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Abstract

We present complexity results for the verification of security protocols. Since the
perfect cryptography assumption is unrealistic for cryptographic primitives with
visible algebraic properties, we extend the classical Dolev-Yao model by permitting
the intruder to exploit these properties. More precisely, we are interested in theories
such as Exclusive or and Abelian groups in combination with the homomorphism
axiom. We show that the intruder deduction problem is in PTIME in both cases,
improving the EXPTIME complexity results presented in [10].
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1 Introduction

In security protocol analysis, the knowledge of an attacker is often described
in terms of deduction: Given some messages T and a message s, can the in-
truder deduce s from T? This problem, called the intruder deduction problem,
corresponds to the security decision problem in presence of an eavesdropper
and is a cornerstone for the verification problem and for the search of attacks.

This deduction problem depends on the equational theory that governs the
function symbols appearing in messages. In several works, the underlying cryp-
tographic primitives are based on the Dolev-Yao model [8] which may be too
strong in some situations. Recently, a number of results [7] have been obtained
for including algebraic properties by the means of equational theories.

In this paper, we are interested in Associative and Commutative (AC) theories
such as Exclusive or (ACUN) and Abelian groups (AG) in combination with
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the homomorphism axiom (h). Some protocols relying on these algebraic prop-
erties are described in [7]: Bull’s protocol, Wired Equivalent Privacy (WEP)
protocol... For instance, in the WEP protocol, a checksum function having
the homomorphism property over an (ACUN) symbol is used. Another well-
known example is the TMN protocol [15] on which an attack, due to Simmons,
makes use of the homomorphic property of RSA encryption. Such a protocol,
in which RSA encryption is only used with the public key of the server, can
be modelled in our settings assuming that the decryption key of the server
is a trusted key. The homomorphism property is also crucial in the field of
electronic voting protocols [3].

In [1], the authors state a general decidability result for the intruder deduction
problem, by providing some hypotheses under which the deduction problem
is decidable. However, they do not give any complexity result and it seems
it is difficult to check that a particular theory satisfies the hypotheses. In
this paper, we show that the intruder deduction problem in the equational
theory ACUNh (resp. AGh) is decidable in PTIME, improving the EXPTIME
complexity results of [10]. The techniques used are rather similar. Nevertheless,
the introduction of a rule scheme to treat ⊕ and h at the same time allows us
to obtain simpler proofs and better complexity results.

2 Intruder Deduction Problem

2.1 Basic Definitions

We use classical notation and terminology on terms, unification and rewrite
systems. We write T (F ,X ) for the set of terms built over the finite (ranked)
alphabet F of function symbols and the set X of variables. T (F , ∅) is also
written T (F). The set of positions of t is written O(t). The subterm of t at
position p ∈ O(t) is written t|p. The term obtained by replacing t|p with u is
denoted t[u]p. The set of variables occurring in t is noted vars(t).

A substitution σ is a mapping from a finite subset of X , called its domain and
written dom(σ), to T (F ,X ). Substitutions are extended to endomorphisms of
T (F ,X ) as usual. We use a postfix notation for their application. If E is a set
of equations (unordered pair of terms), we note sig(E) for the set of function
symbols occurring in E and by =E the least congruence on T (F ,X ) such that
uσ =E vσ for all pairs u = v ∈ E and substitutions σ. An E-context is a λ-term
λx1, . . . , xn.t with t ∈ T (sig(E), {x1, . . . , xn}), also written t[x1, . . . , xn]. The
application of t[x1, . . . , xn] to arguments u1, . . . , un is written t[u1, . . . , un].

A term rewriting system (TRS) is a finite set of rewrite rules l → r where

2



l ∈ T (F ,X ) and r ∈ T (F , vars(l)). Given a TRS R and a set of equations E,
the relation →R/E (rewriting modulo E) is defined as follows: s →R/E t if and
only if s =E u[lσ]p and u[rσ]p =E t, for some context u, position p in u, rule
l → r ∈ R, and substitution σ. The rewrite system R/E is strongly terminating
if there is no infinite chains t1 →R/E t2 →R/E . . . and it is locally confluent if
for every 3 terms t, s1 and s2 such that t →R/E s1, t →R/E s2, there exists

a term s such that s1

∗
−→R/E s, s2

∗
−→R/E s where

∗
−→R/E is the reflexive and

transitive closure of →R/E. A rewrite system R/E is said to be E-convergent
if it is both strongly terminating and locally confluent. A term t is in normal
form (w.r.t. →R/E) if there is no term s such that t →R/E s. If t

∗
−→R/E s and

s is in normal form then we say that s is a normal form of t.

2.2 Dolev-Yao Model Extended with an Equational Theory

The most widely used deduction relation representing the deduction abilities
of an intruder is often referred to as the Dolev-Yao model [8]. In addition, we
give to the intruder the power to use equational reasoning modulo a set E of
equational axioms. The resulting set of deduction rules for symmetric encryp-
tion is given in Figure 1. It is not difficult to design a similar deduction system
for asymmetric encryption and to extend our results to this inference system.

Axiom (A)
u ∈ T

T ⊢E u
Compose (C)

T ⊢E u1 . . . T ⊢E un
with f ∈ F

T ⊢E f(u1, . . . , un)

Unpairing (UL)
T ⊢E 〈u, v〉

T ⊢E u
Decryption (D)

T ⊢E {u}v T ⊢E v

T ⊢E u

Unpairing (UR)
T ⊢E 〈u, v〉

T ⊢E v
Equality (Eq)

T ⊢E u u =E v

T ⊢E v

Fig. 1. Dolev-Yao Model Extended with an Equational Theory

The intended meaning of a sequent T ⊢E u is that the intruder is able to
deduce the term u ∈ T (F) from the finite set of terms T ⊆ T (F). As in the
standard Dolev-Yao model, the intruder knows any term that he has previ-
ously observed (A), he can compose new terms (C) from known terms, he can
also decompose pairs (UL, UR) and decrypt ciphertexts, providing that he can
deduce the decryption key (D). Finally, we relax the perfect cryptography as-
sumption through the rule (Eq) allowing the intruder to exploit the algebraic
properties of cryptographic primitives.

Definition 1 (E-proof) An E-proof P of T ⊢E u is a tree such that:
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• every leaf of P is labeled with an expression of the form “v ∈ T”,
• for every node labeled with a sequent T ⊢E v having n sons labeled with
T ⊢E s1, . . ., T ⊢E sn, there is an instance of an inference rule with
conclusion T ⊢E v and hypotheses T ⊢E s1, . . ., T ⊢E sn. We say that P
ends with this instance if the node is the root of P ,

• the root is labeled with T ⊢E u.

Assume that the equational theory E is fixed. The problem whether an intruder
can gain certain information s from a set of knowledge T , i.e. whether there
is an E-proof of T ⊢E s, is called the intruder deduction problem (ID).

INPUT: a finite set of terms T , a term s (the secret).
OUTPUT: Does there exist an E-proof of T ⊢E s ?

In this paper, we focus on the theories ACh, ACUNh, AGh, i.e. the homomor-
phism axiom (h), h(x⊕ y) = h(x) ⊕ h(y), in combination with:

(1) Associativity, Commutativity (AC): (x⊕y)⊕z = x⊕(y⊕z), x⊕y = y⊕x.
(2) Exclusive or (ACUN): (AC), Unit (U): x⊕0 = x, Nilpotence (N): x⊕x = 0.
(3) Abelian groups (AG): (AC), Unit (U): x⊕0 = x, Inverse (Inv): x⊕I(x) = 0.

3 PTIME Decision Procedures

The proof system given in Figure 1 is not appropriate for automated proof
search: the rule (Eq) allows equational reasoning at any moment of a proof.
To define a more effective model, we represent the equational theory by an
AC-convergent rewrite system. In the case of ACh, we have just to orient from
left to right (h). For ACUNh, we orient from left to right the equations (U),
(N) and (h) and we add h(0) → 0. For AGh, this can be achieved by orienting
from left to right (U), (Inv) and (h) and by adding the rules in Figure 2.

I(x⊕ y) → I(x) ⊕ I(y)
h(0) → 0

I(0) → 0

I(I(x)) → x

h(I(x)) → I(h(x))

Fig. 2. Rewriting Rules

Now, we omit the rule (Eq) and consider a variant of the deduction model
which works on normal forms. After each step, the term obtained is reduced
to its normal form. This new deduction system on sequents T ⊢ u consists in:

(1) the deduction rules (A, UL, UR, D) (where ⊢E is replaced by ⊢),
(2) a restricted form of the rule (C), denoted by (C−), where ⊢E is replaced

by ⊢ and the side condition is slightly more restrictive: f ∈ F r sig(E),
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(3) and lastly, a rule scheme, denoted (ME):

T ⊢ u1 . . . T ⊢ un
with C an E-context

T ⊢ C[u1, . . . , un]

Example 2 If we consider the ACUNh theory, the inference below is an in-
stance of the rule (ME) with C = x1 ⊕ h(x1) ⊕ h2(x1) ⊕ h(x2).

T ⊢ a⊕ h(a) T ⊢ b

T ⊢ a⊕ h3(a) ⊕ h(b)

Equivalence modulo AC is easy to decide, so we omit the equality rule for AC
and just work with equivalence classes modulo AC. The notion of proof in this
inference system is similar to the notion of E-proof previously defined. The
only difference is that nodes are labeled with sequents of the form “T ⊢ v”.

Since the equational theories studied in this paper do not interfere with the
standard function symbols, i.e. sig(E) ∩ {{ } ; 〈 , 〉} = ∅, we have:

Theorem 3 Let T be a set of terms and u a term (in normal form). We have:
T ⊢ u is derivable ⇔ T ⊢E u is derivable

PROOF. Given a proof of T ⊢ u, we can easily find an E-proof of T ⊢E u by
inserting (Eq) steps. Conversely, given an E-proof of T ⊢E u, we can transform
it by changing all ⊢E into ⊢, normalizing all terms to the right of ⊢ and
dropping all applications of (Eq). Note that an instance of (C) in the E-proof
has to be seen (in the proof of T ⊢ u) either as an instance of (ME) or of (C−),
depending on whether f ∈ sig(E) or not. 2

To show that (ID) is decidable in PTIME, we use the notion of locality intro-
duced by McAllester [12]. As in [10], we need to establish:

(1) a locality result (Section 4) for the inference system ⊢: checking the ex-
istence of a proof of T ⊢ u amounts to checking the existence of a local
proof involving only a polynomial number of terms,

(2) a one-step-deducibility result (Section 5) to ensure that we can test in
PTIME whether a term is deducible in one-step from a set of terms by
using an instance of one of the inference rules. The only critical rule
is (ME).

The existence of a local proof of T ⊢ u can be checked in polynomial time
by saturation of T with terms deducible in one-step. Thanks to locality, the
number of iteration to obtain a saturated set is bounded by the number of
terms that can be involved in a local proof. This yields a PTIME algorithm.
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In the remainder, we study locality and provide algorithms for one-step de-
ducibility of (ME) in our three cases. For ACh, (ID) is NP-complete as men-
tioned in [10] without proof. Anyway, a reduction from BIN PACKING entails
that solving linear Diophantine equations over N is strongly NP-complete.
Then, it is easy to see that (ID) is NP-complete as well. Hence, there is no
hope of improving the complexity result of [10] in this case.

Theorem 4 (Main Result) (ID) is PTIME-complete for ACUNh and AGh.

The PTIME-hardness is due to the Dolev-Yao part of the model and can be
proved by a reduction from HORNSAT.

4 Locality

A term t is headed with f if t is of the form f(u) for some term u. A term t
is standard if it is not headed with any f ∈ sig(E).

Definition 5 P is a decomposition proof of T ⊢ u if P ends either with an
instance of a decomposition rule (i.e. (A, UL, UR, D)), or with an instance of
(ME) where u is a standard term.
The size of a proof P , denoted by |P |, is the number of nodes in P . A proof
P of T ⊢ u is minimal if there is no proof P ′ of T ⊢ u such that |P ′| < |P |.

Definition 6 Let t be a term, t = C[t1, . . . , tn] for some standard terms
t1, . . . , tn and an E-context C. The set FactE(t) of factors of t is defined by
FactE(t) = {t1, . . . , tn}. The set StE(t) of subterms of t is the smallest set s.t.:

• t ∈ StE(t),
• if f(t1, . . . , tn) ∈ StE(t) is standard then t1, . . . tn ∈ StE(t),
• if s ∈ StE(t) is not standard then FactE(s) ⊆ StE(t).

For example, let t1 = h2(a) ⊕ b⊕ c and t2 = h(〈a, b〉) ⊕ c. We have StE(t1) =
{t1, a, b, c} and StE(t2) = {t2, 〈a, b〉, a, b, c}. These notations are extended as
expected to sets of terms.

Lemma 7 Let T be a set of terms and u a term (in normal forms) such that
0 ∈ T . A minimal proof P of T ⊢ u only contains terms in StE(T ∪ {u}).

PROOF. This is similar to proofs in [6]. By induction on P , we prove that:

(1) P only contains terms in StE(T ∪ {u}),
(2) if P is a decomposition proof, then P contains only terms in StE(T ).
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We consider all possible cases for the last inference rule of P and we conclude
by applying the induction hypothesis (1) or (2). The most interesting case is
when the last inference is (ME). We have the following derivation:

P1

{ . . .

T ⊢ u1
. . . Pn

{ . . .

T ⊢ un
(ME)

T ⊢ C[u1, . . . , un]

By (1), each Pi only contains terms in StE(T ∪ {ui}). Moreover, if ui is not a
standard term, Pi is necessarily a decomposition proof (by minimality of P ,
we could otherwise merge the last rule with (ME)) and we can apply (2). Now,
we have to deal with the ui that are standard. Either ui ∈ StE(u), or ui is
canceled out by another term. In the second case, since P is minimal, ui must
be canceled out by some term uj with j 6= i that is not standard (otherwise
the same term would appear twice in the premises, which contradicts the
minimality of P ). Hence ui ∈ StE(T ). Therefore P only contains terms in
StE(T ∪ {u}). Moreover, if we assume that u is a standard term, we have
u ∈ StE(ui) for some ui that is not standard. Hence ui ∈ StE(T ) and P only
contains terms in StE(T ). 2

5 One-Step Deducibility

We now investigate the complexity of one-step deducibility for the rule (ME).
Our method is inspired by the technique used in [13] to solve unification
problems in monoidal theories and has also been successfully used to solve
one-step deducibility for a simple scheme rule (see [5,10] for instance). The
algorithm described below reduces one-step deducibility into the solvability of
a system of linear equations over N[X], Z/2Z[X] or Z[X] (depending on E).

Input: a finite set T = {t1, . . . tn} of terms and a term s (in normal forms).

Output: Let B = {b | b ∈ FactE(T ∪ {s})} and m = |B|. The output is a
matrix A of size n×m, a vector b of size m, over N[X] (resp. Z/2Z[X], Z[X])
such that s is one-step deducible by (ME) with E = ACh (resp. ACUNh, AGh) if
and only if there exists Y ∈ N[X]n (resp. Z/2Z[X]n, Z[X]n) such that A·Y = b.

Algorithm: Let TB = {t ∈ T (F) | FactE(t) ⊆ B}. We write B = {b1, . . . , bm}.
Let ψ : TB → N[X]m (resp. Z/2Z[X]m, Z[X]m) be defined as follows:

• if x = bi then ψ(x) = (0, . . . , 0, 1, 0, . . . , 0) where 1 is at the ith position,
• if x is headed with h, then x = hk(u) and ψ(x) = ψ(u) ·Xk,
• if x is headed with ⊕, then x = u1 ⊕ · · · ⊕ ul and ψ(x) =

∑

1≤i≤l ψ(ui),
• if x is headed with I (AGh case) , then x = I(u) and ψ(x) = −ψ(u).
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The algorithm returns A = (ψ(t1), . . . , ψ(tn)) and b = ψ(s).

Lemma 8 The algorithm described above is such that A ·Y = b has a solution
over N[X] (resp. Z/2Z[X], Z[X]) if and only if there exists an E-context C such
that C[t1, . . . , tn] =E s with E = ACh (resp. ACUNh, AGh), i.e. s is one-step
deducible from t1, . . . , tn by (ME).

PROOF. The function ψ, described above, associates to every term t ∈ TB,
an element ψ(t) of N[X]m (resp. Z/2Z[X]m, Z[X]m), and is such that: for
any two terms t, t′, we have ψ(t) = ψ(t′) if and only if t =E t′. In the
same way, we define φ : C → N[X]n (resp. Z/2Z[X]n, Z[X]n) where C =
{C | C is an E-context with n variables}. Note that φ is surjective and that
we have: ψ(C[t1, . . . , tn]) = (ψ(t1), . . . , ψ(tn)) · φ(C). It follows that:

∃Y s.t. A · Y = b ⇔ ∃Y s.t. (ψ(t1), . . . , ψ(tn)) · Y = ψ(s)
⇔ ∃Y s.t. (ψ(t1), . . . , ψ(tn)) · φ(C) = ψ(s)
⇔ ∃C s.t. ψ(C[t1, . . . , tn]) = ψ(s)
⇔ ∃C s.t. C[t1, . . . , tn] =E s 2

Example 9 Let T = {a1 ⊕ h(a1) ⊕ h2(a1), a2 ⊕ h2(a1), h(a2) ⊕ h2(a1)} and
s = a1 ⊕ h2(a1) with a1, a2 standard terms. We obtain:

A =





1 + X + X2 X2 X2

0 1 X



 b =





1 + X2

0





The equation A · Y = b has a solution over Z/2Z[X] : Y = (1 + X,X, 1) is
a solution. Hence, s is one-step deducible with (ME) by using the E-context
x1 ⊕ h(x1) ⊕ h(x2) ⊕ x3 where xi is used to denote the ith term of T .

Different ways of measuring the size of a term t are conceivable. As in [10],
we can consider the case where the size of t is defined as the number of
positions in t. In [4], the size of t is defined by |t|d + ‖t‖ where |t|d is the
number of nodes needed to represent the factors of t (FactE(t)) as a tree with
maximal sharing (DAG representation) and ‖t‖ is the number of bits needed
to represent the coefficients (i.e. polynomials) of the factors occurring in t.
Anyway, the complexity results described below does not depend on it.

• over N[X]: it is easy to see that each component of a solution of A · Y = b
has a degree smaller than the degree of b. The question of whether there
exists Y such that A · Y = b can be reduced to solving a system of linear
equations over N. We obtain an NP decision procedure. The problem of
solving linear Diophantine equations being strongly NP-complete, there is
no hope to obtain a better theoretical complexity result.

• over Z/2Z[X]: solvability of linear equations is known to be in PTIME [9].
• over Z[X]: a result (theorem 6.5 in [2]) shows that if a solution of A · Y =
b exists, then it has such a solution the degrees of whose components is
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polynomially bounded by both the degrees and the size of the coefficients
that appear in A and b. The computable character of this bound reduces
the problem to solving a large (but polynomial) system of linear equations
over Z. We obtain a PTIME decision procedure for the solvability of linear
equations in Z[X] through a PTIME decision procedure over Z [14].

6 Conclusion

In this paper, PTIME algorithms allowing us to solve (ID) in ACUNh, AGh
are proposed. The high complexity in [10] is essentially due to the fact that
the authors treat ⊕ and h separately. Hence, it may be necessary (in their
inference system) to build large intermediate terms which partially cancel out
when combining them by ⊕. To establish their locality lemma, they have to
consider a large set of terms. In this paper, the locality part is easy to prove
thanks to the rule scheme (ME). The most complicated part is to establish
one-step deducibility, but well-know algebraic results allow us to conclude.

We think that the technique is general enough to deal with some other monoidal
theories [13] provided that algebraic techniques exist to solve equations over
the corresponding semiring. For instance, considering several commuting ho-
momorphisms symbols would return to work on polynomials with several inde-
terminates (one per homomorphism symbol). The case where the encryption
distributes over the AC symbol, studied in [11], seems to be more complicated
and can not be handled straightforwardly with this method.
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