every x € dom(o) ~\ {2/}, and zo =z
otherwise. Let ¢/ = o9 U {zy — l2}. By hypothesis, o is a solution of ®; for G, so by
construction, ¢’ is a solution of ®; for G. Now, it remains for us to show that ¢’ is a solution
of (C,Z) and ®s.

Deduction constraints. Consider a deduction constraint 7; F x; in C. Either x; is of sort
loc or lists, which means that Noc - x;0’, thus T,o' UZ C Ty UZ F z;0’. Or x; is not of
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sort loc or lists, so in particular z; € dom(o) \ x4, and x;0' = 2,0 € T U Njoc, S0 again
Tioc' UL C ToUZ + x;0’. Hence, in both cases, we have that Tjo' UZ  z;0’. Consequently,
o’ is a solution of (C,Z).

Disequality constraints. Consider a disequality constraint VY.u # v € ®3. We assume
w.lo.g. that dom(c) NY = (. We have to show that uo’ and vo’ are not unifiable. We
distinguish two cases. Either uog and vog are not unifiable, but in such a case, we easily
deduce that uo’ and vo’ are not unifiable too. This allows us to conclude. Otherwise, let
w = mgu(uog, voy).

If dom(u) CY,let 7= {xy+— x40} o u. We have that:

(uo)T = (uo){xp — xpo})T = (UTP){TP — 240}
(vo)T = ((vo){xg — xp0o})T = (vou){x — 240}

Hence, we deduce that uo and vo are unifiable, and we obtain a contradiction since o satisfies
the constraint VY.u # v. Hence, this case is impossible.

Otherwise, there exists a term ¢ such that p(zy) = ¢, and var(t) C Y. We apply Lemma 3.3.2
to the set T' = {uop,vop}, and the set of equations P = {uoy = vop}. We have that
1 = mgu(P). Since 7 is ground, we get that:

tla < #dom(p).max(|ucla, [vT]a)
< ftdom(p).max(|ula, [v]a)
< kN

We reason by case over t:
e If ¢ is not of sort lists, as ¢’ is well-sorted, uo’ and vo’ are not unifiable.

e Suppose t = [aj;...;ay], with aj,...,a, terms of sort loc. We write t = ¢;@ty with
to ground term of maximal size, where @ denotes the concatenation of lists. We have
shown that |t1|q = |t|q < kN.

We know that xz,0’ = [by;...;bp] and there exists K’ > kN such that b = ay and ay
is a name of Z which does not appear anywhere else in the constraints. Consequently,
ap # ayp, and so xy0’ # t0 for any substitution 6.

Now, assume by contradiction that uo’ and vo’ are unifiable. This means that there
exists 7 such that (uo’)T = (vo’)7. Hence, we have that 7o {zy + x40’} is an unifier of
uog and vop. By hypothesis, we have that p = mgu(uog,voy). Hence, we deduce that
there exists 6’ such that 7o {z; — x40’} = 6’ o u. We have that:

— 7o {xp+— xp0’'Hxy) = 240', and
— 0" o u(xy) =t
This leads to a contradiction.

e Suppose t = a1 : ... I an :: Yyp, with y, € Y variable of sort lists. We know that
|t|]g < kN, thus we must have n < kN. We reason by contradiction. Assume that there
exists 6 such that (uo’)0’ = (vo’)#’. In the remaining of the proof, we show that uo
and vo are unifiable.
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By hypothesis, we have that ' o {zy — x40’} is an unifier of uoy and voy. Since
p = mgu(ucg,vog), we deduce that there exists p’ such that:

pou = 0of{x,— x40}

We have that zy0’ = (xyu)p’ = tp’. By hypothesis, we know that the size of z0 is
greater than M > kN > n. Let [, be the list obtaining from xy0 by removing its n first
elements. Let py be a substitution such that xpy = xp’ for every x € dom(p) ~ {ys},
and ypo = y otherwise. Let p = pg o {ye — [;}. In order to conclude, it remains to show
that p o p is an unifier of uo and vo.

We have that xpo’ = (xeu)p =tp' = a;p’ i1 ... anp’ :: yep'. Moreover, we know that x,o
and 0’ have the same first kN elements by construction, and n < kN. Relying on this
fact to establish the last equality, we have that:

(Tew)p = tp
= (ap:...:man 2 y)p
= ap...oapp it ly
= aip ... app
T40.

Hence, we have that ((uo)u)p = ((uoo)p)p, and ((vo)u)p = ((voo)u)p. We easily
conclude that uo and vo are unifiable since we know that (uoo)u = (vop)u.

In all possible cases, o’ satisfies the disequality constraint.

As a conclusion, ¢’ is a solution of (C,Z) A 1 A ®3, smaller than o, which leads to a contra-
diction. O

3.3.4 Case of an a priori unknown topology

In the case where the network topology is not fixed, we show that we can bound the size of
an attack.

The method for bounding the lists follows the same lines as the proof of Proposition 3.3.4.
However, we can not consider the size of the graph to bound the size of the lists. This was
used in the proof of Proposition 3.3.4 to deal with the case of route that occur positively in
the formula. Here, we rely on the fact that we can change the graph to solve this problem,
and we consider ubiquitous graphs. More precisely, we introduce the notion of ubiquitous
nodes, that is, nodes connected to every other nodes in the graph. We associate to a graph G
a ubiquitous graph where all the nodes that are not already part of an edge in G become
ubiquitous.

Definition 3.3.3 (ubiquitous graph). Let G = (Noc, E) be a finite graph (i.e. such that E is
finite). Consider the sets of nodes V.= {n | In’ such that (n,n’) € E}, and Vyp; C Nioc N V.
The graph (Nioc, EUEyy;) where Eyy; = {(a,b) | a € VUV, b € Vi } is called the ubiquitous
graph associated to G and V.

Moreover, we consider ubiquitous variations instead of variations. Ubiquitous variations
replace the unmarked names in a list by names of ubiquitous nodes.  This is once again
needed to satisfy a formula route that occurs positively.
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Definition 3.3.4 (ubiquitous variation). Let I be a marked list and n be the number of
unmarked elements in I'. Let Vy; be a set of nodes such that #Vyu,; > n and names in
Vubi do not occur in I'. A ubiquitous variation according to Vi, of I = [a};...;al] is a list
l=lay;...;a,] such that:

e for all 1 < i < n such that a is not marked, a; € Vy;,

(3
e for all 1 <i <n such that a is marked, a; = al,.

Moreover we require that the ubiquitous nodes of | are all distinct.

First, we show that changing the graph does not change the solution, provided we do not
change the links between the nodes taking part in the protocol.

Lemma 3.3.6. Let G = (Njoc, E) be a graph, (C,T) be a special constraint system, ®1 be a
formula of Lioute, and Py be a set of disequality constraints. Let o be a solution of (C,Z) APy A
Py for G and N, . = Nioc N names(C, @1, P2,0). Let G' = (Mo, E') be a graph that coincides

with G on N, i.e. such that E = {(n1,n2) | (n1,n2) € E' and n1,ngy € N|_.}. Then o is a

)
solution of (CTCI) APy A Dy for G
Proof. We show that o satisfies each constraint in (C,Z) A ®1 A @2 when the underlying
graph is G’. First, not that o trivially satisfies the deduction constraints, the disequality
constraints and the loop constraints.
In order to conclude, we have to check that this result also holds for the remaining con-
straints in ;.

e [check(ao,bo)]e =1 if, and only if, (ac,bo) € E. We have that [check(ao, bo)]e = 1 if,
and only if, [check(ao,bo)]q = 1.

o [checkl(co,lo)]q = 1 if, and only if, lo is of sort lists, co appears exactly once in lo, and
for any [’ sub-list of [,

— if ' =a::co:: 1y, then (a,co) € E.
— if " =co ::b:: 1y, then (b,co) € E.

As in the previous case, we easily conclude that [checkl(co,lo)]c = 1 if, and only if,
[checkl(co,lo)]a = 1.

e [route(lo)]e = 1 if, and only if, lo is of sort lists, lo = [a1;...;ay], for every 1 <i < n,
(ai,aiy1) € E, and for every 1 <i,j < n,i # j implies that a; # a;. As in the previous
case, (a;,a;+1) € F if, and only if, (a;,a;+1) € E'. Hence, [route(lo)]e = 1 if, and only
if, [route(lo)]q = 1.

Hence, o is a solution of (C,Z) A &1 A @9 for G'. O

We prove that we can find a solution in which lists are polynomially bounded. In the case
where the network topology is unknown, the bound depends on the size of the formulas.

Proposition 3.3.5. Let (C,Z) be a special constraint system in solved form, ®; be a conjunc-
tion of atomic formulas of Lioute, P2 be a set of disequality constraints. If there is a solution
of (C,Z) A ®1 N ®y for the graph G = (Nioc, E), then there exists a graph G' = (Njoc, E')
and a substitution o such that o is a solution of (C,Z) N ®1 A @y for G', and o is polyno-
mially bounded in the size of ®1 and ®3. Moreover, we have that G’ coincides with G on
V ={n | 3In' such that (n,n’) € E}, i.e. E={(n1,n2) € E' | ni,ng € V}.
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Proof. We adapt the proof of Proposition 3.3.4 by showing that there exists a solution o
such that for every variable x of sort lists, we have that |zo|p < M =2x (kN +3C+ L+ R+2)
where k£, N,C, L, and R are defined as in Proposition 3.3.4.

Let o be a solution of (C,Z) A®1 APy for graph G and assume that there exists a variable xy
of sort lists such that |z,o|p > M. Let Vi be a set of M/2 fresh nodes, i.e. names in Noc
that do not occur in C, ®1, ®, . Consider G’ the ubiquitous graph associated to G and V.
We show that we can build ¢’, a solution of (C,Z) A ®1 A P4 for graph G’, such that for x # x,
xo! = xzo, and |z0'|; < M.

We build ¢’ in a similar way as in the previous proof. We mark x,0 as in the previous
proof. The number of names marked in the list is at most:

kN +3C+ (R+1) 4 (L+1) < M/2.

Consider [; extracted from xy0 by leaving exactly one unmarked name between sequences
of marked names. Note that, we have no more than M /2 unmarked names in [;. Let I be the
ubiquitous variation of /1 according to V;;. The fact that we consider a ubiquitous variation
allows one to satisfy the constraint route that occurs positively. Note that, we have no more
than M /2 ubiquitous names in 3, so |la|y < M.

Let o¢ be the substitution such that zoy = xo for every = € dom(o) \ {z;}, and zo = x
otherwise. Let o/ = ogU{zy — l2}. By construction, we have that the substitution o’ satisfies
®;. We show that ¢’ is a solution of (C,Z) and ®3 for G’ as in Proposition 3.3.4. O

3.4 Decidability result

We are now ready to state our two main decidability results.

Simple properties like secrecy are undecidable when considering an unbounded number of
role executions, even for classical protocols [DLMS99]. Since our class of processes encompasses
classical protocols, the existence of an attack is also undecidable. In what follows, we thus
consider a finite number of sessions, i.e. processes without replication.

In most existing frameworks, the intruder is given as initial knowledge a finite number of
messages (e.g. some of the secret keys or messages learned in previous executions). However,
in the context of routing protocols, it is important to give an a priori unbounded number of
node names to the attacker that he can use as its will, in particular for possibly passing some
disequality constraints and for creating false routes.

Definition 3.4.1. We say that a process is finite if it does not contain the replication operator.
A concrete configuration K = (P|_];S;Z) is said initial if K is ground, P is finite, S is a
finite set of terms and T = Tpames U Zterms where Lierms @S a finite set of terms and Lyames 1S
an infinite set of names. Moreover, Nioc C Znames U Zierms (the intruder is given all the node
names in addition to its usual initial knowledge) .

The intruder is thus given an infinity of node names in addition to its usual initial know-
ledge. In practice, this enables him to generate any IP address that he chooses.

We show that accessibility properties are decidable for finite processes of our process
algebra, which models secured routing protocols, for a bounded number of sessions. We
actually provide two decision procedures, according to whether the network is a prior: given
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or not. In the case where the network topology is not fixed in advance, our procedure enables
us to automatically discover whether there exists a (worst-case) topology that would yield an
attack.

Note that Theorem 3.4.1(unknown topology) does not imply Theorem 3.4.2(fixed topology)
and reciprocally. Indeed, in Theorem 3.4.2, the whole topology is fixed, including in particular
the location of the intruder nodes. Theorems 3.4.1 and 3.4.2 ensure in particular that we can
decide whether a routing protocol like SRP can guarantee that any route accepted by the
source is indeed a route (a path) in the network (which can be fixed by the user or discovered
by the procedure). The NP-hardness of the existence of an attack comes from the NP-hardness
of the existence of a solution for deduction constraint systems [RT01].

3.4.1 Case of an unknown topology

We show that in the case of an a priori unknown topology, deciding whether there is an attack
is decidable, providing an NPTIME complexity bound.

Theorem 3.4.1. Let K = (P[_];S;Z) be an initial concrete configuration with a hole, M C
Nioc be a finite set of nodes, and ® € Lyoute be a formula. Deciding whether there exists
a graph G = (Nioe, E) such that there is an M-attack on K and ® for the topology G is
NP-complete.

We provide first a very general sketch of the proof:

o We first use the symbolic semantics (Section 3.2) based on constraint systems, more
amenable to automation. We have already shown its correctness and completeness w.r.t.
the concrete semantics.

e We transform the constraint systems obtained through the execution of a routing pro-
tocol into solved constraint systems (as demonstrated in Chapter 2) .

e We show how to bound the size of a minimal attack on a solved constraint system
(Section 3.3).

Let us now detail the decision procedure.

Let Ky = (PJif ® then out(error) else 0]; S;Z; 0; (). K is a ground symbolic configuration
whose concretization is (P[if ® then out(error) else 0];S;Z). Let Vi be the set of names of
sort loc that occur in P and M. Our decision procedure works as follows:

Step 1 We partially guess the graph G = (Mo, E). Actually, we guess whether (ny,n9) € E
for every ni,no € Vi.
Let Gk = (Noc, Ex) where Ex = {(n1,n2) | (n1,n2) € E and ny,ng € Vi }.

Step 2 We guess a path of execution of the symbolic transition rules w.r.t. the graph G.
Ky =& m (lout(w)]n UP, ST C0).

Step 3 Let 7/ = Zpames W Zterms such that (C,Zpames) i a constraint system. Let o =
mgu(u,error) and Co = D and Wo = &} where D is a finite set of deduction constraints and
@) contains disequality constraints and formulas of Loute-
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Step 4 We guess a sequence of transformation rules from (D, Z,ames) t0 (D, Znames) where
(D', Tpames) 1s a constraint system in solved form. We have that:

(D, Lnames) ~p (D', Znames) with (D', Tames) in solved form.

Step 5 We compute the conjunctive normal form of the formula ®}. Hence, ® is equivalent
to

NoT Vv
k

We choose non-deterministically ¢>’;k for every k. Let &9 = /\cj)’fch
k

Step 6 Let S be the DAG size of P, S, ®, M, and Z;. Let Zj be a finite subset of Z,ames
of size 252 x (S* 4+ 5S% + 2). Guess the values of variables which are not of sort lists in Zo U
names(P,S,®, M,Zy). Guess the values of variables of sort lists among lists of nodes in Zo U
names(P,S, ®, M, Z;) of length at most 2 x (5*+55%+2). This gives us a substitution o and
we guess a graph G = (Njoc, E) such that E C {(n1,n2) | n1,n2 € ZgUnames(P,S, P, M,Zy)}
and that coincides with G on Vi, i.e:

Ex ={(n1,n2) € E | n1,ns € Vg }.

Lastly, we check whether o is a solution of (D', Zpames) A ®2 for the graph G.

Proof. We now explain each step of our algorithm.

Step 1. We have that #Vx < #names(P,M). Hence, we can guess G whose size is
polynomially bounded.

Step 2. For every graph G’ = (Noc, E') with Ex = {(n1,n2) € E' | n1,n2 € Vi }, we have
that:

(P;S; TG 0) =G (PSS THCH W) A (PS5 7565 9) =50 (PS50 ).

So we can guess the transitions knowing only Eg. Now, thanks to Theorem 3.2.4 we
deduce that there is an M-attack on K and ® for graph G if, and only if, there is a derivation

(Plif @ then out(error) else 0];S;Z;0;0) —°¢,. am (Lout(u)]n U Ps; Ss; Zs; C; W)

with o = mgu(u, error) and the constraint system (Co, Zyqmes) together with Wo has a solution
for graph G.

Actually, we can guess such a path. Indeed, the number of derivations starting from
configuration K is bounded. Actually, the length of possible paths is bounded by the size
of the protocol: as there is no replication in the initial configuration, each transition leads
to a smaller process. Moreover, the number of configurations reachable with one symbolic
transition is bounded as well: we can first guess which process is going to evolve and which
is the corresponding transition. There is only one possible resulting configuration once this is
chosen, except for the communication transition, where we also have to guess which neighbors
will receive the message, and for the read transition, where we have to choose which term to
read.
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When a transition Ky —°q, m K. occurs and Kj is finite, in particular it does not contain
the replication operator, we have to control the size of K. If the rule considered is not the
CoMM; rule, then the number of subterms in K, is smaller or equal to the number of subterms
in K. Indeed, it is straightforward to see when considering rules INg, STORE;, READ-ELSE;,
Ir-THEN,, IF-ELSE;, PAR; and NEW;. When applying rule READ-THEN;, a substitution is
applied to all the terms in K7, but as the substitution is a most general unifier of terms in Kj,
the number of subterms does not increase. But when considering a COMM; rule, new terms can
be produced by renaming some variables. However, the number of COMM; steps is bounded
by the number of terms of the form out(¢) in the protocol, and each step can produce in the
worst case a number of terms polynomial in the size of the configuration, as they are terms
that appear in formulas. Consequently, at the end of the derivation, the number of subterms
considered is polynomial in the number of subterms at the beginning of the derivation.

Step 3. Straightforward.

Step 4. We apply Theorem 2.3.1. Thus, there exists a solution 0 of (D, Z,4mes) and P for
graph G if, and only if, there exists a constraint system (D', Z,,4mes) in solved form and some
substitutions ¢’, and ¢’ such that § = 6" o 0’, (D, Znames) ~>% (D', Tnames) and @' is a solution
for (D', Zpames) and ®10’ for graph G.

Step 5. This step is straightforward. The formula ®,0’ contains disequality constraints and
formulas of L,oute. Consequently, &5 = /\qﬁ’oik, obtained from ®10’, can be written:
k

Py, = /\VY;UZ 7& v; N /\ :|:j check(aj,bj) AN
i J

K3
AN £, checkl(c;, . lk) A A £n loop(pn) A A % route(r;)
k 1 h l
Finally, we are left to decide whether there exists a solution to a solved special constraint
system (D', Zpames) and a formula @4 as described above.

Step 6. First, we show that for any term ¢ € st(D’, ®3), there exists ¢’ in st(D, ) such that
t = (t'o)o’. Thanks to Theorem 2.3.1, we have that

st(D') C st(Do’) C st(D)o’.
Moreover, we have that

st(®y) C st(Djo’) C st(®))o’ U | st(xo’) C st(P))o’ U st(D)o.
x€var(D)

The last inclusion is a direct consequence of the inclusion st(Do’) C st(D)o’. Hence, we have
that: st(D', ®2) C st(P1)o’ Ust(D)o’ C st(Co)o’. By relying on Lemma 3.3.1, we obtain that
st(Co) C st(C)o. Since names(D', P3) NZy = 0, we deduce that

st(D', @q) st(C)oo’ \ I

c
C (st(C)oo’ \ Nioc) U names(P,S,®, M, Iy)

Let S be the DAG size of P, S, ®, M, and Zy. By inspection of the symbolic transition
rules, we see that at each step, the constraint system can grow at most of size S (because of
the communication rule). Hence, we have that #st(D’, ®5) < S2.



tel-00675509, version 1 - 1 Mar 2012

76 CHAPTER 3. MODELING AND ANALYZING ROUTING PROTOCOLS

Let N be the maximal depth of variables in the terms of all disequality constraints in
®,, and k£ the maximal total number of variables in a disequality constraint. We have that
kN < D? where D is the DAG size of the largest disequality constraint that occurs in D’.
Since D < #st(D’, ®5), we deduce that kN < D? < S*.

Let L be the number of occurrences of a loop predicate in ®5, R be the number of occur-
rences of a route predicate in ®2, and C be the number of occurrences of a checkl predicate in
®5. We have that:

L <S% R<S?%and C <S>

Now, we have to show that if there exists a graph G = (No¢, F) such that Ex = {(n1,n2) €
E | n1,ny € Vk} and on which there is an attack, then there exists a graph as described in
Step 6 for which there is an attack and the substitution witnessing the fact that there exists
an attack is also as described in Step 6 of our algorithm.

e Thanks to Lemma 3.3.3, we know that there is a solution where the variables which are
not of sort loc or lists are substituted by names in Zy (independently of the underlying

graph).

e Thanks to Proposition 3.3.5, we know that if there is a graph G = (Njoc, F) leading
to a solution, there exists a substitution o where the size of the instantiated variables
of sort lists is bounded by M = 2 x (kN 4+ 3C + R+ L + 2) and there exists a graph
G’ = (Noc, E') that coincides with G on V = {n | In’ such that (n,n’) € E}.

We have that: M < 2x (S*455242). Hence, the number of distinct names of sort loc in

o is bounded by #var (D', ®2)x M < 25%x (S*+552+2). We consider a set Z)) having this
size. So, there is a solution o for G’ such that names(o) C Zj, U names(P,S, ®, M, Iy).

e Thanks to Lemma 3.3.6, we know that if o is a solution for graph G' = (N, '),
then o is also a solution for any graph G” = (N, E”) that coincides with G’ on
e Where NV _ represents the names in Mg that occur in D', ®5, and 0. Note that

'« € Iy Unames(P,S,®, M, Zy)

loc

Let G” = (Noc, E”) be the graph such that
E" ={(n1,n2) € E' | n1,n9 € I) U names(P, S, ®, M, Zy)}.
We have that o is a solution for the graph G” and the graph G” is as described in Step 6.
Il

3.4.2 Case of a fixed topology

We will now explain how to decide the existence of an attack given a fixed graph G. The
procedure is similar to the procedure in the case of an unknown topology, but we no longer
have to guess part of the topology at the beginning of the decision procedure.

Theorem 3.4.2. Let K = (P]_];S;Z) be an initial concrete configuration with a hole, G =
(Noc, E) be a finite graph, M C Njoc be a finite set of nodes, and ® € Lioute be a formula.
Deciding whether there exists an M-attack on K and ® for the topology G is NP-complete.
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Let Ky = (P]if ® then out(error) else 0]; S; Z; (); 0). First, K, is a ground symbolic configuration
whose concretization is (P[if ® then out(error) else 0];S;Z). We write G = (Njoc, E). Let
V = {n | 3n’ such that (n,n') € E}. Our decision procedure works as follows:

Step 1 We guess a path of execution of the symbolic transition rules w.r.t. graph G.

Ky =@y (lout(u) ], UP, S TC; W),

Step 2 Let 7/ = Zpames W Zterms such that (C,Zpames) i a constraint system. Let o =
mgu(u, error) and Co = C{, and Vo = /.

Step 3 We guess a sequence of transformation rules from (D, Z,ames) t0 (D, Znames) where
(D', Zrames) 1s a constraint system in solved form. We have that:

(D, Znames) ~ o (D' Tnames) with (D', Z,ames) in solved form.

Step 4 We compute the conjunctive normal form of formula ®)o. Hence, ®) o is equivalent
to

NtV vl
k

We choose non-deterministically gbgk for every k. Let &9 = /\qb’;k
k

Step 5 Let S be the DAG size of P, S, ®, M, and Z;. Let Z, be a finite subset of Zy of size
S% x max(S* + 552 + 3, #FE). Guess the values of variables of sort lists among lists of nodes in
Ty U names(P,S,®, M, Z;) UV of length at most max(S* + 552 + 3, #E). Guess the values
of the other variables, i.e. those that are not of sort lists, in Z) U names(P,S, ®, M, Z;) U V.
This gives us a substitution o. Lastly, we check whether o is a solution of (D /,Zp) A @4 for
graph G.

Proof.  The first four steps are the same as Steps 2 to 5 in Theorem 3.4.1. Thus, it
remains to justify Step 5 of the procedure described above. As shown in the proof of Step 6
in Theorem 3.4.1, we have that:

e N < S? where N is the maximal depth of variables in the terms of all disequality
constraints in ®o;

e k < S? where k is the maximal total number of variables in a disequality constraint in
Py;

e L < S? where L is the number of occurrences of a loop predicate in ®o;

C < S? where C' is the number of occurrences of a checkl predicate in ®5;

R < S? where R is the number of occurrences of a route predicate in ®s.

Now, we want to show that if there exists an attack for graph G, then there is an attack
captured by a substitution as described in Step 5 of our algorithm.
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e Thanks to Lemma 3.3.3, we know that there is a solution where the variables which are
not of sort lists are substituted by names in Zj.

e Thanks to Proposition 3.3.4, we know that if there is a solution, then there exists in
particular a solution, say o, such that |zo| < M for any x of type lists where:

M = max(kN +3C + L+ R+ 3, #FE).

Actually, we have that M < max(S* + 552 4 3, #E|).
Hence, the number of distinct names of sort loc in ¢ is bounded by

#var(D', ®y) x M < S? x max(S* + 552 + 3, #E).

We consider a set Z{, having this size. This allows us to conclude. O

3.5 Applications

We present now a few applications and we discuss some limitations of our results.

3.5.1 Routing protocol SRP applied to DSR

Our decision procedure allows us to retrieve the attack on the protocol SRP applied to DSR,
mentioned in Example 3.1.4. Indeed, consider the formal model of SRP applied to DSR
(defined in Section 3.1.2) and of its desired property (defined in Example 3.1.4). We would first
guess the graph G defined in Example 3.1.2. Executing symbolically (non deterministically)
the process modeling SRP applied to DSR, we would obtain the symbolic configuration of
Example 3.2.2. Applying our transformation rules, we would then (non deterministically)
obtain a solved constraint system. We can finally guess the (bounded) solution ¢’ = {z, —
X,z — [W;S]}.

3.5.2 Routing protocol SDMSR

The secured routing protocol SDMSR introduced in [BYLMO6] is a multipath routing protocol
that can be modeled in our framework. The goal of a multipath routing protocol is to find
several paths leading from a source node S to a destination node D. In order to achieve such
a result, the intermediate nodes may proceed the same request several times. This protocol
is based on two authentication mechanisms: RSA signatures and signatures based on hash
chains. The purpose of the latter scheme is to decrease computation time. For the sake of
simplicity, we describe the protocol without this mechanism. The description in [BYLMO06]
does not really state whether neighbor verification is performed in the protocol. To avoid
straightforward attacks, we assume that it is the case: each node checks whether the received
information are consistent with its knowledge of the network.

To discover a route to the destination, the source constructs a request packet and broad-
casts it to its neighbors. The request packet contains its name S, the name of the destina-
tion D, an identifier of the request Id, a list containing the beginning of a route to D, and a
signature over the content of the request, computed with the private key priv(.S). The source
then waits for a reply containing a route to D signed by one of his neighbors, and checks that
this route is plausible.
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The process executed by a source node S initiating the search of a route towards a destin-
ation node D is

Pinit(S, D) = new Id.out(uy).in ug[®g].0

uy = (req, S, D, Id, S :: [], [{req, S, D, Id)] priv(s))
where ug = (rep, D, S, Id, x4,z [{rep, D, S, Id, 1) | priv(z 1))
&g = check(S,z4) A checkl(S, zr,)

The names of the intermediate nodes are accumulated in the route request packet. Inter-
mediate nodes relay the request over the network, except if they have already seen a shorter
one. In order to simplify the presentation, we consider that they relay all requests as long as
they contain different routes. An intermediate node also checks that the received request is
correctly authenticated by checking the attached signature. Below, V € Njoc, xg, T, and xp
are variables of sort loc whereas z,. is a variable of sort lists and x4 is a variable of sort terms.
The process executed by an intermediate node V' when forwarding a request is as follows:

Preq(V) = in wi[Py].read ¢ then 0 else (store(t).out(ws))

w1 = <req,$S,xD,$]d,.Ta Ty, [[(req’x,s»xD7x1d>]]priv(J:s)>

®y = check(V, z4)

t= <$vaDax[d7$a = xr>

wy = (req,mg, Tp, T,V i T i T, [[(req;x5'7xD’$Id>]]priv(J:s)>

where

When the request reaches the destination D, he checks that the request comes from one
of its neighbors, has a correct signature, and that the list of accumulated nodes does not
contain a loop. Then, the destination D constructs a route reply, in particular it computes
a signature over the route accumulated in the request packet with its private key priv(D). It
then sends the reply back over the network. The process executed by the destination node D
is Pgest(D) = in v1[®p].out(vz).0 where:

U1 = <req,xSa D,Z’]d,l'b L Zy, [[<req7'r5, Daxld>]]priv(:vs)>
®p = check(D, zp) A —loop(xy :: xp)
Vg = (rep7D7xS7$]d7D7D Ty Xy, ﬂ(rep,D,xS,x[d,D LTy xl)]]priv(D)>

Then, the reply travels along the route back to S. The intermediate nodes check that
the signature in the reply packet is correct, and that the route is plausible, before forwarding
it. Each node replaces the signature in the reply packet by its own signature. The process
executed by an intermediate node V' when forwarding a reply is the following one:

Prep(V) =in w'[@'v].out(w”).O

w' = (rep, TD,XS,XIdsLqyLr, [[<rep7 TD,XS,TId, m7’>:|]priv(:1:a)>
where P, = checkl(V, z,) A check(V, z,)

w” = <rep7 ITD, XS, T]d, V7 Ly, [[<rep7 ITD, TS, T]d, xr>]]priv(V)>

We have found that SDMSR is subject to the same kind of attack than SRP applied to
DSR. Consider the same graph Gg as for the attack we described on SRP. Let

Ko = ([Pinit(S,D)] s | [Paest(D)] D3 0; Zo)
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The attack scenario is the following one. The source S sends a route request towards D.
The request reaches the node ny. Thus, the attacker receives the following message:
(req, S, D, Id, S :: [], [(req, S, D, Id) [ oriv(s))-
The attacker then broadcasts the following message in the name of X:
(req, S, D,id, [X; W; I; S], [(req, S, D, Id)] yriv(s))-

Since D is a neighbor of ny, it will hear the transmission. In addition, the list of nodes [X; W; I; S]
ends with X, which is also a neighbor of D, and does not contain any loop, and signature
[(req, S, D, Id)] xriv(s) is valid. Consequently, the destination D will process this request and
will send the following route reply back to S:

(rep, D, S, 1d, D,[D; X; W3 I; 5], [(rep, D, S, Id, [D; X; W3 I; S]) | priv(D))-

The attacker will put its own signature [(rep, D, S, Id, [D; X; W I; S])] priv(
signature of D, and it will send the resulting message to S.

instead of the

nr)

To model security in our model, we replace in P;,;; the process 0 by a hole and we check
whether the formula —route(x ) holds. Applying our procedure to the initial configuration Ky,
we can reach the configuration

K¢ = (|out(error).0]s;0; Zo U {uy, va2}; C; V)
where
C={ZoU{ui}lFvi AN ZyU{ui,v2} and ¥ = ®p A Pg A —route(xy)}
with:

uy = (req, S, D, Id, S :: [], [{req, S, D, Id) Joriv(s))

uz = (rep, D, S, Id, x4, w1, [{rep, D, S, Id, x1.) | priv(z ))

®p = check(D, xp) A —loop(zp :: )

®g = check(S,z4) A checkl(S,zr)

vy = (req, zs, D, x1q, 2y 2 27, [(req, x5, D, 214) | priv(zs))

Vg = (rep,D,xS,xld,D,D LTy i Xy, [[(rep,D,a:S,x[d,D Xy i xl)]]priv(D)>

and the constraint system (C,Z,4mes) together with ¥ has a solution
0 ={xq—id,xg+— S,xa— np,xp — X, 21— [Winp; Sl zr — [D; X; Wing; S]}
for graph Gp, so there is an {n;}-attack on K\ for Gy. We therefore retrieve the attack
mentioned above, that we have discovered while analysing the protocol.
3.5.3 Other routing protocols
Table routing

The model of processes we propose includes the possibility for nodes to store information in
some memory. We can therefore model routing protocols based on routing tables, such as
SAODV |ZA02|, SEAD [HJP03] and ARAN [SDL*02|. However, in such protocols, the actual
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found route is not sent to the source node but depends on the internal states of the nodes.
Security properties such as route validity can thus not be expressed using our route predicate.
Due to the way properties are modeled, it is not yet possible to straightforwardly analyze
routing correctness of table-based routing protocols in our framework. Indeed, we can only
model reachability properties at the moment. In the case of table based routing protocols, it
is also crucial to detect the existence of loops, as they could interfere with the good function
of the network. Both correctness of the route and loop-freeness depend on the routing tables
stored in the internal states. Moreover, in order to model accurately table based routing
protocols, our model would have to be modified in the way it deals with stores to add the
possibility of updating a routing table. At the moment, we can only add elements to the store
and they are never deleted. Analyzing table-based routing protocols would be applicable to
wireless ad hoc networks but also to wired networks.

Protocols using different tests

Some protocols aim at ensuring other security property than route correctness, for example
that the intruder does not appear on the route obtained through the protocol. This property,
and others, are sometimes desired, and we have not modeled them. One restriction of our
decidability result is that it holds for a particular logic Lioute. We would like to have a
more general result, with general conditions on the logic to retain decidability. If we want to
add predicates, our result does not hold any more. In this precise case, the addition seems
straightforward, we could add a predicate in the logic encoding a property stipulating that the
route found is free of malicious nodes, and we are confident that we would still get decidability,
but this would require writing a new proof. Intuitively, our proof is built in the following way:
we mark some names and then we remove the unmarked names from the lists, possibly adding
special nodes in between the cuts. So it seems probable that local predicates, constraining
only a small number of names, as do predicates check or loop, could be added very easily.
Properties about the entire route would require more attention: if they are preserved by any
cut, it is easy to add them, else we have to adapt the special nodes used to connect cut portions
of the list (in our model, the ubiquitous nodes to preserve the route property). Defining such
abstract conditions would be useful as there are many security properties that could be tested
this way.

Recursivity

We have modeled route validity in Example 3.1.4 for the protocol SRP applied to DSR. The
same modeling can be applied to most source routing protocols such as Ariadne [HPJO05],
endairA [BV04], SRDP [KT09], BISS [CHO03]. However, source routing protocols may also
perform recursive tests: it is the case for Ariadne and endairA for instance. Such tests are
typically performed either by the source or the destination and aim at securing respectively
the request or reply phase. These tests can not yet be included in our decision procedures.
We wish to add the possibility of testing recursivity to our model. A first step towards this
end is presented in Chapter 4.
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Chapter 4

Protocols with Recursive Tests

In the previous chapter, we have proposed a formal model to analyze ad hoc routing protocols.
However, this model does not allow to analyze all existing routing protocols. In particular,
such protocols as make use of recursivity are out of his scope. Such routing protocols [BV04,
HPJ05, FGMLO09] require the nodes (typically the node originating the request) to check that
the list they receive could be a valid route. This is usually performed by checking that each
node has properly signed (or MACed) some part of the route, the whole incoming message
forming a chain where each component is a contribution from a node in the path. Moreover,
recursivity is also a component of other protocols. For example, in group protocols, the server
or the leader typically has to process a request that contains the contributions of each different
agent in the group and these contributions are used to compute a common shared key (see
e.g. the Asokan-Ginzboorg group protocol [AG00]). Other examples of protocols performing
recursive operations involve certification paths for public keys (see e.g. X.509 certification
paths [HFP98|) or right delegation in distributed systems [Aur99].

Recursive operations may yield complex computations. Therefore it is difficult to check
the security of protocols with recursive primitives and very few decision procedures have been
proposed for recursive protocols. One of the first decidability results [KWO04] holds when the
recursive operation can be modeled using tree transducers, which forbids any equality test and
also forbids composed keys and chained lists. In [Tru05] recursive computation is modeled
using Horn clauses and an NEXPTIME procedure is proposed. This is extended in [KT07] to
include the Exclusive Or operator. This approach does however not allow composed keys nor
list mapping (where the same operation, e.g. signing, is applied to each element of the list).
To circumvent these restrictions, another procedure has been proposed [CTR09] to handle list
mapping provided that each element of the list is properly tagged. No complexity bound is
provided. All these results hold for rather limited classes of recursive operations (on lists of
terms). This is due to the fact that even a single input/output step of a protocol may reveal
complex information, as soon as it involves a recursive computation. Consequently, recursive
primitives very quickly yield undecidability.

In order to obtain decidability for a class of protocols including routing protocols, we lim-
ited ourselves to considering protocols that perform standard input/output actions (modeled
using usual pattern matching) but that are allowed to perform recursive tests such as check-
ing the validity of a route or the validity of a chain of certificates. Indeed, several families of
protocols use recursivity only for performing sanity checks at some steps of the protocol. This
is in particular the case of secured routing protocols, distributed right delegation, and PKI

83
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certification paths.

For checking security of protocols with recursive tests (for a bounded number of sessions),
we use the setting of constraint systems defined in Chapter 2 and add tests of membership to
recursive languages.

In this chapter, we propose (NPTIME) decision procedures for two classes of recursive
languages (used for tests): link-based recursive languages and mapping-based languages. A
link-based recursive language contains chains of links where consecutive links have to satisfy
a given relation. A typical example is X.509 public key certificates as defined in [HFP98| that
consist in a chain of signatures of the form:

[[{(A1, pub(A1))lsk(az): [(A2, Pub(A2))sk(as) -+ 3 [(An, Pub(An))[sk(s))-

A mapping-based language contains lists that are based on a list of names (typically names
of agents involved in the protocol session) and are uniquely defined by it. Typical examples
can be found in the context of routing protocols, when nodes check for the validity of the
route. For example, in the SMNDP protocol [FGMLO09], a route from the source Ay to the
destination A,, is represented by a list Loute = [An; .. .; A1]. This list is accepted by the source
node Aj only if the received message is of the form:

[[[(Am Ao, lroute>]]sk(A1)§ [[(Ana Ao, lfroute>]]sk(A2)§ R [[<Am Ao, lroute>]]sk(An)]-

Note that a link [(An, Ao, lroute)]sk(a;) Poth depends on the list /.oute and on its i-th element.

For each of these two languages, we show that it is possible to bound the size of a minimal
attack (bounding in particular the size of the lists used in membership tests), relying on the
characterization we have obtained in Chapter 2 for solutions of constraint systems. As a
consequence, we obtain two new NP decision procedures for two classes of languages that
encompass most of recursive tests involved in secured routing protocols and chain certificates.

We capture the recursivity tests that have to be performed with language constraints,
that are formally defined in Section 4.1. Furthermore, we also consider a particular class of
solutions, where the deducible terms are obtained by composition, and we apply this notion
to lists. This enables us in the following sections to prove our decidability results. We define
link-based recursive languages, which encompass in particular certificate chains, in Section 4.2,
and we prove that deciding whether a constraint system with constraints in such a language
has a solution is decidable in NP. In Section 4.3, we define mapping based languages and we
prove a similar result of decidability regarding this class of languages.

4.1 Definitions

We give a global definition of language constraints in order to define the type of problems that
we want to consider.

Definition 4.1.1 (language constraint). Let £ be a language (i.e. a set of terms). An L-
language constraint associated to some constraint system (C,Z) is a formula of the form
(up € L)? AN ... AN (ug € L)?  where each u; is a term such that vars(u;) C vars(C) and
st(u;)) NZ = 0.

A solution of a constraint system (C,Z) and of an L-language constraint ¢ = (u; €
LYIN...N(ug € L)? is a ground substitution 6 such that 0 is a solution of (C,Z) and u;0 € L
for any 1 < i < k. We denote by st(¢) the set {st(u;) | 1 <i < k}.
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We will use also the notion of constructive solution on constraint systems in solved form,
which is weaker than the notion of non-confusing solution.

Definition 4.1.2 (constructive solution). Let (C,Z) be a constraint system in solved form.
?

A substitution 6 is a constructive solution of (C,Z) if for every deducibility constraint T Fa
in C, we have that Sat,(T)0 UZ - x6 using composition rules only.

A non-confusing solution of a solved system is a constructive solution, while the converse
does not always hold. This notion will be used in proofs in the following sections as we will
transform solutions, preserving the constructive property but not necessarily the non-confusing
property.

In this chapter, we have to pay extra attention to lists, as they are fundamental constructors
in our different languages. In particular, we are going to build smaller lists and we will have to
preserve deducibility. In order to achieve that, we show in Lemma 4.1.1 that if we can deduce
a list using composition rules only, then we can deduce each of its elements, still using only
composition rules.

Lemma 4.1.1. Let (C,Z) be a constraint system in solved form, 6 be a constructive solution
of (C,Z), and T € lhs(C). Let u = [my;...;my] be a list such that Sat,(T)0 UZ F u using
composition rules only. Then for every k < n, there is a proof of Sat,(T)0 UZ & my using
composition rules only.

? ?

Proof. First, we can write C = T} F oA AT, - xp. For 1 <i <p,letS; = Sat,(T;) UZ.
Consider A a proof of S;0 I u using only composition rules. We show by induction on (i, |A|)
that for every element my of wu, there exists a proof Ay of S;0 F my that uses composition
rules only. We distinguish cases depending on the last rule of A.

The last rule is an aziom. Then u € S;0 and there is ¢ € S; such that v = 6. As u is a
list, there are terms ey, ..., e, t" € S; such that t = ey :: ... 1 ey 2t and ¢t € {[]} UX. For
1 <k <m, e =my, so for 1 < k < m, there is a proof of S;0 - m;, which is an axiom.
Now, either ¢/ =[] or t/ = z; € X, with j < 4. In the first case, we easily conclude. In the
second case, as 6 is a constructive solution of (C,Z), there is a proof A’ of S;0 + z;60 with
J <1, and we apply the induction hypothesis.

The last rule is a composition rule.

Si0Emy SO F [ma;...;my]

(List Constr.)
Si0Fu=[mi;...;my]

A uses composition rules only, so there is a proof of S;6 - m; using composition rules only,
and a proof A’ using only composition rules of S;0 F [mg;...;my], smaller than A. By
induction hypothesis, for every element m;, of [, there exists a proof Ay of S;0 b my, that uses
composition rules only, and we conclude.
O
Then, we show that we can restrict our attention to solutions € of (C,Z) A ¢ such that 6(x)
is either a constant, a name, or a subterm of ¢f. This result will also be useful for proving
our decidability results.
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Lemma 4.1.2. Let L be a language, i.e. a set of terms. Let (C,Z) be a constraint system in
solved form and ¢ be an L-language constraint associated to (C,Z). Let 6 be a constructive
solution of (C,T) and ¢. Let Ny be a name of Base sort in I, and 6 be a substitution such
that:

6 = 26 if 20 € st(¢0)

z0" =] if v € Xiist and z6 & st(p0)

z0' = Ny if © € Xiist and x60 & st(d0)

The substitution 0 is a constructive solution of (C,T) and ¢.

? ?
Proof. Write C=T1F 2y A--- AT, b x,. As 0 is constructive, for every ¢ < n, there is
a proof of Sat,(T;)0 UZ F z;0 using composition rules only. We show that, for every ¢ < n,
there is a proof of Sat,(T;)0' UZ + x;6" using composition rules only. We distinguish between
cases:

o If 2,0 € st(4f), then z;6/ = x;0 and there exist terms til,...,t};i € Sat,(T;) and a
proof tree A; such that A; is a proof of {ti,... ,t};i}ﬁ F ;0 using only composition
rules. Consequently, for every j < k;, we have that t;@ € st(x;0). So, for every variable
y € var(t;), we have that y6 € st(z;0), and so ;0 = t;H’. As a conclusion, A; is a proof
of {t1,... ,tfﬁ_}e’ + x;0" using only composition rules. We deduce that there is a proof of
Sat,(T;)0" UT b x;0’ using composition rules only.

o If 2,0 ¢ st(x;0) and x; € X\, x;0' = []. Thus there is a proof of Sat,(T;)0' UZ + z;60'
using composition rules only.

o If 2,0 ¢ st(x;0) and x; ¢ X, then z;6' = Ny € Z. We immediately deduce that there
is a proof of Sat,(T;)¢’ UZ I 2;6" using composition rules only.

Furthermore, for every z € var(¢), we have that 26 = z6’. Consequently, we have that
@0 = ¢f. Thus, we have that ¢’ is a solution of ¢. O

The following definitions will be useful in the proofs of decidability.

Definition 4.1.3 (Tail of a list). The tail tail(l) of a list | is defined recursively as follows:

tail([l) = |
tail(z) = = x € Xiist
tail(u :: t) = tail(t)

Definition 4.1.4 (Size of lists). Let [ be a list of terms, we define its size ||l||; as the number
of elements it contains. More precisely, it is defined recursively as

Il = o
|zl = 1 x € Xjst
fu:lllp = [l +1

A swapping replaces part of a term by another one. We will use this operation to obtain
small solutions to language constraints.



tel-00675509, version 1 - 1 Mar 2012

4.2. LINK-BASED RECURSIVE LANGUAGES 87

Definition 4.1.5 (Swapping). Let u,..., Uy, v1,...,0, be ground terms such that for every
i # j, u; # uj. The swapping 6 = {ui — vi,...,u, — vy} is defined inductively over a term
t in a top-down manner:

o if there exists i such that t = u;, then td = v;
o if for every i,t # u; and t =f(ty,...,tx), then td = f(t10,...,tx0).

We denote by id the empty swapping.

4.2 Link-based recursive languages

We define a class of languages that encompasses for example certificate chains, and we show
that when considering constraint systems together with constraints in this class of languages,
deciding the existence of a solution is in NP.

4.2.1 Definition and Examples

A chain of certificates is typically formed by a list of links such that consecutive links follow
a certain relation. For example, the chain of public key certificates

[[{A1, pub(A1))lsk(a,); [(A2, pub(A2))sk(as); [(A3, Pub(A3))]sk(s)]

is based on the link [(z,pub(y))]s(.)- We provide a generic definition that captures such
link-based recursive language.

Definition 4.2.1 (link-based recursive language). Let m be a term built over variables of
sort Base. A link-based recursive language L is defined by three terms wq, w1, ws such that
w; =mll . mefi mal fori=0,1,2, and we is a strict subterm of wy.

Once wo, w1, ws are given, the language is recursively defined as follows. A ground term t
belongs to the language L if either t = woo for some o such that o = |[|, or there exists o
such that t = wio, and weo € L.

Intuitively, wp is the basic valid chain while w; encodes the desired dependence between
the links and wy allows for a recursive call.

Example 4.2.1. As defined in [HFP98], X.509 public key certificates consist in chains of
signatures of the form:

[[{A1, pub(A1))[sk(az); [{Az2, pub(A2))Jsk(as); - - 3 [(An, Pub(An))[sk(s)]

where S is some trusted server and each agent A;i1 certifies the public key pub(A;) of agent
A;i. These chained lists are all built from the term m = [{z, pub(y))]sk(z) with z,y,z € Xpase-
The set of valid chains of signatures can be formally expressed as the m-link-based recursive
language Leery defined by:

0 = [{z, pub(z))]sk(s) :: 2§
wy = [(z, pub(z))Jsk(y) = [(Ys Pub(y)) sz = 2T
2 = [(y, pub(y))Jsk(z) = 2T
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Similarly, link-based recursive languages can also describe delegation rights certificates in
the context of distributed access-rights management. In [Aur99] for example, the certificate
chains delegating authorization for operation O are of the form:

[[(A1, pub(Ay), O>]]sk(A2); [(A2, pub(As), O>]]sk(A3); -3 [{(An, pub(Ay), O)]]sk(S)]

where S has authority over operation O and each agent A;y1 delegates the rights for opera-
tion O to agent A;. These chained lists are all built from the term m = [(z, pub(y), O)]s(z)
with x,y, 2z € XBase.

Example 4.2.2. In the recursive authentication protocol [Pau97], a certificate list consists in
a chain of encryptions of the form:

[Senc(<Kab7 B7 Na>7 Ka)a Senc(<KCLb7 A7 Nb>7 Kb)7
senc({Kpe, C, Ny), Kp);senc((Kye, B, Ne), Kc); . . . ;senc((Kgs, S, Na), Kq)]

where S is a trusted server distributing session keys Kqp, Kpe, - - ., Kqs to each pair of success-

ive agents via these certificates. These chained lists are all built from the term m = senc((y1, y2,y3), 2)

with Y1, Y2, Y3, 2 € Xpase- The set of valid chains of encryptions in this protocol can be formally
expressed as the m-link-based recursive language Lra defined by:

wo = senc((z, S, x), xy) = xf
wy = senc((z, Tq, T), Tk,) :: senc((z, Ty, Y), Tp, ) 2 senc((z', zc, y), Tk, ) ==
wy = senc({2’, xc, ), Tk, ) = 2.

4.2.2 A procedure considering link-based recursive tests

We propose a procedure for checking for secrecy preservation for a protocol with link-based
recursive tests in NP, for a bounded number of sessions.

The goal of this section is to prove that checking for secrecy preservation for a protocol
with link-based recursive tests is NP, for a bounded number of sessions (Theorem 4.2.1). To
achieve this goal, we will show that we can bound in advance the length of the recursive lists.

We write names(u) for the set of names occurring in w. This notation is extended as
expected to sets of terms, constraint systems, ... Let S be a set, we denote by #.S the cardinal
of S.

Let [ be a list (not necessarily ground), we denote by ||||; its length. By convention,
|lz||; = 1 when z is a variable.

Theorem 4.2.1. Let L be a link-based recursive language. Let (C,T) be a constraint system
and ¢ be an L-language constraint associated to (C,T). Deciding whether (C,Z) and ¢ has a
solution is in NP.

The proof of Theorem 4.2.1 involves three main steps. First, thanks to Theorem 2.3.1, it
is sufficient to decide in polynomial (DAG) size whether (C,Z) with language constraint ¢ has
a non-confusing solution when (C,Z) is a solved constraint system. Then, we show that we
can (polynomially) bound the size of the lists in ¢. This relies partly on Proposition 2.4.1, as
it shows that a non-confusing solution is a constructive solution.

A m-link is a ground instance of m. A m-sublink is a subterm of such an instance. When
the term m is clear from the context, we may simply say link and sublink instead of m-link
and m-sublink.
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We first show that we can replace a list with another list built with some of its elements
while preserving the deducibility of sublinks.

Lemma 4.2.2. Let C be a deduction constraint system in solved form, 0 a substitution such
that 0 is a constructive solution of (C,Z). Suppose that there exist x; € Xpjs and m-links
mi, ..., my such that x;0 = [my;...;mpl. Define a substitution @' such that if x # x;, 26’ = x6.
Let T € Ihs(C). A sublink deducible from Sat(T)0UZ by composition rules only is still deducible
from Sat(T)0' UZ by composition rules only.

Proof. Let T € |Ihs(C), u be a sublink such that wu is deducible from Sat(7)0 UZ by using
composition rules only. Hence, there exist a prooftree A and terms ¢1,...,t;, € Sat,(T)UZ
such that A is a proof of {t1,...,t,}# I u using composition rules only. As u is a sublink,
for every 1 < i < ¢, we have that t;0 is a sublink. We show that for every 1 < i < g, we have
that t;0 = ¢;6. As t;0 is an m-sublink, we know that z; ¢ var(t;). Indeed, z; € X|;s, and
by definition of m, we have that vars(m) C Agase. Consequently, for each 1 < ¢ < ¢, we have
that ¢;0’ = t;0, and so A is a proof of {t1,...,%,}0' - u using composition rules only. Hence,
we have that u is deducible from Sat(T)60’ UZ by using composition rules only. O

We prove in Proposition 4.2.4 that we can consider only small solutions. Indeed, we first
show that there is a constructive solution that uses a bounded number of distinct names. Thus
there is a finite number of instances of m used in recursive calls, allowing us to cut the lists
while preserving the membership to the recursive language.

Proposition 4.2.4. Let L be a m-link-based recursive language defined by wg, wy, and ws.
? ?

Let (C,T) be a constraint system in solved form and ¢ =1y € LA ... Al, € L be a L-language
constraint associated to (C,Z). Let 6 be a constructive solution of (C,Z) and ¢. Then there
exists a constructive solution ' of (C,Z) and ¢ such that, for every 1 < i < n, we have that
|tail([;)6 ||} < M = ko + (ky — k2) x N¥1 where N = (#names(C, ¢, wo, wr, wy) 4+ 1)#vers(m),

Proof.  First, note that if 6 is a solution of (C,Z) and ¢, and ¢ is a renaming of all
names in Z that do not occur in wp,w;, ws by the same name Ny of Base sort, then 64 is
a solution of (C,Z) and ¢. We can thus consider (constructive) solutions containing at most
names({wo, w1, w2}) + 1 names of Z.

Thanks to Lemma 4.1.2, we can furthermore assume that for every x, either z60 € st(¢0),
or 6 € {Ny,[]} (more precisely, 0 = [] if z € X|jsx and 0 = Ny otherwise).

Write p =11 € LA...Al, € L. Consider a smallest constructive solution 6, where the size of

0 is given by
o= 3 ltail)ol
1<j<n

Either for every j < n, we have that [tail({;)8||; < M and we conclude directly, or there exists
Jjo < n such that ||tail({;,)0]|; > M. In the second case, we define x;, = tail(l},), and we show
that we can build ¢’ a constructive solution of (C,Z) and ¢ smaller than #, which leads to a
contradiction and allows us to conclude. More precisely, we build 6’ such that 6’ = 26 for
v # ajy and gt < [l2;0]:

We build 6 smaller than 6. Intuitively, N*! is the number of possible instantiations of the
pattern-matching prefix of w; (i.e. mfi,..., mﬁlfl). Remember that kg, k1 and ko are respect-
ively the number of links in wg,w; and wy in the definition of the language L.

We consider the successive recursive calls made in order to prove that ;0 € £. By definition
of £, a term t belongs to the language L if



tel-00675509, version 1 - 1 Mar 2012

90 CHAPTER 4. PROTOCOLS WITH RECURSIVE TESTS

e cither there exists a substitution ¢ with x{'c = [] such that ¢ = wyo,
e or there exists a substitution ¢ such that { = w0, and weo € L.

Consequently, [;,0 € L if and only if there is a sequence of terms %o, ...,t, and substitutions
00, -..,0p such that

o le0 = to,
o for every 0 < i < p, t; = wyo; and t;41 = wao;,
e 2o, =[] and t, = woop.

For every 0 < i < p, define substitution @; such that dom(a;) = dom(o;) ~\ {z"}, and for
every x € dom(7;), x0; = xo;. We want to find i; < i2 such that 7;, = 7;, in order to cut the
list while still having a sequence of correct recursive calls. This is possible if the sequence of
recursive calls is long enough, as there are only a finite number of possible instantiations of ;.
Indeed, note that dom(a;) = vars(méi,..., me}ﬂ) C XBase and #dom(a;) < #wvars(m) x ky.
The number of possible values for 7; is N*1.

For every 0 <i < p, |[till; = [lwioilly = kr +[[2T ol and [[tig1lle = lwaoill = k2 + [lzFolli-
By definition of a link-based recursive language, wy is a subterm of w; and so z' = z7J.
We deduce that ||tiy1]); = ||20i|li + k2 = ||ti|li + k2 — k1. Moreover, ||t,|; = ko. Hence,
ltolli = ko + (k1 — ko) x p. As Hl‘jOHHl > ko + (k1 — k2) x Nkl, we get that p > Nkl, and
necessarily there are i; < iy such that ;, = 7;,, and ||z]'0y, ||; < ||@},0];. As i1 < ia, we have
that 270, |1 < [|2T0i, [i-

We are going to replace z7"0;, with 20y, in ;0.

We define the swapping § = {210y, — 20y, }. We show that (1;,6)6 € L.

For 0 < i < iy, let 0 = ;0 and t, = ;0. Define also, for 1 < k < p — iy, U£1+k = Ojytk
and t; ;. = tiy4x. First, oy, = 07 . Indeed, 0y, = 7, W {z]" — 20y, }. Hence, o}, = 0,0 =
7, W{a! — 2oy, }0 = 75, W {2 — 2P0y, } = 04, (thanks to the choice of i;,i2 and §).

o t)=to6 = (1;,0)0.

o for 0 < i< il, t; = tié = (wloi)é = wl(al-&) = wlag and t;+1 = ti+15 = (’U)QO’i)5 =
wa(0i0) = wao,

/

/ / /
o t; =t;,0= (wi04,)0 = wy (0, 0) = wroy, and t; | = ti,1 = w20, = w0y,

. / _ _ _ / / _ —
e forl1 <k < p — 19, ti1+k = big4k = W10jp4k = W10y Lk and ti1+k+1 = ligtkt1 =
/
W20iy+k — W20, 1 s

/

m ./ — M — — — — !
® 100y, i =x0op=[land ¢, , ., =1, =wpop = woo,

—t2+i1°
We conclude that (1;,0)0 € £ and ||(1;,6)d]); < [|1;,0];- Intuitively, we can replace z"o;, by

xT'o;, in [;,0 and still get a correct sequence of recursive calls.

Let 0" be a substitution such that z0’ = 26 when = # xj, and z;,0' = (z,0)0.

We show that ¢ is a solution of ¢. We have ¢ =1y € LA --- Al, € L. For every j, we write
lj =mi ... my, = tail(ly), with my), of sort Msg and tail(l;) € Xt U {[]} of sort List. If
tail(l;) # xj,, 1;0' = 1;0, and so [;60' € L. If tail(l;) = xj,, as 0 is a solution of ¢, ;6 € L. So
there is a sequence of terms uy, . .., u;, and substitutions 7, ..., 75 such that
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L] lj9 = Uup,
o for every 0 < ¢ < m, u; = wim; and w1 = waT;,
o 20T =[] and uy, = WoTm,.

As tail(l;) = xj,, we have that o; = 7,—p4s for i > i;. Consequently, we can show that
1;6' =1;(66) € L in the following way: let j; = m —p+1i; and jo = m —p+ip. For 0 <i < ji,

let 7/ = 7;0 and u} = u;0. Define also, for 1 <k <m — jo, TJ’»1+,€ = Tj,4+, and u;1+k = Ujy -

First, 7j, = 04, = 04,0 = 7,0 = 7} .
[ uf) = u05 = (1]9)(5

o for 0 < i< jl, u; = ulé = (wln)é = wl(né) = ’LUlTi/ and t;+1 = ti+15 = (’LUQTZ')(S =
wa(130) = woaT],

I § = S — S8 — /
o up =wu;d= (w1Tj,)0 = wi(15,0) = w1,
/ _ . _ R /
u‘]1+1 — UJ2+1 — w27_j2 — wQle,

. / o _ ) _ / / _
o forevery 1 < k < m—jo+1, Wi 4 = Ujotk = WiTjpk = WITj g and Wj gyl =

_ i _ /
Ujo+k+1 = W2Tjo+k = W2TH 4 ks

/

/ _ _ _ _ _ /
® T0Ty jyijy = ToTp = [l and w40 = up = woTp = WoTy_j, 4 -

Terms uj, .. ., u%f jots; and substitutions Thy - - - characterize a series of recursive calls
that allows to prove that [;6' € L.

We get that for every 1 < j <mn, [;0' € L, so #' is a solution of ¢.

/
» Tp—ja+ii

?
We show that 6 is a constructive solution of (C,T). Consider T - z a constraint in C.

o If 26 ¢ st(40), then we have assumed that 26 € {Ny,[]}. As z60 ¢ st(¢f), then = # x;,
and 6’ = z6. We deduce that T6 UZ + x6’ using composition rules only.

o If 20 € st(¢0), and = € Xusg, then z0 is a sublink and 26’ = z0. We know that 6 is a
constructive solution of (C,Z). Then thanks to Lemma 4.2.2, we have that Sat(T)6'UZ +
26 = 6" using composition rules only.

o If 20 € st(¢f) and x € Alig, then z0 is a list of links, i.e there exists links my,...,m,
such that 20 = [mq;...;m,|. As 0 is constructive, there exist a context prooftree A
t1,...,tq € Sat(T) UZ such that A is a proof of {t16,...,t,0} - x6 using composition
rules only. We can assume that for every 1 < j < ¢, we have that t; ¢ X. Consequently,
for every 1 <1i < p, we have that Sat(7')§ UZ - m; by using composition rules only. By
applying Lemma 4.2.2, Sat(T)¢0' UZ = m; using composition rules only. So, if 26" = 20,
Sat(T)0' UT + x6' using composition rules only. Otherwise, x,6 is built with links of
zj,0, and we still get that Sat(T)§' UZ |- x;,0 using composition rules only.

2

Consequently, we have that Sat(T)6’UZ - 26" using composition rules only for every T' FazecC ,
so 0’ is a constructive solution of (C,Z).

In conclusion, 6’ is a constructive solution of (C,Z) and ¢, smaller than #. We conclude
by contradiction. O
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The third step of the proof of Theorem 4.2.1 consists in showing that we can restrict
our attention to solutions 6 such that xz6 is either a constant or a subterm of ¢, by using
Lemma 4.1.2. This lemma is a generic lemma that shows how any solution can be transformed
by projecting some variables on constants. It will be reused in the next section.

Theorem 4.2.1. Let L be a link-based recursive language. Let (C,Z) be a constraint system
and ¢ be an L-language constraint associated to (C,T). Deciding whether (C,Z) and ¢ has a
solution is in NP.

We want to decide whether (C,Z) with constraint language ¢ has a solution. Our decision
procedure works as follows:

Step 1. We guess a sequence of transformation rules in S from (C,Z) to (C’,Z) where (C',Z)
is a constraint system in solved form. We have that:

(C,T) ~% (C',T) € S with (C',Z) in solved form.

Step 2. Assume that £ is defined by wg, w1, and ws. Let Ny be a name of Base sort in Z,
S = names(C, ¢, wo, wi,ws) and let N = (#8 + 1)#var(m),

o Guess the values of variables of sort Base in { Ny} U S.
e Guess the values of variables of sort Msg in the sublinks built over {Ng} U S.

e Guess the values of variables of sort List among lists of sublinks in {Ny} U S of
length at most ko + (k1 — ko) x N¥1.

This gives us a substitution #’, we check whether 6 is a solution of (C’,Z) and ¢o.

Proof. Thanks to Theorem 2.3.1, there exists a solution 6 of (C,Z) and ¢ if, and only
if, there exist a constraint system (C’,Z) in solved form and substitutions o,6" such that
(C,ZT) ~% (C',T) by a derivation in S and ¢ is a non-confusing solution of (C’,Z) and ¢o.
Furthermore, the length of this derivation is polynomially bounded in the size of C. We can
guess such a derivation, and are now left to decide the existence of a non confusing solution
to a constraint system in solved form. First, thanks to Proposition 2.4.1, we can actually
consider constructive solutions only.

Thanks to Proposition 4.2.4, we can assume that if 6’ is a constructive solution of (C’,7)

? ?
and Iy € LA...Al, € L, then |ftail(;)0']|; < ko+ (k1 —k2) x N* for every i € {1,...,n}. Then,
thanks to Lemma 4.2.2, if (C’,Z) is a constraint system in solved form and 6’ is a constructive
solution of (C,Z) A ¢o, then 6" is a solution of (C’',Z) and ¢o where

Y ;1;0” = IEGI if .TEGI S 5t(¢9/)7
o 20" =[] if 20’ ¢ st(pf') and x € X\,
o 20" = No it 20/ ¢ 5t(60') and @ ¢ Xiis

For x ¢ X, either 26" € st(¢0"), which means that 26" is a sublink, or 6" = Ny. So we
can guess which variables of Xjsg U Xase are instantiated by sublinks, and guess the sublinks.
Instantiate the other variables in Xysg U XBase With No. If 2 € Al then either 26" =[] or
z0" € st(¢f"), and so it is a list of links of length at most ko + (k1 — ko) x N¥1,

]
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4.3 Routing protocols

Routing protocols typically perform recursive checks to ensure the validity of a given route.
However, link-based recursive languages do not suffice to express these checks. Indeed, in
routing protocols, nodes aim at establishing and certifying a successful route (i.e. a list of
names of nodes) between two given nodes that wish to communicate. Each node on the route
typically contributes to the routing protocol by certifying that the proposed route is correct,
to the best of its knowledge. Thus each contribution contains a list of names (the route).
Then the final node receives a list of contributions and needs to check that each contribution
contains the same list of names, which has also to be consistent with the whole received
message. For example, in the case of the SMNDP protocol [FGMLO09], the source node has to
check that the received message is of the form:

[[[<Dv S, erute>]]sk(An); SR [[<D, S, lroute>]]sk(A1)§ [[<D’ S, lroute>]]sk(D)]

where loute = [D; A1; ... Ayl

4.3.1 Example: the SMNDP protocol

The aim of the SMNDP protocol [FGML09| is to find a path from a source node S towards
a destination node D. In the first phase of the protocol, nodes broadcast the route request
to their neighbors, adding their name to the current path. When the request reaches the
destination, D signs the route and sends the reply back over the network.

More formally, if D receives a request message (req, S, D, Id, ), it computes signature sy =
[D,S,D :: l]sp) and sends back the reply (rep, D, S, D :: I, [so]). All nodes along the route
have then to certify the route by adding their own signature. More precisely, during the reply
phase, an intermediate node A; receiving a message (rep, D, S, lioute, [Si—1, - - - , So]) would com-
pute the signature s; = [D, S, lroute]sk(4;) and send the message (rep, D, S, loute; [5i, - - - , 50]).
The list of signatures expected by S built over the list lioute = [D, A1,..., A4,] is the list
lsign = [Sn; - - -, 50| where so = [D, S, lioute]sk(p) and s; = [D, S, loute]sk(4,) for 1 <i < n. We
will denote by Lsmnpp the set of messages of the form ((S, D), (lroute; Lsign))-

Consider the following network configuration, where S is the source node, D is the destin-
ation node, X is an intermediate (honest) node, W is a node who has been compromised (i.e.
the intruder knows the secret key sk(W)), and I is the malicious node.

; )

An execution of the protocol where D is ready to answer a request and the source is ready
to input the final message can be represented by the following constraint system:

C— T(]U{’LL[),ul} I+
B TgU{UO,ul,UQ} I+ v
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with  Tp = {S, D, X, I, W,sk(I),sk(WW)} the initial knowledge of the intruder
ug = (req, S, D, I1d, []),
uy = (req, S, D, Id, [ X, W]),
uz = (rep, D, S, D :: 2, [[(D, S, D :: x1)]sk(p)])>
vy = (req, S, D, x;q, 77),
vg = (rep, D, S, D :: Zroute, Tsign)

Let Z be a non-empty set of names such that st(C)NZ = (). We have that (C,Z) is a constraint

?
system. A solution to (C,Z) A ((S, D), (D :: Zroute; Tsign)) € Lsmnpp is e.g. the substitution
0= {$id — Id, x; — [Ia W]7$r0ute = [I, W]a Tsign lsign} where:

o lroute = [D,I, W], and

hd lsign = [[[<D; S, lroute>]]sk(W)§ [[(D, S, lroute)]]gk(])? [[<D7 S, lroute>]]sk(D)]-

This solution reflects an attack (discovered in [AYO07]) where the attacker sends to the
destination node D the message (req, S, D, Id,[) with a false list [ = [I, W]. Then D answers
accordingly by (rep, D, S, lroute; [[(D, S, lroute)[sk(py])- The intruder concludes the attack by
sending to S the message (rep, D, S, lioute, lsign). This yields S accepting W, I, D as a route to
D, while it is not a valid route.

4.3.2 Definition of Mapping-based languages

An interesting property in the case of routing protocols is that (valid) messages are uniquely
determined by the list of nodes [A;;...; 4,] in addition to some parameters (e.g. the source
and destination nodes in the case of SMNDP). We propose a generic definition that captures
any such language based on a list of names.

Definition 4.3.1 (mapping-based language). Let b be a term that contains no name and no
2 symbol, and such that:

{wi,wl, ..., wl} Cwvars(b) C {wy, we,ws,wl, ... wk}.

The variables wl, ..., wh, are the parameters of the language, whereas w1, wa, and ws are

special variables. Let P = (P, ..., Py) be a tuple of names and op = {w) — Py,... wh —
Py}, Letl = [A1;...; Ay] be a list of names, the links are defined over | recursively in the
following manner :

mp (i, 1) = (bop){w; — l,we — Aj,ws — [mp(i — 1,1);...;mp(1,0)]}
The mapping-based language (defined by b) is the following one:

L={P,,I))|P=(P,...,Py) is a tuple of names,
I =1[A1;...; Ay alist of names, n € N, and I' = [mp(n,1);...;mp(1,1)]}.

A mapping-based language is defined by a base shape b. The special variables wo and w3
are optional and may not occur in b. Each element of the language is a triple (P, (I,1’)) where
I" is a list of links entirely determined by the tuple P = (P, ..., P,,) and the list [ of arbitrary
length n. In the list I/, each link contains the same parameters P, ..., P, (e.g. the source
and destination nodes), the list [ of n names [A;1;...; Ay] and possibly the current name A;
and the list of previous links, following the base shape b.

We illustrate this definition with two examples of routing protocols.
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Example 4.3.1 (SMNDP protocol [FGML09|). Recall that in SMNDP, the list of signa-
tures expected by the source node S built over the list | = [Ay, ..., Ay is the list [sp,...,s1],
where s; = [(D,S,)]ska,)- This language has two parameters, the name of the source wh

and the mame of the destination wh. The language can be formally described with b =

[[<w1297 wfv w1>]]sk(w2) :

Example 4.3.2 (endairA protocol [BVO04]). The difference between SMNDP and endairA lies
in the fact that during the reply phase, the intermediate nodes compute a signature over the
partial signature list that they receive. In the endairA protocol, the list of signatures expected
by the source node S built over the list of nodes | = [Ay,...,Ay] is the list I, = [sp,...,s1],
where s; = [(D, S,1,[si—1; -5 51]) sk(a,)-

This language has two parameters, the name of the source w} and the name of the destin-

ation wy. The language can be formally described with b = [(wh, wY, w1, w3)]sk(ws)-

4.3.3 Decision procedure

We propose a procedure for checking for secrecy preservation for a protocol with mapping-
based tests in NP, for a bounded number of sessions.

The goal of this section is to prove that checking for secrecy preservation for a protocol
with mapping-based recursive tests is NP, for a bounded number of sessions (Theorem 4.3.4).
To achieve this goal, we will show that we can bound in advance the length of the recursive
lists.

Let u be a term. We denote by ||u||4q4 the size of u in DAG representation (i.e. number of
distinct subterms in ).

Let t be a term such that vars(t) = {w1,ws, w3}, the variables of ¢ are the special variables
in the definition of b, and let vy, v, v3 be ground terms. For the sake of clarity, we will write
t|v1, va,v3] for t{wy — vi,we — vo, w3 — v}

In a mapping-based language, the links contain enough information to define precisely the
language to which they belong.

? ?
Lemma 4.3.1. Let 0 be a solution of ¢ = uy € LN ---Nuy € L where uj = (Pj,(l;,15)),
non-confusing with respect to st(¢), i.e. such that t10 = t20 implies t; = to for any term
ti,ta € st(¢). Let 1 <i,j <n. If ;0 and I30 share a link, i.e. mp,(i',1;0)) = mp;o(j',1;0) for
some i, j', then u; = u;.

Proof. Indeed, suppose that there exist ', ;" such that mp,g(i',1;60) = mp,g(j’,1;60). Write
1i0 = [a1;...;ap) and 1;0 = [c15...;¢,). Write P = (pi,...,p%,) and P;j0 = (p],...,ph)-
Recall that

mpig(i/, lzé?) = bi LZZH, Q;r, [mpig(i/ — 1, lza), ey m'pig(l, lZH)U
m'pjg(j/, ZJH) = bj UJH, Cjt, [mpjg(j/ — 1, lje); ey mpjg(l, ZJG)J

where b, = b{w} — pi ... wh — pi}, b; = b{w!] — p]i, o wh = p’m}, and ay, by,
[mp, (i = 1,1;0); ...;mp,(1,1:0)], [mp, (5" — 1,1;6); ...;mp.(1,1;0)] are optional parameters. As
mpig(i/, lzg) = mpjg(j/, lj@), we have that

b; Uie, a, [mpig(i/ — 1, liQ); BN mpz.g(l, lig)”

bj U]ﬂ, bj/, [mpjg(j/ — 1, ljﬁ); ceey mpjg(l, ZJQ)”
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We deduce that [;0 = [;0, and also 10?€ = pi for all 1 < k < m (these parameters are
compulsory), i.e. P;0 = P;0. It follows that [;0 = I30, hence u;) = u;0. As 0 is non-confusing
w.r.t. st(¢), it follows that u; = u;. O

We prove in Proposition 4.3.3 that we can consider only small constructive solutions.
Intuitively, a constraint is of the form ((p],...,ph), (¢, %)) € L, where the beginning of ;
constrains the end of E;- and reciprocally, so we can cut somewhere in the middle the large

solutions.

Proposition 4.3.3. Let £ be a mapping-based language. Let (C,Z) be a deduction constraint
system in solved form, ¢ be an L-language constraint associated to (C,Z), and T be a construct-

? ?
ive solution of (C,7) qnd Y. We further assume that 1) is of the form w1 € LA ... ANup, € L

where uj = ((p],...,ph), (05, 05)).
Let M = #st(C,v)+ max ||0%]|; +2 x #var(C) x max ||t||gas- There exists a constructive
st(C. )+ s 6 +2 var (€)% mise [l

solution 7' of (C,Z) and ) such that, for every j, we have that ||tail(¢;)7'||; < M.

Proof. Consider a smallest constructive solution 7 of (C,Z) and 1, where the size of a
solution is given by:
=Y ltil(g)r
1<5<p
Either || tail(¢;)7]; < M for all j and we conclude. Otherwise, there exists jo such that
|ltail(¢;,)7|l; > M. In that case, we show that we can build 7/ smaller than 7, a constructive
solution of (C,Z) and 1, which is in contradiction with 7 smallest solution, and we conclude.

We wish to write T = 6 o o with 6 non-confusing w.r.t. st(C,), i.e. such that t,0 = t20
implies t1 = to for any t1,ts € st(C,v). We define

o =mgu{t; =to | tiT = toT, t1 # to, t1,t2 € st(C,9)}.

We have that st(Co, o) C st(C,1)o, thanks to Lemma ??, as o is an mgu of terms in st(C, ).
Furthermore, by Definition, st()) NZ = () and st(C) NZ = 0, so we deduce that (Co,Z) is a
constraint system and o is an L-language constraint associated with (Co,Z). Lastly, since o
is more general than 7, there is a substitution 6 such that 7 = 6 o ¢ and 6 is a solution of
(Co,7) and vo.

We now show that 6 is non-confusing w.r.t. st(Co,v0o). Let t1,t2 € st(Co, o) be two terms
such that t160 = t20. We apply Lemma ??: there are two terms uj,us € st(C,1) such
that 1 = wio and t9 = wgo. As t160 = to0, we deduce that uim = wuor. It follows that
ug,uz € st(C,v) with u1T = ugr. Either u; # ug, and thus by Definition of o, we have that
U100 = U920, or u; = us. In both cases, we deduce that ¢; = to, so 6 is non-confusing w.r.t.
st(Co, o).

For every j, lj = {jo, I} = l;0, u} = ujo and ¢ = 9o, i.e.

? ? . .

We can assume that the elements of ¢ are distinct, i.e. for every i, j, if uj = v’ then i = j.

Furthermore, let P; = (pi7,..., p¥n7>. Lemma 4.3.1 then allows us to express the following
statement:
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if mp, (4,1;0) = mp,, (¢',170) for some i, ', then u; = uj, and thus j = j'.

We show that ||tail(l;,)0|; > M’ where M' = #st(Co, $) + max Hl’ I
<j<
We have chosen jo such that |[tail(¢,)7||; > M. Let M; = #var( ) X m(acxw)HtHdag. Thanks
test(C,
to Lemma ?7?, for every « € var(C), ||x0 ||gag < M.
We first show that M > M’ + M. We have that I, = lia, so [|1}[l; = || £; [ + [[tail(¢})o [|;-

Furthermore, it is clear that ||u :: ||gag > ||!|/dag + 1, and thus for every I, ||I|lgag > ||{]];-
Consequently, for every j, we have that:

max |1l = 141
> | — [Itail(€)) ol
> Hl/Hz—Hta”( )UHdag
> Hl/Hz—Ml

As this inequality is true for every j, it follows that
1 > T, —
pax [ = max [|1; l; — M
Furthermore, we have #st(Co, ¢) = #st(C,1). We deduce that M = max ||€/ lls+#st(C )+
2M; = [nax HZ’ li + #st(Co, ¢) +2My, and so M > fax. 12512 —|—#St(CO’ qﬁ) + My = M'+ M.

We now conclude by showing that |tail(;,)6||; > M’. We have that 1, = ¢;,0, so |tail(¢;,) 7]} =
|Itail(L;,)8|l; + |[tail(¢;,)o|l;. Consequently, we have that:

[tail(ljo)0 Nl = ||ta'|( 5o)T e = lltail(Go)a |
> - Htall( jO)JHdag
> M — My > M.

We build 6 smaller than 0 and we define 7' = 0" oo

Let ji be such that ||[tail(;,)0|; > | tail({;)8||; for every j < p. Necessarily, tail(l;,) = z1 for
some x1 € At and ||z10|; > M’'. By reordering the constraints, we can assume that there
exists 1 < ¢ < p such that

e for every 1 < j < ¢, we have that tail({;) = z1, and

e for ¢ < j < p, we have that tail(l;) # x; (and thus, ||tail(l;)0]; < [|z10];).
We want to change the value of x16, while preserving language memberships.
< ?
For each constraint ((p]o, .. p7m0> (5, ])> € L, l; provides constraints on the last elements
of the list l;ﬂ, while l;- prov1des constraints on the last elements of the list /;0. For 1 < j < ¢, [;

thus constrains the last elements of x10. We have to keep those elements to preserve language
membership.

For j < q, we write:

lj:cj ::...::c,ij 2]
Lio=c0: ... ::céj@::xlé?: laf;...;ad,] (210 = [aifrl;...;a%j])
l;:v{::.. Y

150 = v :: .. k,@ yJG—[m%J,...;ml (y;0 = [m nj—k;;"';mjl])
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Let ks = 112132( k:; The k; last elements of 16 are determined, and thus the k; first elements
<<

of each l; are also determined.
For every j < m, let t; = [mzp—ks; .. ,mjl] t; represents the part of ;6 which is not con-
strained by the k; last elements of 16 and that can be modified while preserving language
membership constraints. For every 1 < j < g, we have that |[¢;|; + ks = [|150]l; = ;0 =
16l + o
Asm! = mp, (4,1;60), we obtain thanks to statement (x) that if m] = my,, then j = j/. Hence,
the sublists of t1,...,t,, are distinct. We know that ||x10]); > M’, and thus

18l = kj = l|210]]; — ks > #st(Co, §).
As a consequence, there exists k, such that ks < k, < #st(Co, ¢) + ks and for all 1 < j < ¢,
)i imil) ¢ (st(Car 6))6.
We define wy = [a} ...,al ] as the last k, elements of x10. Let dg = {x10 — wo} be

anlfk:v+1’ » Ymy
the associated swapping.

Define, for 1 < j <gq,

w; = [mf?jfkv; .. ,mjl]
wh = [my ;... ;m3]do

Note that w; ¢ (st(Co,))f since we chose k, to ensure this. Intuitively, w} represents
the part of l;@ that is constrained by [; and thus has to be kept in our new solution. Let
6j = {w; — wj, 210 — wo} for 1 < j < g. For j > g, we define J; = id.

Let § = {2160 — wo, w1 = wi, ..., wg — wy}. We choose ' = 00, and 7/ = 6 0 0.

Note that [|z10'|; = ky < M’ < |[z10||;. By definition, z; = tail(¢;,0), so we have that
|tail(¢;,)7"|l; < ||tail(¢;,)7];- Furthermore, for every z, [|x7'||; < ||z7]|;, since for every term u,
|lud|; < [|ull;. We deduce that |7/| < |7].

We have thus built a substitution 7/ = 6’ o ¢ smaller than 7. It remains to show that 7’ is a
constructive solution of (C,Z) and 1. We will first show that 6" is a solution of ¢ and then
that 7/ is a constructive solution of (C,Z). We first have two claims that will help us with the

proof.

Claim A: (t0)6 = t(00) fort € st(Co, ).
We show by induction on ¢ that for every term t € st(Co, ¢), (t0)5 = t(096).

e if t € X, then the result is straightforward, since for every x € X, (26)d = x(69)
o if t = f(t1,...,tx), we reason by case distinction over the value of f(t1,...,t)0:

— If f(t1,...,tx)0 = 210, as 0 is non-confusing with respect to st(Co, @), then 21 =
f(t1,...,tx), and this is in contradiction with z € X.

— If there exists ¢ such that f(t1,...,tx)0 = w;, then w; € st(Co, @), which yields a
contradiction.

— We are thus in a case where f(t10,...,t:0)0 = f((t10)9, ..., (tx0)J). By induction
hypothesis, (¢;0)0 = t;(60), and so

(0)5 = (F(t,... t5)0)0
f((t10)6, ..., (tx0)0)
f(t1(06), ..., t,(60))
= f(t1,... ) (09)

— 1(69)
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Claim B: for1 < j <pand1 <i < nj, mp,(i,1;0)0 = mp,(i,1;0)6; and [mp,(i,1;0);...;mp,(1,1;0)]0 =
[mp, (i,1;0); . ..;mp, (1,1;0)]4;

First, we show that for every 1 < j < p, ([;6)d = (1;6)60 = (1;6)6;. We have that [;6 =
la1;...;an;] with a], € N. For every j', k', a] # mfcl/, so (1;0)5 = (1;0)d.

For 1 < j < ¢, by a similar reasoning we also get that ({;6)d; = (1;0)do.

Forg<j<p l; = c{ N c,ij :: tail(ly) with [[tail(l;)01); < |[z16];. By applying the
definition of a swapping, and as 6 is non-confusing,

(18)60 = (¢]0)0 :: - .. 32 (c], B)0 :: (tail(1;)6) 0.

Furthermore, (tail(;)0)do = tail(l;)0 as [[tail(l;)6]|; < |lz10]; (and tail(l;)0 # 10 as tail(l;) # 1
and 6 is non-confusing). We also have that for every 1 < k < kj, (¢}.0)d0 = c},0 since c},0 is a
name. Consequently, (1;0)50 = (1;0) = (1;0)d; since §; = id for ¢ < j < p.

To sum up, for every 1 < j < p, we have that ({;0)d = ({;0)d0 = (1;6)0;.
Let bj = b{w! — p{T, e Why pjmT} We show by induction on i that
e mp,(i,0;0)6 = mp,(i,1;6)d;, and
o [mp,(i,1;0);...;mp,(1,1;0)]0 = [mp,(i,1;0);...;mp,(1,1;0)]0;.

o If i = 1, we have that mp,(1,1;0) = b;|1;0,a], []].

We apply the swapping & (resp. ;) on mp, (1,/;0). As b; is a term which does not
contain the list constructor and ¢ is a swapping of non-empty lists, we have that:

mp, (1,1;0)0 = b;[(1;0)6,a]5, ]|
1,1;0)d; = b;[(1;0)d;,a}d;,[]].

J
[

We have shown previously that (1;0)d = ({;0)d;. Furthermore, since @] is a name, we

have that a{é = aj = a)é;, and so we deduce that:
mpj(l, lja)é = mpj(l, 1]9)5]
We can have mp,(1,1;0) = mp,, (i,10) only if j = j' (c¢f. statement (x)), so for any
j# 7wy & stllme, (1,L6)), and [mp, (1, 405 = [mp, (1,50)16;
e If i > 1, we have that

mp, (i, 1;0) = bj|1;0,al, [mp, (i — 1,1;0);...;mp, (1,1;0)].

bt A

We apply the swapping & (resp. ;) on mp (1,1;0). As b; is a term which does not
contain the list constructor and § is a swapping of non-empty lists, we have that:

mpj (i, 1]9)(5 = bj {(1]0)6, a{&, [mpj (Z — 1, lj@); ey mpj(l, 1]0)](”
mpj (i, ljﬁ)dj = bj Klj@)éj, agéj, [mpj (Z — 1, ljg); ey mpj (1, lﬂ)]éjj .



tel-00675509, version 1 - 1 Mar 2012

100 CHAPTER 4. PROTOCOLS WITH RECURSIVE TESTS

We have shown previously that (I;6)0 = ([;¢)d;. Furthermore, since aj is a name, we

have that a15 =a] = a1(5 Lastly, thanks to our induction hypothesis, we have that
[mpjg(i — 1, lj@); e mpjg(l, 139)](5 = [mpjg(i — 1, l]ﬂ); e mpjg(l, lﬂ)]éj

This allows us to conclude that mp, (i,1;0)6 = mp, (i, 1;0)d;.

We can have mp, (i, 1;0) = mp,, (',170) only if j = j' by (*). Consequently, for any j # j’,
we deduce that vy ¢ st([mp,(7,1;0);...;mp,(1,1;0)]), and so [mp, (i,1;0);...;mp,(1,1;0)]6 =
[m'pj (i, le); RN mpj(l, l]9)]6]

Show that 0" is a solution of ¢. First, as <p{a, . ,pf}baw is a tuple of names, we have that
(plo,...,pho)8 = (plo,...,pho)d'. We will write

P; = <p{7', cLphTy = (p{T', Pl T,
We show that for every 1 < j < p, (P;, (I;¢/,130")) € L by distinguishing between cases:
e First, show that if 1 < j < g (tail(l;) = x1), (P;, (10", ;0')) € L.

O =c10 .. eg 0 i vg = [bas s g (vo = [br; 415 -5 bx])
U0 =ub .. n ng.el oyl =g (y;0 = [Tk—k;;.; o))

where k = k; + k. (for more clarity, as we only consider the j-th constraint, we will

: J
write ¢; = cj vl—v , My = My,

a; = a} and n = n;j).

For 7 < k;, it is clear that b; = a;, and for ¢ > k;, b; = ap—p+4-

We have that 0 = [my;...;mi]. By Claim A, I%0" = (I50)d, and by Claim B, (I56)¢ =
(1%0)0;. We compute I%0":

0" = [mn;...;md;
= (mp .o Mgk, )05
= [mndj;.. .;mn,kUH(Sj;mkj(Sj;...;mléj]
As l;ﬂ’ = [rg;...;71], we deduce the values of r; depending on i:

For ¢ < /{?j, r; = miéj
For ¢ > k?j, T = mn_k_,_i(Sj

By definition of £, (P;, (1;¢',1')) € Liffl" = [mp,(k,1;6');...;mp,(1,1;0')] where mp, (i,1;0") =
b; 16/, bs, [mp, (i — 1,1;6');...;mp,(1,1;6")]] and b; = b{w} — plr',... wh — plt'}.
We show by induction over i that r; = mp, (i,1;0):

— if 1 < kj, i = myd;.
As (Pj,(1;0,130)) € L, m; = bj|1;0,¢:0,[mi—1;...;m1]]. As b; does not contain

the list constructor :: and ¢§; is a swapping of (non empty) lists, by definition of a
swapping, we have that

bj Uj97 Cicg, [mi_l; e ;mlHéj = bj L(lje)(sj, (ciﬂ)éj, [mi_l; e ;m1]5jJ



tel-00675509, version 1 - 1 Mar 2012

4.3. ROUTING PROTOCOLS 101

We have that (¢;0)0 = ¢;0 = a;b; and (1;0)d; = (1;60)0 = [;¢’, thanks to Claims (A) and (B).

Furthermore, [m;_1;...;m1] is a strict subterm of w;, so
[mz;l; ooy ml]éj = [mi,ldj; ce ;mléj].

Recall that md; = rp, for h <i —1 < k;. By induction hypothesis, we have that
for every h < i,y = mpd; = mp,(h,1;6'). So,

ri = md;
= b;[1;0', b, [mp, (i — 1,1;6');...;mp, (1,1;0')] )
= 01,0

— if ¢ > k;, we have that r; = m,,_p1;0; and b; = ap_j4;. Let ¢/ =n —k+ 1.
As (P, (1;6,150)) € L, my = bj|1;0,a, [my_1;...;m1]]. As bj does not contain
the list constructor and J; is a swapping of (non empty) lists, by definition of a
swapping, we have that

bj I_ljg, a;, [milfl; R ml]J(sj = bj L(ZJ-G)(S]-, ai/(Sj, [milfl; cees m1]5jj

We have that a;0; = ay = b; and (1;0)d; = (1;6)0 = [;6' thanks to Claims (A) and (B).
We have [my—jyi—1;5...;mM1] = My_jyio1 ... 8 Myy1-k, = wj, and by applying
the swapping;:

[mn,k+i,1; ey ml]dj = mn,kJri,l(Sj el mnﬂ,kvéj o 'LUj(Sj
= [Mnkri-1055 -3 Mug1k, 055 Mg, 055 - - 5 Mm105]
For h < k;, we know that 7, = myd;. For k; < h <4, rp, = my,_p4n0;. By applying
the induction hypothesis, for all h < i, r, = mp,(h,1;0"). As k = k,+k;, we deduce
that
[Mp—krio1;--3m]0; = [Pic13- 3 Tkt 13Thy5 - 71
= [ric1;.. 571
= [mpj(i— 17l19/);"-;m77j<17l19/)]
So Ty = bj Uj@l, bz‘, [mpj (Z - 1, lj(gl); cey mpj(l, lj@l)” = mpj (i, lj@l).

We have thus shown that (P, ([;0',150')) € L.

e Second, show that for j > ¢, (P;, (I;¢',150)) € L.
Thanks to Claim A, ;6 = (I;0)d, and by applying Claim B, ([;6)6 = (I;0)d;, and
similarly 130" = (150)d;. As d; = id, it follows that (I;0",15¢") = (1;6,1;0). Hence,
(Py, (1,6, 136)) = (P;, (1,8,1,)) € L.

We have thus shown that 6’ is a solution of ¢ = 1)o. As a consequence, 7/ = 6 oo is a solution

of .

Show that 7' is a constructive solution of (C,Z). Write C =Ty Ik 21 A+~ ATy, IF 2, We will
show by induction on ¢ that SatT;7" UZ F z;7/ using composition rules only.

Claim C will help us with the proof, but first we need to show that when z16 is deducible
using composition rules only, then x10" = wy is also deducible using composition rules only.
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Let ip be minimal such that SatT;;7 UZ F 216 using composition rules only. Otherwise, let
iop = n + 1. We show that, if ig < n, SatT;, 7" UZ F wp using composition rules only.

Recall that x10 = [a11:1+1;"';a71n] and wy = [a}ll_kvﬂ;...;a}“] with aj, of sort Base. Let
ny —ky,+1 <k <ny. As 7 is a constructive solution of (C,Z) in solved form and z6 is
a list such that SatT;,7 UZ F x160 using composition rules only, we can apply Lemma 4.1.1:
we have that SatT;; T UZ + ai using composition rules only. As a}g is of sort Base, it follows
that a/,l€ € SatT;,7 UZ, and so a/,l€ = a,lcé € SatT;,;7 UZ. Consequently, there is a proof of
SatT;, 7 UT = wp using composition rules only.

Consider j < ¢ (i.e. tail(l;) = x1). If there exists ¢ such that SatT;7 UZ F w; using only
composition rules, let ¢; be minimal such that SatT;, 7 UZ i~ w; using composition rules only.
Otherwise, let i; = n+ 1. We show that, for i; < n, SatT;, TUZL + w} using composition rules
only.

Claim C: Sat(T;;)7" UT I~ w} using composition rules only.
Recall that w; = [my,_t,;...;m1] and wj = [my,do; .. .;m1do] (With n — ky, > k;). We show
that for every 1 <k < kj, SatT;, 7" UT - mydp using composition rules only.

o If the case where i; > 9. Let 1 < k < k;. As 7 is a constructive solution of (C,7) in
solved form and w; is a list such that Sat(7;,)7UZ I w; using composition rules only, we
can apply Lemma 4.1.1: we have that Sat(Tij)T UZ F my using composition rules only.
As a consequence, there is a context Dy minimal in size and terms 1, ..., t, € Sat(T;;)UT
such that Dg|t17, ..., t,7, 2160] = my,.

We want to show that Dy |t17/,... ¢, 2160’ | = mydp.

First, thanks to Claim B, mé = myd;. Furthermore, my, is a strict subterm of w;, so
myd; = mydo. Thus, for every subterm u of my, ud = udp. We deduce that

Dk UlT, v ,th,$19J(5 = Dk UlT, N ,th,$19J50.
As Dy, is a minimal context,
(Dk |_t17', e ,th, x19J)5O = DkL(tlT)(SO, ey (tq7)50, (xle)éoj

Indeed, suppose by contradiction that there exists a non empty subcontext E of Dy
such that E|ti7,...,t,7,2160] = x16: then Dy is not minimal. Furthermore, (t;7)0 =
((tio)0)0 = t;o(06) = ;7" thanks to Claim A.

We have that (t;7)d0 = (¢;7)0, as t; € st(my) and mpd = mypdy. We deduce that
(tiT)d0 = t;7'. We also have that Dy |(t17)do, .. ., (t47)d0, (x10)d0 | = mydo. We deduce
that Dy |t17/,...,t;7",2160'| = myd. Furthermore, since i; > ig and Sat(T;)T UZ
wo = 710’ using composition rules only, we conclude that there is a constructive proof
of Sat(T;;)T UL = mydp.

e In the case where i; < ip, then similarly there is a context Dj, minimal in size and terms
t1,...,tqg € Sat(T;;) UZ such that Dy |t17,...,t,7] = my. By a similar reasoning, we
have that

Dy ltyT,. .. ,thJ(S = Dg|t17,. .. ,thJ(SO
== DkL(tlT)(SQ, PN (tq7)50J
Indeed, suppose by contradiction that there exists a non empty subcontext E of Dy such
that E|ti7,...,t,7| = 216: then ip is not minimal. We conclude in a similar manner
that there is a constructive proof of Sat(7T;,)T UZ I mydp.
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For every 1 < k < kj, there is a constructive proof of Sat(T;;)7' UZ I mydo, so there is a proof
of Sat(T;;)" UT I w) using composition rules only.

Now, we show that for every i, Sat(T;)7' UZ t- z;7' using composition rules only.

Let S; — { {w]|l] < Z} @] {1?19} if i <ig

{wjli; < i}

Note that if wy ¢ S;, then there is no constructive proof of Sat(T;)T UZ F wy. If wy € S;,
thanks to Claim C there is a constructive proof of Sat(7;, )7 UZ - w), with i; < i, so there is
a constructive proof of Sat(T;)T UZ F wj,. The same holds for z¢6 and wy.

As 7 is a constructive solution, there is a minimal context C; and terms t1,...,t, €
Sat(T;)UZ such that C;|t17, ..., tp7, Si| = z;7. We apply the swapping 6: C;|ti7, ..., t,7, S;]0
(z;7)0. Thanks to Claim A, we have that (z;7)d = (z,00)d = (z;0)(09), and (z;0)(05) =
(zi0)0 = z7'. Furthermore, C;|t17,...,t,7, 5|0 = C;|(t17)d, ..., (tp7)d, S0, as C; is min-
imal and for all k£ such that wy ¢ S;, then there is no constructive proof of Sat(7;)T UZ F wy.
Now, for every k, (tx7)d = ((tx0)0)d = txo(00) = tx7' thanks to Claim A. Consequently,
Ciltit', ..., tp7’, Si6] = z7'. For every wy, € S;, there is a constructive proof of Sat(T;)TUZ
wj, = wyd. Furthermore, if 210 € S;, then ¢ > ip and consequently there is a constructive proof
of Sat(T;)T UZ F wy. We deduce that there is a constructive proof of Sat(T;)7' UZ I z7'.

As a conclusion, 7’ is a constructive solution of (C,Z) and v smaller than 7. O

Theorem 4.3.4. Let L be a mapping-based language. Let (C,Z) be a constraint system and
¢ be an L-language constraint associated to (C,7).
Deciding whether (C,Z) A ¢ has a solution is in NP.

The proof of Theorem 4.3.4 involves three main steps. First, thanks to Theorem 2.3.1, it
is sufficient to decide in polynomial (DAG) size whether (C,Z) with language constraint ¢ has
a non-confusing solution when (C,7) is a solved constraint system. Due to Proposition 2.4.1,
we deduce that it is sufficient to show that deciding whether (C,Z) A ¢ has a constructive
solution is in NP, where (C,Z) is a solved constraint system.

The second and key step of the proof consists in bounding the size of a constructive
solution. Note that the requirement on the form of ¢ is not a restriction since any substitution
satisfying ¢ will necessarily have this shape.

For each constraint ((p{, ... ,p],ﬁ), (lj,l;»>> é L, the list I; provides constraints on the last
elements of the list l;-, while l;- provides constraints on the last elements of the list ;. The
main idea of the proof of Proposition 4.3.3 is to show that it is possible to cut the middle
of the list /;, modifying the list l;- accordingly. This is however not straightforward as we
have to show that the new substitution is still a solution of the constraint system (C,Z). In
particular, cutting part of the list might destroy some interesting equalities, used to deduce
terms. Such cases are actually avoided by considering constructive solutions and by cutting
at some position in the lists such that none of the elements are subterms of the constraint,
which can be ensured by combinatorial arguments.

Proposition 4.3.3 allows us to bound the size of /;¢ for a minimal solution 6, which in
turn bounds the size of l;ﬂ. The last step of the proof of Theorem 4.3.4 consists in showing
that any z6 is bounded by the size of the lists or can be replaced by a constant, by applying
Lemma 4.1.2.

We want to decide whether (C,Z) A ¢ has a solution.
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? ?
Write C=T1IFuir A--- AT, IFuy, and ¢ =vy € LA--- Av, € L. Our decision procedure
works as follows:

Step 1. First, we may assume without loss of generality that for each j < p, the term v; is

of the following form: v; = ({(pt,...,pk), (5, €;)>

Step 2. We guess a sequence of transformation rules in strategy S from (C,Z) to (C’,Z) where
(C',7) is a constraint system in solved form. We have that:

(C,T) ~% (C',T) € S with (C',Z) in solved form.

? ?
Let ¢/ = ((pto,...,pLo), (I1,1})) € LA---AN{(plo, ... ,pho), (lp,l;7>> € L where [; = {jo
and l;- = ;-0.

t . Let L = ; .
S €p 3 et 11;1?%(17‘”] Hdag

_ ! / !/ /!
Let M = #st(C', ¢') + max ] +2 x #var(C’) x tegﬁ%}fd),)HtHdag'
Let Zo C T of size p x 2(M + L) x (||b||gag +m + 2+ 2M + 2L) 4+ 1. Guess the values
of variables in terms built over names(C, ¢) UZy of size at most 2(M + L) x (||b||gag +
m + 2+ 2M + 2L) + 2m + 1. This gives us a substitution #’, and we check whether ¢’
is a solution of (C’,Z) and ¢'.

Proof.
We show that these steps allow us to guess a solution of (C,Z) and ¢ in polynomial time.

Step 1. We can write v; = <(p]1, . ,p7,;,1>, (¢, €;>> Indeed, if 6 is a solution of the constraint

vj ; L, then by definition of £, there is a tuple of names (p1, ..., pn,) and ground lists [, !’ such
that v;0 = ((p1,...,pm), (I,')). We can thus compute 0; = mgu{v; = ((z1,...,Zm), Y1,92))}
where x1, ..., xm, y1,y2 are fresh variables, with x1, ..., x,, of Base sort and y, y2 of List sort.
Then, we can apply substitution o; to C. The DAG size of C grows at most by 2 x (2+m)
for each transformation.

Step 2. We can apply Theorem 2.3.1: there exists a solution 6 of (C,Z) if, and only if,
there exist a deduction constraint system (C’,Z) in solved form and substitutions o, 6 such
that (C,Z) ~% (C',Z) by a derivation in strategy S, § = ¢’ o o, and ¢’ is a non-confusing
solution of (C',Z). Moreover, we have that 6’ is a solution of ¢o. The length of this derivation
is polynomially bounded in the DAG size of C and the DAG size of C’ is also polynomially
bounded by the DAG size of C. We can guess such a derivation, and are now left to decide
the existence of a non-confusing solution ¢’ to (C’',Z) and ¢o.

Thanks to Proposition 2.4.1, a non-confusing solution of (C’,Z) is in particular a construct-
ive solution.

Step 3. We want to decide whether there exists a constructive solution 6’ to the constraint
? ?
system (C',Z) and ¢ = ¢o where ¢/ = v} € LA --- Av, € L, with

o v ={(pl,....,ph), (I, 1})), and

e (C',7) is in solved form.
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Thanks to Lemma 4.3.3, if such a solution €’ exists, we can assume that

il ()07l < M = #5t(C', &) + max |11 +2 x fvar(C) x| _max [[#]aag-

for every 1 < 5 < p.
As ;0" is a list of names, we deduce that ||1;0" | gee< 2x||1;60' | <2 x (M + L).
We now bound the size of /¢’ (in DAG representation), using the language constraint

) , ?
(], sph)s (s I’)) € L. Indeed, by definition of the language L, if 1;0' = [a1;...; ap), then

150" = [my; . . .;ma] with m; = b;[1;6', az, [mi—1; ... ;ma]| where b; = b{w] — p{&’, o why
pin0'}. For every i < m, we can bound the size of [m;y1,...,m;] with respect to the size of
[mi, v ,ml]:

H[mis1s - malllaag < 1+ [, - .., ma)lldag + |bllaag +m + 11160 ||dag + 1.
Consequently,

1150 ldag < 10 X ([Iblldag + 1 + 2 + (|60 || dag)
< Hljgludag X (HbHdag +m+2+ Hljgludag)
< 2(M + L) % (||blldag + m + 2 + 2M + 2L).

Then, thanks to Lemma 4.1.2, we can assume that for every variable z, either x6" € st(¢'¢),
or z8 € {Ny,[]} with Ny € Z. Thus, we can guess the values of x6' by considering only a
finite subset of names of 7 of size

px2(M+ L) x (||bllgag +m +2+2M +2L) + 1
Moreover, for every variable x € dom(6’), we have that:

126" ldag < max{[|vj0'|laag | 1 < J < P}
< max{|| 150/ aag | 1 < j < p}+2m+1
<2(M + L) X (||bllaag + m +2+2M +2L) + 2m + 1

We can check whether a given substitution is a solution of (C’,Z) A ¢ in polynomial time.
In order to conclude, It only remains to show that M and L are polynomial in the size of C, ¢.
We have that

M = #st(C', ¢’ A 2 X C x t d
. #st( ,¢)+1r£?§pll "ol +2 x #var(C') teﬁ%/)" | dag, an

o L= max [[£;0]|dag-
First, we have that #st(C’, ¢') = #st(C, ¢). Then, for every term u € st(C, ¢), we get that

|uo||dag < ||©|ldag + #var(C) x m(acxd))HtHdag. This allows us to conclude. O
test(C,

4.4 Conclusion and future prospects

We have provided two new NP decision procedures for (automatically) analysing confidenti-
ality of security protocols with recursive tests, for a bounded number of sessions. The classes
of recursive languages we can consider both encompass chained-based lists of certificates and
most of the recursive tests performed in the context of routing protocols.
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Analyzing more recursivity tests. The way we have modeled both SMNDP and endairA
is not totally accurate. During the execution of both these protocols, the intermediate nodes
perform recursive checks too, on the partially built list of signatures. If the test fails, they
drop the message. We do not lose attacks with our modeling but we may discover false attacks
as some messages that should have been dropped are transferred without any hindrance. We
would have to add a language for partially-built signature lists. Defining such a language is
easy, but not so to see whether the decidability result still holds. Our proof makes use of the
fact that if two signature lists share a link, then they are equal, which would no longer be the
case. To circumvent that, we could define a notion of family, which would intuitively regroup
all the signature lists corresponding to a certain path.

Furthermore, in order to model Ariadne, where the recursivity test is different, we need to
again define another new class of recursive languages. In this protocol, the list of signatures
providing authentication is built during the request phase, and so both the list representing
the path and the list authenticating the path grow along the way. It is possible that those
two classes of languages could be linked, they both involve partial lists of signatures. The
difference lies in the fact that in Ariadne, the list of nodes grows along the way, in contrast
with endairA or SMNDP, where the list of nodes is fixed.

Analyzing routing protocols with recursive tests. The attack on SRP given in the
previous chapter shows that the intermediate links intuitively must actively participate by
authenticating the list in route discovery if we hope to prove correctness. Recursively built
authentication is one way to achieve this participation.

Combining recursivity tests and route property modelisation, i.e. the results obtained in
this chapter and in the previous one, is both logical and desirable in order to wrap up things
neatly. Notice that adding neighborhood constraints and other local properties of lists to
recursivity tests seems easily feasible. The crucial component to add is the property of route
correctness, and as this property concerns the entire route it interferes with the recursivity
test, which also concerns the entire route. In both chapters, we show decidability by showing
a small attack property: if there is an attack, there is one where we can bound the size of lists
involved in the attack. But the bounding relies on totally different techniques in the proofs.
For recursivity, we cut lists in the middle. In the other case, we have to keep some nodes in
the list and we discard more or less the other ones, modulo some constraints. Combining the
two approaches seems possible, but it is not straightforward.
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Chapter 5

Conclusion and Future Prospects

In this dissertation, we interested ourselves in ad hoc routing protocols. We proposed a model
that takes into account the particularities of these networks, such as the network topology,
the broadcast nature of communication and the particular tests performed in these protocols.
We have obtained decidability results for source routing protocols without recursivity tests,
and for protocols using only recursivity tests. A natural further direction for research would
be to study source routing protocols with recursive tests. This possibility has already been
discussed in Chapter 4 (see Section 4.4). Another natural direction is to study table routing
protocols, that we are able to model up to a certain point. This possibility was discussed in
Chapter 3 (see Section 3.5).

In this concluding chapter, we discuss other research directions. We believe it is possible to
produce a tool that would automatically analyze routing protocols and either detect attacks
or prove them secure. It would also be interesting to consider other security properties, and
in particular anonymity, as there is a specific family of ad hoc routing protocols designed to
guarantee anonymity. Finally, an important aspect of ad hoc networks we have not modeled
is mobility, and we would like to tackle this issue.

5.1 Towards automation

For constraint systems with small attacks properties, tools have been developed that can
find attacks without having to search all the space of possible solutions. For trace based
properties in particular, there are efficient tools that can detect attacks or guarantee security.
We want to build such a tool tailored for analyzing routing protocols. It is not possible to use
existing tools, at least without any modification: we have to take into account the topology
of the network, the broadcast primitive, an intruder localized at a precise node and particular
security properties using the underlying graph. Such particularities are not accounted for in
the existing tools.

A first possibility would be to implement our procedure. Of course, this would require
to adapt it: at the moment it is unfit for automation, with too many guesses. However, the
bounds we give are not tight, and some guesses could be more accurate. Instead of guessing
a list and then checking that it satisfies all the constraints, we could build a list taking into
account from the beginning some of the constraints and only check it against the remaining
constraints. In particular, all the local checks could give a basis for the possible solutions.

Another approach would be to use existing tools and to find a way to model the particular-

107
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ities of routing protocols. The crucial point is to be able to take into account the underlying
graph, and the modified model for the intruder.

It is possible to encode routing protocols for a fixed topology. [PPB10] uses AVISPA to
analyze ARAN, but without taking the topology into account, letting the intruder control the
network. However, this study shows that table routing protocols can be modeled in AVISPA
and analyzed. Benetti, Merro and Vigano [vigl0] use the AVISPA tool to automatically
analyse some execution scenarios of the ARAN and endairA protocols, and find some attacks
on ARAN. They consider two different network topologies for ARAN and discover attacks
using AVISPA. [ABY11] uses a model checking approach using the tool SPIN in order to
analyze ARAN in fixed topologies.

Checking particular scenarios of different routing protocols has already been done using
existing tools. The process however is done for small networks, as the graph needs to be hard
coded into the analysis tool. In order to analyze larger networks or networks with unknown
topology, a promising approach consists in reducing the size of the graph for which there can
be an attack, instead of focusing on the size of the solution.

In order to analyze all possible cases of topologies, [ABY11] uses a technique that consists
in reducing the search space by building topology equivalence classes and testing the smallest
topology in each class.

J. Degriek [Degl1] has already shown that looking for an attack can be reduced to looking
for an attack on small graphs. Any attack can be transformed in an attack on a smaller graph,
by distinguishing nodes that invalidate the routing property and regrouping the other ones.
This approach has some limitations in the design of the protocol, and particularly makes use
of only a fraction of the logic. Attacks on SRP and SMNDP were retrieved by implementing
this method in Proverif. This approach allows to consider only a finite number of small graphs.

5.2 Anonymity

Some routing protocols, in addition to other security properties, wish to maintain anonymity of
the participants to the protocol. These protocols are usually fairly complex, they make a rather
heavy use of recursivity. The messages are like onions, with multiple layers of encryptions to be
taken off in order to reach the destination. These protocols may involve recursive input/output
steps, and our results in Chapter 4 can not be applied in this case. We proved decidability for
classes of languages capturing recursivity tests only. It would be interesting to see if we could
reuse some of the results as part of a work that would deal with recursive input/output steps
with certain conditions to preserve decidability.

The difficulty with anonymous routing protocols does not lie only with modeling the pro-
tocol but also with modeling the security property. The anonymity property is delicate to
express even informally, more so in a formal way. Some works recently tackled this issue for
different applications: RFID tags [BCd10], voting protocols [DKR09] for instance. In order
to capture the notion of anonymity, they use indistinguishability of two executions where two
agents have exchanged their secret. Consequently, the notion of indistinguishability is not a
trace-based property but an equivalence-based one. In order to prove this property, we have to
consider two different sets of traces and compare them. There already exist some algorithms
for deciding trace equivalence for deducibility constraints, and Proverif [Bla05| makes use of
some of them, but they probably need to be adapted in order to be used in the context of
anonymous routing protocols.
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5.3 Challenges of mobility

It should be noted that we do not take mobility into account in the sense that the topology
of the network does not change during our analysis. There are two main reasons for this
limitation. First, many flaws can already be detected without any change in the network
topology. Second, properties like the validity of a route are of course (temporarily) invalidated
during a network topology modification. Therefore, such properties have to be analyzed once
the network is stabilized, previous routing protocol executions being possibly included in the
initial knowledge of the attacker.

An extension would be to model mobility during the execution of the protocol. This
would allow us to consider changes in the network topology and to analyze the security of
route updates.

In [Mer07], M. Merro proposes a process calculus to study the observational theory of
mobile ad hoc networks, called CMN (Calculus for Mobile Networks). He establishes a bisim-
ilarity relation that enables him to prove some structural properties of mobile networks, e.g.
a node that does not send any message can not be observed.

J. Godskesen proposes in [God07] a Calculus for Mobile Ad Hoc Networks, CMAN. In this
model, nodes may autonomously change their neighbor relationship and thereby change the
network topology. He shows behavioural equivalences between processes and analyze ARAN.
He proves that ARAN is not robust as adding an intruder leads to a process that is not
equivalent to the process with which they began.

J. Godskesen and S. Nanz then worked together [GN09] to establish a realistic mobility
model. They describe the movements of the nodes with a mobility function. A process
calculus taking the time into account is set, and the mobility functions can be compared
through bisimulation.

Models for mobile networks exist, but they do not include cryptography. Furthermore,
adding mobility to the network requires to model an appropriate security property. Our
decidability result holds only for the logic Lioute, though the concrete and symbolic model
hold for any logic.
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