
Watermarking for Ontologies

Fabian M. Suchanek1, David Gross-Amblard1,2, and Serge Abiteboul1

1 INRIA Saclay, Paris
2 LE2I CNRS, Université de Bourgogne, Dijon

Abstract. In this paper, we study watermarking methods to prove the
ownership of an ontology. Different from existing approaches, we pro-
pose to watermark not by altering existing statements, but by removing
them. Thereby, our approach does not introduce false statements into
the ontology. We show how ownership of ontologies can be established
with provably tight probability bounds, even if only parts of the ontology
are being re-used. We finally demonstrate the viability of our approach
on real-world ontologies.

1 Introduction

An ontology is a formal collection of world knowledge. Creating an ontology
usually involves a major human effort. In the case of manually constructed on-
tologies, human effort is needed to collect the knowledge, to formalize it and to
maintain it. The same applies to ontologies constructed by a community, such
as Freebase or DBpedia. In the case of automatically constructed ontologies, hu-
man effort comes in the form of scientific investigation and the development of
algorithms. Consequently, the creators of an ontology usually do not give away
the ontology for free for arbitrary use. Rather, they request their users to pay
for the content, to follow the terms of a specific license, or to give credit to the
creators of the ontology. In most cases, it is prohibited to re-publish the data,
or allowed only with proper acknowledgment.

This restriction is most obvious in the case of commercially sold ontologies
such as [9]: The use of the data is restricted by the sale contract. The contract
usually prohibits the re-publication of the data. Any dissemination of the data
into other data sets constitutes a breach of contract.

One might think that the picture would be different for the public ontologies
of the Semantic Web. The general spirit of the Semantic Web wants data to
be shared across application and community boundaries3. However, even the
ontologies of the Semantic Web are not available for arbitrary re-publication.
Table 1 shows some popular ontologies mentioned together with their licenses.
None of the ontologies is available in the public domain. All of them require
at least an acknowledgment when their data is re-published. It is considered
dishonest to sell or re-publish the data from an ontology elsewhere without
giving due credit to the original.

3 http://www.w3.org/2001/sw/

http://www.w3.org/2001/sw/


Some data sets are not freely available at all (see Table 1). The Wolfram
Alpha data set4, for example, can be queried through an API, but cannot be
downloaded. Its terms of use prohibit the systematic harvesting of the API to
re-create the data set. Any re-publication of a substantial portion of such data
constitutes a breach of the terms of use. Similar observations apply to trueknowl-
edge5 or the commercial version of Cyc [9]. In all of these cases, the extraction
and systematic dissemination of the data is prohibited.

License Conditions Ontologies

GFDL attribution, copyleft DBpedia [2]
GPL attribution, copyleft SUMO [10]
CC-BY attribution YAGO [15], Freebase, Geonames, OpenCyc [9]
CC-BY-ND attribution, no derivatives UniProt
– access under restrictions TrueKnowledge, KnowItAll, WolframAlpha, full Cyc [9]

Table 1. Common licenses for ontologies

This raises the issue of how we can detect whether an ontology has been illegally
re-published. We call a person who re-publishes an ontology (or part of it) in
a way that is inconsistent with its license an attacker. The attacker could, e.g.,
re-publish the ontology under his own name or use parts of the ontology in his
own ontology without giving due credit. We call the source ontology the original
ontology and the re-published ontology the suspect ontology. We want to solve
the problem of ownership proof: How can we prove that the suspect ontology
contains part of the original ontology? Obviously, it is not sufficient to state that
the suspect ontology contains data from the original ontology. This is because
ontologies contain world knowledge, that anybody can collect. Take the example
of an ontology about scientists: the attacker could claim that he also collected
biographies of scientists and that he happened to produce the same data set as
the original ontology. A similar argument applies to ontologies that have been
derived from public sources. YAGO [15] and DBpedia [2], e.g., have both been
extracted from Wikipedia. An attacker on DBpedia could claim that he also
extracted data from Wikipedia and happened to produce a similar output.

One might be tempted to assume that we could simply publish the original
ontology with a time stamp (in the style of proof of software ownership). For
example, we could upload the ontology to a trusted external server. If someone
else publishes the same data later, then we could point to the original copy.
However, this does not prove our ownership. The other publisher could have had
the data before we published ours. The fact that he did not publish his data
cannot be used against him.

Therefore, a more sophisticated approach is needed to enable ownership
proofs. This is the goal of the present paper. We present an approach that
uses digital watermarking to detect whether a suspect ontology contains data
derived from an original ontology. Watermarking techniques aim at hiding some
relevant information in a data set, in an invisible or robust way. Finding such
information in a suspect data set acts as the proof of ownership. Several works

4 http://www.wolframalpha.com/
5 http://www.trueknowledge.com/

http://www.wolframalpha.com/
http://www.trueknowledge.com/


consider watermarking for relational databases by performing voluntarily alter-
ation of data. These approaches could be extended to ontologies. However, data
alteration invariably decreases the precision of the ontology.

Therefore, we develop an alternative method that is specifically adapted to
the Semantic Web: We propose to watermark an ontology by removing carefully
selected statements before publishing. The suspect absence of these statements
in an ontology with a significant overlap will act as the proof of theft. We argue
that this does less harm than altering statements, because the Semantic Web
operates under the Open World Assumption: Most ontologies are incomplete.

More specifically, our contributions are as follows:

1. A formalization of the problem of ontological data re-publication,
2. An algorithm for watermarking ontologies, which allows detecting malicious

re-publication without harming the precision,
3. Extensive experiments that show the validity of our approach.

The rest of this paper is structured as follows: Section 2 summarizes related
work. Section 3 formalizes our scenario and lists different attack models. Section
4 presents our watermarking algorithm with a formal analysis. Section 5 details
our experiments before Section 6 concludes.

2 Related Work

In [4], the authors introduce named graphs as a way to manage trust and prove-
nance on the Semantic Web. Named graphs, however, cannot guard against the
misuse of ontologies that are publicly available.

One of the oldest attempts to prove ownership of factual data is the use of
fictitious entries in dictionaries. Since the 19th century, dictionaries, maps, en-
cyclopedias and directories have had occasional fake entries. The New Columbia
Encyclopedia, for example, contained an entry about a fictitious photographer
called Lillian Virginia Mountweazel. If such an entry ever appeared in another
encyclopedia, it was clear that the data was copied. To mark an ontology, how-
ever, it is not sufficient to add a single isolated entity, because an attacker can
simply remove unconnected entities.

A classical way to achieve ownership proofs is to apply watermarking tech-
niques. Some recent proposals have targeted ontologies [6]. This previous effort
uses a purely syntactical rewriting of the RDF XML source layout into an equiv-
alent layout to hide information. This approach can be circumvented by normal-
izing the XML file. This can be done, e.g., by loading the file into a tool such as
Protégé [11] and then saving it again as an XML document.

Quite a number of approaches have targeted semi-structured data [13] and
relational databases [1,14,7,8,12]. These works provide one way to prove owner-
ship of ontologies. Most of them are blind, i.e., they do not require the original
data set for detection. However, all of these approaches presume that the schema
of the data is known. This is not necessarily the case on the Semantic Web. Some
ontologies (such as DBpedia or YAGO) have hundreds of relationships. An at-
tacker just has to map some of them manually to other relationships to obscure



the theft. We will develop approaches that can still identify the suspect data,
but in a non-blind way. Furthermore, the classical methods work by voluntarily
altering data. Therefore, we call these methods modification approaches in the
sequel. Such approaches could, e.g., change the birth year of Elvis Presley from
the year 1935 to the year 1936. While the introduced errors are only gradual
for numerical data, they are substantial for categorical data. Such an approach
could, e.g., change Elvis’ nationality from American to Russian. Apart from the
fact that an ontology owner will find it controversial to voluntarily alter clean
data, such an approach will also decrease the precision of the ontology with re-
spect to the real world. Furthermore, the altered facts can lead to contradictions
with other data sets. This is not only annoying to the user, but can also allow
the attacker to detect and remove the altered facts. Therefore, we present an
alternative approach in this paper, which works by deleting carefully selected
facts. Since the Semantic Web operates under the open world assumption, the
absence of true information is less harmful than the presence of false information.

3 Model

3.1 Watermarking

A watermarking protocol is a pair of algorithms (M,D), whereM stands for the
marker and D the detector (Figure 1). Given an original ontology O and a secret
key K, the marker algorithm outputs a watermarked ontology O∗ = M(O,K).
Given a suspect ontology O′, the original ontology and the secret key, the de-
tector decides if O′ contains a mark, that is if D(O′, O,K) is true.

malevolent user

secret key

ontology owner’s side

proof

of ownership

users side

attacks

altered ontology

original
ontology

unfair reuse

watermarked
ontology

detector mapping

secret key

marker

lawful user

Fig. 1. Watermarking protocol for ontologies

If O′ contains the mark, then it is assumed that O′ has indeed been derived
from O∗. However, the watermarking protocol may erroneously say that O′ has
been derived from O∗, even though O′ just contains the mark by chance. For
example, O′ may be a totally unrelated ontology. In this case, O′ is called a false
positive. Watermarking protocols are designed so that the probability of a false
positive is provably below a confidence threshold ξ. The parameter ξ is called
the security parameter of the protocol and is typically in the order of ξ = 10−6.



In an adversarial setting, the attacker can try to evade the detection of the
mark in the ontology by various means, including:

– Subset attack: The attacker uses only a subset of the stolen ontology.
For example, the attacker could choose a certain thematic domain from the
original ontology (such as, say, sports), and re-use only this portion. While
publishing just a few statements should be allowed, larger stolen parts should
be detected by the protocol.

– Union attack: The attacker merges the ontology with another one. For
example, the attacker could combine two ontologies about gene expressions,
thereby hiding the stolen ontology in a larger data set. A naive union attack
would keep facts from both ontologies, even if they are inconsistent with
each other.

– Intersection attack: The attacker keeps only ontology elements that are
found in another ontology. For example, an attacker could remove entities
from the stolen ontology that do not appear in a reference ontology.

– Comparison attack: The attacker compares the ontology to another data
source and eliminates inconsistent information. For example, the attacker
could cross-check birth dates of one ontology with the birth dates in a ref-
erence ontology and remove inconsistent dates.

– Random alteration attack: The attacker alters values, relations or enti-
ties. This action is limited as the attacker still desires valuable data.

The ability of the watermarking protocol to withstand these attacks is called
its robustness. Watermarking protocols are typically designed so that the prob-
ability of a successful attack is provably below their security parameter ξ.

An attacker may also publish someone else’s ontology as part of an offensive
or illegal data set. An attacker may, e.g., take an ontology about chemistry and
publish it as part of a data set about weapons of mass destruction. If the ontol-
ogy was marked, it will appear as if the creator of the original ontology authored
the offensive data set. Our method can fend off this so-called copy attack.

3.2 Ontologies

An RDFS ontology over a set of entities (resources and literals) E and a set of
relation names R can be seen as a set of triples O ⊂ E × R × E. Each triple is
called a statement, with its components being called subject, predicate and object.
We will write e.name to refer to the identifier of the entity in the ontology. This
can be the URI (in case of a resource) or the string value (in case of a literal).
RDFS specifies certain semantic rules. These rules state that if the ontology
contains certain statements, certain new statements should be added to the
ontology. We call these added statements redundant and assume that redundant
statements have been removed from the ontology [5]. RDFS rules are strictly
positive. Therefore, an RDFS ontology cannot become inconsistent if a statement
is removed or altered. This predestines RDFS ontologies for watermarking and
we leave more sophisticated ontology models for future work.

To prove that a suspect ontology O′ copied data from an original ontology
O, we will first have to determine whether O′ and O contain similar data. This



is a challenging task in itself, because it amounts to finding a mapping from O′

to O. This problem has attracted a lot of research in the context of the Web
of Linked Data [3]. Finding such a mapping is outside the scope of the present
paper. Here, we limit ourselves to 2 assumptions: (1) We know a partial mapping
function σ, which maps (some of) the entities of O′ to entities of O; (2) there
exists a partial mapping function σR, which maps the relations of O′ to relations
of O. Note that we do not need to know σR. Our method has been designed so
that it is transparent to the “schema” of the ontologies. We need the existence
of σR just to assure that O and O′ have some structural similarity. An inves-
tigator needs to find only σ. If the ontology was truly stolen, then the entities
will probably be recognizable in some way, because otherwise the stolen ontology
would be less useful. In the best case, σ will reflect mainly syntactic variations of
the identifiers and values. We note that the modification approaches like [1] also
require σ, because they determine the tuples to mark based on the value of the
primary key, which has to be available at detection. In addition, the modification
approaches also require the mapping of the schema, σR, which our approach does
not require. In the sequel, we assume that σ has been found and has been applied
to O′. We are now concerned with the question that follows: We want to prove
that O′ and O are similar not just by chance, but because O′ copied data from O.

3.3 Ethical considerations

Ontologies represent world knowledge. Therefore, it is questionable whether one
can “own” such data. Can the creator have a copyright on the ontology, given
that it is nothing more than a collection of facts about the world? In this paper,
we do not deal with the legal implications of owning or copying ontologies. We
only provide a method to prove that one data source copied from another source
– independently of whether such behavior is considered legal or not.

Our approach will remove facts from the ontology before publishing. Then
the question arises whether it is honest to withhold information that one could
publish. However, an ontology always represents only part of reality. In most
cases, the creator of an ontology is not obliged to make it exhaustive. The Open
World Assumption of the Semantic Web makes the absence of information a
normal and tolerable circumstance.

In general, the watermarking of an ontology always remains a trade-off be-
tween the ability to prove ownership and the truthfulness of the data. One should
not willfully alter ontologies that are highly sensitive to even small misrepresen-
tations of reality, such as ontologies in the domain of medicine, security, or
aeronautics. However, unlike the modification approaches [1], our approach of
deleting facts can be applied even if truthfulness of the data has to be preserved,
as long as some incompleteness can be tolerated.

4 Watermarking Ontologies

4.1 Watermarking Basics

Our starting point is a watermarking protocol from Agrawal et al. [1] for re-
lational databases. Their statistical watermarking uses cryptographically se-



cure pseudo-random number generators (CSPRNGs). A CSPRNG is a function
which, given an integer seed value, produces a sequence of pseudo-random bits.
The bits are pseudo-random in the sense that, without the seed, and given the
first k bits of a random sequence, there is no polynomial-time algorithm that
can predict the (k + 1)th bit with probability of success better than 50% [16].
A CSPRNG is a one-way-function. This means that, given a CSPRNG and a
sequence of random bits it produced, it is close to impossible to determine the
seed value that generated it. More formally, given a CSPNG f , for every ran-
domized polynomial time algorithm A, Pr[f(A(f(x))) = f(x)] < 1

p(n) for every

positive polynomial p(n) and sufficiently large n, assuming that x is chosen from
a uniform distribution [17]. In the following, we use a given CSPRNG G.

After G has been seeded with a value by calling G.seed(value), one can repeat-
edly call the function G.nextBit() to obtain the next bit in the random sequence.
By combining multiple calls to this function, we can construct a pseudo-random
integer value. The function that delivers a pseudo-random integer number greater
or equal to 0 and below a given upper bound k is denoted by G.nextInt(k).

Our watermarking algorithm makes use of a secret key. A secret key is a
integer number that is only known to the owner of the original ontology. We will
use the key as a seed value for G. We also make use of a cryptographically secure
hash function. A hash function is a function which, given an object, returns an
integer number in a certain range. A cryptographically secure hash function is
such that it is infeasible to find two inputs with the same output, or the inverse
of the output. We assume a given hash function, such as SHA, denoted hash. In
order to resist the aforementioned copy attack, we will first compute the secure
hash of the original ontology. All our subsequent computations will depend on
this hash, so that no attacker can pretend to own the watermarked version by
finding another ontology with the same watermarking.

4.1.1 Algorithm. Our watermarking method shall be transparent to relation
names, because we do not want to require an investigator to find a mapping of the
schema. Therefore, we define the notion of a fact pair. A fact pair of an ontology
O is a pair of entities 〈e1, e2〉, such that there exists r such that 〈e1, r, e2〉 ∈ O.
Algorithm 1 marks an ontology by removing fact pairs. It takes as input the
original ontology O, a secret key K, and the number of facts delTotal to remove.
The secret key is an arbitrary chosen number. Section 4.2.1 will discuss how
to find a suitable value for delTotal. For each fact pair of the ontology, the
algorithm seeds G with the names of the entities, the hash of O, and K. If the
next random integer of G between 0 and the total number of fact pairs in O
divided by delTotal happens to be 0, the fact pair is removed. This removes
delTotal facts from the ontology6. Note that our algorithm does not consider
the relation names at all. After running Algorithm 1, the marked ontology O∗

is published. The original ontology O is kept secret.

To detect whether a suspect ontology stole data from an original ontology, we
run Algorithm 2 on the original ontology O (without the mark) and the suspect

6 If less than delTotal facts got removed, we rerun the algorithm with a different key.



Algorithm 1 subtractiveMark(orig. ontology O, secret key K, integer delTotal)

O∗ ← O
for all 〈e1, e2〉 ∈ πsubject,object(O) do
G.seed(e1.name⊕ e2.name⊕ hash(O)⊕K)
if G.nextInt(|πsubject,object(O)|/delTotal) = 0 then

Remove 〈e1, ∗, e2〉 from O∗

end if
end for
return O∗

ontology O′ (after having applied the mapping from Section 3.2). The algorithm
runs through all fact pairs of O and computes the proportion of published fact
pairs that appear in the suspect ontology. It also computes the proportion of
removed fact pairs that appear in the suspect ontology. Since we only consider
fact pairs and not facts, a mapping of the relation names (the schema) is not
necessary. It is possible that the suspect ontology contains some of the fact
pairs that we removed from the original before publishing. This can be for two
reasons: Either the suspect ontology is innocent and just happens to have a
thematic overlap with our original, or the suspect ontology imported data from
other sources, thus complementing the facts we removed. The algorithm then
compares the ratio of removed fact pairs that appear in O′ to the ratio of pub-
lished fact pairs that appear in O. If O′ is innocent, these ratios should be the
same. If the ratio of deleted facts is lower than the ratio of published facts, and
significantly so, this indicates a theft and the algorithm will return true. It seems
highly counter-intuitive that the absence of a fact should prove theft of data.
Yet, the proof comes from the fact that the removed statements form a pattern
of present and absent facts in O. The probability that this pattern appears by
chance in another ontology is extremely low.

Algorithm 2 subtractiveDetect(original O, suspect O′, key K, integer delTotal)

O∗ ← subtractiveMark(O,K, delTotal)
pubFound← 0; delFound← 0;
for all 〈e1, e2〉 ∈ πsubject,object(O) do

if 〈e1, e2〉 ∈ πsubject,object(O
′) then

if 〈e1, e2〉 ∈ πsubject,object(O
∗) then pubFound+ +

else delFound+ +
end if

end for
pubTotal← |πsubject,object(O

∗)|
if delFound/delTotal ≥ pubFound/pubTotal then return false
return delFound/delTotal significantly different from pubFound/pubTotal

Let us detail the check of significance. The suspect ontology will cover a certain
portion of facts of the original ontology. The central observation is that, if this
overlap is by chance, then the suspect ontology should cover the same portion
of published facts as it covers of the deleted facts, because the watermarking is



randomized. Thus, we have to determine whether any difference between these
two ratios is statistically significant. This is the last step in Algorithm 2. This
significance is determined by a χ2 test. Be pubTotal the total number of pub-
lished fact pairs. Be pubFound the number of published fact pairs that appear
in the suspect ontology. Be delTotal the total number of deleted fact pairs. Be
delFound the number of deleted fact pairs that appear in the suspect ontology
and be N = pubTotal + delTotal the total number of fact pairs. We get

χ2 =
N(delFound× (pubTotal − pubFound)− pubFound× (delTotal − delFound))2

(pubFound+ delFound)× (N − pubFound− delFound)× delTotal × pubTotal
.

If χ2 > χ2(1, ξ), where ξ is the security parameter, then the two ratios are
not independent. Since the removal of the fact pairs was purely random, any
significant difference between the ratios indicates a dependence on the original
ontology. In the extreme case, the suspect ontology reproduces the published
facts and omits all (or nearly all) removed facts.

In order to be applicable, the standard χ2 test requires the total number of
samples to be greater than 100 and the expected number of samples for each
case to be greater than 5. Therefore, our algorithm returns true iff N > 100 and
(pubFound+ delFound)× delTotal/N > 5 and χ2 > χ2(1, ξ).

4.2 Analysis

4.2.1 Impact. We are interested in how many fact pairs we have to remove
in order to achieve significance in the χ2 test. This number depends on the total
number of fact pairs N . It also depends on the types of attacks against which we
want to protect. The first property of an attack is the overlap ratio of found facts,
ω = (pubFound + delFound)/N . We choose ω = 1 if we want to protect only
against a theft of the complete ontology. We choose a smaller value if we want to
protect also against a theft of a sub-portion of the ontology. The second property
of an attack is the ratio of removed facts δ = delFound/delTotal that appear
in the stolen ontology. If the attacker just republishes our published ontology,
δ = 0. If he adds data from other sources, this can complement some of the facts
we removed. Ratio δ should be the proportion of removed facts that we expect
in the stolen ontology. If δ is larger, and ω is smaller, the protection is safer,
but the marking will remove more facts. Abbreviating delTotal = d, this yields
pubFound = ωN − δd, delFound = δd, pubTotal = N − d and thus

χ2 =
N((ωN − δd)(1− δ)d− δd((1− ω)N − (1− δ)d))2

ωN(1− ω)Nd(N − d)
.

For χ2 > χ2(1, ξ), this yields

d >
Nω(1− ω)χ2(1, ξ)

N(δ(1− ω)− ω(1− δ))2 + ω(1− ω)χ2(1, ξ)
.

We have to impose N > 100 as a precondition for the χ2 test. We also have to
impose d > 5/(ω(1− ω)), i.e., d > 20 in the worst case. Finally, δ < ω, because



we cannot prove theft if the ratio of appearing deleted facts is greater than the
ratio of appearing published facts. As an example, take a choice of ξ = 10−6,
which leads to χ2(1, ξ) = 23.9284. Assuming an overlap ratio of ω = 1

2 , a fault
tolerance of δ = 0.2, and N = 30 × 106 fact pairs, we get d = 67, i.e., 67 fact
pairs have to be deleted from the ontology.

4.2.2 Robustness. In general, the χ2 test tends to err on the safe side, con-
cluding independence only in the presence of overwhelming evidence. Thus, our
algorithm will signal theft only in very clear cases (“in dubio pro reo”). However,
our algorithm is also well-protected against attacks. First, a marked ontology
is protected against intersection attacks. Intersection attacks can happen, e.g.,
when an attacker wants to misuse someone else’s ontology to clean up his own
noisy data set. Since an intersection does not add facts, our marks survive such
an attack. The marked ontology is also protected against comparison attacks,
because the ontologies we target generally suffer from incompleteness. Thus, a
fact that is absent in the original ontology but present in a reference ontology
will not raise suspicions. A marked ontology is also safe against subset attacks,
if ω is chosen smaller than the proportion of stolen facts. A union attack, in
contrast, could add information that fills up some of the removed facts. In this
case, the marks will be reduced to those portions of the ontology that do not
appear in the other ontology. By choosing 1 − δ equal to the portion that we
estimate to be proper to the ontology, and adjusting d accordingly, we can still
guard against the union attack. Random alteration attacks fall into the scope
of the classical analysis of robustness [1]: an attacker being ignorant on the po-
sitions of the deleted facts can only try at random to delete more facts or fill
missing ones. For this attack to be successful, a large number of facts have to be
altered, a much larger number than the watermark algorithm used. Finally, an
attacker can try to modify the fact pairs. Deleted facts are of course not sensitive
to this attack, but the number pubFound can be altered. However, as the subset
of published facts we are looking for at detection are chosen pseudo-randomly,
the attacker has no way to locate them efficiently. The only valid strategy for the
attacker is again to alter a huge amount of fact pairs, which reduces drastically
the quality of the stolen ontology.

4.2.3 Comparison to Modification Watermarking. The modification ap-
proach [1] changes a fact from the ontology. In the majority of cases, it will change
a correct fact to an incorrect fact. Thereby, precision invariably suffers. In con-
trast, our approach does not decrease the precision of the ontology at all. To see
this, assume that O contains n statements, c of which are correct. If a correct
fact is deleted, which will happen in c

n of the cases, the precision drops to c−1
n−1 . If

an incorrect fact is deleted, the precision increases to c
n−1 . Thus, on average, the

precision is c
n ×

c−1
n−1 + n−c

n ×
c

n−1 , which is c
n , just as before. As a comparison,

the modification approaches have an average impact of c
n ×

c−1
n + n−c

n × c
n (a

modified correct fact turns incorrect, and a modified incorrect fact will still be
incorrect, while the number of total facts is the same).

Now let us consider the number of facts that have to be modified in the
classical approach. Assuming that δ = 0, ξ = 10−6 and N = 30 × 106, we used



the estimates in [1] to compute the number of tuples (fact pairs, in our setting)
that are required to be modified in order to resist a subset attack of parameter
ω. This leads to the numbers in Table 2.

ω 50% 10% 5% 2.5% 0.5% 0.05%

Removing 24 215 456 935 4775 47900
Modifying 96 480 950 1900 9500 95000

Table 2. Number of facts that have to be marked
α = 0, ξ = 10−6 and N = 30× 106

The modification method hides a list of 0 and 1 on secretly chosen positions.
If such a position is not selected by the subset attack, the marked bit is lost,
whatever its value. But for our method, the subset attack has no impact on
already deleted facts. Therefore, the modification approach has to modify more
fact pairs than we have to delete. Overall, the number of facts that have to be
modified is comparable to the number of facts that have to be deleted. Given that
removal maintains precision, while modification does not, and that modification
yields false facts, the ontology owner might decide to remove instead of to modify.

5 Experiments

5.1 Applicability

5.1.1 Impact. We were interested in how applicable our method is to real
world ontologies. For this purpose, we collected 5 ontologies from the Semantic
Web that cover a wide range of complexity, size, and topics (Table 3): The core
part of YAGO [15], the manually supervised part of DBpedia [2], the Universal
Protein Resource7, an ontology about city finances (provided by the UK gov-
ernment8), and a subset of the IMDb9. For each ontology, we report the number
of facts, fact pairs, relations and instances. We also report the number of enti-
ties that are connected to an object by more than one relation. This number is
usually small, except for YAGO, where every entity has a label and a (mostly
equivalent) preferred name. We compute the number of facts that have to be
removed to protect against various subset attacks (ξ = 10−6). As a comparison,
the last column gives the number of alterations needed for the modification ap-
proach [1]. It is roughly independent of the size of the data set. Values for the
modification method are not given for δ = 10%, because the scenario where the
attacker irons out the marks has not been considered in [1].

5.1.2 Removing the Marks. We were interested in how an attacker could
try to identify the missing facts in order to reinstate them. The attacker could,
e.g., compare all instances of a class and see whether some of them lack a relation
that all the other instances have. This entity is suspect from an attackers point
of view, because he has to assume that we deleted that relation. More precisely,

7 http://www.uniprot.org/
8 http://data.gov.uk/
9 http://imdb.com/

http://www.uniprot.org/
http://data.gov.uk/
http://imdb.com/


YAGO DBpedia UniProt Finance IMDb Modification

# relations 83 1,107 4 11 12
# instances 2,637,878 1,675,741 1,327 1,948 4,657,880
# facts 18,206,276 19,788,726 6,096 14,926 34,699,697
dup. objects 3,529,697 450,171 0 0 14,907
# fact pairs 14,676,579 19,338,555 6,096 14,926 34,685,090

Facts to remove
δ = 0, ω = 50% 24 24 24 24 24 [97]
δ = 0, ω = 5% 456 456 424 442 456 [975]
δ = 0, ω = 0.5% 4,775 4,774 2,677 3,618 4,775 [9700]
δ = 0, ω = 0.05% 47,820 47,825 - - 47,909 [97500]
δ = 10%, ω = 50% 37 37 37 37 37 N/A

Table 3. Marking different ontologies

we call an entity e suspect in an ontology O, if there exists a class c, an entity
e′, and a relation r, such that

e ∈ c, e′ ∈ c, |{e′′ : 〈e′, r, e′′〉}| > |{e′′ : 〈e, r, e′′〉}|.

We call a fact discreet if we can remove it without creating a suspect entity. We
computed the proportion of discreet facts, their relations and the proportion of
instances with at least one discreet fact (Table 4). Roughly half of the facts are
discreet, meaning that we can delete them without raising suspicions. Even if
the attacker correctly identifies the fact we removed, he cannot simply discard
the entity, because this would still keep the mark. Instead, he has to find the
correct value for the missing link to plug in the hole. This may be hard or even
close to impossible, because the attacker has no access to the original ontology
and cannot run the detection algorithm. Also, he does not know the ratio of dis-
creet facts. Furthermore, from the attacker’s point of view, nearly all instances
are suspect on the original data set already. Thus, nearly every instance could
potentially have been marked. Filling up what could be a hole would amount to
reconstructing the ontology. The only exception to this rule is the finance data
set, which contains rather complete information (most entities have the maximal
number of links in their class). We note, however, that removing facts might still
be preferable to modifying facts in this ontology.

YAGO DBpedia UniProt Finance IMDb

discreet instances 99% 92% 74% 69% 97%
discreet facts 74% 86% 48% 39% 75%
discreet relations 96% 99% 50% 45% 92%
suspect instances 99% 99% 100% 75% 100%

Table 4. The ontologies from an attackers’ point of view

5.1.3 False Positive Detection. A risk with watermarking approaches is
the occurrence of false positives. The probability of considering a non-marked
ontology suspect has to be bounded. While this poses a problem for blind wa-
termarking methods that do not rely on the original for detection, it is very



unlikely that a random ontology is signaled as stolen by our approach, because
our approach first checks that the overlap of the suspect ontology with the orig-
inal ontology is significant. Even in the unlikely situation of a large overlap,
the innocent suspect ontology will match with published facts and deleted facts
uniformly. Thus the ratio of deleted and found facts will be similar, leading to
a correct non-detection. This risk is taken into account and formalized in the
significance level of the χ2 test. We provide next some subset attacks whose
overlap is so small that our method does not signal theft.

5.2 Robustness

5.2.1 Attack Simulations. To demonstrate the robustness of our water-
marking, we simulated suspect ontologies that overlap only partially with the
original ontology. This partial overlap could be due to an incomplete mapping σ
or due to the fact that the attacker chose to steal only a subset of the original.
We watermarked the Finance ontology with 30 removed facts. This should make
the mark resistant to a partial overlap of ω = 50% or more. We varied ω and
created 10 random overlaps for each value of ω. Figure 2 shows the average rate
of successful detection (ξ = 10−6, δ = 0). As predicted, any suspect ontology
that overlaps more than half is identified as stolen.

0.4 0.42 0.44 0.46 0.48 0.5
0

0.2

0.4

0.6

0.8

1

ω

S
u
cc

es
sf

u
l

d
et

ec
ti

o
n
s

Fig. 2. Rate of successful detection
with varying ω, (δ = 0)

0.14 0.16 0.18
0

0.2

0.4

0.6

0.8

1

δ

S
u
cc

es
sf

u
l

d
et

ec
ti

o
n
s

Fig. 3. Rate of successful detection
with varying δ (ω = 0.5)

We also simulate suspect ontologies that do contain portions of the deleted facts.
This can be the case if the attacker merged the stolen ontology with another data
set. We removed 50 facts from the Finance ontology. At an overlap of ω = 50%,
this should protect the ontology up to δ = 15%. We varied δ and simulated 10
random suspect ontologies for each value of δ. Figure 3 shows that the rate of
successful detection. As expected, the rate is 1 for δ ≤ 15%.

5.2.2 Thematic Subset Attacks. Next, we analyze thematic subset attacks,
i.e., attacks that steal a certain class with all its instances and all their facts. We
call such a set facts a theme. Table 5 shows populous classes in YAGO together
with their number of fact pairs. We computed the ratio ω and the number of
fact pairs that would have to be deleted in total (at ξ = 10−6). The numbers
in brackets show the number of fact pairs that the modification method would



consume. Table 6 shows the same characteristics for populous classes in DB-
pedia. The number of facts to delete fades in comparison to YAGO’s 15m fact
pairs in total and DBpedia’s 19m fact pairs in total. We experimentally verified
the subset attacks on DBpedia with 1000 removed facts, achieving significance
levels of χ2 = 68, 18, 38, 51, 38, respectively. This means that, with 1000 removed
facts, we could detect all thematic subset attacks except for the one on Televi-
sion Episodes, because the subset is too small for the chosen number of marks.
This experiment confirms our predictions.

Theme # fact pairs ω Fact pairs to remove

δ = 0 δ = 1%

Person 10,594,790 72.19% 20 [67] 20
Village 582,984 3.97% 580 [1,225] 1,037
Album 588,338 4.01 % 574 [1,215] 1,020
Football player 1,200,459 8.18 % 269 [596] 350
Company 400,769 2.73% 854 [1,785] 2,129

Table 5. Protecting different themes in YAGO

Theme # fact pairs ω Fact pairs to remove

δ = 0 δ = 1%

Album 120,7561 6.24% 360 [782] 511
TelevisionEpisode 342,277 1.77% 1,331 [2750] 7,035
Village 701,084 3.63% 637 [1345] 1,213
SoccerPlayer 924,299 4.78% 478 [1020] 764
Film 694,731 3.59% 644 [1360] 1,238

Table 6. Protecting different themes in DBpedia

5.2.3 Union Attacks. We wanted to evaluate how our method works if an
attacker merges the stolen ontology with another, possibly similar ontology. This
might fill up some of the removed facts and thus destroy our marks. We simu-
lated attacks that steal a certain theme from DBpedia and merge it into YAGO.
We merged by matching resources (DBpedia and YAGO use the same local iden-
tifiers with different prefixes), matching identical strings and identical numbers,
and matching numbers that share the value (ignoring the unit). This yields an
overlap of 1.6× 106 fact pairs between the two ontologies.10 This overlap is 8%
of DBpedia. This means that 8% of the marks that we add to DBpedia can be
filled up by merging with YAGO. Hence, we have to choose δ > 8% in order to
protect against a theft.

10 Part of the reason for the small overlap is the rather crude mapping (YAGO normal-
izes numbers to SI units, while DBpedia does not). However, manual inspection also
shows that YAGO knows many types for the entities, many labels, and some facts
that DBpedia does not know. DBpedia, in turn, captures many infobox attributes
that YAGO does not capture. The ontologies share just 1.4 million instances.



Table 7 shows the ontologies obtained from merging YAGO with a certain
theme from DBpedia. The table shows the total number of fact pairs of these
ontologies as well as the absolute and relative overlap with the original DBpedia.
The relative overlap corresponds to ω. The last column shows the number of fact
pairs that have to be removed from DBpedia to protect the theme, calculated
from ω and δ = 8%.

YAGO + # fact pairs overlap overlap as % Fact pairs
DBpedia Theme with DBpedia of DBpedia (=ω) to remove

Album 15,920,534 2,831,716 15% 624
TelevisionEpisode 15,108,014 2,019,289 10% 5398
Village 15,399,557 2,310,784 12% 1583
SoccerPlayer 15,585,500 2,496,744 13% 1085
Films 15,369,042 2,280,321 12% 1583

Table 7. Merging different themes of DBpedia into YAGO

We experimentally verified these theoretical results by marking DBpedia with
the removal of 2000 facts. Then, we stole different themes from the marked
DBpedia and merged them into YAGO. We ran our detection algorithm and ob-
tained significance levels of χ2 = 28, 15, 34, 47, and 31, respectively. This means
that we could successfully detect all thefts, except for the theft of the Television
Episode theme. This set is smaller, so that it requires the removal of more facts,
as predicted. This shows that our method works even if part of the mark is
destroyed.

6 Conclusion

We have presented an alternative approach for the watermarking of ontologies.
Instead of altering facts, we remove facts. Thereby, we do not lower the preci-
sion of the ontology. We have shown that even on large ontologies, only a few
hundred facts have to be removed to guarantee protection from theft. Through
experiments, we have shown that our approach is well applicable to real world
ontologies. In the future, we intend to explore whether ontologies can also be
watermarked by adding artificial facts.

Acknowledgements

This work was supported by the European Research Council under the European
Community’s Seventh Framework Programme (FP7/2007-2013) / ERC grant
Webdam, agreement 226513 (http://webdam.inria.fr/).

References

1. R. Agrawal, P. J. Haas, and J. Kiernan. Watermarking Relational Data: Frame-
work, Algorithms and Analysis. VLDB J., 12(2):157–169, 2003.

http://webdam.inria.fr/


2. S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. G. Ives. DB-
pedia: A Nucleus for a Web of Open Data. In Proceedings of the International
Semantic Web Conference (ISWC), volume 4825 of Lecture Notes in Computer
Science, pages 722–735, Berlin, Germany, 2007. Springer.

3. C. Bizer, T. Heath, K. Idehen, and T. Berners-Lee. Linked data on the Web. In
Proceedings of the International Conference on World Wide Web (WWW), pages
1265–1266, New York, NY, USA, 2008. ACM.

4. J. J. Carroll, C. Bizer, P. Hayes, and P. Stickler. Named graphs, provenance and
trust. In WWW ’05: Proceedings of the 14th international conference on World
Wide Web, pages 613–622, New York, NY, USA, 2005. ACM.

5. S. Grimm and J. Wissmann. Elimination of redundancy in ontologies. In ESWC,
pages 260–274, 2011.

6. H. Kong, G. Xue, K. Tian, and S. Yao. Techniques for owl-based ontology water-
marking. In WRI Global Congress on Intelligent Systems (GCIS), pages 582–586,
Xiamen, 2009.

7. J. Lafaye, D. Gross-Amblard, C. Constantin, and M. Guerrouani. Watermill: An
optimized fingerprinting system for databases under constraints. IEEE Trans.
Knowl. Data Eng. (TKDE), 20(4):532–546, 2008.

8. Y. Li, V. Swarup, and S. Jajodia. Fingerprinting relational databases: Schemes
and specialties. IEEE Trans. Dependable Sec. Comput. (TDSC), 2(1):34–45, 2005.

9. C. Matuszek, J. Cabral, M. Witbrock, and J. Deoliveira. An introduction to the
syntax and content of cyc. In Proceedings of the AAAI Spring Symposium on For-
malizing and Compiling Background Knowledge and Its Applications to Knowledge
Representation and Question Answering, pages 44–49, Menlo Park, CA, USA, 2006.
AAAI Press.

10. I. Niles and A. Pease. Towards a standard upper ontology. In Proceedings of the
international conference on Formal Ontology in Information Systems, pages 2–9,
New York, NY, USA, 2001. ACM.

11. N. Noy, R. Fergerson, and M. Musen. The knowledge model of Protégé-2000:
Combining interoperability and flexibility. Lecture Notes in Computer Science,
1937:69–82, 2000.

12. M. Shehab, E. Bertino, and A. Ghafoor. Watermarking relational databases us-
ing optimization-based techniques. IEEE Trans. Knowl. Data Eng. (TKDE),
20(1):116–129, 2008.

13. R. Sion, M. Atallah, and S. Prabhakar. Resilient information hiding for abstract
semi-structures. In S. Verlag, editor, Proceedings of the 4th Workshop on Digital
Watermarking, IWDW’03, volume 2939, pages 141–153, 2003.

14. R. Sion, M. Atallah, and S. Prabhakar. Protecting rights over relational data
using watermarking. IEEE Trans. Knowl. Data Eng. (TKDE), 16(12):1509–1525,
December 2004.

15. F. M. Suchanek, G. Kasneci, and G. Weikum. YAGO: A core of semantic knowl-
edge - unifying WordNet and Wikipedia. In C. L. Williamson, M. E. Zurko, and
P. J. Patel-Schneider, Peter F. Shenoy, editors, Proceedings of the International
Conference on World Wide Web (WWW), pages 697–706, Banff, Canada, 2007.
ACM.

16. Wikipedia. CSPRNG, 2011.
17. Wikipedia. One-way function, 2011.


	Watermarking for Ontologies

