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Abstract. A special class of oracle circuits with tree-vector form is
introduced. It is shown that they can be evaluated in deterministic
polynomial-time with a polylog number of adaptive queries to an NP
oracle. This framework allows us to evaluate the precise computational
complexity of model checking for some branching-time logics where it
was known that the problem is NP-hard and coNP-hard.
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1 Introduction

Many different temporal logics have been proposed in the computer science lit-
erature [Eme90]. Their main use is in the field of reactive systems, where model
checking allows automated verification of correctness [CGP99].

Comparing and classifying the different temporal logics is an important task.
This is usually done along several axis, most notably expressive power and com-
putational complexity. Generally, in model checking applications, one looks for
frameworks offering the best compromise between high expressive power and low
model checking complexity.

Regarding expressive power, the principal questions have been answered 1

and it is more or less known how the main temporal logics fare [Eme90,Rab02].
Regarding computational complexity, the available knowledge is not so ex-

haustive [Sch03]. In particular, for several branching-time temporal logics (or
some of their natural fragments), the complexity of model checking is not known 2.
Advances in this domain are welcome since it is important to understand what
ideas underly “optimal” algorithms, and what special cases may benefit from
specialized methods.

1 Including the recent proof that linear-time temporal with past is at least exponen-
tially more succinct than its pure-future fragment [LMS02b].

2 There is a similar situation with the complexity of satisfiability (or equivalently
validity) for branching-time logics, but algorithms for their satisfiability have less
practical importance since they are usually not implemented in tools.
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Model checking in the polynomial-time hierarchy. There is a family of branching-
time temporal logics for which the complexity of model checking is not known
precisely. These logics can be described as branching-time logics where the under-
lying path properties are in NP or coNP (we give several examples in section 2).

Let us write B(L) for the branching-time extension of some linear-time logic
L. If model checking for L is in NP (or, more likely, in coNP), then model checking
B(L) is in the polynomial-time hierarchy, inside the level PNP (also called ∆p

2).
For logics like CTL+ (i.e. B(L1(U,X)) or B∗(F) (i.e. B(L(F))), the ∆p

2 upper
bound has been known for almost twenty years.

For such logics, the question of finding matching lower bounds saw no progress
until recently, when Laroussinie, Markey, and the author managed to prove that
some of them (including B∗(F), CTL+, and FCTL) have indeed a ∆p

2-complete
model checking problem [LMS01,LMS02a].

However, for some remaining logics, the techniques used in [LMS01,LMS02a]
for proving ∆p

2-hardness do not apply. The difficulty here is that, if these prob-
lems are not ∆p

2-complete, we still lack methods for proving that a model check-
ing problem has upper bounds higher than NP or coNP but lower than ∆p

2.

Our contribution. In this paper we develop a framework that allows proving up-
per bounds below ∆

p
2 and apply it to branching-time model checking problems.

The approach is successful in that it allows us to prove model checking B ∗(X) is

PNP[O(log2 n)]-complete, and model checking Timed B(F) is PNP[O(logn)]-complete.
Our framework is based on Boolean circuits with oracle queries (introduced

in [Wil87]). We identify two special classes of oracle circuits having tree-vector
form (with special constraints on the oracle queries) for which we prove evalu-

ation can be done in PNP[O(logn)] and, respectively, PNP[O(log2 n)], i.e. they can
be evaluated by a deterministic polynomial-time Turing machine that makes
O(log n) (resp. O(log2 n)) adaptive queries to an NP-oracle (while ∆p

2-complete
problems require 3 polynomially-many adaptive queries).

Branching-time model checking problems lead naturally to tree-vector cir-
cuits, so that we obtain upper bounds directly by translations. The lower bounds
are proved by ad-hoc reductions: once the complexity class we aim at has been
properly identified, the main ingredient is the usual dose of ingenuity.

These results are important for several reasons:
1. The tree-vector oracle circuits may have more applications than just in model
checking. In any case, they illuminate a structural feature of model checking
where the formula is a modal expression tree evaluated over a vector of worlds.
2. The results help complete the picture in the classification of temporal logics.
A logic like B∗(X), the full branching-time logic of “next”, is perhaps not used
in practice, but it is a fundamental fragment of CTL∗, for which we should be
able to assess the complexity of model checking.

3 That is, assuming ∆
p
2 does not collapse to PNP[O(log2 n)] and PNP[O(log2 n)]! We shall

often write such sentences that implicitly assume the separation conjectures most
complexity theorists believe are true.
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3. They provide examples of problems complete for PNP[O(logn)] and PNP[O(log2 n)].
Very few such examples are known. In particular, with the model checking of
B∗(X), we provide the first example (to the best of our knowledge) of a natural

problem complete for PNP[O(log2 n)].

Related work. The best known framework for assessing the complexity of model
checking problems is the automata-theoretic framework initiated by Vardi and
Wolper [VW86]. By moving to tree-automata, this framework is able to deal
with branching-time logics [KVW00], where it has proved very successful (see the
unexpected [DW99]). However, the tree-automata approach seems too coarse-
grained for our problems where it seems we need a fine-grained look at the
structure of the oracle calls.

Gottlob’s work on NP trees [Got95] was an inspiration. His result prompted
us to check whether certain tree-vectors of queries could be normalized (and
then solved efficiently using the techniques of Castro and Seara [CS96]).

Plan of the paper. We recall the necessary background in Section 2. Then
Section 3 is devoted to tree-vector oracle circuits and flattening algorithms
for evaluating them. This lays the ground for our proof that model checking
B∗(X) is PNP[O(log2 n)]-complete (Section 4) and model checking Timed B(F) is
PNP[O(logn)]-complete (Section 5).

2 Branching-time logics with model checking in ∆
p
2

2.1 Complexity classes below ∆
p
2

We assume familiarity with computational complexity. The main definitions we
need concern classes in the polynomial-time hierarchy (see [Joh90,Pap94]).

∆
p
2 is the class PNP of problems solvable by deterministic polynomial-time

Turing machines that may query an NP oracle. Some relevant subclasses of ∆p
2

have been identified:

– PNP[O(logn)] (from [PZ83]) only allows O(log n) oracle queries instead of
polynomially-many. For example, PARITY-SAT (the problem where one is
asked whether the number of satisfiable Boolean formulae from some input
set f1, . . . , fn is odd or even) is PNP[O(logn)]-complete [Wag87].

– PNP
‖ (from [BH91]) only allows one round of parallel queries: the polynomially-

many queries may not be adaptive (i.e., depend on the outcomes of earlier
oracle queries) but must first be all formulated before the oracle is con-
sulted on all queries. Then the computation proceeds normally, using the
polynomially-many oracle answers.

Buss and Hay showed that PNP[O(logn)] and PNP
‖ coincide (and they further co-

incide with PNP
‖O(1), where a fixed number of parallel rounds is allowed) [BH91].

Wagner showed that many different and natural ways of restricting ∆p
2 all lead to
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the same PNP[O(logn)] class (e.g. PNP[O(logn)] coincide with LNP), for which he in-
troduced the name Θp2 [Wag90]. Further variants were introduced by Castro and

Seara, who proved that, for all k ∈ N, PNP[O(logk n)] coincide with PNP
‖O(logk−1 n)

(where a succession of O(logk−1) parallel querying rounds are allowed) [CS96].

2.2 Branching-time logics and NP-hard path modalities

We assume familiarity with temporal logic model checking [Eme90,CGP99,Sch03].
Several branching-time logics combine the path quantifiers E and A with linear-
time modalities whose path existence problem is in NP. Here are five examples:

– FCTL [EL87], or “Fair CTL”, allows restricting to the fair paths of a Kripke
structure, where the fair paths are defined by an arbitrary Boolean combi-

nation of
∞

F ± Pis. The existence of a fair path is NP-complete [EL87].
– TCTL [Koy90], or “Timed CTL”, allows adding timing subscripts to the

usual modalities. In Timed KSs (i.e. Kripke structures where edges carry a
discrete “duration” weight) the existence of a path of a given accumulated
duration is NP-complete [LMS02a].

– CTL+ [EH85] allows arbitrary Boolean combinations (not nesting) of the U

and X modalities under a path quantifier. Thus CTL+ is the branching-time
extension of L1(U,X), the fragment of linear-time logic with modal depth
one, for which the existence of a path is NP-complete [DS02].

– B∗(F) and B∗(X) are the branching-time extensions of L(F) and L(X) (resp.).
B∗(F) (called BT ∗ in [CES86]) is the full branching-time logic of “eventu-
ally”, while B∗(X) is the full branching-time logic of “next”. The existence
of a path satisfying an L(F) or an L(X) formula is NP-complete [SC85].

– BTL2 [RM01] allows path quantifiers where path modalities are given by
FOMLO2 formulae, i.e. quantifier-depth 2 formulae in the first-order monadic
logic of order. The existence of a path satisfying a FOMLO2 formula is NP-
complete [RS00].

For these examples, NP-hardness is easy to prove by reduction from 3SAT. For
example, consider an instance I of the form “

(

x1 ∨ x2 ∨ x4

)

∧
(

x1 ∨ · · ·
)

∧ · · · ”.

With I we associate the following structure that applies to CTL+, B∗(F), and
B∗(X):

q0

x1

x1

x2

x2

x3

x3

. . .

xn

xn

It is easy to see that

I is satisfiable iff q0 |= E

[

(

Fx1 ∨ Fx2 ∨ Fx4

)

∧
(

Fx1 ∨ · · ·
)

∧ · · ·
]

(1)

iff q0 |= E

[

(

Xx1 ∨ XXx2 ∨ XXXXx4

)

∧
(

Xx1 ∨ · · ·
)

∧ · · ·
]

(2)
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For FCTL we use a slight variant:

q0

x1

x1

x2

x2

x3

x3

. . .

xn

xn

Here I is satisfiable iff

q0 |= E

[

¬(
∞

Fx1 ∧
∞

Fx1) ∧ ¬(
∞

Fx2 ∧
∞

Fx2) ∧ · · · ∧ ¬(
∞

Fxn ∧
∞

Fxn)

∧
(∞

Fx1 ∨
∞

Fx2 ∨
∞

Fx4

)

∧
(∞

Fx1 ∨ · · ·
)

∧ · · ·

]

(3)

(1) and (3) also provide proofs for BTL2 since path modalities in CTL+ or
FCTL are directly translated in FOMLO2.

For TCTL we reduce from SUBSET-SUM. With an instance I of the form
“can one add numbers taken from {a1, . . . , an} and obtain b?” we associate the
following Timed KS:

q0 q1 q2 . . . qn

0 0 0 0

a1 a2 a3 an

0

Obviously
I is solvable iff q0 |= EF=b qn. (4)

2.3 Model checking B(L)

Assume L is some linear-time logic, and write B(L) for the associated branching-
time logic. Emerson and Lei [EL87] observed that, from an algorithm for the
existence of paths satisfying L properties, one easily derives a model checking
algorithm for B(L). Furthermore, this only needs a polynomial-time Turing
reduction, so that:

Fundamental Observation 2.1 [EL87] If the existential problem for L be-
longs to some complexity class C, the model checking problem for B(L) is in
PC.

Example 2.2. [EL87]. Model checking for LTL is PSPACE-complete, thus model
checking for CTL∗ is in PPSPACE, that is in PSPACE. Hence, though more
expressive than LTL, CTL∗ is not more expensive for model checking. ut

Example 2.3. With path modalities having an NP-complete existential prob-
lem, B∗(F), B∗(X), CTL+, ECTL+ (from [EH86]), FCTL, BTL2 and TCTL
(over Timed KSs), all have a model checking in PNP, the level called ∆p

2 in the
polynomial-time hierarchy.4 ut

4 For CTL+ and B∗(F), membership in ∆
p
2 was observed as early as [CES86, Theo. 6.2].
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2.4 Characterizing the complexity of model checking B(L) logics

Concerning the logics mentioned in Example 2.3, the only known lower bounds
for their model checking problem were the obvious “NP-hard and coNP-hard”
(or even DP-hard). However, all these logics have Θp2-hard model checking (see
Remark 5.3 below). Recently, Laroussinie, Markey and Schnoebelen showed ∆p

2-
hardness (hence ∆

p
2-completeness) for FCTL and B+(F) in [LMS01] (hence

also for B∗(F), CTL+, ECTL+, and BTL2), and for TCTL over Timed KSs
in [LMS02a].

The ∆p
2-hardness proof techniques developed in [LMS01,LMS02a] were not

able to cope with B∗(X), or with Timed B(F) (the fragment of TCTL where only
the F modality may carry timing subscripts). This raises the question of whether
these logics have ∆

p
2-hard model checking, and how to prove that. The ∆

p
2

upper-bound is indeed too coarse: in the rest of the paper, we prove that model
checking B∗(X) is PNP[O(log2 n)]-complete, and model checking Timed B(F) is
PNP[O(logn)]-complete.

3 Oracle Boolean circuits and TB(SAT)

3.1 Blocks and trees of blocks

We consider special oracle Boolean circuits called blocks. As illustrated in Fig. 1, a
block is a circuit B computing an output vector z of k bits from a set y1, . . . ,ym

of m input vectors, again with k bits each. Inside the block, p internal gates

y1
1y1: y1

2 · · · y1
k ym

1ym: ym
2 · · · ym

k· · ·

z1z : z2 · · · zk

E1(X) E2(X) · · · Ek(X)

x1 x2 · · · xp

∃V1.F1(Y, V1)? ∃V2.F2(Y, V2)? · · · ∃Vp.Fp(Y, Vp)?
· · · · · · · · ·

B :

Fig. 1. General form of a “block” oracle circuit

x1, . . . , xp query a SAT oracle: xi evaluates to 1 iff Fi(Y, Vi) is satisfiable, where

Fi is a Boolean formula combining the km input bits Y = {yjl | j = 1, . . . ,m, l =
1, . . . , k} with some additional variables from some set Vi. Finally, the values of
the output bits are computed from the xi’s by means of classical Boolean circuits
(no oracles): zi is some Ei(X) where X = {x1, . . . , xp}. We say m is the degree
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of the block, k is its width, and its size is the usual number of gates augmented
by the sizes of the Fi formulae.

The obvious algorithm for computing the value of z for some km input bits
is a typical instance of PNP

‖ : the p oracle queries are independent and can be
asked in parallel. Building the queries and combining their answers to produce
z is a simple polynomial-time computation.

Blocks are used to form more complex circuits: a tree of blocks is a circuit
T obtained by connecting blocks having a same width k in a tree structure, as
illustrated in Fig. 2 (where block B7 has degree 0). Requiring that all input and

T : B1

z1, . . . , zk

B2

· · ·

B4

· · ·

B5

· · ·

B3

· · ·

B6

· · ·

B7

· · ·

y1
1 , . . . , y1

k y2
1 , . . . , y2

k y3
1 , . . . , y3

k y4
1 , . . . , y4

k

Fig. 2. A “tree of blocks” oracle circuit

output vectors of all blocks have a same width k only simplifies notations (and
connections of blocks) but this is no loss of generality, and it would be easy to
normalize blocks and trees having heterogeneous vectors.

Every block in a tree has a level defined in the obvious way: in our example,
B4, . . . , B7 are at level 1, B2, B3 at level 2, and B1, the root, at level 3. If the
root of some tree is at level d, then the natural way of computing the value of
the output z requires d rounds of parallel queries: in our example, the queries
inside B1 can only be formulated after the B2 queries have been answered, and
formulating these require that the B4 queries have been answered before.

TB(SAT) is the decision problem where one is given a tree of blocks, Boolean
values for its input bits, and is asked the value of (one of) the output bits. Com-
pared to the more general problem of evaluating circuits with oracle queries (e.g.
the ∆p

2-complete DAG(SAT) problem of [Got95]), we impose the restriction of
a tree-like structure, and compared to the more particular problem of evaluat-
ing Boolean trees with oracle queries (the Θp2-complete TREE(SAT) problem
of [Got95]), we allow each node of the tree to transmit a vector of bits to its
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parent node. Thus TB(SAT) is a restriction of DAG(SAT) and a generalization
of TREE(SAT).

Proposition 3.1. TB(SAT) is ∆p
2-complete.

Proof (Idea). Membership in ∆
p
2 is clear. Hardness for ∆p

2 uses the width of
the blocks to circumvent the imposed tree structure: an oracle circuit C with n
adaptive SAT queries can be reduced to a “tree” of n stacked blocks B1 on B2

on . . . on Bn such that the l first output bits of Bn+1−l are the answers to the
first l queries of C. The resulting tree has size O(|C|

2
). ut

3.2 Circuits with simple oracle queries

In a block of width k and degree m, we say a query ∃V.F (Y, V )? has type 1×M if
it has the form ∃l1, . . . , lm∃V ′.F (y1

l1
, . . . , ymlm , l1, . . . , lm, V

′)?, i.e. F only uses one
bit from each input vector (but it can be any bit and this is existentially quan-
tified upon). Our formulation quantifies upon indexes l1, . . . , lm in the 1, . . . , k
range but such a lj is a shorthand for e.g. k bits “lj=1”, . . . , “lj=k” among
which one and only one will be true. These bits are part of V and this is why F
depends on l1, . . . , lm (and on V ′, which is V without the ljs). There is a similar
notion of type 2×M, type 3×M, . . . , where F only uses 2 (resp. 3, . . . ) bits from
each input vector.

We say that a query has type 1×1 if it has the form ∃j ∃l ∃V ′.F (yjl , j, l, V
′)?,

i.e. F only uses one bit from one input vector (can be any bit from any vector
and this is existentially quantified upon). Again, there is a similar notion of type
2×1, type 3×1, . . . , where we only use 2 (resp. 3, . . . ) bits in total.

For a query type τ , we let TB(SAT)τ denote the TB(SAT) problem re-
stricted to trees of type τ (i.e. trees where all queries have type τ).

Before we see (in later sections) where such restricted queries appear, we
show that they give rise to simpler oracle circuits:

Theorem 3.2. For any n > 0
1. TB(SAT)n×1 is PNP[O(logn)]-complete,

2. TB(SAT)n×M is PNP[O(log2 n)]-complete.

We prove the upper bounds in the rest of this section. The lower bounds, Corol-
laries 4.6 and 5.6, are deduced from hardness results for model checking problems
studied in the following sections 5.

5 More direct hardness proofs are possible, and may have improved the clarity of the
paper, but they would not have excused us from proving that our model checking
problems are hard. It is easy to construct hardness proofs for circuits by streamlining
our hardness proofs for model checking.
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3.3 Lowering TB(SAT)1×M circuits

Assume block B is the parent of some B′ inside a type 1×M tree T . Fig. 3
illustrates how one can merge B and B′ into an equivalent single block Bnew.
Here B′ is the leftmost child block of B, so that the input vector y1 of B will
play a special role, but the construction could have been applied with any other
child.

Bnew:B:

B
′
:

zi

Ei(X)
xi

∃ . . . Fi(. . .)?

z

y1 ym
· · ·

wi

Gi(U)
ui

∃ . . . Hi(. . .)?

w

v1
vm′

· · ·

zi

Ei(X)

wi

Gi(U)

xi

�

s=1,...,k

�

b=0,1

(xs,b
i ∧ ws = b)

ui

∃ . . . Hi(. . .)? x
s,b
i

∃l2, . . . ∃V ′Fi(b, y
2
l2

, . . . , s, l2, . . . , V
′)?

z

v1
vm′

· · · y2 ym· · ·

Fig. 3. Merging type 1×M blocks

The new block copies the ui query gates and the Gi circuits from B′ without
modifying them. 2k new query gates xs,bi are introduced for each xi in B: xs,bi
is like xi but it assumes l1 = s and y1

s = b in Fi. The xi query gates from

B are replaced by new (non-query) circuits picking the best xs,bi for which ws
agrees with the assumed value for y1

s . The final Bnew has type 1×M and degree
m′ +m− 1. |Bnew| is O(|B′| + 2k|B|): B was expanded but B′ is unchanged.

The purpose of this merge operation is to lower the level of trees: we say a
tree is low if its root has level at most log(1+number of blocks in the tree). The
tree in Fig. 2 has 7 blocks and root at level 3, so it is (just barely) low.

Lemma 3.3. There is a logspace reduction that transforms type 1×M trees of
blocks into equivalent low trees.

Proof. Consider a type 1×M tree T . We say a block in T is bad if it is at some
level d > 1 in T and has exactly one child at level d − 1 (called its bad child).
For example B2 is the only bad node in Fig. 2. If T has bad nodes, we pick a
bad B of lowest level and merge it with its bad child. We repeat this until T has
no bad node: the final tree Tnew is low since any non-leaf block at level d must
have at least two children at level d− 1 hence at least 2d − 2 descendants.

Observe that, when we merge a bad B at level d with its bad child B ′, the
resulting Bnew has level d − 1. Also, since we picked B lowest possible, B ′ was
not bad, so Bnew cannot be bad or have bad descendants. Thus Bnew will never
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be bad again (though it can become a bad child) and will not be expanded a

second time. Therefore Tnew has size O(k|T |) which is O(|T |
2
). ut

Observe that evaluating a low tree T only requires O(log|T |) rounds of parallel
oracle queries. Therefore Lemma 3.3 provides a reduction from TB(SAT)1×M to

PNP
‖O(logn), a PNP[O(log2 n)]-complete problem [CS96].

Corollary 3.4. TB(SAT)1×M is in PNP[O(log2 n)].

If now n is any fixed number, the obvious adaptation of the merging technique
can lower trees of type n×M. Here the new block Bnew uses (2k)n new query
gates but since n is fixed, the transformation is logspace and the resulting Tnew

has size O(|T |
n+1

).

Corollary 3.5. For any n ∈ N, TB(SAT)n×M is in PNP[O(log2 n)].

3.4 Flattening TB(SAT)1×1 circuits

Lemma 3.6. For any n ∈ N, there is a logspace reduction that transforms type
n×1 trees of blocks into equivalent blocks.

Proof (Sketch). With type 1×1 trees, one can merge all children B1, . . . , Bm with
their parent B without incurring any combinatorial explosion. A query gate xi
of the form ∃j ∃l ∃V ′.Fi(y

j
l , j, l, V

′)? will give rise to 2km new query gates

x
r,s,b
i := ∃V ′.Fi(b, r, s, V

′)?

where r is the assumed value for j, s the assumed value for l and b the assumed
value for yrs . xi will now be computed via

xi :=
∨

r=1,...,m

∨

s=1,...,k

∨

b=0,1

(xr,s,bi ∧ wrs = b).

We have |Bnew| = O(|B1|+ · · ·+ |Bm|+2km|B|) so that a bottom-up repetitive

application will transform a type 1×1 tree T into a single block of size O(|T |
3
).

For type n×1 trees, the obvious generalization introduces (2km)n new query
gates when merging B1, . . . , Bm with their parent B, so that a tree T is flattened
into a single block of size O(|T |

2n+1
). ut

Lemma 3.6 provides a logspace reduction from TB(SAT)n×1 to PNP
‖ , a PNP[O(logn)]-

complete problem [BH91].

Corollary 3.7. For any n ∈ Nat, TB(SAT)n×1 is in PNP[O(logn)].
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4 Model checking B
∗(X)

In this section we show:

Theorem 4.1. The model checking problem for B ∗(X) is PNP[O(log2 n)]-complete.

We start by introducing BX ∗, a fragment of B∗(X) where all occurrences of
X are immediately over an atomic proposition, or an existential path quantifier
(or an other X). Formally, BX ∗ is given by the following abstract syntax:

ϕ ::= Ef(Xn1ϕ1, . . . ,X
nkϕk) | P1 | P2 | . . .

where f(. . .) is any Boolean formula.

Lemma 4.2. There exists a logspace transformation of B ∗(X) formulae into
equivalent BX ∗ formulae.

Proof. One just has to bury the X’s so that they only apply to atomic proposi-
tions or E quantifiers. This relies on

X(ϕ ∧ ψ) ≡ Xϕ ∧ Xψ X(¬ϕ) ≡ ¬Xϕ (5)

and induces at most a quadratic blowup in size. (One may also have to introduce
dummy path quantifiers on top of Boolean connectives, e.g. P1∧ϕ is transformed
into Ef∧(X0P1,X

0ϕ).) ut

Lemma 4.3. There exists a logspace transformation from model checking for
BX ∗ into TB(SAT)1×M.

Proof. With a KS S and a BX ∗ formula ϕ we associate a tree of blocks where
the width k is the number of states in S, and where there is a block Bψ for
every subformula ψ of ϕ (so that the structure of the tree mimics the structure
of ϕ). The blocks are built in a way that ensures that the ith output bit of Bψ
is true iff qi, the ith state in S, satisfies ψ. This only needs type 1×M blocks.
Assume ψ is some ∃f(Xn1ψ1, . . . ,X

nmψm) with n1 ≤ n2 ≤ . . . ≤ nm. Then, for
i = 1, . . . , k, Bψ computes whether qi |= ψ with a query gate xi defined via

xi := ∃l1, . . . , lm

(

f(y1
l1
, . . . , ymlm) ∧

∧

j=1,...,m

Path(lj−1, nj − nj−1, lj)
)

?

where l0 = i, n0 = 0 and Path(l, n, l′) (definition omitted) is a Boolean formula
stating that S has an n-steps path from ql to ql′ . ut

Combined with Corollary 3.4, Lemmas 4.2 and 4.3 entail:

Corollary 4.4. Model checking for B∗(X) is in PNP[O(log2 n)].

For Theorem 4.1, we need prove the corresponding lower bound:

Proposition 4.5. Model checking for B∗(X) is PNP[O(log2 n)]-hard.

(See Appendix for a proof.)
Combining with Lemmas 4.2 and 4.3, we also obtain:

Corollary 4.6. TB(SAT)1×M is PNP[O(log2 n)]-hard.
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5 Model checking Timed B(F)

In this section we show:

Theorem 5.1. The model checking problem for Timed B(F) over Timed KSs
is PNP[O(logn)]-complete.

This is obtained through the next two lemmas.

Lemma 5.2. Model checking Timed B(F) over Timed KSs is PNP[O(logn)]-hard.

Proof. By reduction from PARITY-SAT. Assume we are given a set I0, . . . , In−1

of SUBSET-SUM instances: we saw in section 2.2 how to associate with these a
Kripke structure S and simple Timed B(F) formulae ψ0, . . . , ψn−1 s.t. for every
i, Ii is solvable iff S |= ψi. Assume w.l.o.g. that n is some power of 2: n = 2d

and for every tuple 〈b1, . . . , bk〉 of k ≤ d bits define

ϕ〈b1,...,bk〉
def
=

{

¬ ψ � k
j=1

bj2j−1 if k = d,

(ϕ〈0,b1,...,bk〉 ∧ ϕ〈1,b1,...,bk〉) ∨ (¬ϕ〈0,b1,...〉 ∧ ¬ϕ〈1,b1,...〉) otherwise.

S |= ϕ〈b1,...,bk〉 iff there is an even number of solvable Iis among those whose
index i has b1, . . . , bk as last k bits. Therefore the total number of solvable Ii is
even iff S |= ϕ〈〉. Since d = log n, |ϕ〈〉| is in O(n

∑

i|ψi|) and the reduction is
logspace. ut

We note that PNP[O(logn)]-hardness already occurs with a modal depth 1 formula.

Remark 5.3. Observe that this proof applies to all the logics we mentioned in
section 2.2: it only requires that several SAT problems f1, . . . , fn can be reduced
to respective formulae ψ1, . . . , ψn other a same structure S. (This is always
possible for logics having a reachability modality like EX or EF). ut

Lemma 5.4. There exists a logspace transformation from model checking for
Timed B(F) over Timed KSs into TB(SAT)1×1.

Proof (Sketch). We mimic the proof of Lemma 4.3: again we associate a block
Bψ for each subformula and k is the number of states of the Kripke structure
S. Assume the edges e1, . . . , er of S carry weights d1, . . . , dr. Then, for ψ of the
form EF=cψ

′, block Bψ will compute whether qi |= ψ by asking the query

xi := ∃l ∃n1, . . . , nr

(

y1
l ∧ c =

∑

j=1,...,r

njrj ∧ Path′(i, n1, . . . , nr, l)
)

?

where Path′(i, n1, . . . , nr, l) (definition omitted) is a Boolean formula checking
that there exists a path from qi to ql that uses exactly nj times edge ej for each
j = 1, . . . , r (Euler’s circuit theorem makes the check easy). We refer to [LMS02a,
Lemma 4.5] for more details (e.g. how are the nis polynomially bounded?) since
here we only want to see that type 1×1 queries are sufficient for Timed B(F).
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Dealing with AF=cψ seems more difficult, especially because of possible 0
weights, but it is actually simpler. We explain how to deal with EG=c, the dual
modality: qi |= EG=cψ if there is a path from qi along which all the states that
occur at accumulated weight c satisfy ψ. There are two cases: c never happens
along the path (and then qi |= EG=c⊥) or it does (and then qi |= EF=cEG=0ψ).
In both cases we need look at the first transition along the path that reaches c
or above:

qi |= EG=cψ iff

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

there is a c′ < c and an edge (q, w, q′) in S

s.t.

∣

∣

∣

∣

c′ + w ≥ c and qi can reach q with accumulated weight c′

and if c′ + w = c then q′ |= EG=0ψ

or
qiEG≥c⊥

(the last line deals with the case where the path stays forever below c). Since
model checking the EG=0 and EG≥c modalities is polynomial-time (see [LMS02a]),
we end up with a SAT query (for the “∃c′ < c,EF=c′ . . .”) of type 0×1. ut

Corollary 5.5. Model checking Timed B(F) over Timed KSs is in PNP[O(logn)].

Corollary 5.6. TB(SAT)1×1 is PNP[O(logn)]-hard.

6 Conclusion

We solved the model checking problems for B∗(X) and Timed B(F), two tem-
poral logic problems where the precise computational complexity was left open.

For B∗(X), the result is especially interesting because of the fundamental
nature of this logic, but also because it provides the first example of a natural
problem complete for PNP[O(log2 n)]. Indeed, identifying the right complexity class
for this problem was part of the difficulty.

Proving membership in PNP[O(log2 n)] required introducing a new family of
oracle circuits. These circuits are characterized by their tree-vector form, and ad-
ditional special logical conditions on the way an oracle query may depend on its
inputs. The tree-vector form faithfully mimics branching-time model checking,
while the special logical conditions originate from the modalities that appear in
the path formulae. We expect our results on the evaluation of these circuits will
be applied to other branching-time logics.
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A Proof of Proposition 4.5

A.1 PNP[O(log2 n)]-hardness

Let M be a deterministic polynomial-time oracle TM that makes at most c log2 n

queries on inputs of size n. We exhibit a logspace reduction from the accepting
problem for MSAT to B∗(X) model checking.

For simplification purposes, and without loss of generality, we assume that
when running on some input w ∈ {0, 1}n of size n, M makes exactly d2 queries
with d given by 2d−1 < n ≤ 2d, and that the outcome of the computation is
given by the last oracle query (i.e. MSAT accepts w iff its d2th query is answered
positively).

Given a vector a = 〈a1, . . . , ad2〉 of d2 bits, we write Ma for the TM that
runs like M on inputs of size n, except that its d2 oracle queries receive the
answers a1, . . . , ad2 (in that order). We say that a is exact for w if a coincide
with the answers that M would receive from SAT when run on w. Now, since
M is deterministic, the computation of MSAT and the computation of Ma on w
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are completely identical when a is exact for w. Below we let r(w) = 〈r1, . . . , rd2〉
denote the only vector that is exact for w.

We say that a is pessimistic for w if ai = 0 for all i such that the ith query
of Ma on w is not in SAT. Observe that when the ith query is in SAT, we have
no constraint on ai, so a pessimistic a needs not be exact. Also note that if a

is not exact then, after the first “wrong” answer, Ma and MSAT will behave
differently, and in particular may ask different future queries.

Let ≤lex denote lexicographical ordering. With M we associate the language

WM
def
= {〈w, b〉 | b ≤lex a for some a pessimistic for w}. (6)

Lemma A.1. r(w) = maxlex{b | 〈w, b〉 ∈WM}.

Proof. Obviously 〈w, r(w)〉 is in WM . Now assume that r(w) 6= a for some
pessimistic a and let i be the first position where r(w) and a differ: when run
on w, Ma and MSAT ask the same ith query but receive different answers. These
must be ri = 1 and ai = 0 since a is pessimistic. Thus a <lex r(w). ut

Lemma A.2. WM is in NP.

Proof. Given a candidate 〈w, b〉, a certificate is some a ≥lex b and some satis-
fying assignments for the queries corresponding to the positive bits in a. With
this one can check in polynomial-time that indeed a is pessimistic for w. ut

Thus there is a set Zn = {z1, . . . , zmn
} of Boolean variables and a Boolean

formula fn(w1, . . . , wn, y1, . . . , yd2 , Z) such that 〈w, b〉 ∈ WM iff fn(w, b, Zn) is
satisfiable, i.e. iff ∃Zn.fn(w, b, Zn) holds. fn and mn depend on n but the proof
of Lemma A.2 shows that they can be produced uniformly in logspace from 1|w|.

Lemma A.1 says that a possible way to decide whether M SAT accepts w is
to compute the lexicographically first vector b s.t. 〈w, b〉 is in WM and look at
its last bit. If an oracle for WM is available, computing that lexicographically
first vector can be done by d2 rounds of binary search. Our reduction encodes a
similar search but it uses d rounds where, at each round, d bits are computed.

With w we associate the KS Sn depicted in Fig. 4. Sn has a clique of 2d

states labeled q0, q1, . . . , q2d−1. For any k with 0 ≤ k < 2d, the state qk encodes
a packet of d bits that we denote bits(k). In Sn it is possible to leave the clique,
move to the s state and pick a valuation for the Boolean variables z1, . . . , zmn

that appear in fn.
We now give B∗(X) formulae (ϕi)1≤i≤d stating that bits(k) is the ith packet

of d bits in r(w). Formally we define inductively:

ψi
def
= X

d+1s ∧
∧

p<2d

(

qp ⇔ X
iqp

)

∧
∧

1≤j<i

X
j
Eϕj ∧ θfn(w), (7)

ϕi
def
= ψi ∧ A

[

(

∨

p<p′<2d

(qp ∧ Xqp′)
)

⇒ X¬Eψi

]

, (8)

where θfn(w) will be defined in the proof of Lemma A.3.
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q0

q1

q2

q2d
−1

...

s

z1

z1

z2

z2

z3

z3

zmn

zmn

· · ·

· · ·

· · ·

Fig. 4. Kripke structure for PNP[O(log2 n)]-hardness of B∗(X)

Lemma A.3. Let r(w) = 〈r1, . . . , rd2〉. Then for all k < 2d and 1 ≤ i ≤ d

qk |= Eψi iff bits(k) ≤lex 〈r(i−1)d+1, r(i−1)d+2, . . . , ri.d〉, (9)

qk |= Eϕi iff bits(k) = 〈r(i−1)d+1, r(i−1)d+2, . . . , ri.d〉. (10)

Proof. By induction on i.
We start with the (⇒) direction of (9). Assume qk |= Eψi, i.e. π |= ψi for some

path π. Then π |= Xd+1s and π has the form qk, qk1 , . . . , qkd
, s,±1z1,±2z2, . . .

where every ±jzj is the literal zj or zj .
We see π as a valuation for the free variables in fn(w): k1, . . . , kd provide

values for y1, . . . , yd2 and the tail of π provides values for the zjs. θfn(w) is a
B∗(X) path formula stating that these values satisfy fn(w). It is obtained from
fn by the same direct translation we used in (2): a zj is simply replaced with
Xd+1+jzj and a wi by the actual value (from w). Replacing the yjs is only
slightly more involved: if j is (l− 1)d+ l′ for some 1 ≤ l, l′ ≤ d, then yj receives
the l′th bit of kl, so we replace yj by Xl

(
∨

{qp | bits(p)l′ = 1}
)

. Finally, θfn(w)

ensures that 〈w, bits(k1) · · · bits(kd)〉 is in WM as witnessed by the ±jzjs picked
by π. Hence bits(k1) · · · bits(kd) ≤lex r(w).

The states qk1 , qk2 , . . . , qki−1
satisfy (respectively) Eϕ1,Eϕ2, . . . ,Eϕi−1 so that,

by ind. hyp., bits(k1), . . . , bits(ki−1) are the first (i − 1)d bits of r(w). Thus
bits(ki) ≤lex 〈r(i−1)d+1, r(i−1)d+2, . . . , rid〉. We conclude by observing that k = ki
since π |=

∧

p(qp ⇔ Xiqp).
After these explanations, the (⇐) direction is easy to see. Assume bits(k) ≤

〈r(i−1)d+1, r(i−1)d+2, . . . , rid〉 and consider a b obtained by putting the (i − 1)d
bits of r(w) in front of bits(k) and appending (d − i)d zeros at the end. b ≤lex

r(w) and f(w, b, Zn) is satisfiable. From this we build a π that proves qk |= Eψi.
Finally (10) is clear since qk |= Eϕi simply states that k is the largest number

s.t. qk |= Eψi. ut

Corollary A.4. MSAT accepts w iff q0 |= EX
(

ϕd ∧
∨

{q2p+1 | 0 ≤ p < 2d−1}
)

.
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Proof. MSAT accepts w iff the last bit of r(w) is 1. ut

It remains to evaluate the size of ϕd: ψi contains ϕ1, . . . , ϕi−1 and the rest can
be polynomially bounded, while ϕi contains two occurrences of ψi and some
polynomially bounded rest. If we write p(n) for the polynomial bound, an easy
induction shows that

|ψi| ≤
3i − 1

2
p(n) |ϕi| ≤ 3ip(n) (11)

Thus |ϕd| ≤ 3dp(n) which is O(n × p(n)) since d = log n, and Corollary A.4
provides the logspace reduction we announced. Hence

Corollary A.5. Model checking B∗(X) is PNP[O(log2 n)]-hard.


