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Abstra
t
Mobile ad ho
 networks 
onsist of mobile wireless devi
es whi
h autonomously organize theirinfrastru
ture. In su
h networks, a 
entral issue, ensured by routing proto
ols, is to �nd aroute from one devi
e to another. Those proto
ols use 
ryptographi
 me
hanisms in order toprevent mali
ious nodes from 
ompromising the dis
overed route.We �rst propose a 
al
ulus for modeling and reasoning about se
urity proto
ols, in
ludingin parti
ular se
ured routing proto
ols. Our 
al
ulus extends standard symboli
 models totake into a

ount the 
hara
teristi
s of routing proto
ols and to model wireless 
ommuni
ationin a more a

urate way.We then give de
ision pro
edures for analyzing routing proto
ols. We use a symboli
model and 
onstraint systems to represent the possible exe
utions of a given proto
ol. Werevisit 
onstraint system solving, providing a 
omplete symboli
 representation of the atta
kerknowledge.We show that it is possible to automati
ally dis
over (in NPTIME) whether there existsa network topology that would allow mali
ious nodes to mount an atta
k against a se
uredrouting proto
ol, for a bounded number of sessions. We also provide a de
ision pro
edure fordete
ting atta
ks in 
ase the network topology is given a priori.We also analyze proto
ols with re
ursive tests. We provide NPTIME de
ision pro
eduresfor two 
lasses of proto
ols with re
ursive tests and for a bounded number of sessions.
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Résumé
Les réseaux mobiles ad ho
 
onsistent en un assemblage de ma
hines mobiles qui organisentelle-mêmes leur infrastru
ture. Dans 
es réseaux, déterminer 
omment les messages doivent
ir
uler pour atteindre leur destination est une fon
tionnalité primordiale, qui est assuréepar les proto
oles de routage. Les proto
oles de routage sé
urisés utilisent des mé
anismes
ryptographiques pour empê
her des agents mal intentionnés de 
ompromettre les routes.Nous proposons un 
al
ul de pro
essus pour modéliser les proto
oles sé
urisés, et en par-ti
ulier les proto
oles de routage sé
urisés. Notre 
al
ul se base sur des modèles symboliques
onnus que nous enri
hissons pour prendre en 
ompte les 
ara
téristiques des proto
oles deroutage et de la 
ommuni
ation sans �l.Nous fournissons ensuite des pro
édures de dé
ision qui nous permettent d'analyser desproto
oles de routage. Nous mettons en pla
e un modèle symbolique ave
 des systèmes de
ontraintes pour représenter les exé
utions possibles d'un proto
ole. Nous revisitons les sys-tèmes de 
ontraintes en donnant une représentation symbolique 
omplète de la 
onnaissan
ede l'intrus.Nous montrons qu'on peut dé
ider s'il existe une topologie du réseau permettant uneattaque du proto
ole pour un nombre borné de sessions. Nous fournissons aussi une pro
édurede dé
ision pour déte
ter des attaques dans le 
as où la topologie du réseau est �xée à l'avan
e.Nous analysons aussi des proto
oles faisant des tests ré
ursifs. Nous fournissons des pro
é-dures de dé
isions en temps NP pour deux 
lasses de proto
oles utilisant des tests ré
ursifs etpour un nombre borné de sessions.
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Chapter 1
Introdu
tion
With the development of digital networks, su
h as Internet, 
ommuni
ation proto
ols areomnipresent. Digital devi
es have to intera
t with ea
h other in order to perform the numerousand 
omplex tasks we have 
ome to expe
t as 
ommonpla
e, su
h as using a mobile phone,sending or re
eiving ele
troni
 mail, making pur
hases online and so on.In su
h appli
ations, se
urity is important. For instan
e, in the 
ase of an online pur
hase,the right amount of money has to be paid without leaking the buyer personal informationto outside parties. Communi
ation proto
ols are the rules that govern these intera
tions. Inorder to make sure that they guarantee a 
ertain level of se
urity, it is desirable to analyzethem. Doing so manually or by testing them is not enough, as atta
ks 
an be quite subtle.Some proto
ols have been used for years before an atta
k was dis
overed.Be
ause of their in
reasing ubiquity in many important appli
ations, e.g. ele
troni
 
om-mer
e, a very important resear
h 
hallenge 
onsists in developing methods and veri�
ationtools to in
rease our trust on se
urity proto
ols, and so on the appli
ations that rely onthem. For example, more than 28 billion Euros were spent in Fran
e using Internet transa
-tions [BHS10℄, and the number is growing. Moreover, new types of proto
ols are 
ontinuouslyappearing in order to fa
e new te
hnologi
al and so
ietal 
hallenges, e.g. ele
troni
 voting,ele
troni
 passport to name a few.
1.1 Ad ho
 networks1.1.1 Wireless ad-ho
 networksComputers, and more generally ele
troni
 devi
es, 
ommuni
ate with ea
h other to performa large number of various tasks, su
h as entering into a transa
tion over the Internet, �ndingyour way thanks to the GPS, or simply retrieving money from a 
ash dispenser to name afew. Su
h 
ommuni
ation 
an be a
hieved either via a physi
al medium, often wires, or awireless medium. Mobile phones, portable 
omputers, wireless sensors are able to send andre
eive messages over radio waves, wi-�, bluetooth... Using wireless 
ommuni
ation is a 
oste�
ient way of setting up a 
ommuni
ation network in a short time when there is no existinginfrastru
ture, or if the network is only temporary.Wireless networks 
an be stru
tured around a 
entral point. For instan
e, in managedwireless networks whi
h are routinely used in home networks, the 
entral devi
e is linked to awired network and serves as a gateway to the Internet for the other devi
es on the network, itis 
alled the a

ess point. Sensor networks are also often hierar
hised, the sensors all have to1
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2 CHAPTER 1. INTRODUCTION
transmit the information they gather to a 
entral devi
e. However, there is not always su
h ahierar
hy, some wireless networks are de
entralized, without any preexisting stru
ture. Su
hauto adaptive networks are 
alled ad ho
 networks.Ad ho
 networks are the fo
us of many re
ent resear
h e�orts. In parti
ular, mobile andself-organizing networks are of high interest. Examples of appli
ations range from military orres
ue operations to intera
tion among meeting attendees or students during a le
ture, and
an also in
lude self-organizing wireless sensors or vehi
ular ad ho
 networks.
1.1.2 Routing proto
olsAd ho
 networks have no �xed infrastru
ture: the wireless devi
es making up the networkare arbitrarily lo
ated, and thus the way to 
ommuni
ate has to be 
arefully thought out.Basi
 
ommuni
ation is a
hieved by broad
asting messages. Any ma
hine within a 
ertainrange (whose value depends on the power of the antenna and the wireless medium 
hosen) ofthe emitting ma
hine 
an re
eive the message. Whereas in a managed wireless network, ea
hma
hine only 
ommuni
ates with the 
entral a

ess point and ignores all other messages, inan ad ho
 setting they have to listen to every message, at least until some sort of organisation
an be established. Ea
h of the devi
es 
an 
ommuni
ate dire
tly only with the devi
es thatare situated within a 
ertain range. As a 
onsequen
e, when two distant ma
hines wish to
ommuni
ate, the data tra�
 has to travel through the other devi
es making up the networkuntil it rea
hes its destination. In a wired network, bringing the data to its destination is atask performed by spe
i�
 devi
es 
alled routers. In an ad ho
 wireless network, ea
h devi
e
an a
t as a router, propagating messages on behalf of some other devi
e.An ad ho
 network 
an be thought of as a graph, where the nodes of the graph representthe devi
es making up the network. Two nodes are linked by an edge in the graph if they arewithin dire
t 
ommuni
ation range of ea
h other, whi
h means that when one of the devi
es ofthat link broad
asts a message, his neighbor 
an hear it. Finding the paths that the messagesmust follow in an a priori unknown and 
onstantly 
hanging network topology is a 
ru
ialfun
tionality of any ad ho
 network. Spe
i�
 proto
ols, 
alled routing proto
ols, are designedto ensure this fun
tionality known as route dis
overy.As an illustrative example, we give a brief des
ription of the route dis
overy fun
tionalityof a basi
 routing proto
ol, namely the Dynami
 Sour
e Routing proto
ol (DSR). DSR is asimple routing proto
ol designed to be used in ad ho
 networks.This proto
ol is used when a node, that we denote as the sour
e node S, wishes to 
ommu-ni
ate with another node that we will denote as the destination node D. The routing methodused to transfer data makes use of a route, a path in the graph that the data must follow torea
h its �nal destination. In order to perform the routing operation, S thus needs to dis
overa path in the network leading to D. The route dis
overy in DSR is divided in two phases: arequest phase and a reply phase. During the request phase, messages are sent everywhere overthe network, in an e�ort to rea
h D. First, the sour
e node broad
asts a message signallingthat it is looking for a route towards D. The nodes re
eiving this message that do not 
or-respond to the intended destination are 
alled intermediate nodes. They forward the messageafter appending their name to the request. When D is rea
hed, the reply phase begins, wherethe dis
overed route is 
onveyed ba
k to S through the intermediate nodes. D. Jonhson andD. Maltz provide a full des
ription of the proto
ol in [JMB01℄.
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1.1. AD HOC NETWORKS 3
1.1.3 Classi�
ation of routing proto
ols.Routing proto
ols 
an be 
lassi�ed into two groups:
• proa
tive (or periodi
): those proto
ols try to maintain up-to date routing information.In other words, routes are periodi
ally updated. At any time, ea
h nodes knows how toroute a pa
ket.
• rea
tive (or on-demand): those proto
ols establish routes only when it is needed. In otherwords, a route dis
overy is initiated only when a sour
e node S wishes to 
ommuni
atewith a destination node D whi
h he does not already know how to rea
h.In general, proa
tive approa
hes are thought to have shorter laten
y, as routes are instantlyavailable, while on-demand approa
hes have a lower overhead, sin
e route dis
overy onlyo

urs when it is useful. The main drawba
k of on-demand routing proto
ols is the fa
t that
ommuni
ation must be delayed until a route is found. However, information is updated inan on-demand manner, in 
ontrast with proa
tive proto
ols. As these proto
ols maintain up-to-date routing information for all possible destinations, they will establish some routes thatwill never be used. There are also some hybrid proto
ols that try to 
ombine the advantagesof both approa
hes.In wired networks, routing proto
ols usually adopt the proa
tive approa
h, whi
h is betteradapted to a network whose 
on�guration 
hanges rarely: the updates need not be too fre-quent. For instan
e, the routing proto
ol used in the Internet, the Border Gateway Proto
ol(BGP) [BGP95℄, is proa
tive. Some routing proto
ols for ad ho
 networks also use thismethod, su
h as SEAD [HJP03℄.Furthermore, routing proto
ols 
an also be sorted between the sour
e routing and tablerouting methods.
• sour
e routing : the sour
e node needs to know the entire route between itself and thedestination. During the routing phase, the sour
e node provides the route that themessage he is sending has to follow, and the intermediate nodes forward the messagealong this route. This means that every pa
ket 
arries the route in its header, as ea
hnode needs this information in order to forward the data along the way to the destina-tion. Examples of sour
e routing proto
ols in
lude DSR [JMB01℄, AnonDSR [SKY05℄,Ariadne [HPJ05℄ and endairA [BV04℄.
• table routing (or hop-by-hop routing): ea
h node knows only whi
h is the following nodeon the route towards a given destination. This information is stored in routing tables.Several methods 
an be used to 
ompute this next node, mainly link-state and distan
e-ve
tor. In link-state algorithms, the nodes share information about their neighbors,and ea
h node 
omputes the shortest path towards every destination. In distan
e ve
toralgorithms, nodes share their estimates of the shortest path for all known nodes, and theneighbors update their routing tables a

ordingly. Examples of table routing proto
olsin
lude AODV [PBR99℄ and its se
ure version SAODV [ZA02℄.Sour
e routing allows one to easily prevent the presen
e of loops in a route, but in 
om-pensation ea
h pa
ket 
arries the entire route in its header. It is more 
ompli
ated to dete
tthe formation of loops in the 
ase where table routing is used. This is a serious drawba
k, asloops are serious �aws: when a routing loop forms, it generates ex
essive tra�
 in the loop,and may prevent the nodes of the loop to fun
tion in a normal way.
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4 CHAPTER 1. INTRODUCTION
Most of the time, on-demand routing proto
ols are made of several separate me
hanisms:route dis
overy, route maintenan
e and data transmission. Route dis
overy 
onsists in �ndinga suitable path from a sour
e node to a given destination, and route maintenan
e is theme
hanism used when a link breaks, whi
h 
an be quite frequent in a mobile network. However,route maintenan
e often 
onsists in advertising the link failure and prompting the sour
e nodeto initiate a new route dis
overy if needed, without any attempt at �xing the existing route.Data transmission is the a
tual 
ommuni
ation phase and o

urs when a route has beenestablished through route dis
overy.In order to se
ure data transmission, the route dis
overy has to be se
ure too. We fo
uson the se
urity of route dis
overy, and when des
ribing a routing proto
ol we 
onsider onlythe route dis
overy me
hanism. The se
urity of route dis
overy is 
ru
ial for the fun
tioningof ad ho
 wireless networks. Indeed, an adversary 
an easily paralyze the entire network byatta
king the underlying routing proto
ol. While the routing aspe
ts of mobile ad ho
 networks(MANETs) are well-understood, the resear
h a
tivities about se
urity in those networks arestill at their beginning.

1.2 Se
ure Ad Ho
 Routing Proto
olsAssuming that the routing proto
ols operate in a friendly environment is unrealisti
. Se
urerouting proto
ols have been proposed in order to take the adversarial setting into a

ount andprote
t against an atta
ker.AODV [PBR99℄ and DSR [JMB01℄ are not se
ure and in parti
ular do not ensure 
orre
tionof the dis
overed route in the presen
e of mali
ious nodes. Some proto
ols aim at �xing thisvulnerability. For instan
e, SAODV [ZA02℄ is a se
ured version of AODV, and SRP [PH02℄ isa se
urity me
hanism designed to be used with sour
e routing proto
ols su
h as DSR.Some proto
ols [SKY05, ZWK+04, BEKXK04℄ moreover want to ensure anonymity of theparti
ipants. They make use of similar te
hniques as some se
ure sour
e routing proto
ols.The 
omputations performed are however more 
omplex in general, as the se
urity guaranteesdesired are more di�
ult to obtain.In order to ensure 
orre
tness of the route, nodes exe
uting a routing proto
ol may haveto perform some 
he
ks, typi
ally 
he
king that some other node 
laiming to be their neighbora
tually is. Spe
i�
 proto
ols are designed to dis
over neighbors, and they have to be se
urein order to derive se
urity of the routing proto
ol above. The importan
e of this fun
tionalityis explained in [PPS+08℄, and a method to 
he
k whether su
h proto
ols are indeed se
ure isintrodu
ed by [PPH08℄. We use se
ure neighborhood dis
overy as a bla
k box, in the same wayas 
ryptography: we 
onsider that ea
h node knows the list of its neighbors when exe
uting arouting proto
ol.1.2.1 Cryptographi
 primitivesIn order to build proto
ols that prote
t information, we make use of 
ryptography: from theGreek words kryptos = "hidden, se
ret" and graphein = "writing", it denotes the s
ien
e ofhiding information. The need for prote
ting sensitive data over digital media has prompted ahuge development of this �eld of study. In the symboli
 model, the workings of 
ryptographyare 
aptured by 
ryptographi
 primitives, that are used as a bla
k box hiding the 
omputa-tional workings of 
ryptography. The data on whi
h these methods are applied is 
alled themessage.
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1.2. SECURE AD HOC ROUTING PROTOCOLS 5
En
ryption. Symmetri
 en
ryption is the oldest known 
ryptographi
 method. Coding amessage in order to keep it hidden is 
alled en
ryption. The inverse method, i.e. retrievingthe initial message is 
alled de
ryption. En
ryption and de
ryption make use of a key. Theen
ryption may be symmetri
 or asymmetri
. For symmetri
 en
ryption, the same key is usedfor en
rypting and de
rypting a message. Asymmetri
 en
ryption involves di�erent keys forthe two operations: a publi
 key for en
ryption and a se
ret key for de
ryption. De
ryptionshould only be possible with the se
ret key.Hash fun
tion. A 
ryptographi
 hash fun
tion is a fun
tion that takes an arbitrary blo
k ofdata and returns a bitstring of �xed size 
alled the hash value. A 
hange in the data, whethera

idental or intentional, will 
hange the hash value. Computing a hash value is easy, butthe opposite operation, i.e. generating a message that has a given hash, should be infeasible.Furthermore, it should be infeasible to �nd two di�erent messages with the same hash.Message authenti
ation 
ode. A message authenti
ation 
ode, or MAC, is a short bit-string used to authenti
ate a message. The fun
tion produ
ing a MAC from an arbitrary-length message needs a se
ret key to perform the 
omputation. Agents possessing the samekey will be able to dete
t 
hanges in the message by 
omputing the MAC and 
omparingthem. The algorithm is sometimes 
alled keyed hash fun
tion. The MAC value prote
ts botha message's data integrity and its authenti
ity.Digital signatures. A digital signature is a s
heme for proving the authenti
ity of a digitalmessage, as traditional handwritten signatures are proofs of the authenti
ity of a do
ument.Digital signatures are 
ommonly used for example in software distribution, �nan
ial trans-a
tions, and in other 
ases where it is important to dete
t forgery or tampering. Digitalsignatures employ a type of asymmetri
 
ryptography, two algorithms make up a signatures
heme. The signing algorithm produ
es a signature, given a message and a private key. Thesignature verifying algorithm 
onsiders as input a message, a verifying key and a signature,and either a

epts or reje
ts the message's 
laim to authenti
ity. It should be infeasible togenerate a valid signature without the private key.1.2.2 Examples of routing proto
olsDesigning se
ure version of routing proto
ols is a di�
ult task. A
tually, most routing proto-
ols proposed for wireless ad ho
 networks are inse
ure, atta
ks have been dis
overed againstthem. Those who have no known atta
ks have mostly only been analysed by informal reas-oning. We des
ribe here two routing proto
ols 
laimed to be se
ure that will be used asillustrating examples in this dissertation.Se
ure Routing Proto
ol (SRP) [PH02℄ is a
tually not a routing proto
ol in itself. Infa
t, it is designed to be applied as an extension of an existing on-demand sour
e routingproto
ols, su
h as DSR. The goal of the proto
ol obtained after extension is to provide 
orre
t
onne
tivity information, even in the presen
e of (non-
olluding) atta
kers. In order to be ableto use SRP, the sour
e and destination of the route dis
overy are required to have a se
urityasso
iation, for instan
e sharing a key KSD.A synta
ti
 des
ription of SRP is given in Figure 1.1. To dis
over a route to the destination,the sour
e S 
onstru
ts a request pa
ket and broad
asts it to its neighbors. The request pa
ket
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6 CHAPTER 1. INTRODUCTION
req, rep: identi�ers indi
ating the phase of the exe
ution
Id : request identi�er
qn: query sequen
e number
ℓ, ℓ′: list of nodes
KSD: key shared between S and DMAC : fun
tion 
omputing a message authenti
ation 
ode
m,m′: message authenti
ation 
odes

Request phase:
S broad
asts 〈req, S,D, qn, Id , [],MAC(KSD, 〈S,D, qn, Id〉)〉

V re
eives 〈req, S,D, qn, Id , ℓ,m〉
V 
he
ks that the message was last pro
essed by a neighbor
V broad
asts 〈req, S,D, qn, Id , V :: ℓ,m〉

D re
eives 〈req, S,D, qn, Id , ℓ′,MAC(KSD, 〈S,D, qn, Id〉)〉Reply phase:
D sends 〈rep, D, S, ℓ′,MAC(KSD, 〈S,D, qn, Id , ℓ

′〉)〉

V re
eives 〈rep, D, S, ℓ′,m′〉
V 
he
ks that ℓ′ is plausible from its point of view
V sends 〈rep, D, S, ℓ′,m′〉

S re
eives 〈rep, D, S, qn, Id , ℓ′,MAC(KSD, 〈S,D, qn, Id , ℓ
′〉)〉

Figure 1.1: Spe
i�
ation of SRP

ontains its name S, the name of the destination D, an identi�er of the request Id , a requestsequen
e number qn to prove the freshness of the route request and to prevent replaying ofold requests, a list 
ontaining the beginning of a route to D, and a MAC 
omputed overthe 
ontent of the request with a key KSD shared by S and D. It then waits for an answer
ontaining a route to D with a MAC mat
hing this route, and tests whether it is a plausibleroute by 
he
king that the route does not 
ontain a loop and that his neighbor in the route isindeed a neighbor of his in the network. Ea
h intermediate node that re
eives the message �rst
he
ks that the list representing the route begins with the identi�er of one of his neighbors.Then, he appends his identi�er to the route a

umulated so far in the request and broad
aststhe modi�ed request message to his immediate neighbors. During the reply phase, they behavein a similar way, they 
he
k that the route is plausible a

ording to their view of the networkand they forward the reply along the way. Upon re
eiving the request pa
ket, the destination
he
ks that the MAC is 
orre
t and initiates the reply phase. He sends a message 
ontainingthe route dis
overed with a MAC 
omputed over it with the key KSD.This proto
ol, although it was analyzed informally and 
onsidered se
ure [PH02℄, is subje
t
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1.2. SECURE AD HOC ROUTING PROTOCOLS 7
req, rep: identi�ers indi
ating the exe
ution phase
Id : request identi�er
ℓ, ℓ′: list of nodes
lsig , l

′
sig : lists of signatures

sigD, sigV : signatures over the reply message
Request phase:

S broad
asts 〈req, S,D, Id , []〉
V re
eives 〈req, S,D, Id , ℓ〉
V 
he
ks that the message was last pro
essed by a neighbor
V broad
asts 〈req, S,D, V :: ℓ〉

D re
eives 〈req, S,D, ℓ′〉
D 
he
ks that the message was last pro
essed by a neighborReply phase:

D sends 〈rep, D, S, ℓ′, sigD〉
V re
eives 〈rep, D, S, ℓ′, l′sig〉
V 
he
ks that (ℓ′, lsig) is a valid pair node list/list of signatures
V sends 〈rep, D, S, ℓ′, sigV :: sig〉

S re
eives 〈rep, D, S, ℓ′, l′sig〉
S 
he
ks that (ℓ′, l′sig) is a valid pair node list/list of signatures

Figure 1.2: Spe
i�
ation of EndairA
to atta
ks [Mar03, BV04℄. We des
ribe one of these atta
ks in Se
tion 1.2.3.EndairA is a se
ured routing proto
ol inspired by another one 
alled Ariadne. Theauthors, G. Á
s, L. Buttyán and I. Vajda, dis
overed an atta
k on Ariadne [BV04℄. Theyestablished a formal model to analyze routing proto
ols and proved EndairA to be se
ure fora slightly modi�ed notion of 
orre
tness, 
alled route validity. The proto
ol is 
alled endairA(whi
h is the reverse of Ariadne) be
ause, instead of signing the request, they propose thatintermediate nodes should sign the route reply. The aim of signing the route reply is to prote
tthe proto
ol against the atta
ks found against Ariadne, whi
h take advantage of the fa
t thatthe list 
ould be tampered with during the request phase. There are no known atta
ks againstthis routing proto
ol.A synta
ti
 des
ription of EndairA is given in Figure 1.2. The initiator of the routedis
overy pro
ess, S, generates a route request 
ontaining the identi�ers of the sour
e S andthe destination D, and a randomly generated identi�er Id . Ea
h intermediate node thatre
eives the message for the �rst time appends its identi�er to the route a

umulated so far
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8 CHAPTER 1. INTRODUCTION
in the request and broad
asts the modi�ed request message to its immediate neighbors.When the request rea
hes the destination D, it generates a route reply 〈rep, D, S, ℓ′, sigD〉where ℓ′ is the a

umulated route obtained from the request and sigD = Jrep, D, S, ℓ′KKD

isa digital signature of D on the other �elds of the reply. The reply is sent ba
k to S on thereverse of the route found in the request.Upon re
eiving the reply 〈rep, D, S, ℓ′, lsig〉, the intermediate node V veri�es that the route
ℓ′ 
ontains its identi�er V and that both the pre
eding and following identi�ers in the listbelong to neighboring nodes. The node V also 
he
ks that the list of signatures lsig is validand 
orresponds to the list of names ℓ′. If these veri�
ations fail, then the message is dropped.Otherwise, V appends its signature to lsig and forwards it to the next node.When S re
eives the route reply 〈rep, D, S, ℓ′, l′sig〉, he 
he
ks that the signatures in l′sig arevalid and 
orrespond with the sequen
e of nodes in list ℓ′. If these veri�
ations are su

essful,then S a

epts the route ℓ′.
1.2.3 Atta
ks on routing proto
ols
We 
an 
onsider two types of atta
ks [HPJ05℄: routing disruption and resour
e 
onsumption.During routing disruption atta
ks, the aim of the intruder is to prevent the routing proto
olfrom exe
uting in a 
orre
t way. In resour
e 
onsumption atta
ks, the intruder sends requestsover the network to make honest nodes 
onsume their (limited) resour
es su
h as bandwidthor memory.The �rst kind of atta
ks 
an be performed by an intruder trying to route all the tra�
through nodes he 
ontrols, so as to be able to listen to all 
ommuni
ations. He 
ould alsotry to prevent two nodes from 
ommuni
ating by advertising a false route. The se
ond typeof atta
ks are denial of servi
e atta
ks. If a proto
ol satis�es the route 
orre
tness property,it is se
ure against route disruption atta
ks but not ne
essarily against resour
e 
onsumptionatta
ks. We des
ribe below some generi
 ways of mounting atta
ks.Replay atta
ks. A replay atta
k 
onsists in broad
asting without modi�
ation a messagethat the intruder re
eived from an honest agent. A replay atta
k may for example enablethe intruder to steal the identity of an honest agent. In the 
ontext of routing proto
ols, this
ould shorten the paths going through the intruder, and thus possibly prompt nodes to 
hoosethese paths to 
ommuni
ate. As an illustration, we 
onsider again SRP.In [BV04℄, an atta
k is found on SRP for an intruder 
ontrolling one node in the network.This atta
k, des
ribed in Figure 1.3 is similar to a replay atta
k, but the message transferredis modi�ed slightly, in order to fool the destination into signing a path that appears 
orre
t.

First, the sour
e node S initiates the proto
ol by sending a request message
〈req, S,D, qn, Id , [],MAC(KSD, 〈S,D, qn, Id〉)〉.As the intruder is a neighbor of the sour
e, he re
eives the message. This enables him to sendthe forged message 〈req, S,D, qn, Id , [X,W ],MAC(KSD, 〈S,D, qn, Id〉)〉. When the destination

D re
eives this message, he 
he
ks that the node at the head of the list is one of his neighbors.In this 
ase, the test su

eeds, as X is really a neighbor of D, even though X has not sent themessage. The destination node then 
omputes a MAC over the false route [X,W ], and sends
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1.3. FORMAL VERIFICATION 9
I

W

X

S D
(2)(1) (3)(3)

1. 〈req, S,D, qn, Id , [],MAC(KSD, 〈S,D, qn, Id〉)〉2. 〈req, S,D, qn, Id , [X,W ],MAC(KSD, 〈S,D, qn, Id〉)〉3. 〈req, S,D, qn, Id , [X,W ],MAC(KSD, 〈S,D, qn, Id , [X,W ]〉)〉

Figure 1.3: Example of an atta
k on SRP
a reply message that the intruder forwards to the sour
e. Noti
e that this atta
k is possibleeven if nodes perform se
ure neighborhood dis
overy: as X is a neighbor of D, the destinationnode D a

epts [X,W ] as a route between him and S.
Tunneling atta
ks. This atta
k requires the intruder to 
ontrol at least two nodes. Atunneling atta
k (or wormhole atta
k) is similar to a replay atta
k: when the �rst nodere
eives a request sent by an honest agent, he sends it (over a private 
hannel) to the othernode, who pro
esses it as if he had really re
eived it. This 
an lead other agents to believe thata route going through the dishonest node is short, and so to 
hoose this route to 
ommuni
ate.
Rushing atta
ks. For this atta
k, the intruder needs to be faster than the honest agents(see a des
ription and model in [KHG06℄). To prevent �ooding of the network, in most of therouting proto
ols, the agents pro
ess only the �rst request that they re
eive. If the intruderis faster, the probability is higher that the routes found by the proto
ol go through him.Intruders in a network 
an be passive or a
tive. A passive intruder does not send anymessage, he only overhears the 
ommuni
ations. Passive intruders are 
onsidered a threat forse
re
y or anonymity, but not for the 
orre
t exe
ution of proto
ols. An a
tive intruder 
ansend messages over the network. In an ad ho
 network, the power of the intruder also dependson the number of nodes that he 
ontrols. In a wireless network, the intruder is 
onstrainedby his lo
ation in addition to his 
omputing abilities. An intruder 
ontrolling only one nodehas therefore less power to disrupt the routing proto
ols than an intruder 
ontrolling severalnodes a
ross the network. For example, an intruder 
ontrolling only one node 
an not mounttunneling atta
ks.
1.3 Formal veri�
ationIn the previous se
tion, we have seen an atta
k against SRP, although the authors analyzedtheir proto
ol with BAN logi
 and 
on
luded that it was se
ure. They showed that, after asu

essful run of the proto
ol, the sour
e node S believes that the entire route reply originatesfrom the destination node D. Unfortunately, even though this analysis is sound, it is notsu�
ient to ensure route 
orre
tness([Mar03℄).This illustrates how di�
ult it is to 
orre
tly
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10 CHAPTER 1. INTRODUCTION
analyze 
ryptographi
 proto
ols. Furthermore, veri�
ation has to be performed for ea
h newproto
ol, and veri�
ation by hand is tedious and error prone. Other methods to test whetherrouting proto
ols are se
ure pro
eed by 
he
king whether they withstand known atta
ks, butthis is not su�
ient to prove that they are se
ure.It has been re
ognized that designing a se
ure proto
ol is a di�
ult and error-prone task.Indeed, proto
ols are very sensitive to small 
hanges in their des
ription and many proto
olshave been shown to be �awed several years after their publi
ation (and deployment).Formal methods in
lude te
hniques that 
an be used for the spe
i�
ation, development andveri�
ation of proto
ols. Performing appropriate analyses 
an 
ontribute to the reliability androbustness of software using the proto
ols. Formal methods make use of a variety of theoreti
al
omputer s
ien
e fundamentals, in parti
ular logi
 
al
uli, formal languages, automata theory,and program semanti
s, but also type systems and algebrai
 data types.1.3.1 Symboli
 approa
hSymboli
 models are highly astra
ted models used to reason about proto
ols. In symboli
 mod-els, the network is represented by a set of agents that 
an ex
hange messages. These messagesare represented by symboli
 terms. Furthermore, in the traditional Dolev-Yao model [DY81℄,the intruder 
ontrols the network: he 
an overhear, inter
ept, and forge messages within the
onstraints of the 
ryptography. The symboli
 models make the hypothesis of perfe
t 
rypto-graphy : all the 
ryptographi
 primitives behave in an ideal way. For instan
e, it is impossibleto de
rypt without the 
orresponding key, or to sign a message without a private key.A multitude of e�e
tive frameworks have been proposed to analyze proto
ols in a symboli
way. The Paulson indu
tive model [Pau98℄ is an algebrai
 model where a proto
ol is modeledindu
tively as a set of tra
es. A tra
e is a sequen
e of 
ommuni
ation operations representingan exe
ution of the proto
ol. Proofs in this model 
an be generated with the theorem proverIsabelle/HOL [Pau89℄. The strand spa
es model [THG99℄ introdu
es the notion of strands,whi
h represent a sequen
e of events either legitimate or mali
ious. A strand spa
e is a
olle
tion of strands with links representing 
ausal intera
tion. The applied pi-
al
ulus [AF01℄is an extension of the pi 
al
ulus with value passing, primitive fun
tions, and equations amongterms. Constraints systems [RT01℄ represent ea
h proto
ol exe
ution as a set of 
onstraintswhi
h represent the intruder knowledge and the terms the intruder has to be able to build inorder to perform an atta
k.Formal modeling and analysis te
hniques are well-adapted for 
he
king 
orre
tness of se
ur-ity proto
ols. Formal methods have for example been su

essfully used for analyzing authen-ti
ation or key establishment se
urity proto
ols. Symboli
 methods have been su

essfullyapplied to the analysis of se
urity proto
ols, yielding the dis
overy of new atta
ks like thefamous man-in-the-middle atta
k in the Needham-S
hroeder publi
 key proto
ol [Low96℄ or,more re
ently, a �aw in Gmail [ACC+08℄. While se
re
y and authenti
ation properties areunde
idable in the general 
ase [DLMS99℄, many de
ision pro
edures have been proposed.For example, se
re
y and authenti
ation be
ome NP-
omplete for a bounded number of ses-sions [RT01℄ and B. Blan
het has developed a pro
edure for se
urity proto
ols en
oded as Horn
lauses [Bla01℄. This yielded various e�
ient tools for dete
ting �aws and proving se
urity(e.g. ProVerif [Bla05℄ or Avispa [ABB+05℄).Symboli
 models are highly abstra
ted approa
hes, but there are results that show thatthe se
urity guarantees they provide are nonetheless reasonable. For instan
e, let us 
onsider
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1.3. FORMAL VERIFICATION 11
a more pre
ise model, the 
omputational model. In this approa
h, messages are bitstringsand the intruder is a probabilisti
 polynomial time Turing ma
hine. Results of 
omputationalsoundness show that it is possible to prove se
urity in the symboli
 model and to lift theresult to the 
omputational model, under 
ertain 
onditions. The 
on
ept of 
omputationalsoundness was introdu
ed by M. Abadi and Ph. Rogaway [AR00℄ ( [CKW09℄ is a re
ent surveyof 
omputational soundness results). In light of these works, symboli
 models seem to be areasonable approa
h for analyzing proto
ols in an e�
ient way while having su�
ient se
urityguarantees.
1.3.2 Chara
teristi
s of routing proto
olsWhile key-ex
hange proto
ols in traditional frameworks are well studied, there are very fewattempts to develop formal te
hniques allowing an automated analysis of se
ured routing pro-to
ols. Up to our knowledge, tools that would allow the se
urity analysis of routing proto
olsare also missing. Those proto
ols indeed involve several subtleties that 
annot be re�e
ted inexisting work, that we will des
ribe now.Routing proto
ols involve di�erent elements that distinguish them from other 
rypto-graphi
 proto
ols. For instan
e, most 
ryptographi
 proto
ols involve two agents who wantto 
ommuni
ate while preserving some priva
y or anonymity or other property. They 
ouldfor example be exe
uted on
e the routing proto
ol has been run and has established a routebetween two nodes. We give here the main 
hara
terisit
s of routing proto
ols that have tobe a

urately modeled in order to formally verify them.
Number of agents involved. It is impossible to know in advan
e how many devi
es willbe involved in the exe
ution of a route dis
overy proto
ol. In fa
t, route dis
overy 
an involvean unbounded number of nodes. The �rst phase of route dis
overy potentially involves all thenodes of the network. Intuitively, when a node S wants to intera
t with another node D andhe has no idea of how to rea
h D he will send messages everywhere on the network in order torea
h him. Furthermore, the number of nodes in the network is not �xed. By nature, anyone
an parti
ipate in an ad ho
 network. The only requirement is to emit and re
eive messages viathe same wireless medium as the other nodes. The infrastru
ture is mu
h more �exible than ina wired setting. Nodes 
an appear, disappear, move. It is thus impossible to know in advan
ehow many devi
es will be involved in the exe
ution of a route dis
overy proto
ol, even by �xingthe sour
e and the destination. Fixing the network is a �rst step towards knowing whi
h nodeswill be involved. We believe that 
onsidering a truly unbounded number of parti
ipants wouldmake any rea
hability problem, and thus basi
 se
urity properties, unde
idable, as it is the
ase for an unbounded number of sessions in traditional proto
ols. However, it is not 
learwhether some simple 
onditions 
ould 
ir
umvent this problem. Unfortunately, we do notdeal with the 
ase of an unknown number of parti
ipants, but we deal with an unboundednumber of nodes in the network (with a bounded number of nodes in the network that a
tivelyparti
ipate in the proto
ol exe
ution).
Network topology. The underlying network topology is 
ru
ial to de�ne who 
an re
eivethe messages sent by a node. Moreover, the intruder is lo
alized to some spe
i�
 nodes(possibly several). The natural way to model an ad ho
 network is to use a notion of graphwhere there is an edge between two nodes if they 
an 
ommuni
ate dire
tly. For a proto
ol
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12 CHAPTER 1. INTRODUCTION
used in a wired or a �xed setting, there also exists an underlying graph, but it does not playa role in the intera
tion. In a traditional mali
ious setting, the intruder is assumed to 
ontrolthe network. He 
an re
eive all the messages that are sent between the parti
ipants, inter
eptthem, forge and send messages in the name of an honest agent. In a wireless network where
ommuni
ation 
an only o

ur node to node, it is not realisti
 to assume that an intruder 
anre
eive all messages. The intruder has to be lo
ated somewhere, and 
an thus only re
eive themessages sent by his immediate neighbors. Similarly, he 
an only send messages dire
tly tohis neighbors. The physi
al aspe
t of the equipment used by the intruder 
an play a role. If hehas the use of an antenna that 
an send messages in a given dire
tion, it is possible for him tosend messages to a given agent. Otherwise, he has to broad
ast his messages, as do the honestagents. The broad
ast nature of transmission means that the intruder 
an no longer inter
eptmessages. It is possible to jam the 
ommuni
ations in a physi
al way, but this would blo
k anymessage during a 
ertain amount of time without dis
rimination. We do not 
onsider denialof servi
e atta
ks. We do not give the intruder the ability to jam 
ommuni
ations either. Butwe give him the ability to send messages to only one of his neighbors. This only adds to hispower, so we do not miss atta
ks by doing su
h a thing. We also let the intruder 
ontrolseveral nodes of the network.
Spe
i�
 data stru
ture: list. When studying sour
e routing proto
ol, we have to 
onsidera data stru
ture not usually treated in veri�
ation tools: the list. Indeed, the route dis
overedis represented by a list of nodes. Intuitively, during the �rst phase of the dis
overy pro
ess,also known as request phase, the list is built in
rementally, ea
h node adds its name to theroute �eld in the request message, and when the message rea
hes the destination, the replyphase begins. During the reply phase, he only has to send a message ba
k to the sour
e,
ontaining the fully built list, possibly prote
ted so as not to be modi�ed. The sour
e needsthis list to route the normal data tra�
 between him and the destination. So messages 
ontainlists, whose size are not known in advan
e. We model lists and we show that not knowingtheir size beforehand does not prevent us from establishing some de
idability results.
Se
urity Properties. What seems to be a fundamental property is that when a routingproto
ol dis
overs a route, this route mat
hes a real path in the network. This property
an not be redu
ed to an authenti
ation or se
urity property, due in parti
ular to the fa
tthat it is a graph property. In the existing frameworks, this property 
an therefore not bede�ned. We model this property by using a logi
 that reasons about lists. Some routingproto
ols aim to ensure other se
urity properties about the route, for instan
e that the routedis
overed by the proto
ol is as short as possible, or that the route does not go through anymali
ious node, or yet that the proto
ol always dis
over a route when a path exists in thegraph . . . All these properties are properties of the route, whi
h means properties of a list in asour
e routing proto
ol. They 
ould probably also be modeled similarly to route 
orre
tness.However, in table based routing proto
ols, the same properties are more 
omplex to express,as the information is s
attered a
ross various routing tables in the network. Yet other routingproto
ols aim at providing anonymity, whi
h is a property that we did not 
onsider.
Neighbor tests. As we have seen after des
ribing the DSR proto
ol, a very straightforwardatta
k on a routing proto
ol designed to be used in a friendly environment is to send a forgedmessage in the name of the destination, whi
h 
ould be situated at the other end of the
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1.3. FORMAL VERIFICATION 13
network. To prote
t against these basi
 atta
ks, nodes have to 
he
k, when they re
eive amessage supposedly from an agent A, that this agent is within 
ommuni
ation range, or inother words in our model, is a neighbor. The neighbor dis
overy proto
ol must thus also bese
ured, if we want to make 
he
ks that are useful. We 
onsider that a se
ure neighborhooddis
overy proto
ol has been used, and that ea
h node 
an 
he
k whether a node is his neighbor.Another test involving neighbors 
an be performed on lists. Typi
ally, during a reply phase, alist of nodes is forwarded, and this list is supposed to represent a valid route. Nodes forwardingthis reply message 
an 
he
k whether the list 
ontained in the route �eld is lo
ally 
orre
t bymaking sure that their name is in the list and appears between the names of two neighbors.Intuitively this test is also essential, as the unprote
ted route is easily modi�able.Re
ursivity. In the EndairA example, we 
an see that to prote
t the route during the replyphase against mali
ious tampering, ea
h node performs an operation on the same �eld. Theyea
h sign the list, and build a list out of these signatures. To 
he
k that the list has not beentampered with, the sour
e then has to 
he
k that the result of this 
onstru
tion is valid. Thismeans 
he
king that a re
ursively built list is valid. So, in order to model proto
ols that usethese re
ursively built lists to authenti
ate the route, we have to be able to deal with a formof re
ursivity.1.3.3 Veri�
ation of se
ure routing proto
olsRe
ently, several results have been proposed for studying routing proto
ols. For example,S. Yang and J. Baras [YB03℄ provide a �rst symboli
 model for routing proto
ols based onstrand spa
es, modeling the network topology. They implement a semi-de
ision pro
edure tosear
h for atta
ks and �nd an atta
k on AODV [PBR99℄, a routing proto
ol (built for friendlyenvironments) that does not in
lude 
ryptography. Their approa
h however does not applyto routing proto
ols using 
ryptographi
 primitives for se
uring 
ommuni
ations.Case studiesSeveral 
ase studies of important se
ured routing proto
ols have been performed. J. God-skesen [God06℄ provides an analysis of a simpli�ed version of the ARAN [SDL+02℄ proto
olwith ProVerif, for a given 
on�guration, and 
aptures a relay atta
k. J. Marshall [Mar03℄ usesCryptographi
 Proto
ol Analysis Language Evaluation System (CPAL-ES) to spe
ify the SRPproto
ol and analyze it. The en
oding of SRP is done on a pre
ise �xed topology, withoutbroad
ast, and a replay atta
k is retrieved.T. Andel [And07℄ uses model 
he
king in his PhD thesis to analyze the ARAN proto
olin the SPIN tool, for a �xed topology. In order to be able to analyze a priori unknowntopologies, the authors propose a redu
tion of the sear
h spa
e by establishing equivalen
ebetween di�erent topologies, and showing that it is enough to test the smallest topology in anequivalen
e 
lass to de
ide se
urity.General frameworkWhile these last results fo
us on parti
ular routing proto
ols, some frameworks have beenproposed to model wireless 
ommuni
ation and/or routing proto
ols in a more generi
 way.L. Buttyán and I. Vajda [BV04℄ provide a model for routing proto
ols, in a 
ryptographi
setting. Their model enables them to �nd atta
ks on SRP and Ariadne [HPJ05℄. They provide
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14 CHAPTER 1. INTRODUCTION
a se
urity proof (by hand) for a �xed proto
ol they propose, endairA. G. À
s, L. Buttyàn and I.Vajda then develop their framework for distan
e ve
tor routing proto
ols [ABV05℄, analyzingSAODV [ZA02℄ and ARAN. They also apply their framework to sensor networks [ABV06℄,analyzing TinyOS [PSW+02℄.S. Nanz and C. Hankin [NH06℄ propose a pro
ess 
al
ulus to model the network topo-logy and broad
ast 
ommuni
ations, extending the Cal
ulus of Broad
asting System. Theyanalyze s
enarios with spe
ial topologies and atta
ker 
on�guration by 
omputing an over-approximation of rea
hable states. They develop a stati
 analysis based on a �ow logi
. Theiranalysis is safe in the sense that the dis
overed atta
ks 
orrespond to real ones. They alsopropose a de
ision pro
edure but for an intruder that is already spe
i�ed by the user. Thisallows to 
he
k se
urity only against �xed, known in advan
e s
enarios.Up to our knowledge, we are the �rst to provide de
idability or 
omplexity result forrouting proto
ols, for arbitrary intruders and network topologies.
1.4 ContributionsAd ho
 routing proto
ols have several parti
ularities that distinguish them from traditionalkey-ex
hange proto
ols. Among them are predominant the network topology, the neighbor-hood tests and se
urity properties, as well as re
ursivity. We propose a model for ad ho
routing proto
ols that takes into a

ount the topology of the network and the spe
i�
 broad-
ast primitive. We then analyze separately proto
ols that perform neighborhood tests andproto
ols that make use of re
ursivity. In order to analyze both types of proto
ols, we use
onstraint systems [MS01, CLCZ10℄. We extend 
onstraint systems with the primitives usefulto deal with routing proto
ols and re
ursivity, su
h as lists. Furthermore, we also revisit themto deal with an in�nite number of nodes. Thanks to the representation of proto
ol exe
utionusing 
onstraint systems, we obtain de
idability results for sour
e routing proto
ols with theirspe
i�
 se
urity properties on the one hand, and for proto
ols with re
ursive tests on the otherhand.
Modeling routing proto
olsWe propose a 
al
ulus, inspired from CBS# [NH06℄, whi
h allows ad ho
 networks and theirse
urity properties to be formally des
ribed and analyzed. As for standard symboli
 mod-els for se
urity proto
ols, we model 
ryptography as a bla
k box (the perfe
t 
ryptographyassumption), thus the atta
ker 
annot break 
ryptography, e.g. de
rypt a message withouthaving the appropriate de
ryption key. To take the features of ad ho
 routing proto
ols intoa

ount, we �rst propose a logi
 to express the neighbor tests performed by the nodes at ea
hstep. There are also some impli
ations for the atta
ker model. Indeed, in most existing formalapproa
hes, the intruder model 
onsists in the Dolev Yao atta
ker that 
ontrols the entirenetwork. We have explained why this atta
ker model is too strong in the 
ontext of routingproto
ols: the topology of the network plays a 
ru
ial role in the exe
ution of the proto
ol andthe possible 
ommuni
ations. Considering an intruder with a total 
ontrol over the networkand not lo
alized in one parti
ular node would lead to a number of false atta
ks. Our modelre�e
ts the fa
t that a mali
ious node 
an interfere dire
tly only with his neighbors.In order to analyze proto
ols su
h as EndairA, we have to be able to deal with re
ursivity.These proto
ols share a way of authenti
ating the route during the reply phase of the route
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1.4. CONTRIBUTIONS 15
dis
overy. Ea
h of the nodes on the route 
ompute a signature, and the sour
e has to 
he
kthat the list of signatures has been properly built.Re
ursivity qui
kly yields unde
idability, as even a single input/output step in a proto
olmay reveal 
omplex information, as soon as it involves a re
ursive 
omputation [KW04℄. Inorder to 
ir
umvent this, we 
onsider proto
ols that perform standard input/output a
tions(modeled using usual pattern mat
hing) but that are allowed to perform re
ursive tests su
h as
he
king the validity of a route or the validity of a 
hain of 
erti�
ates. Indeed, se
ure routingproto
ols use re
ursivity only for performing sanity 
he
ks at some steps of the proto
ol. Itis also the 
ase of other proto
ols su
h as distributed right delegation, and PKI 
erti�
ationpaths.
Analyzing routing proto
olsOur formal model represents all possible exe
utions against an adversary that 
ontrols some ofthe nodes and a
ts mali
iously in these nodes by sending any message that he 
an 
onstru
t.Our model is thus in�nitely bran
hing. As a �rst step towards automation, we provide analternative symboli
 semanti
s, based on 
onstraint systems and we show its 
orre
tness and
ompleteness w.r.t. the 
on
rete semanti
s. This result holds for arbitrary pro
esses (possiblywith repli
ation) and for any set of primitives.We provide two NP de
ision pro
edures for analyzing routing proto
ols for a boundednumber of sessions and for a large set of standard primitives. For a �xed set of roles andsessions, we show that it is possible to dis
over whether there exists a network topology anda mali
ious behavior of some nodes that yield an atta
k. We 
an also de
ide whether thereexists an atta
k, for a network topology 
hosen by the user. These two pro
edures hold forany property that 
an be expressed in our logi
, whi
h in
ludes 
lassi
al properties su
h asse
re
y as well as properties more spe
i�
 to routing proto
ols su
h as route validity.
Analyzing proto
ols with re
ursive testsFor 
he
king se
urity of proto
ols with re
ursive tests (for a bounded number of sessions), wereuse the setting of 
onstraint systems and add tests of membership to re
ursive languages.We propose (NPTIME) de
ision pro
edures for two 
lasses of re
ursive languages (used fortests): link-based re
ursive languages and mapping-based languages. A link-based re
ursivelanguage 
ontains 
hains of links where 
onse
utive links have to satisfy a given relation. Atypi
al example is X.509 publi
 key 
erti�
ates as de�ned in [HFP98℄ that 
onsist in a 
hainof signatures of the form:

[J〈A1, pub(A1)〉Ksk(A2); J〈A2, pub(A2)〉Ksk(A3); · · · ; J〈An, pub(An)〉Ksk(S)].A mapping-based language 
ontains lists that are based on a list of names (typi
ally namesof agents involved in the proto
ol session) and are uniquely de�ned by it. Typi
al examples
an be found in the 
ontext of routing proto
ols, when nodes 
he
k for the validity of the route.For example, in the endairA proto
ol [BV04℄, a route from the sour
e A0 to the destination Anis represented by a list lroute = [An; . . . ;A1]. This list is a

epted by the sour
e node A0 onlyif the re
eived message 
ontains a list of signatures authenti
ating it of the form:
[J〈An, A0, lroute, [sig2; . . . ; sign]〉Ksk(A1)
︸ ︷︷ ︸

sig1

; J〈An, A0, lroute, [sig3; . . . ; sign]〉Ksk(A2)
︸ ︷︷ ︸

sig2

; . . .
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16 CHAPTER 1. INTRODUCTION
. . . ; J〈An, A0, lroute, [sign]〉Ksk(An−1)

︸ ︷︷ ︸

sign−1

; J〈An, A0, lroute, []〉Ksk(An)
︸ ︷︷ ︸

sign

].

Note that a link J〈An, A0, lroute, [sig i; . . . ; sign]〉Ksk(Ai) depends on the list lroute , on its i-thelement and on the following links in the list.Some of those results were published in [ACD10℄, with a preliminary version in [ACD09℄. Ajournal version has been submitted to the spe
ial issue of Information and Computation on Se-
urity and Rewriting te
hniques. The results regarding re
ursivity were published in [ACD11℄.
1.5 Outline of the DissertationIn order to provide de
ision pro
edures for routing proto
ols, we reuse the setting of 
onstraintsystems. We �rst show in Chapter 2 how to transform the 
onstraint systems 
orresponding tothe exe
ution of those proto
ols into solved 
onstraint systems. We de�ne 
onstraint systemsand the simpli�
ation rules that are used to obtain solved 
onstraint systems. Our 
onstraintsystems give the intruder the power of generating any IP address. To a
hieve that, we assumethat he has at his disposal a potentially in�nite number of names. In the 
ontext of routingproto
ols, these names represent IP addresses. We also revisit the pro
edure of [CLCZ10℄ forsolving 
onstraint systems and obtain a 
omplete symboli
 representation of the knowledge ofthe atta
ker, in the spirit of the 
hara
terization obtained in [AC06℄ in the passive 
ase (withno a
tive atta
ker). We show that all the terms that the intruder 
an build are obtained by
ombining terms from a parti
ular set of terms. We give a 
hara
terization of the solutions tothese solved 
onstraint systems.In Chapter 3, we propose a way to model and analyze ad ho
 routing proto
ols. Se
tion 3.1presents our formal model for routing proto
ols, using a pro
ess 
al
ulus with an underlyinggraph. It is illustrated with the modeling of the SRP proto
ol. We explain how to abstra
tsome parts in the exe
ution of the proto
ol in order to get a �nite number of representations ofthe possible runs. This allows us to provide two NP de
ision pro
edures for analyzing routingproto
ols for a bounded number of sessions, for a �xed network and an unknown one.In Chapter 4, we show that it is possible to analyze proto
ols with re
ursive tests andobtain de
idability results. We use the results obtained in Chapter 2, and we add testsof membership to re
ursive languages. We provide two NPTIME de
ision pro
edures fortwo 
lasses of re
ursive languages that en
ompass most of re
ursive tests involved in se
uredrouting proto
ols.In Chapter 5, we 
on
lude by dis
ussing possible further works.
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Chapter 2
Constraint systems
Constraint systems are quite 
ommon in modeling se
urity proto
ols in the 
ase of an a
tiveintruder. A 
onstraint system represents the exe
ution of a proto
ol for a �nite numberof sessions and a �xed interleaving. Symboli
 
onstraint systems are thus well suited toexpress a rea
hability (e.g., se
re
y) property. J. Millen and V. Shmatikov �rst introdu
ed
onstraint systems in [MS01℄ to solve a rea
hability problem for 
ryptographi
 proto
ols.M. Rusinowit
h and M. Turuani showed that proto
ol inse
urity is NP-
omplete in the 
ase of a�nite number of sessions by establishing a small atta
k property [RT01℄. Both of these two �rstapproa
hes 
onsider rather basi
 
ryptographi
 primitives. The notion of 
onstraint systemshas sin
e been used in several works, with de
idability results for di�erent primitives, su
h asex
lusive or operator [CS03℄, modular exponentiation [CKRT03℄, monoidal theories [DLLT08℄.In [CS03℄, and later in [CLCZ10℄, a more generi
 approa
h is provided to de
ide general se
urityproperties. It 
onsists in transforming any 
onstraint system into simpler 
onstraint systems.This pro
edure preserves all the solutions of the initial 
onstraint system. In this 
hapter,we follow a similar approa
h. We 
onsider a large signature, en
ompassing symmetri
 andasymmetri
 en
ryption, signature, hashes, and lists. Lists are parti
ularly useful for modelingrouting proto
ols (see Chapter 3). Moreover, we provide the intruder with an in�nite set ofnames that he 
an use however he wants. This is also important in the 
ontext of routingproto
ols to model an arbitrary number of nodes.We also revisit the pro
edure of [CLCZ10℄ for solving 
onstraint systems and obtain a
omplete symboli
 representation of the knowledge of the atta
ker, in the spirit of the 
har-a
terization obtained in [AC06℄ in the passive 
ase (with no a
tive atta
ker).We work in symboli
 models, where messages are represented by elements in some termalgebra. In the next 
hapters, we also make use of this model, that we introdu
e in Se
tion 2.1.We de�ne 
onstraint systems in �2.2.1 and give the simpli�
ation rules asso
iated in �2.2.2.Those simpli�
ation rules are sound, 
omplete and terminate in polynomial time (proofs 
anbe found in �2.3.1, �2.3.3 and �2.3.2 respe
tively). Our pro
edure furthermore allows us toredu
e the sear
h for solutions to a spe
i�
 form of solutions (non-
onfusing solutions, de�nedpage 23). We show in Se
tion 2.4 that, when 
onsidering these solutions, any term of theintruder knowledge may be obtained by 
omposition only from a 
learly de�ned set of terms.17
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18 CHAPTER 2. CONSTRAINT SYSTEMS
2.1 Model for se
urity proto
olsIn this se
tion, we �rst introdu
e term algebra, our model for messages, in �2.1.1. We explainhow the power of the intruder is modeled through dedu
tion in �2.1.2. We then illustratein �2.1.3 how proto
ol exe
ution 
an be represented using 
onstraint systems.2.1.1 MessagesIn our model, messages are represented using a term algebra. Cryptographi
 primitives arerepresented by fun
tion symbols. For instan
e, symmetri
 en
ryption will be representedby the fun
tion symbol senc. Hen
e, a message m en
rypted with a symmetri
 key k will berepresented by senc(m, k). We work under the perfe
t 
ryptography assumption: an en
ryptedmessage senc(m, k) 
an only de
rypted by somebody who knows the value of the key k usedto perform the en
ryption.We 
onsider a signature (S,F) 
onsisting in a set of sorts S and a set of fun
tion symbols F .Ea
h fun
tion symbol f is asso
iated with an arity ar(f), whi
h is a mapping from F to S∗×S.We write ar(f) = s1 × . . .× sk → s (with s1, . . . , sk, s ∈ S). Furthermore, we distinguish aset Fpriv of fun
tions symbols of F that will 
ontain private fun
tion symbols, i.e. fun
tionsthat the intruder 
an not use. These fun
tions typi
ally en
ompass the generation of keys.We 
onsider an in�nite set of variables X and an in�nite set of names N that typi
allyrepresent non
es or agent names. We assume that names and variables are given with sorts.The set of terms of sort s is de�ned indu
tively by:

t ::= term of sort s
| x variable x of sort s
| a name a of sort s
| f(t1, . . . , tk) appli
ation of symbol f ∈ F su
h that

ar(f) = s1 × . . .× sk → s and ea
h ti is a term of sort siSorts will mostly be left unspe
i�ed in this 
hapter, ex
ept in spe
i�
 examples.We 
onsider an in�nite set of names N having Base sort. These names typi
ally represent
onstants, non
es, symmetri
 keys, or agent names. We write vars(t) for the set of variableso

urring in a term t. The term t is said to be a ground term if vars(t) = ∅.We write st(t) for the set of synta
ti
 subterms of a term t. This notion is extended asexpe
ted to sets of terms. If S is a set, we denote by #S the 
ardinal of S. Let u be a term,
u 
an be represented in di�erent ways. In general, it is represented by a tree. We write ‖u‖for the size of u, i.e. the size of the tree representing u. We 
an also represent u as a dire
teda
y
li
 graph where subgraphs are all distin
t. This is 
alled the dag representation of u.We denote by ‖u‖dag the size of the dag representation of u, that is the number of distin
tsubterms of u.Substitutions are written σ = {x1 7→ t1, . . . , xn 7→ tn} with dom(σ) = {x1, . . . , xn}. Theyare assumed to be well-sorted substitutions, that is ea
h ti is of the same sort as xi. Su
h asubstitution σ is ground if all the ti are ground terms. The appli
ation of a substitution σ toa term u is written uσ or σ(u). A most general uni�er of terms u1 and u2 is a substitution(when it exists) denoted by mgu(u1, u2).Example 2.1.1. In our examples, we will 
onsider the spe
i�
 signature (S,F) de�ned by
S = {Msg,Base, List} and F = {senc, aenc, J_K_, 〈_,_〉, h, hmac, ::, [], pub, priv, vk, sk} with
orresponding arities:
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2.1. MODEL FOR SECURITY PROTOCOLS 19
• ar(f) = Msg×Msg→ Msg for f ∈ {senc, aenc, J_K_, 〈_,_〉, hmac},
• ar(h) = Msg→ Msg,
• ar(::) = Msg× List→ List, and ar([]) = List,
• ar(f) = Base→ Msg for f ∈ Fpriv = {pub, priv, vk, sk}.The sort Msg subsumes the two other sorts. The symbol 〈〉 represents the pairing fun
tion,

:: is the list 
onstru
tor, and [] represents the empty list. For the sake of 
larity, we write
〈u1, u2, u3〉 for the term 〈u1, 〈u2, u3〉〉, and [u1;u2;u3] for u1 :: (u2 :: (u3 :: [])). The terms
pub(A) and priv(A) represent respe
tively the publi
 and private keys asso
iated to an agent A,whereas the terms sk(A) and vk(A) represent respe
tively the signature and veri�
ation keysasso
iated to an agent A. The fun
tion symbol senc (resp. aenc) is used to model symmetri
(resp. asymmetri
) en
ryption whereas the term JmKsk(A) represents the message m signed bythe agent A.2.1.2 Intruder CapabilitiesWe model the ability of the intruder by a dedu
tion relation ⊢⊆ 2terms × terms. The relation
T ⊢ t represents the fa
t that the term t is 
omputable from the set of terms T . It is typi
allyde�ned through a dedu
tion system.The dedu
tion system we use to model the ability of the intruder is des
ribed in Figure 2.1:

u1 . . . un
f ∈FrFpriv

f(u1, . . . , un)

〈u1, u2〉
i∈{1,2}

ui

u1 :: u2
i∈{1,2}

ui

senc(u1, u2) u2

u1

aenc(u1, pub(u2)) priv(u2)

u1Figure 2.1: Dedu
tion systemThe �rst inferen
e rule des
ribes the 
omposition rules. The remaining inferen
e rulesdes
ribe the de
omposition rules. Intuitively, these dedu
tion rules say that an intruder 
an
ompose messages by pairing, building lists, en
rypting and signing messages provided he hasthe 
orresponding keys. Conversely, he 
an retrieve the 
omponents of a pair or a list, and he
an also de
ompose messages by de
rypting provided he has the de
ryption keys. However, he
an not use the fun
tions in
luded in the spe
i�
 set Fpriv of private fun
tions. For instan
e, hemay not be able to 
reate se
ret keys (Fpriv = {pub, priv, vk, sk} in our running example). Theintruder is also able to verify whether a signature JmKsk(a) and a message m mat
h (providedhe has the veri�
ation key vk(a)), but this operation does not allow him to learn any newmessage. For this reason, this 
apability is not represented in the dedu
tion system. We also
onsider an optional rule
Ju1Ksk(u2)

u1that expresses that an intruder 
an retrieve the whole message from its signature. Thisproperty may or may not hold depending on the signature s
heme, and that is why this ruleis optional. Our results hold in both 
ases (that is, when the dedu
tion relation ⊢ is de�nedwith or without this rule).
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20 CHAPTER 2. CONSTRAINT SYSTEMS
The dedu
tion system allows us to de�ne formally whi
h terms the intruder 
an dedu
efrom his knowledge. We de�ne proof trees, that are intuitively trees where every intermediatenode is an instan
e of one of the rules of the dedu
tion system. If the leaves of a proof treeare terms of the knowledge of the intruder, then the root is a term that the intruder is ableto 
reate.De�nition 2.1.1 (proof tree). A proof tree is a tree whose nodes are labeled by terms andde�ned re
ursively in the following way: trees with only one node are proof trees and, if

π1, . . . , πn are proof trees whose respe
tive roots are u1, . . . , un and if
t1 . . . tn

tis an inferen
e rule su
h that for some well-sorted substitution σ, tσ = u, t1σ = u1, . . . , tnσ =
un, then the following tree is a proof tree:

π1 . . . πn

uExample 2.1.2. The following tree π is a proof tree:
〈NB, J〈B, pub(B)〉Ksk(S)〉

J〈B, pub(B)〉Ksk(S)A

ording to the de�nition, the tree 
onsisting of the node 〈NB, J〈B, pub(B)〉Ksk(S)〉 is a prooftree. Furthermore, 
onsider the inferen
e rule given by
〈u1, u2〉

u2and the substitution σ = {u1 7→ NB , u2 7→ J〈B, pub(B)〉Ksk(S)} to 
omplete the proof that π isa proof tree.De�nition 2.1.2 (dedu
ible term). A term u is dedu
ible from a set of terms T , denoted by
T ⊢ u, if there exists a proof tree whose root is labeled with u and whose leaves are labeled byterms in T .Example 2.1.3. The proof tree π as de�ned in Example 2.1.2 has its root labeled by a term
u = J〈B, pub(B)〉Ksk(S). Furthermore, its leaves are labeled by terms in

T2 = T1 ∪ {〈NB, J〈B, pub(B)〉Ksk(S)}〉so we dedu
e that T2 ⊢ u, i.e. u is dedu
ible from T2.2.1.3 From proto
ols to 
onstraint systemsConstraint systems were �rst introdu
ed in [MS01℄ in order to model se
urity proto
ols. Theyare used to spe
ify tra
e-based property, e.g. se
re
y preservation of se
urity proto
ols undera parti
ular, �nite s
enario. The model of 
onstraint system we use is 
lose to the modelin [CLCZ10℄, with slight di�eren
es in the de�nitions of 
onstraint systems and the way wesimplify them. But before de�ning 
onstraint systems, we motivate their use by showing howthey 
an represent the exe
ution of a proto
ol in the presen
e of an a
tive intruder. We will usean example in order to illustrate this. Note that in Chapter 3, we des
ribe pre
isely how theexe
ution of a proto
ol modeled using our pro
ess 
al
ulus may be represented by 
onstraintsystems.
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2.1. MODEL FOR SECURITY PROTOCOLS 21
Example 2.1.4. We 
onsider part of the TLS handshake proto
ol [DR08℄, designed to ex-
hange enough information between an agent A (the 
lient) and an agent B (the server) to
ompute a shared key while authenti
ating the agent B:

A→ B : NA

B → A : 〈NB, J〈B, pub(B)〉Ksk(S)〉
A→ B : aenc(KA, pub(B))The agent A sends B a fresh non
e NA. Upon re
eiving this message, B generates a freshnon
e NB and sends it to A together with a 
erti�
ate JB, pub(B)Ksk(S) signed by a trustedthird party S. The agent A 
he
ks that the 
erti�
ate is valid. Then, it generates a freshnon
e KA and uses the publi
 key pub(B) to en
rypt this non
e before sending it to B. Thefull proto
ol makes use of the non
es ex
hanged between the agents to generate a session key.However, we do not model the full proto
ol, as the part des
ribed here is enough to illustratehow proto
ols are modeled in the symboli
 setting, and to explain the use of 
onstraint systems.A passive intruder eavesdropping on the 
ommuni
ations between A and B would thusobtain the following sequen
e of messages at the end of the session:

NA, 〈NB, J〈B, pub(B)〉Ksk(S)〉, aenc(KA, pub(B)).We want to model an a
tive intruder. In the Dolev-Yao setting [DY81℄ that we haveadopted, su
h an intruder is given full 
ontrol of the network: not only 
an he overhearmessages, but he 
an also inter
ept and modify them. This also gives him the power to 
hoosethe interleaving of the messages.To model that 
apa
ity, we 
onsider that every agent involved in the proto
ol 
an only
ommuni
ate with the intruder. For example, the �rst step of the TLS handshake proto
olwould intuitively be represented in the following way:
A

NA→ I
t1→ Bwhere t1 is a term that the intruder I 
an build. During this step, the intruder overhears theterms NA. Formally, if the initial knowledge of the intruder is represented by a set of terms

T0, t1 is a term that 
an be dedu
ed from T1 = T0 ∪ {NA} . The dedu
ibility 
onstraintasso
iated is T1

?
⊢ x1 and will be formally de�ned later.Now, take a look at the se
ond step:

A
t2← I

m2← Bwhere m2 = 〈NB, JB, pub(B)Ksk(S)〉. Noti
e that the knowledge of the intruder has grown,sin
e he re
eives the message m2. Thus the 
ondition on t2 is of the form T2 ⊢ t2 where
T2 = T1 ∪ {m2}. Furthermore, the agent A expe
ts a message following the same patternas 〈NB, J〈B, pub(B)〉Ksk(S)〉 where S is a known in advan
e, trusted third party. Thus, theterm t2 has to be a term of the form 〈x2, J〈y2, z2〉Ksk(S)〉, where pub(y2) is instantiated by thepubli
 key of B in the normal run of the proto
ol.Finally, the third step

A
m3→ I

t3→ Bwhere m3 = aenc(KA, z2), yields the following dedu
ibility 
onstraint: T3

?
⊢ aenc(x3, pub(B))where T3 = T2 ∪ {m3}.
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22 CHAPTER 2. CONSTRAINT SYSTEMS
2.2 Constraint systemsIn this se
tion, we introdu
e formally 
onstraint systems. We �rst give in �2.2.1 the formalde�nition of our 
onstraint systems, and then we des
ribe in �2.2.2 the simpli�
ations rulesthat will allow us to always 
onsider a simple form of 
onstraint systems.
2.2.1 De�ning 
onstraint systemsTo enfor
e the intruder 
apabilities, we assume that the intruder has at his disposal an in�niteset of names that he might use at his will to mount atta
ks. In the general 
ase, this abilityis not used. However, our modeling of routing proto
ols, as exposed in Chapter 3, may yielddisequality 
onstraints (see De�nition 3.2.1). In order to be able to satisfy these spe
i�

onstraints, the intruder may need a potentially unbounded number of distin
t names.De�nition 2.2.1 (
onstraint system). A 
onstraint system is a pair (C, I) su
h that I is anon empty (and possibly in�nite) set of names, and C is either ⊥ or a �nite 
onjun
tion

T1

?
⊢ u1 ∧ · · · ∧ Tn

?
⊢ un

of expressions Ti ?
⊢ ui 
alled 
onstraints. Ea
h Ti is a �nite set of terms 
alled the left-handside of the 
onstraint. Ea
h ui is a term, 
alled the right-hand side of the 
onstraint. The
onstraints are ordered su
h that they satisfy two 
onditions:

• monotoni
ity: Ti ⊆ Tk for every i, k su
h that 1 ≤ i < k ≤ n;
• origination: if x ∈ vars(Ti) for some i then there exists j < i su
h that x ∈ vars(uj).Moreover, st(C) ∩ I = ∅.The monotoni
ity 
ondition states that the intruder knowledge is always in
reasing. Theorigination 
ondition in De�nition 2.2.1 states that ea
h time a new variable is introdu
ed,it �rst o

urs in some right-hand side. The left-hand side of a 
onstraint system usuallyrepresents the messages sent on the network, while the right-hand side represents the messageexpe
ted by the party. The set I represents names that only the intruder knows, so they arenot used in the messages ex
hanged on the network, as the 
ondition st(C) ∩ I = ∅ 
learlystates: the set of synta
ti
 subterms of C has no term in 
ommon with I.De�nition 2.2.2 (right-hand and left-hand sides). Let (C, I) be a 
onstraint system. Wedenote by rhs(C) (respe
tively, lhs(C)) the set of right-hand side terms (respe
tively, left-handside sets of terms) of C. Formally, rhs(C) and lhs(C) are de�ned re
ursively in the followingway:

rhs(⊥) = ∅ lhs(⊥) = ∅

rhs(C ∧ T
?
⊢ u) = rhs(C) ∪ {u} lhs(C ∧ T

?
⊢ u) = lhs(C) ∪ {T}The origination property ensures that variables are always introdu
ed in the right-handside of a dedu
tion 
onstraint, whi
h is always the 
ase when modeling proto
ols. Formally,if (C, I) is a 
onstraint system, then var(rhs(C)) = var(C).
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2.2. CONSTRAINT SYSTEMS 23
Example 2.2.1. An exe
ution of the TLS handshake proto
ol as de�ned previously, in Ex-ample 2.1.4, 
an be represented by the 
onstraint system (C, I) where

C =







T1
def
= T0 ∪ {NA}

?
⊢ x1

T2
def
= T1 ∪ {〈NB, J〈B, pub(B)〉Ksk(S)〉}

?
⊢ 〈x2, J〈y2, z2〉Ksk(S)〉

T3
def
= T2 ∪ {aenc(KA, z2)}

?
⊢ aenc(x3, pub(B))where T0 = {pub(B), J〈B, pub(C)〉Ksk(S)} is a set of terms representing the initial knowledge ofthe intruder (here, we assume he is in possession of a false 
erti�
ate), and I = {n1, n2, . . . }is a set of names disjoint from st(C). I represents names that the intruder 
an generate anduse at his will.

De�nition 2.2.3 ((non-
onfusing) solution). Let (C, I) be a 
onstraint system where C =
n∧

i=1
Ti

?
⊢ ui. A solution of (C, I) is a well-sorted ground substitution θ whose domain is vars(C)su
h that Tiθ ∪ I ⊢ uiθ for every i ∈ {1, . . . , n}. The empty 
onstraint system is alwayssatis�able whereas (⊥, I) denotes an unsatis�able 
onstraint system. Furthermore, we saythat θ is non-
onfusing for (C, I) if t1 = t2 for any t1, t2 ∈ st(Tn) su
h that t1θ = t2θ.In other words, non-
onfusing solutions do not map two distin
t subterms of a left-handside of the 
onstraint system to the same term. We will show that we 
an restri
t ourselvesto 
onsider this parti
ular 
ase of solutions when all possible equalities have already beenguessed.Example 2.2.2. The substitution θ = {x1 7→ NA, x2 7→ NB, y2 7→ B, z2 7→ pub(C), x3 7→ n1}is a solution of (C, I). But it is 
onfusing sin
e y2, B ∈ st(T3), y2 6= B and y2θ = Bθ(= B).

Noti
e that θ is a solution of the 
onstraint system ((C ∧ T
?
⊢ u ∧ T

?
⊢ u), I) if and only if

θ is a solution of the 
onstraint system (C ∧ T
?
⊢ u, I). We will thus only 
onsider 
onstraintsystems whose 
onstraints are all distin
t.

2.2.2 Simplifying 
onstraint systemsWe will use simpli�
ation rules in order to redu
e solving 
onstraint systems to solving simpler
onstraint systems that we 
all solved, as is done in [CLCZ10℄. Our result follows this work
losely but our simpli�
ation rules are slightly di�erent in order to obtain a ni
e 
hara
teriz-ation of solutions by only 
onsidering non-
onfusing ones.De�nition 2.2.4 (solved form). A 
onstraint system is solved if it is (⊥, I) or ea
h of its
onstraints is of the form T
?
⊢ x where x is a variable.Solved 
onstraints are espe
ially easy to solve sin
e variables 
an be instantiated by anyterm of the same sort.The simpli�
ation rules for dedu
ibility 
onstraints we 
onsider are de�ned in Figure 2.2.
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24 CHAPTER 2. CONSTRAINT SYSTEMS
Rax : (C ∧ T

?
⊢ u, I)  (C, I) if T ∪ {x | T ′

?
⊢ x ∈ C, T ′ ( T} ⊢ u

Runif : (C ∧ T
?
⊢ u, I)  σ (Cσ ∧ Tσ

?
⊢ uσ, I) if σ = mgu(t1, t2)where t1 ∈ st(T ), t2 ∈ st(T ∪ {u}), and t1 6= t2

Rfail : (C ∧ T
?
⊢ u, I)  (⊥, I) if vars(T ∪ {u}) = ∅ and T 6⊢ u

Rf : (C ∧ T
?
⊢ f(u, v), I)  (C ∧ T

?
⊢ u ∧ T

?
⊢ v, I) for f ∈ F r Fs

Figure 2.2: Simpli�
ation rules
The rule Rax removes a redundant 
onstraint, i.e a 
onstraint whi
h is a logi
al 
onsequen
eof previous 
onstraints. The rule Rf de
omposes a term f(u, v). Intuitively, applying this rulemeans that the intruder has produ
ed the term f(u, v) by applying fun
tion f to the terms uand v. The rule Runif guesses some equality between two parts of the messages.All the rules are indexed by a substitution. When there is no index the identity substitutionis impli
itly assumed. We write (C, I) n

σ (C′, I) if there are C1, . . . , Cn−1 and σ1, . . . , σn su
hthat (C, I) σ1
(C1, I) σ2

. . . σn (C′, I) and σ = σn◦· · ·◦σ2◦σ1. We write (C, I) ∗
σ (C′, I)if there exists n su
h that (C, I) n

σ (C′, I).Our rules are similar to those in [CLCZ10℄ with a modi�
ation for rule Runif . More pre
isely,we authorize uni�
ation with a subterm of the right hand side u of the 
onstraint and alsowith variables. This will allow us to obtain non-
onfusing solutions. We will also 
onsidera parti
ular strategy, de�ned in Figure 2.3, in order to ensure termination in polynomialtime. Indeed, applying the simpli�
ation rules randomly 
ould yield derivations of exponentiallength. The strategy S is de�ned in the following way:
• apply Rfail as soon as possible
• apply Runif up to a point arbitrarily de
ided, then stop applying it at all.
• Then, assuming that all the 
onstraints are un
olored at the beginning:� Consider the un
olored 
onstraint with the largest right-hand side.Either 
olor it or apply Rf to it. Repeat.� When the system is entirely 
olored, apply Rax.

Figure 2.3: Strategy
Example 2.2.3. Consider the 
onstraint system (C, I) de�ned in Example 2.2.1, representingan exe
ution of the TLS handshake proto
ol. We 
an simplify (C, I) following strategy S:
• Runif : (C, I) σ (C1, I)with σ = mgu(J〈B, pub(C)〉Ksk(S), J〈y2, z2〉Ksk(S)) = {y2 7→ B, z2 7→ pub(C)} and
C1 = Cσ = T1σ

?
⊢ x1 ∧ T2σ

?
⊢ 〈x2, J〈B, pub(C)〉Ksk(S)〉 ∧ T3σ

?
⊢ aenc(x3, pub(B)).
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2.3. PROPERTIES 25
• Rf : (C1, I) 2 (C2, I) with
C2 = T1σ

?
⊢ x1 ∧ T2σ

?
⊢ x2 ∧ T2σ

?
⊢ J〈B, pub(C)〉Ksk(S) ∧ T3σ

?
⊢ x3 ∧ T3σ

?
⊢ pub(B)

• Rax : (C2, I) 2 (C′, I)
def
= T1σ

?
⊢ x1 ∧ T2σ

?
⊢ x2 ∧ T3σ

?
⊢ x3The 
onstraint system (C′, I) is in solved form, and we have that θ = θ′ ◦ σ where θ′ =

{x1 7→ NA, x2 7→ NB, x3 7→ n1} is a non-
onfusing solution of (C′, I).In the next se
tion, we will show that there is a solution to a 
onstraint system (C, I) ifand only if there is a sequen
e of simpli�
ation rules following strategy S leading from (C, I)to (C′, I) su
h that (C′, I) is a 
onstraint system in solved form that has a non-
onfusingsolution.
2.3 PropertiesWe show here that the simpli�
ation rules allow us to 
onsider simpler 
onstraint systemswhile preserving the exa
t same set of solutions. This is ensured by the following theorem.Theorem 2.3.1. Let (C, I) be a 
onstraint system. We have that:
• Soundness: If (C, I)  ∗

σ (C′, I) for some 
onstraint system (C′, I) and some substitu-tion σ and if θ is a solution of (C′, I) then θ ◦ σ is a solution of (C, I).
• Completeness: If θ is a solution of (C, I), then there exist a 
onstraint system (C′, I) insolved form and substitutions σ, θ′ su
h that θ = θ′ ◦ σ, (C, I)  ∗

σ (C′, I) following thestrategy S, and θ′ is a non-
onfusing solution of (C′, I).
• Termination: If (C, I)  n

σ (C′, I) following the strategy S, then n is polynomiallybounded in the size of C. Moreover, we have that st(C′) ⊆ st(Cσ) ⊆ st(C)σ.The theorem is a dire
t 
onsequen
e of Propositions 2.3.5, 2.3.11, and 2.3.6, that are provenin the following se
tions.2.3.1 SoundnessTo show soundness, we give simple lemmas: �rst, we give simple properties of the dedu
tionsystem, and se
ondly we show that the monotoni
ity and origination properties are invari-ant during simpli�
ation, i.e. our simpli�
ation rules transform a 
onstraint system into a
onstraint system.Lemma 2.3.2. If T ⊢ u then vars(u) ⊆ vars(T ).Proof. The proof follows the proof of Lemma 4.4 in [CLCZ10℄, sin
e no dedu
tion rulesintrodu
e new variables. We pro
eed by indu
tion on the depth of a proof of T ⊢ u. Indeed,for dedu
tion rules of the form
u1 . . . un

uwith n > 0, we have that vars(u) ⊆
⋃

i

vars(ui).
The next lemma shows a 
ut elimination property for our dedu
tion system.
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26 CHAPTER 2. CONSTRAINT SYSTEMS
Lemma 2.3.3. If T ⊢ u and T ∪ {u} ⊢ v, then T ⊢ v.Proof. Consider a proof π of T ∪ {u} ⊢ v and a proof π′ of T ⊢ u. The tree obtained byrepla
ing ea
h leaf u of π by π′ is a proof of T ⊢ v.As a 
onsequen
e, if T ∪ {u1, . . . , uk} ⊢ u and for every ui, T ⊢ ui, then T ⊢ u. This willbe useful to show that a 
onstraint eliminated by the simpli�
ation rule Rax did not 
ontain
ru
ial information about possible solutions.We 
an now show that monotoni
ity and origination are invariant by simpli�
ation.Lemma 2.3.4. Let (C, I) be a 
onstraint system, and suppose that (C, I)  σ (C′, I). Then
(C′, I) is a 
onstraint system.Proof. Let (C, I) be a 
onstraint system su
h that (C, I) σ (C′, I).We write C =

n∧

i=1
(Ti

?
⊢ ui) and C′ =

n′

∧

i=1
(T ′
i

?
⊢ u′i). We show that (C′, I) satis�es theproperties de�ning a 
onstraint system, i.e. :

• monotoni
ity: T ′
i ⊆ T

′
k for every i, k su
h that 1 ≤ i < k ≤ n′;

• origination: if x ∈ vars(T ′
i ) for some i then there exists j < i su
h that x ∈ vars(u′j).Sin
e Ti ⊆ Tk implies Tiσ ⊆ Tkσ, (C′, I) satis�es monotoni
ity.We show that it also satis�es origination. Consider i ≤ n′ and x ∈ vars(T ′

i ), we have toprove that there exists j < i su
h that x ∈ vars(u′j). We distinguish 
ases, depending onwhi
h simpli�
ation rule is applied in the transition (C, I) σ (C′, I):
• Case Rax. Assume that it eliminates the 
onstraint T ?

⊢ u. Then C′ = C r {T
?
⊢ u}. Let

j = min{i | x ∈ var(ui)}. As (C, I) is a 
onstraint system, j exists and j < i. If Tj 6= Tthen we 
an 
hoose j′ = j. We show that this was the only possible 
ase.Suppose by 
ontradi
tion that Tj = T . As j is minimal, it follows that x /∈ var(Tj) and
x /∈ {y | (Tk

?
⊢ y) ∈ C, k < j}. Furthermore, if Tk ( Tj then k < j sin
e (C, I) is a
onstraint system, and thus {y | (T ′

?
⊢ y) ∈ C, T ′ ( Tj} ⊆ {y | (Tk

?
⊢ y) ∈ C, k < j}.Sin
e x ∈ var(u), by Lemma 2.3.2, T ∪ {y | (T ′

?
⊢ y) ∈ C, T ′ ( T} 6⊢ u, and so rule Rax
an not be applied, whi
h is in 
ontradi
tion with our hypothesis. This allows us to
on
lude.

• Case Runif . Then there exists a substitution σ su
h that C′ = Cσ.
(C, I) is a 
onstraint system, so it satis�es origination: if x is a variable and x ∈ var(Ti)for some (Ti

?
⊢ ui) ∈ C, then there exists j < i su
h that x ∈ var(uj).Let x be a variable su
h that x ∈ var(Tiσ) for Ti ?

⊢ ui ∈ C. There exists y su
h that
x ∈ var(yσ) and y ∈ var(Ti) (we 
an possibly have x = y). There exists j < i su
h that
y ∈ vars(uj). Consequently, x ∈ vars(ujσ).Thus, we have that Cσ is a 
onstraint system.

• If the rule Rfail is applied then there is nothing to prove
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2.3. PROPERTIES 27
• If some rule Rf is applied, then it is applied to some 
onstraint Ti ?

⊢ ui. Hen
e, thereexists f ∈ F r Fs su
h that ui = f(u′i, u
′
i+1) and T ′

i = T ′
i+1 = Ti. We have that :� If j < i, (T ′

j

?
⊢ u′j) = (Tj

?
⊢ uj)� If j > i+ 1, (T ′

j

?
⊢ u′j) = (Tj−1

?
⊢ uj−1)As (C, I) is a 
onstraint system, it satis�es origination, and we easily 
on
lude.Thus, it only remains to show that st(C′)∩I = ∅. We distinguish several 
ases dependingon the rule involved in the transition (C, I) σ (C′, I).

• If (C′, I) is obtained by applying Rax, Rf , or Rfail, then st(C′) ⊆ st(C), hen
e st(C′)∩I = ∅.
• If (C′, I) is obtained by applying Runif , it is su�
ient to show that st(Cσ)∩I = ∅, where
σ = mgu(t, u), with t, u ∈ st(C). As st(C)∩I = ∅, for every x ∈ dom(σ), st(xσ)∩I = ∅.So st(Cσ) ∩ I = ∅, i.e. st(C′) ∩ I = ∅.This allows us to 
on
lude.Hen
e, applying a simpli�
ation rule gives us a new 
onstraint system, whose solutionsallow us to build solutions of the �rst 
onstraint system, as we show now.Proposition 2.3.5 (soundness). Let (C, I) be a 
onstraint system. If (C, I) ∗

σ (C′, I), then
(C′, I) is a 
onstraint system and for every solution τ of (C′, I), τ ◦ σ is a solution of (C, I).Proof. We show that, if (C, I)  σ (C′, I), then (C′, I) is a 
onstraint system and forevery solution τ of (C′, I), τ ◦ σ is a solution of (C, I). The result of the proposition followsimmediately by re
ursion on the length of the derivation.Thanks to Lemma 2.3.4, we have that (C′, I) is a 
onstraint system. We reason by 
asestudy over the simpli�
ation rule used in (C, I) σ (C′, I). Let τ be a solution of (C′, I).Case Rax. In su
h a 
ase, we have that C = C′ ∧T

?
⊢ u and T ∪{x | (T ′

?
⊢ x) ∈ C, T ′ ( T} ⊢ u.It follows that:

Tτ ∪ {xτ | (T ′
?
⊢ x) ∈ C, T ′ ( T} ⊢ uτ.Ea
h 
onstraint T ′

?
⊢ x in C with T ′ ( T is also a 
onstraint in C′. Thus, for all su
h
onstraints, we have that T ′τ ∪ I ⊢ xτ , and hen
e Tτ ∪ I ⊢ xτ . Then, as Tτ ∪ {xτ | (T ′

?
⊢

x) ∈ C, T ′ ( T} ⊢ uτ , we obtain through Lemma 2.3.3 that Tτ ∪ I ⊢ uτ , and we dedu
e that
τ is a solution of (C, I).Case Runif . In su
h a 
ase, there exists a substitution σ su
h that C′ = Cσ. For every 
onstraint
T

?
⊢ u of C, Tσ ?

⊢ uσ is a 
onstraint of C′. As τ is a solution of (C′, I), (Tσ)τ ∪ I ⊢ (uσ)τ ,hen
e τ ◦ σ is a solution of (C, I).Case Rf . In su
h a 
ase, we have that C = C0 ∧ T
?
⊢ f(u, v), and C′ = C0 ∧ T

?
⊢ u ∧ T

?
⊢ v.We know that τ is a solution of (C′, I), so in parti
ular Tτ ∪ I ⊢ uτ and Tτ ∪ I ⊢ vτ . Byapplying the 
orresponding inferen
e rule, we obtain that Tτ ∪ I ⊢ f(u, v)τ . Moreover, forevery T ?

⊢ v ∈ C0, T τ ∪ I ⊢ vτ . And so, in that 
ase, τ is a solution of (C, I).Case Rfail. This 
ase is impossible sin
e τ is a solution of (C′, I).
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28 CHAPTER 2. CONSTRAINT SYSTEMS
2.3.2 TerminationWe show termination before we show 
ompleteness as the latter notion depends on termina-tion. Applying the simpli�
ation rules terminates, whatever strategy is used, but we want astronger result. There may be derivations of exponential length in the size of the 
onstraints,but intuitively we 
an restri
t ourselves to derivations of polynomial length by 
onsidering asuitable strategy. We 
onsider the strategy de�ned in Figure 2.3.Applying rules Runif �rst allows us to guess all possible equalities and obtain a non-
onfusing solution. We show that we obtain non-
onfusing solutions and that this strategy is
omplete later on, in Se
tion 2.3.3.We show now that derivations following strategy S are polynomial in the size of C. Intuit-ively, a derivation of exponential length may o

ur if a 
onstraint T ?

⊢ u is 
onsidered severaltimes. When a 
onstraint is 
onsidered, it is eliminated and 
an be repla
ed by other ones (orlead to the empty 
onstraint system). Noti
e that Rule Rax does not generate new 
onstraints.It is mainly when applying Rule Rf that we have to be 
areful, hen
e our strategy. As wemay 
onsider 
onstraint systems whi
h have distin
t right-hand sides, 
hoosing to 
onsiderthe 
onstraint with the largest right-hand side allows us to ensure that we will never 
onsiderit again for Rule Rf .Proposition 2.3.6 (
omplexity). Let (C, I) be a 
onstraint system. If there is a derivation
(C, I) n

σ (C′, I) following the strategy S for some 
onstraint system (C′, I) and some substi-tution σ, then n is polynomially bounded in the size of C. Moreover, st(C′) ⊆ st(Cσ) ⊆ st(C)σProof. As a �rst step, we show that n is polynomially bounded in the size of C. First,we prove that we 
annot get twi
e the same 
onstraint in the part of a derivation followingstrategy S using only rule Rf . We denote by rhs(C) the right-hand side terms of C. Considera derivation sequen
e following the strategy S.
(C0, I)

Rf
 (C1, I)

Rf
 . . .

Rf
 (Cn, I).At ea
h step i of this derivation, a 
onstraint T ?

⊢ u is eliminated from Ci, i.e. T ?
⊢ u ∈ CirCi+1(this follows from the fa
t that the 
onstraints of Ci are all distin
t). If T ?
⊢ u ∈ Ci r Ci+1(T ?

⊢ u has been eliminated at this step), then, for any j > i, we show that T ?
⊢ u /∈ Cj .Indeed, as the derivation follows strategy S, it means that T ?

⊢ u is (one of) the un
olored
onstraint(s) with the largest right-hand side in Ci. So we have that ‖u‖ = max
t∈rhs(C′

i)
‖t‖ (where

C′i is the set of un
olored 
onstraints of Ci). Suppose by 
ontradi
tion that for some j > i, the
onstraint T ?
⊢ u was in Cj+1 and not in Cj. A

ording to the strategy, rule Rf has been appliedto the un
olored 
onstraint with the largest right-hand side, and furthermore it has produ
ed
onstraint T ?
⊢ u. Hen
e, there exists v su
h that u ∈ st(v), ‖u‖ < ‖v‖ and ‖v‖ = max

t∈rhs(C′

j)
‖t‖.Thus the maximum of the sizes of the right-hand side terms of the un
olored 
onstraints hasstri
tly in
reased, whi
h is impossible a

ording to our strategy.We want to show that derivation (C, I)  n

σ (C′, I) following strategy S is of polynomiallength. A

ording to the de�nition of strategy S, there exist C1, C2 su
h that
(C, I)

Runif
 σ (C1, I)

Rf
 (C2, I)

Rax
 (C′, I)
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2.3. PROPERTIES 29
We assume a DAG representation of the terms and 
onstraints, in su
h a way that thesize of the 
onstraints is proportional to the number of the distin
t subterms o

urring in it.Next, observe that

#st(tθ) ≤ #(st(t) ∪
⋃

x∈dom(θ)

st(xθ)).

Moreover, when unifying two subterms of t with mgu θ, #st(tθ) ≤ #st(t) sin
e, for everyvariable x ∈ dom(θ), xθ ∈ (st(t) r {x})θ, and so for every term u ∈ st(tθ), u ∈ st(t)θ. Itfollows that, for any 
onstraint system C′ su
h that (C, I)  ∗
σ (C′, I) using only rule Runif ,

st(C′) = st(Cσ) ⊆ st(C)σ. Consequently, #st(C′) ≤ #st(C). In parti
ular, #st(C1) ≤ #st(C).Next, observe that the number of distin
t left hand sides of the 
onstraints, denoted by
lhs(C′), is never in
reasing: #lhs(C′) ≤ #lhs(C) if (C, I)  ∗ (C′, I). Furthermore, as long aswe only apply the rules Rax and Rf , starting from (C1, I), the left hand sides of the dedu
tion
onstraint system are �xed: there are at most #lhs(C1) of them. Now, sin
e we 
annot
onsider twi
e the same 
onstraints, the number of 
onse
utive appli
ations of rules Rax and
Rf is bounded by

#lhs(C1)×#st(rhs(C1)) ≤ #lhs(C)×#st(C)Moreover, when applying rules Rax and Rf , it is 
lear that st(C′) ⊆ st(C1) ⊆ st(C)σ.It follows that the length of a derivation sequen
e is bounded by #lhs(C) × #st(C) (for
Rax,Rf steps) plus #var(C) (for Runif steps) plus 1 (for a possible Rfail step).
2.3.3 CompletenessWe want to show that the strategy S de�ned in the previous subse
tion is 
omplete, i.e. thereexists a derivation following strategy S leading to a solved 
onstraint system with a non-
onfusing solution, from whi
h we 
an re
onstru
t our initial solution. Moreover, we will seethat the solution of the solved 
onstraint system is non-
onfusing.The strategy S 
an be divided into two phases:
• First, apply only rules Runif to obtain a 
onstraint system with a non-
onfusing solution.
• Then, use rules Rf and Rax to obtain a solved 
onstraint system.Consider a 
onstraint system (C, I) and a substitution θ su
h that θ is a solution of (C, I).We want to build a derivation following strategy S: (C, I)  ∗

σ (C′, I) su
h that (C′, I) is insolved form, there exists a substitution θ′ verifying θ = θ′◦σ and θ′ is a non-
onfusing solutionof (C′, I). In fa
t, we use a stronger notion than non-
onfusing, that we de�ne now.
De�nition 2.3.1 (strongly non-
onfusing). Let (C, I) be a 
onstraint system with C =

n∧

i=1
Ti

?
⊢

ui. A substitution θ is a strongly non-
onfusing solution of (C, I) if θ is a solution of (C, I)and, for every 1 ≤ i ≤ n, for every terms t1 ∈ st(Ti) and t2 ∈ st(Ti ∪ {ui}), we have that
t1θ = t2θ implies that t1 = t2.Intuitively, when a solution θ of a 
onstraint system (C, I) is strongly non-
onfusing, rules
Runif 
annot be applied to (C, I) while keeping this solution. Note that if θ is a stronglynon-
onfusing solution of (C, I) then in parti
ular θ is a non-
onfusing solution of (C, I). Notealso that these two notions 
oin
ide on 
onstraint systems in solved form.
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30 CHAPTER 2. CONSTRAINT SYSTEMS
Example 2.3.1. θ′ de�ned in Example 2.2.3 is not strongly non-
onfusing, as x1θ

′ = NA,for instan
e, and NA, x1 ∈ st(T1σ, x1). An example of strongly non-
onfusing solution is
τ = {x1 7→ n1, x2 7→ n2, x3 7→ n3}.

If θ′ is a strongly non-
onfusing solution of (C1, I), and there is a derivation using onlyrules Rf and Rax leading from (C1, I) to (C2, I), then θ′ is a strongly non-
onfusing solution of
(C2, I). So it only remains for us to obtain a solved 
onstraint system thanks to the se
ondpart of the strategy.In this part of the strategy, we 
onsider the largest un
olored 
onstraint T ?

⊢ u and wehave to either 
olor it or apply some rule Rf to it. We de
ide between the two possibilities by
onsidering a proof of T ?
⊢ u and whether it ends in a 
omposition or not. We thus wish to
onsider proofs with the property that their last rule does not vary along a derivation. Wede�ne su
h proofs now.De�nition 2.3.2 (simple proof). Let T1 ⊆ T2 ⊆ · · · ⊆ Tn. We say that a proof π of Ti ⊢ u isleft-minimal with respe
t to T1, . . . , Tn if, whenever there is a proof of Tj ⊢ u for some j < i,then π is a proof of Tj ⊢ u.We say that a proof is simple if all of its subproofs are left-minimal and there is no repeatedlabel on any bran
h.Example 2.3.2. Consider the following 
onstraint system:
T1 = {a}

?
⊢ x1 ∧ T2 = {a, 〈a, b〉}

?
⊢ x2.

〈a, b〉

a
is a proof of T2 ⊢ a, but it is not a simple proof. Indeed, it is not a proof of T1 ⊢ a, eventhough there is a proof of T1 ⊢ a.The de�nition of simple proofs we use is inherited from [CLCZ10℄, as is the next lemma,whi
h shows that it is always possible to 
onsider simple proofs. We 
an prove the lemmaby following stri
tly the proof given in [CLCZ10℄ (Lemma 4.8), as it does not depend on thesignature.Lemma 2.3.7. Let T1 ⊆ T2 ⊆ · · · ⊆ Tn. If there is a proof of Ti ⊢ u, then there is a simpleproof of it.We show that if part of the 
onstraint system is already in solved form and the next
onstraint is T ?

⊢ v with ∆ a simple proof of Tθ ∪ I ⊢ u, then there is a term t ∈ T su
hthat tθ = u. This result will be useful for proving that we 
an apply Rax on 
onstraints whosesimple proofs end with a de
omposition.Lemma 2.3.8. Let (C, I) be a 
onstraint system, θ be a solution of (C, I), Ti ∈ lhs(C) su
hthat for any (T
?
⊢ v) ∈ C, if T ( Ti, then v is a variable. Let u be a term su
h that u 6∈ I. Ifthere is a simple proof of Tiθ ∪ I ⊢ u, that is redu
ed to a leaf or whose last inferen
e rule isa de
omposition, then there is t ∈ st(Ti) r X su
h that tθ = u.
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2.3. PROPERTIES 31
Proof. Consider a simple proof π of Tiθ ∪ I ⊢ u that is redu
ed to a leaf or whose lastinferen
e rule is a de
omposition. We may assume, without loss of generality, that i is minimal.Otherwise, we have that Tjθ∪I ⊢ u is derivable with j < i. In that 
ase, as π is left-minimal,we still have a proof tree whose last inferen
e rule is a de
omposition. Su
h a Tj ⊆ Ti alsosatis�es the hypotheses of the lemma.We reason by indu
tion on the depth of the proof π. We make a 
ase distin
tion, dependingon the last rule of π.The last rule is an axiom. Then u ∈ Tiθ ∪ I and there is t ∈ Ti ∪ I su
h that tθ = u. Byhypothesis, u /∈ I, so t /∈ I, i.e. t ∈ Ti (and t ∈ st(Ti)). Suppose by 
ontradi
tion that t is avariable. Then, by de�nition of a 
onstraint system, there exists Tj ?

⊢ w ∈ C, with t ∈ var(w),su
h that Tj ( Ti. Moreover, by hypothesis of the lemma, w must be a variable. Hen
e t = w.Then Tjθ ∪ I ⊢ u, whi
h 
ontradi
ts the minimality of i.The last rule is a symmetri
 de
ryption. In su
h a 
ase, we have that:
senc(u,w) w

uLet π1 be the proof of Tiθ ∪ I ⊢ senc(u,w). As π is simple, the last rule of π1 
annot bea 
omposition, or else Tiθ ∪ I ⊢ u would appear twi
e on the same path. Then, by indu
tionhypothesis, there is t ∈ st(Ti) r X su
h that tθ = senc(u,w). It follows that t = senc(t′, t′′)with t′θ = u. If t′ was a variable, then there would exist Tj ?
⊢ w ∈ C, with Tj ( Ti su
h that

Tjθ∪I ⊢ t′θ. (be
ause t′ ∈ var(w) and w ∈ X ). Hen
e we would have that Tjθ∪I ⊢ u, whi
h
ontradi
ts the minimality of i. Hen
e t′ is not variable.For the other de
omposition rules, the proof is similar to the previous 
ase.The next two lemmas explain respe
tively how to apply rule Rf when the 
onstraint 
on-sidered has a simple proof ending with a 
omposition, or how to apply rule Rax when the
onstraint 
onsidered has a simple proof ending with a de
omposition.Lemma 2.3.9 (
omposition). Let (C, I) be a 
onstraint system, θ a strongly non-
onfusingsolution of (C, I). Let T ?
⊢ u ∈ C with u not a variable and π be a proof of Tθ ∪ I ⊢ uθ thatends with a 
omposition rule. We 
an apply the rule Rf on T ?

⊢ u, yielding a 
onstraint system
(C′, I) su
h that θ is a strongly non-
onfusing solution of (C′, I).Proof. Sin
e u is not a variable, we have that u = f(v1, . . . , vp). The last rule of π endswith a 
omposition, so Tθ∪I ⊢ vjθ for every 1 ≤ j ≤ p. Then we 
an apply the simpli�
ationrule Rf to (C, I), yielding 
onstraints T ?

⊢ vj in C′ for every 1 ≤ j ≤ p. Clearly, we havethat θ is a solution of the 
onstraint system (C′, I). It remains to show that θ is a stronglynon-
onfusing solution of (C′, I). Assume by 
ontradi
tion that this is not the 
ase. Thismeans that there exist t1 ∈ st(T ) and t2 ∈ st(T ∪{vj}) with j ∈ {1, . . . p} su
h that t1θ = t2θand t1 6= t2. This would imply that θ is not a strongly non-
onfusing solution of (C, I). Hen
e
ontradi
tion.Lemma 2.3.10 (de
omposition). Let (C, I) be a 
onstraint system not in solved form and θbe a strongly non-
onfusing solution of (C, I). Suppose that for every 
onstraint T ?
⊢ u ∈ C
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32 CHAPTER 2. CONSTRAINT SYSTEMS
su
h that u /∈ X , there exists a simple proof π of Tθ∪I ⊢ uθ whi
h ends with a de
omposition.Then there exists a 
onstraint system (C′, I) su
h that (C, I) (C′, I) using Rax and θ is astrongly non-
onfusing solution of (C′, I). Furthermore, for every 
onstraint T ?

⊢ u ∈ C′ su
hthat u /∈ X , there exists a simple proof π of Tθ ∪ I ⊢ uθ whi
h ends with a de
omposition.Proof. Let C =
n∧

i=1
Ti

?
⊢ ui. Consider a 
onstraint Ti ?

⊢ ui su
h that ui /∈ X and for all
j < i, uj ∈ X . We show that for every u ∈ st(Ti) r X , if Tiθ ∪ I ⊢ uθ, then T ′

i ⊢ u, where
T ′
i = Ti ∪ {x | (T

?
⊢ x) ∈ C and T ( Ti}. Consider a simple proof π of Tiθ ∪ I ⊢ uθ. We showthis result by indu
tion on |π| where |π| is the size, i.e. number of nodes, of π.Base 
ase: |π| = 1. In su
h a 
ase, we have that there is t ∈ Ti∪I su
h that tθ = uθ. A
tually,sin
e u 6∈ X , we have that t ∈ Ti and thus, using the fa
t that θ is strongly non-
onfusing, wededu
e that t = u. Hen
e u ∈ Ti, so Ti ⊢ u, and as Ti ⊆ T ′

i , we have T ′
i ⊢ u.Indu
tion step: |π| > 1. We distinguish several 
ases depending on the last rule of π.The last rule is a symmetri
 de
ryption rule. In su
h a 
ase, we have that:

senc(uθ, w) w

uθAs π is simple, the last rule of the proof of Tiθ ∪ I ⊢ senc(uθ, w) is a de
omposition. Further-more, senc(uθ, w) /∈ I. Consequently, thanks to Lemma 2.3.8, there is t ∈ st(Ti) r X su
hthat tθ = senc(uθ, w). Let t = senc(t1, t2) and t1θ = uθ, t2θ = w. By indu
tion hypothesis,we have that T ′
i ⊢ t.As θ is strongly non-
onfusing and t1θ = uθ with t1 ∈ st(Ti), we get that t1 = u. If t2 isa variable, then t2 ∈ var(Ti), and by de�nition of a 
onstraint system there exists j < i su
hthat Tj ?

⊢ uj ∈ C and t2 ∈ var(uj). By hypothesis, uj ∈ X , so t2 = uj , so t2 ∈ T ′
i . If t2 isnot a variable, we 
an apply the indu
tion hypothesis, and we dedu
e that T ′

i ⊢ t2. So, in any
ase, T ′
i ⊢ t2.Now, we have both that T ′

i ⊢ senc(u, t2) and T ′
i ⊢ t2, from whi
h we 
on
lude that T ′

i ⊢ uby applying the symmetri
 de
ryption rule.The last rule is an asymmetri
 de
ryption rule. In su
h a 
ase, we have that:
aenc(uθ, pub(v)) priv(v)

uθAs π is simple, the last rule of the proof of Tjθ ∪ I ⊢ aenc(uθ, pub(v)) is a de
omposition.Furthermore, aenc(uθ, pub(v)) /∈ I. Consequently, thanks to Lemma 2.3.8, there is t ∈ st(Ti)r
X su
h that tθ = aenc(uθ, pub(v)). Let t = aenc(t1, t2) with t1θ = uθ, t2θ = pub(v). Byindu
tion hypothesis, we have that T ′

i ⊢ t.As θ is strongly non-
onfusing and t1θ = uθ with t1 ∈ st(Ti), we get that t1 = u. On theother hand, the last rule in the proof of Tjθ ∪ I ⊢ sk(v) is a de
omposition (no 
ompositionrule 
an yield a term headed with priv()). Then, by Lemma 2.3.8, there is w ∈ st(Ti) r Xsu
h that wθ = priv(v). Let w = priv(w′). By indu
tion hypothesis, T ′
i ⊢ priv(w′).

(aenc(t1, t2))θ
‖

aenc(uθ, pub(v))

priv(w′)θ
‖

priv(v)

uθ
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2.3. PROPERTIES 33
Now, t2 ∈ st(t), and t ∈ st(Ti), so t2 ∈ st(Ti). If t2 is a variable, then t2 ∈ var(Ti), andby de�nition of a 
onstraint system there exists j < i su
h that Tj ?

⊢ uj ∈ C and t2 ∈ var(uj).By hypothesis, uj ∈ X , so t2 = uj . Hen
e, we have a simple proof of Tjθ ∪ I ⊢ t2θ. Notethat this proof is either redu
ed to a leaf or ends with a de
omposition rule sin
e there is no
omposition rule yielding to a term headed with pub(). Hen
e, we apply Lemma 2.3.8, and wededu
e that there exists t3 ∈ st(Tj)rX su
h that t3θ = t2θ. Hen
e, we have that t3 = pub(t4)with t4θ = v with t4 ∈ st(Ti).Similarly, w′ ∈ st(w), and w ∈ st(Ti), so w′ ∈ st(Ti). Moreover, t4θ = v = w′θ, and θ isnon-
onfusing, so t4 = w′. Now, we have both that T ′
i ⊢ aenc(u, pub(w′)) and T ′

i ⊢ priv(w′),from whi
h we 
on
lude that T ′
i ⊢ u by applying the asymmetri
 de
ryption rule.Similarly, we 
an 
on
lude for the optional rule.The last rule is a proje
tion rule. By symmetry, we 
an assume that

f(uθ, v)

uθwith f ∈ {〈, 〉, ::}.As π is simple, the last rule of the proof of Tiθ ∪ I ⊢ f(uθ, v) is a de
omposition, and so,thanks to Lemma 2.3.8, there is t ∈ st(Ti) r X su
h that tθ = f(uθ, v). Let t = f(t1, t2). Byindu
tion hypothesis, T ′
i ⊢ t.Now, as θ is strongly non-
onfusing and t1θ = uθ, we have that t1 = u. From T ′

i ⊢ f(u, t2),we dedu
e T ′
i ⊢ u by proje
tion.The last rule is a 
omposition In su
h a 
ase, we have that:

v1 . . . vn
f(v1, . . . , vn)with uθ = f(v1, . . . , vn). Sin
e u is not a variable, u = f(w1, . . . , wn), with wkθ = vk forall k. If wk is a variable, then wk ∈ var(Ti), and by de�nition of a 
onstraint system thereexists j < i su
h that Tj ?

⊢ uj ∈ C and wk ∈ var(uj). By hypothesis, uj ∈ X , so wk = uj , so
wk ∈ T

′
i . If wk is not a variable, we 
an apply the indu
tion hypothesis, and we dedu
e that

T ′
i ⊢ wk. So, for every k, we get that in all possible 
ases T ′

i ⊢ wk. Thus T ′
i ⊢ u by applyingthe 
omposition rule.We have shown that for every u ∈ st(Ti) r X , if Tiθ ∪ I ⊢ uθ, then T ′

i ⊢ u, where
T ′
i = Ti ∪ {x | (T

?
⊢ x) ∈ C, T ( Ti}. Consider the term ui. We know that there is a simpleproof of Tiθ ∪ I ⊢ uiθ whi
h ends with a de
omposition, so by applying Lemma 2.3.8 (sin
e

ui ∈ C and st(C)∩ I = ∅, ui /∈ I), there is t ∈ st(Ti) rX su
h that tθ = uiθ. As θ is stronglynon-
onfusing, we dedu
e that t = ui, and ui ∈ st(Ti) r X su
h that Tiθ ∪ I ⊢ uiθ. Hen
e,
T ′
i ⊢ ui. Consequently, we 
an apply Rax to the 
onstraint Ti ?

⊢ ui, and we get a 
onstraintsystem C′.Furthermore, 
onsider Tj ?
⊢ u ∈ C′ with u not a variable. We know that Tj ?

⊢ u ∈ C, andthere exists a simple proof π of Tjθ ∪ I ⊢ uθ with respe
t to the left-hand sides of C whi
hends with a de
omposition. As π is simple w.r.t. lhs(C), and lhs(C′) ⊆ lhs(C), π is simple w.r.t.
lhs(C′).We 
an now prove formally the 
ompleteness of our strategy S.

te
l-0

06
75

50
9,

 v
er

si
on

 1
 - 

1 
M

ar
 2

01
2



34 CHAPTER 2. CONSTRAINT SYSTEMS
Proposition 2.3.11 (
ompleteness). Let (C, I) be a 
onstraint system and θ be a solutionof (C, I). There exist a 
onstraint system (C′, I) in solved form, substitutions σ and θ′ su
hthat (C, I) ∗

σ (C′, I) following the strategy S, θ = θ′ ◦ σ and θ′ is a (strongly) non-
onfusingsolution of (C′, I).Proof. Let C =
n∧

i=1
Ti

?
⊢ ui.Step 1. First, we show that there exist substitutions θ′, σ and a 
onstraint system (C1, I)su
h that (C, I)  ∗

σ (C1, I) using only rules Runif and θ′ is a strongly non-
onfusing solutionof (C1, I) with θ = θ′ ◦ σ. We show this result by indu
tion on #vars(C).Base 
ase: #vars(C) = 0. In su
h a 
ase, we have that dom(θ) = ∅ and thus θ is a stronglynon-
onfusing solution of (C, I). We easily 
on
lude.Indu
tion step: #vars(C) > 0. In su
h a 
ase, either θ is already a non-
onfusing solution of
(C, I) and we easily 
on
lude. Otherwise, we have that there exist 1 ≤ i ≤ n, t1 ∈ st(Ti), and
t2 ∈ st(Ti ∪ {ui}) su
h that t1θ = t2θ with t1 6= t2. In su
h a 
ase, we apply Runif obtaining a
onstraint system on whi
h we 
an apply our indu
tion hypothesis. This allows us to 
on
ludefor this �rst step.Step 2. Now, θ′ is a strongly non-
onfusing solution of (C1, I). We still need to derive C′in solved form from C1. To do that, we follow the strategy S. Intuitively, we 
onsider ea
h
onstraint and either de
ompose it or 
olor it to remember not to 
onsider it anymore.We derive a 
olored 
onstraint system from C1 in the following way: Sele
t a 
onstraint
T

?
⊢ u among the un
olored 
onstraints with the largest right-hand sides. A

ording to thestrategy S, we must either 
olor it or de
ompose it. We des
ribe how we 
hoose between thesetwo possibilities.
• If u is a variable, 
olor the 
onstraint.
• Else, 
onsider a simple proof ∆ of Tθ′ ∪ I ⊢ uθ′:� If ∆ ends with a de
omposition, we 
olor the 
onstraint T ?

⊢ u.� If ∆ ends with a 
omposition, we apply rule Rf to the 
onstraint T ?
⊢ u.We show that this pro
edure terminates and produ
es a derivation:

(C1, I)
Rf
 (C2, I)

Rf
 (C3, I) . . .

Rf
 (Cℓ, I)where Cℓ is totally 
olored, and for ea
h (T

?
⊢ u) ∈ Cℓ, either u ∈ X or there is a simple proofof Tθ′ ∪ I ⊢ uθ′ whose last rule is a de
omposition. Indeed, 
onsider a 
onstraint T ?

⊢ u,un
olored in Ci−1 and 
olored in Ci. Then, either u is a variable, or there is a simple proof ∆of Tθ′ ∪ I ⊢ uθ′ w.r.t. lhs(Ci−1θ
′) ending with a de
omposition. Furthermore, if ∆ is a simpleproof of a 
olored 
onstraint and we apply Rf to another 
onstraint, ∆ is still a simple proofin the 
onstraint system obtained after simpli�
ation.Regarding termination, note that the total size of the right-hand sides of the un
olored 
on-straints stri
tly de
reases, either be
ause we 
olor a 
onstraint or we apply Rf to an un
olored
onstraint.Applying Lemma 2.3.9 re
ursively on the derivation

(C1, I)
Rf
 (C2, I)

Rf
 (C3, I) . . .

Rf
 (Cℓ, I)
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2.4. CHARACTERIZATION OF SOLUTIONS 35
we obtain that for every 
onstraint T ?

⊢ u ∈ Cℓ with u not a variable, there exists a simpleproof ∆ of Tθ′ ∪ I ⊢ uθ′ whi
h ends with a de
omposition. Furthermore, θ′ is a stronglynon-
onfusing solution of (Cℓ, I). Then, by applying Lemma 2.3.10 re
ursively, we have aderivation
(Cℓ, I)

Rax
 . . .

Rax
 (C′, I)su
h that (C′, I) is in solved form and θ′ is a strongly non-
onfusing solution of (C′, I).To sum up, there is a derivation (C, I) σ (C′, I) following strategy S su
h that θ = θ′ ◦σand θ′ is a solution of both (C′, I).

2.4 Chara
terization of solutionsShowing that solving 
onstraint systems 
an be redu
ed to solving solved 
onstraint systemshas been done in [CLCZ10℄. Our result enables us to furthermore redu
e the sear
h forsolutions to non-
onfusing solutions. This is interesting be
ause, for any non-
onfusing solution(whi
h represents an exe
ution tra
e), any term of the atta
ker knowledge may be obtainedby 
omposition only.De�nition 2.4.1. We asso
iate to ea
h set of terms T the set of subterms of T that may bededu
ed from T ∪ vars(T ): Satv(T ) = {u ∈ st(T ) | T ∪ vars(T ) ⊢ u}Noti
e that in the 
ase of solved 
onstraint systems, the variables o

urring in T arededu
ible.Proposition 2.4.1 states that it is possible to 
ompute from a solved 
onstraint system, a�basis� Satv(T ) from whi
h all dedu
ible terms 
an be obtained applying only 
ompositionrules. This follows the spirit of [AC06℄ but now in the a
tive 
ase.Proposition 2.4.1. Let (C, I) be a 
onstraint system in solved form, θ be a non-
onfusingsolution of (C, I), T be a left-hand side of a 
onstraint in C and u be a term su
h that Tθ∪I ⊢ u.We have that Satv(T )θ ∪ I ⊢ u by using 
omposition rules only.Proof. Consider a simple proof ∆ of Tiθ ∪ I ⊢ u. We show by indu
tion on (i, |∆|) thatthere exists a proof ∆′ of Satv(Ti)θ ∪ I ⊢ u that uses 
omposition rules only. We distinguishseveral 
ases depending on the last rule of ∆:The last rule is an axiom. Then u ∈ Tiθ ∪ I and there is t ∈ Ti ∪ I su
h that u = tθ. Theproperty immediately follows.The last rule is a symmetri
 de
ryption rule:
senc(u, v) v

uLet ∆1 be the subproof of ∆ whose root is labelled with senc(u, v). By indu
tion hypothesis,there exists a proof ∆′
1 of Satv(Ti)θ ∪ I ⊢ senc(u, v) that uses 
omposition rules only. Let jbe the minimal index su
h that Satv(Tj)θ ∪ I ⊢ senc(u, v) with a proof that uses 
ompositionrules only. We distinguish two 
ases.Either ∆′

1 ends with a symmetri
 en
ryption rule. Let ∆′ be the dire
t subproof of ∆′
1whose root is labelled with u. We have that ∆′ is a proof of Satv(Tj)θ ∪ I ⊢ u that uses
omposition rules only.
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36 CHAPTER 2. CONSTRAINT SYSTEMS
Otherwise, ∆′

1 is redu
ed to an axiom. In su
h a 
ase, there exists u1 ∈ Satv(Tj)∪ I su
hthat u1θ = senc(u, v). If u1 was a variable, there would exist k < j su
h that (Tk
?
⊢ u1) ∈ C,and so Tkθ ∪ I ⊢ senc(u, v). Sin
e ∆1 is a simple proof of Tiθ ∪ I ⊢ senc(u, v), it is alsoa simple proof of Tkθ ∪ I ⊢ senc(u, v). By applying our indu
tion hypothesis, we dedu
ethat there exists a proof of Satv(Tk)θ ∪ I ⊢ senc(u, v) that uses 
omposition rules only. This
ontradi
ts the minimality of j. Hen
e, u1 is not a variable. Consequently, there exist t1, t2su
h that u1 = senc(t1, t2), with t1θ = u and t2θ = v. We are thus in the 
ase where

senc(t1, t2) ∈ Satv(Ti) ∪ I.We want to show that t2 ∈ Satv(Ti) ∪ I and we already know that t2 ∈ st(Ti) ∪ I. Thus,it only remains to show that Ti ∪ var(Ti) ∪ I ⊢ t2. By indu
tion hypothesis, we know thatthere exists a proof ∆′
2 of Satv(Ti)θ ∪ I ⊢ v that uses 
omposition rules only. Furthermore,

v = t2θ and θ is non-
onfusing. We show by indu
tion on t2 that, if there exists a proof ∆′
2 of

Satv(Ti)θ∪I ⊢ t2θ that uses 
omposition rules only, and t2 ∈ st(Ti)∪I, then t2 ∈ Satv(Ti)∪I.
• if t2 = x ∈ X , then x ∈ var(Ti), and by de�nition of Satv(Ti) ∪ I, t2 ∈ Satv(Ti) ∪ I.
• if t2 = f(t′1, . . . , t

′
n) then we make a 
ase distin
tion depending on ∆′

2:� ∆′
2 is redu
ed to an axiom. In su
h a 
ase, there exists v1 ∈ Satv(Ti) ∪ I su
hthat t2θ = v1θ. Sin
e t2θ is headed with f, we dedu
e that v1 ∈ st(Ti). As θ isnon-
onfusing, t2θ = v1θ implies that t2 = v1 ∈ Satv(Ti).� ∆′
2 ends with a 
omposition rule. Let π1, . . . , πn be the dire
t subproofs of ∆′

2.We know that ea
h πj is a proof of Satv(Ti) ∪ I ⊢ t′jθ that uses 
ompositionrules only. By indu
tion hypothesis, we dedu
e that t′j ∈ Satv(Ti) ∪ I. Hen
e,
Ti ∪ var(Ti) ∪ I ⊢ t2 by applying the 
omposition rule asso
iated with fun
tionsymbol f. As t2 ∈ st(Ti) ∪ I, it follows that t2 ∈ Satv(Ti) ∪ I.We have shown that senc(t1, t2) and t2 are in Satv(Ti)∪I. Hen
e, we easily 
on
lude that

t1 ∈ Satv(Ti) ∪ I. Sin
e t1θ = u, this allows us to 
on
lude by 
onsidering a simple proof ∆′redu
ed to an axiom rule.The last rule is an asymmetri
 de
ryption rule:
aenc(u, pub(v)) priv(v)

uLet ∆1 be the subproof of ∆ whose root is labelled with aenc(u, pub(v)). By indu
tionhypothesis, there exists a proof ∆′
1 of Satv(Ti)θ ∪ I ⊢ aenc(u, pub(v)) that uses 
ompositionrules only. Let j be the minimal indi
e su
h that Satv(Tj)θ∪I ⊢ aenc(u, pub(v)) with a proofthat uses 
omposition rules only. We distinguish two 
ases.Either ∆′

1 ends with an asymmetri
 en
ryption rule. Let ∆′ be the dire
t subproof of ∆′
1whose root is labelled with u. We have that ∆′ is a proof of Satv(Tj)θ ∪ I ⊢ u that uses
omposition rules only.Otherwise, ∆′

1 is redu
ed to an axiom. In su
h a 
ase, there exists u1 ∈ Satv(Tj)∪ I su
hthat u1θ = aenc(u, pub(v). If u1 was a variable, there would exist k < j su
h that (Tk
?
⊢ u1) ∈

C, and so Tkθ ∪ I ⊢ aenc(u, pub(v)). Sin
e ∆1 is a simple proof of Tiθ ∪ I ⊢ aenc(u, pub(v)),it is also a simple proof of Tkθ ∪ I ⊢ aenc(u, pub(v)). By applying our indu
tion hypothesis,
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2.4. CHARACTERIZATION OF SOLUTIONS 37
we dedu
e that there exists a proof of Satv(Tk)θ ∪ I ⊢ aenc(u, pub(v)) that uses 
ompositionrules only. This 
ontradi
ts the minimality of j. Hen
e u1 is not a variable. Consequently,there exist t1, t2 su
h that u1 = aenc(t1, t2) with t1θ = u and t2θ = pub(v). We are thus inthe 
ase where aenc(t1, t2) ∈ Satv(Ti) ∪ I.Now, we show that t2 is not a variable. By 
ontradi
tion, assume that t2 is a variable.In su
h a 
ase, there exists k < i su
h that (Tk

?
⊢ t2) ∈ C, and so Tkθ ∪ I ⊢ t2θ = pub(v),and there is a simple proof witnessing this fa
t. This proof is either redu
ed to a leaf or endswith a de
omposition. Thus, thanks to Lemma 2.3.8, there exists t′2 ∈ st(Tk) r X su
h that

t′2θ = pub(v). Hen
e, we have that t′2 = pub(t′3). We have also that t′2θ = t2θ. Sin
e θ isnon-
onfusing, we dedu
e that t2 = t′2.Now, we want to show that priv(t′3) ∈ Satv(Ti)∪I. Let ∆2 be the subproof of ∆ whose rootis labelled with priv(v). By applying our indu
tion hypothesis, we dedu
e that there exists ∆′
2of Satv(Ti)θ ∪I ⊢ priv(v) that uses 
omposition rules only. A
tually, we ne
essarily have that

priv(v) ∈ Satv(Ti)θ, i.e. there exists w ∈ Satv(Ti) su
h that priv(v) = wθ. Moreover, we knowthat ∆2 is a simple proof that is either redu
ed to a leaf or that ends with a de
omposition.Hen
e, we 
an apply Lemma 2.3.8. We dedu
e that there exists t′4 ∈ st(Ti) r X su
h that
t′4θ = priv(v). Hen
e, we have that t′4 = priv(t′5). Moreover, we have that t′3θ = t′5θ. Sin
e
θ is non-
onfusing, we dedu
e that t′3 = t′5. Lastly, we have that wθ = t′4θ. Sin
e θ is non-
onfusing, we dedu
e that w = t′4. Hen
e, we have that w = t′4 = priv(t′5) = priv(t′3), and thus
priv(t′3) ∈ Satv(Ti) ∪ I.Hen
e, we have that aenc(t1, pub(t′3)) ∈ Satv(Ti)∪I, and priv(t′3) ∈ Satv(Ti)∪I. Hen
e, weeasily 
on
lude that t1 ∈ Satv(Ti)∪I. Sin
e t1θ = u, this allows us to 
on
lude by 
onsideringa simple proof ∆′ redu
ed to an axiom rule.A similar reasoning holds for our optional rule.The last rule is another de
omposition rule: We 
an apply a similar reasoning as in the 
aseof the de
ryption rule. By symmetry, 
onsider a rule of the form

f(u, v)
u with f ∈ {〈〉, ::}Let ∆1 be the subproof of ∆ whose root is labelled with f(u, v). By indu
tion hypothesis,there exists a proof ∆′

1 of Satv(Ti)θ ∪ I ⊢ f(u, v) that uses 
omposition rules only. Let j bethe minimal indi
e su
h that Satv(Tj)θ ∪ I ⊢ f(u, v) with a proof that uses 
omposition rulesonly. We distinguish two 
ases:Either ∆′
1 ends with a 
omposition rule. Let ∆′ be the dire
t subproof of ∆′

1 whose root islabelled with u. We have that ∆′ is a proof of Satv(Tj)θ ∪ I ⊢ u that uses 
omposition rulesonly.Otherwise, ∆′
1 is redu
ed to an axiom. In su
h a 
ase, there exists u1 ∈ Satv(Tj)∪ I su
hthat u1θ = f(u, v). If u1 was a variable, there would exist k < j su
h that (Tk

?
⊢ u1) ∈ C,and so Tkθ ∪ I ⊢ f(u, v). Sin
e ∆1 is a simple proof of Tiθ ∪ I ⊢ f(u, v). By applying ourindu
tion hypothesis, we dedu
e that there exists a proof of Satv(Tk)θ ∪ I ⊢ f(u, v) that uses
omposition rules only. This 
ontradi
ts the minimality of j. Hen
e, u1 is not a variable.Consequently, there exist t1, t2 su
h that u1 = f(t1, t2), with t1θ = u and t2θ = v. We are thusin the 
ase where f(t1, t2) ∈ Satv(Ti) ∪ I. Hen
e, we easily 
on
lude that t1 ∈ Satv(Ti) ∪ I.
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38 CHAPTER 2. CONSTRAINT SYSTEMS
The last rule is a 
omposition rule:

v1 . . . vn
f(v1, . . . , vn)By indu
tion hypothesis, we know that for 1 ≤ k ≤ n, there exist ∆′

k a proof of Satv(Ti)θ∪I ⊢
vk that uses 
omposition rules only. Let ∆′ be the proof 
onsisting of applying the 
ompositionrule asso
iated to the symbol f on ∆′

1, . . . ,∆
′
k. It immediately follows that ∆′ is a proof of

Satv(Ti)θ ∪ I ⊢ f(v1, . . . , vn) that uses 
omposition rules only. Hen
e the result.
2.5 Con
lusion and future prospe
tsWe use a symboli
 model with a large signature, en
ompassing symmetri
 and asymmetri
en
ryption, signature, hashes, and lists. Moreover, we provide the intruder with an in�niteset of names that he 
an use however he wants. We have de�ned in this setting the notionof 
onstraint systems to model the exe
ution of the proto
ol. Using simpli�
ation rules, wehave obtained a 
omplete symboli
 representation of the knowledge of the atta
ker: when
onsidering non-
onfusing solutions, any term of the intruder knowledge may be obtained by
omposition only from a 
learly de�ned set of terms.In order to model more proto
ols, we 
ould extend this 
hara
terization result to a widersignature. For instan
e, for lo
al inferen
e systems, an algorithm in [BDC09℄ gives a repres-entation of solutions. Trying to pinpoint the properties of the dedu
tion system representingthe intruder 
apabilities that are needed in order to keep our 
hara
terization result would al-low to add new primitives to the signature automati
ally, without having to prove everythingfrom s
rat
h ea
h time a new primitive is needed. We would like to dis
over 
onditions on thesignature or on the dedu
tion system that allow to generalize the result so that it holds fora family of signatures. Intuitively, these 
onditions would be linked to the dedu
tion system,and the relations between 
omposition and de
omposition rules.
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Chapter 3
Modeling and analyzing routingproto
ols
A standard method to model proto
ols is to use a pro
ess 
al
ulus [AG97℄. Pro
ess 
al
uliare parti
ularly well adapted to model intera
tions between independent agents. But ad ho
networks have parti
ularities that 
an not be modeled in the standard way, most notably the
ommuni
ation medium. Indeed, in su
h a network, nodes 
an only send messages to nodesthat are situated within a 
ertain distan
e of them. So, in order to properly model ad ho
routing proto
ol with a pro
ess 
al
ulus, the 
ommuni
ation model has to be adapted.Furthermore, the standard intruder model used in proto
ol veri�
ation, the so-
alled Dolev-Yao intruder [DY81℄, is not well suited for the study of su
h proto
ols. The intruder in theDolev Yao model 
ontrols the network: he 
an overhear every 
ommuni
ation, modify or deleteany message. This is far too strong an assumption in a wireless setting. A more reasonableassumption regarding his ability is to limit the s
ope of his a
tions: for instan
e, he 
an onlyoverhear messages sent by nodes that are situated near enough, and he 
an not prevent there
eption of a spe
i�
 message.As our goal is to model ad ho
 routing proto
ols, we have to take the parti
ularities ofthese proto
ols into a

ount. Few other formal approa
hes have been proposed to a
hieve thisgoal. Nanz and Hankin [NH06℄ propose a pro
ess 
al
ulus to model the network topologyand broad
ast 
ommuni
ations. They also provide a de
ision pro
edure for an intruder thatis already spe
i�ed by the user. This allows to 
he
k se
urity against �xed, known in advan
es
enarios. The model we propose here is inspired from their work. We add a logi
 forspe
ifying the tests performed at ea
h step by the nodes on the 
urrent route and to spe
ifythe se
urity properties.In this 
hapter, we will �rst propose in Se
tion 3.1 a way to model proto
ols in ad ho
networks. It is a pro
ess 
al
ulus with an underlying graph that represents the links in thenetwork. Then we will explain in Se
tion 3.2 how to abstra
t some parts in the exe
ution ofthe proto
ol in order to get a �nite number of representations of the possible runs. Finally,we will show in Se
tion 3.3 how to bound the lists appearing in messages, in order to boundin turn the size of messages ex
hanged. This allows us to provide two NP de
ision pro
eduresin Se
tion 3.4 for analyzing routing proto
ols for a bounded number of sessions.39

te
l-0

06
75

50
9,

 v
er

si
on

 1
 - 

1 
M

ar
 2

01
2



40 CHAPTER 3. MODELING AND ANALYZING ROUTING PROTOCOLS
3.1 ModelingRe
all that we 
onsider an in�nite set of names N . We state here some of the names we willuse in the 
ourse of the 
hapter: N = {rep, req, N,K,Ka, A, S,D, . . .}. Furthermore, we will
onsider a spe
ial set of names Nloc, whi
h represents the nodes of the network. The lists weuse in this 
hapter are lists of names in Nloc, they typi
ally represent a route in the network.We assume that the intruder has a

ess to Nloc.
3.1.1 Pro
ess 
al
ulusSe
urity proto
ols are typi
ally de�ned by the roles of the agents parti
ipating in the pro-to
ol. A role is a sequen
e of a
tions that the agent must a

omplish to exe
ute the proto
ol.Pro
ess algebras are well suited to model se
urity proto
ols spe
i�ed by roles, with ea
h rolerepresented by a distin
t pro
ess.Several 
al
uli already exist to model se
urity proto
ols (e.g. [AG97, AF01℄). However,for our purpose, a node, i.e. a pro
ess, has to perform some spe
i�
 a
tions that 
an not beeasily modeled in su
h 
al
uli. For instan
e, a node stores some information, e.g. the 
ontentof its routing table. We also need to take into a

ount the network topology and to modelbroad
ast 
ommuni
ation. Su
h features 
an not be easily modeled in these 
al
uli.A
tually, our 
al
ulus is inspired from CBS#, a pro
ess 
al
ulus introdu
ed in [NH06℄,whi
h allows mobile wireless networks and their se
urity properties to be formally des
ribedand analyzed. However, we extend this 
al
ulus to allow nodes to perform some sanity 
he
kson the routes they re
eive, su
h as 
he
king neighborhood properties.The intended behavior of ea
h node of the network 
an be modeled by a pro
ess de�nedby the grammar given in Figure 3.1. Our 
al
ulus is parametrized by a set L of formulas.
P,Q ::= Pro
esses

0 null pro
ess
out(u).P emission
in u[Φ].P re
eption, Φ ∈ L
store(u).P storage
read u then P else Q reading
if Φ then P else Q 
onditional, Φ ∈ L
P | Q parallel 
omposition
!P repli
ation
new m.P fresh name generation

Figure 3.1: Pro
ess grammar.First, we des
ribe the 
onstru
tions spe
i�
 to our 
al
ulus. The pro
ess out(u).P emits uand then behaves like P . The pro
ess in u[Φ].P expe
ts a message m mat
hing the pattern uand su
h that Φ is true. It then behaves like Pσ where σ = mgu(m,u). If Φ is the trueformula, we simply write in u.P . The pro
ess store(u).P stores u in the storage list of thenode exe
uting the pro
ess and then behaves like P . The pro
ess read u then P else Q looksfor a message mat
hing the pattern u in the storage list of the node exe
uting the pro
ess.Then, if su
h an element m is found, it behaves like Pσ where σ = mgu(m,u). If no element
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3.1. MODELING 41
of the form u is found, it behaves like Q. For the sake of 
larity, we will omit the else partwhen Q = 0.The other entries in the grammar are the usual ones. The pro
ess if Φ then P else Q testswhether Φ is true. If Φ is true, it then behaves like P . Else, it behaves like Q. For the sake of
larity, we will again omit the else part when Q = 0. The pro
ess P | Q allows 
omputation inpro
ess P and Q to happen independently. The pro
ess !P allows to use pro
ess P as manytimes as we want. (Note that in the general 
ase, allowing repli
ation leads to unde
idability)The pro
ess new m.P 
reates a fresh non
e m and then behaves like P .Sometimes, for the sake of 
larity, we will omit the null pro
ess.We write fv(P ) (respe
tively, bv(P )) for the set of free (respe
tively, bound) variables of P .A pro
ess P is ground when fv(P ) = ∅.The store and read primitives are parti
ularly important when modeling routing proto
ols,in order to avoid multiple answers to a single request or to allow nodes to store and retrievealready known routes. These primitives 
an also be used to represent other 
lasses of proto
ols,where a global state is assumed for ea
h agent, in order to store some information (bla
k list,already used keys. et
.) throughout the sessions.Se
ured routing proto
ols require the agents parti
ipating in the proto
ol to perform some
he
ks on the part of the messages they re
eive that is supposed to represent a route or partof a route. For instan
e, they may 
he
k that the list they re
eive begins with the name of theneighbor who sent them the message, to test whether the message was pro
essed 
orre
tly.These veri�
ations rely partly on neighborhood dis
overy, whi
h is a proto
ol run by the nodesbefore exe
uting the routing proto
ol. The aim of a node running su
h a proto
ol is to dis
overwhi
h nodes are within his rea
h, and are thus neighbors in the underlying graph representingthe network. In order to get a se
ure routing proto
ol, the neighborhood dis
overy proto
olneeds to be 
orre
t [PPS+08, PPH08℄. We assume that a se
ure neighborhood dis
overyproto
ol has been used, 
onsequently, ea
h node 
an 
he
k whether a given node is one of hisneighbors. We express these 
he
ks thanks to a logi
. Next is an example of su
h a logi
.Example 3.1.1. We will typi
ally 
onsider the logi
 Lroute de�ned by the following grammar:
Φ ::= Formula

check(a, b) neighborhood of two nodes
checkl(c, l) lo
al neighborhood of a node in a list
route(l) validity of a route
loop(l) existen
e of a loop in a list
Φ1 ∧ Φ2 
onjun
tion
Φ1 ∨ Φ2 disjun
tion
¬Φ negationGiven an undire
ted graph G = (V,E) with V ⊆ Nloc, the semanti
s [[Φ]]G of a formula

Φ ∈ Lroute is re
ursively de�ned by:
• [[check(a, b)]]G = 1 i� (a, b) ∈ E,
• [[checkl(c, l)]]G = 1 i� l is of sort lists, c appears exa
tly on
e in l, and for any sub-list l′of l,� if l′ = a :: c :: l1, then (a, c) ∈ E.� if l′ = c :: b :: l1, then (b, c) ∈ E.
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42 CHAPTER 3. MODELING AND ANALYZING ROUTING PROTOCOLS
• [[route(l)]]G = 1 i� l is of sort lists, l = a1 :: . . . :: an, for every 1 ≤ i < n, (ai, ai+1) ∈ E,and for every 1 ≤ i, j ≤ n, i 6= j implies that ai 6= aj.
• [[loop(l)]]G = 1 i� l is of sort lists and there exists an element appearing at least twi
ein l,
• [[Φ1 ∧ Φ2]]G = [[Φ1]]G ∧ [[Φ2]]G, [[¬Φ]]G = ¬[[Φ]]G, and [[Φ1 ∨ Φ2]]G = [[Φ1]]G ∨ [[Φ2]]G.Intuitively, check(a, b) is true if the agents a and b are neighbors in the network. checkl(c, l)is true if from the point of view of c, the list l 
ould be a valid route that goes through c, i.e. ifthe list l 
ontains one o

urren
e of c between two neighbours of c. route(l) is true if the list

l represents a valid path in the graph that does not go through the same node twi
e. loop(l) istrue if the list l 
ontains twi
e the same element. (We usually want to test for loop-free lists).The other entries are the usual ones: Φ1 ∧ Φ2 is true if Φ1 and Φ2 are true, Φ1 ∨ Φ2 is trueif Φ1 or Φ2 is true, and ¬Φ is true if Φ is false.
3.1.2 Example: modeling the SRP proto
olWe 
onsider SRP introdu
ed in [PH02℄, assuming that ea
h node already knows his neighbors(running e.g. some neighbor dis
overy proto
ol). We model here its appli
ation to the DSRproto
ol [JMB01℄.Consider the signature given in Example 2.1.1 and let S,D, req, rep, Id ,KSD be names(S,D ∈ Nloc) and xL be a variable of sort lists. The pro
ess exe
uted by a node S initiatingthe sear
h for a route towards a node D is:

Pinit(S,D) = new Id .out(u1).in u2[ΦS ].0where:
u1 = 〈req, S,D, Id , S :: ⊥, hmac(〈req, S,D, id〉,KSD)〉
u2 = 〈rep, D, S, Id , xL, hmac(〈rep, D, S, id, xL〉,KSD)〉
ΦS = checkl(S, xL) ∧ ¬loop(xL).The names of the intermediate nodes are a

umulated in the route request pa
ket. In-termediate nodes relay the request over the network, ex
ept if they have already seen it. Anintermediate node also 
he
ks that the re
eived request is lo
ally 
orre
t by verifying whetherthe head of the list in the request is one of its neighbors. Below, V ∈ Nloc, xS , xD and xa arevariables of sort loc whereas xr is a variable of sort lists and xId , xm are variables of sort terms.The pro
ess exe
uted by an intermediate node V when forwarding a request is as follows:
Preq(V ) = in w1[ΦV ].read t then 0 else (store(t).out(w2))

where 





w1 = 〈req, xS , xD, xId , xa :: xr, xm〉
ΦV = check(V, xa)
t = 〈xS , xD, xId〉
w2 = 〈req, xS , xD, xId , V :: (xa :: xr), xm〉When the request rea
hes the destination D, it 
he
ks that the request has a 
orre
t hma
and that the �rst node in the route is one of his neighbors. Then, the destination D 
onstru
tsa route reply, in parti
ular it 
omputes a new hma
 over the route a

umulated in the requestpa
ket with KSD, and sends the answer ba
k over the network.
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3.1. MODELING 43
The pro
ess exe
uted by the destination node D is the following:

Pdest(D,S) = in v1[ΦD].out(v2).0

where: 





v1 = 〈req, S,D, xId , xa :: xl, hmac(〈req, S,D, xId〉,KSD)〉
ΦD = check(D,xa)
v2 = 〈rep, D, S, xId , xa :: xl, hmac(〈rep, D, S, xId , xa :: xl〉,KSD)〉Then, the reply travels along the route ba
k to S. The intermediate nodes 
he
k thatthe route in the reply pa
ket is lo
ally 
orre
t, whi
h means that their name appears on
e inthe list and that the names appearing just before and just after in the list are the names ofsome of their neighbors. If this test is passed su

essfully, they forward the reply. The pro
essexe
uted by an intermediary node V when forwarding a reply is the following:

Prep(V ) = in w′[Φ′
V ].out(w′)

where {
w′ = 〈rep, xD, xS , xId , xr, xm〉
Φ′
V = checkl(V, xr)3.1.3 Exe
ution modelEa
h pro
ess is lo
ated at a spe
i�ed node of the network. Unlike 
lassi
al Dolev-Yao model,the intruder does not 
ontrol the entire network but 
an only intera
t with its neighbors.More spe
i�
ally, we assume that the topology of the network is represented by giving anundire
ted graph G = (V,E) with V ⊆ Nloc, where an edge in the graph models the fa
t thattwo nodes are neighbors. We also assume that we have a set of nodesM that are 
ontrolledby the atta
ker. These nodes are then 
alled mali
ious. Our model is not restri
ted to a singlemali
ious node. Our results allow us to 
onsider the 
ase of several 
ompromised nodes that
ollaborate by sharing their knowledge. However, it is well-known that the presen
e of several
olluding mali
ious nodes often yields straightforward atta
ks [HPJ06, LPM+05℄.De�nition 3.1.1 (
on�guration). A (ground) 
on
rete 
on�guration of the network is atriplet (P;S; I) where:

• P is a multiset of expressions of the form ⌊P ⌋n, whi
h represents the (ground) pro
ess Plo
ated at node n ∈ V .
• S is a set of expressions of the form ⌊t⌋n with n ∈ V and t a ground term. ⌊t⌋n representsthe fa
t that the node n has stored the term t.
• I is a set of ground terms representing the messages seen by the intruder.In the expressions of the form ⌊P ⌋n, we 
onsider for the sake of 
larity that null pro
esses,i.e. expressions of the form ⌊0⌋n, are removed. Moreover, we will write ⌊P ⌋n ∪ P instead of

{⌊P ⌋n} ∪ P.Example 3.1.2. Continuing our modeling of SRP, a typi
al initial 
on�guration for the SRPproto
ol is
K0 = (⌊Pinit(S,D)⌋S | ⌊Pdest(D,S)⌋D; ∅; I0)where both the sour
e node S and the destination node D wish to 
ommuni
ate. We assumethat ea
h node has an empty storage list and that the initial knowledge of the intruder is given
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44 CHAPTER 3. MODELING AND ANALYZING ROUTING PROTOCOLS
by an in�nite set of terms I0. A possible network 
on�guration is modeled by the graph G0 inFigure 3.2. We assume that there is a single mali
ious node, i.e. M0 = {nI}. The nodes Wand X are two extra (honest) nodes. We do not assume that the intermediary nodes nI , W ,and X exe
ute the routing proto
ol. A
tually, this is not needed to show that the proto
ol is�awed, and we want to keep this example as simple as possible.

W

X

nIS D

Figure 3.2: Example of network topology (where nI is the mali
ious node).
Ea
h honest node broad
asts its messages to all his neighbors. To 
apture more mali
iousbehaviors, we allow the nodes 
ontrolled by the intruder to send messages only to some spe
i�
neighbor. The 
ommuni
ation system is formally de�ned by the rules of Figure 3.3. They areparametrized by the underlying graph G and the set of mali
ious nodesM.The relation→∗

G,M is the re�exive and transitive 
losure of→G,M. We may write→,→G,
→M instead of →G,M when the underlying network topology G or the underlying set M is
lear from the 
ontext.Note that in the 
ase where we assume that there is a single mali
ious node with ea
hhonest node 
onne
ted to it, we retrieve the model where the atta
ker is assumed to 
ontrolall the 
ommuni
ations.Example 3.1.3. Continuing the example developed in Se
tion 3.1.2, the following sequen
eof transitions is enabled from the initial 
on�guration K0:

K0→
∗
G0,M0

(⌊in u2[ΦS ].0⌋S ∪ ⌊Pdest(D,S)⌋D; ∅; I0 ∪ {u1})where:
u1 = 〈req, S,D, Id , S :: ⊥, hmac(〈req, S,D, Id〉,KSD)〉
u2 = 〈rep, D, S, Id , xL, hmac(〈rep, D, S, Id , xL〉,KSD)〉
ΦS = checkl(S, xL) ∧ ¬loop(xL)During this transition, S broad
asts to its neighbors a request to �nd a route to D. Theintruder nI is a neighbor of S in G0, so he learns the request message. Assuming that theintruder knows the names of its neighbors, i.e. W,X ∈ I0, he 
an then build the followingfake message request:
m = 〈req, S,D, Id , [X;W ;S], hmac(〈req, S,D, Id〉,KSD)〉and broad
asts it. Sin
e (X,D) ∈ E, D a

epts this message and the resulting 
on�gurationof the transition is

(⌊in u2[ΦS ].0⌋S ∪ ⌊out(v2σ).0⌋D; ∅; I0 ∪ {u1})where {
v2 = 〈rep, D, S, xId , xa :: xl, hmac(〈D,S, xId , xa ::〉,KSD)〉
σ = {xId 7→ Id , xa 7→ X, 7→ [W ;S]}
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3.1. MODELING 45

Comm ({⌊in uj [Φj ].Pj⌋nj
| mgu(t, uj) 6= ⊥, [[Φjσj ]]G = 1, (n, nj) ∈ E}

∪ ⌊out(t).P ⌋n ∪ P;S; I)
→G,M ({⌊Pjσj⌋nj

} ∪ ⌊P ⌋n ∪ P;S; I ′)where σj = mgu(t, uj), I ′ = I ∪ {t} if (n, nI) ∈ E for some nI ∈ M and I ′ = Iotherwise. Moreover, ⌊P ′⌋n′ ∈ P implies that:
• (n, n′) 6∈ E, or
• P ′ is not of the form in u′[Φ′].Q′, or
• P ′ = in u′[Φ′].Q′ and (mgu(t, u′) = ⊥ or [[Φ′mgu(t, u′)]]G = 0).

In (⌊in u[Φ].P ⌋n ∪ P;S; I) →G,M (⌊Pσ⌋n ∪ P;S; I)if (nI , n) ∈ E for some nI ∈M, I ⊢ t, σ = mgu(t, u) and [[Φσ]]G = 1Store (⌊store(t).P ⌋n ∪ P;S; I) →G,M (⌊P ⌋n ∪ P; ⌊t⌋n ∪ S; I)Read-Then (⌊read u then P else Q⌋n ∪ P; ⌊t⌋n ∪ S; I)
→G,M (⌊Pσ⌋n ∪ P; ⌊t⌋n ∪ S; I)where σ = mgu(t, u)Read-Else (⌊read u then P else Q⌋n ∪ P;S; I)
→G,M (⌊Q⌋n ∪ P;S; I)if for all t su
h that ⌊t⌋n ∈ S, mgu(t, u) = ⊥If-Then (⌊if Φ then P else Q⌋n ∪ P;S; I)
→G,M (⌊P ⌋n ∪ P;S; I) if [[Φ]]G = 1If-Else (⌊if Φ then P else Q⌋n ∪ P;S; I)
→G,M (⌊Q⌋n ∪ P;S; I) if [[Φ]]G = 0Par (⌊P1 | P2⌋n ∪ P;S; I) →G,M (⌊P1⌋n ∪ ⌊P2⌋n ∪ P;S; I)Repl (⌊!P ⌋n ∪ P;S; I) →G,M (⌊Pα⌋n ∪ ⌊!P ⌋n ∪ P;S; I)where α is a renaming of the bound variables of PNew (⌊new m.P ⌋n ∪ P;S; I) →G,M (⌊P{m 7→ m′}⌋n ∪ P;S; I)where m′ is a fresh name

Figure 3.3: Con
rete transition system.
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46 CHAPTER 3. MODELING AND ANALYZING ROUTING PROTOCOLS
As usual, an atta
k is de�ned as a rea
hability property.De�nition 3.1.2. Let G be a graph and M be a set of nodes. There is an M-atta
k on a
on�guration with a hole (P[_];S; I) for the network topology G and the formula Φ if thereexist n,P ′,S ′, I ′ su
h that:

(P[if Φ then out(error)];S; I) →∗
G,M (⌊out(error)⌋n ∪ P

′,S ′, I ′)where error is a spe
ial symbol not o

urring in the 
on�guration (P[_];S; I).The usual se
re
y property 
an be typi
ally en
oded by adding a witness pro
ess in parallel.For example, the pro
ess W = in s._ 
an only evolve if it re
eives the se
ret s. Thus these
re
y preservation of s on a 
on�guration (P;S; I) for a graph G = (V,E) 
an be de�ned bythe (non) existen
e of an {nI}-atta
k on the 
on�guration (P ∪ ⌊W ⌋n;S; I) and the formula
true for the graph G′ = (V ∪ {n}, E ∪ {(n, nI)}).Example 3.1.4. For the SRP proto
ol, the property we want to 
he
k is that the list of nodesobtained by the sour
e through the proto
ol represents a path in the graph. We 
an easily en
odethis property by repla
ing the null pro
ess in Pinit(S,D) by a hole, and 
he
king whether theformula ¬route(xL) holds. Let P ′

init(S,D) be the resulting pro
ess.
P ′

init(S,D) = new Id .out(u1).in u2[ΦS ].Pwhere P = if ¬route(xL) then out(error). Then, we re
over the atta
k mentioned in [BV04℄ withthe topology G0 given in Example 3.1.2, and from the initial 
on�guration:
K ′

0 = (⌊P ′
init(S,D)⌋S | ⌊Pdest(D,S)⌋D; ∅; I0).Indeed, we have that:

K0 →∗ (⌊in u2[ΦS ].P ⌋S ∪ ⌊out(m′).0⌋D; ∅; I)
→ (⌊in u2[ΦS ].P ⌋S ∪ ⌊0⌋D; ∅; I ′)
→ (⌊if¬route([X;W ;S]) then out(error)⌋S ; ∅; I ′)
→ (⌊out(error).0⌋S; ∅; I ′)

where 





m′ = 〈rep, D, S, Id , [X;W ;S], hmac(〈D,S, Id , [X;W ;S]〉,KSD)〉
I = I0 ∪ {u1}, and
I ′ = I0 ∪ {u1} ∪ {m′}.

3.2 Symboli
 modelIt is di�
ult to dire
tly reason with the transition system de�ned in Figure 3.3 sin
e it isin�nitely bran
hing. Indeed, a potentially in�nite number of distin
t messages 
an be sent atea
h step by the intruder node. In fa
t, the messages that the intruder 
an send en
ompassany message that he is able to forge from his knowledge.That is why it is often interesting to introdu
e a symboli
 transition system where ea
hintruder step is 
aptured by a single rule (as in e.g. [ALV02℄). This transition system will haveto maintain some sort of 
ontrol over the messages through the use of the 
onstraint systemsde�ned in Chapter 2. Furthermore, we will also have to 
onsider formulas and disequality
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3.2. SYMBOLIC MODEL 47

onstraints to a

ount for some of the requirements inherited from the 
on
rete transitionsystem.As in [MS01, CLCZ10, RT01℄, groups of exe
utions 
an be represented using 
onstraintsystems. However, 
ompared to previous work, we have to add 
onstraints in order to 
opewith the formulas that are 
he
ked upon the re
eption of a message and also in order to 
opewith generalized disequality tests for re�e
ting 
ases where agents reje
t messages of the wrongform. Indeed, sin
e messages 
an be broad
asted to all neighbors, we need to determine forea
h message whi
h agents will a

ept the message and whi
h agents will not a

ept it.De�nition 3.2.1 (Disequality 
onstraint). A disequality 
onstraint is an expression of theform ∀X. v 6= u where v, u are terms and X is a set of variables.Our disequality 
onstraints are rather general: they do not simply allow to 
he
k that twoterms are di�erent (u 6= v), but they also allow to ensure that no uni�
ation was possible ata 
ertain point of the exe
ution. It is ne
essary to 
he
k this due to our broad
ast primitive:the disequality 
onstraint represents the fa
t that a message was not treated be
ause it didnot mat
h the expe
ted pattern.To model the exe
ution of a proto
ol in a symboli
 way, we will use the 
onstraint systemsde�ned in Chapter 2. Moreover, we will also maintain a set of other 
onstraints Ψ 
onsistingin disequality 
onstraints and a formula Φ of L.De�nition 3.2.2. Let (C, I) be a 
onstraint system and Ψ = Φ1∧Φ2 where Φ1 ∈ L and Φ2 isa 
onjun
tion of disequality 
onstraints, su
h that fv(Ψ) ⊆ rvar(C) and names(Ψ)∩I = ∅. Asolution to (C, I) and Ψ for a graph G is a ground substitution θ su
h that dom(θ) = rvar(C)and:
• Iθ ∪ Tθ ⊢ uθ for all T ?

⊢ u ∈ C;
• for all (∀X. v 6= u) ∈ Φ2, the terms vθ and uθ are not uni�able (even renaming thevariables of X with fresh variables); and
• [[Φ1θ]]G = 1.

Example 3.2.1. Consider the 
onjun
tion of 
onstraints C = I0∪{u1}
?
⊢ v1 ∧ I0∪{u1, v2}

?
⊢

u2 and the formula Φ = ΦD ∧ ΦS ∧ ¬route(xL).with:
u1 = 〈req, S,D, Id , S :: ⊥, hmac(〈req, S,D, id〉,KSD)〉
u2 = 〈rep, D, S, Id , xL, hmac(〈rep, D, S, id, xL〉,KSD)〉
ΦD = check(D,xa)
ΦS = checkl(S, xL) ∧ ¬loop(xL)
v1 = 〈req, S,D, xId , xa :: xl, hmac(〈req, S,D, xid〉,KSD)〉
v2 = 〈rep, D, S, xId , xa :: xl, hmac(〈rep, D, S, xId , xa :: xl〉,KSD)〉Let I0 be a set of names su
h that names(C, φ)∩I0 = ∅. We have that (C, I0) is a 
onstraintsystem, and the substitution

θ = {xId 7→ Id , xa 7→ X,xl 7→ [W ;S], xL 7→ [X;W ;S]}is a solution of the 
onstraint system (C, I0) and of the formula Φ for the graph G0 de�ned inExample 3.1.2.
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48 CHAPTER 3. MODELING AND ANALYZING ROUTING PROTOCOLS
3.2.1 Transition systemCon
rete exe
utions 
an be �nitely represented by exe
uting the transitions symboli
ally. Asymboli
 
on�guration is a quintuplet (P;S; I; C; Ψ) where
• P is a multiset of expressions of the form ⌊P ⌋n where null pro
esses are removed. ⌊P ⌋nrepresents the pro
ess P lo
ated at node n ∈ Nloc.
• S is a set of expressions of the form ⌊t⌋n with n ∈ Nloc and t a term (not ne
essarilyground).
• I = Inames ⊎ Iterms where Iterms is a set of terms (not ne
essarily ground) representingthe messages seen by the intruder, and Inames is a set of names that the intruder has athis disposal .
• (C, Inames) is a 
onstraint system su
h that T ⊆ Iterms for every 
onstraint T ?

⊢ u ∈ C.
• Ψ = Φ1 ∧ Φ2 where Φ1 ∈ L and Φ2 is a 
onjun
tion of disequality 
onstraints.Su
h a 
on�guration is ground when:

fv(P) ∪ vars(S) ∪ vars(I) ∪ fv(Ψ) ⊆ rvar(C)Compared to 
on
rete 
on�gurations, terms ex
hanged by pro
esses in symboli
 
on�gur-ations are not ne
essarily ground anymore but have to satisfy some (dedu
tion or disequality)
onstraints. We de�ne the asso
iated symboli
 transitions in Figure 3.4. They mimi
 
on
reteones. In parti
ular, for the 
ommuni
ation rule, the set I of pro
esses ready to input a mes-sage is split into three sets J , K and L. The message being transmitted is a term t, and thepro
esses ready to input are of the form in ui[Φi]. J is the set of pro
esses that a

ept themessage t, K is the set of pro
esses that reje
t the message t be
ause t does not unify withthe expe
ted pattern uk, and L is the set of pro
esses that reje
t the message t be
ause the
ondition Φl is not ful�lled.Whenever (P;S; I; C; Ψ)→s
G,M (P ′;S ′; I ′; C′; Ψ′) where (P;S; I; C; Ψ) is a (ground) sym-boli
 
on�guration then (P ′;S ′; I ′; C′; Ψ′) is still a (ground) symboli
 
on�guration.More pre
isely, we show in Lemma 3.2.1 that the result of a transition from a ground sym-boli
 
on�guration is also a ground symboli
 
on�guration, in parti
ular the set of 
onstraintsobtained is a 
onstraint system. This lemma will be useful later, to show that our transitionsystem is 
omplete (Proposition 3.2.2) and sound (Proposition 3.2.3) when 
onsidering ground
on�gurations.Lemma 3.2.1. Let G = (Nloc, E) be a graph,M⊆ Nloc, and Ks = (P;S; I; C; Ψ) be a groundsymboli
 
on�guration. If K ′

s is a quintuplet su
h that Ks →s
G,M K ′

s, then K ′
s is a groundsymboli
 
on�guration.Proof. Sin
e Ks is a symboli
 
on�guration, there exist Inames , Iterms su
h that I =

Iterms ⊎ Inames , (C, Inames) is a 
onstraint system and T ⊆ Iterms for every T ?
⊢ u ∈ C. Wealso have that Ψ = Φ1 ∧ Φ2 with Φ1 ∈ L and Φ2 is a 
onjun
tion of disequality 
onstraints.Moreover, sin
e Ks is ground, we have that var(I) ∪ fv(P) ∪ var(S) ∪ fv(Ψ) ⊆ rvar(C). Letus write K ′

s = (P ′;S ′; I ′; C′; Ψ′) and G = (V,E). To prove the result, we do a 
ase analysis on
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3.2. SYMBOLIC MODEL 49
Comms (⌊out(t).P ⌋n ∪ {⌊in ui[Φi].P

′
i⌋ni
| i ∈ I} ∪ P;S; I; C; Ψ)
→s
G,M

{⌊P ′
jσ⌋nj

| j ∈ J} ∪ Pσ;Sσ; I ′; C′; Ψ′)where:
• ⌊P ′⌋n′ ∈ P implies that (n, n′) 6∈ E or P ′ is not of the form in u′[Φ′].Q′,
• I = J ⊎K ⊎ L and (ni, n) ∈ E for every i ∈ I,
• for every l ∈ L,αl is a renaming of vars(ul) r rvar(C) by fresh variables
• σ = mgu({uj = t | j ∈ J} ∪ {ulαl = t | l ∈ L})

• ΨJ = {Φj | j ∈ J}, ΨK = {∀Yk . t 6= uk | k ∈ K} and ΨL = {¬Φlαl | l ∈ L}where Yk = (vars(uk) r rvar(C))

• I ′ = (I ∪ {t})σ when (n, nI) ∈ E for some nI ∈M, and I ′ = Iσ otherwise.
• C′ = Cσ and Ψ′ = (Ψ ∪ΨJ ∪ΨK ∪ΨL)σ

Ins (⌊in u[Φ].P ⌋n ∪ P;S; I; C; Ψ) →s
G,M (⌊P ⌋n ∪ P;S; I; C ∧ I

?
⊢ u; Ψ ∧ Φ)if (nI , n) ∈ E for some nI ∈MStores (⌊store(t).P ⌋n ∪ P;S; I; C; Ψ) →s

G,M (⌊P ⌋n ∪ P; ⌊t⌋n ∪ S; I; C; Ψ)Read-Thens (⌊read u then P else Q⌋n ∪ P;S; I; C; Ψ)
→s
G,M (⌊Pσ⌋n ∪ Pσ;Sσ; Iσ; Cσ; Ψσ)where ⌊t⌋n ∈ S and σ = mgu(t, u)Read-Elses (⌊read u then P else Q⌋n ∪ P;S; I; C; Ψ)

→s
G,M (⌊Q⌋n ∪ P;S; I; C; Ψ ∧ {∀X . t 6= u | ⌊t⌋n ∈ S})where X = vars(u) r rvar(C)If-Thens (⌊if Φ then P else Q⌋n ∪ P;S; I; C; Ψ)→s

G,M (⌊P ⌋n ∪ P;S; I; C; Ψ ∧ Φ)If-Elses (⌊if Φ then P else Q⌋n ∪ P;S; I; C; Ψ)→s
G,M (⌊Q⌋n ∪ P;S; I; C; Ψ ∧ ¬Φ)Pars (⌊P1 | P2⌋n ∪ P;S; I; C; Ψ) →s

G,M (⌊P1⌋n ∪ ⌊P2⌋n ∪ P;S; I; C; Ψ)Repls (⌊!P ⌋n ∪ P;S; I; C; Ψ) →s
G,M (⌊Pα⌋n ∪ ⌊!P ⌋n ∪ P;S; I; C; Ψ)where α is a renaming of the bound variables of P that are not in rvar(C).News (⌊new m.P ⌋n ∪ P;S; I; C; Ψ) →s
G,M (⌊P{m 7→ m′}⌋n ∪ P;S; I; C; Ψ)where m′ is a fresh name

Figure 3.4: Symboli
 transition system.
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50 CHAPTER 3. MODELING AND ANALYZING ROUTING PROTOCOLS
the transition rule involved in Ks →s

G,M K ′
s. Note that the result is straightforward for therules Stores, Pars, Repls, and News. Indeed, in these 
ases, we have that C′ = C, Ψ′ = Ψ,

I ′ = I, and fv(P)∪ var(S) = fv(P ′)∪ var(S ′). Now, we 
onsider the remaining rules in turn.
• Rule Read-Thens. We have that:

(⌊read u then P else Q⌋n ∪ Q;S; I; C; Ψ)→s
G,M (⌊Pσ⌋n ∪Qσ;Sσ; Iσ; Cσ; Ψσ)where ⌊t⌋n ∈ S and σ = mgu(u, t).First, we have that (C′, Inames) is a 
onstraint system. Indeed, monotoni
ity is straight-forwardly satis�ed by C′. Moreover, appli
ation of a substitution preserves origination.Sin
e I ′ = Iσ = Itermsσ ⊎ Inames and C′ = Cσ, we also have that T ′ ⊆ Itermsσ for every

T ′
?
⊢ u′ ∈ C′. Lastly, sin
e Ks is ground, we have that:

fv(P ) ∪ fv(Q) ∪ vars(S) ∪ vars(I) ∪ fv(Ψ) ⊆ rvar(C)Thus, we dedu
e that
fv(Pσ) ∪ fv(Qσ) ∪ vars(Sσ) ∪ vars(Iσ) ∪ fv(Ψσ) ⊆ rvar(Cσ)We 
on
lude that the resulting symboli
 
on�guration K ′

s is ground.
• Rule Read-Elses. We have that:

(⌊read u then P else Q⌋n ∪ Q;S; I; C; Ψ)→s
G,M (⌊Q⌋n ∪ Q;S; I; C; Ψ ∧ Eq)where Eq = {∀var(u) r rvar(C) . t 6= u | ⌊t⌋n ∈ S}.First, we know that I = Iterms ⊎Inames , (C′, Inames) is a 
onstraint system, and we havethat T ⊆ Iterms for every T ?

⊢ u ∈ C. Furthermore, sin
e Ks is ground, we already havethat fv(Q)∪ fv(Q)∪ var(S)∪ var(I) ⊆ rvar(C). Sin
e fv(Eq) ⊆ rvar(C), we obtain that
fv(Ψ′) ⊆ rvar(C). In 
on
lusion, the resulting 
on�guration K ′

s is ground.
• Rule If-Thens. We have that:

(⌊if Φ then P else Q⌋n ∪ Q;S; I; C; Ψ)→s
G,M (⌊P ⌋n ∪ Q;S; I; C; Ψ ∧ Φ)We still have that I = Iterms⊎Inames , (C′, Inames) is a 
onstraint system, and T ⊆ Itermsfor every T ?

⊢ u ∈ C. Sin
e Ks is ground, we have that
fv(P ) ∪ fv(Φ) ∪ fv(Q) ∪ var(S) ∪ var(I) ∪ fv(Ψ) ⊆ rvar(C)Thus, the 
on�guration K ′

s is ground.
• Rule If-Elses. Similar to the previous 
ase.
• Rule Ins. We have that:

(⌊in u[Φ].P ⌋n ∪Q;S; I; C; Ψ)→s
G,M (⌊P ⌋n ∪Q;S; I; C ∧ I

?
⊢ u; Ψ ∧ Φ)where (nI , n) ∈ E for some nI ∈M.We have that I = Iterms ⊎Inames , (C′, Inames) is a 
onstraint system, and T ⊆ Iterms forevery T ?

⊢ u ∈ C. Consequently, we dedu
e that (C′, Inames) satis�es the monotoni
ity
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3.2. SYMBOLIC MODEL 51
property. Sin
e var(I) ⊆ rvar(C) (be
ause Ks is ground), (C′, Inames) furthermoresatis�es the origination property. Clearly, we have that T ⊆ Iterms for any T ?

⊢ u ∈ C′.Lastly, sin
e Ks is ground and fv(in u[Φ]P ) = (fv(P ) ∪ fv(Φ)) r var(u), we have that:
fv(P ) ∪ fv(Φ) ∪ fv(Q) ∪ var(S) ∪ var(I) ∪ fv(Ψ) ⊆ rvar(C) ∪ var(u).Sin
e rvar(C′) = rvar(C)∪ var(u), we easily dedu
e that the symboli
 
on�guration K ′

sis ground.
• Rule Comms . We have that:

(⌊out(t).P ⌋n ∪ PI ∪ Q;S; I; C; Ψ) →s
G,M

(⌊Pσ⌋n ∪ PJσ ∪ PK,Lσ ∪Qσ;Sσ; I ′σ; Cσ; Ψ′)where:� PI = {⌊in ui[Φi].Pi⌋ni
| i ∈ I},� PJ = {⌊Pj⌋nj

| j ∈ J}� PK,L = {⌊in uk[Φk].Pk⌋nk
| k ∈ K ∪ L}� ΨJ = {Φj | j ∈ J} and ΨL = {¬Φlαl | l ∈ L}� ΨK = {∀var(uk) r rvar(C) . t 6= uk | k ∈ K},� σ = mgu({uj = t | j ∈ J} ∪ {ulαl = t | l ∈ L})� Ψ′ = (Ψ ∧ΨJ ∧ΨK ∧ΨL)σ

⌊P ′⌋n′ ∈ Q implies that (n, n′) /∈ E or P ′ is not of the form in u′[Φ′].Q′, I = J
⊎
K

⊎
L,

(ni, n) ∈ E for any i ∈ I, αl is a renaming of var(ul) r rvar(C) by fresh variables, andif (n, nI) ∈ E for some nI ∈M then I ′ = I ∪ {t}) else I ′ = I.Clearly, Tσ ⊆ Itermsσ for any T
?
⊢ u ∈ C. Moreover, (C′, Inames) straightforwardlysatis�es the monotoni
ity property. As substitution preserves origination, (C′, Inames)satis�es the origination property. Consequently, K ′

s is a symboli
 
on�guration. Lastly,we have to show that K ′
s is ground. Sin
e Ks is ground, we have that:
fv(t, P,PI ,Q,Ψ) ∪ var(S, I) ⊆ rvar(C)We immediately dedu
e that

fv(Pσ,PJσ,PK,Lσ,Qσ,Ψσ) ∪ var(Sσ, Iσ, tσ) ⊆ rvar(Cσ)It remains to show that fv(ΨJ ∧ ΨK ∧ ΨL)σ ⊆ rvar(Cσ). Now, fv(ΨJ) ⊆ rvar(C) as
Ks is ground. Furthermore, fv(ΨK) ⊆ rvar(C) by de�nition of ΨK . So we only have toprove that fv(ΨLσ) ⊆ rvar(Cσ). Let l ∈ L, and Xl = var(ul) r rvar(C). Ne
essarily,
var(Φl) ⊆ var(ul)∪ rvar(C) = Xl ⊎ rvar(C). Consequently, var(Φlαl) ⊆ Xlαl ⊎ rvar(C),as αl is a renaming of Xl by fresh variables. Moreover, (ulαl)σ = tσ, so var((ulαl)σ) =
var(tσ) ⊆ rvar(Cσ). Consequently, var((Φlαl)σ) ⊆ rvar(Cσ). We easily dedu
e that
fv(ΨLσ) ⊆ rvar(Cσ).We 
on
lude that K ′

s is a ground symboli
 
on�guration.
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52 CHAPTER 3. MODELING AND ANALYZING ROUTING PROTOCOLS
Example 3.2.2. Exe
uting the same transitions as in Example 3.1.4 symboli
ally, we rea
hthe following 
on�guration:

Ks = (⌊out(error).0⌋S; ∅; I0 ∪ {u1, v2}; C; Φ)where C,Φ, u1, v2 are de�ned as in Example 3.2.1.
3.2.2 Soundness and 
ompletenessWe show that our symboli
 transition system re�e
ts exa
tly the 
on
rete transition system,i.e. ea
h 
on
rete exe
ution of a pro
ess is 
aptured by one of the symboli
 exe
utions. Morepre
isely, a 
on
rete 
on�guration is represented by a symboli
 
on�guration if it is one of itsinstan
es, 
alled 
on
retization.De�nition 3.2.3 (θ-
on
retization). Let Ks = (Ps;Ss; Is; C; Ψ) be a symboli
 
on�gurationsu
h that I = Inames ⊎ Iterms, (C, Inames) is a 
onstraint system. A 
on
retization of Ks is a
on
rete 
on�guration Kc = (P;S; I) su
h that there exists θ a solution of (C, Inames) and Ψand, furthermore, Psθ = P, Ssθ = S, Isθ = I. We say that Kc is a θ-
on
retization of Ks.Note that the θ-
on
retization of a ground symboli
 
on�guration is a ground 
on
rete
on�guration. Now, we show that ea
h 
on
rete transition 
an be mat
hed by a symboli
 one.The proof is performed by studying ea
h rule of the 
on
rete transition system, showing thatthe 
orresponding symboli
 rule 
overs all possible 
ases. In parti
ular, disequality 
onstraintsallow to faithfully model 
ases where nodes reje
t a message be
ause the message does notmat
h the expe
ted pattern.Proposition 3.2.2 (
ompleteness). Let G = (Nloc, E) be a graph and M⊆ Nloc. Let Ks =
(Ps;Ss; Is; C; Ψ) be a ground symboli
 
on�guration with I = Inames⊎Iterms and θ be a solutionof the 
onstraint system (C, Inames) and Ψ. Let Kc be the θ-
on
retization of Ks. Let K ′

cbe a 
on
rete 
on�guration su
h that Kc →G,M K ′
c. Then there exists a ground symboli

on�guration K ′

s and a substitution θ′ su
h that:
• K ′

c is the θ′-
on
retization of K ′
s, and

• Ks →s
G,M K ′

s.Proof. Let Kc = (P;S; I). We distinguish 
ases depending on whi
h transition is appliedto Kc. We write K ′
c = (P ′;S ′; I ′). We show that there exists a symboli
 
on�guration K ′

ssu
h that K ′
c is the θ′-
on
retization of K ′

s and Ks →s
G,M K ′

s. Thanks to Lemma 3.2.1, weeasily dedu
e that K ′
s is ground.

• Rule Par. We have that:
(⌊P1|P2⌋n ∪ Q;S; I)→G,M (⌊P1⌋n ∪ ⌊P2⌋n ∪ Q;S; I)By hypothesis, Ks is a symboli
 
on�guration whose θ-
on
retization is Kc. Con-sequently, we have that Ks = (⌊P s1 |P

s
2 ⌋n ∪ Qs;Ss; Is; C; Ψ) with Qsθ = Q, Ssθ = S,

Isθ = I, P s1 θ = P1, and P s2 θ = P2. Let K ′
s = (⌊P s1 ⌋n ∪ ⌊P

s
2 ⌋n ∪ Qs;Ss; Is; C; Ψ). Wehave that Ks →s

G,M K ′
s (with the Pars rule), θ is a solution of (C, Inames) and Ψand K ′

c is the θ-
on
retization of K ′
s.
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3.2. SYMBOLIC MODEL 53
• Rule Repl. We have that:

(⌊!P ⌋n ∪ Q;S; I)→G,M (⌊Pα⌋n ∪ ⌊!P ⌋n ∪Q;S; I)where α is a fresh renaming of the bound variables in P . Sin
e Ks is a symboli

on�guration whose θ-
on
retization is Kc, we have that Ks = (⌊!Ps⌋n∪Qs;Ss; Is; C; Ψ)with Qsθ = Q, Ssθ = S, Isθ = I and Psθ = P . Note that α is also a renaming ofthe variables in bv(Ps) r rvar(C). Let K ′
s = (⌊Psα⌋n ∪ ⌊!Ps⌋n ∪ Qs;Ss; Is; C; Φ). Wehave that Ks →s

G,M K ′
s (with the Repls rule) and θ is a solution of (C, Inames). Itremains to show that K ′
c is the θ-
on
retization of K ′

s. Sin
e the variables introdu
edby α are fresh, we have that img(α) ∩ dom(θ) = ∅, and sin
e Psθ = P , we have that
dom(α) ∩ dom(θ) = ∅. Hen
e we have that (Psα)θ = (Psθ)α = Pα. This allows us to
on
lude.

• Rule New. We have that:
(⌊new m.P ⌋n ∪ Q;S; I)→G,M (⌊P{m 7→ m′}⌋n ∪ Q;S; I)where m′ is a fresh name.We know that Ks is a symboli
 
on�guration whose θ-
on
retization is Kc. Thus, wehave that Ks = (⌊new m.Ps⌋n ∪ Qs;Ss; Is; C; Ψ) with Qsθ = Q, Ssθ = S, Isθ = I, and

Psθ = P . Let K ′
s = (⌊Ps{m 7→ m′}⌋n ∪ Qs;Ss; Is; C; Ψ). We have that Ks →s

G,M K ′
s(with the News rule), θ is a solution of (C, Inames) and K ′

c is the θ-
on
retization of K ′
s.

• Rule Store. We have that:
(⌊store(t).P ⌋n ∪Q;S; I)→G,M (⌊P ⌋n ∪ Q; ⌊t⌋n ∪ S; I)We know that Ks is a symboli
 
on�guration whose θ-
on
retization is Kc. Thus, wehave that Ks = (⌊store(ts).Ps⌋n ∪ Qs;Ss; Is; C; Ψ) with Qsθ = Q, Ssθ = S, Isθ = I,

Psθ = P and tsθ = t. Let K ′
s = (⌊Ps⌋n ∪ Qs; ⌊ts⌋n ∪ Ss; Is; C; Ψ). We have that

Ks →s
G,M K ′

s (with the Stores rule), θ is a solution of (C, Inames) and K ′
c is the

θ-
on
retization of K ′
s.

• Rule Read-Then . We have that:
(⌊read u then P else Q⌋n ∪ Q; ⌊t⌋n ∪ S; I)→G,M (⌊Pσ⌋n ∪Q; ⌊t⌋n ∪ S; I)where σ = mgu(t, u).We know that Ks is a symboli
 
on�guration whose θ-
on
retization is Kc. Thus, wehave that Ks = (⌊read us then Ps else Qs⌋n ∪ Qs; ⌊ts⌋n ∪ Ss; Is; C; Ψ) with Qsθ = Q,

usθ = u, tsθ = t, Psθ = P , Qsθ = Q, Ssθ = S and Isθ = I. By hypothesis, we have that
(usθ)σ = uσ = tσ = (tsθ)σ, so σ′ = mgu(us, ts) exists and there exists θ′ a substitutionsu
h that σ◦θ = θ′◦σ′. Let us de�neK ′

s = (⌊Psσ′⌋n∪Qsσ′; ⌊tsσ′⌋n∪Ssσ′; Isσ′; Cσ′; Ψσ′).We have that Ks →s
G,M K ′

s (with the Read-Thens rule).It remains to prove that θ′ is a solution for (Cσ′, Inames) and Ψσ′. As θ is a solution of
(C, Inames), for every T ?

⊢ u ∈ C, Tθ ∪ Inames ⊢ uθ, and so (Tσ′)θ′ ∪ Inames ⊢ (uσ′)θ′.With a similar reasoning, we 
an show that θ′ is also a solution for Ψσ′. Furthermore,we have that Qsσ′θ′ = Qsθσ = Qσ, Psσ′θ′ = Psθσ = Pσ, Ssσ′θ′ = Ssθσ = Sσ and
Isσ′θ′ = Isθσ = Iσ. As σ = mgu(u, t) where t is ground and the variables of u arebound in (read u then P else Q), we dedu
e that dom(σ) ∩ vars(Q,S, I) = ∅, and so
Qσ = Q, Sσ = S and Iσ = I. Hen
e, we have that K ′

c is the θ′-
on
retization of K ′
s.
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54 CHAPTER 3. MODELING AND ANALYZING ROUTING PROTOCOLS
• Rule Read-Else. We have that:

(⌊read u then P else Q⌋n ∪ Q;S; I)→G,M (⌊Q⌋n ∪ Q;S; I)and for all ⌊t⌋n ∈ S we have that mgu(t, u) = ⊥.We know that Ks is a symboli
 
on�guration whose θ-
on
retization is Kc. Thus, wehave that Ks = (⌊read us then Ps else Qs⌋n ∪ Qs;Ss; Is; C; Ψ) with usθ = u, Psθ = P ,
Qsθ = Q, Qsθ = Q, Ssθ = S, and Isθ = I.Let K ′

s = (⌊Qs⌋n ∪ Qs;Ss; Is; C; Ψ′) where Ψ′ = Ψ ∧ {∀Y.ts 6= us | ⌊ts⌋n ∈ S} and
Y = var(us) r rvar(C). We have that Ks →s

G,M K ′
s (with the Read-Elses rule).Now, let us show that θ is a solution of Ψ′. Let ∀Y.ts 6= us be a disequation in Ψ′ r Ψ.We have that usθ = u, tsθ = t for some term t su
h that ⌊t⌋n ∈ S, and mgu(t, u) = ⊥.Thus, θ is also a solution of this 
onstraint, and more generally θ is a solution of Ψ′.Now, it is easy to see that K ′

c is the θ-
on
retization of K ′
s.

• Rule If-Then. We have that:
(⌊if Φ then P else Q⌋n ∪ Q;S; I)→G,M (⌊P ⌋n ∪ Q;S; I) and [[Φ]]G = 1.We know that Ks is a symboli
 
on�guration whose θ-
on
retization is Kc. Thus, wehave that Ks = (⌊if Φs then Ps else Qs⌋n ∪ Qs;Ss; Is; C; Ψ) with Φsθ = Φ, Psθ = P ,

Qsθ = Q, Qsθ = Q, Ssθ = S, and Isθ = I.Let K ′
s = (⌊Ps⌋n∪Qs;Ss; Is; C; Ψ∧Φs). We have that Ks →s

G,M K ′
s (with the If-Thensrule). By hypothesis, we have that θ is a solution of Ψ, and as [[Φsθ]]G = [[Φ]]G is true,we easily dedu
e that θ is a solution of Ψ′ = Ψ ∧ Φs. Lastly, it is easy to see that K ′

c isthe θ-
on
retization of K ′
s.

• Rule If-Else. Similar to the previous 
ase.
• Rule In. We have that:

(⌊in u[Φ].P ⌋n ∪Q;S; I)→G,M (⌊Pσ⌋n ∪Q;S; I)with (nI , n) ∈ E for some nI ∈M, σ = mgu(t, u), I ⊢ t and [[Φσ]]G = 1.We know that Ks is a symboli
 
on�guration whose θ-
on
retization is Kc. Thus, wehave that Ks = (⌊in us[Φs].Ps⌋n ∪ Qs;Ss; Is; C; Ψ) with usθ = u, Φsθ = Φ, Psθ = P ,
Qsθ = Q, Ssθ = S, and Isθ = I.Let K ′

s = (⌊Ps⌋n ∪ Qs;Ss; Is; C′; Ψ′) where C′ = C ∧ Is
?
⊢ us and Ψ′ = Ψ ∧ Φs. We havethat Ks →s

G,M K ′
s (with the Ins rule). Let θ′ = θ ◦ σ . By hypothesis, we have that θis a solution of (C, Inames) and Ψ. To show that θ′ is a solution of (C′, Inames) and Ψ′,it remains to establish that:� (Itermsθ)σ∪Inames ⊢ (usθ)σ: We have that (Itermsθ)σ∪Inames = I sin
e var(I) = ∅,and (usθ)σ = uσ = t. Sin
e by hypothesis, we have that I ⊢ t, we easily 
on
lude.� [[(Φsθ)σ]]G = 1. A
tually, we have that (Φsθ)σ = Φσ. Sin
e, by hypothesis, wehave that [[Φσ]]G = 1, we easily 
on
lude.Hen
e, we have that θ′ is a solution of C′. It is easy to see that K ′

c is the θ′-
on
retizationof K ′
s.
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3.2. SYMBOLIC MODEL 55
• Rule Comm. We have that

Kc = (⌊out(t).P ⌋n ∪ {⌊in uj [Φj].Pj⌋nj
| j ∈ J} ∪ Q;S; I)

→G,M (⌊P ⌋n ∪ ⌊Pjσj⌋nj
} ∪ Q;S; I ′) = K ′

cwhere:� σj = mgu(t, uj), (n, nj) ∈ E, and [[Φjσj ]]G = 1 for any j ∈ J ,� if (n, nI) ∈ E for some nI ∈M then I ′ = I ∪ {t} else I ′ = I.Moreover, we know that ⌊P ′⌋n′ ∈ Q implies that:� (n, n′) 6∈ E, or� P ′ is not of the form in u′[Φ′].Q′, or� P ′ = in u′[Φ′].Q′ and (mgu(t, u′) = ⊥ or [[Φ′mgu(t, u′)]]G = 0).We know that Ks is a symboli
 
on�guration whose θ-
on
retization is Kc. Thus, wehave that Ks = (⌊out(ts).Ps⌋n∪{⌊in usj [Φ
s
j ].P

s
j ⌋nj
|j ∈ J}∪Qs;Ss; Is; C; Ψ) with tsθ = t,

Psθ = P , Isθ = I, Ssθ = S, Qsθ = Q and for any j ∈ J , we have that usjθ = uj ,
Φs
jθ = Φj , and P sj θ = Pj . Let us de�ne� PsK,L = {⌊in usk[Φ

s
k].P

s
k ⌋nk

∈ Qs | (nk, n) ∈ E},� Q′
s be su
h that Qs = PsK,L ⊎ Q

′
s,� K = {k | ⌊in usk[Φ

s
k].P

s
k⌋nk

∈ PsK,L and mgu(tsθ, u
s
kθ) = ⊥},� L = {l | ⌊in usl [Φ

s
l ].P

s
l ⌋nl

∈ PsK,L, σl = mgu(tsθ, u
s
l θ) and ¬[[(Φs

l θ)σ
′
l]]G = 1}.We have that PsK,L = {⌊in usk[Φ

s
k].P

s
k ⌋nk

∈ PsK,L | k ∈ K ⊎ L}.Let α be a renaming of {var(ul) | l ∈ L} r rvar(C). Let σ =
⋃

j∈J σj ∪
⋃

l∈L σl. Weshow that there exists a substitution σ′ = mgu({usj = ts | j ∈ J} ∪ {uslα = ts | l ∈ L}).To a
hieve this result, we show that σ ◦α−1 ◦ θ is a uni�er of {usj = ts | j ∈ J}∪ {uslα =
ts | l ∈ L}:� ∀j ∈ J, σj = mgu(uj , t). We have that usjθ = uj and tsθ = t. As dom(α−1) in
ludesonly fresh variables, ujα−1 = uj and tα−1 = t. Consequently, ((usjθ)α

−1)σ =

((tsθ)α
−1)σ� ∀l ∈ L, σl = mgu(tsθ, u

s
l θ) exists. We have that dom(θ) = rvar(C) and img(θ) ∩

X = ∅. Moreover, dom(α) = {var(ul) | l ∈ L} r rvar(C) and img(α) is a set offresh variables. Hen
e, θ ◦ α = α ◦ θ. We dedu
e that (((uslα)θ)α−1)σ = (usl θ)σ =
(tsθ)σ = (((tsα)θ)α−1)σWe have proven that σ ◦ α−1 ◦ θ is a uni�er of {usj = ts | j ∈ J} ∪ {uslα = ts | l ∈ L}.Consequently, there exists σ′, θ′ su
h that σ′ = mgu({usj = ts | j ∈ J} ∪ {uslα = ts | l ∈

L}) and θ′ ◦ σ′ = σ ◦ α−1 ◦ θ.Let K ′
s = (⌊Psσ′⌋n ∪ PsJσ

′ ∪ PsK,Lσ
′ ∪Q′

sσ
′;Ssσ′; I ′sσ

′; Cσ′; Ψ′σ′) where:� PsJ = {⌊P sj ⌋nj
| j ∈ J} and ΨJ = {Φs

j | j ∈ J},� ΨK = {∀Yk . ts 6= usk | k ∈ K} with Yk = var(uk) r rvar(C),
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56 CHAPTER 3. MODELING AND ANALYZING ROUTING PROTOCOLS
� ΨL = {¬Φs

lα | l ∈ L}� I ′s = Is ∪ {t} if (n, nI) ∈ E and I ′s = Is otherwise.� Ψ′ = (Ψ ∧ΨJ ∧ΨK ∧ΨL) ,Clearly, we have that Ks →s
G,M K ′

s. To 
on
lude, it remains to show that K ′
c is the

θ′-
on
retization of K ′
s.First, as θ is a solution of C and θ′ ◦ σ′ = σ ◦ α−1 ◦ θ, it is straightforward to see that θ′is a solution of C′ = Cσ′. Similarly, θ′ is a solution of Ψσ′.It remains to establish that:� θ′ is a solution of ΨJσ

′. For every j ∈ J , [[Φjσj ]]G = 1, and Φj = Φs
jθ = (Φs

jθ)α
−1,so [[(Φjσ

′)θ′]]G = 1.� θ′ is a solution of ΨKσ
′, i.e. θ′ satis�es ∀var(uk) r rvar(C) . tsσ′ 6= uskσ

′ for any
k ∈ K. This is true sin
e θ′ ◦σ′ = σ ◦α−1 ◦θ and mgu(tsθ, u

s
kθ) = ⊥ for any k ∈ K.� θ′ is a solution of ΨLσ

′, i.e. [[((Φs
lα)σ′)θ′]]G = 0 for any l ∈ L. By de�nition of

L, [[(Φs
l θ)σ]]G = 0. We have that ((Φs

lα)σ′)θ′ = (((Φs
lα)θ)α−1)σ = (Φs

l θ)σ. Hen
e,we have that [[((Φs
lα)σ′)θ′]]G = 0 for any l ∈ L.Lastly, it remains to verify that K ′

c is the θ′-
on
retization of K ′
s. Indeed, we have that:� (Psσ

′)θ′ = ((Psθ)α
−1)σ = Psθ = P ,� (P sj σ

′)θ′ = ((P sj θ)α
−1)σ = (P sj θ)σj = Pjσj for any j ∈ J ,� ((PsK,L ∪ Q

′
s)σ

′)θ′ = (Qsσ′)θ′ = ((Qsθ)α−1)σ = Qsθ = Q,� (Ssσ′)θ′ = ((Ssθ)α−1)σ = Ssθ = S,� (I ′sσ
′)θ′ = ((I ′sθ)α

−1)σ = I ′sθ = I ′.This allows us to 
on
lude.
Conversely, we have that ea
h symboli
 transition 
an be instantiated in a 
on
rete one.The proof is again obtained by inspe
tion of the rules. We dedu
e from these two propositionsthat 
he
king for a 
on
rete atta
k 
an be redu
ed to 
he
king for a symboli
 one.Proposition 3.2.3 (soundness). Let G = (Nloc, E) be a graph and M ⊆ Nloc. Let Ks =

(Ps;Ss; Is; C; Ψ) and K ′
s = (P ′

s;S
′
s; I

′
s; C

′; Ψ′) be two ground symboli
 
on�gurations, su
h that
Ks →s

G,M K ′
s. Let θ′ be a substitution and let K ′

c be the θ′-
on
retization of K ′
s. There existsa substitution θ and a ground 
on�guration Kc su
h that

• Kc is the θ-
on
retization of Ks.
• Kc →G,M K ′

c, andProof. There exists Inames , Iterms su
h that Is = Iterms ⊎ Inames and (C, Inames) is a
onstraint system. As K ′
c is the θ′-
on
retization of K ′

s, θ′ is a solution of (C′, Inames) and Ψ′.To prove the proposition, we de�ne �rst a substitution θ, solution of (C, Inames) and Ψ, andwe 
onsider Kc the θ-
on
retization of Ks. We distinguish several 
ases, depending on therule involved in the transition Ks →s
G,M K ′

s.
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3.2. SYMBOLIC MODEL 57
• Rule Pars. We have that:

(⌊P s1 |P
s
2 ⌋n ∪ Qs;Ss; Is; C; Ψ)→s

G,M (⌊P s1 ⌋n ∪ ⌊P
s
2 ⌋n ∪ Qs;Ss; Is; C; Ψ)Sin
e K ′

c is the θ′-
on
retization of K ′
s, we have that:

K ′
c = (⌊P s1 θ

′⌋n ∪ ⌊P s2 θ
′⌋n ∪ Qsθ′;Ssθ′; Isθ′)Sin
e C′ = C and Ψ′ = Ψ, we 
an 
hoose θ = θ′ solution of (C, Inames) and Ψ. Let Kcbe the θ-
on
retization of Ks.

Kc = (⌊P s1 θ
′|P s2 θ

′⌋n ∪ Qsθ′;Ssθ′; Isθ′)We have Kc →G,M K ′
c (by the Par rule).

• Rule Repls. We have that:
(⌊!Ps⌋n ∪Qs;Ss; Is; C; Ψ)→s

G,M (⌊Psαs⌋n ∪ ⌊!Ps⌋n ∪Qs;Ss; Is; C; Ψ)where αs is a renaming of the bound variables of Ps that are not in rvar(C).Sin
e K ′
c is the θ′-
on
retization of K ′

s, we have that:
K ′
c = (⌊(Psαs)θ′⌋n ∪ ⌊!Psθ′⌋n ∪ Qsθ′;Ssθ′; Isθ′)Sin
e C′ = C and Ψ′ = Ψ, we 
an 
hoose θ = θ′ solution of (C, Inames) and Ψ. Let Kcbe the θ-
on
retization of Ks.

Kc = (⌊!Psθ⌋n ∪ Qsθ;Ssθ; Isθ).To show that Kc →G,M K ′
c (by the Repl rule), it remains to prove that:� (Psθ)αs = (Psαs)θ. This equality 
omes from the fa
t dom(θ) ∩ dom(αs) = ∅.� αs is a renaming of bv(Psθ). This is due to the fa
t that αs is renaming of thebound variables of Ps that are not in rvar(C) and dom(θ) = rvar(C).

• Rule News. We have that:
(⌊new m.Ps⌋n ∪ Qs;Ss; Is; C; Ψ)→s

G,M (⌊Ps{m 7→ m′}⌋n ∪Qs;Ss; Is; C; Ψ)where m′ is a fresh name.As in the previous 
ases, we have that K ′
c is the θ′-
on
retization of K ′

s. Moreover, sin
e
C′ = C and Ψ′ = Ψ, we 
an 
hoose θ = θ′. Let Kc be the θ-
on
retization of Ks. Hen
e,we have that:� K ′

c = (⌊((Ps{m 7→ m′})θ)⌋n ∪Qsθ;Ssθ; Isθ),� Kc = (⌊new m.Psθ⌋n ∪ Qsθ;Ssθ; Isθ).As in the previous 
ase, sin
e m′ is a fresh name and (Psθ){m 7→ m′} = (Ps{m 7→ m′})θ,we have that Kc →G,M K ′
c (by the New rule).

• Rule Stores. We have that:
(⌊store(ts).Ps⌋n ∪Qs;Ss; Is; C; Ψ)→s

G,M (⌊Ps⌋n ∪Qs; ⌊ts⌋n ∪ Ss; Is; C; Ψ)As in the previous 
ases, we have that K ′
c is the θ′-
on
retization of K ′

s. Moreover, sin
e
C′ = C and Ψ′ = Ψ, we 
an 
hoose θ = θ′. Let Kc be the θ-
on
retization of Ks. Hen
e,we have that:� Kc = (⌊store(tsθ).(Psθ)⌋n ∪ Qsθ;Ssθ; Isθ),� K ′

c = (⌊Psθ′⌋n ∪Qsθ′; ⌊tsθ′⌋n ∪ Ssθ′; Isθ′).We have that Kc →G,M K ′
c (by the Store rule).
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58 CHAPTER 3. MODELING AND ANALYZING ROUTING PROTOCOLS
• Rule Read-Thens. We have that:

(⌊read us then Ps else Qs⌋n ∪Qs; ⌊ts⌋n ∪ Ss; Is; C; Ψ)
→s
G,M (⌊Psσ′⌋n ∪Qsσ′; ⌊tsσ′⌋n ∪ Ssσ′; Isσ′; Cσ′; Ψσ′)where σ′ = mgu(us, ts)Sin
e K ′

c is the θ′-
on
retization of K ′
s, we have that:

K ′
c = (⌊(Psσ′)θ′⌋n ∪ (Qsσ′)θ′; ⌊(tsσ′)θ′⌋n ∪ (Ssσ′)θ′; (Isσ′)θ′)Let θ = θ′ ◦ σ′. θ is a solution of (C, Inames) and Ψ. Let Kc be the θ-
on
retization of

Ks.
Kc = (⌊read usθ then Psθ else Qsθ⌋n ∪Qsθ; ⌊tsθ⌋n ∪ Ssθ; Isθ).We have that usθ = tsθ. Hen
e, we have that:

Kc →G,M (⌊(Psθ)σ⌋n ∪Qsθ; ⌊tsθ⌋n ∪ Ssθ; Isθ)by the Read-Then rule with σ = Id . Sin
e Ks is a ground symboli
 
on�guration,we know that var(Is)∪ fv(Qs)∪ var(⌊ts⌋n ∪ Ss) ⊆ dom(θ), and thus, Kc →G,M K ′
c (bythe Read-Then rule).

• Rule Read-Elses. We have that:
Ks = (⌊read us then Ps else Qs⌋n ∪Qs;Ss; Is; C; Ψ)

→s
G,M (⌊Qs⌋n ∪ Qs;Ss; Is; C; Ψ ∧ Eq) = K ′

swhere Eq = {∀var(us) r rvar(C) . ts 6= us | ⌊ts⌋n ∈ Ss}.We 
an 
hoose θ = θ′. θ is a solution of (C′, Inames) and Ψ′. In parti
ular, θ is a solutionof (C, Inames) and Ψ.As in the previous 
ases, we have that K ′
c is the θ′-
on
retization of K ′

s. Let Kc be the
θ-
on
retization of Ks. Hen
e, we have that:� Kc = (⌊read usθ then Psθ else Qsθ⌋n ∪Qsθ;Ssθ; Isθ),� K ′

c = (⌊Qsθ′⌋n ∪Qsθ′;Ssθ′; Isθ′).Furthermore, we have that usθ is not uni�able with tsθ for any ⌊ts⌋n ∈ Ss. In otherwords, mgu(usθ, t) = ⊥ for any t su
h that ⌊t⌋n ∈ Ssθ. Hen
e, we have that Kc →G,M

K ′
c by the Read-Else rule.

• Rule If-Thens. We have that:
Ks = (⌊if Φs then Ps else Qs⌋n ∪ Qs;Ss; Is; C; Ψ)

→s
G,M (⌊Ps⌋n ∪ Qs;Ss; Is; C; Ψ ∧ Φs) = K ′

sWe 
an 
hoose θ = θ′. θ is a solution of (C′, Inames) and Ψ′. In parti
ular, θ is a solutionof (C, Inames) and Ψ. As in the previous 
ases, we have that K ′
c is the θ′-
on
retizationof K ′

s. Let Kc be the θ-
on
retization of Ks. Hen
e, we have that:� Kc = (⌊if Φsθ then Psθ else Qsθ⌋n ∪ Qsθ;Ssθ; Isθ),� K ′
c = (⌊Psθ⌋n ∪ Qsθ;Ssθ; Isθ).Moreover, sin
e θ is a solution of Φs, we have that [[Φsθ]] = 1. Hen
e, we have that

Kc →G,M K ′
c by the If-Then rule.
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3.2. SYMBOLIC MODEL 59
• Rule If-Elses. This 
ase is similar to the previous one.
• Rule Ins. We have that:

(⌊in us[Φs].Ps⌋n ∪Qs;Ss; Is; C; Ψ)→s
G,M (⌊Ps⌋n ∪Qs;Ss; Is; C′; Ψ′)

where C′ = C ∧ Is
?
⊢ us and Ψ′ = Ψ ∧ Φs and (nI , n) ∈ E for some nI ∈M. We 
hoose

θ = θ′, solution of (C, Inames) and Ψ.As in the previous 
ases, we have that K ′
c is the θ′-
on
retization of K ′

s. Let Kc be the
θ-
on
retization of Ks. Hen
e, we have that:� Kc = (⌊in usθ[Φsθ].Psθ⌋n ∪Qsθ;Ssθ; Isθ),� K ′

c = (⌊Psθ′⌋n ∪Qsθ′;Ssθ′; Isθ′).Sin
e θ′ is a solution of (C′, Inames), we have that Isθ′ ⊢ usθ′ and [[Φsθ
′]]G = 1. Thus,

Isθ ⊢ usθ = t and [[Φsθ]]G = 1. Hen
e, we have that Kc →G,M K ′
c by the In rule.

• Rule Comms. We have that:
(PsI ∪ ⌊out(ts).Ps⌋n ∪Qs;Ss; Is; C; Ψ)→s

G,M (PsJ ∪P
s
K,L ∪ ⌊Psσ⌋n ∪Qsσ;Ssσ; I ′s; C

′; Ψ′)where:� PsI = {⌊in usi [Φ
s
i ].P

s
i ⌋ni
| (ni, n) ∈ E, i ∈ I},� I = J ⊎K ⊎ L,� σ = mgu({uj = t | j ∈ J} ∪ {ulα | l ∈ L})� PsJ = {⌊P sj ⌋nj

σ| j ∈ J},� PsK,L = {⌊(in uk[Φ
s
k].P

s
k ⌋nk

)σ| k ∈ K ⊎ L},� C′ = Cσ and Ψ′ = (Ψ ∧ ΨJ ∧ ΨK ∧ ΨL)σ,� ΨJ = {Φs
j | j ∈ J}, ΨK = {∀var(usk) r rvar(C) . ts 6= usk | k ∈ K}, and ΨL =

{Φs
lαl | l ∈ L} where αl is a renaming of var(usl ) r rvar(C) by fresh variables.� I ′s = (Is ∪ {ts})σ if (n, nI) ∈ E for some nI ∈M and I ′s = Isσ otherwise.Moreover, ⌊Qs⌋n′ ∈ Qs implies that (n, n′) /∈ E or Qs is not of the form in u′s[Φ

′
s].Q

′
s.We have also that (ni, n) ∈ E for every i ∈ I.Let θ = θ′ ◦ σ. Sin
e θ′ is a solution of (Cσ, Inames) and Ψ′ ⊇ Ψσ, it is 
lear that θ is asolution of (C, Inames) and Ψ.As in the previous 
ases, we have that K ′

c is the θ′-
on
retization of K ′
s. Let Kc be the

θ-
on
retization of Ks. Hen
e, we have that:� Kc = (PsI θ ∪ ⌊out(tsθ).Psθ⌋n ∪Qsθ;Ssθ; Isθ),� K ′
c = (PsJθ

′ ∪ PsK,Lθ
′ ∪ ⌊Psσθ′⌋n ∪ Qsσθ′;Ssσθ′; I ′sθ

′).To 
on
lude, it remains to show that Kc →G,M K ′
c. First, we have that:� Ssσθ′ = Ssθ,� if (n, nI) ∈ E for some nI ∈M then I ′sθ′ = (Is∪{ts})σθ′ = Isθ∪{tsθ}. Otherwise,we have that I ′sθ′ = Isσθ′ = Isθ.
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60 CHAPTER 3. MODELING AND ANALYZING ROUTING PROTOCOLS
� Psσθ

′ = Psθ, Qsσθ′ = Qsθ, and PsK,Lθ′ = PsK,Lθ (thanks to the renaming αl).Note also that the pro
esses in Qsθ are not of the right form to evolve by re
eiving amessage from the node n. Thus, to show that Kc →G K ′
c, it remains to prove that

J = J ′ where
J ′ = {i | ⌊in usi [Φ

s
i ].P

s
i ⌋ni

∈ PsI , σi = mgu(tθ, usi θ) exists , [[(Φs
iθ)σi]]G = 1} .We prove the two in
lusions separately.First, we show that J ⊆ J ′. Let i ∈ J . We know that ⌊in usi [Φ
s
i ].P

s
i ⌋ni

∈ PsI . Byde�nition of σ, usiσ = tσ. Consequently, usiθ = usiσθ
′ = tσθ′ = tθ. So σi = mgu(tθ, usiθ)exists and σi = Id . Sin
e θ′ is a solution of Ψ′, we have that [[Φs

iσθ
′]]G = 1. We dedu
ethat [[Φs

iθ]]G = 1. This allows us to 
on
lude that i ∈ J ′.Now, we show that J ′ ⊆ J . Let i ∈ J ′. We have that ⌊in usi [Φs
i ].P

s
i ⌋ni

∈ PsI , Hen
e, wehave that i ∈ I. In order to 
on
lude that i ∈ J , it is su�
ient to show that i 6∈ K and
i 6∈ L.1. i 6∈ K. By 
ontradi
tion, assume that i ∈ K. Sin
e θ′ is a solution of ΨKσ, we havethat θ′ satis�es the 
onstraint ∀var(usi )r rvar(C) . tsσ 6= usiσ. This implies that tsθand usiθ are not uni�able This is impossible sin
e we know that σi = mgu(tθ, usiθ)exists. Contradi
tion. Hen
e, we dedu
e that i 6∈ K.2. i 6∈ L. By 
ontradi
tion, assume that i ∈ L. Sin
e θ′ is a solution of ΨLσ, we havethat tσθ′ = (usiαi)σθ

′ and [[(Φs
iαi)σθ

′]]G = 0. A
tually, we have that:
(usiαi)θ = (usiθ)αi = (tθ)αi.Hen
e, we have that σi = αi. We have also that:

(Φs
iαi)θ = ((Φs

iθ)αi).We dedu
e that [[(Φs
iθ)σi]]G = 0. Contradi
tion. Hen
e, we have that i 6∈ L.This allows us to 
on
lude that Kc →G,M K ′

c.These lemmas allow us to show that to a 
on
rete derivation 
orresponds a symboli
 one.Thus, 
he
king for atta
ks 
an be done in the symboli
 model, as shown in Theorem 3.2.4.Theorem 3.2.4. Let G = (Nloc, E) be a graph and M ⊆ Nloc. Let K = (P[_];S; I) be aground 
on
rete 
on�guration with a hole, and Φ be a formula. There is an M-atta
k on Kand Φ for graph G if, and only if,
(P[if Φ then out(error)];S; I; ∅; ∅) →s∗

G,M (⌊out(u)⌋n ∪ Ps;Ss; Is; C; Ψ)with Is = Inames ⊎ Iterms and σ = mgu(u, error) exists and the 
onstraint system (Cσ, Inames)with Ψσ has a solution for graph G.Proof. We show the two dire
tions separately.(⇒) First, let us suppose that there is an atta
k on K and Φ for graph G. By de�nition ofan atta
k, there exists a 
on
rete 
on�guration K ′ su
h that:
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3.3. BOUNDING THE SIZE OF MINIMAL SOLUTIONS FOR SOLVED FORMS 61
• K ′ is of the form (⌊out(error)⌋n ∪ P ′;S ′; I ′), and
• K →∗

G K
′.By applying Proposition 3.2.2 re
ursively, we dedu
e that there exist a ground symboli

on�guration K ′
s and a substitution θ′ su
h that:

• (P[if Φ then out(error) else 0];S; I; ∅; ∅)→s∗
G K ′

s, and
• K ′ is the θ′-
on
retization of K ′

s.Consequently, K ′
s is of the form (⌊out(u)⌋n ∪ P ′

s;S
′
s; I

′
s; C

′; Ψ′), θ′ is a solution of C′ and Ψ′for G, and uθ′ = error. Hen
e, σ = mgu(u, error) exists and there exists a substitution θ′ su
hthat θ = θ′ ◦ σ. We 
on
lude that θ′ is a solution of (Cσ, Inames) and Ψσ for graph G.(⇐) Conversely, assume that
Ks = (P[if Φ then out(error) else 0];S; I; ∅; ∅) →s∗

G (⌊out(u)⌋n ∪ Ps;Ss; Is; C; Ψ) = K ′
sand θ′ is a solution of (Cσ, Inames) and Ψσ where σ = mgu(u, error).First, we have that Ks is a ground symboli
 
on�guration whose 
on
retization is K =

(P[if Φ then out(error) else 0];S; I). Thanks to Lemma 3.2.1, we know that the symboli

on�gurations involved in this derivation are ground. Furthermore, θ′′ = θ′ ◦ σ is a solutionof (C, Inames) and Ψ. Let K ′ be the θ′′-
on
retization of K ′
s, as uθ′′ = (uσ)θ′ = error, we havethat:

K ′ = (⌊out(error)⌋n ∪ Psθ
′′;Ssθ

′′; Isθ
′′)Hen
e, by applying re
ursively Proposition 3.2.3, we know that there exists a substitution θand a ground 
on
rete 
on�guration K su
h that:

• K is the θ-
on
retization of Ks,
• K →∗

G K
′.Hen
e, there is an atta
k on K and Φ for graph G.Note that our result holds for any signature, for any 
hoi
e of predi
ates, and for pro
essespossibly with repli
ation. Of 
ourse, it then remains to de
ide the existen
e of a 
onstraintsystem that has a solution.Example 3.2.3. Consider our former example of an atta
k on SRP, with initial 
on�guration

K0. We 
an rea
h the 
on�guration Ks, and the 
onstraint system C has a solution σ forgraph G0 (
f. Example 3.2.1), so there is an {nI}-atta
k on K0 for G0.
3.3 Bounding the size of minimal solutions for solved formsApplying the te
hnique des
ribed in Se
tion 3.2, we are left to de
ide the existen
e of a solutionfor a 
onstraint system (C, Inames) together with disequality 
onstraints and formulas of Lroute.In Chapter 2, we have developed a te
hnique that allows us to 
onsider only 
onstraintsystems in solved form.
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62 CHAPTER 3. MODELING AND ANALYZING ROUTING PROTOCOLS
In this se
tion, we show how to bound the size of a minimal solution for solved 
onstraintsystems. First, we have in Subse
tion 3.3.1 preliminary results about substitutions, showingthat applying substitutions does not in
rease the number of subterms. Then we have twopropositions, 
orresponding to our two de
idability results, in order to take into a

ount a�xed topology as well as (a priori unbounded) unknown topology.3.3.1 Preliminary results regarding substitutionsAll throughout our pro
edures, we apply substitutions, and more pre
isely mgus of terms, tothe systems we 
onsider. We have to 
ontrol the size of the terms with respe
t to the size ofthe inputs. Thus we need the following results to know how we 
an bound the size of termsin a system where we just applied a substitution.In order to obtain these results, we use the following rules for 
omputing an mgu, 
alledDAG synta
ti
 uni�
ation [JK91℄.Delete P ∪ {s = s} =⇒ PDe
. P ∪ {f(s1, . . . , sn) = f(t1, . . . , tn)} =⇒ P ∪ {s1 = t1, . . . , sn = tn}Conf. P ∪ {f(s1, . . . , sn) = g(t1, . . . , tk)} =⇒ ⊥ if f 6= gCoal. P ∪ {x = y} =⇒ P{x 7→ y} ∪ {x = y} if x, y ∈ var(P ) and x 6= yChe
k P ∪ {x1 = s1[x2], . . . , xn = sn[x1]} =⇒ ⊥if si /∈ X for some i ∈ [1 . . . n]Merge P ∪ {x = s, x = t} =⇒ P ∪ {x = s, s = t}if 0 < |s| ≤ |t|Figure 3.5: Rules for DAG synta
ti
 uni�
ation

Lemma 3.3.1. Let T be a set of terms and P be a set of equations between terms in st(T )with σ = mgu(P ). We have that st(Tσ) ⊆ st(T )σ.Proof. We use the rules for DAG synta
ti
 uni�
ation given in Figure 3.5. Applyingthese rules on P results in a set of equations P ′ = {x1 = t1, . . . , xn = tn} in DAG solved form(see [JK91℄). By de�nition of a DAG solved form, we have that:
• xi 6= xj for all 1 ≤ i < j ≤ n,
• xi /∈ var(tj) for all 1 ≤ i < j ≤ n.Let σ = {x1 7→ t1, . . . , xn 7→ tn}. By inspe
tion of the rules in Figure 3.5, we 
an showby indu
tion on the length of the derivation from P to P ′ that st(P ′)σ ⊆ st(P )σ. Sin
e

st(P ) ⊆ st(T ), we easily dedu
e that st(ti)σ ⊆ st(T )σ for every 1 ≤ i ≤ n.Let u ∈ st(Tσ), we show that there exists t ∈ st(T ) su
h that u = tσ. Either there exists
v a subterm of T su
h that u = vσ, and we 
on
lude, or there exists xi ∈ dom(σ) su
h that
u is a subterm of xiσ. In that 
ase, let i0 = max{i | u ∈ St(xiσ)}.
• Either u ∈ st(ti0)σ ⊆ st(T )σ, and we 
on
lude.
• Or u ∈ st(xσ) for some x ∈ var(ti0) ∩ dom(σ). By de�nition of a DAG solved form,we have that var(ti0) ∩ dom(σ) ⊆ {xi0+1, . . . , xn}. Hen
e, we have that u ∈ st(xjσ) forsome j > i0. This yields to a 
ontradi
tion.
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3.3. BOUNDING THE SIZE OF MINIMAL SOLUTIONS FOR SOLVED FORMS 63
Let S be a set, we denote by #S the 
ardinal of S. Let u be a term. We denote by

|u|d the maximal depth of a variable in u. The lemma below is useful to bound the depth ofvariables after appli
ation of a substitution. Intuitively, the depth of variables is boundedpolynomially in the size of the domain of the substitution, as well as the size of the set ofterms.
Lemma 3.3.2. Let T be a set of terms, P be a set of equations between terms in T and
σ = mgu(P ). For every variable x ∈ st(T ), we have that:

|xσ|d ≤ #dom(σ) ·max{|t|d | t ∈ T}.Proof. We use the rules for DAG synta
ti
 uni�
ation given in Figure 3.5. Applyingthese rules on P results in a set of equations representing a most general uni�er of P in DAGsolved form (see [JK91℄): σ = {x1 = t1, . . . , xn = tn}. By de�nition of a DAG solved form,we have that:
• xi 6= xj for all 1 ≤ i < j ≤ n,
• xi /∈ var(tj) for all 1 ≤ i < j ≤ n.Hen
e, we have that |xσ|d < |t1|d + . . . + |tn|d. Furthermore, by inspe
tion of the rules, we
an see that ea
h ti is a subterm (modulo a non-bije
tive renaming of the variables) of T . Forevery 1 ≤ i ≤ n, we have that |ti|d ≤ max{|t|d | t ∈ T}. Sin
e n = #dom(σ), we dedu
e that

|xσ|d < #dom(σ) ·max{|t|d | t ∈ T}.
3.3.2 Bounding variables whi
h are not of sort loc or listsIn this se
tion, we prove that given any solution of C, the variables whi
h are not of sort locor lists 
an be instantiated by any fresh name, still preserving the solution.Lemma 3.3.3. Let (C, I) be a 
onstraint system in solved form, Φ1 be a formula of Lroute,
Φ2 be a set of disequality 
onstraints, and G = (Nloc, E) be a graph. Consider σ a solution of
(C, I)∧Φ1 ∧Φ2 for graph G. There is a solution σ′ of (C, I)∧Φ1 ∧Φ2 for graph G su
h that:
• xσ′ = xσ for every variable x of sort loc or lists;
• xσ′ ∈ I otherwise.Proof. Sin
e (C, I) is a 
onstraint system in solved form, we have that

C = T1

?
⊢ x1 ∧ . . . ∧ Tn

?
⊢ xnwhere:

• x1, . . . , xn are distin
t variables, and
• var((C, I) ∧ Φ1 ∧ Φ2) = {x1, . . . , xn} = rvar(C).
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64 CHAPTER 3. MODELING AND ANALYZING ROUTING PROTOCOLS
We show the result by indu
tion on:

µ(σ) = #{x ∈ rvar(C) | x is neither of sort loc nor of sort lists and xσ /∈ I}.Base 
ase: µ(σ) = 0. In su
h a 
ase, sin
e rvar(C) 
ontains all the variables that o

ur in the
onstraint system, we easily 
on
lude. The substitution σ is already of the right form.Indu
tion step: µ(σ) > 0. Let i0 be the maximal index 1 ≤ i0 ≤ n su
h that xi0σ 6∈ I and
xi0 is not of sort loc or lists. Let a be a name in I that does not o

ur elsewhere. Let
σ′ = τ ∪ {xi0 7→ a} where τ = σ|X with X = dom(σ) r {xi0}. Clearly, we have that
µ(σ′) < µ(σ). In order to 
on
lude, it remains to show that σ′ is a solution of (C, I)∧Φ1∧Φ2.

1. We show that σ′ is a solution of (C, I). For every i < i0, sin
e σ is a solution of (C, I),we have that Tiσ ∪ I ⊢ xiσ. Sin
e xi0 does not o

ur in this 
onstraint, we also havethat Tiσ′ ∪ I ⊢ xiσ′. Sin
e a ∈ I, we have that Ti0σ′ ∪ I ⊢ xi0σ′.For every i > i0, a

ording to the de�nition of i0, either xi is of sort loc or lists, or
xiσ ∈ I. In the �rst 
ase, as for every term t of sort loc or lists, Nloc ⊢ t, we havethat Nloc ⊢ xiσ. In the se
ond 
ase, I ⊢ xiσ. Hen
e, in both 
ases, we have that
Tiσ

′ ∪ I ⊢ xiσ′.2. We show that σ′ is a solution of Φ1. All the variables appearing in Φ1 are of type loc or
lists. Hen
e, we have that Φ1σ = Φ1σ

′. This allows us to 
on
lude.3. Lastly, we show that σ′ is a solution of Φ2. Let ∀Y.u 6= v be a disequality 
onstraint in
Φ2. Assume w.l.o.g. that dom(σ) ∩ Y = ∅. Sin
e σ is a solution of ∀Y.u 6= v, we knowthat uσ and vσ are not uni�able.Assume by 
ontradi
tion that there exists a substitution θ′ su
h that uσ′θ′ = vσ′θ′ (i.e.
σ′ does not satisfy ∀Y.u 6= v). We 
an assume w.l.o.g. that uσ′θ′ and vσ′θ′ are groundterms, and xi0 6∈ dom(θ′). In su
h a 
ase, we have that:

(uσ′)θ′ = ((uτ){xi0 7→ a})θ′ = ((uτ)θ′){xi0 7→ a}
(vσ′)θ′ = ((vτ){xi0 7→ a})θ′ = ((vτ)θ′){xi0 7→ a}

Sin
e a is fresh, we dedu
e that (uτ)θ′ = (vτ)θ′. Hen
e, we have also that:
((uτ)θ′){xi0 7→ xi0σ} = ((vτ)θ′){xi0 7→ xi0σ}i.e. uσθ′ = vσθ′. This 
ontradi
ts the fa
t that uσ and vσ are not uni�able.Hen
e, σ′ is a solution of (C, I) ∧ Φ1 ∧ Φ2.It remains to show that it is possible to �nd a solution in whi
h lists are polynomiallybounded. We need to prove two separate propositions, a

ording to whether the networktopology is �xed or not. The proofs of these propositions use the fa
ts that, on the one hand,disequality 
onstraints 
an be satis�ed using fresh node names (hen
e the use of the set Inames)and, on the other hand, the predi
ates of the logi
 Lroute involve only a �nite number of nodes.
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3.3. BOUNDING THE SIZE OF MINIMAL SOLUTIONS FOR SOLVED FORMS 65
3.3.3 Case of a �xed topologyIn 
ase the network topology is �xed, we show that we 
an bound the size of an atta
k, wherethe bound depends on the size of the graph and the size of the 
onstraints.In parti
ular, we show that, if there is a solution of (C, I) ∧ Φ1 ∧ Φ2 for graph G, thenthere exists a substitution σ su
h that σ is a solution of (C, I) ∧Φ1 ∧Φ2 for G, and variablesof sort lists are instantiated by lists of length at most M where M is a bound that dependson Φ2, Φ1, and E.To prove this result, we 
onsider a smallest solution σ of (C, I) ∧ Φ1 ∧ Φ2 for G, and weassume that there exists a variable xℓ of sort lists su
h that xℓσ is a list of length greaterthan M . We built a solution σ′ (smaller that σ) by 
hanging only the value of xℓσ in orderto redu
e its length, preserving the satis�ability of our 
onstraints. We build xℓσ

′ by �rstmarking the names we want to keep in xℓσ getting a marked list, i.e. a list in whi
h someelements are marked.For instan
e, in order to ensure that a loop predi
ate will still be satis�ed, two namesare a
tually su�
ient, whereas for a checkl predi
ate, three names are needed. Note that, tosatisfy a positive o

urren
e of a route predi
ate, we know that the list 
ontains at most #Enames (sin
e names in the list have to be distin
t), thus we know that the variable xℓ is notinvolved in a positive o

urren
e of a route predi
ate. We also have to keep some names totake the disequality 
onstraints into a

ount.De�nition 3.3.1 (extra
ted list). An extra
ted list from a list l = [a1; . . . ; an] is a list
[ai1 ; . . . ; aik ] su
h that 1 ≤ i1 ≤ i2 ≤ . . . ≤ ik ≤ n with 0 ≤ k ≤ n.Then, we 
onsider the list extra
ted from xℓσ by keeping the marked names plus anadditional one, and we 
onsider variations of this extra
ted list. Note that the length of thisextra
ted list is bounded by the size of the graph and the size of the 
onstraints.De�nition 3.3.2 (variation). Let l′ be a marked list in whi
h at least one of its element isnot marked. A variation of l′ = [a′1; . . . ; a

′
n] is a list l = [a1; . . . ; an] su
h that:

• there exists 1 ≤ j0 ≤ n su
h that a′j0 is not marked and aj0 is a fresh name,
• for all 1 ≤ i ≤ n su
h that i 6= j0, we have that ai = a′i.Intuitively, a variation of a list l whi
h 
ontains only one unmarked name is a list l′ that
oin
ides with l on all marked names, and that repla
es the unmarked one by a fresh name.A
tually, instantiating xℓ by any variation of this extra
ted list allows us to ensure thatour 
onstraints are still satis�ed.We prove that we 
an �nd a solution in whi
h lists are polynomially bounded. In the
ase where the network topology is �xed, the bound depends on the size of the graph, i.e. itsnumber of edges. Let l be a list, we denote by |l|ℓ the length of l.Proposition 3.3.4. Let (C, I) be a spe
ial 
onstraint system in solved form, Φ1 be a 
onjun
-tion of atomi
 formulas of Lroute, Φ2 be a set of disequality 
onstraints, and G = (Nloc, E)be a graph. If there is a solution of (C, I) ∧ Φ1 ∧ Φ2 for G, then there exists a solution σ of

(C, I) ∧ Φ1 ∧ Φ2 for G that is polynomially bounded in the size of Φ1,Φ2 and E.
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66 CHAPTER 3. MODELING AND ANALYZING ROUTING PROTOCOLS
Proof. We write Φ2 =

∧

n

∀Yn.un 6= vn, and
Φ1 =

∧

i

±i check(ai, bi) ∧
∧

j

pj∧

k

±jk checkl(cjk , lj) ∧
∧

l

±l route(rl) ∧
∧

h

±h loop(ph)

with ± ∈ {+,−}, ai, bi, cjk are of sort loc, lj , rl, ph are terms of sort lists, un, vn are terms and
Yn are sets of variables.In the following, we denote:
• N the maximal depth of a variable in the disequality 
onstraints,
• k the maximal number of variables in a disequality 
onstraint,
• C the number of 
onstraints ±checkl in Φ1,
• L the number of 
onstraints loop in Φ1,
• R the number of 
onstraints ¬route in Φ1, and
• M = max(kN + 3C + L+R+ 3,#E).We show that, if there is a solution of (C, I) ∧ Φ1 ∧ Φ2 for graph G, then there exists asubstitution σ su
h that σ is a solution of (C, I) ∧ Φ1 ∧ Φ2 for G, and
• for all variables x of sort lists, |xσ|ℓ ≤M , and
• xσ ∈ I ∪ Nloc otherwise.First, we have that xσ ∈ Nloc when x is a variable of sort loc. Moreover, thanks toLemma 3.3.3, we 
an assume that xσ ∈ I when x is a variable that is neither of sort loc norof type lists. Now, among these solutions, 
onsider a smallest solution σ of (C, I) ∧ Φ1 ∧ Φ2for G, where the size of a solution σ is given by |σ| = |x1σ|ℓ + . . . + |xnσ|ℓ where x1, . . . , xnare the variables of sort lists that o

ur in (C, I) ∧ Φ1 ∧ Φ2.If |xσ|ℓ ≤ M for all variables x of sort lists, then we easily 
on
lude. Otherwise, thereexists a variable xℓ of sort lists su
h that the length of xℓσ is greater than M . We are goingto show that we 
an build σ′ from σ, solution of (C, I)∧Φ1 ∧Φ2 for G, smaller than σ. Morespe
i�
ally, we build σ′ su
h that for all x 6= xℓ, xσ

′ = xσ, and |xℓσ′|ℓ ≤M < |xℓσ|ℓ.We build xℓσ′ by marking the names we want to keep in the list in the following manner:
xℓσ= a1 a2 . . . akN . . . aPWe mark the �rst kN names in the list:

a1 a2 . . . akN . . .We then mark the other names we want to keep in the list in the following way:Case of a checkl that o

urs positively.If there exists cjk su
h that checkl(cjk , lj) is a 
onstraint that o

urs positively in Φ1, i.e.
±jk = +, and xℓ ∈ var(lj). Assume that lj = d1 :: . . . :: dp :: xℓ. As σ is a solution for Φ1, inparti
ular we know that c = cjkσ appears exa
tly on
e in ljσ, and for any l′ sublist of ljσ,
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3.3. BOUNDING THE SIZE OF MINIMAL SOLUTIONS FOR SOLVED FORMS 67
• if l′ = a :: c :: l1, then (a, c) ∈ E.
• if l′ = c :: b :: l1, then (b, c) ∈ E.Sin
e c appears exa
tly on
e in ljσ, either there exists n su
h that c = dnσ, or there exists msu
h that c = am. In the �rst 
ase and if n = p, we mark a1. In the se
ond 
ase, we mark am,

am−1(if m > 1) and am+1(if m < P ). Any variation of a list extra
ted from xℓσ 
ontainingat least the marked names plus another one satis�es the checkl 
ondition for graph G.
a1 . . . am−1 am am+1 . . . aP

Case of a checkl that o

urs negatively.If there exists cjk su
h that checkl(cjk , lj) is a 
onstraint that o

urs negatively in Φ1, i.e.
±jk = −, and xℓ ∈ var(lj). Assume that lj = b1 :: . . . :: bp :: xℓ. As σ is a solution for Φ1, we
an have three di�erent 
ases depending on c = cjkσ:
• c does not appear in ljσ: for every n,m, bnσ 6= c and am 6= c. In that 
ase, we marknothing.
• c appears at least twi
e in ljσ. In that 
ase, we 
hoose two o

urren
es of c and we markthem when they appear in xℓσ.

a1 . . . c . . . c . . . aP

• c appears on
e in ljσ, but one of his neighbors in the list is not a neighbor of it in thegraph. For example, c = ai and (ai, ai+1) /∈ E. We mark c and this false neighbor whenthey appear in xℓσ.
a1 . . . ai ai+1 . . . aM

Any variation of a list extra
ted from xℓσ 
ontaining at least the marked names plusanother one satis�es the ¬checkl 
ondition for graph G.Case of a loop that o

urs positively.If there exists h su
h that loop(ph) is a 
onstraint that o

urs positively in Φ1, i.e. ±h = +,and xℓ ∈ var(ph). Assume ph = b1 :: . . . :: bp :: xℓ. Then there exists a name c repeated in
phσ. We mark two o

urren
es of su
h a c, when they appear in xℓσ.

a1 . . . c . . . c . . . aPAny variation of a list extra
ted from xℓσ 
ontaining at least the marked names plusanother one satis�es the loop 
ondition for graph G. Indeed, the 
ondition does not dependon the graph.Case of a loop that o

urs negatively.If there exists h su
h that loop(ph) o

urs negatively in Φ1, i.e. ±h = −, and xℓ ∈ var(ph).Assume that ph = b1 :: . . . :: bp :: xℓ. Removing nodes from the list preserves this 
ondition,
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68 CHAPTER 3. MODELING AND ANALYZING ROUTING PROTOCOLS
so any extra
ted list of xℓσ satis�es the ¬loop 
ondition. Moreover, as a variation of a list isbuilt with a fresh 
onstant, any variation of a list extra
ted from xℓσ satis�es the 
ondition.Case of a route that o

urs negatively.If there exists rl su
h that route(rl) o

urs negatively in Φ1, i.e. ±l = −, and xℓ ∈ var(rl).Assume that rl = b1 :: . . . :: bp :: xℓ. As σ is a solution for Φ1, we 
an have two di�erent 
ases:
• There exists a name c repeated in rlσ. Then we mark two o

urren
es of su
h a c, whenthey appear in xℓσ.
• There exists a sublist l of rlσ su
h that l = c :: d :: l1 and (c, d) /∈ E. We mark c and dif they appear in xℓσ.

a1 . . . c d . . . aP

Any variation of a list extra
ted from xℓσ 
ontaining at least the marked names plus anotherone satis�es the ¬route 
ondition for G.Case of a route that o

urs positively.If there exists rl su
h that route(rl) o

urs positively in Φ1, i.e. ±l = +, and xℓ ∈ var(rl).Assume that rl = b1 :: . . . :: bp :: xℓ. Write rlσ = c1 :: . . . :: cn. As σ is a solution for
Φ1 in G, for every 0 < i < n, (ci, ci+1) ∈ E and for every i 6= j, ci 6= cj . Consequently,
|rlσ|ℓ ≤ #E, and as |xℓσ|ℓ ≤ |rlσ|ℓ, we have that |xℓσ|ℓ ≤ #E. But our hypothesis tells usthat |xℓσ|ℓ > M ≥ #E. So there is no positive route 
ondition on xℓ.We 
ount the number of marked names. We have marked the �rst kN names in the list.For ea
h 
onstraint ±checkl, we mark at most 3 names in the list. Suppose there are several
onstraints ¬route(l) with xℓ sublist of l. Either ¬route(xℓσ) holds, and we 
an mark twonames in xℓσ whi
h will make all the ¬route 
onstraints true; or the 
onstraint is satis�ed bymarking one name for ea
h 
onstraint. Thus, we need only mark max(R, 2) names when R ≥ 1and 0 otherwise. Thus, in any 
ase, it is su�
ient to mark R + 1 names in xℓσ. Similarly, itis su�
ient to mark L+ 1 names in xℓσ to satisfy the loop 
onstraints. The number of namesmarked in the list is at most

kN + 3C + (R+ 1) + (L+ 1) ≤M.Consider l1 extra
ted from xℓσ by keeping only the marked names in xℓσ and the �rstunmarked name. Su
h an unmarked name exists, be
ause |xℓσ|ℓ ≥M . Let l2 be the variationof l1 repla
ing the �rst unmarked name with a fresh 
onstant aℓ. For ea
h 
ondition 
onsideredabove, l2 satis�es it, as it is a variation of a list extra
ted from xℓσ 
ontaining the markednames.Let σ0 be the substitution su
h that xσ0 = xσ for every x ∈ dom(σ) r {xℓ}, and xσ = xotherwise. Let σ′ = σ0 ∪ {xℓ 7→ l2}. By hypothesis, σ is a solution of Φ1 for G, so by
onstru
tion, σ′ is a solution of Φ1 for G. Now, it remains for us to show that σ′ is a solutionof (C, I) and Φ2.Dedu
tion 
onstraints. Consider a dedu
tion 
onstraint Ti ⊢ xi in C. Either xi is of sort
loc or lists, whi
h means that Nloc ⊢ xiσ

′, thus Tiσ′ ∪ I ⊆ T0 ∪ I ⊢ xiσ′. Or xi is not of
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3.3. BOUNDING THE SIZE OF MINIMAL SOLUTIONS FOR SOLVED FORMS 69
sort loc or lists, so in parti
ular xi ∈ dom(σ) r xℓ, and xiσ

′ = xiσ ∈ I ∪ Nloc, so again
Tiσ

′ ∪ I ⊆ T0 ∪ I ⊢ xiσ′. Hen
e, in both 
ases, we have that Tiσ′ ∪ I ⊢ xiσ′. Consequently,
σ′ is a solution of (C, I).Disequality 
onstraints. Consider a disequality 
onstraint ∀Y.u 6= v ∈ Φ2. We assumew.l.o.g. that dom(σ) ∩ Y = ∅. We have to show that uσ′ and vσ′ are not uni�able. Wedistinguish two 
ases. Either uσ0 and vσ0 are not uni�able, but in su
h a 
ase, we easilydedu
e that uσ′ and vσ′ are not uni�able too. This allows us to 
on
lude. Otherwise, let
µ = mgu(uσ0, vσ0).If dom(µ) ⊆ Y , let τ = {xℓ 7→ xℓσ} ◦ µ. We have that:

(uσ)τ = ((uσ){xℓ 7→ xℓσ})τ = (uσµ){xℓ 7→ xℓσ}
(vσ)τ = ((vσ){xℓ 7→ xℓσ})τ = (vσµ){xℓ 7→ xℓσ}.Hen
e, we dedu
e that uσ and vσ are uni�able, and we obtain a 
ontradi
tion sin
e σ satis�esthe 
onstraint ∀Y.u 6= v. Hen
e, this 
ase is impossible.Otherwise, there exists a term t su
h that µ(xℓ) = t, and var(t) ⊆ Y . We apply Lemma 3.3.2to the set T = {uσ0, vσ0}, and the set of equations P = {uσ0 = vσ0}. We have that

µ = mgu(P ). Sin
e σ is ground, we get that:
|t|d ≤ #dom(µ).max(|uσ|d, |vσ|d)

≤ #dom(µ).max(|u|d, |v|d)
≤ kNWe reason by 
ase over t:

• If t is not of sort lists, as σ′ is well-sorted, uσ′ and vσ′ are not uni�able.
• Suppose t = [a1; . . . ; an], with a1, . . . , an terms of sort loc. We write t = t1@t2 with
t2 ground term of maximal size, where @ denotes the 
on
atenation of lists. We haveshown that |t1|d = |t|d ≤ kN .We know that xℓσ′ = [b1; . . . ; bp] and there exists k′ > kN su
h that bk′ = aℓ and aℓis a name of I whi
h does not appear anywhere else in the 
onstraints. Consequently,
ak′ 6= aℓ, and so xℓσ′ 6= tθ for any substitution θ.Now, assume by 
ontradi
tion that uσ′ and vσ′ are uni�able. This means that thereexists τ su
h that (uσ′)τ = (vσ′)τ . Hen
e, we have that τ ◦ {xℓ 7→ xℓσ

′} is an uni�er of
uσ0 and vσ0. By hypothesis, we have that µ = mgu(uσ0, vσ0). Hen
e, we dedu
e thatthere exists θ′ su
h that τ ◦ {xℓ 7→ xℓσ

′} = θ′ ◦ µ. We have that:� τ ◦ {xℓ 7→ xℓσ
′}(xℓ) = xℓσ

′, and� θ′ ◦ µ(xℓ) = tθ′.This leads to a 
ontradi
tion.
• Suppose t = a1 :: . . . :: an :: yℓ, with yℓ ∈ Y variable of sort lists. We know that
|t|d ≤ kN , thus we must have n < kN . We reason by 
ontradi
tion. Assume that thereexists θ′ su
h that (uσ′)θ′ = (vσ′)θ′. In the remaining of the proof, we show that uσand vσ are uni�able.
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70 CHAPTER 3. MODELING AND ANALYZING ROUTING PROTOCOLS
By hypothesis, we have that θ′ ◦ {xℓ 7→ xℓσ

′} is an uni�er of uσ0 and vσ0. Sin
e
µ = mgu(uσ0, vσ0), we dedu
e that there exists ρ′ su
h that:

ρ′ ◦ µ = θ′ ◦ {xℓ 7→ xℓσ
′}.We have that xℓσ′ = (xℓµ)ρ′ = tρ′. By hypothesis, we know that the size of xℓσ isgreater than M ≥ kN > n. Let lt be the list obtaining from xℓσ by removing its n �rstelements. Let ρ0 be a substitution su
h that xρ0 = xρ′ for every x ∈ dom(ρ) r {yℓ},and yρ0 = y otherwise. Let ρ = ρ0 ◦ {yℓ 7→ lt}. In order to 
on
lude, it remains to showthat ρ ◦ µ is an uni�er of uσ and vσ.We have that xℓσ′ = (xℓµ)ρ′ = tρ′ = aiρ

′ :: . . . anρ
′ :: yℓρ

′. Moreover, we know that xℓσand xℓσ′ have the same �rst kN elements by 
onstru
tion, and n < kN . Relying on thisfa
t to establish the last equality, we have that:
(xℓµ)ρ = tρ

= (a1 :: . . . :: an :: yℓ)ρ
= a1ρ :: . . . :: anρ :: lt
= a1ρ

′ :: . . . :: anρ
′ :: lt

= xℓσ.Hen
e, we have that ((uσ)µ)ρ = ((uσ0)µ)ρ, and ((vσ)µ)ρ = ((vσ0)µ)ρ. We easily
on
lude that uσ and vσ are uni�able sin
e we know that (uσ0)µ = (vσ0)µ.In all possible 
ases, σ′ satis�es the disequality 
onstraint.As a 
on
lusion, σ′ is a solution of (C, I) ∧ Φ1 ∧ Φ2, smaller than σ, whi
h leads to a 
ontra-di
tion.3.3.4 Case of an a priori unknown topologyIn the 
ase where the network topology is not �xed, we show that we 
an bound the size ofan atta
k.The method for bounding the lists follows the same lines as the proof of Proposition 3.3.4.However, we 
an not 
onsider the size of the graph to bound the size of the lists. This wasused in the proof of Proposition 3.3.4 to deal with the 
ase of route that o

ur positively inthe formula. Here, we rely on the fa
t that we 
an 
hange the graph to solve this problem,and we 
onsider ubiquitous graphs. More pre
isely, we introdu
e the notion of ubiquitousnodes, that is, nodes 
onne
ted to every other nodes in the graph. We asso
iate to a graph Ga ubiquitous graph where all the nodes that are not already part of an edge in G be
omeubiquitous.De�nition 3.3.3 (ubiquitous graph). Let G = (Nloc, E) be a �nite graph (i.e. su
h that E is�nite). Consider the sets of nodes V = {n | ∃n′ su
h that (n, n′) ∈ E}, and Vubi ⊆ Nloc r V .The graph (Nloc, E∪Eubi) where Eubi = {(a, b) | a ∈ V ∪Vubi, b ∈ Vubi} is 
alled the ubiquitousgraph asso
iated to G and Vubi.Moreover, we 
onsider ubiquitous variations instead of variations. Ubiquitous variationsrepla
e the unmarked names in a list by names of ubiquitous nodes. This is on
e againneeded to satisfy a formula route that o

urs positively.
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3.3. BOUNDING THE SIZE OF MINIMAL SOLUTIONS FOR SOLVED FORMS 71
De�nition 3.3.4 (ubiquitous variation). Let l′ be a marked list and n be the number ofunmarked elements in l′. Let Vubi be a set of nodes su
h that #Vubi > n and names in
Vubi do not o

ur in l′. A ubiquitous variation a

ording to Vubi of l′ = [a′1; . . . ; a

′
n] is a list

l = [a1; . . . ; an] su
h that:
• for all 1 ≤ i ≤ n su
h that a′i is not marked, ai ∈ Vubi,
• for all 1 ≤ i ≤ n su
h that a′i is marked, ai = a′i.Moreover we require that the ubiquitous nodes of l are all distin
t.First, we show that 
hanging the graph does not 
hange the solution, provided we do not
hange the links between the nodes taking part in the proto
ol.Lemma 3.3.6. Let G = (Nloc, E) be a graph, (C, I) be a spe
ial 
onstraint system, Φ1 be aformula of Lroute, and Φ2 be a set of disequality 
onstraints. Let σ be a solution of (C, I)∧Φ1∧

Φ2 for G and N ′
loc = Nloc ∩ names(C,Φ1,Φ2, σ). Let G′ = (Nloc, E

′) be a graph that 
oin
ideswith G on N ′
loc, i.e. su
h that E = {(n1, n2) | (n1, n2) ∈ E′ and n1, n2 ∈ N ′

loc}. Then σ is asolution of (C, I) ∧ Φ1 ∧ Φ2 for G′.Proof. We show that σ satis�es ea
h 
onstraint in (C, I) ∧ Φ1 ∧ Φ2 when the underlyinggraph is G′. First, not that σ trivially satis�es the dedu
tion 
onstraints, the disequality
onstraints and the loop 
onstraints.In order to 
on
lude, we have to 
he
k that this result also holds for the remaining 
on-straints in Φ1.
• [[check(aσ, bσ)]]G = 1 if, and only if, (aσ, bσ) ∈ E. We have that [[check(aσ, bσ)]]G = 1 if,and only if, [[check(aσ, bσ)]]G′ = 1.
• [[checkl(cσ, lσ)]]G = 1 if, and only if, lσ is of sort lists, cσ appears exa
tly on
e in lσ, andfor any l′ sub-list of lσ,� if l′ = a :: cσ :: l1, then (a, cσ) ∈ E.� if l′ = cσ :: b :: l1, then (b, cσ) ∈ E.As in the previous 
ase, we easily 
on
lude that [[checkl(cσ, lσ)]]G = 1 if, and only if,

[[checkl(cσ, lσ)]]G′ = 1.
• [[route(lσ)]]G = 1 if, and only if, lσ is of sort lists, lσ = [a1; . . . ; an], for every 1 ≤ i < n,

(ai, ai+1) ∈ E, and for every 1 ≤ i, j ≤ n, i 6= j implies that ai 6= aj . As in the previous
ase, (ai, ai+1) ∈ E if, and only if, (ai, ai+1) ∈ E′. Hen
e, [[route(lσ)]]G = 1 if, and onlyif, [[route(lσ)]]G′ = 1.Hen
e, σ is a solution of (C, I) ∧ Φ1 ∧ Φ2 for G′.We prove that we 
an �nd a solution in whi
h lists are polynomially bounded. In the 
asewhere the network topology is unknown, the bound depends on the size of the formulas.Proposition 3.3.5. Let (C, I) be a spe
ial 
onstraint system in solved form, Φ1 be a 
onjun
-tion of atomi
 formulas of Lroute, Φ2 be a set of disequality 
onstraints. If there is a solutionof (C, I) ∧ Φ1 ∧ Φ2 for the graph G = (Nloc, E), then there exists a graph G′ = (Nloc, E
′)and a substitution σ su
h that σ is a solution of (C, I) ∧ Φ1 ∧ Φ2 for G′, and σ is polyno-mially bounded in the size of Φ1 and Φ2. Moreover, we have that G′ 
oin
ides with G on

V = {n | ∃n′ su
h that (n, n′) ∈ E}, i.e. E = {(n1, n2) ∈ E′ | n1, n2 ∈ V }.
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72 CHAPTER 3. MODELING AND ANALYZING ROUTING PROTOCOLS
Proof. We adapt the proof of Proposition 3.3.4 by showing that there exists a solution σsu
h that for every variable x of sort lists, we have that |xσ|ℓ ≤M = 2×(kN+3C+L+R+2)where k,N,C, L, and R are de�ned as in Proposition 3.3.4.Let σ be a solution of (C, I)∧Φ1∧Φ2 for graph G and assume that there exists a variable xℓof sort lists su
h that |xℓσ|ℓ > M . Let Vubi be a set of M/2 fresh nodes, i.e. names in Nlocthat do not o

ur in C, Φ1, Φ2, . Consider G′ the ubiquitous graph asso
iated to G and Vubi.We show that we 
an build σ′, a solution of (C, I)∧Φ1∧Φ2 for graph G′, su
h that for x 6= xℓ,

xσ′ = xσ, and |xℓσ′|ℓ ≤M .We build σ′ in a similar way as in the previous proof. We mark xℓσ as in the previousproof. The number of names marked in the list is at most:
kN + 3C + (R+ 1) + (L+ 1) ≤M/2.Consider l1 extra
ted from xℓσ by leaving exa
tly one unmarked name between sequen
esof marked names. Note that, we have no more than M/2 unmarked names in l1. Let l2 be theubiquitous variation of l1 a

ording to Vubi. The fa
t that we 
onsider a ubiquitous variationallows one to satisfy the 
onstraint route that o

urs positively. Note that, we have no morethan M/2 ubiquitous names in l2, so |l2|ℓ ≤M .Let σ0 be the substitution su
h that xσ0 = xσ for every x ∈ dom(σ) r {xℓ}, and xσ = xotherwise. Let σ′ = σ0∪{xℓ 7→ l2}. By 
onstru
tion, we have that the substitution σ′ satis�es

Φ1. We show that σ′ is a solution of (C, I) and Φ2 for G′ as in Proposition 3.3.4.
3.4 De
idability resultWe are now ready to state our two main de
idability results.Simple properties like se
re
y are unde
idable when 
onsidering an unbounded number ofrole exe
utions, even for 
lassi
al proto
ols [DLMS99℄. Sin
e our 
lass of pro
esses en
ompasses
lassi
al proto
ols, the existen
e of an atta
k is also unde
idable. In what follows, we thus
onsider a �nite number of sessions, i.e. pro
esses without repli
ation.In most existing frameworks, the intruder is given as initial knowledge a �nite number ofmessages (e.g. some of the se
ret keys or messages learned in previous exe
utions). However,in the 
ontext of routing proto
ols, it is important to give an a priori unbounded number ofnode names to the atta
ker that he 
an use as its will, in parti
ular for possibly passing somedisequality 
onstraints and for 
reating false routes.De�nition 3.4.1. We say that a pro
ess is �nite if it does not 
ontain the repli
ation operator.A 
on
rete 
on�guration K = (P[_];S; I) is said initial if K is ground, P is �nite, S is a�nite set of terms and I = Inames ∪ Iterms where Iterms is a �nite set of terms and Inames isan in�nite set of names. Moreover, Nloc ⊆ Inames ∪ Iterms (the intruder is given all the nodenames in addition to its usual initial knowledge) .The intruder is thus given an in�nity of node names in addition to its usual initial know-ledge. In pra
ti
e, this enables him to generate any IP address that he 
hooses.We show that a

essibility properties are de
idable for �nite pro
esses of our pro
essalgebra, whi
h models se
ured routing proto
ols, for a bounded number of sessions. Wea
tually provide two de
ision pro
edures, a

ording to whether the network is a priori given
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3.4. DECIDABILITY RESULT 73
or not. In the 
ase where the network topology is not �xed in advan
e, our pro
edure enablesus to automati
ally dis
over whether there exists a (worst-
ase) topology that would yield anatta
k.Note that Theorem 3.4.1(unknown topology) does not imply Theorem 3.4.2(�xed topology)and re
ipro
ally. Indeed, in Theorem 3.4.2, the whole topology is �xed, in
luding in parti
ularthe lo
ation of the intruder nodes. Theorems 3.4.1 and 3.4.2 ensure in parti
ular that we 
ande
ide whether a routing proto
ol like SRP 
an guarantee that any route a

epted by thesour
e is indeed a route (a path) in the network (whi
h 
an be �xed by the user or dis
overedby the pro
edure). The NP-hardness of the existen
e of an atta
k 
omes from the NP-hardnessof the existen
e of a solution for dedu
tion 
onstraint systems [RT01℄.
3.4.1 Case of an unknown topologyWe show that in the 
ase of an a priori unknown topology, de
iding whether there is an atta
kis de
idable, providing an NPTIME 
omplexity bound.Theorem 3.4.1. Let K = (P[_];S; I) be an initial 
on
rete 
on�guration with a hole,M⊆
Nloc be a �nite set of nodes, and Φ ∈ Lroute be a formula. De
iding whether there existsa graph G = (Nloc, E) su
h that there is an M-atta
k on K and Φ for the topology G isNP-
omplete.We provide �rst a very general sket
h of the proof:
• We �rst use the symboli
 semanti
s (Se
tion 3.2) based on 
onstraint systems, moreamenable to automation. We have already shown its 
orre
tness and 
ompleteness w.r.t.the 
on
rete semanti
s.
• We transform the 
onstraint systems obtained through the exe
ution of a routing pro-to
ol into solved 
onstraint systems (as demonstrated in Chapter 2) .
• We show how to bound the size of a minimal atta
k on a solved 
onstraint system(Se
tion 3.3).Let us now detail the de
ision pro
edure.Let Ks = (P[if Φ then out(error) else 0];S; I; ∅; ∅). Ks is a ground symboli
 
on�gurationwhose 
on
retization is (P[if Φ then out(error) else 0];S; I). Let VK be the set of names ofsort loc that o

ur in P andM. Our de
ision pro
edure works as follows:Step 1 We partially guess the graph G = (Nloc, E). A
tually, we guess whether (n1, n2) ∈ Efor every n1, n2 ∈ VK .Let GK = (Nloc, EK) where EK = {(n1, n2) | (n1, n2) ∈ E and n1, n2 ∈ VK}.Step 2 We guess a path of exe
ution of the symboli
 transition rules w.r.t. the graph GK .

Ks →
s∗
GK ,M

(⌊out(u)⌋n ∪ P
′;S ′; I ′; C; Ψ).Step 3 Let I ′ = Inames ⊎ Iterms su
h that (C, Inames) is a 
onstraint system. Let σ =

mgu(u, error) and Cσ = D and Ψσ = Φ′
1 where D is a �nite set of dedu
tion 
onstraints and

Φ′
1 
ontains disequality 
onstraints and formulas of Lroute.
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74 CHAPTER 3. MODELING AND ANALYZING ROUTING PROTOCOLS
Step 4 We guess a sequen
e of transformation rules from (D, Inames) to (D′, Inames) where
(D′, Inames) is a 
onstraint system in solved form. We have that:

(D, Inames) 
∗
σ′ (D′, Inames) with (D′, Inames) in solved form.Step 5 We 
ompute the 
onjun
tive normal form of the formula Φ′

1. Hen
e, Φ′
1 is equivalentto ∧

k

φk1 ∨ · · · ∨ φ
k
ik
.

We 
hoose non-deterministi
ally φkαk
for every k. Let Φ2 =

∧

k

φkαk
.

Step 6 Let S be the DAG size of P, S, Φ, M, and If . Let I0 be a �nite subset of Inamesof size 2S2 × (S4 + 5S2 + 2). Guess the values of variables whi
h are not of sort lists in I0 ∪
names(P,S,Φ,M, If ). Guess the values of variables of sort lists among lists of nodes in I0 ∪
names(P,S,Φ,M, If ) of length at most 2× (S4 +5S2 +2). This gives us a substitution σ andwe guess a graph G = (Nloc, E) su
h that E ⊆ {(n1, n2) | n1, n2 ∈ I0∪names(P,S,Φ,M, If )}and that 
oin
ides with GK on VK , i.e:

EK = {(n1, n2) ∈ E | n1, n2 ∈ VK}.Lastly, we 
he
k whether σ is a solution of (D′, Inames) ∧ Φ2 for the graph G.Proof. We now explain ea
h step of our algorithm.Step 1. We have that #VK < #names(P,M). Hen
e, we 
an guess GK whose size ispolynomially bounded.Step 2. For every graph G′ = (Nloc, E
′) with EK = {(n1, n2) ∈ E′ | n1, n2 ∈ VK}, we havethat:

(P;S; I; C; Ψ)→s∗
GK ,M

(P ′;S ′; I ′; C′; Ψ′) i� (P;S; I; C; Ψ)→s∗
G′,M(P ′;S ′; I ′; C′; Ψ′).So we 
an guess the transitions knowing only EK . Now, thanks to Theorem 3.2.4 wededu
e that there is anM-atta
k on K and Φ for graph G if, and only if, there is a derivation

(P[if Φ then out(error) else 0];S; I; ∅; ∅) →s∗
GK ,M

(⌊out(u)⌋n ∪ Ps;Ss; Is; C; Ψ)with σ = mgu(u, error) and the 
onstraint system (Cσ, Inames) together with Ψσ has a solutionfor graph G.A
tually, we 
an guess su
h a path. Indeed, the number of derivations starting from
on�guration Ks is bounded. A
tually, the length of possible paths is bounded by the sizeof the proto
ol: as there is no repli
ation in the initial 
on�guration, ea
h transition leadsto a smaller pro
ess. Moreover, the number of 
on�gurations rea
hable with one symboli
transition is bounded as well: we 
an �rst guess whi
h pro
ess is going to evolve and whi
his the 
orresponding transition. There is only one possible resulting 
on�guration on
e this is
hosen, ex
ept for the 
ommuni
ation transition, where we also have to guess whi
h neighborswill re
eive the message, and for the read transition, where we have to 
hoose whi
h term toread.
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3.4. DECIDABILITY RESULT 75
When a transition Ks →s

GK ,M K ′
s o

urs and Ks is �nite, in parti
ular it does not 
ontainthe repli
ation operator, we have to 
ontrol the size of K ′

s. If the rule 
onsidered is not theComms rule, then the number of subterms in K ′
s is smaller or equal to the number of subtermsin Ks. Indeed, it is straightforward to see when 
onsidering rules Ins, Stores, Read-Elses,If-Thens, If-Elses, Pars and News. When applying rule Read-Thens, a substitution isapplied to all the terms in K ′

s, but as the substitution is a most general uni�er of terms in Ks,the number of subterms does not in
rease. But when 
onsidering a Comms rule, new terms 
anbe produ
ed by renaming some variables. However, the number of Comms steps is boundedby the number of terms of the form out(t) in the proto
ol, and ea
h step 
an produ
e in theworst 
ase a number of terms polynomial in the size of the 
on�guration, as they are termsthat appear in formulas. Consequently, at the end of the derivation, the number of subterms
onsidered is polynomial in the number of subterms at the beginning of the derivation.Step 3. Straightforward.Step 4. We apply Theorem 2.3.1. Thus, there exists a solution θ of (D, Inames) and Φ1 forgraph G if, and only if, there exists a 
onstraint system (D′, Inames) in solved form and somesubstitutions σ′, and θ′ su
h that θ = θ′ ◦ σ′, (D, Inames) 
∗
σ′ (D′, Inames) and θ′ is a solutionfor (D′, Inames) and Φ1σ

′ for graph G.Step 5. This step is straightforward. The formula Φ1σ
′ 
ontains disequality 
onstraints andformulas of Lroute. Consequently, Φ2 =

∧

k

φkαk
, obtained from Φ1σ

′, 
an be written:
Φ2 =

∧

i

∀Yi.ui 6= vi ∧
∧

j

±j check(aj , bj) ∧
∧

k

∧

i

±ik checkl(cik , lk) ∧
∧

h

±h loop(ph) ∧
∧

l

±l route(rl)Finally, we are left to de
ide whether there exists a solution to a solved spe
ial 
onstraintsystem (D′, Inames) and a formula Φ2 as des
ribed above.Step 6. First, we show that for any term t ∈ st(D′,Φ2), there exists t′ in st(D,Φ′
1) su
h that

t = (t′σ)σ′. Thanks to Theorem 2.3.1, we have that
st(D′) ⊆ st(Dσ′) ⊆ st(D)σ′.Moreover, we have that

st(Φ2) ⊆ st(Φ′
1σ

′) ⊆ st(Φ′
1)σ

′ ∪
⋃

x∈var(D)

st(xσ′) ⊆ st(Φ′
1)σ

′ ∪ st(D)σ′.

The last in
lusion is a dire
t 
onsequen
e of the in
lusion st(Dσ′) ⊆ st(D)σ′. Hen
e, we havethat: st(D′,Φ2) ⊆ st(Φ1)σ
′ ∪ st(D)σ′ ⊆ st(Cσ)σ′. By relying on Lemma 3.3.1, we obtain that

st(Cσ) ⊆ st(C)σ. Sin
e names(D′,Φ2) ∩ I0 = ∅, we dedu
e that
st(D′,Φ2) ⊆ st(C)σσ′ r I0

⊆ (st(C)σσ′ rNloc) ∪ names(P,S,Φ,M, If )Let S be the DAG size of P, S, Φ, M, and If . By inspe
tion of the symboli
 transitionrules, we see that at ea
h step, the 
onstraint system 
an grow at most of size S (be
ause ofthe 
ommuni
ation rule). Hen
e, we have that #st(D′,Φ2) ≤ S2.
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76 CHAPTER 3. MODELING AND ANALYZING ROUTING PROTOCOLS
Let N be the maximal depth of variables in the terms of all disequality 
onstraints in

Φ2, and k the maximal total number of variables in a disequality 
onstraint. We have that
kN ≤ D2 where D is the DAG size of the largest disequality 
onstraint that o

urs in D′.Sin
e D ≤ #st(D′,Φ2), we dedu
e that kN ≤ D2 ≤ S4.Let L be the number of o

urren
es of a loop predi
ate in Φ2, R be the number of o

ur-ren
es of a route predi
ate in Φ2, and C be the number of o

urren
es of a checkl predi
ate in
Φ2. We have that:

L ≤ S2, R ≤ S2, and C ≤ S2.Now, we have to show that if there exists a graph G = (Nloc, E) su
h that EK = {(n1, n2) ∈
E | n1, n2 ∈ VK} and on whi
h there is an atta
k, then there exists a graph as des
ribed inStep 6 for whi
h there is an atta
k and the substitution witnessing the fa
t that there existsan atta
k is also as des
ribed in Step 6 of our algorithm.
• Thanks to Lemma 3.3.3, we know that there is a solution where the variables whi
h arenot of sort loc or lists are substituted by names in I0 (independently of the underlyinggraph).
• Thanks to Proposition 3.3.5, we know that if there is a graph G = (Nloc, E) leadingto a solution, there exists a substitution σ where the size of the instantiated variablesof sort lists is bounded by M = 2 × (kN + 3C + R + L + 2) and there exists a graph
G′ = (Nloc, E

′) that 
oin
ides with G on V = {n | ∃n′ su
h that (n, n′) ∈ E}.We have that: M ≤ 2×(S4+5S2+2). Hen
e, the number of distin
t names of sort loc in
σ is bounded by #var(D′,Φ2)×M ≤ 2S2×(S4+5S2+2). We 
onsider a set I ′0 having thissize. So, there is a solution σ for G′ su
h that names(σ) ⊆ I ′0 ∪ names(P,S,Φ,M, If ).

• Thanks to Lemma 3.3.6, we know that if σ is a solution for graph G′ = (Nloc, E
′),then σ is also a solution for any graph G′′ = (Nloc, E

′′) that 
oin
ides with G′ on
N ′

loc where N ′
loc represents the names in Nloc that o

ur in D′, Φ2, and σ. Note that

N ′
loc ⊆ I

′
0 ∪ names(P,S,Φ,M, If )Let G′′ = (Nloc, E

′′) be the graph su
h that
E′′ = {(n1, n2) ∈ E

′ | n1, n2 ∈ I
′
0 ∪ names(P,S,Φ,M, If )}.We have that σ is a solution for the graph G′′ and the graph G′′ is as des
ribed in Step 6.

3.4.2 Case of a �xed topologyWe will now explain how to de
ide the existen
e of an atta
k given a �xed graph G. Thepro
edure is similar to the pro
edure in the 
ase of an unknown topology, but we no longerhave to guess part of the topology at the beginning of the de
ision pro
edure.Theorem 3.4.2. Let K = (P[_];S; I) be an initial 
on
rete 
on�guration with a hole, G =
(Nloc, E) be a �nite graph, M ⊆ Nloc be a �nite set of nodes, and Φ ∈ Lroute be a formula.De
iding whether there exists anM-atta
k on K and Φ for the topology G is NP-
omplete.
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3.4. DECIDABILITY RESULT 77
LetKs = (P[if Φ then out(error) else 0];S; I; ∅; ∅). First,Ks is a ground symboli
 
on�gurationwhose 
on
retization is (P[if Φ then out(error) else 0];S; I). We write G = (Nloc, E). Let
V = {n | ∃n′ su
h that (n, n′) ∈ E}. Our de
ision pro
edure works as follows:Step 1 We guess a path of exe
ution of the symboli
 transition rules w.r.t. graph G.

Ks →
s∗
G,M (⌊out(u)⌋n ∪ P

′;S ′; I ′; C; Ψ).Step 2 Let I ′ = Inames ⊎ Iterms su
h that (C, Inames) is a 
onstraint system. Let σ =
mgu(u, error) and Cσ = C′0 and Ψσ = Φ′

1.Step 3 We guess a sequen
e of transformation rules from (D, Inames) to (D′, Inames) where
(D′, Inames) is a 
onstraint system in solved form. We have that:

(D, Inames) 
∗
σ′ (D′, Inames) with (D′, Inames) in solved form.Step 4 We 
ompute the 
onjun
tive normal form of formula Φ′

1σ. Hen
e, Φ′
1σ is equivalentto ∧

k

φk1 ∨ · · · ∨ φ
k
ik
.

We 
hoose non-deterministi
ally φkαk
for every k. Let Φ2 =

∧

k

φkαk
.

Step 5 Let S be the DAG size of P, S, Φ,M, and If . Let I ′0 be a �nite subset of I0 of size
S2 ×max(S4 + 5S2 + 3,#E). Guess the values of variables of sort lists among lists of nodes in
I ′0 ∪ names(P,S,Φ,M, If ) ∪ V of length at most max(S4 + 5S2 + 3,#E). Guess the valuesof the other variables, i.e. those that are not of sort lists, in I ′0 ∪ names(P,S,Φ,M, If ) ∪ V .This gives us a substitution σ. Lastly, we 
he
k whether σ is a solution of (D ′, I0) ∧ Φ2 forgraph G.Proof. The �rst four steps are the same as Steps 2 to 5 in Theorem 3.4.1. Thus, itremains to justify Step 5 of the pro
edure des
ribed above. As shown in the proof of Step 6in Theorem 3.4.1, we have that:
• N ≤ S2 where N is the maximal depth of variables in the terms of all disequality
onstraints in Φ2;
• k ≤ S2 where k is the maximal total number of variables in a disequality 
onstraint in

Φ2;
• L ≤ S2 where L is the number of o

urren
es of a loop predi
ate in Φ2;
• C ≤ S2 where C is the number of o

urren
es of a checkl predi
ate in Φ2;
• R ≤ S2 where R is the number of o

urren
es of a route predi
ate in Φ2.
Now, we want to show that if there exists an atta
k for graph G, then there is an atta
k
aptured by a substitution as des
ribed in Step 5 of our algorithm.
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78 CHAPTER 3. MODELING AND ANALYZING ROUTING PROTOCOLS
• Thanks to Lemma 3.3.3, we know that there is a solution where the variables whi
h arenot of sort lists are substituted by names in I0.
• Thanks to Proposition 3.3.4, we know that if there is a solution, then there exists inparti
ular a solution, say σ, su
h that |xσ| ≤M for any x of type lists where:

M = max(kN + 3C + L+R+ 3,#E).A
tually, we have that M ≤ max(S4 + 5S2 + 3,#E|).Hen
e, the number of distin
t names of sort loc in σ is bounded by
#var(D′,Φ2)×M ≤ S2 ×max(S4 + 5S2 + 3,#E).We 
onsider a set I ′0 having this size. This allows us to 
on
lude.

3.5 Appli
ationsWe present now a few appli
ations and we dis
uss some limitations of our results.3.5.1 Routing proto
ol SRP applied to DSROur de
ision pro
edure allows us to retrieve the atta
k on the proto
ol SRP applied to DSR,mentioned in Example 3.1.4. Indeed, 
onsider the formal model of SRP applied to DSR(de�ned in Se
tion 3.1.2) and of its desired property (de�ned in Example 3.1.4). We would �rstguess the graph G0 de�ned in Example 3.1.2. Exe
uting symboli
ally (non deterministi
ally)the pro
ess modeling SRP applied to DSR, we would obtain the symboli
 
on�guration ofExample 3.2.2. Applying our transformation rules, we would then (non deterministi
ally)obtain a solved 
onstraint system. We 
an �nally guess the (bounded) solution θ′ = {xa 7→
X,xl 7→ [W ;S]}.3.5.2 Routing proto
ol SDMSRThe se
ured routing proto
ol SDMSR introdu
ed in [BYLM06℄ is a multipath routing proto
olthat 
an be modeled in our framework. The goal of a multipath routing proto
ol is to �ndseveral paths leading from a sour
e node S to a destination node D. In order to a
hieve su
ha result, the intermediate nodes may pro
eed the same request several times. This proto
olis based on two authenti
ation me
hanisms: RSA signatures and signatures based on hash
hains. The purpose of the latter s
heme is to de
rease 
omputation time. For the sake ofsimpli
ity, we des
ribe the proto
ol without this me
hanism. The des
ription in [BYLM06℄does not really state whether neighbor veri�
ation is performed in the proto
ol. To avoidstraightforward atta
ks, we assume that it is the 
ase: ea
h node 
he
ks whether the re
eivedinformation are 
onsistent with its knowledge of the network.To dis
over a route to the destination, the sour
e 
onstru
ts a request pa
ket and broad-
asts it to its neighbors. The request pa
ket 
ontains its name S, the name of the destina-tion D, an identi�er of the request Id , a list 
ontaining the beginning of a route to D, and asignature over the 
ontent of the request, 
omputed with the private key priv(S). The sour
ethen waits for a reply 
ontaining a route to D signed by one of his neighbors, and 
he
ks thatthis route is plausible.
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3.5. APPLICATIONS 79
The pro
ess exe
uted by a sour
e node S initiating the sear
h of a route towards a destin-ation node D is

Pinit(S,D) = new Id .out(u1).in u2[ΦS ].0

where 





u1 = 〈req, S,D, Id , S :: [], J〈req, S,D, Id〉Kpriv(S)〉
u2 = 〈rep, D, S, Id , xA, xL, J〈rep, D, S, Id , xL〉Kpriv(xA)〉
ΦS = check(S, xA) ∧ checkl(S, xL)The names of the intermediate nodes are a

umulated in the route request pa
ket. Inter-mediate nodes relay the request over the network, ex
ept if they have already seen a shorterone. In order to simplify the presentation, we 
onsider that they relay all requests as long asthey 
ontain di�erent routes. An intermediate node also 
he
ks that the re
eived request is
orre
tly authenti
ated by 
he
king the atta
hed signature. Below, V ∈ Nloc, xS , xa and xDare variables of sort loc whereas xr is a variable of sort lists and xId is a variable of sort terms.The pro
ess exe
uted by an intermediate node V when forwarding a request is as follows:

Preq(V ) = in w1[ΦV ].read t then 0 else (store(t).out(w2))

where 





w1 = 〈req, xS , xD, xId , xa :: xr, J〈req, xS , xD, xId〉Kpriv(xS)〉
ΦV = check(V, xa)
t = 〈xS , xD, xId , xa :: xr〉
w2 = 〈req, xS , xD, xId , V :: xa :: xr, J〈req, xS , xD, xId〉Kpriv(xS)〉When the request rea
hes the destination D, he 
he
ks that the request 
omes from oneof its neighbors, has a 
orre
t signature, and that the list of a

umulated nodes does not
ontain a loop. Then, the destination D 
onstru
ts a route reply, in parti
ular it 
omputesa signature over the route a

umulated in the request pa
ket with its private key priv(D). Itthen sends the reply ba
k over the network. The pro
ess exe
uted by the destination node Dis Pdest(D) = in v1[ΦD].out(v2).0 where:
v1 = 〈req, xS , D, xId , xb :: xl, J〈req, xS , D, xId〉Kpriv(xS)〉
ΦD = check(D,xb) ∧ ¬loop(xb :: xl)
v2 = 〈rep, D, xS , xId , D,D :: xb :: xl, J〈rep, D, xS , xId , D :: xb :: xl〉Kpriv(D)〉

Then, the reply travels along the route ba
k to S. The intermediate nodes 
he
k thatthe signature in the reply pa
ket is 
orre
t, and that the route is plausible, before forwardingit. Ea
h node repla
es the signature in the reply pa
ket by its own signature. The pro
essexe
uted by an intermediate node V when forwarding a reply is the following one:
Prep(V ) = in w′[Φ′

V ].out(w′′).0

where 





w′ = 〈rep, xD, xS , xId , xa, xr, J〈rep, xD, xS , xId , xr〉Kpriv(xa)〉
Φ′
V = checkl(V, xr) ∧ check(V, xa)

w′′ = 〈rep, xD, xS , xId , V, xr, J〈rep, xD, xS , xId , xr〉Kpriv(V )〉We have found that SDMSR is subje
t to the same kind of atta
k than SRP applied toDSR. Consider the same graph G0 as for the atta
k we des
ribed on SRP. Let
K0 = (⌊Pinit(S,D)⌋S | ⌊Pdest(D)⌋D; ∅; I0)
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80 CHAPTER 3. MODELING AND ANALYZING ROUTING PROTOCOLS
The atta
k s
enario is the following one. The sour
e S sends a route request towards D.The request rea
hes the node nI . Thus, the atta
ker re
eives the following message:

〈req, S,D, Id , S :: [], J〈req, S,D, Id〉Kpriv(S)〉.The atta
ker then broad
asts the following message in the name of X:
〈req, S,D, id, [X;W ; I;S], J〈req, S,D, Id〉Kpriv(S)〉.Sin
eD is a neighbor of nI , it will hear the transmission. In addition, the list of nodes [X;W ; I;S]ends with X, whi
h is also a neighbor of D, and does not 
ontain any loop, and signature

J〈req, S,D, Id〉Kpriv(S) is valid. Consequently, the destination D will pro
ess this request andwill send the following route reply ba
k to S:
〈rep, D, S, Id , D, [D;X;W ; I;S], J〈rep, D, S, Id , [D;X;W ; I;S]〉Kpriv(D)〉.The atta
ker will put its own signature J〈rep, D, S, Id , [D;X;W ; I;S]〉Kpriv(nI) instead of thesignature of D, and it will send the resulting message to S.To model se
urity in our model, we repla
e in Pinit the pro
ess 0 by a hole and we 
he
kwhether the formula ¬route(xL) holds. Applying our pro
edure to the initial 
on�guration K0,we 
an rea
h the 
on�guration

Ks = (⌊out(error).0⌋S; ∅; I0 ∪ {u1, v2}; C; Ψ)where
C = {I0 ∪ {u1} 
 v1 ∧ I0 ∪ {u1, v2} and Ψ = ΦD ∧ ΦS ∧ ¬route(xL)}with:
u1 = 〈req, S,D, Id , S :: [], J〈req, S,D, Id〉Kpriv(S)〉
u2 = 〈rep, D, S, Id , xA, xL, J〈rep, D, S, Id , xL〉Kpriv(xA)〉
ΦD = check(D,xb) ∧ ¬loop(xb :: xl)
ΦS = check(S, xA) ∧ checkl(S, xL)
v1 = 〈req, xS , D, xId , xb :: xl, J〈req, xS , D, xId〉Kpriv(xS)〉
v2 = 〈rep, D, xS , xId , D,D :: xb :: xl, J〈rep, D, xS , xId , D :: xb :: xl〉Kpriv(D)〉and the 
onstraint system (C, Inames) together with Ψ has a solution

θ = {xid 7→ id, xS 7→ S, xA 7→ nI , xb 7→ X,xl 7→ [W ;nI ;S], xL 7→ [D;X;W ;nI ;S]}for graph G0, so there is an {nI}-atta
k on K0 for G0. We therefore retrieve the atta
kmentioned above, that we have dis
overed while analysing the proto
ol.3.5.3 Other routing proto
olsTable routingThe model of pro
esses we propose in
ludes the possibility for nodes to store information insome memory. We 
an therefore model routing proto
ols based on routing tables, su
h asSAODV [ZA02℄, SEAD [HJP03℄ and ARAN [SDL+02℄. However, in su
h proto
ols, the a
tual
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3.5. APPLICATIONS 81
found route is not sent to the sour
e node but depends on the internal states of the nodes.Se
urity properties su
h as route validity 
an thus not be expressed using our route predi
ate.Due to the way properties are modeled, it is not yet possible to straightforwardly analyzerouting 
orre
tness of table-based routing proto
ols in our framework. Indeed, we 
an onlymodel rea
hability properties at the moment. In the 
ase of table based routing proto
ols, itis also 
ru
ial to dete
t the existen
e of loops, as they 
ould interfere with the good fun
tionof the network. Both 
orre
tness of the route and loop-freeness depend on the routing tablesstored in the internal states. Moreover, in order to model a

urately table based routingproto
ols, our model would have to be modi�ed in the way it deals with stores to add thepossibility of updating a routing table. At the moment, we 
an only add elements to the storeand they are never deleted. Analyzing table-based routing proto
ols would be appli
able towireless ad ho
 networks but also to wired networks.
Proto
ols using di�erent testsSome proto
ols aim at ensuring other se
urity property than route 
orre
tness, for examplethat the intruder does not appear on the route obtained through the proto
ol. This property,and others, are sometimes desired, and we have not modeled them. One restri
tion of ourde
idability result is that it holds for a parti
ular logi
 Lroute. We would like to have amore general result, with general 
onditions on the logi
 to retain de
idability. If we want toadd predi
ates, our result does not hold any more. In this pre
ise 
ase, the addition seemsstraightforward, we 
ould add a predi
ate in the logi
 en
oding a property stipulating that theroute found is free of mali
ious nodes, and we are 
on�dent that we would still get de
idability,but this would require writing a new proof. Intuitively, our proof is built in the following way:we mark some names and then we remove the unmarked names from the lists, possibly addingspe
ial nodes in between the 
uts. So it seems probable that lo
al predi
ates, 
onstrainingonly a small number of names, as do predi
ates 
he
k or loop, 
ould be added very easily.Properties about the entire route would require more attention: if they are preserved by any
ut, it is easy to add them, else we have to adapt the spe
ial nodes used to 
onne
t 
ut portionsof the list (in our model, the ubiquitous nodes to preserve the route property). De�ning su
habstra
t 
onditions would be useful as there are many se
urity properties that 
ould be testedthis way.Re
ursivityWe have modeled route validity in Example 3.1.4 for the proto
ol SRP applied to DSR. Thesame modeling 
an be applied to most sour
e routing proto
ols su
h as Ariadne [HPJ05℄,endairA [BV04℄, SRDP [KT09℄, BISS [CH03℄. However, sour
e routing proto
ols may alsoperform re
ursive tests: it is the 
ase for Ariadne and endairA for instan
e. Su
h tests aretypi
ally performed either by the sour
e or the destination and aim at se
uring respe
tivelythe request or reply phase. These tests 
an not yet be in
luded in our de
ision pro
edures.We wish to add the possibility of testing re
ursivity to our model. A �rst step towards thisend is presented in Chapter 4.
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Chapter 4
Proto
ols with Re
ursive Tests
In the previous 
hapter, we have proposed a formal model to analyze ad ho
 routing proto
ols.However, this model does not allow to analyze all existing routing proto
ols. In parti
ular,su
h proto
ols as make use of re
ursivity are out of his s
ope. Su
h routing proto
ols [BV04,HPJ05, FGML09℄ require the nodes (typi
ally the node originating the request) to 
he
k thatthe list they re
eive 
ould be a valid route. This is usually performed by 
he
king that ea
hnode has properly signed (or MACed) some part of the route, the whole in
oming messageforming a 
hain where ea
h 
omponent is a 
ontribution from a node in the path. Moreover,re
ursivity is also a 
omponent of other proto
ols. For example, in group proto
ols, the serveror the leader typi
ally has to pro
ess a request that 
ontains the 
ontributions of ea
h di�erentagent in the group and these 
ontributions are used to 
ompute a 
ommon shared key (seee.g. the Asokan-Ginzboorg group proto
ol [AG00℄). Other examples of proto
ols performingre
ursive operations involve 
erti�
ation paths for publi
 keys (see e.g. X.509 
erti�
ationpaths [HFP98℄) or right delegation in distributed systems [Aur99℄.Re
ursive operations may yield 
omplex 
omputations. Therefore it is di�
ult to 
he
kthe se
urity of proto
ols with re
ursive primitives and very few de
ision pro
edures have beenproposed for re
ursive proto
ols. One of the �rst de
idability results [KW04℄ holds when there
ursive operation 
an be modeled using tree transdu
ers, whi
h forbids any equality test andalso forbids 
omposed keys and 
hained lists. In [Tru05℄ re
ursive 
omputation is modeledusing Horn 
lauses and an NEXPTIME pro
edure is proposed. This is extended in [KT07℄ toin
lude the Ex
lusive Or operator. This approa
h does however not allow 
omposed keys norlist mapping (where the same operation, e.g. signing, is applied to ea
h element of the list).To 
ir
umvent these restri
tions, another pro
edure has been proposed [CTR09℄ to handle listmapping provided that ea
h element of the list is properly tagged. No 
omplexity bound isprovided. All these results hold for rather limited 
lasses of re
ursive operations (on lists ofterms). This is due to the fa
t that even a single input/output step of a proto
ol may reveal
omplex information, as soon as it involves a re
ursive 
omputation. Consequently, re
ursiveprimitives very qui
kly yield unde
idability.In order to obtain de
idability for a 
lass of proto
ols in
luding routing proto
ols, we lim-ited ourselves to 
onsidering proto
ols that perform standard input/output a
tions (modeledusing usual pattern mat
hing) but that are allowed to perform re
ursive tests su
h as 
he
k-ing the validity of a route or the validity of a 
hain of 
erti�
ates. Indeed, several families ofproto
ols use re
ursivity only for performing sanity 
he
ks at some steps of the proto
ol. Thisis in parti
ular the 
ase of se
ured routing proto
ols, distributed right delegation, and PKI83
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84 CHAPTER 4. PROTOCOLS WITH RECURSIVE TESTS

erti�
ation paths.For 
he
king se
urity of proto
ols with re
ursive tests (for a bounded number of sessions),we use the setting of 
onstraint systems de�ned in Chapter 2 and add tests of membership tore
ursive languages.In this 
hapter, we propose (NPTIME) de
ision pro
edures for two 
lasses of re
ursivelanguages (used for tests): link-based re
ursive languages and mapping-based languages. Alink-based re
ursive language 
ontains 
hains of links where 
onse
utive links have to satisfya given relation. A typi
al example is X.509 publi
 key 
erti�
ates as de�ned in [HFP98℄ that
onsist in a 
hain of signatures of the form:

[J〈A1, pub(A1)〉Ksk(A2); J〈A2, pub(A2)〉Ksk(A3); · · · ; J〈An, pub(An)〉Ksk(S)].A mapping-based language 
ontains lists that are based on a list of names (typi
ally namesof agents involved in the proto
ol session) and are uniquely de�ned by it. Typi
al examples
an be found in the 
ontext of routing proto
ols, when nodes 
he
k for the validity of theroute. For example, in the SMNDP proto
ol [FGML09℄, a route from the sour
e A0 to thedestination An is represented by a list lroute = [An; . . . ;A1]. This list is a

epted by the sour
enode A0 only if the re
eived message is of the form:
[J〈An, A0, lroute〉Ksk(A1); J〈An, A0, lroute〉Ksk(A2); . . . ; J〈An, A0, lroute〉Ksk(An)].Note that a link J〈An, A0, lroute〉Ksk(Ai) both depends on the list lroute and on its i-th element.For ea
h of these two languages, we show that it is possible to bound the size of a minimalatta
k (bounding in parti
ular the size of the lists used in membership tests), relying on the
hara
terization we have obtained in Chapter 2 for solutions of 
onstraint systems. As a
onsequen
e, we obtain two new NP de
ision pro
edures for two 
lasses of languages thaten
ompass most of re
ursive tests involved in se
ured routing proto
ols and 
hain 
erti�
ates.We 
apture the re
ursivity tests that have to be performed with language 
onstraints,that are formally de�ned in Se
tion 4.1. Furthermore, we also 
onsider a parti
ular 
lass ofsolutions, where the dedu
ible terms are obtained by 
omposition, and we apply this notionto lists. This enables us in the following se
tions to prove our de
idability results. We de�nelink-based re
ursive languages, whi
h en
ompass in parti
ular 
erti�
ate 
hains, in Se
tion 4.2,and we prove that de
iding whether a 
onstraint system with 
onstraints in su
h a languagehas a solution is de
idable in NP. In Se
tion 4.3, we de�ne mapping based languages and weprove a similar result of de
idability regarding this 
lass of languages.

4.1 De�nitionsWe give a global de�nition of language 
onstraints in order to de�ne the type of problems thatwe want to 
onsider.De�nition 4.1.1 (language 
onstraint). Let L be a language (i.e. a set of terms). An L-language 
onstraint asso
iated to some 
onstraint system (C, I) is a formula of the form
(u1 ∈ L)? ∧ . . . ∧ (uk ∈ L)? where ea
h ui is a term su
h that vars(ui) ⊆ vars(C) and
st(ui) ∩ I = ∅.A solution of a 
onstraint system (C, I) and of an L-language 
onstraint φ = (u1 ∈
L)?∧ . . .∧ (uk ∈ L)? is a ground substitution θ su
h that θ is a solution of (C, I) and uiθ ∈ Lfor any 1 ≤ i ≤ k. We denote by st(φ) the set {st(ui) | 1 ≤ i ≤ k}.
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4.1. DEFINITIONS 85
We will use also the notion of 
onstru
tive solution on 
onstraint systems in solved form,whi
h is weaker than the notion of non-
onfusing solution.De�nition 4.1.2 (
onstru
tive solution). Let (C, I) be a 
onstraint system in solved form.A substitution θ is a 
onstru
tive solution of (C, I) if for every dedu
ibility 
onstraint T ?

⊢ xin C, we have that Satv(T )θ ∪ I ⊢ xθ using 
omposition rules only.A non-
onfusing solution of a solved system is a 
onstru
tive solution, while the 
onversedoes not always hold. This notion will be used in proofs in the following se
tions as we willtransform solutions, preserving the 
onstru
tive property but not ne
essarily the non-
onfusingproperty.In this 
hapter, we have to pay extra attention to lists, as they are fundamental 
onstru
torsin our di�erent languages. In parti
ular, we are going to build smaller lists and we will have topreserve dedu
ibility. In order to a
hieve that, we show in Lemma 4.1.1 that if we 
an dedu
ea list using 
omposition rules only, then we 
an dedu
e ea
h of its elements, still using only
omposition rules.Lemma 4.1.1. Let (C, I) be a 
onstraint system in solved form, θ be a 
onstru
tive solutionof (C, I), and T ∈ lhs(C). Let u = [m1; . . . ;mn] be a list su
h that Satv(T )θ ∪ I ⊢ u using
omposition rules only. Then for every k ≤ n, there is a proof of Satv(T )θ ∪ I ⊢ mk using
omposition rules only.
Proof. First, we 
an write C = T1

?
⊢ x1∧· · ·∧Tp

?
⊢ xp. For 1 ≤ i ≤ p, let Si = Satv(Ti)∪I.Consider ∆ a proof of Siθ ⊢ u using only 
omposition rules. We show by indu
tion on (i, |∆|)that for every element mk of u, there exists a proof ∆k of Siθ ⊢ mk that uses 
ompositionrules only. We distinguish 
ases depending on the last rule of ∆.The last rule is an axiom. Then u ∈ Siθ and there is t ∈ Si su
h that u = tθ. As u is alist, there are terms e1, . . . , em, t′ ∈ Si su
h that t = e1 :: . . . :: em :: t′ and t ∈ {[]} ∪ X . For

1 ≤ k ≤ m, ekθ = mk, so for 1 ≤ k ≤ m, there is a proof of Siθ ⊢ mk whi
h is an axiom.Now, either t′ = [] or t′ = xj ∈ X , with j < i. In the �rst 
ase, we easily 
on
lude. In these
ond 
ase, as θ is a 
onstru
tive solution of (C, I), there is a proof ∆′ of Siθ ⊢ xjθ with
j < i, and we apply the indu
tion hypothesis.The last rule is a 
omposition rule.

Siθ ⊢ m1 Siθ ⊢ [m2; . . . ;mn] (List Constr.)
Siθ ⊢ u = [m1; . . . ;mn]

∆ uses 
omposition rules only, so there is a proof of Siθ ⊢ m1 using 
omposition rules only,and a proof ∆′ using only 
omposition rules of Siθ ⊢ [m2; . . . ;mn], smaller than ∆. Byindu
tion hypothesis, for every element mk of l, there exists a proof ∆k of Siθ ⊢ mk that uses
omposition rules only, and we 
on
lude.Then, we show that we 
an restri
t our attention to solutions θ of (C, I)∧φ su
h that θ(x)is either a 
onstant, a name, or a subterm of φθ. This result will also be useful for provingour de
idability results.
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86 CHAPTER 4. PROTOCOLS WITH RECURSIVE TESTS
Lemma 4.1.2. Let L be a language, i.e. a set of terms. Let (C, I) be a 
onstraint system insolved form and φ be an L-language 
onstraint asso
iated to (C, I). Let θ be a 
onstru
tivesolution of (C, I) and φ. Let N0 be a name of Base sort in I, and θ′ be a substitution su
hthat: 





xθ′ = xθ if xθ ∈ st(φθ)
xθ′ = [] if x ∈ XList and xθ /∈ st(φθ)
xθ′ = N0 if x 6∈ XList and xθ /∈ st(φθ)The substitution θ′ is a 
onstru
tive solution of (C, I) and φ.Proof. Write C = T1

?
⊢ x1 ∧ · · · ∧ Tn

?
⊢ xn. As θ is 
onstru
tive, for every i ≤ n, there isa proof of Satv(Ti)θ ∪ I ⊢ xiθ using 
omposition rules only. We show that, for every i ≤ n,there is a proof of Satv(Ti)θ

′ ∪ I ⊢ xiθ′ using 
omposition rules only. We distinguish between
ases:
• If xiθ ∈ st(φθ), then xiθ

′ = xiθ and there exist terms ti1, . . . , tiki
∈ Satv(Ti) and aproof tree ∆i su
h that ∆i is a proof of {ti1, . . . , tiki

}θ ⊢ xiθ using only 
ompositionrules. Consequently, for every j ≤ ki, we have that tijθ ∈ st(xiθ). So, for every variable
y ∈ var(tij), we have that yθ ∈ st(xiθ), and so tijθ = tijθ

′. As a 
on
lusion, ∆i is a proofof {ti1, . . . , tiki
}θ′ ⊢ xiθ′ using only 
omposition rules. We dedu
e that there is a proof of

Satv(Ti)θ
′ ∪ I ⊢ xiθ′ using 
omposition rules only.

• If xiθ /∈ st(xiθ) and xi ∈ XList, xiθ′ = []. Thus there is a proof of Satv(Ti)θ
′ ∪ I ⊢ xiθ′using 
omposition rules only.

• If xiθ /∈ st(xiθ) and xi /∈ XList, then xiθ′ = N0 ∈ I. We immediately dedu
e that thereis a proof of Satv(Ti)θ
′ ∪ I ⊢ xiθ′ using 
omposition rules only.Furthermore, for every x ∈ var(φ), we have that xθ = xθ′. Consequently, we have that

φθ′ = φθ. Thus, we have that θ′ is a solution of φ.The following de�nitions will be useful in the proofs of de
idability.De�nition 4.1.3 (Tail of a list). The tail tail(l) of a list l is de�ned re
ursively as follows:






tail([]) = []
tail(x) = x x ∈ XList

tail(u :: t) = tail(t)De�nition 4.1.4 (Size of lists). Let l be a list of terms, we de�ne its size ‖l‖l as the numberof elements it 
ontains. More pre
isely, it is de�ned re
ursively as






‖[]‖l = 0
‖x‖l = 1 x ∈ XList

‖u :: l‖l = ‖l‖l + 1A swapping repla
es part of a term by another one. We will use this operation to obtainsmall solutions to language 
onstraints.

te
l-0

06
75

50
9,

 v
er

si
on

 1
 - 

1 
M

ar
 2

01
2



4.2. LINK-BASED RECURSIVE LANGUAGES 87
De�nition 4.1.5 (Swapping). Let u1, . . . , un, v1, . . . , vn be ground terms su
h that for every
i 6= j, ui 6= uj. The swapping δ = {u1 7→ v1, . . . , un 7→ vn} is de�ned indu
tively over a term
t in a top-down manner:
• if there exists i su
h that t = ui, then tδ = vi

• if for every i, t 6= ui and t = f(t1, . . . , tk), then tδ = f(t1δ, . . . , tkδ).We denote by id the empty swapping.
4.2 Link-based re
ursive languagesWe de�ne a 
lass of languages that en
ompasses for example 
erti�
ate 
hains, and we showthat when 
onsidering 
onstraint systems together with 
onstraints in this 
lass of languages,de
iding the existen
e of a solution is in NP.
4.2.1 De�nition and ExamplesA 
hain of 
erti�
ates is typi
ally formed by a list of links su
h that 
onse
utive links followa 
ertain relation. For example, the 
hain of publi
 key 
erti�
ates

[J〈A1, pub(A1)〉Ksk(A2); J〈A2, pub(A2)〉Ksk(A3); J〈A3, pub(A3)〉Ksk(S)]is based on the link J〈x, pub(y)〉Ksk(z). We provide a generi
 de�nition that 
aptures su
hlink-based re
ursive language.De�nition 4.2.1 (link-based re
ursive language). Let m be a term built over variables ofsort Base. A link-based re
ursive language L is de�ned by three terms w0, w1, w2 su
h that
wi = mθ1

i :: . . . :: mθki

i :: xm
i for i = 0, 1, 2, and w2 is a stri
t subterm of w1.On
e w0, w1, w2 are given, the language is re
ursively de�ned as follows. A ground term tbelongs to the language L if either t = w0σ for some σ su
h that xm

0 σ = [], or there exists σsu
h that t = w1σ, and w2σ ∈ L.Intuitively, w0 is the basi
 valid 
hain while w1 en
odes the desired dependen
e betweenthe links and w2 allows for a re
ursive 
all.Example 4.2.1. As de�ned in [HFP98℄, X.509 publi
 key 
erti�
ates 
onsist in 
hains ofsignatures of the form:
[J〈A1, pub(A1)〉Ksk(A2); J〈A2, pub(A2)〉Ksk(A3); · · · ; J〈An, pub(An)〉Ksk(S)]where S is some trusted server and ea
h agent Ai+1 
erti�es the publi
 key pub(Ai) of agent

Ai. These 
hained lists are all built from the term m = J〈x, pub(y)〉Ksk(z) with x, y, z ∈ XBase.The set of valid 
hains of signatures 
an be formally expressed as the m-link-based re
ursivelanguage Lcert de�ned by:






w0 = J〈x, pub(x)〉Ksk(S) :: xm
0 ,

w1 = J〈x, pub(x)〉Ksk(y) :: J〈y, pub(y)〉Ksk(z) :: xm
1 ,

w2 = J〈y, pub(y)〉Ksk(z) :: xm
1 .
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88 CHAPTER 4. PROTOCOLS WITH RECURSIVE TESTS
Similarly, link-based re
ursive languages 
an also des
ribe delegation rights 
erti�
ates inthe 
ontext of distributed a

ess-rights management. In [Aur99℄ for example, the 
erti�
ate
hains delegating authorization for operation O are of the form:

[J〈A1, pub(A1), O〉Ksk(A2); J〈A2, pub(A2), O〉Ksk(A3); . . . ; J〈An, pub(An), O〉Ksk(S)]where S has authority over operation O and ea
h agent Ai+1 delegates the rights for opera-tion O to agent Ai. These 
hained lists are all built from the term m = J〈x, pub(y), O〉Ksk(z)with x, y, z ∈ XBase.Example 4.2.2. In the re
ursive authenti
ation proto
ol [Pau97℄, a 
erti�
ate list 
onsists ina 
hain of en
ryptions of the form:
[senc(〈Kab, B,Na〉,Ka); senc(〈Kab, A,Nb〉,Kb);

senc(〈Kbc, C,Nb〉,Kb); senc(〈Kbc, B,Nc〉,Kc); . . . ; senc(〈Kds, S,Nd〉,Kd)]where S is a trusted server distributing session keys Kab, Kbc, . . . , Kds to ea
h pair of su

ess-ive agents via these 
erti�
ates. These 
hained lists are all built from the term m = senc(〈y1, y2, y3〉, z)with y1, y2, y3, z ∈ XBase. The set of valid 
hains of en
ryptions in this proto
ol 
an be formallyexpressed as the m-link-based re
ursive language LRA de�ned by:






w0 = senc(〈z, S, x〉, xk) :: xm
0

w1 = senc(〈z, xa, x〉, xkb
) :: senc(〈z, xb, y〉, xka

) :: senc(〈z′, xc, y〉, xka
) :: xm

1

w2 = senc(〈z′, xc, y〉, xka
) :: xm

1 .4.2.2 A pro
edure 
onsidering link-based re
ursive testsWe propose a pro
edure for 
he
king for se
re
y preservation for a proto
ol with link-basedre
ursive tests in NP, for a bounded number of sessions.The goal of this se
tion is to prove that 
he
king for se
re
y preservation for a proto
olwith link-based re
ursive tests is NP, for a bounded number of sessions (Theorem 4.2.1). Toa
hieve this goal, we will show that we 
an bound in advan
e the length of the re
ursive lists.We write names(u) for the set of names o

urring in u. This notation is extended asexpe
ted to sets of terms, 
onstraint systems, . . . Let S be a set, we denote by #S the 
ardinalof S.Let l be a list (not ne
essarily ground), we denote by ‖ l‖l its length. By 
onvention,
‖x‖l = 1 when x is a variable.Theorem 4.2.1. Let L be a link-based re
ursive language. Let (C, I) be a 
onstraint systemand φ be an L-language 
onstraint asso
iated to (C, I). De
iding whether (C, I) and φ has asolution is in NP.The proof of Theorem 4.2.1 involves three main steps. First, thanks to Theorem 2.3.1, itis su�
ient to de
ide in polynomial (DAG) size whether (C, I) with language 
onstraint φ hasa non-
onfusing solution when (C, I) is a solved 
onstraint system. Then, we show that we
an (polynomially) bound the size of the lists in φ. This relies partly on Proposition 2.4.1, asit shows that a non-
onfusing solution is a 
onstru
tive solution.A m-link is a ground instan
e of m. A m-sublink is a subterm of su
h an instan
e. Whenthe term m is 
lear from the 
ontext, we may simply say link and sublink instead of m-linkand m-sublink.
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4.2. LINK-BASED RECURSIVE LANGUAGES 89
We �rst show that we 
an repla
e a list with another list built with some of its elementswhile preserving the dedu
ibility of sublinks.Lemma 4.2.2. Let C be a dedu
tion 
onstraint system in solved form, θ a substitution su
hthat θ is a 
onstru
tive solution of (C, I). Suppose that there exist xl ∈ XList and m-links

m1, . . . ,mp su
h that xlθ = [m1; . . . ;mp]. De�ne a substitution θ′ su
h that if x 6= xl, xθ′ = xθ.Let T ∈ lhs(C). A sublink dedu
ible from Sat(T )θ∪I by 
omposition rules only is still dedu
iblefrom Sat(T )θ′ ∪ I by 
omposition rules only.Proof. Let T ∈ lhs(C), u be a sublink su
h that u is dedu
ible from Sat(T )θ ∪ I by using
omposition rules only. Hen
e, there exist a prooftree ∆ and terms t1, . . . , tq ∈ Satv(T ) ∪ Isu
h that ∆ is a proof of {t1, . . . , tq}θ ⊢ u using 
omposition rules only. As u is a sublink,for every 1 ≤ i ≤ q, we have that tiθ is a sublink. We show that for every 1 ≤ i ≤ q, we havethat tiθ = tiθ
′. As tiθ is an m-sublink, we know that xl /∈ var(ti). Indeed, xl ∈ XList, andby de�nition of m, we have that vars(m) ⊆ XBase. Consequently, for ea
h 1 ≤ i ≤ q, we havethat tiθ′ = tiθ, and so ∆ is a proof of {t1, . . . , tq}θ′ ⊢ u using 
omposition rules only. Hen
e,we have that u is dedu
ible from Sat(T )θ′ ∪ I by using 
omposition rules only.We prove in Proposition 4.2.4 that we 
an 
onsider only small solutions. Indeed, we �rstshow that there is a 
onstru
tive solution that uses a bounded number of distin
t names. Thusthere is a �nite number of instan
es of m used in re
ursive 
alls, allowing us to 
ut the listswhile preserving the membership to the re
ursive language.Proposition 4.2.4. Let L be a m-link-based re
ursive language de�ned by w0, w1, and w2.Let (C, I) be a 
onstraint system in solved form and φ = l1

?
∈ L∧ . . .∧ ln

?
∈ L be a L-language
onstraint asso
iated to (C, I). Let θ be a 
onstru
tive solution of (C, I) and φ. Then thereexists a 
onstru
tive solution θ′ of (C, I) and φ su
h that, for every 1 ≤ i ≤ n, we have that

‖tail(li)θ′‖l ≤M = k0 + (k1 − k2)×Nk1 where N = (#names(C, φ, w0, w1, w2) + 1)#vars(m).Proof. First, note that if θ is a solution of (C, I) and φ, and δ is a renaming of allnames in I that do not o

ur in w0, w1, w2 by the same name N0 of Base sort, then θδ isa solution of (C, I) and φ. We 
an thus 
onsider (
onstru
tive) solutions 
ontaining at most
names({w0, w1, w2}) + 1 names of I.Thanks to Lemma 4.1.2, we 
an furthermore assume that for every x, either xθ ∈ st(φθ),or xθ ∈ {N0, []} (more pre
isely, xθ = [] if x ∈ XList and xθ = N0 otherwise).Write φ = l1 ∈ L∧ . . .∧ ln ∈ L. Consider a smallest 
onstru
tive solution θ, where the size of
θ is given by

|θ| =
∑

1≤j≤n

‖tail(lj)θ‖l.Either for every j ≤ n, we have that ‖tail(lj)θ‖l ≤M and we 
on
lude dire
tly, or there exists
j0 ≤ n su
h that ‖tail(lj0)θ‖l > M . In the se
ond 
ase, we de�ne xj0 = tail(lj0), and we showthat we 
an build θ′ a 
onstru
tive solution of (C, I) and φ smaller than θ, whi
h leads to a
ontradi
tion and allows us to 
on
lude. More pre
isely, we build θ′ su
h that xθ′ = xθ for
x 6= xj0 and ‖xj0θ′‖l < ‖xj0θ‖l.We build θ′ smaller than θ. Intuitively, Nk1 is the number of possible instantiations of thepattern-mat
hing pre�x of w1 (i.e. mθ1

1, . . . ,mθ
k1
1 ). Remember that k0, k1 and k2 are respe
t-ively the number of links in w0, w1 and w2 in the de�nition of the language L.We 
onsider the su

essive re
ursive 
alls made in order to prove that ljθ ∈ L. By de�nitionof L, a term t belongs to the language L if
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90 CHAPTER 4. PROTOCOLS WITH RECURSIVE TESTS
• either there exists a substitution σ with xm

0 σ = [] su
h that t = w0σ,
• or there exists a substitution σ su
h that t = w1σ, and w2σ ∈ L.Consequently, lj0θ ∈ L if and only if there is a sequen
e of terms t0, . . . , tp and substitutions

σ0, . . . , σp su
h that
• lj0θ = t0,
• for every 0 ≤ i < p, ti = w1σi and ti+1 = w2σi,
• xm

0 σp = [] and tp = w0σp.For every 0 ≤ i < p, de�ne substitution σi su
h that dom(σi) = dom(σi) r {xm
1 }, and forevery x ∈ dom(σi), xσi = xσi. We want to �nd i1 < i2 su
h that σi1 = σi2 in order to 
ut thelist while still having a sequen
e of 
orre
t re
ursive 
alls. This is possible if the sequen
e ofre
ursive 
alls is long enough, as there are only a �nite number of possible instantiations of σi.Indeed, note that dom(σi) = vars(mθ1

1, . . . ,mθ
1
k1

) ⊆ XBase and #dom(σi) ≤ #vars(m) × k1.The number of possible values for σi is Nk1 .For every 0 ≤ i < p, ‖ti‖l = ‖w1σi‖l = k1 +‖xm
1 σi‖l and ‖ti+1‖l = ‖w2σi‖l = k2 +‖xm

2 σi‖l.By de�nition of a link-based re
ursive language, w2 is a subterm of w1 and so xm
1 = xm

2 .We dedu
e that ‖ti+1‖l = ‖xm
1 σi‖l + k2 = ‖ti‖l + k2 − k1. Moreover, ‖tp‖l = k0. Hen
e,

‖t0‖l = k0 + (k1 − k2) × p. As ‖xj0θ‖l > k0 + (k1 − k2) × Nk1 , we get that p > Nk1 , andne
essarily there are i1 < i2 su
h that σi1 = σi2 , and ‖xm
1 σi1‖l < ‖xj0θ‖l. As i1 < i2, we havethat ‖xm

1 σi2‖l < ‖x
m
1 σi1‖l.We are going to repla
e xm

1 σi1 with xm
1 σi2 in xj0θ.We de�ne the swapping δ = {xm

1 σi1 7→ xm
1 σi2}. We show that (lj0θ)δ ∈ L.For 0 ≤ i ≤ i1, let σ′i = σiδ and t′i = tiδ. De�ne also, for 1 ≤ k ≤ p − i2, σ′i1+k = σi2+kand t′i1+k = ti2+k. First, σi2 = σ′i1 . Indeed, σi1 = σi1 ⊎ {x

m
1 7→ xm

1 σi1}. Hen
e, σ′i1 = σi1δ =
σi1 ⊎ {x

m
1 7→ xm

1 σi1}δ = σi2 ⊎ {x
m
1 7→ xm

1 σi2} = σi2 (thanks to the 
hoi
e of i1, i2 and δ).
• t′0 = t0δ = (lj0θ)δ.
• for 0 ≤ i < i1, t′i = tiδ = (w1σi)δ = w1(σiδ) = w1σ

′
i and t′i+1 = ti+1δ = (w2σi)δ =

w2(σiδ) = w2σ
′
i,

• t′i1 = ti1δ = (w1σi1)δ = w1(σi1δ) = w1σ
′
i1
and t′i1+1 = ti2+1 = w2σi2 = w2σ

′
i1
,

• for 1 ≤ k < p − i2, t′i1+k = ti2+k = w1σi2+k = w1σ
′
i1+k

and t′i1+k+1 = ti2+k+1 =
w2σi2+k = w2σ

′
i1+k

,
• xm

0 σ
′
p−i2+i1

= xm
0 σp = [] and t′p−i2+i1 = tp = w0σp = w0σ

′
p−i2+i1

.We 
on
lude that (lj0θ)δ ∈ L and ‖(lj0θ)δ‖l < ‖lj0θ‖l. Intuitively, we 
an repla
e xm
1 σi1 by

xm
1 σi2 in lj0θ and still get a 
orre
t sequen
e of re
ursive 
alls.Let θ′ be a substitution su
h that xθ′ = xθ when x 6= xj0 and xj0θ′ = (xj0θ)δ.We show that θ′ is a solution of φ. We have φ = l1 ∈ L ∧ · · · ∧ ln ∈ L. For every j, we write
lj = mj

1 :: . . . :: mj
pj :: tail(lj), with mj

k of sort Msg and tail(lj) ∈ XList ∪ {[]} of sort List. If
tail(lj) 6= xj0 , ljθ′ = ljθ, and so ljθ′ ∈ L. If tail(lj) = xj0 , as θ is a solution of φ, ljθ ∈ L. Sothere is a sequen
e of terms u0, . . . , um and substitutions τ0, . . . , τm su
h that
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4.2. LINK-BASED RECURSIVE LANGUAGES 91
• ljθ = u0,
• for every 0 ≤ i < m, ui = w1τi and ui+1 = w2τi,
• xm

0 τm = [] and um = w0τm.As tail(lj) = xj0 , we have that σi = τm−p+i for i ≥ i1. Consequently, we 
an show that
ljθ

′ = lj(θδ) ∈ L in the following way: let j1 = m−p+ i1 and j2 = m−p+ i2. For 0 ≤ i ≤ j1,let τ ′i = τiδ and u′i = uiδ. De�ne also, for 1 ≤ k ≤ m− j2, τ ′j1+k = τj2+k and u′j1+k = uj2+k.First, τj2 = σi2 = σi1δ = τj1δ = τ ′j1 .
• u′0 = u0δ = (ljθ)δ.
• for 0 ≤ i < j1, u′i = uiδ = (w1τi)δ = w1(τiδ) = w1τ

′
i and t′i+1 = ti+1δ = (w2τi)δ =

w2(τiδ) = w2τ
′
i ,

• u′j1 = uj1δ = (w1τj1)δ = w1(τj1δ) = w1τ
′
j1

u′j1+1 = uj2+1 = w2τj2 = w2τ
′
j1
,

• for every 1 ≤ k ≤ m − j2 + 1, u′j1+k = uj2+k = w1τj2+k = w1τ
′
j1+k and u′j1+k+1 =

uj2+k+1 = w2τj2+k = w2τ
′
j1+k,

• x0τ
′
p−j2+j1

= x0τp = [] and u′p−j2+j1 = up = w0τp = w0τ
′
p−j2+j1

.Terms u′0, . . . , u′p−j2+j1 and substitutions τ ′0, . . . , τ ′p−j2+j1 
hara
terize a series of re
ursive 
allsthat allows to prove that ljθ′ ∈ L.We get that for every 1 ≤ j ≤ n, ljθ′ ∈ L, so θ′ is a solution of φ.
We show that θ′ is a 
onstru
tive solution of (C, I). Consider T ?

⊢ x a 
onstraint in C.
• If xθ /∈ st(φθ), then we have assumed that xθ ∈ {N0, []}. As xθ /∈ st(φθ), then x 6= xj0 ,and xθ′ = xθ. We dedu
e that Tθ ∪ I ⊢ xθ′ using 
omposition rules only.
• If xθ ∈ st(φθ), and x ∈ XMsg, then xθ is a sublink and xθ′ = xθ. We know that θ is a
onstru
tive solution of (C, I). Then thanks to Lemma 4.2.2, we have that Sat(T )θ′∪I ⊢
xθ = xθ′ using 
omposition rules only.

• If xθ ∈ st(φθ) and x ∈ XList, then xθ is a list of links, i.e there exists links m1, . . . ,mpsu
h that xθ = [m1; . . . ;mp]. As θ is 
onstru
tive, there exist a 
ontext prooftree ∆
t1, . . . , tq ∈ Sat(T ) ∪ I su
h that ∆ is a proof of {t1θ, . . . , tqθ} ⊢ xθ using 
ompositionrules only. We 
an assume that for every 1 ≤ j ≤ q, we have that tj /∈ X . Consequently,for every 1 ≤ i ≤ p, we have that Sat(T )θ ∪ I ⊢ mi by using 
omposition rules only. Byapplying Lemma 4.2.2, Sat(T )θ′ ∪ I ⊢ mi using 
omposition rules only. So, if xθ′ = xθ,
Sat(T )θ′ ∪ I ⊢ xθ′ using 
omposition rules only. Otherwise, xj0θ′ is built with links of
xj0θ, and we still get that Sat(T )θ′ ∪ I ⊢ xj0θ

′ using 
omposition rules only.Consequently, we have that Sat(T )θ′∪I ⊢ xθ′ using 
omposition rules only for every T ?
⊢ x ∈ C,so θ′ is a 
onstru
tive solution of (C, I).In 
on
lusion, θ′ is a 
onstru
tive solution of (C, I) and φ, smaller than θ. We 
on
ludeby 
ontradi
tion.
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92 CHAPTER 4. PROTOCOLS WITH RECURSIVE TESTS
The third step of the proof of Theorem 4.2.1 
onsists in showing that we 
an restri
tour attention to solutions θ su
h that xθ is either a 
onstant or a subterm of φθ, by usingLemma 4.1.2. This lemma is a generi
 lemma that shows how any solution 
an be transformedby proje
ting some variables on 
onstants. It will be reused in the next se
tion.Theorem 4.2.1. Let L be a link-based re
ursive language. Let (C, I) be a 
onstraint systemand φ be an L-language 
onstraint asso
iated to (C, I). De
iding whether (C, I) and φ has asolution is in NP.We want to de
ide whether (C, I) with 
onstraint language φ has a solution. Our de
isionpro
edure works as follows:Step 1. We guess a sequen
e of transformation rules in S from (C, I) to (C′, I) where (C′, I)is a 
onstraint system in solved form. We have that:

(C, I) ∗
σ (C′, I) ∈ S with (C′, I) in solved form.Step 2. Assume that L is de�ned by w0, w1, and w2. Let N0 be a name of Base sort in I,

S = names(C, φ, w0, w1, w2) and let N = (#S + 1)#var(m).
• Guess the values of variables of sort Base in {N0} ∪ S.
• Guess the values of variables of sort Msg in the sublinks built over {N0} ∪ S.
• Guess the values of variables of sort List among lists of sublinks in {N0} ∪ S oflength at most k0 + (k1 − k2)×Nk1 .This gives us a substitution θ′, we 
he
k whether θ′ is a solution of (C′, I) and φσ.Proof. Thanks to Theorem 2.3.1, there exists a solution θ of (C, I) and φ if, and onlyif, there exist a 
onstraint system (C′, I) in solved form and substitutions σ, θ′ su
h that

(C, I)  ∗
σ (C′, I) by a derivation in S and θ′ is a non-
onfusing solution of (C′, I) and φσ.Furthermore, the length of this derivation is polynomially bounded in the size of C. We 
anguess su
h a derivation, and are now left to de
ide the existen
e of a non 
onfusing solutionto a 
onstraint system in solved form. First, thanks to Proposition 2.4.1, we 
an a
tually
onsider 
onstru
tive solutions only.Thanks to Proposition 4.2.4, we 
an assume that if θ′ is a 
onstru
tive solution of (C′, I)and l1 ?
∈ L∧ . . .∧ln

?
∈ L, then ‖tail(li)θ′‖l ≤ k0+(k1−k2)×Nk1 for every i ∈ {1, . . . , n}. Then,thanks to Lemma 4.2.2, if (C′, I) is a 
onstraint system in solved form and θ′ is a 
onstru
tivesolution of (C, I) ∧ φσ, then θ′′ is a solution of (C′, I) and φσ where

• xθ′′ = xθ′ if xθ′ ∈ st(φθ′),
• xθ′′ = [] if xθ′ /∈ st(φθ′) and x ∈ XList,
• xθ′′ = N0 if xθ′ /∈ st(φθ′) and x /∈ XListFor x /∈ XList, either xθ′′ ∈ st(φθ′′), whi
h means that xθ′′ is a sublink, or xθ′′ = N0. So we
an guess whi
h variables of XMsg∪XBase are instantiated by sublinks, and guess the sublinks.Instantiate the other variables in XMsg ∪ XBase with N0. If x ∈ XList then either xθ′′ = [] or

xθ′′ ∈ st(φθ′′), and so it is a list of links of length at most k0 + (k1 − k2)×Nk1 .
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4.3. ROUTING PROTOCOLS 93
4.3 Routing proto
olsRouting proto
ols typi
ally perform re
ursive 
he
ks to ensure the validity of a given route.However, link-based re
ursive languages do not su�
e to express these 
he
ks. Indeed, inrouting proto
ols, nodes aim at establishing and 
ertifying a su

essful route (i.e. a list ofnames of nodes) between two given nodes that wish to 
ommuni
ate. Ea
h node on the routetypi
ally 
ontributes to the routing proto
ol by 
ertifying that the proposed route is 
orre
t,to the best of its knowledge. Thus ea
h 
ontribution 
ontains a list of names (the route).Then the �nal node re
eives a list of 
ontributions and needs to 
he
k that ea
h 
ontribution
ontains the same list of names, whi
h has also to be 
onsistent with the whole re
eivedmessage. For example, in the 
ase of the SMNDP proto
ol [FGML09℄, the sour
e node has to
he
k that the re
eived message is of the form:

[J〈D,S, lroute〉Ksk(An); . . . ; J〈D,S, lroute〉Ksk(A1); J〈D,S, lroute〉Ksk(D)]where lroute = [D;A1; . . . ;An].
4.3.1 Example: the SMNDP proto
olThe aim of the SMNDP proto
ol [FGML09℄ is to �nd a path from a sour
e node S towardsa destination node D. In the �rst phase of the proto
ol, nodes broad
ast the route requestto their neighbors, adding their name to the 
urrent path. When the request rea
hes thedestination, D signs the route and sends the reply ba
k over the network.More formally, if D re
eives a request message 〈req, S,D, Id , l〉, it 
omputes signature s0 =
JD,S,D :: lKsk(D) and sends ba
k the reply 〈rep, D, S,D :: l, [s0]〉. All nodes along the routehave then to 
ertify the route by adding their own signature. More pre
isely, during the replyphase, an intermediate node Ai re
eiving a message 〈rep, D, S, lroute, [si−1, . . . , s0]〉 would 
om-pute the signature si = JD,S, lrouteKsk(Ai) and send the message 〈rep, D, S, lroute, [si, . . . , s0]〉.The list of signatures expe
ted by S built over the list lroute = [D,A1, . . . , An] is the list
lsign = [sn, . . . , s0] where s0 = JD,S, lrouteKsk(D) and si = JD,S, lrouteKsk(Ai) for 1 ≤ i ≤ n. Wewill denote by LSMNDP the set of messages of the form 〈〈S,D〉, 〈lroute, lsign〉〉.Consider the following network 
on�guration, where S is the sour
e node, D is the destin-ation node, X is an intermediate (honest) node, W is a node who has been 
ompromised (i.e.the intruder knows the se
ret key sk(W )), and I is the mali
ious node.

S

W

X

I D

An exe
ution of the proto
ol where D is ready to answer a request and the sour
e is readyto input the �nal message 
an be represented by the following 
onstraint system:
C =

{
T0 ∪ {u0, u1} 
 v1

T0 ∪ {u0, u1, u2} 
 v2
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94 CHAPTER 4. PROTOCOLS WITH RECURSIVE TESTSwith T0 = {S,D,X, I,W, sk(I), sk(W )} the initial knowledge of the intruder
u0 = 〈req, S,D, Id , []〉,
u1 = 〈req, S,D, Id , [X,W ]〉,
u2 = 〈rep, D, S,D :: xl, [J〈D,S,D :: xl〉Ksk(D)]〉,
v1 = 〈req, S,D, xid , xl〉,
v2 = 〈rep, D, S,D :: xroute, xsign〉Let I be a non-empty set of names su
h that st(C)∩I = ∅. We have that (C, I) is a 
onstraintsystem. A solution to (C, I) ∧ 〈〈S,D〉, 〈D :: xroute, xsign〉〉

?
∈ LSMNDP is e.g. the substitution

θ = {xid 7→ Id , xl 7→ [I;W ], xroute 7→ [I;W ], xsign 7→ lsign} where:
• lroute = [D, I,W ], and
• lsign = [J〈D,S, lroute〉Ksk(W ); J〈D,S, lroute〉Ksk(I); J〈D,S, lroute〉Ksk(D)].This solution re�e
ts an atta
k (dis
overed in [AY07℄) where the atta
ker sends to thedestination node D the message 〈req, S,D, Id , l〉 with a false list l = [I,W ]. Then D answersa

ordingly by 〈rep, D, S, lroute, [J〈D,S, lroute〉Ksk(D)]〉. The intruder 
on
ludes the atta
k bysending to S the message 〈rep, D, S, lroute, lsign〉. This yields S a

epting W, I,D as a route to

D, while it is not a valid route.4.3.2 De�nition of Mapping-based languagesAn interesting property in the 
ase of routing proto
ols is that (valid) messages are uniquelydetermined by the list of nodes [A1; . . . ;An] in addition to some parameters (e.g. the sour
eand destination nodes in the 
ase of SMNDP). We propose a generi
 de�nition that 
apturesany su
h language based on a list of names.De�nition 4.3.1 (mapping-based language). Let b be a term that 
ontains no name and no
:: symbol, and su
h that:

{w1, w
p
1, . . . , w

p
m} ⊆ vars(b) ⊆ {w1, w2, w3, w

p
1, . . . , w

p
m}.The variables wp1, . . . , wpm are the parameters of the language, whereas w1, w2, and w3 arespe
ial variables. Let P = 〈P1, . . . , Pm〉 be a tuple of names and σP = {wp1 7→ P1, . . . , w

p
m 7→

Pm}. Let l = [A1; . . . ;An] be a list of names, the links are de�ned over l re
ursively in thefollowing manner :
mP(i, l) = (bσP){w1 7→ l, w2 7→ Ai, w3 7→ [mP(i− 1, l); . . . ; mP(1, l)]}The mapping-based language (de�ned by b) is the following one:

L = {〈P, 〈l, l′〉〉 | P = 〈P1, . . . , Pm〉 is a tuple of names,
l = [A1; . . . ;An] a list of names, n ∈ N, and l′ = [mP(n, l); . . . ; mP(1, l)]}.A mapping-based language is de�ned by a base shape b. The spe
ial variables w2 and w3are optional and may not o

ur in b. Ea
h element of the language is a triple 〈P, 〈l, l′〉〉 where

l′ is a list of links entirely determined by the tuple P = 〈P1, . . . , Pm〉 and the list l of arbitrarylength n. In the list l′, ea
h link 
ontains the same parameters P1, . . . , Pm (e.g. the sour
eand destination nodes), the list l of n names [A1; . . . ;An] and possibly the 
urrent name Aiand the list of previous links, following the base shape b.We illustrate this de�nition with two examples of routing proto
ols.
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4.3. ROUTING PROTOCOLS 95
Example 4.3.1 (SMNDP proto
ol [FGML09℄). Re
all that in SMNDP, the list of signa-tures expe
ted by the sour
e node S built over the list l = [A1, . . . , An] is the list [sn, . . . , s1],where si = J〈D,S, l〉Ksk(Ai). This language has two parameters, the name of the sour
e wp1and the name of the destination wp2. The language 
an be formally des
ribed with b =
J〈wp2, w

p
1, w1〉Ksk(w2).Example 4.3.2 (endairA proto
ol [BV04℄). The di�eren
e between SMNDP and endairA liesin the fa
t that during the reply phase, the intermediate nodes 
ompute a signature over thepartial signature list that they re
eive. In the endairA proto
ol, the list of signatures expe
tedby the sour
e node S built over the list of nodes l = [A1, . . . , An] is the list l′s = [sn, . . . , s1],where si = J〈D,S, l, [si−1; . . . ; s1]〉Ksk(Ai).This language has two parameters, the name of the sour
e wp1 and the name of the destin-ation wp2. The language 
an be formally des
ribed with b = J〈wp2, w

p
1, w1, w3〉Ksk(w2).4.3.3 De
ision pro
edureWe propose a pro
edure for 
he
king for se
re
y preservation for a proto
ol with mapping-based tests in NP, for a bounded number of sessions.The goal of this se
tion is to prove that 
he
king for se
re
y preservation for a proto
olwith mapping-based re
ursive tests is NP, for a bounded number of sessions (Theorem 4.3.4).To a
hieve this goal, we will show that we 
an bound in advan
e the length of the re
ursivelists.Let u be a term. We denote by ‖u‖dag the size of u in DAG representation (i.e. number ofdistin
t subterms in u).Let t be a term su
h that vars(t) = {w1, w2, w3}, the variables of t are the spe
ial variablesin the de�nition of b, and let v1, v2, v3 be ground terms. For the sake of 
larity, we will write

t⌊v1, v2, v3⌋ for t{w1 7→ v1, w2 7→ v2, w3 7→ v3}.In a mapping-based language, the links 
ontain enough information to de�ne pre
isely thelanguage to whi
h they belong.Lemma 4.3.1. Let θ be a solution of φ = u1
?
∈ L ∧ · · · ∧ up

?
∈ L where uj = 〈Pj , 〈lj , lj〉〉,non-
onfusing with respe
t to st(φ), i.e. su
h that t1θ = t2θ implies t1 = t2 for any term

t1, t2 ∈ st(φ). Let 1 ≤ i, j ≤ n. If l′iθ and l′jθ share a link, i.e. mPiθ(i
′, liθ) = mPjθ(j

′, ljθ) forsome i′, j′, then ui = uj.Proof. Indeed, suppose that there exist i′, j′ su
h that mPiθ(i
′, liθ) = mPjθ(j

′, ljθ). Write
liθ = [a1; . . . ; ap] and ljθ = [c1; . . . ; cq]. Write Piθ = 〈pi1, . . . , p

i
m〉 and Pjθ = 〈pj1, . . . , p

j
m〉.Re
all that

mPiθ(i
′, liθ) = bi⌊liθ, ai′ , [mPiθ(i

′ − 1, liθ); . . . ; mPiθ(1, liθ)]⌋
mPjθ(j

′, ljθ) = bj⌊ljθ, cj′ , [mPjθ(j
′ − 1, ljθ); . . . ; mPjθ(1, ljθ)⌋where bi = b{wp1 7→ pi1, . . . , w

p
m 7→ pim}, bj = b{wp1 7→ pj1, . . . , w

p
m 7→ pjm}, and ai′ , bj′ ,

[mPi
(i′− 1, liθ); . . . ; mPi

(1, liθ)], [mPj
(j′− 1, ljθ); . . . ; mPj

(1, ljθ)] are optional parameters. As
mPiθ(i

′, liθ) = mPjθ(j
′, ljθ), we have that

bi⌊liθ, ai′ , [mPiθ(i
′ − 1, liθ); . . . ; mPiθ(1, liθ)]⌋

=
bj⌊ljθ, bj′ , [mPjθ(j

′ − 1, ljθ); . . . ; mPjθ(1, ljθ)]⌋
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96 CHAPTER 4. PROTOCOLS WITH RECURSIVE TESTS
We dedu
e that liθ = ljθ, and also pik = pjk for all 1 ≤ k ≤ m (these parameters are
ompulsory), i.e. Piθ = Pjθ. It follows that l′iθ = l′jθ, hen
e uiθ = ujθ. As θ is non-
onfusingw.r.t. st(φ), it follows that ui = uj .We prove in Proposition 4.3.3 that we 
an 
onsider only small 
onstru
tive solutions.Intuitively, a 
onstraint is of the form 〈〈pj1, . . . , pjm〉, 〈ℓj, ℓ′j〉〉 ∈ L, where the beginning of ℓj
onstrains the end of ℓ′j and re
ipro
ally, so we 
an 
ut somewhere in the middle the largesolutions.Proposition 4.3.3. Let L be a mapping-based language. Let (C, I) be a dedu
tion 
onstraintsystem in solved form, ψ be an L-language 
onstraint asso
iated to (C, I), and τ be a 
onstru
t-ive solution of (C, I) and ψ. We further assume that ψ is of the form u1

?
∈ L ∧ . . . ∧ up

?
∈ Lwhere uj = 〈〈pj1, . . . , p

j
m〉, 〈ℓj, ℓ′j〉〉.Let M = #st(C, ψ)+ max

1≤j≤p
‖ℓ′j‖l+2×#var (C)× max

t∈st(C,ψ)
‖t‖dag. There exists a 
onstru
tivesolution τ ′ of (C, I) and ψ su
h that, for every j, we have that ‖tail(ℓj)τ ′‖l ≤M .Proof. Consider a smallest 
onstru
tive solution τ of (C, I) and ψ, where the size of asolution is given by:

|τ | =
∑

1≤j≤p

‖tail(ℓj)τ ‖lEither ‖ tail(ℓj)τ ‖l ≤ M for all j and we 
on
lude. Otherwise, there exists j0 su
h that
‖tail(ℓj0)τ ‖l > M . In that 
ase, we show that we 
an build τ ′ smaller than τ , a 
onstru
tivesolution of (C, I) and ψ, whi
h is in 
ontradi
tion with τ smallest solution, and we 
on
lude.We wish to write τ = θ ◦ σ with θ non-
onfusing w.r.t. st(C, ψ), i.e. su
h that t1θ = t2θimplies t1 = t2 for any t1, t2 ∈ st(C, ψ). We de�ne

σ = mgu{t1 = t2 | t1τ = t2τ, t1 6= t2, t1, t2 ∈ st(C, ψ)}.We have that st(Cσ, ψσ) ⊆ st(C, ψ)σ, thanks to Lemma ??, as σ is an mgu of terms in st(C, ψ).Furthermore, by De�nition, st(ψ) ∩ I = ∅ and st(C) ∩ I = ∅, so we dedu
e that (Cσ, I) is a
onstraint system and ψσ is an L-language 
onstraint asso
iated with (Cσ, I). Lastly, sin
e σis more general than τ , there is a substitution θ su
h that τ = θ ◦ σ and θ is a solution of
(Cσ, I) and ψσ.We now show that θ is non-
onfusing w.r.t. st(Cσ, ψσ). Let t1, t2 ∈ st(Cσ, ψσ) be two termssu
h that t1θ = t2θ. We apply Lemma ??: there are two terms u1, u2 ∈ st(C, ψ) su
hthat t1 = u1σ and t2 = u2σ. As t1θ = t2θ, we dedu
e that u1τ = u2τ . It follows that
u1, u2 ∈ st(C, ψ) with u1τ = u2τ . Either u1 6= u2, and thus by De�nition of σ, we have that
u1σ = u2σ, or u1 = u2. In both 
ases, we dedu
e that t1 = t2, so θ is non-
onfusing w.r.t.
st(Cσ, ψσ).For every j, lj = ℓjσ, l′j = ℓ′jσ, u′j = ujσ and φ = ψσ, i.e.

φ = u′1
?
∈ L ∧ · · · ∧ u′p

?
∈ L with u′j = 〈〈pj1σ, . . . , p

j
mσ〉, 〈lj, l

′
j〉〉.We 
an assume that the elements of φ are distin
t, i.e. for every i, j, if u′i = u′j then i = j.Furthermore, let Pj = 〈pj1τ, . . . , p

j
mτ〉. Lemma 4.3.1 then allows us to express the followingstatement:
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4.3. ROUTING PROTOCOLS 97
if mPj

(i, ljθ) = mPj′
(i′, lj′θ) for some i, i′, then uj = uj′ , and thus j = j′.We show that ‖tail(lj0)θ‖l > M ′ where M ′ = #st(Cσ, φ) + max

1≤j≤p
‖l′j‖l.We have 
hosen j0 su
h that ‖tail(ℓj0)τ ‖l > M . Let M1 = #var(C)× max

t∈st(C,ψ)
‖t‖dag. Thanksto Lemma ??, for every x ∈ var(C), ‖xσ‖dag ≤M1.We �rst show that M > M ′ + M1. We have that l′j = ℓ′jσ, so ‖l′j ‖l = ‖ℓ′j ‖l + ‖tail(ℓ

′
j)σ‖l.Furthermore, it is 
lear that ‖u :: l‖dag ≥ ‖ l‖dag + 1, and thus for every l, ‖ l‖dag ≥ ‖ l‖l.Consequently, for every j, we have that:

max
1≤j≤p

‖ℓ′j‖l ≥ ‖ℓ′j‖l

≥ ‖l′j‖l − ‖tail(ℓ
′
j)σ‖l

≥ ‖l′j‖l − ‖tail(ℓ
′
j)σ‖dag

≥ ‖l′j‖l −M1As this inequality is true for every j, it follows that
max
1≤j≤p

‖ℓ′j‖l ≥ max
1≤j≤p

‖l′j‖l −M1Furthermore, we have #st(Cσ, φ) = #st(C, ψ). We dedu
e that M = max
1≤j≤p

‖ℓ′j‖l+#st(C, ψ)+

2M1 = max
1≤j≤p

‖ℓ′j‖l+#st(Cσ, φ)+2M1, and so M ≥ max
1≤j≤p

‖l′j‖l+#st(Cσ, φ)+M1 = M ′ +M1.We now 
on
lude by showing that ‖tail(lj0)θ‖l > M ′. We have that lj0 = ℓj0σ, so ‖tail(ℓj0)τ‖l =
‖tail(lj0)θ‖l + ‖tail(ℓj0)σ‖l. Consequently, we have that:

‖tail(lj0)θ‖l = ‖tail(ℓj0)τ ‖l − ‖tail(ℓj0)σ‖l
> M − ‖tail(ℓj0)σ‖dag
≥ M −M1 ≥M ′.We build θ′ smaller than θ and we de�ne τ ′ = θ′ ◦ σLet j1 be su
h that ‖tail(lj1)θ‖l ≥ ‖tail(lj)θ‖l for every j ≤ p. Ne
essarily, tail(lj1) = x1 forsome x1 ∈ XList and ‖x1θ‖l > M ′. By reordering the 
onstraints, we 
an assume that thereexists 1 ≤ q ≤ p su
h that

• for every 1 ≤ j ≤ q, we have that tail(lj) = x1, and
• for q < j ≤ p, we have that tail(lj) 6= x1 (and thus, ‖tail(lj)θ‖l ≤ ‖x1θ‖l).We want to 
hange the value of x1θ, while preserving language memberships.For ea
h 
onstraint 〈〈pj1σ, . . . , pjmσ〉, 〈lj, l′j〉〉 ?

∈ L, lj provides 
onstraints on the last elementsof the list l′jθ, while l′j provides 
onstraints on the last elements of the list ljθ. For 1 ≤ j ≤ q, ljthus 
onstrains the last elements of x1θ. We have to keep those elements to preserve languagemembership.For j ≤ q, we write:
lj = cj :: . . . :: cjkj

:: x1

ljθ = cj1θ :: . . . :: cjkj
θ :: x1θ = [aj1; . . . ; a

j
nj ] (x1θ = [ajkj+1; . . . ; a

j
nj ])

l′j = vj1 :: . . . :: vj
k′j

:: yj

l′jθ = vj1θ :: . . . :: vj
k′j
θ :: yjθ = [mj

nj ; . . . ;m
j
1] (yjθ = [mj

nj−k′j
; . . . ;mj

1])
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98 CHAPTER 4. PROTOCOLS WITH RECURSIVE TESTS
Let ks = max

1≤j≤q
k′j . The ks last elements of x1θ are determined, and thus the ks �rst elementsof ea
h l′j are also determined.For every j ≤ m, let tj = [mj

nj−ks
; . . . ;mj

1]. tj represents the part of ljθ whi
h is not 
on-strained by the ks last elements of x1θ and that 
an be modi�ed while preserving languagemembership 
onstraints. For every 1 ≤ j ≤ q, we have that ‖tj ‖l + ks = ‖l′jθ‖l = ‖ljθ‖l =
‖x1θ‖l + kj .As mj

i = mPj
(i, ljθ), we obtain thanks to statement (∗) that if mj

i = mj′

i′ , then j = j′. Hen
e,the sublists of t1, . . . , tm are distin
t. We know that ‖x1θ‖l > M ′, and thus
‖tj‖l − kj = ‖x1θ‖l − ks > #st(Cσ, φ).As a 
onsequen
e, there exists kv su
h that ks ≤ kv ≤ #st(Cσ, φ) + ks and for all 1 ≤ j ≤ q,

[mj
nj−kv

; . . . ;mj
1] /∈ (st(Cσ, φ))θ.We de�ne w0 = [a1

n1−kv+1, . . . , a
1
n1

] as the last kv elements of x1θ. Let δ0 = {x1θ 7→ w0} bethe asso
iated swapping.De�ne, for 1 ≤ j ≤ q,
{

wj = [mj
nj−kv

; . . . ;mj
1]

w′
j = [mj

kj
; . . . ;mj

1]δ0Note that wj /∈ (st(Cσ, φ))θ sin
e we 
hose kv to ensure this. Intuitively, w′
j representsthe part of l′jθ that is 
onstrained by lj and thus has to be kept in our new solution. Let

δj = {wj 7→ w′
j , x1θ 7→ w0} for 1 ≤ j ≤ q. For j > q, we de�ne δj = id .Let δ = {x1θ 7→ w0, w1 7→ w′

1, . . . , wq 7→ w′
q}. We 
hoose θ′ = θδ, and τ ′ = θ′ ◦ σ.Note that ‖x1θ

′ ‖l = kv ≤ M ′ < ‖x1θ ‖l. By de�nition, x1 = tail(ℓj1σ), so we have that
‖tail(ℓj1)τ

′‖l < ‖tail(ℓj1)τ‖l. Furthermore, for every x, ‖xτ ′‖l ≤ ‖xτ‖l, sin
e for every term u,
‖uδ‖l ≤ ‖u‖l. We dedu
e that |τ ′| < |τ |.We have thus built a substitution τ ′ = θ′ ◦ σ smaller than τ . It remains to show that τ ′ is a
onstru
tive solution of (C, I) and ψ. We will �rst show that θ′ is a solution of φ and thenthat τ ′ is a 
onstru
tive solution of (C, I). We �rst have two 
laims that will help us with theproof.Claim A: (tθ)δ = t(θδ) for t ∈ st(Cσ, φ).We show by indu
tion on t that for every term t ∈ st(Cσ, φ), (tθ)δ = t(θδ).
• if t ∈ X , then the result is straightforward, sin
e for every x ∈ X , (xθ)δ = x(θδ)

• if t = f(t1, . . . , tk), we reason by 
ase distin
tion over the value of f(t1, . . . , tk)θ:� If f(t1, . . . , tk)θ = x1θ, as θ is non-
onfusing with respe
t to st(Cσ, φ), then x1 =
f(t1, . . . , tk), and this is in 
ontradi
tion with x ∈ X .� If there exists i su
h that f(t1, . . . , tk)θ = wi, then wi ∈ st(Cσ, φ)θ, whi
h yields a
ontradi
tion.� We are thus in a 
ase where f(t1θ, . . . , tkθ)δ = f((t1θ)δ, . . . , (tkθ)δ). By indu
tionhypothesis, (tiθ)δ = ti(θδ), and so

(tθ)δ = (f(t1, . . . , tk)θ)δ
= f((t1θ)δ, . . . , (tkθ)δ)
= f(t1(θδ), . . . , tk(θδ))
= f(t1, . . . , tk)(θδ)
= t(θδ)
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4.3. ROUTING PROTOCOLS 99
Claim B: for 1 ≤ j ≤ p and 1 ≤ i ≤ nj, mPj

(i, ljθ)δ = mPj
(i, ljθ)δj and [mPj

(i, ljθ); . . . ; mPj
(1, ljθ)]δ =

[mPj
(i, ljθ); . . . ; mPj

(1, ljθ)]δjFirst, we show that for every 1 ≤ j ≤ p, (ljθ)δ = (ljθ)δ0 = (ljθ)δj . We have that ljθ =

[aj1; . . . ; a
j
nj ] with ajk ∈ N . For every j′, k′, ajk 6= mj′

k′ , so (ljθ)δ = (ljθ)δ0.For 1 ≤ j ≤ q, by a similar reasoning we also get that (ljθ)δj = (ljθ)δ0.For q < j ≤ p, lj = cj1 :: . . . :: cjkj
:: tail(lj) with ‖ tail(lj)θ‖l ≤ ‖x1θ‖l. By applying thede�nition of a swapping, and as θ is non-
onfusing,

(ljθ)δ0 = (cj1θ)δ0 :: . . . :: (cjkj
θ)δ0 :: (tail(lj)θ)δ0.Furthermore, (tail(lj)θ)δ0 = tail(lj)θ as ‖tail(lj)θ‖l ≤ ‖x1θ‖l (and tail(lj)θ 6= x1θ as tail(lj) 6= x1and θ is non-
onfusing). We also have that for every 1 ≤ k ≤ kj , (cjkθ)δ0 = cjkθ sin
e cjkθ is aname. Consequently, (ljθ)δ0 = (ljθ) = (ljθ)δj sin
e δj = id for q < j ≤ p.To sum up, for every 1 ≤ j ≤ p, we have that (ljθ)δ = (ljθ)δ0 = (ljθ)δj .Let bj = b{wp1 7→ pj1τ, . . . , w

p
m 7→ pjmτ}. We show by indu
tion on i that

• mPj
(i, ljθ)δ = mPj

(i, ljθ)δj , and
• [mPj

(i, ljθ); . . . ; mPj
(1, ljθ)]δ = [mPj

(i, ljθ); . . . ; mPj
(1, ljθ)]δj.

• If i = 1, we have that mPj
(1, ljθ) = bj⌊ljθ, a

j
1, []⌋.We apply the swapping δ (resp. δj) on mPj
(1, ljθ). As bj is a term whi
h does not
ontain the list 
onstru
tor and δ is a swapping of non-empty lists, we have that:

mPj
(1, ljθ)δ = bj⌊(ljθ)δ, a

j
1δ, []⌋

mPj
(1, ljθ)δj = bj⌊(ljθ)δj , a

j
1δj , []⌋.

We have shown previously that (ljθ)δ = (ljθ)δj . Furthermore, sin
e aji is a name, wehave that aj1δ = aj1 = aj1δj, and so we dedu
e that:
mPj

(1, ljθ)δ = mPj
(1, ljθ)δj .We 
an have mPj

(1, ljθ) = mPj′
(i, lj′θ) only if j = j′ (
f. statement (∗)), so for any

j 6= j′, wj′ /∈ st([mPj
(1, ljθ)]), and [mPj

(1, ljθ)]δ = [mPj
(1, ljθ)]δj.

• If i > 1, we have that
mPj

(i, ljθ) = bj⌊ljθ, a
j
i , [mPj

(i− 1, ljθ); . . . ; mPj
(1, ljθ)]⌋.We apply the swapping δ (resp. δj) on mPj

(1, ljθ). As bj is a term whi
h does not
ontain the list 
onstru
tor and δ is a swapping of non-empty lists, we have that:
mPj

(i, ljθ)δ = bj⌊(ljθ)δ, a
j
iδ, [mPj

(i− 1, ljθ); . . . ; mPj
(1, ljθ)]δ⌋

mPj
(i, ljθ)δj = bj⌊(ljθ)δj , a

j
i δj, [mPj

(i− 1, ljθ); . . . ; mPj
(1, ljθ)]δj⌋.
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100 CHAPTER 4. PROTOCOLS WITH RECURSIVE TESTS
We have shown previously that (ljθ)δ = (ljθ)δj . Furthermore, sin
e aji is a name, wehave that aj1δ = aj1 = aj1δj. Lastly, thanks to our indu
tion hypothesis, we have that

[mPjθ(i− 1, ljθ); . . . ; mPjθ(1, ljθ)]δ = [mPjθ(i− 1, ljθ); . . . ; mPjθ(1, ljθ)]δj.This allows us to 
on
lude that mPj
(i, ljθ)δ = mPj

(i, ljθ)δj .We 
an have mPj
(i, ljθ) = mPj′

(i′, lj′θ) only if j = j′ by (∗). Consequently, for any j 6= j′,we dedu
e that vj′ /∈ st([mPj
(i, ljθ); . . . ; mPj

(1, ljθ)]), and so [mPj
(i, ljθ); . . . ; mPj

(1, ljθ)]δ =
[mPj

(i, ljθ); . . . ; mPj
(1, ljθ)]δj .

Show that θ′ is a solution of φ. First, as 〈pj1σ, . . . , pjmσ〉θ is a tuple of names, we have that
〈pj1σ, . . . , p

j
mσ〉θ = 〈pj1σ, . . . , p

j
mσ〉θ′. We will write

Pj = 〈pj1τ, . . . , p
j
mτ〉 = 〈p

j
1τ

′, . . . , pjmτ
′〉.We show that for every 1 ≤ j ≤ p, 〈Pj , 〈ljθ′, l′jθ

′〉〉 ∈ L by distinguishing between 
ases:
• First, show that if 1 ≤ j ≤ q (tail(lj) = x1), 〈Pj , 〈ljθ′, l′jθ′〉〉 ∈ L.

ljθ
′ = c1θ

′ :: . . . :: ckj
θ′ :: v0 = [b1; . . . ; bk] (v0 = [bkj+1; . . . ; bk])

l′jθ
′ = v1θ

′ :: . . . :: vk′jθ
′ :: yjθ

′ = [rk; . . . ; r1] (yjθ
′ = [rk−k′j ; . . . ; r1])where k = kj + kv. (for more 
larity, as we only 
onsider the j-th 
onstraint, we willwrite ci = cji , vi = vji ,mi = mj

i , ai = aji and n = nj).For i ≤ kj, it is 
lear that bi = ai, and for i > kj, bi = an−k+i.We have that l′jθ = [mn; . . . ;m1]. By Claim A, l′jθ′ = (l′jθ)δ, and by Claim B, (l′jθ)δ =
(l′jθ)δj. We 
ompute l′jθ′:

l′jθ
′ = [mn; . . . ;m1]δj

= (mn :: . . . :: mn−kv+1 ::)δj
= [mnδj; . . . ;mn−kv+1δj ;mkj

δj ; . . . ;m1δj ]As l′jθ′ = [rk; . . . ; r1], we dedu
e the values of ri depending on i:
{ For i ≤ kj , ri = miδjFor i > kj , ri = mn−k+iδjBy de�nition of L, 〈Pj , 〈ljθ′, l′〉〉 ∈ L i� l′ = [mPj

(k, ljθ
′); . . . ; mPj

(1, ljθ
′)] where mPj

(i, ljθ
′) =

bj⌊ljθ′, bi, [mPj
(i− 1, ljθ

′); . . . ; mPj
(1, ljθ

′)]⌋ and bj = b{wp1 7→ pj1τ
′, . . . , wpm 7→ pjmτ ′}.We show by indu
tion over i that ri = mPj

(i, ljθ
′):� if i ≤ kj , ri = miδj .As 〈Pj , 〈ljθ, l′jθ〉〉 ∈ L, mi = bj⌊ljθ, ciθ, [mi−1; . . . ;m1]⌋. As bj does not 
ontainthe list 
onstru
tor :: and δj is a swapping of (non empty) lists, by de�nition of aswapping, we have that

bj⌊ljθ, ciθ, [mi−1; . . . ;m1]⌋δj = bj⌊(ljθ)δj , (ciθ)δj, [mi−1; . . . ;m1]δj⌋
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4.3. ROUTING PROTOCOLS 101
We have that (ciθ)δ = ciθ = aibi and (ljθ)δj = (ljθ)δ = ljθ

′, thanks to Claims (A) and (B).Furthermore, [mi−1; . . . ;m1] is a stri
t subterm of wj , so
[mi−1; . . . ;m1]δj = [mi−1δj ; . . . ;m1δj].Re
all that mhδj = rh for h ≤ i − 1 ≤ kj . By indu
tion hypothesis, we have thatfor every h < i, rh = mhδj = mPj

(h, ljθ
′). So,

ri = miδj
= bj⌊ljθ′, bi, [mPj

(i− 1, ljθ
′); . . . ; mPj

(1, ljθ
′)]⌋

= mPj
(i, ljθ

′).� if i > kj , we have that ri = mn−k+iδj and bi = an−k+i. Let i′ = n− k + i.As 〈Pj , 〈ljθ, l′jθ〉〉 ∈ L, mi′ = bj⌊ljθ, ai′ , [mi′−1; . . . ;m1]⌋. As bj does not 
ontainthe list 
onstru
tor and δj is a swapping of (non empty) lists, by de�nition of aswapping, we have that
bj⌊ljθ, ai′ , [mi′−1; . . . ;m1]⌋δj = bj⌊(ljθ)δj , ai′δj , [mi′−1; . . . ;m1]δj⌋We have that ai′δj = ai′ = bi and (ljθ)δj = (ljθ)δ = ljθ

′ thanks to Claims (A) and (B).We have [mn−k+i−1; . . . ;m1] = mn−k+i−1 :: . . . :: mn+1−kv
:: wj , and by applyingthe swapping:

[mn−k+i−1; . . . ;m1]δj = mn−k+i−1δj :: . . . :: mn+1−kv
δj :: wjδj

= [mn−k+i−1δj ; . . . ;mn+1−kv
δj ;mkj

δj ; . . . ;m1δj ]For h ≤ kj , we know that rh = mhδj . For kj < h < i, rh = mn−k+hδj . By applyingthe indu
tion hypothesis, for all h < i, rh = mPj
(h, ljθ

′). As k = kv+kj , we dedu
ethat
[mn−k+i−1; . . . ;m1]δj = [ri−1; . . . ; rk−kv+1; rkj

; . . . ; r1]
= [ri−1; . . . ; r1]
= [mPj

(i− 1, l1θ
′); . . . ; mPj

(1, l1θ
′)]So ri = bj⌊ljθ′, bi, [mPj

(i− 1, ljθ
′); . . . ; mPj

(1, ljθ
′)]⌋ = mPj

(i, ljθ
′).We have thus shown that 〈Pj , 〈ljθ′, l′jθ′〉〉 ∈ L.

• Se
ond, show that for j > q, 〈Pj , 〈ljθ′, l′jθ′〉〉 ∈ L.Thanks to Claim A, ljθ′ = (ljθ)δ, and by applying Claim B, (ljθ)δ = (ljθ)δj , andsimilarly l′jθ
′ = (l′jθ)δj . As δj = id , it follows that (ljθ

′, l′jθ
′) = (ljθ, l

′
jθ). Hen
e,

〈Pj , 〈ljθ′, l′jθ
′〉〉 = 〈Pj , 〈ljθ, l′jθ〉〉 ∈ L.We have thus shown that θ′ is a solution of φ = ψσ. As a 
onsequen
e, τ ′ = θ′ ◦σ is a solutionof ψ.Show that τ ′ is a 
onstru
tive solution of (C, I). Write C = T1 
 z1 ∧ · · · ∧ Tn 
 zn. We willshow by indu
tion on i that SatTiτ

′ ∪ I ⊢ ziτ ′ using 
omposition rules only.Claim C will help us with the proof, but �rst we need to show that when x1θ is dedu
ibleusing 
omposition rules only, then x1θ
′ = w0 is also dedu
ible using 
omposition rules only.
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102 CHAPTER 4. PROTOCOLS WITH RECURSIVE TESTS
Let i0 be minimal su
h that SatTi0τ ∪ I ⊢ x1θ using 
omposition rules only. Otherwise, let
i0 = n+ 1. We show that, if i0 ≤ n, SatTi0τ

′ ∪ I ⊢ w0 using 
omposition rules only.Re
all that x1θ = [a1
k1+1; . . . ; a

1
n1

] and w0 = [a1
n1−kv+1; . . . ; a

1
n1

] with a1
k of sort Base. Let

n1 − kv + 1 ≤ k ≤ n1. As τ is a 
onstru
tive solution of (C, I) in solved form and x1θ isa list su
h that SatTi0τ ∪ I ⊢ x1θ using 
omposition rules only, we 
an apply Lemma 4.1.1:we have that SatTi0τ ∪ I ⊢ a
1
k using 
omposition rules only. As a1

k is of sort Base, it followsthat a1
k ∈ SatTi0τ ∪ I, and so a1

k = a1
kδ ∈ SatTi0τ

′ ∪ I. Consequently, there is a proof of
SatTi0τ ∪ I ⊢ w0 using 
omposition rules only.Consider j ≤ q (i.e. tail(lj) = x1). If there exists i su
h that SatTiτ ∪ I ⊢ wj using only
omposition rules, let ij be minimal su
h that SatTijτ ∪ I ⊢ wj using 
omposition rules only.Otherwise, let ij = n+1. We show that, for ij ≤ n, SatTijτ

′∪I ⊢ w′
j using 
omposition rulesonly.Claim C: Sat(Tij )τ

′ ∪ I ⊢ w′
j using 
omposition rules only.Re
all that wj = [mn−kv

; . . . ;m1] and w′
j = [mkj

δ0; . . . ;m1δ0] (with n − kv > kj). We showthat for every 1 ≤ k ≤ kj , SatTijτ
′ ∪ I ⊢ mkδ0 using 
omposition rules only.

• If the 
ase where ij ≥ i0. Let 1 ≤ k ≤ kj . As τ is a 
onstru
tive solution of (C, I) insolved form and wj is a list su
h that Sat(Tij )τ ∪I ⊢ wj using 
omposition rules only, we
an apply Lemma 4.1.1: we have that Sat(Tij )τ ∪ I ⊢ mk using 
omposition rules only.As a 
onsequen
e, there is a 
ontextDk minimal in size and terms t1, . . . , tq ∈ Sat(Tij )∪Isu
h that Dk⌊t1τ, . . . , tqτ, x1θ⌋ = mk.We want to show that Dk⌊t1τ
′, . . . , tqτ

′, x1θ
′⌋ = mkδ0.First, thanks to Claim B, mkδ = mkδj . Furthermore, mk is a stri
t subterm of wj , so

mkδj = mkδ0. Thus, for every subterm u of mk, uδ = uδ0. We dedu
e that
Dk⌊t1τ, . . . , tqτ, x1θ⌋δ = Dk⌊t1τ, . . . , tqτ, x1θ⌋δ0.As Dk is a minimal 
ontext,

(Dk⌊t1τ, . . . , tqτ, x1θ⌋)δ0 = Dk⌊(t1τ)δ0, . . . , (tqτ)δ0, (x1θ)δ0⌋.Indeed, suppose by 
ontradi
tion that there exists a non empty sub
ontext E of Dksu
h that E⌊t1τ, . . . , tqτ, x1θ⌋ = x1θ: then Dk is not minimal. Furthermore, (tiτ)δ =
((tiσ)θ)δ = tiσ(θδ) = tiτ

′ thanks to Claim A.We have that (tiτ)δ0 = (tiτ)δ, as ti ∈ st(mk) and mkδ = mkδ0. We dedu
e that
(tiτ)δ0 = tiτ

′. We also have that Dk⌊(t1τ)δ0, . . . , (tqτ)δ0, (x1θ)δ0⌋ = mkδ0. We dedu
ethat Dk⌊t1τ
′, . . . , tqτ

′, x1θ
′⌋ = mkδ. Furthermore, sin
e ij ≥ i0 and Sat(Ti0)τ ∪ I ⊢

w0 = x1θ
′ using 
omposition rules only, we 
on
lude that there is a 
onstru
tive proofof Sat(Tij )τ ∪ I ⊢ mkδ0.

• In the 
ase where ij < i0, then similarly there is a 
ontext Dk minimal in size and terms
t1, . . . , tq ∈ Sat(Tij ) ∪ I su
h that Dk⌊t1τ, . . . , tqτ⌋ = mk. By a similar reasoning, wehave that

Dk⌊t1τ, . . . , tqτ⌋δ = Dk⌊t1τ, . . . , tqτ⌋δ0
= Dk⌊(t1τ)δ0, . . . , (tqτ)δ0⌋Indeed, suppose by 
ontradi
tion that there exists a non empty sub
ontext E of Dk su
hthat E⌊t1τ, . . . , tqτ⌋ = x1θ: then i0 is not minimal. We 
on
lude in a similar mannerthat there is a 
onstru
tive proof of Sat(Tij )τ ∪ I ⊢ mkδ0.
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4.3. ROUTING PROTOCOLS 103
For every 1 ≤ k ≤ kj , there is a 
onstru
tive proof of Sat(Tij )τ

′∪I ⊢ mkδ0, so there is a proofof Sat(Tij )τ
′ ∪ I ⊢ w′

j using 
omposition rules only.Now, we show that for every i, Sat(Ti)τ
′ ∪ I ⊢ ziτ ′ using 
omposition rules only.Let Si =

{
{wj |ij ≤ i} ∪ {x1θ} if i ≤ i0
{wj |ij ≤ i}Note that if wk /∈ Si, then there is no 
onstru
tive proof of Sat(Ti)τ ∪ I ⊢ wk. If wk ∈ Si,thanks to Claim C there is a 
onstru
tive proof of Sat(Tik)τ ∪ I ⊢ w′

k with ik ≤ i, so there isa 
onstru
tive proof of Sat(Ti)τ ∪ I ⊢ w′
k. The same holds for x0θ and w0.As τ is a 
onstru
tive solution, there is a minimal 
ontext Ci and terms t1, . . . , tp ∈

Sat(Ti)∪I su
h that Ci⌊t1τ, . . . , tpτ, Si⌋ = ziτ . We apply the swapping δ: Ci⌊t1τ, . . . , tpτ, Si⌋δ =
(ziτ)δ. Thanks to Claim A, we have that (ziτ)δ = (ziσθ)δ = (ziσ)(θδ), and (ziσ)(θδ) =
(ziσ)θ′ = ziτ

′. Furthermore, Ci⌊t1τ, . . . , tpτ, Si⌋δ = Ci⌊(t1τ)δ, . . . , (tpτ)δ, Siδ⌋, as Ci is min-imal and for all k su
h that wk /∈ Si, then there is no 
onstru
tive proof of Sat(Ti)τ ∪I ⊢ wk.Now, for every k, (tkτ)δ = ((tkσ)θ)δ = tkσ(θδ) = tkτ
′ thanks to Claim A. Consequently,

Ci⌊t1τ ′, . . . , tpτ ′, Siδ⌋ = ziτ
′. For every wk ∈ Si, there is a 
onstru
tive proof of Sat(Ti)τ ∪I ⊢

w′
k = wkδ. Furthermore, if x1θ ∈ Si, then i ≥ i0 and 
onsequently there is a 
onstru
tive proofof Sat(Ti)τ ∪ I ⊢ w0. We dedu
e that there is a 
onstru
tive proof of Sat(Ti)τ

′ ∪ I ⊢ ziτ ′.As a 
on
lusion, τ ′ is a 
onstru
tive solution of (C, I) and ψ smaller than τ .Theorem 4.3.4. Let L be a mapping-based language. Let (C, I) be a 
onstraint system and
φ be an L-language 
onstraint asso
iated to (C, I).De
iding whether (C, I) ∧ φ has a solution is in NP.The proof of Theorem 4.3.4 involves three main steps. First, thanks to Theorem 2.3.1, itis su�
ient to de
ide in polynomial (DAG) size whether (C, I) with language 
onstraint φ hasa non-
onfusing solution when (C, I) is a solved 
onstraint system. Due to Proposition 2.4.1,we dedu
e that it is su�
ient to show that de
iding whether (C, I) ∧ φ has a 
onstru
tivesolution is in NP, where (C, I) is a solved 
onstraint system.The se
ond and key step of the proof 
onsists in bounding the size of a 
onstru
tivesolution. Note that the requirement on the form of φ is not a restri
tion sin
e any substitutionsatisfying φ will ne
essarily have this shape.For ea
h 
onstraint 〈〈pj1, . . . , pjm〉, 〈lj , l′j〉〉 ?

∈ L, the list lj provides 
onstraints on the lastelements of the list l′j , while l′j provides 
onstraints on the last elements of the list lj . Themain idea of the proof of Proposition 4.3.3 is to show that it is possible to 
ut the middleof the list lj , modifying the list l′j a

ordingly. This is however not straightforward as wehave to show that the new substitution is still a solution of the 
onstraint system (C, I). Inparti
ular, 
utting part of the list might destroy some interesting equalities, used to dedu
eterms. Su
h 
ases are a
tually avoided by 
onsidering 
onstru
tive solutions and by 
uttingat some position in the lists su
h that none of the elements are subterms of the 
onstraint,whi
h 
an be ensured by 
ombinatorial arguments.Proposition 4.3.3 allows us to bound the size of ljθ for a minimal solution θ, whi
h inturn bounds the size of l′jθ. The last step of the proof of Theorem 4.3.4 
onsists in showingthat any xθ is bounded by the size of the lists or 
an be repla
ed by a 
onstant, by applyingLemma 4.1.2.We want to de
ide whether (C, I) ∧ φ has a solution.
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104 CHAPTER 4. PROTOCOLS WITH RECURSIVE TESTS
Write C = T1 
 u1 ∧ · · · ∧ Tn 
 un and φ = v1

?
∈ L ∧ · · · ∧ vp

?
∈ L. Our de
ision pro
edureworks as follows:Step 1. First, we may assume without loss of generality that for ea
h j ≤ p, the term vj isof the following form: vj = 〈〈pi1, . . . , p

i
m〉, 〈ℓj, ℓ

′
j〉〉.Step 2. We guess a sequen
e of transformation rules in strategy S from (C, I) to (C′, I) where

(C′, I) is a 
onstraint system in solved form. We have that:
(C, I) ∗

σ (C′, I) ∈ S with (C′, I) in solved form.
Let φ′ = 〈〈p1

1σ, . . . , p
1
mσ〉, 〈l1, l

′
1〉〉

?
∈ L∧ · · · ∧ 〈〈pp1σ, . . . , p

p
mσ〉, 〈lp, l′p〉〉

?
∈ L where lj = ℓjσand l′j = ℓ′jσ.Step 3. Let L = max

1≤j≤p
‖lj‖dag.Let M = #st(C′, φ′) + max

1≤j≤p
‖l′j‖l + 2×#var(C′)× max

t∈st(C′,φ′)
‖t‖dag.Let I0 ⊆ I of size p × 2(M + L)× (‖b‖dag +m+ 2 + 2M + 2L) + 1. Guess the valuesof variables in terms built over names(C, φ) ∪ I0 of size at most 2(M + L)× (‖b‖dag +

m+ 2 + 2M + 2L) + 2m+ 1. This gives us a substitution θ′, and we 
he
k whether θ′is a solution of (C′, I) and φ′.Proof.We show that these steps allow us to guess a solution of (C, I) and φ in polynomial time.Step 1. We 
an write vj = 〈〈pj1, . . . , p
j
m〉, 〈ℓj, ℓ′j〉〉. Indeed, if θ is a solution of the 
onstraint

vj
?
∈ L, then by de�nition of L, there is a tuple of names 〈p1, . . . , pm〉 and ground lists l, l′ su
hthat vjθ = 〈〈p1, . . . , pm〉, 〈l, l′〉〉. We 
an thus 
ompute σj = mgu{vj = 〈〈x1, . . . , xm〉, 〈y1, y2〉〉}where x1, . . . , xm, y1, y2 are fresh variables, with x1, . . . , xm of Base sort and y1, y2 of List sort.Then, we 
an apply substitution σj to C. The DAG size of C grows at most by 2× (2 +m)for ea
h transformation.Step 2. We 
an apply Theorem 2.3.1: there exists a solution θ of (C, I) if, and only if,there exist a dedu
tion 
onstraint system (C′, I) in solved form and substitutions σ, θ′ su
hthat (C, I)  ∗

σ (C′, I) by a derivation in strategy S, θ = θ′ ◦ σ, and θ′ is a non-
onfusingsolution of (C′, I). Moreover, we have that θ′ is a solution of φσ. The length of this derivationis polynomially bounded in the DAG size of C and the DAG size of C′ is also polynomiallybounded by the DAG size of C. We 
an guess su
h a derivation, and are now left to de
idethe existen
e of a non-
onfusing solution θ′ to (C′, I) and φσ.Thanks to Proposition 2.4.1, a non-
onfusing solution of (C′, I) is in parti
ular a 
onstru
t-ive solution.Step 3. We want to de
ide whether there exists a 
onstru
tive solution θ′ to the 
onstraintsystem (C′, I) and φ′ = φσ where φ′ = v′1
?
∈ L ∧ · · · ∧ v′p

?
∈ L, with

• v′j = 〈〈pj1, . . . , p
j
m〉, 〈lj, l′j〉〉, and

• (C′, I) is in solved form.
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4.4. CONCLUSION AND FUTURE PROSPECTS 105
Thanks to Lemma 4.3.3, if su
h a solution θ′ exists, we 
an assume that

‖tail(lj)θ
′‖l ≤M = #st(C′, φ′) + max

1≤j≤p
‖l′j‖l + 2×#var(C′)× max

t∈st(C′,φ′)
‖t‖dag.for every 1 ≤ j ≤ p.As ljθ′ is a list of names, we dedu
e that ‖ljθ′‖dag≤ 2×‖ljθ′‖l ≤ 2× (M + L).We now bound the size of l′jθ′ (in DAG representation), using the language 
onstraint

〈〈pj1, . . . , p
j
m〉, 〈lj , l′j〉〉

?
∈ L. Indeed, by de�nition of the language L, if ljθ′ = [a1; . . . ; an], then

l′jθ
′ = [mn; . . . ;m1] with mi = bj⌊ljθ′, ai, [mi−1; . . . ;m1]⌋ where bj = b{wp1 7→ pj1θ

′, . . . , wpm 7→

pjmθ′}. For every i ≤ n, we 
an bound the size of [mi+1, . . . ,m1] with respe
t to the size of
[mi, . . . ,m1]:

‖[mi+1, . . . ,m1]‖dag ≤ 1 + ‖[mi, . . . ,m1]‖dag + ‖b‖dag +m+ ‖ljθ
′‖dag + 1.Consequently,

‖l′jθ
′‖dag ≤ n× (‖b‖dag +m+ 2 + ‖ljθ′‖dag)

≤ ‖ljθ′‖dag × (‖b‖dag +m+ 2 + ‖ljθ′‖dag)
≤ 2(M + L)× (‖b‖dag +m+ 2 + 2M + 2L).Then, thanks to Lemma 4.1.2, we 
an assume that for every variable x, either xθ′ ∈ st(φ′θ′),or xθ′ ∈ {N0, []} with N0 ∈ I. Thus, we 
an guess the values of xθ′ by 
onsidering only a�nite subset of names of I of size

p× 2(M + L)× (‖b‖dag +m+ 2 + 2M + 2L) + 1Moreover, for every variable x ∈ dom(θ′), we have that:
‖xθ′‖dag ≤ max{‖v′jθ

′‖dag | 1 ≤ j ≤ p}

≤ max{‖l′jθ
′‖dag | 1 ≤ j ≤ p}+ 2m+ 1

≤ 2(M + L)× (‖b‖dag +m+ 2 + 2M + 2L) + 2m+ 1We 
an 
he
k whether a given substitution is a solution of (C′, I) ∧ φ in polynomial time.In order to 
on
lude, It only remains to show that M and L are polynomial in the size of C, φ.We have that
• M = #st(C′, φ′) + max

1≤j≤p
‖ℓ′jσ‖l + 2×#var(C′)× max

t∈st(C′,φ′)
‖t‖dag, and

• L = max
1≤j≤p

‖ℓjσ‖dag.First, we have that #st(C′, φ′) = #st(C, φ). Then, for every term u ∈ st(C, φ), we get that
‖uσ‖dag ≤ ‖u‖dag + #var(C)× max

t∈st(C,φ)
‖t‖dag. This allows us to 
on
lude.

4.4 Con
lusion and future prospe
tsWe have provided two new NP de
ision pro
edures for (automati
ally) analysing 
on�denti-ality of se
urity proto
ols with re
ursive tests, for a bounded number of sessions. The 
lassesof re
ursive languages we 
an 
onsider both en
ompass 
hained-based lists of 
erti�
ates andmost of the re
ursive tests performed in the 
ontext of routing proto
ols.
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106 CHAPTER 4. PROTOCOLS WITH RECURSIVE TESTS
Analyzing more re
ursivity tests. The way we have modeled both SMNDP and endairAis not totally a

urate. During the exe
ution of both these proto
ols, the intermediate nodesperform re
ursive 
he
ks too, on the partially built list of signatures. If the test fails, theydrop the message. We do not lose atta
ks with our modeling but we may dis
over false atta
ksas some messages that should have been dropped are transferred without any hindran
e. Wewould have to add a language for partially-built signature lists. De�ning su
h a language iseasy, but not so to see whether the de
idability result still holds. Our proof makes use of thefa
t that if two signature lists share a link, then they are equal, whi
h would no longer be the
ase. To 
ir
umvent that, we 
ould de�ne a notion of family, whi
h would intuitively regroupall the signature lists 
orresponding to a 
ertain path.Furthermore, in order to model Ariadne, where the re
ursivity test is di�erent, we need toagain de�ne another new 
lass of re
ursive languages. In this proto
ol, the list of signaturesproviding authenti
ation is built during the request phase, and so both the list representingthe path and the list authenti
ating the path grow along the way. It is possible that thosetwo 
lasses of languages 
ould be linked, they both involve partial lists of signatures. Thedi�eren
e lies in the fa
t that in Ariadne, the list of nodes grows along the way, in 
ontrastwith endairA or SMNDP, where the list of nodes is �xed.Analyzing routing proto
ols with re
ursive tests. The atta
k on SRP given in theprevious 
hapter shows that the intermediate links intuitively must a
tively parti
ipate byauthenti
ating the list in route dis
overy if we hope to prove 
orre
tness. Re
ursively builtauthenti
ation is one way to a
hieve this parti
ipation.Combining re
ursivity tests and route property modelisation, i.e. the results obtained inthis 
hapter and in the previous one, is both logi
al and desirable in order to wrap up thingsneatly. Noti
e that adding neighborhood 
onstraints and other lo
al properties of lists tore
ursivity tests seems easily feasible. The 
ru
ial 
omponent to add is the property of route
orre
tness, and as this property 
on
erns the entire route it interferes with the re
ursivitytest, whi
h also 
on
erns the entire route. In both 
hapters, we show de
idability by showinga small atta
k property: if there is an atta
k, there is one where we 
an bound the size of listsinvolved in the atta
k. But the bounding relies on totally di�erent te
hniques in the proofs.For re
ursivity, we 
ut lists in the middle. In the other 
ase, we have to keep some nodes inthe list and we dis
ard more or less the other ones, modulo some 
onstraints. Combining thetwo approa
hes seems possible, but it is not straightforward.te
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Chapter 5
Con
lusion and Future Prospe
ts
In this dissertation, we interested ourselves in ad ho
 routing proto
ols. We proposed a modelthat takes into a

ount the parti
ularities of these networks, su
h as the network topology,the broad
ast nature of 
ommuni
ation and the parti
ular tests performed in these proto
ols.We have obtained de
idability results for sour
e routing proto
ols without re
ursivity tests,and for proto
ols using only re
ursivity tests. A natural further dire
tion for resear
h wouldbe to study sour
e routing proto
ols with re
ursive tests. This possibility has already beendis
ussed in Chapter 4 (see Se
tion 4.4). Another natural dire
tion is to study table routingproto
ols, that we are able to model up to a 
ertain point. This possibility was dis
ussed inChapter 3 (see Se
tion 3.5).In this 
on
luding 
hapter, we dis
uss other resear
h dire
tions. We believe it is possible toprodu
e a tool that would automati
ally analyze routing proto
ols and either dete
t atta
ksor prove them se
ure. It would also be interesting to 
onsider other se
urity properties, andin parti
ular anonymity, as there is a spe
i�
 family of ad ho
 routing proto
ols designed toguarantee anonymity. Finally, an important aspe
t of ad ho
 networks we have not modeledis mobility, and we would like to ta
kle this issue.
5.1 Towards automationFor 
onstraint systems with small atta
ks properties, tools have been developed that 
an�nd atta
ks without having to sear
h all the spa
e of possible solutions. For tra
e basedproperties in parti
ular, there are e�
ient tools that 
an dete
t atta
ks or guarantee se
urity.We want to build su
h a tool tailored for analyzing routing proto
ols. It is not possible to useexisting tools, at least without any modi�
ation: we have to take into a

ount the topologyof the network, the broad
ast primitive, an intruder lo
alized at a pre
ise node and parti
ularse
urity properties using the underlying graph. Su
h parti
ularities are not a

ounted for inthe existing tools.A �rst possibility would be to implement our pro
edure. Of 
ourse, this would requireto adapt it: at the moment it is un�t for automation, with too many guesses. However, thebounds we give are not tight, and some guesses 
ould be more a

urate. Instead of guessinga list and then 
he
king that it satis�es all the 
onstraints, we 
ould build a list taking intoa

ount from the beginning some of the 
onstraints and only 
he
k it against the remaining
onstraints. In parti
ular, all the lo
al 
he
ks 
ould give a basis for the possible solutions.Another approa
h would be to use existing tools and to �nd a way to model the parti
ular-107
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108 CHAPTER 5. CONCLUSION AND FUTURE PROSPECTS
ities of routing proto
ols. The 
ru
ial point is to be able to take into a

ount the underlyinggraph, and the modi�ed model for the intruder.It is possible to en
ode routing proto
ols for a �xed topology. [PPB10℄ uses AVISPA toanalyze ARAN, but without taking the topology into a

ount, letting the intruder 
ontrol thenetwork. However, this study shows that table routing proto
ols 
an be modeled in AVISPAand analyzed. Benetti, Merro and Viganò [vig10℄ use the AVISPA tool to automati
allyanalyse some exe
ution s
enarios of the ARAN and endairA proto
ols, and �nd some atta
kson ARAN. They 
onsider two di�erent network topologies for ARAN and dis
over atta
ksusing AVISPA. [ABY11℄ uses a model 
he
king approa
h using the tool SPIN in order toanalyze ARAN in �xed topologies.Che
king parti
ular s
enarios of di�erent routing proto
ols has already been done usingexisting tools. The pro
ess however is done for small networks, as the graph needs to be hard
oded into the analysis tool. In order to analyze larger networks or networks with unknowntopology, a promising approa
h 
onsists in redu
ing the size of the graph for whi
h there 
anbe an atta
k, instead of fo
using on the size of the solution.In order to analyze all possible 
ases of topologies, [ABY11℄ uses a te
hnique that 
onsistsin redu
ing the sear
h spa
e by building topology equivalen
e 
lasses and testing the smallesttopology in ea
h 
lass.J. Degriek [Deg11℄ has already shown that looking for an atta
k 
an be redu
ed to lookingfor an atta
k on small graphs. Any atta
k 
an be transformed in an atta
k on a smaller graph,by distinguishing nodes that invalidate the routing property and regrouping the other ones.This approa
h has some limitations in the design of the proto
ol, and parti
ularly makes useof only a fra
tion of the logi
. Atta
ks on SRP and SMNDP were retrieved by implementingthis method in Proverif. This approa
h allows to 
onsider only a �nite number of small graphs.
5.2 AnonymitySome routing proto
ols, in addition to other se
urity properties, wish to maintain anonymity ofthe parti
ipants to the proto
ol. These proto
ols are usually fairly 
omplex, they make a ratherheavy use of re
ursivity. The messages are like onions, with multiple layers of en
ryptions to betaken o� in order to rea
h the destination. These proto
ols may involve re
ursive input/outputsteps, and our results in Chapter 4 
an not be applied in this 
ase. We proved de
idability for
lasses of languages 
apturing re
ursivity tests only. It would be interesting to see if we 
ouldreuse some of the results as part of a work that would deal with re
ursive input/output stepswith 
ertain 
onditions to preserve de
idability.The di�
ulty with anonymous routing proto
ols does not lie only with modeling the pro-to
ol but also with modeling the se
urity property. The anonymity property is deli
ate toexpress even informally, more so in a formal way. Some works re
ently ta
kled this issue fordi�erent appli
ations: RFID tags [BCd10℄, voting proto
ols [DKR09℄ for instan
e. In orderto 
apture the notion of anonymity, they use indistinguishability of two exe
utions where twoagents have ex
hanged their se
ret. Consequently, the notion of indistinguishability is not atra
e-based property but an equivalen
e-based one. In order to prove this property, we have to
onsider two di�erent sets of tra
es and 
ompare them. There already exist some algorithmsfor de
iding tra
e equivalen
e for dedu
ibility 
onstraints, and Proverif [Bla05℄ makes use ofsome of them, but they probably need to be adapted in order to be used in the 
ontext ofanonymous routing proto
ols.
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5.3. CHALLENGES OF MOBILITY 109
5.3 Challenges of mobilityIt should be noted that we do not take mobility into a

ount in the sense that the topologyof the network does not 
hange during our analysis. There are two main reasons for thislimitation. First, many �aws 
an already be dete
ted without any 
hange in the networktopology. Se
ond, properties like the validity of a route are of 
ourse (temporarily) invalidatedduring a network topology modi�
ation. Therefore, su
h properties have to be analyzed on
ethe network is stabilized, previous routing proto
ol exe
utions being possibly in
luded in theinitial knowledge of the atta
ker.An extension would be to model mobility during the exe
ution of the proto
ol. Thiswould allow us to 
onsider 
hanges in the network topology and to analyze the se
urity ofroute updates.In [Mer07℄, M. Merro proposes a pro
ess 
al
ulus to study the observational theory ofmobile ad ho
 networks, 
alled CMN (Cal
ulus for Mobile Networks). He establishes a bisim-ilarity relation that enables him to prove some stru
tural properties of mobile networks, e.g.a node that does not send any message 
an not be observed.J. Godskesen proposes in [God07℄ a Cal
ulus for Mobile Ad Ho
 Networks, CMAN. In thismodel, nodes may autonomously 
hange their neighbor relationship and thereby 
hange thenetwork topology. He shows behavioural equivalen
es between pro
esses and analyze ARAN.He proves that ARAN is not robust as adding an intruder leads to a pro
ess that is notequivalent to the pro
ess with whi
h they began.J. Godskesen and S. Nanz then worked together [GN09℄ to establish a realisti
 mobilitymodel. They des
ribe the movements of the nodes with a mobility fun
tion. A pro
ess
al
ulus taking the time into a

ount is set, and the mobility fun
tions 
an be 
omparedthrough bisimulation.Models for mobile networks exist, but they do not in
lude 
ryptography. Furthermore,adding mobility to the network requires to model an appropriate se
urity property. Ourde
idability result holds only for the logi
 Lroute, though the 
on
rete and symboli
 modelhold for any logi
.
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