Alternating Two-Way AC-Tree Automata *

Kumar Neeraj Verm&™

Technische Universitat Miinchen, Institut fir InformatiR /
Boltzmannstral3e 3, 85748 Garching, Germany

Jean Goubault-Larrecq

LSV/CNRS UMR 8643 & INRIA Futurs projet SECSI & ENS Cachan
61, av. du président-Wilson, 94235 Cachan Cedex, France

Abstract

We explore the notion of alternating two-way tree automataluio the theory of finitely
many associative-commutative (AC) symbols. This was ptechjpy questions arising in
cryptographic protocol verification, in particular in mdidg group key agreement schemes
based on Diffie-Hellman-like functions, where the emptinggestion for intersections of
such automata is fundamental. This also has independenedht We show that the use of
general push clauses, or of alternation, leads to unddtitgiablready in the case of one
AC symbol, with only functions of arity zero. On the other daemptiness is decidable in
the general case of several function symbols, includingre¢\AC symbols, provided push
clauses are unconditional and intersection clauses alle Tima class of automata is also
shown to be closed under intersection.

Key words: associative-commutative, tree automata, two-way treenaatia, alternating
tree automata, branching vector addition systems witkestaésolution, cryptographic
protocols

* Partially supported by the ACI VERNAM, the RNTL project EVAhe RNTL
project Prouvé, and the ACI jeunes chercheurs “Sécuri@rmmdtique, protocoles cryp-
tographiques et détection d’intrusions”.
* Corresponding author. Tel: +49 89 28 91 81 88, Fax: +49 89 2B1941.

Email addressesrer ma@ n. t um de (Kumar Neeraj Verma),
goubaul t @ sv. ens- cachan. f r (Jean Goubault-Larrecq).

URLs:http: //ww2. i n.tum de/ ~ver ma/ (Kumar Neeraj Verma),
http://ww. | sv. ens- cachan. fr/ ~goubaul t/ (Jean Goubault-Larrecq).
1 Work done while a PhD student at LSV, CNRS UMR 8643 & INRIA Fstprojet SECSI
& ENS Cachan on an MENRT grant.

Preprint submitted to Elsevier Science 24 November 2006

1 Introduction

Automata and in particular tree automata (Gécseg and $tei887; Comon et al.,
1997) are an important tool in computer science, in pawicul hardware or soft-
ware verification (Jouannaud, 1995). We may enrich stantlaedautomata with
various features. One that has been considered very e#nigtisftwo-waytree au-
tomata, where transitions may not just build terms, but désiruct terms. Another
one isalternatingtree automata, where we may recognize not just unions bat als
intersections of sets of terms recognized at some statatzk§11985). A more
recent one iequationaltree automata, which do not recognize terms but terms
modulo some fixed equational theory, see e.g., Lugiez (1@83aki (2001). The
case of finitely many associative commutative (AC) symbmtsf iparticular impor-
tance. The goal of this paper is to explore the combinatioine$e features, that
is, of equational, two-way, alternating automata, conegimy on the equational
theory of finitely many AC symbols.

Combining two-way, possibly alternating automata with tise of equational the-
ories is not a randomly chosen research theme. We have comeetbsuch au-
tomata in studying automata-based cryptographic proteexdfication techniques,
see Monniaux (1999); Genet and Klay (2000); Goubault-lcayr@000); Comon
et al. (2001), and extending them to sets of cryptographimipves that obey
specific algebraic laws. This is particularly useful to mloptocols based on
the Diffie-Hellman primitive, namely modular exponentuti(Diffie and Hellman,
1976): see Goubault-Larrecq et al. (2004) for an applicatibtwo-way AC-tree
automata to the automated verification of the IKA.1 group &gseement protocol.

There are a number of questions one might ask about any farhdytomata, in
particular the ones we are considering in this paper. Thiegiid probably the most
important is decidability of emptiness.

Then, we may inquire about closure under Boolean operatwoman, intersection,
complementation. As we shall see, alternating AC-autorhat@ an undecidable
emptiness problem. Removing alternation but keeping twg-tkansitions yields
a class whose emptiness problem is decidable, as we shall Shosure under
unions is trivial.

Our import in this paper is a classification of alternatingpiway AC-tree au-
tomata relative to the question oftersection-emptinesgjiven finitely many al-
ternating two-way AC-automata, is the intersection ofrtheiguages empty? and
the related question of effectively computing intersawsiof two-way AC-tree au-
tomata. We shall show that the subclass of so-ca#lléestandardwo-way AC-tree
automata (Definition 9) can be effectively reduced to ong-A@-tree automata
(Theorem 44), which are closed under intersection (The@&nand whose empti-
nessis decidable (Lemma 17). This implies that interseatimptiness is decidable

for AC-standard two-way AC-tree automata.

While this class is enough for dealing with the verificatioalgem we initially had
in mind (see Goubault-Larrecq et al. (2004) for the applicato the IKA.1 cryp-
tographic protocol), we shall leave the case of intersaetimptiness of two-way
AC-tree automata, not just the AC-standard ones, open. Wecinire that the lat-
ter is still decidable, and show a first result in this directiintersection-emptiness
of two-way AC-tree automata reduces effectively to intetiss-emptiness of two-
way AC’-tree automata, i.e., to tte@nstant-onlysubcase where the only function
symbols aret (associative and commutative) and finitely many constdspo-
sition 63). As the reader will be quickly convinced, this iseady rather technical,
and requires tools from several domains, in particular femtomata theory, auto-
mated deduction, and Petri nets.

Outline. The paper is organized as follows. We give an account ofe@habrk in
Section 2. Section 3 gives all necessary preliminaries, amldlauses, languages
and recognizability, resolution and its refinements, sedr sets and branching
vector addition systems with states (BVASS).

Once preliminaries have been taken care of, we can definaflyrmhat we mean
by £-tree automata, whether one-way or two-way, alternatingodyin Section 4.
Our interest in such automata stems most particularly froencase wheré€ is

the equational theory AC of finitely many associative comatiué symbols+;,

1 < i < p. As we have already said, this is justified by the applicatmgroup
key agreement protocols; we refer to (Goubault-Larrecd.e2804) for details.
We believe that the theory AC is so pervasive that one/twg-aléernating or not,
AC-tree automata will find their way in other applicationslikely application is
to XML Schemas, where the theory AC would be used to accournh#ofact that
XML documents are trees whose nodes have a multiset, nouseg, of sons.

We proceed to show some limitations of AC-tree automata oti@e 5. We show
mainly that alternation leads to undecidability, alreadythe constant-only case,
where the only function symbols are constants, plus one AGbsy+.

Because the constant-only case is, in fact, central to thergecase, as will be-
come progressively more apparent in later sections, we shddection 6 that
AC-satisfiability is decidable for non-alternating twoynvAC°-tree automata, i.e.,
those non-alternating two-way AC-tree automata that arisine constant-only
case. These results rely on the fact that an AC symbol togetitie constants al-
lows us to encode counters, so that our automata in the carmtéy case corre-
spond to various notions of automata working on countergs&hnclude Parikh
images of context free grammars, which recognize semilisets or Presburger-
definable sets (Parikh, 1966; Ginsburg and Spanier, 1966&)el as Petri nets and
VASS (Reutenauer, 1993), and their extensions like BramgchASS (Verma and

Goubault-Larrecq, 2005).

We gradually reduce the AC-satisfiability problem for larged larger classes of
two-way AC-tree automata in Section 7, culminating withcetled AC-standard
two-way AC-tree automata, where so-calleepush clauses are restricted to being
unconditional (see later for definitions). We show that ¢helasses describe the
same languages as ordinary, one-way AC-tree automata,rartieaefore closed
under union and intersection.

In passing, we show in Section 7.1 that we can always assuthewtiloss of
generality that there is exactly one AC function symboinstead of several.

We prove again that intersection-emptiness is decidabl@@standard two-way
AC-tree automata, using rather different techniques basedsolution techniques,
and specifically on the use gfey oraclesdue to Goubault-Larrecq et al. (2004).
This is more technical than previous sections, unfortupgbet has one advantage
at least. Since this new technique is not limited\o-standardiwo-way AC-tree
automata, we are able to show that intersection-emptioesad-way AC-tree au-
tomata (not just AC-standard ones) is decidable as soonsas ithe constant-only
case. The latter problem is left open. As we shall argue @atethis last remaining
open case is likely to be hard, as it includes vast genetairmmof problems as
difficult as Petri net reachability, to which they do not seemeduce easily.

We conclude in Section 9.

For quick reference in the AC case, Figure 1 displays a mapeotlifferent kinds
of AC-tree automata we consider in this paper.

Acknowledgments Thanks to H. Comon and L. Fribourg for many stimulating
discussions, to A. Finkel and S. Lasota for helpful commeiat®\. Podelski for
suggesting that clausal formats may provide a better taokfiedying general-
ized automata. A great many thanks are due to an anonymouSSUA referee,
who found mistakes in our decidability arguments for indeten-emptiness in the
constant-only case, which prompted our branching extensiovASS, BVASS,
and the associated notion of Karp-Miller trees (Verma andifaalt-Larrecq, 2005).
Finally we thank the two anonymous referees for their tecdlmemarks, pointers
to related work, and suggestions for improving the presiemaf this, admittedly
technical, paper.

One-way AC

Definition 4
«
Alternating AC Standard two-way AC
Definition 5 Definlition 7
V
AC-standard two-way AC
Definlition 9
v
Petri two-way AC
N Footnote to Corollary 27
|
)
Two-way AC
Definition 6
Alternating General
two-way AC two-way AC N
Definition 6 Proposition 15
Alternation-Fred4), (5), (6)
o A Definitions 47, 52
(4), (5). (6)
Definition 47

Fig. 1. AC-tree automata considered in this paper

2 Related Work

There is a large literature on finite tree automata, see Carhah (1997); Gécseg
and Steinby (1997). Applications abound in rewriting antbenated theorem prov-
ing notably: approximations of reachability sets for reagystems (Genet, 1998),
disunification and inductive reducibility (Lugiez and Mags$, 1994), unification
under constraints (Kaji et al., 1997), ground reducibi{fiomon and Jacquemard,
1997), automated inductive theorem proving (Bouhoula auddnaud, 1997), fast
tree matching (Li, 1988), automated model building in foster logic (Peltier,
1997), etc. These applications deal with automatdirate trees, and this is what
we are interested in here. We won'’t deal with automata onitefirees (Thomas,
1990), which are also fundamental, e.g. in temporal andrprodogics (Emerson

and Jutla, 1988).

Two-wayautomata, a.k.gushdown processeshere transitions may not only con-
struct but also destruct terms, are also classical. Theaelaith certain Horn sets
calleduniform programswvas pioneered in Frihwirth et al. (1991), and refined in
e.g., Charatonik and Podelski (1998partesian approximatiors the key to define
upper approximations of various sets of ground atoms, suggess setgWhile
there is no difficulty to do the same in the AC case, getting-ivay, alternating
AC-tree automata, it is more difficult to get rid of alterretti This is important, as
we shall see in Section 5, since alternation causes undeitiglan the AC case.)

Itis important to distinguish pushdown processes from gagmautomatg Schimpf
and Gallier, 1985), which recognize the strictly largessslaf context-free tree lan-
guages. This is why we prefer the phrase-wayautomata. Conversely, standard
automata, where transitions only construct terms, willdéed one-wayautomata.

The idea of generalizing tree automata to recognize larggiaf) termsmodulo

an equational theory is then natural, and a canonical choice of theory is that of
one associative-commutative (AC) symbpl The AC case has been explored a
number of times, e.g., by Courcelle (1989); Niehren and B&d¢€L993); Lugiez
(1998). The general case of so-calleguational automatdnas been studied by
Ohsaki (2001); Ohsaki and Takai (2002). We shall also deil this general case,
although we emphasize the AC case.

While not all notions of AC-tree automata coincide, theravgays a common core.
For example, the automata of Lugiez (1998) have additiomlrgstrictions, but
are also extended with a rich constraints language. Reaakt by Lugiez (2003)
dispenses with the sort restrictions and extends thig latiek by considering AC-
tree automata with Presburger-definable constraints;icgt®r an extremely rich
framework that includes most proposals of AC-tree automwétadecidable empti-
ness problems until now. Lugiez also shows closure of hissalader all Boolean
operations. Nonetheless, there is no known reductidnw@fwayAC-tree automata,
as studied here, to Lugiez’s, and there cannot be any reductialternatingAC-
tree automata to Lugiez’s, as the former recognize all sieely enumerable sets
(Proposition 11) whereas emptiness is decidable for therla¢ML document pro-
cessing is the main motivation for the automata proposeduyidz. Related no-
tions of automata and logics for XML document processingehasen proposed
by several authors, e.g. Seidl et al. (2003) and Boneva alhd{T&005). All the
papers cited above deal with one-way AC-tree automata.

Ohsaki (2001) investigates a larger framework of so-ca#igdational tree au-
tomatg modulo some equational theoéy It is difficult to compare these with
our E-tree automata. For one, again Ohsaki’'s automata are netvewcautomata;
we return to this point below.

Leaving subtleties about two-wayness aside, one mighktthat regular equa-

tional tree automataa restriction of equational tree automata, also due to Kbhsa
should be the same as our one-w&yree automata (Section 4.1). Despite the
similarities, these are in general different notions. Bareple, consider the the-
ory & defined byf(z,z) = 0 for everyz, and the automaton with two states
and ¢;, ¢; being final, and the only transitiofi(qo, go) — ¢:- (In our notation,
a(f(X,Y)) < q(X),q(Y), see later.) In particular, no term is recognizegoat
With our definition, where every term recognized;atnust be equal modulé to
some term of the fornf (u, v) whereu andv are recognized ajf, no term is rec-
ognized aty;. With Ohsaki’s definition,f(qo, qo) is equated witt) by the theory,
S0q; recognizes the terx That is, for Ohsaki, the equational the@happlies not
only to ordinary terms, but also to the fake terms sucli(as, ¢o) that are used as
auxiliaries in defining recognizability. Still, owne-way€-tree automata coincide
with Ohsaki’'sregular automata whe# is alinear theory, in particular in the AC
case.

The general form of automata considered by Ohsaki not ordytfaasitions of the
form f(qi,...,q.) — ¢, butalso of the forny (q1,...,¢.) — f(d},...,q,), where

Qs n, Q45 - - -5 4, q are states. We do not. (Ohsaki’s purpose seems to be able
to represeng-closures of regular tree languages.) In fact, the secamdi & tran-
sition f(q1,-..,q,) — f(dy,-..,q,) does not have any equivalent in our formula-

tion. Conversely, our push clauses (see Section 4.2) doseoh $0 be describable
in a rewrite rule based notation. The latter entails that @enot simply reduce
our emptiness and intersection-emptiness questions eiMayoAC-tree automata
to reachability in ground AC-rewrite systems (Mayr and Rosgtitch, 1998), as
Ohsaki and Takai (2002) do. To be precise, to show decidllithe AC case,
we in fact show how to eliminate the push clauses under vamiestrictions. This
means that these decidable classes of automata correspOhgaki’s regular AC-
tree automata. However this correspondence is not diradthalds for specific
theories like AC but not for more general theories that waraerested in (Verma,
2003c).

The works by Ohsaki and Lugiez cited above encode AC-treanaatia by ground
rewrite rules, while we prefer to encode them by sets of Hdanses. Without
any equational theory, the two formulations are well-kndarbe equivalent. As
we discussed above, they diverge in the presence of eqabti@ories. The Horn
clause formulation has the advantage that it allows oneite ¥re semantics of the
problem at hand, such as modeling cryptographic protodolksctly in logic. Also,
alternation and two-wayness are more natural conceptsiin €lause notation.

Our notion of alternation in equational tree automata iselto the conjunction
operator irconjunctive grammargkhotin, 2001). In our terminology, conjunctive
grammars are one-way alternating tree automata over atsrgneonsisting of an
associative symbol (possibly with a unit) and constantsl f@am other symbols of
larger arity). While we shall mention briefly associativergyols (Proposition 16),
our main interest in this paper is the theory of associatm@mutative symbols.

However they turn out to have some similar properties. Sintyilto the case for
alternating AC-tree automata, emptiness for conjunctraegnars is undecidable
and membership is decidable.

We shall use techniques related to Petri nets. In particwlarshall use some of
Verma and Goubault-Larrecq (2005)’s results on the fact toaerability trees

a la Karp-Miller for abranchingextension of vector addition systems with states
(VASS), which were called BVASS there, are finite. BVASS wiedependently in-
troduced by de Groote et al. (2004), under the name of vedtbtian tree automata
(VATA) to attack the problem whether provability in multipative-exponential lin-
ear logic was decidable.

3 Preliminaries

Fix a signatureX of function symbols, each coming with a fixed arity, anddet
be an equational theory, inducing a congruengeon all terms built on. In this
paper.£ will usually be the theory AC of one or several symbols beisgoziative
and commutative. We assume thatontains at least one constant.

An atomic formula(or ator) is a pairP(s) of a predicate symbaP, taken from
some fixed sefP, and of a terms on Y. (Wlog, we restrict to unary predicate
symbols.) Aliteral is either apositiveliteral +P(t), or anegativeliteral —P(¢).

A clauseis a disjunction of literalst; Py (t1) V £2Ps(ts) V ... V £ Pe(tx). A
Horn clause is one containing at most one positive liter&:algo writeP(t) «
Pi(ty),..., P,(t,) for thedefinite clause-P(t)V — Py (t1), ..., —P,(t,), andL <
Pi(ty),..., P,(t,) for thegoal clause—P, (1), ..., —P,(t,).

The semantics of clauses is given as usual (Chang and Le8).1®8tructure /

is a tuple consisting of a non-empty get(the domair), together with subsets

of D, one for each predicatg, and functions/; : D" — D for each function
f € X, of arity n. Given anyenvironmenip mapping variables to elements b,

the value I [[t] p of a termt is defined by! [z] p = p(x) for every variabler,

If(tr,.. . to)]p = Ir(L[ta] ps-- ., L[tn] p). Then we letl, p = P(t), and say
that P(¢) holdsin I, p, if and only I [t] p € Ip. A clauseC' holds undet, p (and
we write I, p = C) if and only if I, p = P(t) for some literal+P(¢) in C, or

I, p }= P(t) for some literal-P(t) in C.

In the special case of Horn clauses, this can be recast as/flBy convention, let
I,pl~ L. Weletl, p = C,whereC'is a Horn clausel < A, ..., A,, ifand only
if I,p = A;forsomei, 1 <i<n,orl,ppE A.

The structurd is amodelof the clause”' if and only if I, p = C for every envi-
ronmentp; we then write/ = C. I is a model of a se$ of clauses if and only if

I |= C for every claus&” in S; we write [|= S for this.

The structurd is an&-structureif and only if, whenever andt are two terms that
are equal modulé, then! [s] p = I [t] p for every environmenf. An E-structure
that is a model of”, resp.S, is called ar€-modelof C, resp.S.

We then say that a claugg resp. a clause s#t is £-satisfiablaf and only if it has
an&-model.

A term, an atom, a literal, a clause gsound if and only if it contains no free
variable. Asubstitutions is any map from variables to terms. We writg :=
t1,...,z, = t,] the substitution mapping; to ¢t;, 1 < i < n, and any other
variable to itself. Thedlomaindom o of ¢ is {z|xc # x}. We also writeto the
result of applying the substitution to the termt: xo = o(z), f(t1,...,tn)0 =
f(tio, ... t,0). Aninstanceof ¢ is any term that is equal modudbto ¢, for some
substitutions.

TheHerbrand universdi; is the set of al€-equivalence classes of ground terms.
A Herbrand structures any structurd whose domain i/, and such that; maps
anyn-tuple of ground terms,, ..., ¢, modulo&, to the termf(¢y,...,t,), again
modulo&, wheref has arityn. It is well-known that a clause set has&model if
and only if it has arf-Herbrand model, i.e., one which is a Herbrand structure.

Any Herbrand structurd can be alternatively characterized as a set of ground
atoms that is stable undér namely the ground atomB(¢) such that/ = P(t)

(the environment part is irrelevant here, hence omittedjhis setting, Herbrand
structures can be ordered by inclusion. Then,&satisfiable Horn clause set has a
leastHerbrand model. (This is the first place where dealing Witiin clauses mat-
ters.) In particular, any set of definite clauses has a leadbidnd model; indeed,

it has a Herbrand model, which contains every ground atom.

An alternative characterization of least Herbrand modetsch should be familiar
to Prolog semanticists, is as follows. Fix a Horn clausesséiet 7 be the set of all
ground atoms, union, and letLo be defined ad , by convention. In other words,
we considerl as ground, and exters: so thatt ~¢ 1 ifand only if ¢ = L.
Define the operatdfs from P(F) to P(F) by

Ts(I)={A|A<= Ay,..., A, € S, A" ~¢ Acground Ao € I,..., A0 €I}

SinceTs is monotonic with respect to inclusion, it has a least fixpdimfact, this
least fixpoint isU,,cy 74 (0), and is just the least Herbrand model$fn case it
does not contain._. If it contains_L, thensS is £-unsatisfiable.

3.1 Resolution, Splitting

We shall need to decide whether given finite sets of Horn elausodulo AC or
ACU are AC-unsatisfiable or not. Computitg . 72(0) directly is in general not
an option, since it will usually be infinite. One well-knoweachnique to decide
satisfiability isresolutionand its refinements, in particular ordered resolution with
selection (Bachmair and Ganzinger, 2001).

Let >~ be a strict stable ordering on atomic formulas. 8gblewe mean that if
P(s) = Q(t), thenP(so) >~ Q(to) for any substitutiorr. Letsel be a function
mapping each clause to a subset of its negative literals.

Ordered resolution with selection is the rule that allows tmderive the conclusion
(below the bar) provided we have already derived the presiedgove):

CiyV+AL V...V +A,
C'v-Ajv...v-A
CoV+ALNV ...V +Aum,
(Cyv...vVC, V(o

where:

On>1,m >1,...,m, >1;

(||) o = ngU_(All =...= Alml = All, . .714”1 =...= Anmn = A/n)’ i.e.,O’ is
the most general unifier (mgu) of the equatiohs = ... = Ay, = 4], ...,
Ay = ... = A, = AL,

(i) foreveryi,1 <i<mn,sel (C;V+AqV...V+A,,)==0andA;,..., A,
are maximal atomic formulae i@0; V +A4;; V...V +A4,,, with respect to-;

(iv) sel (C"V—=Ajv...v=A)={-A,...,=A} #0,0rsel (C'V—-A}V...V
—A) =0andA], ..., Al are maximal inC" v —A} v ...V —A! with respect
to .

For additional definitions, see Bachmair and Ganzinger 120@ is implicit in
the rule above that all premises have been renamed so thaonarémises share
any free variable. The right premise is called thain premiseall others areside
premises. The conclusion is often calleceaolventof the premises.

In the case of Horn clauses, this simplifies to the rule:

Al<=H ... A,<H, A<HA,. . A,
(A< H H,,...,H)o

10

where 4, Hy, ..., H, arebodies i.e., sets of atomic formulas, comma denotes
union of such sets, and the following conditions are met:

() n>1;

(i) o =mgu(A; = A},..., A, = A);

(ii) foreveryi, 1 <i < n,sel (A; & H;) = 0 andA; is maximal inA; < H;
with respect to-;

(iv) letting C be A <« H, A},... A, sel (C) = {-A},...,—A} # 0, or

sel (C) =0andAj, ..., Al are maximal inC' with respect to-.

This rule issound i.e., every conclusion is a consequence of the premisgrin
ticular, if the empty clause is derivable from a given set of claus€sthens is
unsatisfiable. It is alsoompleteif S is unsatisfiable, then one can derizefrom
S in finitely many steps of ordered resolution with selection.

In passing, choosingel so that it selects every negative literal (., (A <

Ay, A ={—A,...,—A,}) yields the so-callednit resolutionrule on Horn
clauses:
o=mgu(u; =1ty,...,u, =t,)
P(to)

which is not only sound and complete (in the Horn case), batise such that
Unen T2(0) is exactly the set of ground instances of clauses that we edoaog
from the set of Horn clausesby unit resolution. In short, unit resolution computes
the least Herbrand model (if any).

While unit resolution, in some sense, derives new facts omadrd mannernput
resolutionderives new goals, working its way backwards:

Ai<H ... A,<H, L&A, . A
(J_<:H1,...,Hn)0'

wheren > 1,0 = mgu(4; = A},..., A, = A)).

Soundness and completeness hold for each variant of resyglaind in the case
of ordered resolution with selection, whategelr, and whatever the stable order-
ing > is. It is folklore that soundness and completeness stilll ndgien terms are
taken modulo some equational thedty providedo is taken to be any member
of acomplete set of unifief®su)csu(4; = A},..., A, = A’) in condition(ii),
and > is compatible withZ, meaning that ifs;, sy are equal modv, if ¢,,t, are
equal modE, ands; = t; thensy = t5. (Implicit here is the fact that we also
replace unsatisfiability by -unsatisfiability.) This was already the case for other
refinements of resolution (Plotkin, 1972). Csus alwaystekigt need not be finite
or even computable. One can compute a finite one for the thefomgsociativity

11

and commutativity (AC), resp. with unit (ACU) (Stickel, 1D8Fages, 1984).

Independently of equational reasoning, soundness andletenpss are preserved
when tautologies and various forms of subsumed clausegareved, at any mo-
ment (preferably at the earliest) (Bachmair and Ganzirf#1). This will be cru-
cial in showing that resolution terminates on various @ass# Horn clauses mod-
ulo AC, therefore showing decidability of these classesidllg crucial will be the
so-calledsplitting rules. A clause of the fornd' v C’, whereC' andC’ are non-
empty clauses that share no free variable, is caj#ittable Given a set of clauses
Su{CvC'}, whereC'Vv (" is splittable, the standard version of splitting (Weiden-
bach, 2001) then considers showing that &t C'} andSU{C"} are unsatisfiable
to conclude that U {C Vv C'} is. Instead, we shall use Riazanov and Voronkov's
special brand of splitting (Riazanov and Voronkov, 2001rdvilkkov, 2001), as ex-
plained in Goubault-Larrecq et al. (2004), and cadiglittingless splittindo distin-
guish it from ordinary splitting. The idea is that whén C" is splittable, thenitis
equivalenttadg - (¢ = C) A (—qg = ("), whereq is a fresh propositional symbol.

We make this formal as follows (Roger, 2003; Goubault-
Larrecq, 2003). We first define formally what it means to cvco
create fresh propositional symbols. Fix a ebf pred-
icate symbols. AP-clauseis any clause whose predi- Cv =g
cate symbols are all fror?. These will be our ordinary . ,

) +C"vC
clauses. Let ther® be some set of zero-ary predicate
symbols disjoint fronfP, in one-to-one correspondence
with the set ofP-clauses modulo renaming: for eaghclauseC, let"C™ be a
symbol in Q, so that”C™ = "C'™ iff there is a renaming such thatC' = C’p.
These will be our fresh symbods however notice that we allow ourselves to reuse
to same symbof = "C’" when we meet the same clausétwice. The rule of
splittingless splittings shown on the right, wheré' and C’ are two non-empty
subclauses sharing no variable, whéfeis restricted to be &-clause, and”' is
required to contain at least an ataiit) with P € P.

The effect of the rule is teeplaceC'vVC’ by the two clause€'v—"C""and+"C""v
C" in conclusion. Intuitively” C'™ is a propositional symbol that abbreviates the
negation of”’, i.e., that is false exactly whet!' is valid.

Ordered resolution with selection, usifigunification, is sound and complete, even
when splittingless splitting is applied eagerly (i.e., whmth rules can be applied,
apply splittingless splitting), providesd is a stable ordering such thB(t) >~ ¢ for
everyP € P, q € Q. (We say that- is admissible) See Goubault-Larrecq et al.
(2004) for details.

In the sequel, we shall always use a special form of splisgysplitting, which

we call e-splitting: this is the special case whef# is anegative block-P;(z) v
...V =P,(x) (n > 1; the variabler is the same in each literal), and where/ C”

12

is Horn. Thee-splitting rule can be reexplained as the one that replacgslause
A < H,P(z),...,P,(x), wherez is not free inA or H, by the two clauses
A < H,qandq < Pi(z),...,P,(x), whereqg = "—Pi(x) V...V =P, (z)7; in
effect, this defineg as being true if and only if there is a term satisfying allFof
..., P, inthe least Herbrand model (if any exists).

Finally, it is important to note that there is a more synthetay of writing the unit
resolution rule, which is equivalent from the standpoindefivability of the empty
clausel:

Pi(uy) ... Pu(uy)
P(to)

P(t) < Pi(t1), ..., Po(t,) (1)

whereo € csug(uy = tq,...,u, = t,). (Modulo&, recall that we need to replace
mgus by csus.) This notation may appeal more to the readere.§e Chang and

Lee (1973) where semantic resolution and therefore alserggpolution and unit

resolution are presented in this way.

3.2 Languages, Recognizability

Our impetus in using sets of Horn clauses is to define variouas of automata.
For all these notions, the notionsmeicognizability and oflanguagerecognized at
some state will be the same. Therefore we choose to intratiese notions here.

Given an&-satisfiable set of Horn clausés and a predicate symbdt, the lan-
guageLp(S) of S atstateP is the set of al€-equivalence classes of ground terms
t such thatP(¢) is in the least Herbrand model 6f. The elements of.5(S) are
called the £-equivalence classes of) termexognizedat P in S.

By abuse of language, we say thats emptyin S if and only if Lp(S) is empty,
and similarly for other properties. We have the followingedemmas. The first
one characterizes recognizability semantically.

Lemma 1 Given an&-satisfiable set5 of Horn clauses, the ground tertris rec-
ognized atP in S if and only ifS plus the clause. <= P(t) is £-unsatisfiable.

PROOF. If t € Lp(S), then by definitionP () is in the least Herbrand model of
S, so it is in every Herbrand model ¢&f; it follows that S plus L < P(t) is &-
unsatisfiable. Conversely, #f plus L < P(t) is £-unsatisfiable, then every model
of S must fail to satisfyl < P(t), so must contai®(¢); thereforet € Lp(S). O

The second lemma characterizes emptiness.

13

Lemma 2 Given ané-satisfiable sef of Horn clausesp is empty inS if and only
if S plus the so-calleduery clausel < P(x) is £-satisfiable.

PROOF. If P is empty, then the least Herbrand modelStloes not contain any
ground atom of the forn#®(¢), hence makes < P(z) true.

Conversely, ifS plus L < P(x) is £-satisfiable, then its least Herbrand model
does not contain any ground atom of the foftf¢). Since every model of plus

1 < P(x) is also a model of, the least Herbrand model 6fis included in that
of S plus L < P(z), hence does not contain any ground atom of the fétf)
either; soP is empty inS. O

The third lemma characterizéstersection-emptinesshat is, given finitely many
predicate symbol#, ..., P,, whetherLp, (S) N ...N Lp,(S) is empty. (We say
for short that the intersection @1, ..., P, is empty in this case.)

Lemma 3 Given ang&-satisfiable setS of Horn clauses, the intersection &f,
..., P, is empty inS if and only if S plus the so-calledinal intersection clause
1 < Pi(x),...,P,(x) is E-satisfiable.

PROOF. The proof is similar. O

3.3 Semilinear Sets, Vector Addition Systems with StataecBing VASS

A vector addition system with statesr VASS(Reutenauer, 1993), is a counter
machine without zero-test. Alternatively, it is a finite aoaton where transitions
are labeled with twg-tuples of integers;,, v, € NP. A configurationis a pair
comprised of a stat& and ap-tuple of natural numberg € NP, which we write
as an atonmP(v). If there is a transition from stat® to stateP, labeledv,,, vy,
then the VASS may evolve from the configuratiBy{v) to the configuration (v —

Vin + Vout), Providedrv > u4,. It is understood that all operations, in particular
and>, are computed componentwise.

Formally, we may recast this in the unifying language of Hdauses as follows.
A VASSs any finite set of clauses of the form

P(v) 2)
P(z + Vout) <= Pi(x + 1iy) 3)

wherev, vy, Vous € NP,

14

Clauses (2) are calldaditial clauses and clauses (3) ateansitions

Sincep will usually be kept fixed, we don’t mention it in the defintioThis falls
into our general format of clauses modulo an equationalrthéle signature: is
comprised ofp distinct constants,, ..., a,, plus one constarit and one binary
function symbokl-, and the equational theo#y is the theory of the free commu-
tative monoid generated hy, ..., a,, with addition+ and unit0. In other words,
£ is the theory ACU stating that is associative, commutative, and Haas unit,
on the signature, ..., a,, +,0. Then the term>?_, n;a; represents the vector

(7117 c. 77’Lp).

A VASS V where every aton®(t¢) uses the same predicateis called aPetri net
Theplacesare the integerg 1 < i < p, or equivalently the distinct constants,,
..., a,. Themarkingsare thep-tuplesr € NP. If P(v) is a clause (2) irV, then
v is called aninitial marking of V. Thetransitionsare the clauses of the form (3),
which accords with our definition above.

Since we are only interested in the language recognized BSSYin the sense of
Section 3.2, that is in the sets of ground unit clauBé&s) deducible from a VASS
by unit resolution, we may without loss of generality asstutim, in transitions
(3), for everyi, 1 < i < p, theith component of;, and theith component of/,,
are not both non-zero. Then, lettingoe the vectow,,, — i, in ZP, there is no
ambiguity in writing such clauses

P(z +0) < Pi(z) 4)

understanding that unit resolution with the ground uniusi®P; () generates
P(v +), providedrv + § € NP. This is in particular, up to the representation
of transitions as clauses, the definition used by Reuter(a968).

Given any finite setsi and B = {v,..., 1} of vectors inN?, the smallest set
L 4 p containingA and such that € Ly g andy’ € Bimply v + v/ € Ly 5, can
also be described as the set of all vectars- Zle nivi, Vg € A,nq,...,ni, € N,

A linear setis any set of the fornL 4 5, and asemilinear sets any finite union of
linear sets. If every in clauses (4) is iftN?, i.e., consists of non-negative integers, in
other words if transitions (3) are such that = 0, then it is clear that the languages
of each predicaté in any VASS are semilinear sets. This is an instance of Parikh
(1966)’s Theorem, see below. Conversely, every semiliseaiuican be described
as the language aP in some collection of clauses (2) and (3) with = 0. In
particular every semilinear set is recognized by some (cdaigpe) VASS. The
converse fails, as shown by Hopcroft and Pansiot (1979)nwhe 5.

The semilinear sets are closed under intersection, uneonptementation, and pro-
jection. This is the fundamental observation behind Gingland Spanier (1966)’s
Theorem that the semilinear sets are exactly the Presbdefi@able sets, i.e., the

15

sets ofp-tuples of natural numbers definable as those satisfyingedonmula of
Presburger arithmetic with free variables.

Another fundamental result is Parikh (1966)’s Theorem.adRehat the commuta-
tive image of a string built from symbots, . . ., a, refers to the vectom,, ..., n,)
wheren; is the number of occurrences @fin the string. The commutative image
of a set of strings is the set of commutative images of its nemParikh’s theo-
rem states that the commutative image of any context-fregulage is a semilinear
set. This result is effective in the sense that, given a stiitee grammar:, we
can compute a finite family of finite sets, B; such that the commutative image of
the language produced loy is U; L4, 5,. Parikh’s Theorem also states that every
semilinear set can be realized as the commutative imagené segular set.

One extension of VASS that we shall require hereériznching VASSor BVASS
They were introduced in Verma (2003a); Verma and Goubaaittdcq (2005), pre-
cisely to solve the problems we present here. Since then det&et al. (2004)
invented independently the same concept, under the namectdr addition tree
automata(VATA), and showed that provability in the multiplicativeponential
fragment of linear logic (MELL) was equivalent to reachébpiln VATA/BVASS.
A BVASSIs a finite set of initial clauses (2), of transitions (3), asfdaddition
clausef the form

P(x +y) < Pi(z), P (y) (5)

whereP, P;, P, are predicate symbols.

If in all transitions (3) we have;, = 0, then BVASS are nothing else but Parikh im-
ages of context-free languages (Verma and Goubault-Lgr28905), and therefore
define just the semilinear sets, by Parikh’s Theorem. OtisenBVASS generalize
Petri nets and VASS. It is unknown whether this generabirais proper.

The covering problenfor VASS or BVASS is, given a VASS or BVASS and a
ground atomP(v), whether there is a ground atoR{»,) deducible fromS such
thatr, > v. (We sayP(v) can becoveredn S.) The VASS or BVASSS is bounded
if and only if there are only finite ground atoms deduciblenir§. A place: is
boundedin S if the set ofith components/[i| of vectorsv such thatP(v) is de-
ducible fromS'is finite. These properties can be decided for VASS easilyghby
noting that VASS are well-structured transition systemseK& and Schnoebelen,
2001). While BVASS are not even transition systems at ali@ar technique that
computes coverability sets backwards allows one to de@derability similarly:
see Goubault-Larrecqg and Verma (2002, Lemma 5).

A more complex technique, in the VASS case, is the use of thip-Kaller cover-
ability tree (Karp and Miller, 1969), which computes a &&et/(.5) of generalized
atomsP(v/)—generalized in the sense thdt € (N U {+o00})’—such that any

16

ground atomP(v) can be covered in the VASS if and only if KM/ (.S) contains
someP (V') with v/ > v. Moreover,K M (S) is finite and computable. This is be-
cause the elements &f M (S) are the labels of the Karp-Miller coverability tree,
which is itself finite and computable.

The main result of Verma and Goubault-Larrecq (2005) is terax this construc-
tion to BVASS. To be precise, we have proved in op.cit. thait,any BVASSS,
there is a finite sef M (S) (obtained from a generalization of Karp-Miller cover-
ability tree to the case of BVASS) such that:

(1) For every ground aton®(v) derivable fromsS, there is a generalized atom
P(V)in KM(S) such that/[i] = v[i] whenever/[i] # cc.

(2) For every generalized atof(v') in KM(S), there is a ground ator®(v)
deducible fromS such that/[i] = v/[i] wheneven/[i] # oo. Moreover, we
may choose[i] as large as we wish—exceeding any prescribed badtnd
N—for everyi such that/[i]| = occ.

(3) Finally, KM (.S) is finite and computable.

The first two items allow one to decide whether a given VASS bounded (check
that nooo sign occurs in any generalized atom &f\M/ (S)), and to decide the
covering problem: for any fixed ground atoR(v), there exists a ground atom
P(vy) deducible fromS with »; > v if and only if there is a generalized atom
P(V') in KM(S) such that/ > v. In the sequel, we shall in fact need more than
just the fact that boundedness and coverability are deledabd we require to be
able to compute the séf M (5) itself.

Thereachability problenis, given a VASS or BVASS' and a ground aton®(v),
whetherP(v) is deducible fromS. This problem is decidable for VASS, by the
Mayr-Kosaraju algorithm Mayr (1984); Kosaraju (1982); &alote and Tenney
(1977); Lambert (1992); see Reutenauer (1993) for a nicadatalled exposition.
This algorithm is non-trivial, and of unknown complexityhd best known lower
bound is that the problem is EXPSPACE-hard (Mayr, 1984;dnpt976). One of
the ingredients in the decision algorithm is the Karp-Miteverability tree. Even
though the latter generalizes to BVASS, it is still unknowinether reachability is
decidable for BVASS (and in particular whether MELL prouépiis decidable).

4 Alternating Two-Way £-Tree Automata

While tree automata recognize sets of terms on some signafui-tree automata
are meant to recognize sets of equivalence classes of teochslof . In particular,
when¢ is the empty theory, we shall retrieve the standard notidneef automata,
whether one-way (the usual kind), alternating, or two-walg. start with one-way,
i.e., run-of-the-mill€-tree automata (Definition 4), and work our way towards the

17

more complicated notions like alternating automata (D&dini5) and two-way
automata (Definition 6), with or without alternation. To aiot decidability in the
case of two-way AC automata, the push clauses involving AGl®Js need to be
further restricted, which leads us to define AC-standardwag AC-tree automata
(Definition 9), which is the most general form of automata fdrich we show
decidability in this paper.

4.1 One-Way-Tree Automata

Definition 4 (One-Way £-Tree Automata) An one-way&-tree automatonor £-
tree automatofor short, S, is a finite set of clauses of the form:

P(f(z1,... 20)) <= Pi(z1), ..., Pa(zn) (6)
P(x) < P'(z) (7)
wheref € Y and P, Py, ..., P,, P’ are elements of a finite set of unary predicate
symbols called thetatesof the automaton, and,, ..., z, are distinct variables in

(6).
Clauses (6) are callegop clausesand clauses (7) are-clauses

This definition does not depend @h However, we shall always understand the
semantics of-tree automata as that given in Section 3. In other words,aye s
“E-tree automaton” to stress the fact that they will alwaysdanstood modulé.

The pop clauses (6) are ordinary tree automata transitlanstively, (6) reads
as “if x; is recognized at statg;, and ..., and, is recognized at statg,, then
f(z1,...,x,) is recognized at statB”. The e-clauses (7) similarly correspond to
epsilon transitions. A more thorough discussion of treemata as clauses can be
found in Goubault-Larrecq (2002) or in Fruhwirth et al. (199

The restriction that, ..., z, should be distinct variables in pop clauses (6) is to
avoid technical problems in the sequel. Allowing repeatsiiables poses no prob-
lem in the case of tree automata (i.e., wigeis the empty theory): using repeated
variables, as inP(f(z,z)) < Pi(x), would allow us to deal with tree automata
with equality constraints between brothéBogaert and Tison, 1992).

The careful reader will have noticed that we have not defimgdimitial or final
states here. As far as initial states are concerned, thaysatess in tree automata,
since(-ary transitions cater for them; i.e., pop clauses of thenféX(c) <, where
c is a0-ary function symbol (&onstan} just definesP as an initial state. We have
chosen to let final states be specified independently of aateyrbecause this is
more versatile in proofs. On the other hand, this shall fare¢o talk of “stateP

18

being empty in automatof”, instead of just saying thaf is empty. If some state
is explicitly specified as being final then the language raecsgl by the automaton
will be the set of terms recognized at the final state. Havinly one final state

instead of many causes no loss of expressiveness for thmai#iclasses that we
are interested in.

Given a predicate symbol (a statB) the language of all terms recognizedrat
in an E-tree automatord is already defined: see Section 3.2, and specialize the
notions defined there -tree automata.

Some readers may have read other definitions of languagesnod recognized at
statesP. One of the most common goes as followsruk of a term¢ against the
tree automatord is a tree, whose nodes are labeled by péitst)—let us write
them P(¢) for convenience—, wher® is a state and is a ground term, and such
that every node’(f(ty,...,t,)) in the run has sonsP;(ty), ..., P,(t,), where
P(f(z1,...,2,)) < Pi(xy),..., P,(x,) is a transition (a pop clause) of the tree
automatonS. Thent is recognizedat P in S provided there exists a run with root
(P,t).

A run is then just a derivation using rules of the form:

Pi(t) ... Pu(ty)
P(f(ty, .. tn)

P(f(z1,...,2,)) < Pi(x1),..., Py(z,)

But this is just the unit resolution format; see Section &anversely, any ground
atom P(t) derivable by unit resolution (in particular, under the foft)) from S
is clearly the root of a run. One may rightly claim that ruare unit resolution
derivations from the clauses defining the automaton

4.2 Alternating, Two-Wag-Tree Automata

Frahwirth et al. (1991) note in particular that so-calledueed regular unary-
predicate programs, which generalize pop clausescaniduses properly in case
£ is the empty theory, can be viewed as alternating tree auto(8éutzki, 1985).

Following this insight, let us define:

Definition 5 (Alternating £-Tree Automata) An alternatingE-tree automatofis
any finite collection of pop clauses (6),®€lauses (7), and ahtersection clauses
of the form:

P(z) < Pi(x),. .., Py(z) (8)

19

wheren > 2.

Note that intersection clauses are more powerful than fimarsection clauses.
The latter allow us merely to check intersection-emptire&ssrdinary, i.e. non-

alternating, automata. While intersection clauses arerabindeed, we shall see
that they cause some trouble in alternating AC-tree autmmmaaking the empti-

ness problem undecidable (Proposition 11). This is alsowdghall be interested
in intersection-emptiness (see Lemma 3): in the presenagekection clauses,
intersection-emptiness would reduce to emptiness, budmatthout them.

Another generalization of tree automata is two-waynessugé¢ehere a definition
that suits our needs, but is not entirely like usual defingiof two-way automata
(Shepherdson, 1959). Two-wayness can be defined elegaimly clauses, as was
pioneered in Frihwirth et al. (1991). This form of two-wagaés crucial in appli-
cations to cryptographic protocols (Goubault-Larrecd.e@04). To take a typical
example, here are the clauses describing what a Dolev-Yaagr may know rel-
ative to the use of (symmetric) encryptionypt:

I(crypt(M,K))<=1(M),I(K)
I(M) <= I(crypt(M, K)), I(K)

The first clause states that if the intruder knawWsand the keyK’, he knows (can
deduce) the ciphertextypt (M, K) (“ M encrypted withK™); this is a pop clause.
The second clauses states the converse, that the intrugielaoiypt: if the intruder
knows some ciphertextrypt (M, K') and the appropriate kdy, then he knows the
plaintext)M . This is a push clause, as defined below.

Definition 6 (Two-Way, Alternating Two-Way £-Tree Automata) Atwo-wayé-
tree automaton is any finite set of pop clauses (6x-ofauses (7), and gbush
clausesf the form:

Pz(l‘l) <:P(f($1, ce 7xn))v Pi1(xi1)v SRS Bk(xlk) (9)

wherel <i<n,1<4y,...,ix <n,andi & {iy,... i}

Similarly, analternating, two-way -tree automators any finite set of pop clauses
(6), ofe-clauses (7), of intersection clauses (8), and of push €a(3).

Just like pop clauses (6) can be used to construct new téfms. . ., z,,) recog-
nized atP from termsz; recognized af, ..., x, recognized aP,, push clauses
(9) destructterms. An intuitive reading of (9) is: “iff (x4, ..., z,) is recognized
at P, andz;, is recognized af;,, and ... and;, is recognized aF;, , thenz; is
recognized af’;”.

If £ = 0in (9), then we call this atandard push clausetherwise, call this a

20

conditionalpush clause. More precisely:

Definition 7 (Standard, Conditional Push Clauses)A standard push clauggany
clause of the form:

Pi(x;))<=P(f(z1,...,2,)) (10)

wherel < ¢ < n. A conditional push clausis any clause (9) witlk # 0, i.e., a
push clause that is not a standard push clause.

Accordingly, astandard (resp. alternating) two-wéstree automatom is such that
every push clause of is standard.

Given any sefr of function symbols, we say thdtis F-standardf and only if for
eachf € F, push clauses of the form (9) are standard.

A standard push clause (10) would be written, using the iotsibf set constraints,
asf(;)l(P) C P, stating that the set of termissuch thatf (¢4, . .., ¢,) is recognized
at P, for somety, ..., t; 1,t;11,...,t,, IS CcOntained in the set of terms recognized
atP,.

We end this tour off-tree automata by discussing the side-conditions on push
clauses, namely < i < n, 1 < 4y,...,i < n.andi & {iy,...,ix}. This
means that the variable; on the left-hand side can only be used in the atom
P(f(z1,...,x,)) but nowhere else on the right-hand side. Another presentati
of push clauses is

Pi(z;) < P(f(x1,...,2)), Bi(x1), ..., Bi_1(x;), Bix1(wit1), Bu(zy,)

whereB;(x;) denotes any finite conjunctia®, (z;), . . ., Pj,,(z;), for eachj. Note
that we explicitly exclude having some conjunctiB(z;) on the right hand side.
Not doing this, that is, allowing for the following more geakkind of push clause,
which we callgeneral push clauses

Pi(z;) < P(f(x1,..., %)), Bi(x1),. .., By(zy) (11)
is equivalent, or so we claim, at least in case of the theoryoA@he or more asso-

ciative and commutative symbols, to allowing for push cé&su®) plus intersection
clauses, provided there is at least one function symbolityfane in¥_.

Indeed, it is clear that (11) can be encoded as

q(zi) <= P(f(x1, .. 20)), Bi(z1), .., Bioi(wio1), Bis1(Tig1), - - -, Bu(wy)

by introducing a fresh predicate symlgolThe first clause is an intersection clause,
and the second clause is a push clause of the form (9). Cahyeasy intersection
clauseP(x) < Pi(x), P»(x) can be encoded using general push clauses as

q(f(x)) <= Py(x)
P(x) <q(f(z)), P()

wheregq is a fresh predicate symbol, arfds some function symbol of arity; we
let the reader show that the case of intersection clausesit{8): > 2 reduces to
the casen = 2. This encoding works provided the theafyis such that for any
termss andt, if f(s) = f(¢) thens = ¢. This is clearly so for the theory AC of one
or more associative and commutative symbols.

In other words, using the general format (11) for push clawseuld reintroduce
the intersection clauses (8) in disguise.

4.3 AC-Tree Automata

We shall deal specifically in this paper with the followinguatjonal theory AC.

Definition 8 (AC) The theornyAC is defined on signatures that can be splitin so-
called AC symbols+;, ..., +,, the remaining symbols being calléee function
symbols AC is the theory of associativity and commutativity4ef, ..., +,, i.e.,
the theory axiomatized by:

s+ (t+iu)=(s+it) +iu S+it=1t+;s

foreveryi, 1 <i <p.

Accordingly, we have the notions of AC-tree automata, twaWC-tree automata,
standard two-way AC-tree automata, etc. Recall that we laesdefinedF-standard
two-way AC-tree automata (Definition 7). Letting the syndol{+,...,+,} be
AC and those it \ {+1, ..., +,} be free, and specializing Definition 7, we get:

Definition 9 (Free-Standard, AC-Standard Two-Way AC-Tree Automata) A +;-
push clausé¢l < i < p) is a push clause (9) witli = +;, i.e., of one of the forms

Pi(x1) < P(z1 +; x2)
Py(x9) <= P(x1 +; x2)
Py(x1) <= Py +; 22), Py (), ..., Py (x2)

22

Py(x2) <= Py +; 22), P (21), ..., P{(z1)
where the first two are standard, and the last two are condélio

A two-way (resp. two-way, alternating) AC-tree automat®AC-standardf and
only if all +;-push clauses, < i < p, are standard.

A free-push clauses a push clause (9):

Pz(l‘l) <~ P(f(xlv .- '7xn))7f)i1(xi1)v - 7P1k(xlk)

wheref is free.

A two-way (resp. two-way, alternating) AC-tree automatefige-standardf and
only if all free-push clauseg, < i < p, are standard.

AC-standard two-way AC-tree automata will be the largeasglof automata on
which we shall obtain decidability results in this paper.

We briefly describe how the ACU case can be reduced to the A€ edsere ACU

is the theory where some or all symbelsadditionally have a uni®;. First create
fresh statesero; and add clauses:ro;(0;) andzero;(z+;y) < zero;(x), zero;(y)

for all symbols+;. For every other statg add clauseg(z +; y) < q(z), zero;(y)

for every+;. For every clause of the for(z +; y) < Pi(z), P»(y), add clauses
P(z) < Pi(x), P2(y), zero;(y) and P(z) < Pa(x), Py (y), zero;(y). The intuition

is that for every state in the ACU automaton an atog(t) is derivable iffq(t’)

is derivable for every’ obtained fromt by successive replacements of subterms
s+00; by s and of subterms by s+;0;,. The clause’(z) < Py(z), Py(y), zero;(y)

can be thought of asclauseP(z) < P,(x) together with intersection emptiness
test on state#, andzero,;. As we will show intersection-emptiness to be decidable
for AC-standard two-way AC-tree automata, hence such eRds not increase
expressiveness and can be effectively eliminated.

Other interesting equational theories are those of Abgranps (AG), which ex-
tends ACU by requiring that every element have an inverse: ttae theory ACUX

of ACU symbols+; such that +; ¢t = 0;, which extends AG. The latter is in fact
the theory of the bitwisexclusive oloperation, which has independent interest, al-
ready in cryptographic protocol verification. See Vermad@fb, 2004) for results
on the latter theories; let us just say that the AG and ACUXties are simpler to
deal with than the AC and ACU cases.

We shall also sometimes mention the theory A of associgi@ne, and the theory
ACUI extending ACU with the idempotence axiomt; ¢t = t. While AC is the
theory of non-empty finite multisets, and ACU is the theoryfiafte multisets,
ACUI is the theory of finite sets, with-; as union. Note that ACUX is also the
theory of finite sets, however with; as symmetric difference.

23

5 Undecidability Results

The purpose of this section is to enumerate a few cases whgrgness is unde-
cidable for (resp. alternating, two-wag)}tree automata. The stress is put on the
theory AC, but we also consider ACU and AG, the theory of Adrelgroups. The
main lesson to be learnt here is that alternation cause<idadbality.

Let £ be an equational theory on some signattireontaining a symbol-, such
that£ entails that+ is associative and commutative. For any N, n > 1, and
any termt¢, write nt for ¢ + ... + ¢, wheret occursn times. Writer:1 n;t; for
the sumn,t; + ... + nitr, where it is assumed th&t> 1 andn; > 1 for each,

1<i<k. B

Definition 10 (Torsion-Free) An equational theor¥ where+ is associative and
commutative isorsion-freew.r.t. pairwise distinct constants, . .. ,a; iff ©% | n;a; =
SF | nla; impliesn; = n/ for everyi, 1 <i < k.

The point is that torsion-free theories allow one to enceg®es(ny, ..., n;) as
sumszi?;1 n;a; iN a one-to-one manner. The theories AC, ACU, AG are torsion-
free; ACUX and ACUI are not. The above definition gives us tleiHility to
choose the constants. For example the constattwhich is unit of+ should not

be considered here.

Proposition 11 Let £ be any theory, with an associative-commutative symhol
which is torsion-free w.r.t. four constants. Emptinessidecidable for alternating
(one-way)-tree automata.

PROOF. We use a reduction from the emptiness problem for r.e. setsevery
r.e. setF, there is a two-counter machine (with countersRk;, R,) such that\/
accepts, starting witl®; = 0, exactly when the initial value aR; is in E. It then
suffices to encode configurations &of that lead to acceptance using alternating
E-tree automata.

Recall that a two-counter machine (Minsky, 1961) is a firateeled transition sys-
tem with an initial statey, a final (acceptance) statg, and transitiong;——¢’
wherea may be IncR;, DecR; or ZeroR;, i € {1,2}. Inc R; incrementsRk;, Dec
R; checks whetheR; is > 1, and if so decrement®;, and ZeroR; checks whether
R; =0.

A configurationof the machiné\/ is a triple(q, m, n) wheregq is a statem,n € N
are the values oR; andR, respectively.

We then use an encoding similar to that of Ibarra et al. (2084¢ept that the
direction of computation is reversed. By a remark of op.titee constants actually

24

suffice for this Proposition. We shall describe it using f@und let the reader do the
exercise of realizing why one of them is not necessary.agel <i,j <2 be
the four constants in the statement of the proposition. @ardtions(q, m, n) of
the two-counter machine are encoded as ground atoms+ z)al + za? + (n +
y)as + ya3) wherez,y > 1. IncrementingR; will be simulated by adding:,
while decrementing it will be simulated by adding, and similarly for R,. The
encoding is not one-to-one: e.g., the valueg in the above encoding may be any
positive numbers. However we will ensure that at least ol atom is deducible
corresponding to each configuration of the two-counter nma&ch

Introduce the clauses in Figure 2, wheseas, is_a3, is_a?, is_a3, rop, ..., are
predicate symbols distinct from all states, ghd {1,2} Also, with each state

Predicate defined by recognizes:
is_al is_al(al) justa’
zero; zeroj(z +vy)<is_al(x),is_al(y) nal +na,n>1
zero;(z + y) < one;(x),is_a?(y)
one; one;(r +y) <is_al(x), zeroi(y) (n+1)al +na?,n>1
T0,0 roo(z + y) < zeroy (z), zerog(y) mat + ma? + na} + na3,
m,n >0
nn; nn;(x) < zero;(x) (n+p)a; +paZn>0,p>1

nni(z +y) <is_al(x), nn(y)
state state(x + y) <= nny(x), nns(y) (m+p)aj + pai + (n+ q)a
+qaz, m,n > 0,p,q > 1

sty st (x +y) <is_al(x), state(y) (m+ p)aj + pa? + (n + q)as
+qazn > 0,m,p,q > 1

sty sty (x +y) <=is_aj(x), state(y) (m+ p)aj +paf + (n + q)a
+qa3, m>0,n,p,q>1

st9 st(x +y) < zeroy(x),nna(y) pal + pa? + (n + q)ad + qa2,
n,p,q =0

sty sty(x +y) < nny(x), zeroa(y) - (m+ p)ay + pai + qa; + qa3,
m,p,q =0

Fig. 2. Auxiliary clauses used in encoding two-counter niraes

of M, associate two fresh predicate symbglsandg,, distinct from each other,

25

from every state, and from every predicate introduced ab#gd the intersection
clausesy (z) < q(x), st (z) for i € {1,2}; ¢;" recognizes every configuration
recognized by, such thatR; is not zero. We translate the machiheas follows:

(1) Acceptanceyy(x) < state(x).

) ¢-%¢,a=IncR;: q(z +y) < is_a2(z),qd] (y).
(3) ¢-%+¢', a = DecR;: q(z +y) < is_a;(x),q (y).
(4) ¢-%¢', a = ZeroR;: q(z) < ¢ (z), st ().

Let S be the set of clauses thus obtained. We have the followingtams:

Claim 12 If (¢, m,n) is a configuration of\/ that leads to acceptance, i.e., to some
configuration(q;, m’, n’), then for someV > 1, the atomg((m + x)a} + xa? +
(n + y)ai + ya3) is deducible fromt' by positive unit resolution for alt, y > N.

PROOF. We do induction on the number of moves made by the machine tihhem
configuration(q, m, n) to lead to acceptance. If the number of moves is zero then
it meansy = ¢; hence we can use the claugézr) < state(z) to deduce all atoms

of the formg;((m + z)ai + xzai + (n + y)aj + ya3) for z,y > 1. HenceN =1
satisfies the requirements. The main interesting case is tileemachine makes an
increment move from the configuratidn, m, n). Suppose it increment8; to go

to configurationq’, m + 1, n) which leads to acceptance. By induction hypothesis
we have someV’ > 1 such thaty((m + 1 + z)al + za? + (n + y)al + ya3) is
deducible for alle, y > N'. Theng'{ ((m + 1 + x)al + za? + (n + y)al + ya3) is
also deducible for alt, y > N’. We use the clausgz +) < is_a?(z), ¢ (y) to
deduce;((m + 1+ x)aj + (z + 1)a? + (n+ y)aj + ya3) for all z,y > N’. Hence

by letting N = N’ + 1 we see that we can deduce atopin + x)al + ra? + (n +
y)ad +yad) forallz,y > N. O

Claim 13 All unit clauses deducible froifi by positive unit resolution of the form
q(t) are such that is a ground term of the form + x)ai + za? + (n+y)as +ya3,
for somer,y > 1, where(q, m,n) leads to acceptance if/.

The first claim means that, although we may not deduce alesgmtatives of the
configurations of the two-counter machine leading to acuem, we can deduce at
least one representative (actually all representativespXinitely many of them).
In particular we see that emptiness of the r.e. set repreddiyt the two-counter
machine is equivalent to the emptiness of the sjate our corresponding automa-
ton. O

In Section 4.1, we dismissed pop clauses with equality tesiseen brothers, that
is, clauses of the forn®(f(xy,...,x,)) < Pi(z1),..., Py(z,) Wherez, = z;

26

for some: # j. The reason is that it is all too easy to encode intersecteurses
using pop clauses with equality tests between brothersthegwith standard push
clauses; e.qg., instead of writing(x) < P;(x), P»(x), we may write the clauses:

q(f (2,) = Pi(x), P(x)
P(x) <= q(f(z,y))

wheregq is a fresh predicate symbol, arfdis any free binary function symbol. It
follows:

Proposition 14 Let £ be any theory, with an associative-commutative symbol
and a free binary symbaof, which is torsion-free w.r.t. four constants. Emptiness
is undecidable for standard two-wattree automata with equality tests between
brothers.

In the cases of AC, ACU and AG, we can even reduce the numbeortants
to one, say, since we may encode the four constants needed earlieryas, sa

f(a,a), f(a, f(a,a)) andf(a, f(a, f(a, a))).

We saw in Section 4.2 that general push clauses allowed @rectmle intersection
clauses, too. The encoding required a unary synftbolbe present in the signature.
However we let the reader verify that a similar encoding isgildle using a binary
AC symbol+ in place of the unary symbal. Let ageneral two-way-tree au-
tomatonbe a collection of pop clauses (6)¢clauses (7), and general push clauses
(11). The following is then immediate.

Proposition 15 Let £ be any theory, with an associative-commutative symhol
which is torsion-free w.r.t. four constants. Emptiness nslecidable for general
two-wayé&-tree automata.

Itis interesting to note that unlike in case of theories AClLAand AG, intersection-
emptiness is decidable for tree automata modulo ACUX, endghe presence of
alternation and general two-wayness, and these autoneaéaaally expressive as
one-way ACUX automata (Verma, 2004). We finish this enunnemadf cases of
undecidability by mentioning the following, which dealstiwihe theory A of as-
sociativity, without commutativity. This shows that thecttkable cases modulo A
are even rarer than modulo AC.

Assume our signature contains only one associative symbaid finitely many
constants. Ground terms, e.@+ b+ a+ c+ c can then be equated with non-empty
words, hereibacc.

Proposition 16 The languages recognized by one-way A-tree automata orna sig
nature containing only one associative symbol, and finitedyy constants, are the
context-free languages not containing the empty word.

27

One-way A-tree automata are not closed under intersechndersection-emptiness
is undecidable for one-way A-tree automata. Both resultd been when all free
function symbols are constants.

PROOF. Any context-free language not containing the empty word can be de-
scribed by a grammar consisting of productions of the form:

P—a 12)
P—P P (13)

whereP, P;, P, are non-terminals, andare terminals (letters), and there istart
non-terminalP,. This is the so-called Chomsky normal form (Davis and Weyuke
1985). The semantics of such productions are describedlgkgdiorn clauses of
the form:

P(a) represents (12)
Pz +vy) < Pi(z), Px(y) represents (13)

where+ is an associative symbol denoting concatenation. The kgl is then
exactly the set of termsbuilt on + and the constants modulo associativity that
are recognized at stat®, in the resulting one-way A-automaton. The converse
translation, from one-way A-tree automata to context-geenmars, is obvious.

It is well-known that context-free languages not contagnihe empty word are
not closed under intersection, and that the problem of erags$ of intersection of
two context-free languages is undecidable (Davis and Way1©85), whence the
claim. O

Note that emptineds decidable for one-way A-tree automata, even in polynomial
time; see Lemma 17 below. Since one-way A-tree automataarelosed under
intersection, but they are closed under unions, they arelosed under comple-
mentation either.

Alternating one-way A-tree automata are a natural gereatabin of one-way A-
tree automata which are closed under intersection. Thigrgénation has been
studied earlier, in the case where the signature contailystbe symbol+ and
unit 0 besides constants, by Okhotin (2001), under the apt namergiinctive
grammars. Just as for alternating AC-tree automata, meshipeis decidable for
conjunctive grammars, again in polynomial time, while eimgds is undecidable.
In the AC case, membership is NP-hard (Verma et al., 200Badyr for one-way
automata (without alternation).

28

Note that one-way-tree automata are always closed under unions, triviadly, f
every equational theory: if S; and.S, are two one-way-tree automata, then for
every fresh predicate symbdl, the one-wayé-tree automatort = S; U S; U
{P(z) < Py(z), P(z) < Ps(z)} issuch that.p(S) = Lp,(S1) U Lp,(Ss).

Note finally that emptiness of one-wditree automata is always decidable; this
can also be deduced from Ohsaki and Takai (2002), Lemma 2thentact that
Ohsaki’s regular equational tree languages coincide \aitigliages of-tree au-
tomata, whert is a linear theory.

Lemma 17 Let& be an equational theory. For every predicate symBplor every
one-way€-tree automatory, the set of ground terms recognizedratn S modulo
£ is exactly the set of ground termssuch thats ~¢ ¢ for some ground term
recognized af in .S modulo the empty theory.

In particular, for every equational theowy, emptiness of one-watree automata
is decidable in polynomial time.

PROOF. The first claim is by induction on unit resolution proofs. Imexdirection,
let s be any ground term such th&Xs) is derivable by a positive unit resolution
proof modulo€ from S, and show that there is a ground tetrsuch thats ~; ¢ for
some ground termrecognized af’ in S modulo the empty theory. The least trivial
case is wherP(s) has been derived by a pop clauBéf (z,y)) < Pi(x), Pa(y):
thens ~¢ f(s1,s2) such that we have shorter derivationsif(s;) and P (s»)
modulo&; the induction hypothesis gives us two ground tefinse s; andt, ~¢
so, and the required termis f (¢4, t5).

In the other direction, every termrecognized af’ in .S modulo the empty theory
is also recognized & in .S modulo&. We conclude because, by definition, states
P in E-tree automata recogniZeequivalence classes of terms.

The second claim follows from the first and the fact that engss is decidable
in polynomial time for one-way tree automata (Comon et @97, Gécseg and
Steinby, 1997), by standard marking techniques. In a nlifg/ieen any one-way
tree automaton, erase every argument of predicate symlm)sgplace every pop
clauseP(f(z1,...,x,)) < Pi(z1),..., P.(x,) by the propositional clause «
Py, ..., P,, and every-clauseP(z) < P'(z) by P < P'. ThenP is non-empty
in the input tree automaton if and only R is derivable from the translated set
of propositional Horn clauses; deciding the latter can beeda polynomial time
(Dowling and Gallier, 1984). O

Before we end this section, let us recall that although emegs is undecidable
for alternating AC-tree automata, some problems, in paercthe membership

29

problem, are decidable.

Lemma 18 Membership is decidable for alternating AC-tree automata.

PROOF. A naive strategy for deciding whether ternis accepted at statgis as
follows. Let the setS of subterms of be defined inductively as follows:< S, if
f(t1,...,t,) € Sforfreeftheneach; € S, andift; +t, ~4c s € Sthent; € S.
Then we apply the automata clauses to obtain more and mavablerfacts of the
formp(s), s € S, till no such facts can be further obtained. Then we checkidre
p(t) has already been obtainedd

The careful reader will notice that the proof of Propositidnestablishes that we
can encode any r.e. set using alternating AC-tree autonmasame sense. See in
particular Claims 12 and 13. If we were indeed able to encogera. set, this
would contradict the above lemma. The explanation of thagax lies in the fact
that the encoding of Proposition 11 is a relation, not a fiencteach counter ma-
chine configuration has infinitely many representationgasrgl atoms, and in our
encoding we derive all but finitely many representatives afheof the required
configurations.

Recall that emptiness is undecidable but membership isldelg for conjunctive
grammars. We have just shown that this is again the case iatimating AC-tree
automata.

In the rest of the paper, we exclude alternation from comatd®, and deal with
two-way AC-tree automata. However, intersection-emssneill be interesting to
us, mainly because of the results of Goubault-Larrecq €2804).

6 Deciding The Constant-Only Case

Because of the negative results of Section 5, we must regtadormat of clauses.
We first consider two-way AC-tree automata, as defined ini@edt, restricted to
the constant-only case. The latter means that we considérisrsection that the
signatureX consists op constants,, ..., a,, and exactly one AC symbet. This
might seem like a drastic restriction. However we shall usi@ad that this is where
all the difficulties concentrate.

Since all free function symbols are constantpop clauses (6) are just unit clauses
P(a;), or of the formP(z + y) < Pi(z), P»(y). Two-way AC-tree automata, in
the constant-only case, are then’Aguitomata, as defined in Definitions 19 and 22
below.

30

In general, we shall use clauses of the following form thioug this section:

Pz +y)«<=Pi(z), P(y) (14) P(z) <= Pi(z +y) 17)
P(a;) (15) 1< P(z),...,P(x) (18)
P(z) < Pi(x) (16) 1 <= P(u) (19)

wherex andy are distinct variables, andis a closed term. Clauses (14) argoop
clauses(15)base clauseg16)¢-clauses(17) (AC-)standard--push clauseq18)
final intersection clause®r query clausesvhenk = 1, and (19)test clauses

Definition 19 (AC°-Automaton) AnAC°-automatoris a finite set of--pop clauses
(14), of base clauses (15), andetlauses (16).

By standard marking techniques, it is decidable whethergavgn stateP of an
AC’-automatonA is empty inA.

Things get more complex in the presence of final interseatianses. First, note
that ground terms in the constant-only case are finite lioeanbinations"?_, n;a;,
with n; € Nand>?_, n; > 1: equivalently, non-zerp-tuples of natural numbers.
Now observe that if we read clauses (14), (15), (16) moduwo@ativity (A) in-
stead of mod AC, what we get is exactly a context-free gram4)) is usually
written P — Py, P», (15)isP — a;, (16) isP — P;. We have already made this re-
mark in the proof of Proposition 16. We can then state the@falg reformulation
of Parikh’s Theorem.

Lemma 20 (Parikh) Call a set of non-zerp-tuples of natural numbe’sC°-recognizable
if and only if it is Lp(A) for some ACG-automaton4, modulo the identification of
the ground sunY_!_, n;a; with thep-tuple (ny, ..., n,).

For every AC-automatonA, Lp(.A) is an effective semilinear set, i.e., it is a semi-
linear set which is computable froph.

The AC-recognizable sets are the semilinear sets of non-zeresugflintegers.

The results of Section 5 imply that sets recognized b{-aGtomata extended with
general push clauses or even just intersection clauses gemerahot semilinear.
Nonetheless, any finite intersection of semilinear setsnslgmear, so:

Lemma 21 The satisfiability of sets of clauses (14), (15), (16), ({B89) is decid-
able.

PROOF. Let A be all non-test, non-final intersection clauses in the gse&trb,
1 < Pi(z),..., P} (z) be the final intersection clauses$h and L < P7(u;)
be the test clauses ifi. By Lemma 20 the Ianguagdspj@- (A) and Lp;(A) are
effectively semilinear. Thef is £-unsatisfiable if and only if for some Lpi (AN
-..NLp; (A) # 0, orfor somej, u; € Lp;(A), which is effectively decidable. O

31

In particular, intersection-emptiness of AGutomata, and whether a given tuple is
recognized by an AGautomaton, are decidable problems.

More generally, Parikh's Theorem implies that A@cognizable languages are ef-
fectively closed under intersection, union, complemeoat&nd projection, using
the obvious fact that any semilinear setan be effectively converted to an AC
automaton recognizing exacth.

The results of Verma and Goubault-Larrecq (2005, Sectiomg)y that satisfia-
bility is also decidable in the presence of standargush clauses (17). (The case
of conditional+-push clauses is still open.)

Definition 22 (Two-Way AC?, Standard Two-Way AC’) Astandard two-way AG
automatons a finite set oft--pop clauses (14), of base clauses (15)¢-ofauses
(16), and of standard--push clauses (17).

Atwo-way AC’-automatormay additionally contairwonditional+-push clauses
P(z) <= Pi(z +y), P(y) (20)

Showing that the emptiness of standard two-way-&@tomata is decidable is easy,
using resolution techniques. We let the reader check tpat resolution with eager
subsumption and splitting terminates. Termination is bgkBon’s Lemma, which
states that theC ordering onN? is a well-quasi ordering. The resulting algorithm
resembles those based on well-structured transitionregstieinkel and Schnoebe-
len, 2001), except that splitting is necessary as well. Th@uas reader may find
the details in Appendix A. We do not deal with this in the bodytlee paper, as
we are interested in the more general intersection-engstipeblem, and the latter
does not seem to be amenable to resolution techniques.

Intersection-emptiness of standard two-way’Adtitomata is decidable. We reca-
pitulate the main results of Verma and Goubault-Larrec@&2&ection 4).

Lemma 23 Given a standard two-way AGutomatonA, we can effectively con-
struct a BVASS), such that for eveny in A, 37 na; € Lp(A) iff P(v) is
derivable fromV, wherev = (ny, ..., n,).

Remark 24 Given any/’ € (N U o), the setL_(+') of all non-zero vectors €
NP such thatv < v/ is semilinear. Indeed, letting' = (n},...,n,), (n1,...,n,) IS
in L_(v") if and only if

nlgn'l/\.../\npgn;
Any <nyV...Vn, <n)

AN (np#0V...Vn,#0)

32

wheren < oo andn < oo are abbreviations for the formula true. This is a Pres-
burger formula, hencé _ (1) is semilinear by Ginsburg and Spanier (1966)’s The-
orem. We also writé _ (v/) the set of sums.._, n;a; where(ny, ..., n,) isin L. (V).
This should entail no confusion.

Theorem 25 There is an effective procedure transforming any standaatway
AC’-automatonA into an AC-automatonB such that for every? in A, Lp(A) =
Lp(B).

This is Verma and Goubault-Larrecq (2005, Theorem 2). Th&hown as follows.
Let V be the BVASS equivalent tgl computed using Lemma 23. Let us equate
vectors(ny, ...,n,) with sumsY_?_, n;a;. Given any standard--push clause”,
say P(z) < Pi(z + y), in A, the setL. of terms recognized aP in A using
this clause is the set of all vectarghat are strictly covered, i.e., strictly less than
some vector, recognized af’; in V. By the properties of{ M (S) (Section 3.3),
L¢ is the set of all vectors such that< 1/ for some generalized configuration
V' such thatP, (v/) is the conclusion of some covering derivation. Since theee a
only finitely many covering derivationg,- is therefore a finite union of sets of the
form L_(v'), which are semilinear by Remark 24. Note however that tlissia-
tion from standard two-way AGautomata to A€-automata involves a construc-
tion similar to the Karp-Miller tree construction for VAS&nd hence does not give
us any primitive-recursive upper bound on the time and spespgirement.

In particular,

Corollary 26 The set of terms recognized at any state of any standard &yo-w
AC’-automata is effectively semilinear.

So the languages of standard two-way “Adlitomata are effectively closed un-
der intersection, union, complementation and projeci#dso, by Theorem 25 and
Lemma 21:

Corollary 27 The AC-satisfiability of sets of clauses of the form (14))}-{8@e-
cidable.

Standard two-way AGautomata have been criticized in the past because they can
only describe semilinear sets, and as such may be felt tebgmlessiveness. While
this is arguable, notice that the translation from stantacdway AC’-automata is

far from trivial, and probably requires non-primitive resive time and space. Our
feeling is that they describe “non-trivially-semiline&ts’, in a similar way as, say,
any non-primitive recursive decision problem (i.e., whére answer is a Boolean
value) describes “non-trivial Booleans”.

Another answer to this critique is that conditiorabush clauses, which we cannot
handle at the moment, extend this expressive power draaligtim a conditional

+-push clausé’(z) < Pi(z +y), Q1(y), ..., Qn(y), the atomg); (v), ..., Qn(y)

33

are called theonditions Let thecondition predicatebe all the symbol§) such that
Q(y) is a condition in some clause gf. Call A a Petri two-way AC-automatorif
and only if, for every condition predicatg in A, the only clauses it of the form
Q(t) < Ay, ..., A, are base claus€g(a;).

It is easy to extend Lemma 23 to the case of Petri two-wa{-A@omata: replace
clausesP(z) < Pi(z+y), Q1(y), ..., Qn(y) in Aby all BVASS clause$” (z) <
Pi(z + ¢;), wherei ranges over those indices such tdat(a;), ..., Q,(a;) are
clauses in4, plus the two families of clause®’(z + (—4;)) < P'(x) and P(x +
d;) < P'(x),1 <1 < pensuring that zero vectors are excluded.

It is then also clear that, up to some coding details relagginato the inclusion
or exclusion of zero vectors, every language accepted by AS8Vis accepted
by a Petri two-way A€-automaton (even without standatdpush clauses). This
relies on the expressiveness of conditiosrapush clauses. Since every language
accepted by some VASS is trivially accepted by a BVASS, ngrio Petri two-
way AC’-automata would extend the expressive power of our autotoatelude

at least languages expressible as sets of reachable Retrariengs. Emptiness of
Petri two-way AC-automata reduces (is in fact equivalent to) emptinessrof la
guages accepted by BVASS, which is decidable (Verma and &dtibarrecq,
2005). However, we are more interested in intersectiontem@gs; and intersection-
emptiness includes the problem of intersection-emptimdBVASS, hence of
VASS. The latter problem is in turn equivalent to Petri neteability (Reutenauer,
1993), which is decidable by the rather complex Mayr-Koseaégorithm, and is
EXPSPACE-hard (Lipton, 1976). Intersection-emptinessequivalently reacha-
bility for branchingVASS is not known to be decidable at the moment. In other
words, intersection-emptiness of Petri two-way Aglitomata is not known to be
decidableA fortiori intersection-emptiness of two-way AQutomata is not known
to be decidable. We would find it surprising nonetheless ¥f ainthese problems
were undecidable.

Corollary 27 was the main result of this section. We shall ilge show that
intersection-emptiness of two-way, non-alternating A@anata with only stan-
dard+-push clauses is decidable in Section 8.

7 Closure Properties of One-Way and Standard Two-Way AC-tre automata

Our aim in this section is to show that one-way AC-tree autamage closed under
intersection, and that AC-standard two-way AC-tree autancan be effectively

converted to one-way AC-tree automata. This way, inteiseamptiness reduces
to emptiness of one-way AC-tree automata, which is decedaplLemma 17.

34

7.1 Reduction to One AC Symbol

We first show that two-way AC-tree automata witthC symbols+, ..., +, are
equally expressive as two-way AC-tree automata with just A6 symbol+, so
that we need to study the decidability and closure propedfeAC-standard two-
way AC-tree automata with only one AC symbol, which is whéeerain technical
challenges lie.

Definition 28 (Standard Translation) Let X' be the signature consisting of all
free symbols of, one AC symbol+, and 2p fresh unary free symbols-; and
~i 1 <1 <p.

For every function symbaj, a g-termis any term of the forng(¢4,...,t,). This
also makes sense modwl@’, i.e., any term equal to someterm moduldAC is a
g-term; and given any term there is a unique function symbglsuch thatt is a
g-term.

Given any ground termt on the signatureX, define the ground terni* on the
signatureX’ by:

o ift=f(ty,...,t,) with f afree symbol, thett = f(¢7,...,t});
o ift mac t1 44 ... +ity,, Withl <4 < p,n > 2, andt; are not+;-terms,

The well-parenthesized terms on the signatiifeare the terms of typé&’ in the

following typing system, whose types are the constdnts,, ..., U,:
t:U...t,: U _ t:U;, t:U t:U t:U;
ffreeiny, —
[t tn) 2 U t+t U =i () U ~i(t): U

forall 7,1 <i<p.

Clearlyt* is well-parenthesized for every terhon the signatur&. Also, the type
of every ground term on the signatux is unique if it exists. It follows that the
following definition makes sense:

Definition 29 For every well-typed term in the system of Definition 28 (@ndig-
nature.’), definet° by:

e if fisafree symbolirt, andt = f(ty,...,t,), thent® = f(¢5,...,t2);

o ift =—; (u)ort=—~; (u), thent® = u°;

e iftisasumt, + ...+ t,, of typeU,, wheret,, ...,t, are not sums, thett =
£ 4 2.

Clearly (t*)° ~xc t for every ground termon X..

35

Lemma 30 For any two-way AC-tree automato#, we can effectively compute a
two-way AC-tree automatat* such thatl » (A*) is the set of all well-parenthesized
ground terms. on the signatur&’’ such that:.° € Lp(.A), for every predicate sym-
bol P occurring in A. If in addition.A4 is AC-standard them* is also AC-standard.

PROOF. For each predicate symbat occurring inA, createp fresh predicate

symbolsP!, ..., PP, and add the clauses
P(—; (z)) < P(a) (21)
P(~i (z)) < P'(a) (22)
P(z) < P'(—i (z)) (23)
P'(x) <= P(~; () (24)

for everyi, 1 < ¢ < p, and every predicate symbgl. Call a+;-clauseany clause
whose sole function symbol i$;. Then, in every+;-clause ofA4, 1 < i < p,

replace every predicate symbBl by P’ and every occurrence of; by +. For

example, replace the;-pop clause’(z +; y) < Pi(z), P»(y) by the clauses

P'(x +y) <= Pi(x), P3(y) (25)
Let A* be the two-way AC-tree automaton thus obtained.

We first claim that every ground term recognized at some gtateA* is of type
U, and every ground term recognized at some skitis of typeU;. In particular,
Lp(A*) is a set of well-parenthesized ground terms.

We then show by structural induction on the derivatiorgf.), resp.P(u), from
A* that P(u°) is derivable fromA4, for any ground term : U,resp.u : U;. This is
straightforward.

Finally we show by structural induction on the derivation/tf) from A, wheret
is any ground term o, that P(u) is derivable fromA* for everyw : U such that
u® ~c t, and Pi(u) is derivable fromA* for everyu : U; such thatu® ~,¢ t,
1 <i < p. This is again straightforward.O

The automatod™* is well-parenthesizeth the sense that its state set can be parti-
tioned intop + 1 setsP, Py, ..., P, (namelyP is the set of states odl, andP; is

the set of states of the forf’, 1 < i < p), so that every ground term recognized
at someP € P is of typeU, and every ground term recognized at saftiec P is

of typeU;, 1 <i <np.

Conversely, we have:

36

Lemma 31 Let B be any one-way AC-tree automaton that accepts only wedetyp
terms. Then3 can be effectively converted into a one-way AC-tree automit
such that, for every’ € P, Lp(B°) is the set of all terms° whereu ranges over
Lp(B).

PROOF. As for ordinary (i.e. one-way non-equational) tree aut@niis easy to
decide whether some state is redundant, i.e. not involvedyrderivation leading
to the final state. Hence without loss of generality we maymgsthat3 contains
no redundant state. Sind¢eaccepts only well-typed terms, typing imposes tBat
is well-parenthesized and the only pop antlauses i3 are of the form:

1) P(f(z1,...,2)) < Pi(x1),..., Py(x,) with f free,andP, P, ..., P, € P;

(2) or Pi(z +y) <= Pi(z), Py (y) with P*, P}, P, € P; (1 < i < p);

(3) or Pi(—; (z)) <« P(x)with P € PandP' € P; (1 <i < p);

(4) or P(—~; (z)) <« P(x)with P € PandP' € P; (1 <i < p);

(5) or P(z) < Q(z) with P,Q € P or Pi(z) < Qi(z) with P!, Q" € P; (1 <
i < p).

Then replace the clauses of the second kind’Hy: +; y) < Pj(x), Pi(y), clauses
of the third kind by P*(z) < P(z), and clauses of the fourth kind by(z) <
Pi(x). The claim is then clear. O

In the following, and unless told otherwise, we shall therefassume that the sig-
natureX’ consists of one AC symbal, the others being free symbols.

Definition 32 (Functional Term, +-Part) A term isfunctionalif and only if it is
of the formf(¢,...,t,), wheref is a free function symbol i’

Given any AC-standard two-way AC-tree automatbnthe +-part A, of A is
the subset of all clauses A that are eithere-clauses (16)P(x) < Pi(x), or
+-pop clauses (14P(x + y) < Pi(z), P»(y), or standard+-push clauses (17)
P(z) < Pi(z +vy).

7.2 Reusing Derivations

For short, let us caltlerivationof A from a set of definite clauses any positive unit
resolution derivation ofi from the same set.

Starting from a one-way AC-tree automaton, we first obsena¢ we may slice
any derivation in layers, some of them usirgpop clauses, the others using pop
clauses on free function symbols. The point of Lemma 34 béotliat we may
freely exchange sublayers for others.

37

Definition 33 (Functional Support) Let.4 be any two-way AC-tree automaton on
¥, and A any derivation ofP(¢) from A. Let Ay, ..., A, be the set of maximal
subderivations of\ ending with instances of free pop clauses. Fot j < n, let
the conclusion of\; be P;(¢,), so thatt; is a functional term] < j < n. Call the
multiset of atoms (¢), ..., P,(t,) obtained this way th&unctional supporof A.

Let us clarify that in the above definition, two subderivasat two distinct posi-
tions are considered distinct, even if they have identicatsure. We intend to use
the above derivation in cases whekanvolves only clauses of one-way automata.
However.4 may contain other clauses in general. Note that, going up from

the conclusiorP(t), we must eventually encounter an instance of a free pope&laus
(In fact, we must eventually encounter an instance of a fogegtause of the form
P(a) for some constant.) ThenA can be described as in Lemma 34 below.

Lemma 34 Let A be a derivation of the form

FA A,

Pi(ty) Pty

sing + —pop, standard + —p
and epsilon—clause

P(t)

from the setA of definite clauses, where we mean ti#&tt;) is the conclusion
of A;, 1 < j < n,andP(t) is derived fromP,(t), ..., P,(t,) and only+-pop
clauses;+-push clauses andclauses, for some fixedl < i < p.

If ¢, ...,t, are functional terms, then there are indices< i; < ... < i, < n
such that:

(2) A+):AC P(.Tzl + ... +.T2k) = Pl(]?l), .. 7Pn<xn)
(3) If no+-push clause (17) is i, thenk = n, i.e.,t ~ac t1 + ... + t,.

PROOF. The triangle part of the derivation can just sum terms, oragxtsum-
mands. The point of the Lemma is that, whatever we do, eacstapbi will occur
at most once in the final sum, + ... + ¢; . This is because--pop clauses are
constrained to add sums coming from disjoint subderivativn

We then observe the following

38

Lemma 35 Let.A be any set of definite clausesAf. [=ac P(xi, + ...+ ;) <
Pi(z1),...,Py(x,), and Pi(s1), ..., P.(s,) are ground atoms derivable from,
thenP(s;, + ...+ s;,) is derivable fromA.

PROOF. From the assumptions we gét=xc P(s;, +...+5;,), SOAuUNion L <
P(s;, +...+s;,) is AC-unsatisfiable by Lemma 1. Since positive unit resoluts
complete, the empty clauseis then derivable fromd union L <= P(s;, + ...+
si,,). The last step must be a resolution step.o&= P(s;, +. ..+ s;,) against some
unit clause, which must therefore B¥s; + ... +s;,). O

Combined with Lemma 34, this will allow us to replace deriwas from the two-
way AC-tree automatoml as on the left below by derivations as on the right:

A LA

P) Pty Pi(st) Pusn)

using + —pop, standard + —p using + —pop, standard + —p
and epsilon—clause and epsilon—clause

7.3 Intersection of One-Way AC-Tree Automata

Let A, and. A, be two one-way AC-tree automata built over sets of predscBte
andP,. We will construct a one-way AC-tree automatdrsuch thatl p, p,)(A) =
Lp (A1)NLp,(As) for every pair of state®; in Py, P, in P,. Here(Py, P,) will be

a fresh state, in such a way that there is a one-to-one comdspce between fresh
state§ P, P») and pairs of states i, x P,. This should remind the reader of the
product construction in ordinary, non-equational, ong-ivae automata (Gécseg
and Steinby, 1997).

We however need more states, and introduce yet new precﬁmtbols(m),

for all pairs P, € P, P, € P,. We intend the statéP;, P,) in the AC-tree au-
tomaton.A4; x A, to be constructed below to recognize the intersection of the
Ianguages/reg)gnized by statBs and P, in automata4; and.A, respectively.
The statg P, P,) is intended to recognize only the functional terms recogphiat

We reduce the problem to the constant-only case as follow®duce the setl =
{ap, p, | P1 € P1, P> € P}, the constantsp, p, are pairwise distinct and fresh.

39

In the construction below we use the consi@nty, as an abstraction for the terms
to be recognized dtP;,).

Define the one-way AGautomator3; = A, , U{Pi(ap, p,) | P1 € P1, P> € Pa}.
Similarly, define the one-way ACautomaton3, = A, U {P(ap,p,) | P €
Pi, P, € Py}. The one-way AC-automatal3; and B, are built on the signature
AU{+}. ForP, € Py, P, € Py, Lp (B1) andLp,(B,) are effectively semilinear
sets by Lemma 20. Sép, (B;) N Lp,(B,) is also effectively semilinear. Hence
we can define an AGautomatonAp, », on the signatured U {+}, with a final
statef'p, p, such thatlp,, ,, (Ap, p,) = Lp,(B1) N Lp,(By). We may also assume
without loss of generality that the A&utomatadp, p,’s are built from mutually
disjoint sets of fresh states.

The required one-way AC-tree automatdn x A, consists of:

(1) aclausé Py, P,)(x) < Fp, p,(z) for eachP, € Py, P € Ps;
(2) all clauses of Ap, p,),, forall P, € Py, P, € Po;

(3) a clauseR(x) < (m)(x) for each base clausg(ap; ;) in Ap, p,, for
eachP € Py, P, € Ps;

(4) a C|8.US€(P1, PQ)(f(.Tl, e ,xn)) = (Plh PQI)(:CI)7 ey (P1n7 PQn)(xn) for
each pair of clauses

Pl(f(l‘l,...,l‘n))<:P11(l‘1),...,Pln(l‘n) in Al
Pz(f(ﬂj‘l,...,.Tn)><:P21(.T1),...,Pgn(l‘n) in AQ

wheref is free.

Proposition 36 Let .A; and .4, be two one-way AC-tree automata.ff(¢) and
P,(t) are derivable fromA, and.A, respectively, the(\P,, P,)(t) is derivable from
.Al X AQ.

PROOF. We do induction of the sum of the sizes of the derivation®dt) and
Py(t). Lett ~ac t; + ... + t, where eacht; is functional. For each € {1, 2},
the derivation ofP;(¢) has a functional support of the forf}, (t1), . . ., Pj.(t,) by
Lemma 34, andd;, =ac Pj(z1 + ... +7,) <= Pu(z1),. .., Pjn(z0).

The atomsPj;(ap,,.py), - - - Pin(ap,,.p,,) are derivable in3;, by construction of
B;. Also, sinceA;, = B; , we observe thaB;, Fac Pj(r1 + ...+ 7,) <
Pji(x1),. .., Pjn(xy,). So the atomP;(ap,, p,, + ...+ ap, p,) IS derivable from
B; by Lemma 35, € {1,2}. It follows that Fp, p,(ap, p, + ... + ap, p,) IS
derivable fromAp, p,.

This derivation has a functional support of the foRnap,, p,,), ..., Ru(ap,, P,)

suchthatAp, p,), Fac Fp p(z1+. . Ax,) <= Ri(71),. .., Ra(2,), by Lemma 34
again. SincéAp, p,), C (A; x Az), byitem 2 of the product construction above,

40

it obtains

(Al X A2)+):AC Fpl’p2(ZL‘1 + ...+ Il'n) <~ Rl(l‘l), e Rn(xn) (*)
For1 < ¢ < n sincet; is functional we have some freg of arity k; and terms
th ... tFsuchthat; ~ac f;(t!, ..., t5). SincePy(t;) and Py (t;) are in the func-
tional supports of the derivations &f () and P»(t) respectively, there are free pop
clauses

Pji(fi(xlv R 7xkz)) <~ lez(xl)v SR P]kzl<xk‘z)

inA;,1 <i<mn,j e {1,2}, and such that for alk, 1 < k < k;, the atoms
Pf(t¥) are derivable fromd;, with derivations strictly smaller than those Bf(t).
By induction hypothesisPl, PL)(tF) is derivable fromA; x As,.

By item 4 of the product construction, the cIaL(sIa/i,?Qi)(fi(xl, LX) &=
(PL, PL)(x1), ..., (P, Py (xy,) is in Ay x Ay. Hence the atoniP,;, Py;)(t;) is
derivable fromA, x A,. Also, since the claus®;(ap,; p,,) iISin Ap, p,, by item 3 of

—

the product construction the clauBg(z) < (Py;, P»;)(z) isin A; x A,. Hence the
atomR;(t;) is derivable fromA4; x A,, 1 < i < n. From (*), and using Lemma 35,
Fp, p,(t1 4+ ... +1,),1.e., Fp _p,(t), is derivable fromA; x A,. Finally we use the
clause(Py, P»)(z) <= Fp, p,(z) given by item 1 of the product construction to get
a derivation of(P, P»)(t) from A; x A,. O

Proposition 37 Let . 4; and .4, be two one-way AC-tree automata. For aRy €
P, Py € Py, for any ground term on Y, if (P, P,)(t) is derivable fromA4; x A,,
then P, (t) and P,(t) are derivable fromA; and.A, respectively.

PROOF. By inspection of the clauses id; x A,, the only ground terms rec-

ognized at predicates of the for(@;,);) are functional terms, using clauses of
item 4 of the product construction. It also follows that faygredicater such that
R((ZPLPQ/) is a base clause idp, p,, R recognizes only functional terms iy x As.

We do induction on the size of the derivation(d%, %)(t). Since(Py, P»)(z) <
Fp, p,(z) is the only clause i4; x A, with the predicatd P, I%) on the left of
<, the given derivation of P, P»)(t) ends by an application dfP;, P»)(z) <
Fp, p,(z), SO Fp, p,(t) is derivable fromA4,; x A, using a strictly smaller deriva-
tion. Again from examination of the clausesin x A,, the derivation of'p, p, (?)
has a functional support of the form’f,?gl)(tl), ce (P;?Qn)(tn), With ¢ /¢
ti+...+t,, where the predicate{ﬁi) only recognize functional terms, by the
remark above. Furthermore, there are clausgs) < (mi)(yg) from item 3
of the product construction, so that (¢;), ..., R,(t,) are derived just below

(PrPo)(t1), - (P Pon) (1) respectively.

41

By item 3 of the product construction again, there are baseselsR;(ap,, p,;)
in .Aphpz. Also AP17P2+):AC thpz(l‘l + ...+ l‘n) = Rl(l‘l), .. .,Rn(ZL‘n),
by Lemma 34. SA&p, p,(ap, . py + --. + ap, p,,) IS derivable fromAp, p,, by
Lemma 35.

For1l < 7 < n, sincet,; is functional, we have/sgne fre of arity k; and terms
th, ... th suchthat; = f;(t},...,tI"). Since(Py, Py)(t;) is derivable fromA4; x
As, this mu/stge derived using some clause given by item 4 ofribeéyzt construc-
tion, say(Py, Pos)(fi(z1, ..., 21,)) < (PL, PL)(x1), ..., (P, Pyi)(x,) in Ay x
As. In particular, there are clausé¥(fi(z1, ..., z,)) < Pji(z1),. .., Pj‘“;(:cki) in
A;, j € {1,2}. Furthermore, for alk, 1 < k < k;, the atom(P\, Py)(t¥) is deriv-
able fromA; x A, using a derivation strictly smaller than the oné Bf, P»)(t). By
induction hypothesi®”; (¢}) is derivable fromA,;. It follows thatP;;(t;) is derivable
fromA;, 1 <i<n,je{l,2}.

Since Fp, p,(ap, py + ...+ ap, p,) IS derivable fromAp, p,, we obtain that
Pj(apy, py+. . +ap, p,)is derivable fronB;, j € {1,2}, sinceLr, , (Ap, p,) =

Lp (B1) N Lp,(By). The corresponding derivation must have a functional sttppo
le(a,pn’pm), RN Pjn(aPm,Pzn) such thaBjJr):AC P](l‘l + ...+ Zl'n) <~ le(l‘l),
.y Pjn(z,,). By definition,B;, = A;_ . Also, since the atomB;; (t1), . . ., Pjn(tn)
are derivable fromA;, the atomP;(¢t; + ... + t,), i.e., P(t), is derivable from
A;. O

If P, and P, are the chosen final states dfi and .4, respectively then we let
(P, P,) be the final state afd. From Proposition 36 and Proposition 37 we have
L(Pl,Pg)(-Al X .AQ) = Lp1 (.Al) N Lp2 (.AQ) We conclude that:

Theorem 38 The languages recognized by one-way AC-tree automata e ef
tively closed under intersection.

By now, several authors have studied one-way AC-tree autoamal their variants.
In particular, given Lemma 17, and upto details like whetiweconsider the AC
theory or the ACU theory, similar results have been shown d&igl&t al. (2003)
and Boneva and Talbot (2005).

7.4 Elimination of Standard--Push Clauses

We now show that adding standardpush clauses does not increase expressiveness
of one-way automata. We have already proved this resulthiercase where all
free symbols are constants, i.e. we have shown that two-wzlyaitomata are

as expressive as AQutomata (Theorem 25). We now consider the general case
where we have free symbols of arbitrary arity. As before, wecentrate on the
case where there is exactly one AC symbol

42

Let A be an automaton with predicates frgfhand containing free pop clauses
as well ase-clauses (16);+-pop clauses (14), and standardpush clauses (17).
We will construct an equivalent automat6rcontaining only free pop clauses and
e-clauses (16) andt-pop clauses (14) (ne-push clause (17)). We use the fact that
emptiness of a state is decidable for the former class ofiatia see Proposition 64
in Appendix A, which also shows that testing emptiness ia thass is in NP.

Hence we can assume without loss of generality thdbes not contain any empty
state. Introduce a set = {ap | P € P} of fresh constants. Define the standard
two-way AC’-automaton3 = A, U {P(ap) | P € P}. B is a standard two-way
AC" automaton on the signature_{+}. HenceL »(B) is a semilinear set for each
P € P, by Corollary 26. Therefore we can construct a one-way AGQtomaton
Ap with some final statép such thatCr,.(Ap) = Lp(B). We assume that the
Ap’s are based on mutually disjoint sets of fresh predicates.

The required one-way automat6rconsists of

(1) aclauseP(x) < Fp(x) for eachP € P;

(2) the clauses oflp, for eachP € P;

(3) aclaus&)(z) < R(z) for each constant claug@(az) in someAp;

(4) a clauseP(f(xy,...,x,)) < Pi(x1),...,P,(x,) for each free pop clause
P(f(z1,...,2,)) < Pi(x1),..., Py(z,)in A;

whereP are fresh predicate symbols, for eaéhe P.

Lemma 39 For every ground ternt on Y, if P(¢) is derivable inA, then it is
derivable inC.

PROOF. We do induction on the size of the derivation®ft). Let the derivation
of P(t) have functional suppot® (t,), ..., P,(t,). From Lemma 34 we have <
ip < ... < i <nsuchthat ~ac t;, +...+t;, and Ay Fac Plag, +... +
x;,) <= Pi(z1),..., Py(x,). Since AL = B., we obtainB, F=ac Pz, + ...
+ ;) <= Pi(21),...,P,(z,). Also the atoms”, (ap,), ..., P,(ap,) are derivable
from B, by definition of 5. HenceP(api1 + ...+ (Ipik) is derivable fromB by
Lemma 35. Sdﬂo(api1 + ..+ CLP%) is derivable fromAp. SinceAp has no clause
(17), by Lemma 34 this derivation has a functional suppothefform R, (ap,),
...,Rk(&pik) and Ap, Fac Fp(x1 + ...+ 2x) < Ri(z1),..., Re(zy). Since
Ap, C C by item 2 of the construction, it follows

C+):AC Fp(l‘1++l‘k)<:R1(l‘1),,Rk(l‘k) (*)
Also since the claus®;(ap,) isin Ap, henceR;(z) <]’3;(:6) isinCforl <j<
k, by item 3 of the construction.

For1 < i < n sincet; is functional we have some freg of arity k; and terms

th ...t suchthat; ~xc fi(t!,...,t5). SinceP,(t;) is in the functional support
of the derivation ofP(t), there is some claus@(fi(z1, ..., zx,)) < Pl (z1),. ..,

43

PFi(z),) such that forl < j < k;, the atomP/ (/) is derivable fromA using
a derivation strictly smaller than that éf(¢). By induction hypothesig?/ (/) is
derivable fromCAfor 1 <j <k So, forl < i < n P(t;) is derivable fromC
using the claus®,(f;(x1, ..., xy,)) < Pl(z1),..., PF (zy,) givenin item 4 of the
construction. Hence for < j < k, Rj(tij) is derivable fromC using the clause
Rj(z) < P, (x).

Hence from (*) and by Lemma 3%»(¢;, + ... + t;,), thatis,Fp(t), is derivable
from C. Finally we use the clausB(z) < Fp(x) from item 1 of the construction
to get a derivation oP(¢) fromC. O

Lemma 40 For every P € P, for every ground termi on 3, if P(t) is derivable
fromC then it is derivable fromA.

PROOF. We do induction on the size of the derivation Bft). Since P(z) «
Fp(z) is the only clause withP on the left of«, the derivation ofP(¢) uses the
clauseP(z) < Fp(z) as the last clause, sbp(t) is derivable fromC using a
derivation strictly smaller than that éf(¢). From Lemma 34 and from examination
of the clauses i, the derivation offp(t) has a functional support of the form
Pi(ty),...,P,(t,) suchthat ~xc t;+...+1t,, the clause used immediately above
the root of the derivation oP(t;) is of the formR;(x) < P;(x) and Ap, [=ac
Fp(x1+ ...+ 2,) < Ri(z1), ..., Ry(z,). Also for1 <i < n, the clauser;(ap,)
isin Ap. HenceFp(ap, + ...+ ap,) is derivable fromAp. SOP(ap, + ...+ ap,)
is derivable fromB. By Lemma 34, this derivation has a functional support of the
form Pi(ap,), ..., P.(ap,), Qi(ag,), - ..,Qm(ag,,) (m > 0) andB; =ac Pz +
oot Il'n) <~ Pl(l‘l), RN Pn(ZL‘n), Q1(y1), RN Qm(ym) By definitionB+ = A+,
hence

Ay Eac Ploy+ ...+ x,) < Pi(x1),. .., Pou(20), Q1(v1), - -, Qu(Ym) (%)
For1 < i < n, sincet; is functional we have some freg of arity k; and terms
¢, t" such thatt; = fi(¢!,...,t"). SinceP,(t,) is in the functional support
of the derivation ofF»(t) hence we have a clause(f;(z1, ..., x5)) < Pl(x),
..., PFi(z;,) in C corresponding to some claus®(f;(zy,...,21)) < Pl(zy),
..., PFi(x,) in Aand forl < j < k;, the atomP/(t]) is derivable fromC using
a derivation strictly smaller than that @f(¢). By induction hypothesig®/ (/) is
derivable fromA for 1 < j < k;. Hence forl < i < n, Pi(t;) is derivable
from A using the clause®,(f;(xy, ..., xy,)) < PHxy),..., P (zy,). Also since
A contains no empty states, for< ¢ < m we have ground terms; such that
Qi(s;) is derivable fromA. So from (*), P(t; + ... + t,), i.e., P(t), is derivable
fromA. O

If P is the final state of4 then we letP be the final state of. From Lemmas 39
and 40,Lp(C) = Lp(A). We conclude that

44

Theorem 41 Standard two-way AC-tree automata without free push clawesa
be effectively reduced to equivalent one-way AC-tree aatam

7.5 Elimination of Free Push Clauses

We have seen that we can add standardush clauses to one-way AC-tree au-
tomata without increasing their expressiveness. Now we/ghat we can further
add free push clauses without increasing expressivengssdwing how to elim-
inate the free push clauses. (Note that the free push claesesnot be standard,
contrarily to+-push clauses, i.e., we consider AC-standard two-way R€-au-
tomata.)

We use a saturation procedure that iteratively addsaselauses so that finally the
free push clauses become redundant.

We first define one step of the saturation procedure.Abe an AC-standard two-
way AC-tree automaton with predicates frgt Let .A; be the part ofd without
the free push clauses.

TriVia”y A+ C A,.

We define the transition relatian as follows. We letd > AU {R(z;) < Q;(x;)}
provided:

1 Acontains afree push claugéz;) < P(f(z1,...,2,)), Pi(zy), - ., Pe(xi);

2 A contains a free pop claus® f(x1,...,2,)) < Q1(z1), ..., Qn(z,) (with
the same free function symbg);

3 A, [=ac Cforsomeclaus€’ = P(x) < Q(x), Ri(z1), ..., Ry(z,) (p > 0);

4 foreachj € {1,...,p} thereis aground ter onX’ such that?; recognizes
S in Ay;

5 foreachj € {1,...,k} there is a ground term), on¥' such that bothP; and
Qs, recognizet;; in Ay;

6 foreachj € {1,....n}\ {4,i1,...,i}, thereis a ground terry on ¥’ such
that(),; recognizes; in A;;

7 and no claus&(z) < Q;(x) is already inA;

Some remarks are necessary. In step 3, it is sufficient toidenghe (finitely
many) clauses in whicl®, . . ., R, are mutually distinct (the so-calledndensed
clauses). This is because, wedke equal toR, for example, the clausel(z) <
Q(z), Ri(z1), Ra(x2), ..., Ry(z,) and P(z) <= Q(z), Ra(xa), ..., Ry(x,) would
be logically equivalent. For each condensed clalise P(z) < Q(x), Ri(xy),

., Ry(z,), the conditionA, =ac C is then decidable by skolemizing, i.e., by
testing whethetA, union the clauses-P(a), +Q(a), +Ri(a1), ..., R,(a,) is
AC-unsatisfiable, where, a4, ..., a, are fresh constants. Equivalently, by test-

45

ing whetherA_ union the final intersection clause < P’(z), P(x) and the unit
clauses+P'(a), +Q(a), +Ri(a1), ..., Ry(a,) is AC-unsatisfiable, wheré” is
some fresh predicate symbol. This is decidable by CoroRarysince this clause
set is a standard two-way A@utomaton.

Also, from Theorems 38 and 41 emptiness and intersectiqutieess problems
are decidable for standard two-way AC-tree automata witfree push clauses,
so conditions 4, 5 and 6 are effectively testable. Hence weeff@ctively check
whetherA > AU {R(z;) < Q;(x;)}. Since there are only finitely maryclauses
R(z;) < Q;(x;), we can also compute allclausesR(z;) < Q;(z;) such that
A AU{R(z;) < Qi(x;)}.

This saturation step is harmless:

Lemma 42 Let A be any AC-standard two-way AC-tree automatond If> A U
{R(x;) <= Qi(x:)}, then AU {R(z;) < Qi(z;)} and A derive exactly the same
ground atoms orY'.

PROOF. Every ground atom derivable fromis clearly derivable frordU{ R(x;) <
Qi(z;)}. Conversely, it is sufficient to show th&x¢;) is derivable fromA assum-
ing Q;(t;) is derivable fromA. Forj € {1,...,n} \ {i}, lett; be as in item 5 (if
jisind{iy, ... i}) or asin item 6 (otherwise) abov&(f(ty,...,t,)) is deriv-
able fromA using the free pop clause given in item 2. Foe {1,...,p} lets;

be as in item 4 above. Thed(f(t4,...,t,)) is derivable fromA using the clause
P(z) < Q(x), Ri(z1),..., Ry(x,) of item 3, and the fact§(f(¢i,...,t,)) and
Ry(s1), ..., Ry(sp). R(t;) is then derivable using the free push clause given in
item 1, the factP(f(ti,...,t,)) and the facts (¢;,), ..., Px(t;,) Quaranteed by
item5. O

Given an AC-standard two-way AC-tree automatdnour saturation procedure
consists of (don’t care non-deterministically) genemtinsequencel (= A) >
A; > A,... until no new clause can be added. This always terminatesibethere
are only a finite number of-clausesR(z;) < Q;(x;) possible. Let the final, sat-
urated, AC-standard two-way AC-tree automatonbd hen we remove the free
push clauses from8 to get3;. This step is also harmless:

Lemma 43 Let 5 be a AC-standard two-way AC-tree automatonstanormal
form, and3; be obtained fronB by removing all free push clauses. The set of
ground atoms oYY derivable from3 and from/3; are the same.

PROOF. That any ground atom derivable frof is also derivable fronB is ob-
vious. To show the converse, it is sufficient to show that &dgon from 3 which

46

uses a free push clause only in the last step and nowhereafsbe converted to a
derivation fromB3;; the general case follows by induction on derivations.

Assume we have got a derivation &f¢;) using the free push claude(z;) <
P(f(xy,...,2n), Pi(xi)), ..., Pu(z;,) inthe last step. Hence the atofiéf (¢4, . . ., t,)),
Pi(t;)), ..., P(t;,) are derivable iB,. From Lemma 34 the derivation &f(f (¢, ..., 1))
has a functional support of the for@(f(t1,....t,)), Ri(s1), ..., Ry(sp) (p > 0)
suchthaB3, =ac P(x) < Q(z), Ri(x1), ..., Ry(x,). The derivation o) (f(t1,...,t,))
must use some clausg(f(zi,...,x,)) < Qi(x1),...,Qy(x,) as the last clause.
Hence@:(t),...,Q.(t,) are derivable from;. Since conditions 1-6 are satis-
fied, B > B U {R(x;) < Q;(x;)}, unless some clause(x) < Q,(x) is already

in B. But B is >-normal, soR(z) < Q,(x) is in B, hence in53,. Using the latter
clause, and sinag;(¢;) is derivable fromB,, we obtain thaf?(¢;) is derivable from

B;. O

Hence the two-way automata# is equivalent to the automatdsy,. Hence free
push clauses can be effectively eliminated from an AC-stethtivo-way AC au-
tomaton. From Theorem 41 it follows:

Theorem 44 AC-standard two-way AC-tree automata can be effectivalyced
to one-way AC-tree automata recognizing the same language.

Corollary 45 AC-standard two-way AC-tree automata are effectivelyadasder
intersection and their intersection-emptiness probleaeisidable.

Although we have focused mainly on decidability in this papecent results (Verma
et al., 2005) show that intersection-non-emptiness is diRpiete in the absence
of +-push clauses, when the number of languages to be intedsedteunded by
a fixed constant. The NP-completeness result holds even thieeautomata are
restricted to be one-way ACIt follows that the decision problem mentioned in
Corollary 45, when restricted to a fixed number of languagebet intersected,
is NP-hard. In case the number of languages to be intersattedt bounded,
intersection-non-emptiness is DEXPTIME-hard, sincersgetion-non-emptiness
of non-equational tree automata is a special case of it (S€84).

8 Going Further

The decision procedure of Section 7 eventually adds #ielauses, and removes
free push clauses. There is another way to derive the sarak, nesing resolu-
tion and splittingless splitting. This is based on resujts3mubault-Larrecq et al.
(2004), which we recapitulate. This will allow us to showgdibnally, that intersection-
emptiness is decidable for two-way AC-tree automata (nst for AC-standard

a7

such automata) as soon as it is for constant-only two-wayr@€automata. There-
fore, the constant-only case indeed concentrates alluiffes, as we have claimed
earlier.

Again, we only need to consider the case of one AC symhdly Lemma 30 and
Lemma 31. We require the following definition.

Definition 46 (Blocks, Complex Clauses)Ablockis any clause of the fora, P, (z)V
...V +,P,(x), for thesamevariable x. We abbreviate such block3(x).

A complex clausés any clause of the forg7, &+, P;(f(z1,...,x,)) V By(x1) V
...V B,(z,), whereBy, ..., B, are blocks andn > 1 (with thesamef and the
same set of variables,, . . ., z,, as arguments of)

Note that every clause from any two-way, alternatfityee automata is either a
block or a complex clause.

Imagine we would like to decide intersection-emptinesswai-tvay AC-tree au-
tomata. LetS be a set of two-way AC-tree automata clauses, includingyqaed
final intersection clauses. To decide whetlfeis AC-satisfiable, we use ordered
resolution with selection, eagessplitting, and elimination of tautologies and for-
ward subsumed clauses. As shown in Goubault-Larrecq e2@04(Section 4.1),
this only derives blocks and complex clauses again, and tireronly finitely many
of them. So this strategy indeed decidgsin deterministic exponential time. ..
modulo the empty theory. In the case where there is an AC symihis strategy
in general does not terminate (Goubault-Larrecq et al.428@ction 4.2), because
the+-clausesi.e., the clauses whose only function symbolisgenerated by res-
olution can grow without bounds.

The intuition behind the procedures of Goubault-Larrec@le{2004) is as fol-
lows. Imagine for the moment that we are using just resahutiodecide the AC-
satisfiability of automata clauses, modulo AC. Then any figatree whose nodes
are labeled by clauses; if resolution is applied to the srdenses”, ..., C, and
the main premis€’, with conclusionC’, thenC” will label a node whose sons are
labeled withCy, ..., C,, C. Splitting would complicate matters quite a lot here. If
we overlook the problem with splitting for the moment, and/& ignore the neces-
sity of using splitting literalg;, Goubault-Larrecq et al. (2004) show that, as long
as we deal with blocks and complex clauses with only freetfancsymbols (all
but+), only finitely many clauses, either blocks or similar coexptlauses, can be
produced. As soon as comes into play, we may get larger and largeclauses.
But, if such clauses eventually participate in deriving ¢ngpty clause, it must be
the case that one-clause thus derived eventually resolves with other caitsget

a conclusiorC' that is either directly the empty clause, or can resolve adtmplex
clauses not containingt. Since no term headed by unifies with a term headed
by f, with f # +, and provided we only unify on maximal atongs,can only be

a disjunction of literals of the forrP(x), with = a variable. Henc€' must split

48

into blocks.

This is tentatively pictured in Figure 3; the leaves of thewgion (at the top) are
clauses in the initial clause s€t Resolution steps inside the white zones are those
among blocks anétee complex clauseghat is complex clauses in which does
not occur. These must terminate since they only generatelfinnany clauses.
Resolution steps inside the grey zones produce arbitrardgy, arbitrarily large
+-clauses. This leads us to the following idea: instead olyapg resolution inside
the grey zones, try tguessthe fat dots, which are the interface points between
grey zones and white zones. Forbid resolution to act-eclauses (this prevents
us from using resolution to derive clauses inside the greygp and compensate
this by adding a rule that infers the fat dot clauses, at th&oboof grey zones,
directly from the clauses at the top of grey zones: this istiaele rule Although
this does not seem practical at all, Goubault-Larrecq €¢2@D4) use this to derive

a complete (but unsound) oracle, and therefore give a sriticiondition for AC-
satisfiability; this was then used to automatically vertig tKA.1 protocol in the
so-called pure eavesdropper case. We use this idea to dordability results
instead. Let us notice however that the fat dots, which drgadge disjunctions of
blocks, are only finitely many.

leaves inS

Legend:

[::]Bbcksandconuﬂexcbuses
Arbitrarily large +-clauses
e Splittable disjunctions of blocks

Fig. 3. Grey zones, fat dots, white zones

The results of Goubault-Larrecq et al. (2004) apply to adausf one of the fol-
lowing form. We take the numbering from op.cit. Also, we 8¢ be the set of
all splitting literalsq of the form™ B(z) ", whereB(x) is any non-empty negative
block. If P containsp predicate symbols, the@, contains2? — 1 elements. The
notation[V + ¢] denotes an optional literatq in disjunction with the rest of the
clause. Anon-trivial clauses a clause containing at least one function symbol.

Definition 47 (4,5,6) Consider the following kinds of Horn clauses.

(4) C|V + q], whereC'is a block and; € Qq;
B5) CV —q¢1 V...V —qu[V + q], whereC is a free complex clause; > 0, and

Q17"'7QWL7qE QO!

49

(6) C|V + q], whereC' is a non-trivial+-clause, and; € Q.

Clearly all clauses that we consider in this paper are of drieoforms(4), (5),

(6).

Let us abstract whatever may happen inside the grey zone tigjaairule: starting
from a setS of clauses of typé4), (5) or (6), we guess which kind of clauses may
be the fat dots terminating the grey zones. As noticed in GolHb arrecq et al.
(2004, Section 4.4), these fat dots are tamdidates This is Goubault-Larrecq
et al. (2004, Definition 2).

Definition 48 (Candidate, Oracle) A candidateis any Horn clause of the form
By(z1) V ...V By(x,)[V + q], where thez;s are pairwise distinct3;(z;) is a
non-empty block for every 1 < i < n, andq € Q.

A grey oraclds any functionD mapping every set of clauses of tygé (5), or (6),
to a set of candidates containing all those deducible by gFsglution.Grey reso-
lutionis ordered resolution with selection, where at least onempse is of typ€6).

Conversely, callvhite resolutionthe rule of ordered resolution with selection ap-
plied to premises of typ&t) or (5) only.

The following is Goubault-Larrecq et al. (2004, Corollary, 8pecialized to the
case where:, consists of all free function symbols, add = {+}, and to the
equational theory AC. (This corollary applies to any equeadi theoryE that is
simple i.e., such that there is a computable strict, stable anderi closed under
context applications and compatible with such thatf (1, . .., x,,) > z; for every
7, 1 < i < n, and every function symbof. Clearly AC is a simple equational
theory.)

Proposition 49 LetO be any grey oracle. Let , be any computable strict, stable
ordering compatible wittAC such thatf (z1, ..., x,) =ac z; for everyi, 1 <i <
n, for every function symbdgl. Letsel be the following selection function:

e If C'is a Horn+-clause, possibly in disjunction withq, ¢ € Q,, then:

- If C contains a negative literal- P(¢) with ¢ not a variable, then letel (C') be
{=PM)};

- Otherwise, ifC’' can be written asA < H, P(x), ..., P,,(z) wherez is free
neither inA nor in the body (i.e., conjunction of atom&)andm > 1 (in other
words, if there is a variable free on the right ok= but not on the left), then
letsel (C') be{—Pi(x),...,—Pn(z)}.

- Otherwisesel (C) is empty
e If C'is a clause containing ne function symbol, then:

- if C' contains a negative literal-q with ¢ € Q, thensel (C') = {—¢};

- otherwise, letnax(C') be the set of maximal literals i@’ for >, then define
sel (C) as the subset of those negative literalsiiax(C').

50

For simplicity, say “resolution” for “ordered resolution wh selection with order-
ing = ac and selection functiosel ”.

Then white resolution together with theey oracle ruleto S addO(S), is complete
for every set of clauses of ty|j), (5), or (6). In other words, for every sef; of
clauses of typd4), (5), or (6), if S; is AC-unsatisfiable, then the empty clause
can be derived frond; by white resolution and the grey oracle rule. Moreover,
completeness is retained when removing tautologies, fohwabsumed clauses,
ande-splitting of clauses not of typ®).

Proposition 49 requires quite many assumptions. An ordefi: obeying these
assumptions always exists (Goubault-Larrecq et al., 288dtion 4.4). To be fair,
we shall never need to know the detailed definition of eithgf or sel .

Additionally, we observe that white resolution alone terates with this choice of
= ac andsel , while only generating clauses of tyf#) or (5) (Goubault-Larrecq
et al., 2004, Section 4.4).

Since there are only finitely many candidates, it follows th&'-satisfiability of
sets of clauses of typ@), (5), and(6) reduces to finding aound computable grey
oracleO.

Definition 50 A grey oracleQ is soundif and only if, for every se$ of clauses of
type (4), (5), and(6), O(S) is a set of candidates that are semantic consequences
moduloAC of the clauses ity

Theorem 51 (Main Theorem) If there is a sound computable grey oracle, then
AC-satisfiability of sets of clauses of ty@®, (5), and(6) is decidable.

PROOF. If S; is AC-unsatisfiable, by completeness (Proposition 49), we may de
rive the empty clause fror; by white resolution and the grey oracle rule. Con-
versely, since both white resolution and the grey oracle anlly derive logical
consequences ¢ff moduloAC, if we can derive the empty clause, th&nis AC-
unsatisfiable. O

Since any alternating\C-tree automaton consists of clauses of this forg;-
unsatisfiability of such clause sets is undecidable, setban be no sound com-
putable grey oracle in general.

In the case of non-alternating automata, we can furthericetite clauses of type
(4), (5), (6). This is formalized by the notion ddlternation-freeclauses (Defini-
tion 52 below). We shall then relax soundness for oracle®abthe oracle) is

only required to be sound on sets of alternation-free ckuBeen we shall show

51

that finding such a sound oracle is equivalent to solvkigsatisfiability in the
constant-only case.

Definition 52 (Alternation-Free) A termt is linearif and only if every variable
occurs at most once inh An atom is linear if and only if it is of the form ¢ € Q,
or P(t) with ¢ a linear term. We also consider that the symhak linear.

A Horn claused < A,, ..., A, isalternation-freef and only ifA, A, ..., A, are
linear, and every variable free id occurs at mostonce i, ..., A,.

Note that pop clauses (&rclauses (7), push clauses (9) (whether standard or con-
ditional) are alternation-free. Query clauses (see Lemnaa@ even final intersec-
tion clauses (Lemma 3) are also alternation-free. On therdthnd, intersection
clauses (8) are not, and the only general push clauses @tlareh alternation-free
are in fact just push clauses.

The pointis that resolving alternation-free clauses tiogednly produces alternation-
free clauses, under mild assumptions, as we see shortly.eé to observe that
unifiers have a special form:

Definition 53 (&, F-Linear) Let £ and F' be two sets of variables, andbe any
substitution. We say thatis F, F-linearif and only if:

(1) forevery variablez, zo is a linear term;
(2) for every variablez, there is at most one variablein E such that: is free in
xo, and at most one variablgin F' such that: is free inyo.

We observe that elements of complete sets of unifiers modGloa& used in res-
olution between alternation-free clauses, which ugify- ¢, are £, F-linear, for
some well-chosen disjoint seisand F', in the cases that we are interested in. This
is the topic of Lemma 54 and Lemma 55 below.

Lemma 54 Let s andt¢ be any two linear terms, where only free function symbols
occur, and with disjoint sets of free variables. Lietand F' be two disjoint sets of
variables containing the free variables gfresp.t.

If s andt are unifiable, then they have a most general unifigwhich is £, F'-
linear. Moreover, ifz is any variable inF' U F' that is not free irs or ¢, thenz is not
in dom ¢ and not free inz’o for anyz’ € dom o.

PROOF. Computes using the algorithm by Martelli and Montanari (1982). This
can be described by the following rewrite rules on finite msels of equations
between terms; we le¥/ be any such multiset, and comma denote multiset union:

(Delete) M,u =u — M

52

(Decomp) M, f(ug,...,un) = f(v1,...,0,) = M,ug =v1,...,u, =0,
(Bind) M,z = v — M|z := v],x = v providedz is not free inv, but is free in
M.

We consider that equations = v are unordered pairs of termswv, so that in
particularu = v andv = u are the same equation. dfand¢ are unifiable, then
this rewrite process terminates, starting frem= ¢, on a so-called solved form
21 = U, ..., 28 = ug; theno = [z == uq, ..., 2z := uyg] IS an mgu ofs = ¢.

We claim that wheneveY/ — M’, andM islinear, in the sense that every variable
occurs at most once i/, then M’ is linear, too. This is clear for (Delete) and
(Decomp), and (Bind) just does not apply. Since the initialtreets = ¢ is linear,
My = z1 = uq, ...,z = uy is linear, too. Iltem 1 of Definition 53 is then clear.

Let us say that an equation= v is split if and only if all the free variables ai
are inE/, and all the free variables af are in I, or conversely. Let us say that a
multiset of equations is split if and only if all its equatsare split. We now claim
that wheneved! — M’ and M is split and linear, the/’ is split. This is clear for
(Delete) and (Decomp), and (Bind) does not apply on linedtisais.

Let z be any variable. Sincé/, is linear, there is at most ong 1 < i < k,
such thatz is free inu;. So there is at most onesuch thatz is free in z;o. If
item 2 were wrong, then there would be two variabteand z’, both in E (or,
symmetrically, both inf") such thatz is free inzo and inx’c. Not bothz anda’
can be in{zi, ..., z;} by the previous remark. Not bothandz’ can be outside
{z1,..., 2}, otherwisez would be free intoc = = and ina2’c = 2/, entailing that
z = x = 2’. So one of them, say, is somez;, 1 < i < k, and the othery’, lies
outside{z, ..., z}. Thereforez is free inz;o, andz is free inz’c = 2/. Sincez
is free inz;o = zo, z isin F, using the fact thad/, is split; sincez is free ina/,
z = ' and is therefore irfy. This is a contradiction, since no variable is bothfin
and inF'. So item 2 holds.

The final claim is clear, since it is an invariant that all aétes occurring in any
multisetM obtained froms = t are free ins or¢t. O

We then study the structure of complete sets of unifiers nwddl.

Lemma 55 A bisimulation R between two setd and B is any subset ofi x B
such that, for every € A, there is somg € B such thatz, y) € R, and for every
y € B, there is some € A such thatz,y) € R.

Write >0, u; for uy + ... + u,,.
Lets = 37", x; andt = 377, y; be two linear sums of variables, and assume no

x; equals anyy;. Let £ and F' be any two disjoint sets of variables containing the

53

free variables of, resp.t. Letz;;, 1 < <m, 1 < j < n bemn fresh variables,
that is, outsidely U F'.

For any bisimulation? between(1, ..., m} and{1,...,n}, letoy be the substitu-
tion such that

TiOR — Z Zij (1§2§m)
Jj/G.j)eR

yior= Y, z; (1<j<n)
i/(i,j)ER

Then the set of all substitutioas;, whenR ranges over all bisimulations between
{1,...,m}and{l,... n}, is a complete set of unifiers o ¢t modulo AC.

Furthermore, for every bisimulatioR, o is E, F-linear, and ifz is any variable
in E'U F that is not free ins or ¢, thenz is not indom o and not free inc’o for
anyz’ € dom og.

PROOF. First, oy is well-defined because, sinéeis a bisimulation, every right-
hand side of the defining equations is a non-empty sum. Sedbisdclear that
SOR = i j/i.j)eR %ij = tOR, SO0 is a unifier ofs = ¢ modulo AC.

Conversely, assume is any unifier ofs = ¢ modulo AC. Writeso =¢ to as a
sum__, ug, where the terms,, are not sums. Since this sum equag , ;0
modulo AC, there is a surjective mgp: {1,...,N} — {1,...,m} such that
Ti0 = Ypes-1(p) uk for everyi, 1 < i < m. Similarly there is a surjective map
g:{1,...,N} = {1,...,n} such thaty;o = > ;c -1y ur, 1 < j < n.LetR be
the relation defined byi, j) € Rif and only if f=1(i) N g~*(j) # 0, and letd be
the substitution mapping; t0 3"y s-1(:ng-1(;) k- Sincef andg are surjectivefz

is a bisimulation. Thea = o6, proving that the set of attz, R a bisimulation, is
a complete set of unifiers moduiaC.

To show thatry is E, F-linear, note that item 1 is clear. For item 2, lebe any
variable. If z is not one of the variables;, thenz occurs free i’ if and only if
2’ = z, andz is not one of the variables; or y;. Otherwise, let = z;;, then the
only variablez free ins such that: is free inzo is x;, and the only variablg free
in ¢ such that is free inyo is y;, proving item 2.

The final claim is clear, in particular from the fact that thegigbles:;; were chosen
outsideF U F'. O

Another construction would have been to use the classiggtebtFages AC unifi-
cation algorithm (Stickel, 1981; Fages, 1984), and reabonteDiophantine equa-
tions with coefficients i{0, 1}.

54

Proposition 56 Any resolvent between two alternation-free Horn clausethef
form (4), (5), or (6) is again alternation-free, and Horn, and a disjunction ofiva
able disjoint clauses of the for(d), (5), or (6).

PROOF. That the resolvent must be Horn is clear. That it is again jaiiision of
variable disjoint clauses of the for(@), (5), or (6) is by Proposition 1 of Goubault-
Larrecq et al. (2004), the stepping stone in proving Prdjmos9.

Let us show that it must be alternation-free. To fix notatjéeis” v +A4 and— A’ v
C" be the premises, and € csuac(A = A’). The conclusion isC' vV C")o. Let £
be the set of free variables 6fV + A, F' be that of— A’ v C’. Recall that resolution
applies to clauses that have been renamed first so as notéahg\ree variable
in common, soF and F' are disjoint. Observe also that the domdim o of o
contains only variables that are freesior ¢.

If A=A = q € Q, theno is the identity. WriteC’ asB < By,..., B,. Then
every variable free ilB occurs at most once iBy, ..., B,, hence inC' v ' =
+BV—-B;V...V—B,VC,sinceC andC’ share no variable. Moreover, all atoms
of C'v ' are clearly linear, s¢' vV (' is alternation-free.

If A= P(s), A’ = P(t), wheres andt share no free variable, and are linear terms
by assumption, then either the only function symbols od¢egrin s andt are free,
soo is I/, F-linear by Lemma 54; or the only function symbol occurring iandt¢

is +, soo is F, F-linear by Lemma 55. There is no other case, because naattriv
+-sums do not unify with terms of the forif1. . .) with f free.

By Lemma 54 and Lemma 55 again,also satisfies(x) if z is any variable in
E U F that is not free irs or t, thenz is not indom ¢ and not free in’o for any
7z € dom o.

Sinceo is I, F-linear,zo is linear for every variable free inC' v +A, and either
ro = x or the only free variables imo are variables irF’, hence not in&. For
every atom of the formP’(s") in C' vV +A, it is easy to see thafo is therefore
linear. Similarly, for every aton#’(¢') in —A’ v C’, ' is linear.

Now writeC" asB < By, ..., B,, and letz be some free variable @o. Sincez is
free inBo, z is free in some termyo, for some free variablg, in B, in particular,
for somey, € F. Sinceo is E, F-linear, there is exactly one variabjgin F' such
thatz is free inyyo; andy; is free inB.

Assume by contradiction thatoccurs at least twice i-B; vV ...V —B,, V C)o.

If z occurs at all inC'o, there is a variable free inC', hence inF, such that: is
free inzo; sinceo is F, F-linear, by item 2, such a variableis unique if it exists.
Similarly, if z occurs at all iN—B; Vv ...V —B,)o, then there is a unique variable

55

y in F' such that: is free inyo. We then have three cases:

e Case 1z occurs twice inC'o, sox exists, and: occurs twice inC'. Sox does not
occur in+A = +P(s), sinceC is alternation-free. Sincéom o only contains
variables that are free inor ¢ by (%), cannot be inlom . Sincez is free in
xo, z equalse. Sincex is in E'U F but is not free ins or ¢, by () again,z is
not free inyqo if yo € dom o. So eitheryy, ¢ dom o, SOyyo = yp; 8Sz = x IS
free inyqo, this entailsr = y,, contradicting the fact that € F, y, € F and
ENF ={.0ry, € dom X, soz is not free iny,o; sincez = z, z is not free in
Yoo, @ contradiction again.

e Case 2z occurs twice in—B; V...V —B,,)o, SOy exists, and, occurs twice in
—BiV...V—B,.SinceC’" = B < By,..., B, is alternation-freey is not free
in B. Recall thaty, is in F' andz is free inyyo, and thaty is the unique variable
in F' such that: is free inyo; soy = y,. Buty is not free inB, whereagy is,
contradiction.

e Case 3z occurs once iro and once iN—B; V...V —B,)o, sox andy both
exist,x occurs once i, andy occurs once in-B; V...V —B,,. Sincez is free
both inyo and inyyo, andy, y, € F, by unicityy = y, (as in Case 2). Since
Yo occurs free i+-B, y occurs free i-B, and also in-B; vV ...V —B,. If y
also occurred free ify then it would occur twice in-P(t) V =By V...V —B,,
contradicting the fact that A" v ' = +BV —P(t)V =By V...V =B, is
alternation-free. Sg is not free int.

We now use an argument similar to Case 1. Sih@@ o only contains vari-
ables that are free inort by (x), y cannot be inlom o. Sincez is free inyo, z
equalsy. Sincey is in £ U F but is not free ins or ¢, by (x) again,y is not free
in zo if x € dom o. So eitherz ¢ dom o, soxc = z; asz = y is free inzo,
this entailsy = z, contradicting the factthate ',z € E,andE N F = (). Or
x € dom o, soy is not free inzo; sincez = y, z IS not free inco, a contradiction
again.

As all cases lead to a contradictionpccurs at mostonce i-5B, V...V —B, V
C)o = (C'V C")o. So the resolventC' v C")o is alternation-free. O

We can now refine Proposition 49. Nothing changes excepitadtave sprinkled
the word “alternation-free” throughout, and replaced t&ec) of names B(x)™
of e-blocks by the subs&®, generated by alternation-fré&-blocks.

Definition 57 (Candidate, Oracle) Analternation-free candidaieany alternation-
free Horn clause of the form®, (z,)V. ..V B, (x,)[V+q], where ther;s are pairwise
distinct, B;(x;) is a non-empty block for eveiyl < i < n, andq € Q;.

Analternation-free grey oracle any function® mapping every set of alternation-
free clauses of typ@), (5), or (6), to a set of alternation-free candidates containing
all those deducible by grey resolution.

56

Proposition 58 Let O be any alternation-free grey oracle. Lety,¢ andsel be as
in Proposition 49.

Then white resolution together with the grey oracle ruleamplete for every set of
alternation-free clauses of tydéd), (5), or (6). In other words, for every sef; of
alternation-free clauses of tygd), (5), or (6), if S; is AC-unsatisfiable, then the
empty clause can be derived fra#n by white resolution and the grey oracle rule.
Moreover, completeness is retained when removing tautsotprward subsumed
clauses, and-splitting of clauses not of typ®).

Notice that we can always restrict alternation-free greglas to only output alternation-
free clauses. Indeed, we only required that grey oraclegubwt least all the
clauses deducible by grey resolution, but grey resolutidg derives alternation-

free clauses, starting from alternation-free clausesé (), (5), (6), by Proposi-

tion 56. The following notion of a.f.-soundness weakenssioess by requiring

to be sound only on sets of alternation-free clauses.

Definition 59 An alternation-free grey oracl® is a.f.-soundif and only if, for
every setS of alternation-free clauses of typé4), (5), and (6), O(S) is a set
of alternation-free candidates that are semantic consaqgegs moduld\C of the
clauses inS.

Theorem 60 (Main Theorem, Alternation-Free Case)lf there is an a.f.-sound com-
putable alternation-free grey oracle, theXC-satisfiability of sets of alternation-
free clauses of typ@), (5), and(6) is decidable.

Now the existence of an a.f.-sound, computable alterndt@mgrey oracle is equiv-
alent to solving the constant-only case:

Proposition 61 There is an a.f.-sound computable alternation-free greggcler if
and only if theAC-satisfiability of sets of alternation-fre&C’-clauses of the form
(4), (5), (6) is decidable.

PROOF. For any setS of clauses of the above type, 6§ ¢ be the subset of the
clauses of the forn@) or (6). To find a grey oracle, we only need it to find at least
all consequences by grey resolution%fs, not of S. This is because clauses of
type (5) never resolve with clauses of typ&), and clause&t) and(6) only resolve

to produce again clauses of typ# or (6), as noticed in Goubault-Larrecq et al.
(2004, Proposition 1).

Assume that the constant-only case is decidable. Then défine enumerating

all alternation-free candidates (which are finitely many), and returning those
such thatS; ¢ =ac C. We have already remarked (in justifying that condition 3
of the definition ofc> was decidable, in Section 7.5) that this could be decided by
skolemizingC, and using the decidability of the constant-only case h@uighC' is

57

now slightly more general than in Section 7.5, the same aegiapplies.) Clearly
O is a.f.-sound, computable, and is an alternation-free gragle.

Conversely, if there is an a.f.-sound computable alteonatiiee grey oracle, then
by Theorem 60 every set of alternation-free clauses of (#pe(5), and (6) is
decidable, in particular any subsetaf’-clauses. O

>From (slight and easy variants of) the latter results Jibfes again that intersection-
emptiness of AC-standard two-way AC-tree automata is @dbed thus providing
another proof of Corollary 45. This is because, by Corolrythe constant-only
case of AC-standard two-way AC-tree automata is decidablege there is a com-
putable grey oracle that is sound for the particular setg--@lauses needed to
handle AC-standard two-way AC-tree automata.

More generally, we obtain the following result. This showsatt to settle down
the decidability status of intersection-emptiness for-iway AC-tree automata, the
only difficulty resides in the constant-only case. As disaasin the conclusion of
Verma and Goubault-Larrecq (2005), this may be extraordyndifficult to deal
with, since it includes generalizations of the Petri nethedility problem as (very)
particular subproblems.

Proposition 62 Let + be a fixed associative commutative symbol. Assume that it
is decidable whether any given finite set of alternatior-torn clauses that are
eithere-blocks, free complex clauses on a fixed signature congistity of constant
symbols, or+-clauses, is AC-satisfiable (the so-calleahstant-only cage Then
AC-satisfiability of finite sets of alternation-free Horragkes that are eithes-
blocks, free complex clauses,-efclauses, is decidable.

Similar reasoning establishes the following similar tiesor

Proposition 63 Let + be a fixed associative commutative symbol. Assume that it
is decidable whether any given finite set of alternatior-torn clauses that are
either e-blocks, free complex clauses on a fixed signature congisiity of con-
stant symbols, o#--pop and+-push clauses, is AC-satisfiable. Then intersection-
emptiness of two-way AC-tree automata is decidable.

9 Conclusion

We have classified alternating two-way AC-tree automataracg to the decid-
ability of the intersection-emptiness question. Esséptaternation, general push
clauses, and equality constraints between brothers leaddecidability. On the
other hand we were able to give a decision algorithm for tvey-#WC-tree au-

58

tomata (without alternation), with the restriction thas fiush clauses on equational
symbols must be standard.

The case when conditional-push clauses are included in two-way AC-tree au-
tomata is open. Nonetheless we have shown that this redadld tonstant-only
case. While this may seem to be a considerable simplificati@nhave noticed
that already intersection-emptiness for the subcase dftRetway AC’-automata
included the question of BVASS reachability, which incladeat of Petri net reach-
ability. The latter is decidable, but it is not clear at themamt either how to trans-
late Petri two-way A€-automata or how to extend the Mayr-Kosaraju algorithm to
BVASS, hence to Petri two-way AGautomata. However, once this is done, a suit-
able variant of Proposition 63 should be usable to concliuales suitable restriction
of two-way AC-tree automata (which would naturally be calRetri two-way AC-
tree automata) has a decidable intersection-emptinebsepnoWe conjecture that
intersection-emptiness is also decidable for the genaxse of two-way AC-tree
automata, but this is even harder.

Figure 4 sums up our main results.

References

Bachmair, L. and Ganzinger, H. (2001). Resolution theoremripg. In Robinson
and Voronkov (2001), chapter 2, pages 19-99.

Bogaert, B. and Tison, S. (1992). Equality and disequalitystraints on direct
subterms in tree automata. Rroc. 9th Annual Symposium on Theoretical As-
pects of Computer Science (STACS,38ges 161-172. Springer-Verlag LNCS
577.

Boneva, I. and Talbot, J.-M. (2005). Automata and logicsunranked and un-
ordered trees. IRTA'05 pages 500-515. Springer-Verlag LNCS 3467.

Bouhoula, A. and Jouannaud, J.-P. (1997). Automata-daweomated induction.
In LICS-12 (1997), pages 14-25.

Chang, C.-L. and Lee, R. C.-T. (19733ymbolic Logic and Mechanical Theorem
Proving Computer Science Classics. Academic Press.

Charatonik, W. and Podelski, A. (1998). Set-based anabfsigactive infinite-
state systems. In Steffen, B., editBroc. 1st Intl. Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems (TR28), pages 358—
375. Springer-Verlag LNCS 1384.

Comon, H., Cortier, V., and Mitchell, J. (2001). Tree auttenaith one memory,
set constraints and ping-pong protocols.Pimc. 28th Intl. Colloquium on Au-
tomata, Languages, and Programming (ICALP’2QQigges 682—-693. Springer-
Verlag LNCS 2076.

Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lzgl®., Tison, S.,
and Tommasi, M. (1997). Tree automata techniques and apiphs. Wwv.
grappa.univ-lille3.fr/tatal.

59

One-way AC [1]

Definition 4
Alternating AC [1]
Definition 5
N
Alternating General

two-way AC [] &~ two-way AC []
Definition 6 Proposition 15

(4), (5), (6)[1]
Definition 47

C ~_
Standard two-way AC*[']
Definlition 7
|
AC-standard two-way AC*[]
Definlition 9

N
¥

Petri two-way AC [7]
Footnote to Corollary 27

|
N
v

Two-way AC [7]
Definition 6

Alternation-Freg4), (5), (6) [I*]
Definitions 47, 52

*: closed under union, intersection.
T intersection-emptiness decidable.
i?: intersection-emptiness decidable if so in the constaht-case.
~T: intersection-emptiness undecidable.

Fig. 4. Results on the AC-tree automata considered in thpsmpa

Comon, H. and Jacquemard, F. (1997). Ground reducibilBXBTIME-complete.

In LICS-12 (1997), pages 26-34.

Courcelle, B. (1989). On recognizable sets and tree automatNivat, M. and
Ait-Kaci, H., editorsResolution of Equations in Algebraic Structurdsademic

Press.

Davis, M. D. and Weyuker, E. J. (1985)Computability, Complexity and Lan-

guages Academic Press, New York.

de Groote, P., Guillaume, B., and Salvati, S. (2004). Veatilition tree automata.

60

In Proc. 19th Annual IEEE Symposium on Logics in Computer SeidBEE
Computer Society Press. To appeatr.

Diffie, W. and Hellman, M. (1976). New directions in cryptaghy. [IEEE Trans-
actions on Information TheoyyT-22(6):644—654.

Dowling, W. F. and Gallier, J. H. (1984). Linear-time algbms for testing the
satisfiability of propositional Horn formulaeJournal of Logic Programming
1(3):267-84.

Emerson, E. A. and Jutla, C. S. (1988). The complexity of angemata and logics
of programs (extended abstract). Pmoc. 29th Symposium on Foundations of
Computer Science (FOCS’88)ages 328-337.

Fages, F. (1984). Associative-commutative unification7tinintl. Conference on
Automated Deductigmpages 194—-208. Springer Verlag LNCS 170.

Finkel, A. and Schnoebelen, P. (2001). Well-structuredditéon systems every-
where! Theoretical Computer Scienc256(1-2):63-92.

Frahwirth, T., Shapiro, E., Vardi, M. Y., and Yardeni, E. @119. Logic programs
as types for logic programs. Froc. 6th Annual IEEE Symposium on Logic in
Computer Science (LICS’91pages 300-309. IEEE Computer Society Press.

Gécsegq, F. and Steinby, M. (1997). Tree languages. In RexgnB. and Salomaa,
A., editors,Handbook of Formal Languagesolume 3, pages 1-68. Springer
Verlag.

Genet, T. (1998). Decidable approximations of sets of detmats and sets of nor-
mal forms. In Nipkow, T., editoRroc. of the 9th Intl. Conference on Rewriting
Techniques and Applications (RTA'9®ages 151-165. Springer Verlag LNCS
1379.

Genet, T. and Klay, F. (2000). Rewriting for cryptographiotpcol verification.
In 17th Intl. Conference on Automated Deduction (CADE-pages 271-290.
Springer Verlag LNCS 1831.

Ginsburg, S. and Spanier, E. H. (1966). Semigroups, Prgsbtormulas and lan-
guagesPacific Journal of Mathematicd.6(2):285-296.

Goré, R., Leitsch, A., and Nipkow, T., editors (2001}t Intl. Joint Conference on
Automated Reasoning (IJCAR’QBiena, Italy. Springer Verlag LNAI 2083.

Goubault-Larrecq, J. (2000). A method for automatic crgpaphic protocol ver-
ification. In Formal Methods in Parallel Programming Theory and Applica-
tions (FMPPTA2000), 15th IPDPS Workshopages 977-984. Springer-Verlag
LNCS 1800.

Goubault-Larrecq, J. (2002). Higher-order positive setst@ints. In Bradfield,
J., editor,15th Annual Conf. of the European Association for Computegrige
Logic (CSL'02) pages 473-489. Springer Verlag LNCS 2471.

Goubault-Larrecq, J. (2003). Résolution ordonnée avescseh et classes dé-
cidables de la logique du premier ordre. Lecture notes ferctiurse “démon-
stration automatique et vérification de protocoles crympbiques” (with Hu-
bert Comon-Lundh), DEA “programmation”. 70 pagést p: // www. | sv.
ens- cachan. fr/ ~goubaul t/ SO esol . ps. In French.

Goubault-Larrecq, J., Roger, M., and Verma, K. N. (2004).stdction and res-
olution modulo AC: How to verify Diffie-Hellman-like protais automatically.

61

Journal of Logic and Algebraic ProgrammingTo appear. Available as LSV
Research Report LSV-04-7, Mar. 200%,t p: / / ww. | sv. ens- cachan.
fr/Publis/RAPPORTS LSV/rr-1sv-2004-7.rr.ps.

Goubault-Larrecq, J. and Verma, K. N. (2002). Alternatingoiwvay AC-
tree automata. Research Report LSV-02-11, LSV, ENS de @acha
Available atht t p: / / ww. | sv. ens- cachan. fr/ Publ i s/ RAPPORTS _
LSV/rr-1sv-2002-11.rr. ps.

Hopcroft, J. and Pansiot, J. J. (1979). On the reachabiligblpm for 5-
dimensional vector addition systenT$eoretical Computer Sciendg&135-159.

Ibarra, O. H., Su, J., Dang, Z., Bultan, T., and Kemmerer, R(2801). Counter
machines and verification problemBheoretical Computer Scienc&o appear.

Jouannaud, J.-P. (1995). Rewrite proofs and computatiar&chwichtenberg, H.,
editor, Proof and Computationvolume 139 ofNATO series F: Computer and
Systems Sciencgsages 173—-218. Springer Verlag.

Kaji, Y., Fujiwara, T., and Kasami, T. (1997). Solving a ucefiion problem under
constrained substitutions using tree automaadarnal of Symbolic Computation
23(1):79-117.

Karp, R. M. and Miller, R. E. (1969). Parallel program sché&malournal of
Computer and System Sciencg®):147-195.

Kosaraju, S. R. (1982). Decidability of reachability in t@caddition systems. In
Proc. 14th Annual ACM Symposium on the Theory of Computif@(332),
pages 267-281.

Lambert, J.-L. (1992). A structure to decide reachabilityPetri nets.Theoretical
Computer Scien¢®9(1):79-104.

Li, P. (1988). Pattern matching in trees. Master's Thesis8823, University of
Waterloo.

LICS-12 (1997).Proc. 12th Annual IEEE Symposium on Logic in Computer Sci-
ence (LICS’97)IEEE Computer Society Press.

Lipton, R. (1976). The reachability problem requires exgtral space. Technical
Report 62, Dept. Computer Science, Yale University.

Lugiez, D. (1998). A good class of tree automata. Applicatminductive theorem
proving. InProc. 25th Intl. Colloquium on Automata, Languages, andgPam-
ming (ICALP’98) pages 409-420. Springer-Verlag LNCS 1443.

Lugiez, D. (2003). Counting and equality constraints fortitree automata. In
Proc. 6th Conference on Foundations of Software Science Godputation
Structures (F0OSSaCS’03), European Joint Conferences enrytand Practice
of Software (ETAPS’03Bpringer-Verlag LNCS 2620, pages 328-342.

Lugiez, D. and Moysset, J. L. (1994). Tree automata help ors®ltve equational
formulae in AC-theoriesJournal of Symbolic Computatipf®8(4):297-318.

Martelli, A. and Montanari, U. (1982). An efficient unificati algorithm. ACM
Transactions on Programming Languages and Systé(@3.258—282.

Mayr, E. W. (1984). An algorithm for the general Petri netateability problem.
SIAM Journal of Computingl3:441-460.

Mayr, R. and Rusinowitch, M. (1998). Reachability is debigafor ground AC
rewrite systems. IProceedings of the 3rd Intl. Workshop on Verification of

62

Infinite State Systems (INFINITY’'98)ages 53—-64, Aalborg, Denmark. Tech-
nical Report TUM-19825, Technische Universitat Minchemt t p: / / www.
i nformati k. uni-freiburg.de/ ~mayrri/ac. ps.

Minsky, M. L. (1961). Recursive unsolvability of Post’s ptem of “tag” and other
topics in the theory of Turing machine8nnals of Mathematics, Second Series
74(3):437-455.

Monniaux, D. (1999). Abstracting cryptographic protoceith tree automata. In
Proc. 6th Intl. Static Analysis Symposium (SAS'§2ges 149-163. Springer-
Verlag LNCS 1694.

Niehren, J. and Podelski, A. (1993). Feature automata acafnézable sets of
feature trees. IiProc. 4th Intl. Conference on Theory and Practice of Sofevar
Development (TAPSOFT'93)ages 356—375. Springer-Verlag LNCS 668.

Ohsaki, H. (2001). Beyond regularity: Equational tree endta for associative
and commutative theories. th Annual Conf. of the European Association
for Computer Science Logic (CSL'QJages 539-553. Springer-Verlag LNCS
2142,

Ohsaki, H. and Takai, T. (2002). Decidability and closureparties of equa-
tional tree languages. In Tison, S., edit®rpceedings of the 13th Conference
on Rewriting Techniques and Applications (RTA,Q2)ges 114-128. Springer-
Verlag LNCS 2378.

Okhotin, A. (2001). Conjunctive grammardournal of Automata, Languages and
Combinatorics6(4):519-535.

Parikh, R. J. (1966). On context-free languagdsurnal of the Association for
Computing Machinery13(4):570-581.

Peltier, N. (1997). Tree automata and automated modelibgildFundamenta
Informaticae 30(1):59-81.

Plotkin, G. (1972). Building in equational theoriddachine Intelligencge7:73-90.

Reutenauer, C. (1993Aspects Mathématiques des Réseaux de.Rdasson.

Riazanov, A. and Voronkov, A. (2001). Vampire 1.1 (systersadigtion). In Goré
et al. (2001), pages 376-380.

Robinson, J. A. and Voronkov, A., editors (200BHandbook of Automated Rea-
soning North-Holland.

Roger, M. (2003) Raffinements de la résolution et vérification de protocotgp-c
tographiques PhD thesis, ENS de Cachan. In French.

Sacerdote, G. S. and Tenney, R. L. (1977). The decidabifithe reachability
problem for vector addition systems. Rvoc. 9th Annual ACM Symposium on
the Theory of Computing (STOC'7Pages 61-76.

Schimpf, K. M. and Gallier, J. H. (1985). Tree pushdown adtan Journal of
Computer and System Sciencgg(1):25-40.

Seidl, H. (1994). Haskell overloading is DEXPTIME-comgleinformation Pro-
cessing Letter2(2):57-60.

Seidl, H., Schwentick, T., and Muscholl, A. (2003). Numalidocument queries.
In 22nd ACM Symposium on Principles of Database Systems (FIBPgages
155-166, San Diego, CA, USA.

Shepherdson, J. C. (1959). The reduction of two-way aut@ritabne-way au-

63

tomata.IBM Journal of Research and Developme3it1 99-201.

Slutzki, G. (1985). Alternating tree automata heoretical Computer Science
41:305-318.

Stickel, M. (1981). A unification algorithm for associatigemmutative functions.
Journal of the Association for Computing Maching?@(3):423—-434.

Thomas, W. (1990). Automata on infinite objects. In van Leeuwd., editor,
Handbook of Theoretical Computer Scienceapter 4, pages 133-191. Elsevier
Science.

Verma, K. N. (2003a) Automates d’arbres bidirectionnels modulo théories équa-
tionnelles PhD thesis, ENS de Cachan. In English, with French abstract

Verma, K. N. (2003b). On closure under complementation ola¢ignal tree au-
tomata for theories extending AC. Rroc. 10th Intl. Conference on Logic for
Programming, Artificial Intelligence, and Reasoning (LP2B®3), pages 183—
195. Springer-Verlag LNAI 2850.

Verma, K. N. (2003c). Two-way equational tree automata fQ-lke theories:
Decidability and closure properties. Rroceedings of the 14th Conference on
Rewriting Techniques and Applications (RTA'2003ges 180-196. Springer-
Verlag LNCS 2706.

Verma, K. N. (2004). Alternation in equational tree autoarapdulo XOR. Iri24th
Conference on Foundations of Software Technology and €tieak Computer
Science (FSTTCS'04yolume 3328 of.NCS Chennai, India. Springer-Verlag.

Verma, K. N. and Goubault-Larrecq, J. (2005). Karp-Millexes for a branching
extension of VASS.Discrete Mathematics and Theoretical Computer Science
7(1):217-230.

Verma, K. N., Seidl, H., and Schwentick, T. (2005). On the ptexity of equa-
tional Horn clauses. In Nieuwenhuis, R., edit®@th International Conference
on Automated Deduction (CADE’'QSyolume 3632 ofLNCS pages 337-352,
Tallinn, Estonia. Springer-Verlag.

Voronkov, A. (2001). Algorithms, datastructures, and oiksues in efficient auto-
mated deduction. In Goré et al. (2001), pages 13-28.

Weidenbach, C. (2001). Combining superposition, sortssatitting. In Robinson
and Voronkov (2001), chapter 27, pages 1965-2013.

A Deciding Emptiness of Standard Two-Way AC-Automata

The following proposition states in particular that empss is decidable for stan-
dard two-way AC-automata. This is a particular case of Corollary 27, whioh i
plies in particular that intersection-emptiness of staddao-way AC-automata
is decidable. We include this proposition, as its proofmsger, the decision algo-
rithm is straightforward, and we obtain an explicit comptgkound.

Introduce the following notationn), for anyn > 1, denotes the sum of distinct
variables. The idea is that the only ground instance&:pfare sums of at least

64

constants:; (not necessarily distinct).

Proposition 64 The AC-satisfiability of sets of free pop clauses, of cla@sés-
(17), and generalized query clauses

1 < P((n))

is decidable and in NP.

In particular, it is decidable in NP whether, given any stardl two-way AC-
automaton4 and a stateP, the languagd.p(.A) is empty.

PROOF. It suffices to show that input resolution, with eager linealbsimption
and splitting, terminates.

Input resolution only generates new negative clauses. ®Wnd¢hat, starting from
So, the only negative clauses generated by input resolutitim@@ger splitting are
generalized query clauses.

e ResolvingL < P((n)) with a free pop claus&(f(x1,...,z,)) < Pi(x1),
ooy Py(zy,) yields L < Py(x),. .., Pyn(z,) (providedn = 1), which splits as
them clausesL < P;((1)),1 <i < m.

e Resolvingl < P({n)) with a +-pop clauseP(z + y) < P;(x), Py(y). The
intuition is that unifyingz + y with (n) means splittingn) (a sum of at least
n constants) in two sums; any unifier must then magm (n;) andy to (ns)
with n; + ny = n; resolution generates < P((ny)), P({ns)), which splits in
1 < P({n1)) and L <= P((ny)).

Formally, use Lemma 55; writingr) asz; +. . .+x,, we get that the elements
of a complete set of AC-unifiers ¢f,) andx + y are the substitutionsg, where
R ranges over all bisimulations betwegh ..., n} and{1,2}. Observe that
mapsx 10 3°, ; 1yer 2ij andy 10 3=, /; 2)c g 215, Where the variables;; are fresh,
andy; ; z;; ~ac (n). Letn; be the number of indicessuch that(i, j) € R,
j € {1,2}. In particularn; + ny = n.

The resulting resolvent is < P1(3; i 1)er i) P2(Xi,2)er #ij)- Since no
z;; free inthe first atom is free in the second one, this splite. fBisulting clauses
are thenl < Py((n;)) and L < Py((ny)).

e Resolvingl < P((n)) with a base claus(a;) only succeeds when = 1,
and the resulting resolvent is the empty clause.

e Resolvingl < P((n)) with ane-clauseP(z) < P, (z) yields L < P;((n)).

e Resolvingl < P((n)) with a standare--push clausé’(z) < P, (z+y) yields
1< P((n+1)).

If any branch of the tableau obtained by input resolutiamedir subsumption, and
splitting were infinite, then there would be infinitely margngralized query clauses

65

on this branch. By the pigeonhole principle, there would Ipeeglicate symbaoP
and an infinite sequence of integers< n, < ... such that all generalized query
clausesl < P(n;) are on the branch. But < P(n;) subsumes them all linearly,
so only finitely of them can have been generated and survimedr subsumption.

Let us evaluate the complexity of the process. Note thatiteecs P ((n)) is linear

in n (i.e., n is coded in unary, as a sum efdistinct variables). Note that, by
using linear subsumption, for every predicate symBgaihere is at most one clause
1 < P({n)) in any branchS at any time. LetV(S) be the largest integer such
that L < P((n)) is in S for some predicat® (0 if none), let>(S) be their sum,
k(S) be the number of predicate3 in S, such that no clause. < P((n)) is
present inS, and K the number of predicates if}). Define the measurg(S) as
E(S)N(S)+(k(S)+1)(k(S)+2)/2+>(S), and note that(S) is polynomial in the
size of S. We can now check that(.S) always decreases from any branch to any of
its descendants; the idea is thatS) decreases strictly when a new resolvént=
P((n)) is added and there was already some clause= P((n’)), because the
new clause can be added only.if< »" and hence the older clause gets subsumed;
while generating a new resolvent < P((n)) when no clausel. < P({n’)) is
present (then necessarity < N(S) + 1, the worst case being when we resolve
with a standardi--push clause) decreasesS) by one, increases (S) by at most
N(S) + 1, and increased/(S) by at most one. In other words, § is any new
branch obtained this way froif), £(S’) = k(S) — 1, >(5") < X(5) + N(S) + 1,
andN(S") < N(S)+1.So

< (k(9) - DV(S) + 1) + "ENEHE) +zs)£ N(S)+1

=k(S)N(S) — N(S) — 1+ Kk(S) + ()(kés + > (9) +1
(k(S) +)2(k(S) +2) LY) V41

k(S)N(S) — N(S) — 2+
n(S) =1 < pu(S)

Since generating resolvents until a new one is found takes piolynomial in the
size ofS, which is bounded by the number of non-negative clausss plus>(.5),
and since we can only decregggS) polynomially many times, every branch is
eventually saturated in polynomially many steps. Sincesa@sfiability of S is
equivalent to the existence of a saturated branch not ¢ontgihe empty clause in
the tableau, the problem is in NPO

We do not know whether the problem is in P, or NP-completenloeiween.

66

